You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_autocontrast.py 16 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing AutoContrast op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset.engine as de
  20. import mindspore.dataset.transforms.py_transforms
  21. import mindspore.dataset.vision.py_transforms as F
  22. import mindspore.dataset.vision.c_transforms as C
  23. from mindspore import log as logger
  24. from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5
  25. DATA_DIR = "../data/dataset/testImageNetData/train/"
  26. MNIST_DATA_DIR = "../data/dataset/testMnistData"
  27. GENERATE_GOLDEN = False
  28. def test_auto_contrast_py(plot=False):
  29. """
  30. Test AutoContrast
  31. """
  32. logger.info("Test AutoContrast Python Op")
  33. # Original Images
  34. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  35. transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  36. F.Resize((224, 224)),
  37. F.ToTensor()])
  38. ds_original = ds.map(input_columns="image",
  39. operations=transforms_original)
  40. ds_original = ds_original.batch(512)
  41. for idx, (image, _) in enumerate(ds_original):
  42. if idx == 0:
  43. images_original = np.transpose(image, (0, 2, 3, 1))
  44. else:
  45. images_original = np.append(images_original,
  46. np.transpose(image, (0, 2, 3, 1)),
  47. axis=0)
  48. # AutoContrast Images
  49. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  50. transforms_auto_contrast = \
  51. mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  52. F.Resize((224, 224)),
  53. F.AutoContrast(cutoff=10.0, ignore=[10, 20]),
  54. F.ToTensor()])
  55. ds_auto_contrast = ds.map(input_columns="image",
  56. operations=transforms_auto_contrast)
  57. ds_auto_contrast = ds_auto_contrast.batch(512)
  58. for idx, (image, _) in enumerate(ds_auto_contrast):
  59. if idx == 0:
  60. images_auto_contrast = np.transpose(image, (0, 2, 3, 1))
  61. else:
  62. images_auto_contrast = np.append(images_auto_contrast,
  63. np.transpose(image, (0, 2, 3, 1)),
  64. axis=0)
  65. num_samples = images_original.shape[0]
  66. mse = np.zeros(num_samples)
  67. for i in range(num_samples):
  68. mse[i] = diff_mse(images_auto_contrast[i], images_original[i])
  69. logger.info("MSE= {}".format(str(np.mean(mse))))
  70. # Compare with expected md5 from images
  71. filename = "autocontrast_01_result_py.npz"
  72. save_and_check_md5(ds_auto_contrast, filename, generate_golden=GENERATE_GOLDEN)
  73. if plot:
  74. visualize_list(images_original, images_auto_contrast)
  75. def test_auto_contrast_c(plot=False):
  76. """
  77. Test AutoContrast C Op
  78. """
  79. logger.info("Test AutoContrast C Op")
  80. # AutoContrast Images
  81. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  82. ds = ds.map(input_columns=["image"],
  83. operations=[C.Decode(),
  84. C.Resize((224, 224))])
  85. python_op = F.AutoContrast(cutoff=10.0, ignore=[10, 20])
  86. c_op = C.AutoContrast(cutoff=10.0, ignore=[10, 20])
  87. transforms_op = mindspore.dataset.transforms.py_transforms.Compose([lambda img: F.ToPIL()(img.astype(np.uint8)),
  88. python_op,
  89. np.array])
  90. ds_auto_contrast_py = ds.map(input_columns="image",
  91. operations=transforms_op)
  92. ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
  93. for idx, (image, _) in enumerate(ds_auto_contrast_py):
  94. if idx == 0:
  95. images_auto_contrast_py = image
  96. else:
  97. images_auto_contrast_py = np.append(images_auto_contrast_py,
  98. image,
  99. axis=0)
  100. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  101. ds = ds.map(input_columns=["image"],
  102. operations=[C.Decode(),
  103. C.Resize((224, 224))])
  104. ds_auto_contrast_c = ds.map(input_columns="image",
  105. operations=c_op)
  106. ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
  107. for idx, (image, _) in enumerate(ds_auto_contrast_c):
  108. if idx == 0:
  109. images_auto_contrast_c = image
  110. else:
  111. images_auto_contrast_c = np.append(images_auto_contrast_c,
  112. image,
  113. axis=0)
  114. num_samples = images_auto_contrast_c.shape[0]
  115. mse = np.zeros(num_samples)
  116. for i in range(num_samples):
  117. mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
  118. logger.info("MSE= {}".format(str(np.mean(mse))))
  119. np.testing.assert_equal(np.mean(mse), 0.0)
  120. # Compare with expected md5 from images
  121. filename = "autocontrast_01_result_c.npz"
  122. save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)
  123. if plot:
  124. visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
  125. def test_auto_contrast_one_channel_c(plot=False):
  126. """
  127. Test AutoContrast C op with one channel
  128. """
  129. logger.info("Test AutoContrast C Op With One Channel Images")
  130. # AutoContrast Images
  131. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  132. ds = ds.map(input_columns=["image"],
  133. operations=[C.Decode(),
  134. C.Resize((224, 224))])
  135. python_op = F.AutoContrast()
  136. c_op = C.AutoContrast()
  137. # not using F.ToTensor() since it converts to floats
  138. transforms_op = mindspore.dataset.transforms.py_transforms.Compose(
  139. [lambda img: (np.array(img)[:, :, 0]).astype(np.uint8),
  140. F.ToPIL(),
  141. python_op,
  142. np.array])
  143. ds_auto_contrast_py = ds.map(input_columns="image",
  144. operations=transforms_op)
  145. ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
  146. for idx, (image, _) in enumerate(ds_auto_contrast_py):
  147. if idx == 0:
  148. images_auto_contrast_py = image
  149. else:
  150. images_auto_contrast_py = np.append(images_auto_contrast_py,
  151. image,
  152. axis=0)
  153. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  154. ds = ds.map(input_columns=["image"],
  155. operations=[C.Decode(),
  156. C.Resize((224, 224)),
  157. lambda img: np.array(img[:, :, 0])])
  158. ds_auto_contrast_c = ds.map(input_columns="image",
  159. operations=c_op)
  160. ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
  161. for idx, (image, _) in enumerate(ds_auto_contrast_c):
  162. if idx == 0:
  163. images_auto_contrast_c = image
  164. else:
  165. images_auto_contrast_c = np.append(images_auto_contrast_c,
  166. image,
  167. axis=0)
  168. num_samples = images_auto_contrast_c.shape[0]
  169. mse = np.zeros(num_samples)
  170. for i in range(num_samples):
  171. mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
  172. logger.info("MSE= {}".format(str(np.mean(mse))))
  173. np.testing.assert_equal(np.mean(mse), 0.0)
  174. if plot:
  175. visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
  176. def test_auto_contrast_mnist_c(plot=False):
  177. """
  178. Test AutoContrast C op with MNIST dataset (Grayscale images)
  179. """
  180. logger.info("Test AutoContrast C Op With MNIST Images")
  181. ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  182. ds_auto_contrast_c = ds.map(input_columns="image",
  183. operations=C.AutoContrast(cutoff=1, ignore=(0, 255)))
  184. ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  185. images = []
  186. images_trans = []
  187. labels = []
  188. for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_auto_contrast_c)):
  189. image_orig, label_orig = data_orig
  190. image_trans, _ = data_trans
  191. images.append(image_orig)
  192. labels.append(label_orig)
  193. images_trans.append(image_trans)
  194. # Compare with expected md5 from images
  195. filename = "autocontrast_mnist_result_c.npz"
  196. save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)
  197. if plot:
  198. visualize_one_channel_dataset(images, images_trans, labels)
  199. def test_auto_contrast_invalid_ignore_param_c():
  200. """
  201. Test AutoContrast C Op with invalid ignore parameter
  202. """
  203. logger.info("Test AutoContrast C Op with invalid ignore parameter")
  204. try:
  205. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  206. ds = ds.map(input_columns=["image"],
  207. operations=[C.Decode(),
  208. C.Resize((224, 224)),
  209. lambda img: np.array(img[:, :, 0])])
  210. # invalid ignore
  211. ds = ds.map(input_columns="image",
  212. operations=C.AutoContrast(ignore=255.5))
  213. except TypeError as error:
  214. logger.info("Got an exception in DE: {}".format(str(error)))
  215. assert "Argument ignore with value 255.5 is not of type" in str(error)
  216. try:
  217. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  218. ds = ds.map(input_columns=["image"],
  219. operations=[C.Decode(),
  220. C.Resize((224, 224)),
  221. lambda img: np.array(img[:, :, 0])])
  222. # invalid ignore
  223. ds = ds.map(input_columns="image",
  224. operations=C.AutoContrast(ignore=(10, 100)))
  225. except TypeError as error:
  226. logger.info("Got an exception in DE: {}".format(str(error)))
  227. assert "Argument ignore with value (10,100) is not of type" in str(error)
  228. def test_auto_contrast_invalid_cutoff_param_c():
  229. """
  230. Test AutoContrast C Op with invalid cutoff parameter
  231. """
  232. logger.info("Test AutoContrast C Op with invalid cutoff parameter")
  233. try:
  234. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  235. ds = ds.map(input_columns=["image"],
  236. operations=[C.Decode(),
  237. C.Resize((224, 224)),
  238. lambda img: np.array(img[:, :, 0])])
  239. # invalid ignore
  240. ds = ds.map(input_columns="image",
  241. operations=C.AutoContrast(cutoff=-10.0))
  242. except ValueError as error:
  243. logger.info("Got an exception in DE: {}".format(str(error)))
  244. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  245. try:
  246. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  247. ds = ds.map(input_columns=["image"],
  248. operations=[C.Decode(),
  249. C.Resize((224, 224)),
  250. lambda img: np.array(img[:, :, 0])])
  251. # invalid ignore
  252. ds = ds.map(input_columns="image",
  253. operations=C.AutoContrast(cutoff=120.0))
  254. except ValueError as error:
  255. logger.info("Got an exception in DE: {}".format(str(error)))
  256. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  257. def test_auto_contrast_invalid_ignore_param_py():
  258. """
  259. Test AutoContrast python Op with invalid ignore parameter
  260. """
  261. logger.info("Test AutoContrast python Op with invalid ignore parameter")
  262. try:
  263. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  264. ds = ds.map(input_columns=["image"],
  265. operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  266. F.Resize((224, 224)),
  267. F.AutoContrast(ignore=255.5),
  268. F.ToTensor()])])
  269. except TypeError as error:
  270. logger.info("Got an exception in DE: {}".format(str(error)))
  271. assert "Argument ignore with value 255.5 is not of type" in str(error)
  272. try:
  273. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  274. ds = ds.map(input_columns=["image"],
  275. operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  276. F.Resize((224, 224)),
  277. F.AutoContrast(ignore=(10, 100)),
  278. F.ToTensor()])])
  279. except TypeError as error:
  280. logger.info("Got an exception in DE: {}".format(str(error)))
  281. assert "Argument ignore with value (10,100) is not of type" in str(error)
  282. def test_auto_contrast_invalid_cutoff_param_py():
  283. """
  284. Test AutoContrast python Op with invalid cutoff parameter
  285. """
  286. logger.info("Test AutoContrast python Op with invalid cutoff parameter")
  287. try:
  288. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  289. ds = ds.map(input_columns=["image"],
  290. operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  291. F.Resize((224, 224)),
  292. F.AutoContrast(cutoff=-10.0),
  293. F.ToTensor()])])
  294. except ValueError as error:
  295. logger.info("Got an exception in DE: {}".format(str(error)))
  296. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  297. try:
  298. ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  299. ds = ds.map(input_columns=["image"],
  300. operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  301. F.Resize((224, 224)),
  302. F.AutoContrast(cutoff=120.0),
  303. F.ToTensor()])])
  304. except ValueError as error:
  305. logger.info("Got an exception in DE: {}".format(str(error)))
  306. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  307. if __name__ == "__main__":
  308. test_auto_contrast_py(plot=True)
  309. test_auto_contrast_c(plot=True)
  310. test_auto_contrast_one_channel_c(plot=True)
  311. test_auto_contrast_mnist_c(plot=True)
  312. test_auto_contrast_invalid_ignore_param_c()
  313. test_auto_contrast_invalid_ignore_param_py()
  314. test_auto_contrast_invalid_cutoff_param_c()
  315. test_auto_contrast_invalid_cutoff_param_py()