You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 5.5 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import argparse
  17. import ast
  18. import os
  19. import mindspore.nn as nn
  20. from mindspore import context
  21. from mindspore.context import ParallelMode
  22. from mindspore import Tensor
  23. from mindspore.communication.management import init, get_rank, get_group_size
  24. from mindspore.nn.optim.momentum import Momentum
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  26. from mindspore.train.model import Model
  27. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  28. from mindspore.common import set_seed
  29. from src.shufflenetv2 import ShuffleNetV2
  30. from src.config import config_gpu as cfg
  31. from src.dataset import create_dataset
  32. from src.lr_generator import get_lr_basic
  33. from src.CrossEntropySmooth import CrossEntropySmooth
  34. set_seed(cfg.random_seed)
  35. if __name__ == '__main__':
  36. parser = argparse.ArgumentParser(description='image classification training')
  37. parser.add_argument('--dataset_path', type=str, default='', help='Dataset path')
  38. parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
  39. parser.add_argument('--is_distributed', type=ast.literal_eval, default=False, help='distributed training')
  40. parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform')
  41. parser.add_argument('--model_size', type=str, default='1.0x', help='ShuffleNetV2 model size parameter')
  42. args_opt = parser.parse_args()
  43. if args_opt.platform != "GPU":
  44. raise ValueError("Only supported GPU training.")
  45. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
  46. if os.getenv('DEVICE_ID', "not_set").isdigit():
  47. context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  48. # init distributed
  49. if args_opt.is_distributed:
  50. init("nccl")
  51. cfg.rank = get_rank()
  52. cfg.group_size = get_group_size()
  53. parallel_mode = ParallelMode.DATA_PARALLEL
  54. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=cfg.group_size,
  55. gradients_mean=True)
  56. else:
  57. cfg.rank = 0
  58. cfg.group_size = 1
  59. # dataloader
  60. dataset = create_dataset(args_opt.dataset_path, True, cfg.rank, cfg.group_size)
  61. batches_per_epoch = dataset.get_dataset_size()
  62. print("Batches Per Epoch: ", batches_per_epoch)
  63. # network
  64. net = ShuffleNetV2(n_class=cfg.num_classes, model_size=args_opt.model_size)
  65. # loss
  66. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  67. smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
  68. # learning rate schedule
  69. lr = get_lr_basic(lr_init=cfg.lr_init, total_epochs=cfg.epoch_size,
  70. steps_per_epoch=batches_per_epoch, is_stair=True)
  71. lr = Tensor(lr)
  72. # optimizer
  73. decayed_params = []
  74. no_decayed_params = []
  75. for param in net.trainable_params():
  76. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  77. decayed_params.append(param)
  78. else:
  79. no_decayed_params.append(param)
  80. group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
  81. {'params': no_decayed_params},
  82. {'order_params': net.trainable_params()}]
  83. optimizer = Momentum(params=net.trainable_params(), learning_rate=Tensor(lr), momentum=cfg.momentum,
  84. weight_decay=cfg.weight_decay)
  85. eval_metrics = {'Loss': nn.Loss(),
  86. 'Top1-Acc': nn.Top1CategoricalAccuracy(),
  87. 'Top5-Acc': nn.Top5CategoricalAccuracy()}
  88. if args_opt.resume:
  89. ckpt = load_checkpoint(args_opt.resume)
  90. load_param_into_net(net, ckpt)
  91. model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={'acc'})
  92. print("============== Starting Training ==============")
  93. loss_cb = LossMonitor(per_print_times=batches_per_epoch)
  94. time_cb = TimeMonitor(data_size=batches_per_epoch)
  95. callbacks = [loss_cb, time_cb]
  96. config_ck = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=cfg.keep_checkpoint_max)
  97. save_ckpt_path = os.path.join(cfg.ckpt_path, 'ckpt_' + str(cfg.rank) + '/')
  98. ckpoint_cb = ModelCheckpoint(prefix=f"shufflenet-rank{cfg.rank}", directory=save_ckpt_path, config=config_ck)
  99. if args_opt.is_distributed & cfg.is_save_on_master:
  100. if cfg.rank == 0:
  101. callbacks.append(ckpoint_cb)
  102. model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
  103. else:
  104. callbacks.append(ckpoint_cb)
  105. model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
  106. print("train success")