|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import os
- import json
- import time
- import shutil
- import numpy as np
- import pytest
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.nn import Cell
- from mindspore.nn import Dense
- from mindspore.nn import SoftmaxCrossEntropyWithLogits
- from mindspore.nn import Momentum
- from mindspore.nn import TrainOneStepCell
- from mindspore.nn import WithLossCell
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.add = P.Add()
-
- def construct(self, x_, y_):
- return self.add(x_, y_)
-
- x = np.random.randn(1, 3, 3, 4).astype(np.float32)
- y = np.random.randn(1, 3, 3, 4).astype(np.float32)
-
- def change_current_dump_json(file_name, dump_path):
- with open(file_name, 'r+') as f:
- data = json.load(f)
-
- data["common_dump_settings"]["path"] = dump_path
- with open(file_name, 'w') as f:
- json.dump(data, f)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_async_dump():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- pwd = os.getcwd()
- dump_path = pwd + "/async_dump"
- change_current_dump_json('async_dump.json', dump_path)
- os.environ['MINDSPORE_DUMP_CONFIG'] = pwd + "/async_dump.json"
- device_id = context.get_context("device_id")
- dump_file_path = pwd + '/async_dump/device_{}/Net_graph_0/0/0/'.format(device_id)
- if os.path.isdir(dump_path):
- shutil.rmtree(dump_path)
- add = Net()
- add(Tensor(x), Tensor(y))
- time.sleep(5)
- assert len(os.listdir(dump_file_path)) == 1
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_e2e_dump():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- pwd = os.getcwd()
- dump_path = pwd + "/e2e_dump"
- change_current_dump_json('e2e_dump.json', dump_path)
- os.environ['MINDSPORE_DUMP_CONFIG'] = pwd + "/e2e_dump.json"
- device_id = context.get_context("device_id")
- dump_file_path = pwd + '/e2e_dump/Net/device_{}/iteration_1/'.format(device_id)
- if os.path.isdir(dump_path):
- shutil.rmtree(dump_path)
- add = Net()
- add(Tensor(x), Tensor(y))
- time.sleep(5)
- assert len(os.listdir(dump_file_path)) == 5
-
- class ReluReduceMeanDenseRelu(Cell):
- def __init__(self, kernel, bias, in_channel, num_class):
- super().__init__()
- self.relu = P.ReLU()
- self.mean = P.ReduceMean(keep_dims=False)
- self.dense = Dense(in_channel, num_class, kernel, bias)
-
- def construct(self, x_):
- x_ = self.relu(x_)
- x_ = self.mean(x_, (2, 3))
- x_ = self.dense(x_)
- x_ = self.relu(x_)
- return x_
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_async_dump_net_multi_layer_mode1():
- test_name = "test_async_dump_net_multi_layer_mode1"
- json_file = os.path.join(os.getcwd(), "{}.json".format(test_name))
- device_id = context.get_context("device_id")
- dump_full_path = os.path.join("/tmp/async_dump/", "{}_{}".format(test_name, device_id))
- os.system("rm -rf {}/*".format(dump_full_path))
- os.environ["MINDSPORE_DUMP_CONFIG"] = json_file
- weight = Tensor(np.ones((1000, 2048)).astype(np.float32))
- bias = Tensor(np.ones((1000,)).astype(np.float32))
- net = ReluReduceMeanDenseRelu(weight, bias, 2048, 1000)
- criterion = SoftmaxCrossEntropyWithLogits(sparse=False)
- optimizer = Momentum(learning_rate=0.1, momentum=0.1, params=filter(lambda x: x.requires_grad, net.get_parameters()))
- net_with_criterion = WithLossCell(net, criterion)
- train_network = TrainOneStepCell(net_with_criterion, optimizer)
- train_network.set_train()
- inputs = Tensor(np.random.randn(32, 2048, 7, 7).astype(np.float32))
- label = Tensor(np.zeros(shape=(32, 1000)).astype(np.float32))
- net_dict = train_network(inputs, label)
-
- dump_path = "/tmp/async_dump/{}/device_{}/test_graph_0/0/0/".format(test_name, device_id)
- dump_file = os.listdir(dump_path)
- dump_file_name = ""
- for file in dump_file:
- if "SoftmaxCrossEntropyWithLogits" in file:
- dump_file_name = file
- dump_file_full_path = os.path.join(dump_path, dump_file_name)
- npy_path = os.path.join(os.getcwd(), "./{}".format(test_name))
- if os.path.exists(npy_path):
- shutil.rmtree(npy_path)
- os.mkdir(npy_path)
- cmd = "python /usr/local/Ascend/toolkit/tools/operator_cmp/compare/msaccucmp.pyc " \
- "convert -d {0} -out {1}".format(dump_file_full_path, npy_path)
- os.system(cmd)
- npy_file_list = os.listdir(npy_path)
- dump_result = {}
- for file in npy_file_list:
- if "output.0.npy" in file:
- dump_result["output0"] = np.load(os.path.join(npy_path, file))
- for index, value in enumerate(net_dict):
- assert value.asnumpy() == dump_result["output0"][index]
|