# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class NetConv3d(nn.Cell): def __init__(self): super(NetConv3d, self).__init__() out_channel = 4 kernel_size = 2 self.conv = P.Conv3D(out_channel, kernel_size, mode=1, pad_mode="valid", pad=0, stride=1, dilation=1, group=1) def construct(self, x, w): return self.conv(x, w) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_conv3d(): x = Tensor(np.arange(1 * 3 * 3 * 3 * 3).reshape(1, 3, 3, 3, 3).astype(np.float32)) w = Tensor(np.arange(4 * 3 * 2 * 2 * 2).reshape(4, 3, 2, 2, 2).astype(np.float32)) expect = np.array([[[[[12960., 13236.], [13788., 14064.]], [[15444., 15720.], [16272., 16548.]]], [[[32256., 33108.], [34812., 35664.]], [[39924., 40776.], [42480., 43332.]]], [[[51552., 52980.], [55836., 57264.]], [[64404., 65832.], [68688., 70116.]]], [[[70848., 72852.], [76860., 78864.]], [[88884., 90888.], [94896., 96900.]]]]]).astype(np.float32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") net = NetConv3d() output = net(x, w) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = NetConv3d() output = net(x, w) assert (output.asnumpy() == expect).all()