You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Warpctc training"""
  16. import os
  17. import math as m
  18. import argparse
  19. import mindspore.nn as nn
  20. from mindspore import context
  21. from mindspore.common import set_seed
  22. from mindspore.train.model import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.nn.wrap import WithLossCell
  25. from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint
  26. from mindspore.communication.management import init, get_group_size, get_rank
  27. from src.loss import CTCLoss
  28. from src.config import config as cf
  29. from src.dataset import create_dataset
  30. from src.warpctc import StackedRNN, StackedRNNForGPU
  31. from src.warpctc_for_train import TrainOneStepCellWithGradClip
  32. from src.lr_schedule import get_lr
  33. set_seed(1)
  34. parser = argparse.ArgumentParser(description="Warpctc training")
  35. parser.add_argument("--run_distribute", action='store_true', help="Run distribute, default is false.")
  36. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, default is None')
  37. parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  38. help='Running platform, choose from Ascend, GPU, and default is Ascend.')
  39. parser.set_defaults(run_distribute=False)
  40. args_opt = parser.parse_args()
  41. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform)
  42. if args_opt.platform == 'Ascend':
  43. device_id = int(os.getenv('DEVICE_ID'))
  44. context.set_context(device_id=device_id)
  45. if __name__ == '__main__':
  46. lr_scale = 1
  47. if args_opt.run_distribute:
  48. if args_opt.platform == 'Ascend':
  49. init()
  50. lr_scale = 1
  51. device_num = int(os.environ.get("RANK_SIZE"))
  52. rank = int(os.environ.get("RANK_ID"))
  53. else:
  54. init()
  55. lr_scale = 1
  56. device_num = get_group_size()
  57. rank = get_rank()
  58. context.reset_auto_parallel_context()
  59. context.set_auto_parallel_context(device_num=device_num,
  60. parallel_mode=ParallelMode.DATA_PARALLEL,
  61. gradients_mean=True)
  62. else:
  63. device_num = 1
  64. rank = 0
  65. max_captcha_digits = cf.max_captcha_digits
  66. input_size = m.ceil(cf.captcha_height / 64) * 64 * 3
  67. # create dataset
  68. dataset = create_dataset(dataset_path=args_opt.dataset_path, batch_size=cf.batch_size,
  69. num_shards=device_num, shard_id=rank, device_target=args_opt.platform)
  70. step_size = dataset.get_dataset_size()
  71. # define lr
  72. lr_init = cf.learning_rate if not args_opt.run_distribute else cf.learning_rate * device_num * lr_scale
  73. lr = get_lr(cf.epoch_size, step_size, lr_init)
  74. loss = CTCLoss(max_sequence_length=cf.captcha_width,
  75. max_label_length=max_captcha_digits,
  76. batch_size=cf.batch_size)
  77. if args_opt.platform == 'Ascend':
  78. net = StackedRNN(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size)
  79. else:
  80. net = StackedRNNForGPU(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size)
  81. opt = nn.SGD(params=net.trainable_params(), learning_rate=lr, momentum=cf.momentum)
  82. net = WithLossCell(net, loss)
  83. net = TrainOneStepCellWithGradClip(net, opt).set_train()
  84. # define model
  85. model = Model(net)
  86. # define callbacks
  87. callbacks = [LossMonitor(), TimeMonitor(data_size=step_size)]
  88. if cf.save_checkpoint:
  89. config_ck = CheckpointConfig(save_checkpoint_steps=cf.save_checkpoint_steps,
  90. keep_checkpoint_max=cf.keep_checkpoint_max)
  91. save_ckpt_path = os.path.join(cf.save_checkpoint_path, 'ckpt_' + str(rank) + '/')
  92. ckpt_cb = ModelCheckpoint(prefix="warpctc", directory=save_ckpt_path, config=config_ck)
  93. callbacks.append(ckpt_cb)
  94. model.train(cf.epoch_size, dataset, callbacks=callbacks)