# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train ShuffleNetV1""" import os import time import argparse from mindspore import context from mindspore import Tensor from mindspore.common import set_seed from mindspore.nn.optim.momentum import Momentum from mindspore.train.model import Model, ParallelMode from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.communication.management import init, get_rank, get_group_size from mindspore.train.loss_scale_manager import FixedLossScaleManager from src.lr_generator import get_lr from src.shufflenetv1 import ShuffleNetV1 from src.config import config from src.dataset import create_dataset from src.crossentropysmooth import CrossEntropySmooth set_seed(1) if __name__ == '__main__': parser = argparse.ArgumentParser(description='image classification training') parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training') parser.add_argument('--device_target', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform') parser.add_argument('--dataset_path', type=str, default='', help='dataset path') parser.add_argument('--device_id', type=int, default=0, help='device id') parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint') parser.add_argument('--model_size', type=str, default='2.0x', help='ShuffleNetV1 model size', choices=['2.0x', '1.5x', '1.0x', '0.5x']) args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False) # init distributed if args_opt.is_distributed: if os.getenv('DEVICE_ID', "not_set").isdigit(): context.set_context(device_id=int(os.getenv('DEVICE_ID'))) init() rank = get_rank() group_size = get_group_size() parallel_mode = ParallelMode.DATA_PARALLEL context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=group_size, gradients_mean=True) else: rank = 0 group_size = 1 context.set_context(device_id=args_opt.device_id) # define network net = ShuffleNetV1(model_size=args_opt.model_size) # define loss loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor, num_classes=config.num_classes) # define dataset dataset = create_dataset(args_opt.dataset_path, do_train=True, device_num=group_size, rank=rank) batches_per_epoch = dataset.get_dataset_size() # resume if args_opt.resume: ckpt = load_checkpoint(args_opt.resume) load_param_into_net(net, ckpt) # get learning rate lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=batches_per_epoch, lr_decay_mode=config.decay_method) lr = Tensor(lr) # define optimization optimizer = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum, weight_decay=config.weight_decay, loss_scale=config.loss_scale) # model loss_scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level=config.amp_level, loss_scale_manager=loss_scale_manager) # define callbacks cb = [TimeMonitor(), LossMonitor()] if config.save_checkpoint: save_ckpt_path = config.ckpt_path config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * batches_per_epoch, keep_checkpoint_max=config.keep_checkpoint_max) ckpt_cb = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ck) print("============== Starting Training ==============") start_time = time.time() # begin train if args_opt.is_distributed: if rank == 0: cb += [ckpt_cb] else: cb += [ckpt_cb] model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True) print("time: ", (time.time() - start_time) * 1000) print("============== Train Success ==============")