|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- # Contents
-
- - [LeNet Description](#lenet-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Training](#training)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Evaluation Performance](#evaluation-performance)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
-
- # [LeNet Description](#contents)
-
- LeNet was proposed in 1998, a typical convolutional neural network. It was used for digit recognition and got big success.
-
- [Paper](https://ieeexplore.ieee.org/document/726791): Y.Lecun, L.Bottou, Y.Bengio, P.Haffner. Gradient-Based Learning Applied to Document Recognition. *Proceedings of the IEEE*. 1998.
-
- # [Model Architecture](#contents)
-
- LeNet is very simple, which contains 5 layers. The layer composition consists of 2 convolutional layers and 3 fully connected layers.
-
- # [Dataset](#contents)
-
- Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
-
- - Dataset size:52.4M,60,000 28*28 in 10 classes
- - Train:60,000 images
- - Test:10,000 images
- - Data format:binary files
- - Note:Data will be processed in dataset.py
-
- - The directory structure is as follows:
-
- ```
- └─Data
- ├─test
- │ t10k-images.idx3-ubyte
- │ t10k-labels.idx1-ubyte
- │
- └─train
- train-images.idx3-ubyte
- train-labels.idx1-ubyte
- ```
-
- # [Environment Requirements](#contents)
-
- - Hardware(Ascend/GPU/CPU)
- - Prepare hardware environment with Ascend, GPU, or CPU processor.
- - Framework
- - [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
- - For more information, please check the resources below:
- - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
-
- # [Quick Start](#contents)
-
- After installing MindSpore via the official website, you can start training and evaluation as follows:
-
- ```python
- # enter script dir, train LeNet
- sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
- # enter script dir, evaluate LeNet
- sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
- ```
-
- # [Script Description](#contents)
-
- ## [Script and Sample Code](#contents)
-
- ```
- ├── cv
- ├── lenet
- ├── README.md // descriptions about lenet
- ├── requirements.txt // package needed
- ├── scripts
- │ ├──run_standalone_train_cpu.sh // train in cpu
- │ ├──run_standalone_train_gpu.sh // train in gpu
- │ ├──run_standalone_train_ascend.sh // train in ascend
- │ ├──run_standalone_eval_cpu.sh // evaluate in cpu
- │ ├──run_standalone_eval_gpu.sh // evaluate in gpu
- │ ├──run_standalone_eval_ascend.sh // evaluate in ascend
- ├── src
- │ ├──dataset.py // creating dataset
- │ ├──lenet.py // lenet architecture
- │ ├──config.py // parameter configuration
- ├── train.py // training script
- ├── eval.py // evaluation script
- ```
-
- ## [Script Parameters](#contents)
-
- ```python
- Major parameters in train.py and config.py as follows:
-
- --data_path: The absolute full path to the train and evaluation datasets.
- --epoch_size: Total training epochs.
- --batch_size: Training batch size.
- --image_height: Image height used as input to the model.
- --image_width: Image width used as input the model.
- --device_target: Device where the code will be implemented. Optional values
- are "Ascend", "GPU", "CPU".
- --checkpoint_path: The absolute full path to the checkpoint file saved
- after training.
- --data_path: Path where the dataset is saved
- ```
-
- ## [Training Process](#contents)
-
- ### Training
-
- ```
- python train.py --data_path Data --ckpt_path ckpt > log.txt 2>&1 &
- or enter script dir, and run the script
- sh run_standalone_train_ascend.sh Data ckpt
- ```
-
- After training, the loss value will be achieved as follows:
-
- ```
- # grep "loss is " log.txt
- epoch: 1 step: 1, loss is 2.2791853
- ...
- epoch: 1 step: 1536, loss is 1.9366643
- epoch: 1 step: 1537, loss is 1.6983616
- epoch: 1 step: 1538, loss is 1.0221305
- ...
- ```
-
- The model checkpoint will be saved in the current directory.
-
- ## [Evaluation Process](#contents)
-
- ### Evaluation
-
- Before running the command below, please check the checkpoint path used for evaluation.
-
- ```
- python eval.py --data_path Data --ckpt_path ckpt/checkpoint_lenet-1_1875.ckpt > log.txt 2>&1 &
- or enter script dir, and run the script
- sh run_standalone_eval_ascend.sh Data ckpt/checkpoint_lenet-1_1875.ckpt
- ```
-
- You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
-
- ```
- # grep "Accuracy: " log.txt
- 'Accuracy': 0.9842
- ```
-
- # [Model Description](#contents)
-
- ## [Performance](#contents)
-
- ### Evaluation Performance
-
- | Parameters | LeNet |
- | -------------------------- | ----------------------------------------------------------- |
- | Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G |
- | uploaded Date | 06/09/2020 (month/day/year) |
- | MindSpore Version | 0.5.0-beta |
- | Dataset | MNIST |
- | Training Parameters | epoch=10, steps=1875, batch_size = 32, lr=0.01 |
- | Optimizer | Momentum |
- | Loss Function | Softmax Cross Entropy |
- | outputs | probability |
- | Loss | 0.002 |
- | Speed | 1.70 ms/step |
- | Total time | 43.1s | |
- | Checkpoint for Fine tuning | 482k (.ckpt file) |
- | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet |
-
- # [Description of Random Situation](#contents)
-
- In dataset.py, we set the seed inside ```create_dataset``` function.
-
- # [ModelZoo Homepage](#contents)
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|