|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test cases for Exponential distribution"""
- import numpy as np
- from scipy import stats
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import Tensor
- from mindspore import dtype
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class Prob(nn.Cell):
- """
- Test class: probability of Exponential distribution.
- """
- def __init__(self):
- super(Prob, self).__init__()
- self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.e.prob(x_)
-
- def test_pdf():
- """
- Test pdf.
- """
- expon_benchmark = stats.expon(scale=[[1.0], [2.0]])
- expect_pdf = expon_benchmark.pdf([-1.0, 0.0, 1.0]).astype(np.float32)
- pdf = Prob()
- x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
- output = pdf(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
-
- class LogProb(nn.Cell):
- """
- Test class: log probability of Exponential distribution.
- """
- def __init__(self):
- super(LogProb, self).__init__()
- self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.e.log_prob(x_)
-
- def test_log_likelihood():
- """
- Test log_pdf.
- """
- expon_benchmark = stats.expon(scale=[[1.0], [2.0]])
- expect_logpdf = expon_benchmark.logpdf([0.5, 1.0, 2.0]).astype(np.float32)
- logprob = LogProb()
- x_ = Tensor(np.array([0.5, 1.0, 2.0]).astype(np.float32), dtype=dtype.float32)
- output = logprob(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
-
- class KL(nn.Cell):
- """
- Test class: kl_loss between Exponential distributions.
- """
- def __init__(self):
- super(KL, self).__init__()
- self.e = msd.Exponential([1.5], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.e.kl_loss('Exponential', x_)
-
- def test_kl_loss():
- """
- Test kl_loss.
- """
- rate_a = 1.5
- rate_b = np.array([0.5, 2.0]).astype(np.float32)
- expect_kl_loss = np.log(rate_a) - np.log(rate_b) + rate_b / rate_a - 1.0
- kl = KL()
- output = kl(Tensor(rate_b, dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
-
- class Basics(nn.Cell):
- """
- Test class: mean/sd/mode of Exponential distribution.
- """
- def __init__(self):
- super(Basics, self).__init__()
- self.e = msd.Exponential([0.5], dtype=dtype.float32)
-
- def construct(self):
- return self.e.mean(), self.e.sd(), self.e.mode()
-
- def test_basics():
- """
- Test mean/standard/mode deviation.
- """
- basics = Basics()
- mean, sd, mode = basics()
- expect_mean = 2.
- expect_sd = 2.
- expect_mode = 0.
- tol = 1e-6
- assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
- assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
- assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
-
- class Sampling(nn.Cell):
- """
- Test class: sample of Exponential distribution.
- """
- def __init__(self, shape, seed=0):
- super(Sampling, self).__init__()
- self.e = msd.Exponential([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
- self.shape = shape
-
- def construct(self, rate=None):
- return self.e.sample(self.shape, rate)
-
- def test_sample():
- """
- Test sample.
- """
- shape = (2, 3)
- seed = 10
- rate = Tensor([1.0, 2.0, 3.0], dtype=dtype.float32)
- sample = Sampling(shape, seed=seed)
- output = sample(rate)
- assert output.shape == (2, 3, 3)
-
- class CDF(nn.Cell):
- """
- Test class: cdf of Exponential distribution.
- """
- def __init__(self):
- super(CDF, self).__init__()
- self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.e.cdf(x_)
-
- def test_cdf():
- """
- Test cdf.
- """
- expon_benchmark = stats.expon(scale=[[1.0], [2.0]])
- expect_cdf = expon_benchmark.cdf([-1.0, 0.0, 1.0]).astype(np.float32)
- cdf = CDF()
- x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
- output = cdf(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
-
- class LogCDF(nn.Cell):
- """
- Test class: log_cdf of Exponential distribution.
- """
- def __init__(self):
- super(LogCDF, self).__init__()
- self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.e.log_cdf(x_)
-
- def test_log_cdf():
- """
- Test log_cdf.
- """
- expon_benchmark = stats.expon(scale=[[1.0], [2.0]])
- expect_logcdf = expon_benchmark.logcdf([0.5, 1.0, 2.5]).astype(np.float32)
- logcdf = LogCDF()
- x_ = Tensor(np.array([0.5, 1.0, 2.5]).astype(np.float32), dtype=dtype.float32)
- output = logcdf(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
-
- class SF(nn.Cell):
- """
- Test class: survival function of Exponential distribution.
- """
- def __init__(self):
- super(SF, self).__init__()
- self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.e.survival_function(x_)
-
- def test_survival():
- """
- Test survival function.
- """
- expon_benchmark = stats.expon(scale=[[1.0], [2.0]])
- expect_survival = expon_benchmark.sf([-1.0, 0.0, 1.0]).astype(np.float32)
- survival = SF()
- x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
- output = survival(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
-
- class LogSF(nn.Cell):
- """
- Test class: log survival function of Exponential distribution.
- """
- def __init__(self):
- super(LogSF, self).__init__()
- self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
-
- def construct(self, x_):
- return self.e.log_survival(x_)
-
- def test_log_survival():
- """
- Test log survival function.
- """
- expon_benchmark = stats.expon(scale=[[1.0], [2.0]])
- expect_logsurvival = expon_benchmark.logsf([-1.0, 0.0, 1.0]).astype(np.float32)
- logsurvival = LogSF()
- x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
- output = logsurvival(x_)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logsurvival) < tol).all()
-
- class EntropyH(nn.Cell):
- """
- Test class: entropy of Exponential distribution.
- """
- def __init__(self):
- super(EntropyH, self).__init__()
- self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
-
- def construct(self):
- return self.e.entropy()
-
- def test_entropy():
- """
- Test entropy.
- """
- expon_benchmark = stats.expon(scale=[[1.0], [2.0]])
- expect_entropy = expon_benchmark.entropy().astype(np.float32)
- entropy = EntropyH()
- output = entropy()
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
-
- class CrossEntropy(nn.Cell):
- """
- Test class: cross entropy between Exponential distribution.
- """
- def __init__(self):
- super(CrossEntropy, self).__init__()
- self.e = msd.Exponential([1.0], dtype=dtype.float32)
-
- def construct(self, x_):
- entropy = self.e.entropy()
- kl_loss = self.e.kl_loss('Exponential', x_)
- h_sum_kl = entropy + kl_loss
- cross_entropy = self.e.cross_entropy('Exponential', x_)
- return h_sum_kl - cross_entropy
-
- def test_cross_entropy():
- """
- Test cross_entropy.
- """
- cross_entropy = CrossEntropy()
- rate = Tensor([0.5], dtype=dtype.float32)
- diff = cross_entropy(rate)
- tol = 1e-6
- assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
|