You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_equalize.py 10 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing Equalize op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset.engine as de
  20. import mindspore.dataset.transforms.py_transforms
  21. import mindspore.dataset.vision.c_transforms as C
  22. import mindspore.dataset.vision.py_transforms as F
  23. from mindspore import log as logger
  24. from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5
  25. DATA_DIR = "../data/dataset/testImageNetData/train/"
  26. MNIST_DATA_DIR = "../data/dataset/testMnistData"
  27. GENERATE_GOLDEN = False
  28. def test_equalize_py(plot=False):
  29. """
  30. Test Equalize py op
  31. """
  32. logger.info("Test Equalize")
  33. # Original Images
  34. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  35. transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  36. F.Resize((224, 224)),
  37. F.ToTensor()])
  38. ds_original = ds.map(input_columns="image",
  39. operations=transforms_original)
  40. ds_original = ds_original.batch(512)
  41. for idx, (image, _) in enumerate(ds_original):
  42. if idx == 0:
  43. images_original = np.transpose(image, (0, 2, 3, 1))
  44. else:
  45. images_original = np.append(images_original,
  46. np.transpose(image, (0, 2, 3, 1)),
  47. axis=0)
  48. # Color Equalized Images
  49. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  50. transforms_equalize = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  51. F.Resize((224, 224)),
  52. F.Equalize(),
  53. F.ToTensor()])
  54. ds_equalize = ds.map(input_columns="image",
  55. operations=transforms_equalize)
  56. ds_equalize = ds_equalize.batch(512)
  57. for idx, (image, _) in enumerate(ds_equalize):
  58. if idx == 0:
  59. images_equalize = np.transpose(image, (0, 2, 3, 1))
  60. else:
  61. images_equalize = np.append(images_equalize,
  62. np.transpose(image, (0, 2, 3, 1)),
  63. axis=0)
  64. num_samples = images_original.shape[0]
  65. mse = np.zeros(num_samples)
  66. for i in range(num_samples):
  67. mse[i] = diff_mse(images_equalize[i], images_original[i])
  68. logger.info("MSE= {}".format(str(np.mean(mse))))
  69. if plot:
  70. visualize_list(images_original, images_equalize)
  71. def test_equalize_c(plot=False):
  72. """
  73. Test Equalize Cpp op
  74. """
  75. logger.info("Test Equalize cpp op")
  76. # Original Images
  77. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  78. transforms_original = [C.Decode(), C.Resize(size=[224, 224])]
  79. ds_original = ds.map(input_columns="image",
  80. operations=transforms_original)
  81. ds_original = ds_original.batch(512)
  82. for idx, (image, _) in enumerate(ds_original):
  83. if idx == 0:
  84. images_original = image
  85. else:
  86. images_original = np.append(images_original,
  87. image,
  88. axis=0)
  89. # Equalize Images
  90. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  91. transform_equalize = [C.Decode(), C.Resize(size=[224, 224]),
  92. C.Equalize()]
  93. ds_equalize = ds.map(input_columns="image",
  94. operations=transform_equalize)
  95. ds_equalize = ds_equalize.batch(512)
  96. for idx, (image, _) in enumerate(ds_equalize):
  97. if idx == 0:
  98. images_equalize = image
  99. else:
  100. images_equalize = np.append(images_equalize,
  101. image,
  102. axis=0)
  103. if plot:
  104. visualize_list(images_original, images_equalize)
  105. num_samples = images_original.shape[0]
  106. mse = np.zeros(num_samples)
  107. for i in range(num_samples):
  108. mse[i] = diff_mse(images_equalize[i], images_original[i])
  109. logger.info("MSE= {}".format(str(np.mean(mse))))
  110. def test_equalize_py_c(plot=False):
  111. """
  112. Test Equalize Cpp op and python op
  113. """
  114. logger.info("Test Equalize cpp and python op")
  115. # equalize Images in cpp
  116. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  117. ds = ds.map(input_columns=["image"],
  118. operations=[C.Decode(), C.Resize((224, 224))])
  119. ds_c_equalize = ds.map(input_columns="image",
  120. operations=C.Equalize())
  121. ds_c_equalize = ds_c_equalize.batch(512)
  122. for idx, (image, _) in enumerate(ds_c_equalize):
  123. if idx == 0:
  124. images_c_equalize = image
  125. else:
  126. images_c_equalize = np.append(images_c_equalize,
  127. image,
  128. axis=0)
  129. # Equalize images in python
  130. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  131. ds = ds.map(input_columns=["image"],
  132. operations=[C.Decode(), C.Resize((224, 224))])
  133. transforms_p_equalize = mindspore.dataset.transforms.py_transforms.Compose([lambda img: img.astype(np.uint8),
  134. F.ToPIL(),
  135. F.Equalize(),
  136. np.array])
  137. ds_p_equalize = ds.map(input_columns="image",
  138. operations=transforms_p_equalize)
  139. ds_p_equalize = ds_p_equalize.batch(512)
  140. for idx, (image, _) in enumerate(ds_p_equalize):
  141. if idx == 0:
  142. images_p_equalize = image
  143. else:
  144. images_p_equalize = np.append(images_p_equalize,
  145. image,
  146. axis=0)
  147. num_samples = images_c_equalize.shape[0]
  148. mse = np.zeros(num_samples)
  149. for i in range(num_samples):
  150. mse[i] = diff_mse(images_p_equalize[i], images_c_equalize[i])
  151. logger.info("MSE= {}".format(str(np.mean(mse))))
  152. if plot:
  153. visualize_list(images_c_equalize, images_p_equalize, visualize_mode=2)
  154. def test_equalize_one_channel():
  155. """
  156. Test Equalize cpp op with one channel image
  157. """
  158. logger.info("Test Equalize C Op With One Channel Images")
  159. c_op = C.Equalize()
  160. try:
  161. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  162. ds = ds.map(input_columns=["image"],
  163. operations=[C.Decode(),
  164. C.Resize((224, 224)),
  165. lambda img: np.array(img[:, :, 0])])
  166. ds.map(input_columns="image",
  167. operations=c_op)
  168. except RuntimeError as e:
  169. logger.info("Got an exception in DE: {}".format(str(e)))
  170. assert "The shape" in str(e)
  171. def test_equalize_mnist_c(plot=False):
  172. """
  173. Test Equalize C op with MNIST dataset (Grayscale images)
  174. """
  175. logger.info("Test Equalize C Op With MNIST Images")
  176. ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  177. ds_equalize_c = ds.map(input_columns="image",
  178. operations=C.Equalize())
  179. ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  180. images = []
  181. images_trans = []
  182. labels = []
  183. for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_equalize_c)):
  184. image_orig, label_orig = data_orig
  185. image_trans, _ = data_trans
  186. images.append(image_orig)
  187. labels.append(label_orig)
  188. images_trans.append(image_trans)
  189. # Compare with expected md5 from images
  190. filename = "equalize_mnist_result_c.npz"
  191. save_and_check_md5(ds_equalize_c, filename, generate_golden=GENERATE_GOLDEN)
  192. if plot:
  193. visualize_one_channel_dataset(images, images_trans, labels)
  194. def test_equalize_md5_py():
  195. """
  196. Test Equalize py op with md5 check
  197. """
  198. logger.info("Test Equalize")
  199. # First dataset
  200. data1 = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  201. transforms = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  202. F.Equalize(),
  203. F.ToTensor()])
  204. data1 = data1.map(input_columns="image", operations=transforms)
  205. # Compare with expected md5 from images
  206. filename = "equalize_01_result.npz"
  207. save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
  208. def test_equalize_md5_c():
  209. """
  210. Test Equalize cpp op with md5 check
  211. """
  212. logger.info("Test Equalize cpp op with md5 check")
  213. # Generate dataset
  214. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  215. transforms_equalize = [C.Decode(),
  216. C.Resize(size=[224, 224]),
  217. C.Equalize(),
  218. F.ToTensor()]
  219. data = ds.map(input_columns="image", operations=transforms_equalize)
  220. # Compare with expected md5 from images
  221. filename = "equalize_01_result_c.npz"
  222. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  223. if __name__ == "__main__":
  224. test_equalize_py(plot=False)
  225. test_equalize_c(plot=False)
  226. test_equalize_py_c(plot=False)
  227. test_equalize_mnist_c(plot=True)
  228. test_equalize_one_channel()
  229. test_equalize_md5_py()
  230. test_equalize_md5_c()