|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- # Contents
-
- - [GhostNet Description](#ghostnet-description)
- - [Quantization Description](#ghostnet-quantization-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Environment Requirements](#environment-requirements)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Training Process](#training-process)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Training Performance](#evaluation-performance)
- - [Inference Performance](#evaluation-performance)
- - [Description of Random Situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- ## [GhostNet Description](#contents)
-
- The GhostNet architecture is based on an Ghost module structure which generate more features from cheap operations. Based on a set of intrinsic feature maps, a series of cheap operations are applied to generate many ghost feature maps that could fully reveal information underlying intrinsic features.
-
- [Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Han_GhostNet_More_Features_From_Cheap_Operations_CVPR_2020_paper.pdf): Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu. GhostNet: More Features from Cheap Operations. CVPR 2020.
-
- ## [Quantization Description](#contents)
-
- Quantization refers to techniques for performing computations and storing tensors at lower bitwidths than floating point precision. For 8bit quantization, we quantize the weights into [-128,127] and the activations into [0,255]. We finetune the model a few epochs after post-quantization to achieve better performance.
-
- ## [Model architecture](#contents)
-
- The overall network architecture of GhostNet is show below:
-
- [Link](https://openaccess.thecvf.com/content_CVPR_2020/papers/Han_GhostNet_More_Features_From_Cheap_Operations_CVPR_2020_paper.pdf)
-
- ## [Dataset](#contents)
-
- Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
-
- - Dataset size: 7049 colorful images in 1000 classes
- - Train: 3680 images
- - Test: 3369 images
- - Data format: RGB images.
- - Note: Data will be processed in src/dataset.py
-
- ## [Environment Requirements](#contents)
-
- - Hardware(Ascend/GPU)
- - Prepare hardware environment with Ascend or GPU processor.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- ## [Script description](#contents)
-
- ### [Script and sample code](#contents)
-
- ```python
- ├── GhostNet
- ├── Readme.md # descriptions about GhostNet # shell script for evaluation with CPU, GPU or Ascend
- ├── src
- │ ├──config.py # parameter configuration
- │ ├──dataset.py # creating dataset
- │ ├──launch.py # start python script
- │ ├──lr_generator.py # learning rate config
- │ ├──ghostnet.py # GhostNet architecture
- │ ├──quant.py # GhostNet quantization
- ├── eval.py # evaluation script
- ├── mindspore_hub_conf.py # export model for hub
- ```
-
- ## [Training process](#contents)
-
- To Be Done
-
- ## [Eval process](#contents)
-
- ### Usage
-
- After installing MindSpore via the official website, you can start evaluation as follows:
-
- ### Launch
-
- ```bash
- # infer example
-
- Ascend: python eval.py --dataset_path ~/Pets/test.mindrecord --platform Ascend --checkpoint_path [CHECKPOINT_PATH]
- GPU: python eval.py --dataset_path ~/Pets/test.mindrecord --platform GPU --checkpoint_path [CHECKPOINT_PATH]
- ```
-
- > checkpoint can be produced in training process.
-
- ### Result
-
- ```bash
- result: {'acc': 0.825} ckpt= ./ghostnet_1x_pets_int8.ckpt
- ```
-
- ## [Model Description](#contents)
-
- ### [Performance](#contents)
-
- #### Evaluation Performance
-
- ##### GhostNet on ImageNet2012
-
- | Parameters | | |
- | -------------------------- | -------------------------------------- |---------------------------------- |
- | Model Version | GhostNet |GhostNet-int8|
- | uploaded Date | 09/08/2020 (month/day/year) ; | 09/08/2020 (month/day/year) |
- | MindSpore Version | 0.6.0-alpha |0.6.0-alpha |
- | Dataset | ImageNet2012 | ImageNet2012|
- | Parameters (M) | 5.2 | / |
- | FLOPs (M) | 142 | / |
- | Accuracy (Top1) | 73.9 | w/o finetune:72.2, w finetune:73.6 |
-
- ##### GhostNet on Oxford-IIIT Pet
-
- | Parameters | | |
- | -------------------------- | -------------------------------------- |---------------------------------- |
- | Model Version | GhostNet |GhostNet-int8|
- | uploaded Date | 09/08/2020 (month/day/year) ; | 09/08/2020 (month/day/year) |
- | MindSpore Version | 0.6.0-alpha |0.6.0-alpha |
- | Dataset | Oxford-IIIT Pet | Oxford-IIIT Pet|
- | Parameters (M) | 3.9 | / |
- | FLOPs (M) | 140 | / |
- | Accuracy (Top1) | 82.4 | w/o finetune:81.66, w finetune:82.45 |
-
- ## [Description of Random Situation](#contents)
-
- In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
-
- ## [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|