| @@ -1,57 +1,177 @@ | |||
| # AlexNet Example | |||
| ## Description | |||
| Training AlexNet with dataset in MindSpore. | |||
| This is the simple tutorial for training AlexNet in MindSpore. | |||
| ## Requirements | |||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | |||
| - Download the dataset, the directory structure is as follows: | |||
| ``` | |||
| ├─10-batches-bin | |||
| │ | |||
| └─10-verify-bin | |||
| ``` | |||
| ## Running the example | |||
| ```python | |||
| # train AlexNet, hyperparameter setting in config.py | |||
| python train.py --data_path 10-batches-bin | |||
| ``` | |||
| You will get the loss value of each step as following: | |||
| ```bash | |||
| epoch: 1 step: 1, loss is 2.2791853 | |||
| ... | |||
| epoch: 1 step: 1536, loss is 1.9366643 | |||
| epoch: 1 step: 1537, loss is 1.6983616 | |||
| epoch: 1 step: 1538, loss is 1.0221305 | |||
| ... | |||
| ``` | |||
| Then, evaluate AlexNet according to network model | |||
| ```python | |||
| # evaluate AlexNet | |||
| python eval.py --data_path 10-verify-bin --ckpt_path checkpoint_alexnet-1_1562.ckpt | |||
| ``` | |||
| ## Note | |||
| Here are some optional parameters: | |||
| ```bash | |||
| --device_target {Ascend,GPU} | |||
| device where the code will be implemented (default: Ascend) | |||
| --data_path DATA_PATH | |||
| path where the dataset is saved | |||
| --dataset_sink_mode DATASET_SINK_MODE | |||
| dataset_sink_mode is False or True | |||
| ``` | |||
| You can run ```python train.py -h``` or ```python eval.py -h``` to get more information. | |||
| # Contents | |||
| - [AlexNet Description](#alexnet-description) | |||
| - [Model Architecture](#model-architecture) | |||
| - [Dataset](#dataset) | |||
| - [Environment Requirements](#environment-requirements) | |||
| - [Quick Start](#quick-start) | |||
| - [Script Description](#script-description) | |||
| - [Script and Sample Code](#script-and-sample-code) | |||
| - [Script Parameters](#script-parameters) | |||
| - [Training Process](#training-process) | |||
| - [Training](#training) | |||
| - [Evaluation Process](#evaluation-process) | |||
| - [Evaluation](#evaluation) | |||
| - [Model Description](#model-description) | |||
| - [Performance](#performance) | |||
| - [Evaluation Performance](#evaluation-performance) | |||
| - [ModelZoo Homepage](#modelzoo-homepage) | |||
| # [AlexNet Description](#contents) | |||
| AlexNet was proposed in 2012, one of the most influential neural networks. It got big success in ImageNet Dataset recognition than other models. | |||
| [Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf): Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep ConvolutionalNeural Networks. *Advances In Neural Information Processing Systems*. 2012. | |||
| # [Model Architecture](#contents) | |||
| AlexNet composition consists of 5 convolutional layers and 3 fully connected layers. Multiple convolutional kernels can extract interesting features in images and get more accurate classification. | |||
| # [Dataset](#contents) | |||
| Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>) | |||
| - Dataset size:175M,60,000 32*32 colorful images in 10 classes | |||
| - Train:146M,50,000 images | |||
| - Test:29.3M,10,000 images | |||
| - Data format:binary files | |||
| - Note:Data will be processed in dataset.py | |||
| - Download the dataset, the directory structure is as follows: | |||
| ``` | |||
| ├─cifar-10-batches-bin | |||
| │ | |||
| └─cifar-10-verify-bin | |||
| ``` | |||
| # [Environment Requirements](#contents) | |||
| - Hardware(Ascend/GPU) | |||
| - Prepare hardware environment with Ascend or GPU processor. | |||
| - Framework | |||
| - [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/) | |||
| - For more information, please check the resources below: | |||
| - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html) | |||
| - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html) | |||
| # [Quick Start](#contents) | |||
| After installing MindSpore via the official website, you can start training and evaluation as follows: | |||
| ```python | |||
| # enter script dir, train AlexNet | |||
| sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH] | |||
| # enter script dir, evaluate AlexNet | |||
| sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME] | |||
| ``` | |||
| # [Script Description](#contents) | |||
| ## [Script and Sample Code](#contents) | |||
| ``` | |||
| ├── model_zoo | |||
| ├── README.md // descriptions about all the models | |||
| ├── alexnet | |||
| ├── README.md // descriptions about alexnet | |||
| ├── requirements.txt // package needed | |||
| ├── scripts | |||
| │ ├──run_standalone_train_gpu.sh // train in gpu | |||
| │ ├──run_standalone_train_ascend.sh // train in ascend | |||
| │ ├──run_standalone_eval_gpu.sh // evaluate in gpu | |||
| │ ├──run_standalone_eval_ascend.sh // evaluate in ascend | |||
| ├── src | |||
| │ ├──dataset.py // creating dataset | |||
| │ ├──alexnet.py // alexnet architecture | |||
| │ ├──config.py // parameter configuration | |||
| ├── train.py // training script | |||
| ├── eval.py // evaluation script | |||
| ``` | |||
| ## [Script Parameters](#contents) | |||
| ```python | |||
| Major parameters in train.py and config.py as follows: | |||
| --data_path: The absolute full path to the train and evaluation datasets. | |||
| --epoch_size: Total training epochs. | |||
| --batch_size: Training batch size. | |||
| --image_height: Image height used as input to the model. | |||
| --image_width: Image width used as input the model. | |||
| --device_target: Device where the code will be implemented. Optional values are "Ascend", "GPU". | |||
| --checkpoint_path: The absolute full path to the checkpoint file saved after training. | |||
| --data_path: Path where the dataset is saved | |||
| ``` | |||
| ## [Training Process](#contents) | |||
| ### Training | |||
| ``` | |||
| python train.py --data_path cifar-10-batches-bin --ckpt_path ckpt > log.txt 2>&1 & | |||
| # or enter script dir, and run the script | |||
| sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt | |||
| ``` | |||
| After training, the loss value will be achieved as follows: | |||
| # grep "loss is " train.log | |||
| ``` | |||
| epoch: 1 step: 1, loss is 2.2791853 | |||
| ... | |||
| epoch: 1 step: 1536, loss is 1.9366643 | |||
| epoch: 1 step: 1537, loss is 1.6983616 | |||
| epoch: 1 step: 1538, loss is 1.0221305 | |||
| ... | |||
| ``` | |||
| The model checkpoint will be saved in the current directory. | |||
| ## [Evaluation Process](#contents) | |||
| ### Evaluation | |||
| Before running the command below, please check the checkpoint path used for evaluation. | |||
| ``` | |||
| python eval.py --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-1_1562.ckpt > log.txt 2>&1 & | |||
| or enter script dir, and run the script | |||
| sh run_standalone_eval_ascend.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-1_1562.ckpt | |||
| ``` | |||
| You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows: | |||
| ``` | |||
| # grep "Accuracy: " log.txt | |||
| 'Accuracy': 0.8832 | |||
| ``` | |||
| # [Model Description](#contents) | |||
| ## [Performance](#contents) | |||
| ### Evaluation Performance | |||
| | Parameters | AlexNet | | |||
| | -------------------------- | ----------------------------------------------------------- | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G | | |||
| | uploaded Date | 06/09/2020 (month/day/year) | | |||
| | MindSpore Version | 0.5.0-beta | | |||
| | Dataset | CIFAR-10 | | |||
| | Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 | | |||
| | Optimizer | Momentum | | |||
| | Loss Function | Softmax Cross Entropy | | |||
| | outputs | probability | | |||
| | Loss | 0.0016 | | |||
| | Speed | 21 ms/step | | |||
| | Total time | 17 mins | | |||
| | Checkpoint for Fine tuning | 445M (.ckpt file) | | |||
| | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet | | |||
| # [Description of Random Situation](#contents) | |||
| In dataset.py, we set the seed inside “create_dataset" function. | |||
| # [ModelZoo Homepage](#contents) | |||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | |||
| @@ -1,62 +1,187 @@ | |||
| # LeNet Example | |||
| ## Description | |||
| Training LeNet with dataset in MindSpore. | |||
| This is the simple and basic tutorial for constructing a network in MindSpore. | |||
| ## Requirements | |||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | |||
| - Download the dataset, the directory structure is as follows: | |||
| ``` | |||
| └─Data | |||
| ├─test | |||
| │ t10k-images.idx3-ubyte | |||
| │ t10k-labels.idx1-ubyte | |||
| │ | |||
| └─train | |||
| train-images.idx3-ubyte | |||
| train-labels.idx1-ubyte | |||
| ``` | |||
| ## Running the example | |||
| ```python | |||
| # train LeNet, hyperparameter setting in config.py | |||
| python train.py --data_path Data | |||
| ``` | |||
| You will get the loss value of each step as following: | |||
| ```bash | |||
| epoch: 1 step: 1, loss is 2.3040335 | |||
| ... | |||
| epoch: 1 step: 1739, loss is 0.06952668 | |||
| epoch: 1 step: 1740, loss is 0.05038793 | |||
| epoch: 1 step: 1741, loss is 0.05018193 | |||
| ... | |||
| ``` | |||
| Then, evaluate LeNet according to network model | |||
| ```python | |||
| # evaluate LeNet | |||
| python eval.py --data_path Data --ckpt_path checkpoint_lenet-1_1875.ckpt | |||
| ``` | |||
| ## Note | |||
| Here are some optional parameters: | |||
| ```bash | |||
| --device_target {Ascend,GPU,CPU} | |||
| device where the code will be implemented (default: Ascend) | |||
| --data_path DATA_PATH | |||
| path where the dataset is saved | |||
| --dataset_sink_mode DATASET_SINK_MODE | |||
| dataset_sink_mode is False or True | |||
| ``` | |||
| You can run ```python train.py -h``` or ```python eval.py -h``` to get more information. | |||
| # Contents | |||
| - [LeNet Description](#lenet-description) | |||
| - [Model Architecture](#model-architecture) | |||
| - [Dataset](#dataset) | |||
| - [Environment Requirements](#environment-requirements) | |||
| - [Quick Start](#quick-start) | |||
| - [Script Description](#script-description) | |||
| - [Script and Sample Code](#script-and-sample-code) | |||
| - [Script Parameters](#script-parameters) | |||
| - [Training Process](#training-process) | |||
| - [Training](#training) | |||
| - [Evaluation Process](#evaluation-process) | |||
| - [Evaluation](#evaluation) | |||
| - [Model Description](#model-description) | |||
| - [Performance](#performance) | |||
| - [Evaluation Performance](#evaluation-performance) | |||
| - [ModelZoo Homepage](#modelzoo-homepage) | |||
| # [LeNet Description](#contents) | |||
| LeNet was proposed in 1998, a typical convolutional neural network. It was used for digit recognition and got big success. | |||
| [Paper](https://ieeexplore.ieee.org/document/726791): Y.Lecun, L.Bottou, Y.Bengio, P.Haffner. Gradient-Based Learning Applied to Document Recognition. *Proceedings of the IEEE*. 1998. | |||
| # [Model Architecture](#contents) | |||
| LeNet is very simple, which contains 5 layers. The layer composition consists of 2 convolutional layers and 3 fully connected layers. | |||
| # [Dataset](#contents) | |||
| Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>) | |||
| - Dataset size:52.4M,60,000 28*28 in 10 classes | |||
| - Train:60,000 images | |||
| - Test:10,000 images | |||
| - Data format:binary files | |||
| - Note:Data will be processed in dataset.py | |||
| - The directory structure is as follows: | |||
| ``` | |||
| └─Data | |||
| ├─test | |||
| │ t10k-images.idx3-ubyte | |||
| │ t10k-labels.idx1-ubyte | |||
| │ | |||
| └─train | |||
| train-images.idx3-ubyte | |||
| train-labels.idx1-ubyte | |||
| ``` | |||
| # [Environment Requirements](#contents) | |||
| - Hardware(Ascend/GPU/CPU) | |||
| - Prepare hardware environment with Ascend, GPU, or CPU processor. | |||
| - Framework | |||
| - [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/) | |||
| - For more information, please check the resources below: | |||
| - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html) | |||
| - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html) | |||
| # [Quick Start](#contents) | |||
| After installing MindSpore via the official website, you can start training and evaluation as follows: | |||
| ```python | |||
| # enter script dir, train LeNet | |||
| sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH] | |||
| # enter script dir, evaluate LeNet | |||
| sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME] | |||
| ``` | |||
| # [Script Description](#contents) | |||
| ## [Script and Sample Code](#contents) | |||
| ``` | |||
| ├── model_zoo | |||
| ├── README.md // descriptions about all the models | |||
| ├── lenet | |||
| ├── README.md // descriptions about lenet | |||
| ├── requirements.txt // package needed | |||
| ├── scripts | |||
| │ ├──run_standalone_train_cpu.sh // train in cpu | |||
| │ ├──run_standalone_train_gpu.sh // train in gpu | |||
| │ ├──run_standalone_train_ascend.sh // train in ascend | |||
| │ ├──run_standalone_eval_cpu.sh // evaluate in cpu | |||
| │ ├──run_standalone_eval_gpu.sh // evaluate in gpu | |||
| │ ├──run_standalone_eval_ascend.sh // evaluate in ascend | |||
| ├── src | |||
| │ ├──dataset.py // creating dataset | |||
| │ ├──lenet.py // lenet architecture | |||
| │ ├──config.py // parameter configuration | |||
| ├── train.py // training script | |||
| ├── eval.py // evaluation script | |||
| ``` | |||
| ## [Script Parameters](#contents) | |||
| ```python | |||
| Major parameters in train.py and config.py as follows: | |||
| --data_path: The absolute full path to the train and evaluation datasets. | |||
| --epoch_size: Total training epochs. | |||
| --batch_size: Training batch size. | |||
| --image_height: Image height used as input to the model. | |||
| --image_width: Image width used as input the model. | |||
| --device_target: Device where the code will be implemented. Optional values | |||
| are "Ascend", "GPU", "CPU". | |||
| --checkpoint_path: The absolute full path to the checkpoint file saved | |||
| after training. | |||
| --data_path: Path where the dataset is saved | |||
| ``` | |||
| ## [Training Process](#contents) | |||
| ### Training | |||
| ``` | |||
| python train.py --data_path Data --ckpt_path ckpt > log.txt 2>&1 & | |||
| or enter script dir, and run the script | |||
| sh run_standalone_train_ascend.sh Data ckpt | |||
| ``` | |||
| After training, the loss value will be achieved as follows: | |||
| ``` | |||
| # grep "loss is " log.txt | |||
| epoch: 1 step: 1, loss is 2.2791853 | |||
| ... | |||
| epoch: 1 step: 1536, loss is 1.9366643 | |||
| epoch: 1 step: 1537, loss is 1.6983616 | |||
| epoch: 1 step: 1538, loss is 1.0221305 | |||
| ... | |||
| ``` | |||
| The model checkpoint will be saved in the current directory. | |||
| ## [Evaluation Process](#contents) | |||
| ### Evaluation | |||
| Before running the command below, please check the checkpoint path used for evaluation. | |||
| ``` | |||
| python eval.py --data_path Data --ckpt_path ckpt/checkpoint_lenet-1_1875.ckpt > log.txt 2>&1 & | |||
| or enter script dir, and run the script | |||
| sh run_standalone_eval_ascend.sh Data ckpt/checkpoint_lenet-1_1875.ckpt | |||
| ``` | |||
| You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows: | |||
| ``` | |||
| # grep "Accuracy: " log.txt | |||
| 'Accuracy': 0.9842 | |||
| ``` | |||
| # [Model Description](#contents) | |||
| ## [Performance](#contents) | |||
| ### Evaluation Performance | |||
| | Parameters | LeNet | | |||
| | -------------------------- | ----------------------------------------------------------- | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G | | |||
| | uploaded Date | 06/09/2020 (month/day/year) | | |||
| | MindSpore Version | 0.5.0-beta | | |||
| | Dataset | MNIST | | |||
| | Training Parameters | epoch=10, steps=1875, batch_size = 32, lr=0.01 | | |||
| | Optimizer | Momentum | | |||
| | Loss Function | Softmax Cross Entropy | | |||
| | outputs | probability | | |||
| | Loss | 0.002 | | |||
| | Speed | 1.70 ms/step | | |||
| | Total time | 43.1s | | | |||
| | Checkpoint for Fine tuning | 482k (.ckpt file) | | |||
| | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet | | |||
| # [Description of Random Situation](#contents) | |||
| In dataset.py, we set the seed inside “create_dataset" function. | |||
| # [ModelZoo Homepage](#contents) | |||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | |||