You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_conv3d_op.py 2.7 kB

4 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class NetConv3d(nn.Cell):
  22. def __init__(self):
  23. super(NetConv3d, self).__init__()
  24. out_channel = 4
  25. kernel_size = 2
  26. self.conv = P.Conv3D(out_channel,
  27. kernel_size,
  28. mode=1,
  29. pad_mode="valid",
  30. pad=0,
  31. stride=1,
  32. dilation=1,
  33. group=1)
  34. def construct(self, x, w):
  35. return self.conv(x, w)
  36. @pytest.mark.level0
  37. @pytest.mark.platform_x86_gpu_training
  38. @pytest.mark.env_onecard
  39. def test_conv3d():
  40. x = Tensor(np.arange(1 * 3 * 3 * 3 * 3).reshape(1, 3, 3, 3, 3).astype(np.float32))
  41. w = Tensor(np.arange(4 * 3 * 2 * 2 * 2).reshape(4, 3, 2, 2, 2).astype(np.float32))
  42. expect = np.array([[[[[12960., 13236.],
  43. [13788., 14064.]],
  44. [[15444., 15720.],
  45. [16272., 16548.]]],
  46. [[[32256., 33108.],
  47. [34812., 35664.]],
  48. [[39924., 40776.],
  49. [42480., 43332.]]],
  50. [[[51552., 52980.],
  51. [55836., 57264.]],
  52. [[64404., 65832.],
  53. [68688., 70116.]]],
  54. [[[70848., 72852.],
  55. [76860., 78864.]],
  56. [[88884., 90888.],
  57. [94896., 96900.]]]]]).astype(np.float32)
  58. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  59. net = NetConv3d()
  60. output = net(x, w)
  61. assert (output.asnumpy() == expect).all()
  62. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  63. net = NetConv3d()
  64. output = net(x, w)
  65. assert (output.asnumpy() == expect).all()