You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 10 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. #################train vgg16 example on cifar10########################
  17. python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
  18. """
  19. import argparse
  20. import datetime
  21. import os
  22. import mindspore.nn as nn
  23. from mindspore import Tensor
  24. from mindspore import context
  25. from mindspore.communication.management import init, get_rank, get_group_size
  26. from mindspore.nn.optim.momentum import Momentum
  27. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  28. from mindspore.train.model import Model
  29. from mindspore.context import ParallelMode
  30. from mindspore.train.serialization import load_param_into_net, load_checkpoint
  31. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  32. from mindspore.common import set_seed
  33. from src.dataset import vgg_create_dataset
  34. from src.dataset import classification_dataset
  35. from src.crossentropy import CrossEntropy
  36. from src.warmup_step_lr import warmup_step_lr
  37. from src.warmup_cosine_annealing_lr import warmup_cosine_annealing_lr
  38. from src.warmup_step_lr import lr_steps
  39. from src.utils.logging import get_logger
  40. from src.utils.util import get_param_groups
  41. from src.vgg import vgg16
  42. set_seed(1)
  43. def parse_args(cloud_args=None):
  44. """parameters"""
  45. parser = argparse.ArgumentParser('mindspore classification training')
  46. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  47. help='device where the code will be implemented. (Default: Ascend)')
  48. parser.add_argument('--device_id', type=int, default=1, help='device id of GPU or Ascend. (Default: None)')
  49. # dataset related
  50. parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10")
  51. parser.add_argument('--data_path', type=str, default='', help='train data dir')
  52. # network related
  53. parser.add_argument('--pre_trained', default='', type=str, help='model_path, local pretrained model to load')
  54. parser.add_argument('--lr_gamma', type=float, default=0.1,
  55. help='decrease lr by a factor of exponential lr_scheduler')
  56. parser.add_argument('--eta_min', type=float, default=0., help='eta_min in cosine_annealing scheduler')
  57. parser.add_argument('--T_max', type=int, default=150, help='T-max in cosine_annealing scheduler')
  58. # logging and checkpoint related
  59. parser.add_argument('--log_interval', type=int, default=100, help='logging interval')
  60. parser.add_argument('--ckpt_path', type=str, default='outputs/', help='checkpoint save location')
  61. parser.add_argument('--ckpt_interval', type=int, default=5, help='ckpt_interval')
  62. parser.add_argument('--is_save_on_master', type=int, default=1, help='save ckpt on master or all rank')
  63. # distributed related
  64. parser.add_argument('--is_distributed', type=int, default=0, help='if multi device')
  65. parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
  66. parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
  67. args_opt = parser.parse_args()
  68. args_opt = merge_args(args_opt, cloud_args)
  69. if args_opt.dataset == "cifar10":
  70. from src.config import cifar_cfg as cfg
  71. else:
  72. from src.config import imagenet_cfg as cfg
  73. args_opt.label_smooth = cfg.label_smooth
  74. args_opt.label_smooth_factor = cfg.label_smooth_factor
  75. args_opt.lr_scheduler = cfg.lr_scheduler
  76. args_opt.loss_scale = cfg.loss_scale
  77. args_opt.max_epoch = cfg.max_epoch
  78. args_opt.warmup_epochs = cfg.warmup_epochs
  79. args_opt.lr = cfg.lr
  80. args_opt.lr_init = cfg.lr_init
  81. args_opt.lr_max = cfg.lr_max
  82. args_opt.momentum = cfg.momentum
  83. args_opt.weight_decay = cfg.weight_decay
  84. args_opt.per_batch_size = cfg.batch_size
  85. args_opt.num_classes = cfg.num_classes
  86. args_opt.buffer_size = cfg.buffer_size
  87. args_opt.ckpt_save_max = cfg.keep_checkpoint_max
  88. args_opt.pad_mode = cfg.pad_mode
  89. args_opt.padding = cfg.padding
  90. args_opt.has_bias = cfg.has_bias
  91. args_opt.batch_norm = cfg.batch_norm
  92. args_opt.initialize_mode = cfg.initialize_mode
  93. args_opt.has_dropout = cfg.has_dropout
  94. args_opt.lr_epochs = list(map(int, cfg.lr_epochs.split(',')))
  95. args_opt.image_size = list(map(int, cfg.image_size.split(',')))
  96. return args_opt
  97. def merge_args(args_opt, cloud_args):
  98. """dictionary"""
  99. args_dict = vars(args_opt)
  100. if isinstance(cloud_args, dict):
  101. for key_arg in cloud_args.keys():
  102. val = cloud_args[key_arg]
  103. if key_arg in args_dict and val:
  104. arg_type = type(args_dict[key_arg])
  105. if arg_type is not None:
  106. val = arg_type(val)
  107. args_dict[key_arg] = val
  108. return args_opt
  109. if __name__ == '__main__':
  110. args = parse_args()
  111. device_num = int(os.environ.get("DEVICE_NUM", 1))
  112. if args.is_distributed:
  113. if args.device_target == "Ascend":
  114. init()
  115. context.set_context(device_id=args.device_id)
  116. elif args.device_target == "GPU":
  117. init()
  118. args.rank = get_rank()
  119. args.group_size = get_group_size()
  120. device_num = args.group_size
  121. context.reset_auto_parallel_context()
  122. context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  123. parameter_broadcast=True, gradients_mean=True)
  124. else:
  125. context.set_context(device_id=args.device_id)
  126. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  127. # select for master rank save ckpt or all rank save, compatible for model parallel
  128. args.rank_save_ckpt_flag = 0
  129. if args.is_save_on_master:
  130. if args.rank == 0:
  131. args.rank_save_ckpt_flag = 1
  132. else:
  133. args.rank_save_ckpt_flag = 1
  134. # logger
  135. args.outputs_dir = os.path.join(args.ckpt_path,
  136. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  137. args.logger = get_logger(args.outputs_dir, args.rank)
  138. if args.dataset == "cifar10":
  139. dataset = vgg_create_dataset(args.data_path, args.image_size, args.per_batch_size, args.rank, args.group_size)
  140. else:
  141. dataset = classification_dataset(args.data_path, args.image_size, args.per_batch_size,
  142. args.rank, args.group_size)
  143. batch_num = dataset.get_dataset_size()
  144. args.steps_per_epoch = dataset.get_dataset_size()
  145. args.logger.save_args(args)
  146. # network
  147. args.logger.important_info('start create network')
  148. # get network and init
  149. network = vgg16(args.num_classes, args)
  150. # pre_trained
  151. if args.pre_trained:
  152. load_param_into_net(network, load_checkpoint(args.pre_trained))
  153. # lr scheduler
  154. if args.lr_scheduler == 'exponential':
  155. lr = warmup_step_lr(args.lr,
  156. args.lr_epochs,
  157. args.steps_per_epoch,
  158. args.warmup_epochs,
  159. args.max_epoch,
  160. gamma=args.lr_gamma,
  161. )
  162. elif args.lr_scheduler == 'cosine_annealing':
  163. lr = warmup_cosine_annealing_lr(args.lr,
  164. args.steps_per_epoch,
  165. args.warmup_epochs,
  166. args.max_epoch,
  167. args.T_max,
  168. args.eta_min)
  169. elif args.lr_scheduler == 'step':
  170. lr = lr_steps(0, lr_init=args.lr_init, lr_max=args.lr_max, warmup_epochs=args.warmup_epochs,
  171. total_epochs=args.max_epoch, steps_per_epoch=batch_num)
  172. else:
  173. raise NotImplementedError(args.lr_scheduler)
  174. # optimizer
  175. opt = Momentum(params=get_param_groups(network),
  176. learning_rate=Tensor(lr),
  177. momentum=args.momentum,
  178. weight_decay=args.weight_decay,
  179. loss_scale=args.loss_scale)
  180. if args.dataset == "cifar10":
  181. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  182. model = Model(network, loss_fn=loss, optimizer=opt, metrics={'acc'},
  183. amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
  184. else:
  185. if not args.label_smooth:
  186. args.label_smooth_factor = 0.0
  187. loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
  188. loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
  189. model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale_manager, amp_level="O2")
  190. # define callbacks
  191. time_cb = TimeMonitor(data_size=batch_num)
  192. loss_cb = LossMonitor(per_print_times=batch_num)
  193. callbacks = [time_cb, loss_cb]
  194. if args.rank_save_ckpt_flag:
  195. ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval * args.steps_per_epoch,
  196. keep_checkpoint_max=args.ckpt_save_max)
  197. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  198. directory=args.outputs_dir,
  199. prefix='{}'.format(args.rank))
  200. callbacks.append(ckpt_cb)
  201. model.train(args.max_epoch, dataset, callbacks=callbacks)