You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 2.9 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. eval.
  17. """
  18. import argparse
  19. from mindspore import context
  20. from mindspore import nn
  21. from mindspore.train.model import Model
  22. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  23. from src.dataset import create_dataset
  24. from src.dataset import create_dataset_cifar
  25. from src.config import config_gpu
  26. from src.config import config_cpu
  27. from src.mobilenetV3 import mobilenet_v3_large
  28. parser = argparse.ArgumentParser(description='Image classification')
  29. parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
  30. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  31. parser.add_argument('--device_target', type=str, default="GPU", help='run device_target')
  32. args_opt = parser.parse_args()
  33. if __name__ == '__main__':
  34. config = None
  35. if args_opt.device_target == "GPU":
  36. config = config_gpu
  37. context.set_context(mode=context.GRAPH_MODE,
  38. device_target="GPU", save_graphs=False)
  39. dataset = create_dataset(dataset_path=args_opt.dataset_path,
  40. do_train=False,
  41. config=config,
  42. device_target=args_opt.device_target,
  43. batch_size=config.batch_size)
  44. elif args_opt.device_target == "CPU":
  45. config = config_cpu
  46. context.set_context(mode=context.GRAPH_MODE,
  47. device_target="CPU", save_graphs=False)
  48. dataset = create_dataset_cifar(dataset_path=args_opt.dataset_path,
  49. do_train=False,
  50. batch_size=config.batch_size)
  51. else:
  52. raise ValueError("Unsupported device_target.")
  53. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  54. net = mobilenet_v3_large(num_classes=config.num_classes, activation="Softmax")
  55. step_size = dataset.get_dataset_size()
  56. if args_opt.checkpoint_path:
  57. param_dict = load_checkpoint(args_opt.checkpoint_path)
  58. load_param_into_net(net, param_dict)
  59. net.set_train(False)
  60. model = Model(net, loss_fn=loss, metrics={'acc'})
  61. res = model.eval(dataset)
  62. print("result:", res, "ckpt=", args_opt.checkpoint_path)