You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train ShuffleNetV1"""
  16. import os
  17. import time
  18. import argparse
  19. from mindspore import context
  20. from mindspore import Tensor
  21. from mindspore.common import set_seed
  22. from mindspore.nn.optim.momentum import Momentum
  23. from mindspore.train.model import Model, ParallelMode
  24. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
  25. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  26. from mindspore.communication.management import init, get_rank, get_group_size
  27. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  28. from src.lr_generator import get_lr
  29. from src.shufflenetv1 import ShuffleNetV1
  30. from src.config import config
  31. from src.dataset import create_dataset
  32. from src.crossentropysmooth import CrossEntropySmooth
  33. set_seed(1)
  34. if __name__ == '__main__':
  35. parser = argparse.ArgumentParser(description='image classification training')
  36. parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
  37. parser.add_argument('--device_target', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
  38. parser.add_argument('--dataset_path', type=str, default='', help='dataset path')
  39. parser.add_argument('--device_id', type=int, default=0, help='device id')
  40. parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
  41. parser.add_argument('--model_size', type=str, default='2.0x', help='ShuffleNetV1 model size',
  42. choices=['2.0x', '1.5x', '1.0x', '0.5x'])
  43. args_opt = parser.parse_args()
  44. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
  45. # init distributed
  46. if args_opt.is_distributed:
  47. if os.getenv('DEVICE_ID', "not_set").isdigit():
  48. context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  49. init()
  50. rank = get_rank()
  51. group_size = get_group_size()
  52. parallel_mode = ParallelMode.DATA_PARALLEL
  53. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=group_size, gradients_mean=True)
  54. else:
  55. rank = 0
  56. group_size = 1
  57. context.set_context(device_id=args_opt.device_id)
  58. # define network
  59. net = ShuffleNetV1(model_size=args_opt.model_size)
  60. # define loss
  61. loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor,
  62. num_classes=config.num_classes)
  63. # define dataset
  64. dataset = create_dataset(args_opt.dataset_path, do_train=True, device_num=group_size, rank=rank)
  65. batches_per_epoch = dataset.get_dataset_size()
  66. # resume
  67. if args_opt.resume:
  68. ckpt = load_checkpoint(args_opt.resume)
  69. load_param_into_net(net, ckpt)
  70. # get learning rate
  71. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs,
  72. total_epochs=config.epoch_size, steps_per_epoch=batches_per_epoch, lr_decay_mode=config.decay_method)
  73. lr = Tensor(lr)
  74. # define optimization
  75. optimizer = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
  76. weight_decay=config.weight_decay, loss_scale=config.loss_scale)
  77. # model
  78. loss_scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  79. model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level=config.amp_level,
  80. loss_scale_manager=loss_scale_manager)
  81. # define callbacks
  82. cb = [TimeMonitor(), LossMonitor()]
  83. if config.save_checkpoint:
  84. save_ckpt_path = config.ckpt_path
  85. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * batches_per_epoch,
  86. keep_checkpoint_max=config.keep_checkpoint_max)
  87. ckpt_cb = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ck)
  88. print("============== Starting Training ==============")
  89. start_time = time.time()
  90. # begin train
  91. if args_opt.is_distributed:
  92. if rank == 0:
  93. cb += [ckpt_cb]
  94. else:
  95. cb += [ckpt_cb]
  96. model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
  97. print("time: ", (time.time() - start_time) * 1000)
  98. print("============== Train Success ==============")