|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- # Contents
-
- - [LeNet Description](#lenet-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Training](#training)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Evaluation Performance](#evaluation-performance)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- ## [LeNet Description](#contents)
-
- LeNet was proposed in 1998, a typical convolutional neural network. It was used for digit recognition and got big success.
-
- [Paper](https://ieeexplore.ieee.org/document/726791): Y.Lecun, L.Bottou, Y.Bengio, P.Haffner. Gradient-Based Learning Applied to Document Recognition. *Proceedings of the IEEE*. 1998.
-
- This is the quantitative network of LeNet.
-
- ## [Model Architecture](#contents)
-
- LeNet is very simple, which contains 5 layers. The layer composition consists of 2 convolutional layers and 3 fully connected layers.
-
- ## [Dataset](#contents)
-
- Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
-
- - Dataset size 52.4M 60,000 28*28 in 10 classes
- - Train 60,000 images
- - Test 10,000 images
- - Data format binary files
- - Note Data will be processed in dataset.py
-
- - The directory structure is as follows:
-
- ```bash
- └─Data
- ├─test
- │ t10k-images.idx3-ubyte
- │ t10k-labels.idx1-ubyte
- │
- └─train
- train-images.idx3-ubyte
- train-labels.idx1-ubyte
- ```
-
- ## [Environment Requirements](#contents)
-
- - Hardware:Ascend
- - Prepare hardware environment with Ascend
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- ## [Quick Start](#contents)
-
- After installing MindSpore via the official website, you can start training and evaluation as follows:
-
- ```python
- # enter ../lenet directory and train lenet network,then a '.ckpt' file will be generated.
- sh run_standalone_train_ascend.sh [DATA_PATH]
- # enter lenet dir, train LeNet-Quant
- python train.py --device_target=Ascend --data_path=[DATA_PATH] --ckpt_path=[CKPT_PATH] --dataset_sink_mode=True
- #evaluate LeNet-Quant
- python eval.py --device_target=Ascend --data_path=[DATA_PATH] --ckpt_path=[CKPT_PATH] --dataset_sink_mode=True
- ```
-
- ## [Script Description](#contents)
-
- ## [Script and Sample Code](#contents)
-
- ```bash
- ├── model_zoo
- ├── README.md // descriptions about all the models
- ├── lenet_quant
- ├── README.md // descriptions about LeNet-Quant
- ├── src
- │ ├── config.py // parameter configuration
- │ ├── dataset.py // creating dataset
- │ ├── lenet_fusion.py // auto constructed quantitative network model of LeNet-Quant
- │ ├── lenet_quant.py // manual constructed quantitative network model of LeNet-Quant
- │ ├── loss_monitor.py //monitor of network's loss and other data
- ├── requirements.txt // package needed
- ├── train.py // training LeNet-Quant network with device Ascend
- ├── eval.py // evaluating LeNet-Quant network with device Ascend
- ```
-
- ## [Script Parameters](#contents)
-
- ```python
- Major parameters in train.py and config.py as follows:
-
- --data_path: The absolute full path to the train and evaluation datasets.
- --epoch_size: Total training epochs.
- --batch_size: Training batch size.
- --image_height: Image height used as input to the model.
- --image_width: Image width used as input the model.
- --device_target: Device where the code will be implemented. Optional values
- are "Ascend", "GPU", "CPU".Only "Ascend" is supported now.
- --ckpt_path: The absolute full path to the checkpoint file saved
- after training.
- --data_path: Path where the dataset is saved
- ```
-
- ## [Training Process](#contents)
-
- ### Training
-
- ```bash
- python train.py --device_target=Ascend --dataset_path=/home/datasets/MNIST --dataset_sink_mode=True > log.txt 2>&1 &
- ```
-
- After training, the loss value will be achieved as follows:
-
- ```bash
- # grep "Epoch " log.txt
- Epoch: [ 1/ 10], step: [ 937/ 937], loss: [0.0081], avg loss: [0.0081], time: [11268.6832ms]
- Epoch time: 11269.352, per step time: 12.027, avg loss: 0.008
- Epoch: [ 2/ 10], step: [ 937/ 937], loss: [0.0496], avg loss: [0.0496], time: [3085.2389ms]
- Epoch time: 3085.641, per step time: 3.293, avg loss: 0.050
- Epoch: [ 3/ 10], step: [ 937/ 937], loss: [0.0017], avg loss: [0.0017], time: [3085.3510ms]
- ...
- ...
- ```
-
- The model checkpoint will be saved in the current directory.
-
- ## [Evaluation Process](#contents)
-
- ### Evaluation
-
- Before running the command below, please check the checkpoint path used for evaluation.
-
- ```bash
- python eval.py --data_path Data --ckpt_path ckpt/checkpoint_lenet-1_937.ckpt > log.txt 2>&1 &
- ```
-
- You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
-
- ```bash
- # grep "Accuracy: " log.txt
- 'Accuracy': 0.9842
- ```
-
- ## [Model Description](#contents)
-
- ### [Performance](#contents)
-
- #### Evaluation Performance
-
- | Parameters | LeNet |
- | -------------------------- | ----------------------------------------------------------- |
- | Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 |
- | uploaded Date | 06/09/2020 (month/day/year) |
- | MindSpore Version | 0.5.0-beta |
- | Dataset | MNIST |
- | Training Parameters | epoch=10, steps=937, batch_size = 64, lr=0.01 |
- | Optimizer | Momentum |
- | Loss Function | Softmax Cross Entropy |
- | outputs | probability |
- | Loss | 0.002 |
- | Speed |3.29 ms/step |
- | Total time | 40s |
- | Checkpoint for Fine tuning | 482k (.ckpt file) |
- | Scripts | [scripts](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet) |
-
- ## [Description of Random Situation](#contents)
-
- In dataset.py, we set the seed inside “create_dataset" function.
-
- ## [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|