|
|
|
@@ -0,0 +1,83 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import os |
|
|
|
import json |
|
|
|
import time |
|
|
|
import shutil |
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
|
|
|
|
class Net(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(Net, self).__init__() |
|
|
|
self.add = P.TensorAdd() |
|
|
|
|
|
|
|
def construct(self, x_, y_): |
|
|
|
return self.add(x_, y_) |
|
|
|
|
|
|
|
x = np.random.randn(1, 3, 3, 4).astype(np.float32) |
|
|
|
y = np.random.randn(1, 3, 3, 4).astype(np.float32) |
|
|
|
|
|
|
|
def change_current_dump_json(file_name, dump_path): |
|
|
|
with open(file_name, 'r+') as f: |
|
|
|
data = json.load(f) |
|
|
|
|
|
|
|
data["common_dump_settings"]["path"] = dump_path |
|
|
|
with open(file_name, 'w') as f: |
|
|
|
json.dump(data, f) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_async_dump(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
pwd = os.getcwd() |
|
|
|
dump_path = pwd + "/dump" |
|
|
|
change_current_dump_json('async_dump.json', dump_path) |
|
|
|
os.environ['MINDSPORE_DUMP_CONFIG'] = pwd + "/async_dump.json" |
|
|
|
device_id = context.get_context("device_id") |
|
|
|
dump_file_path = pwd + '/dump/device_{}/Net_graph_0/0/0/'.format(device_id) |
|
|
|
if os.path.isdir(dump_path): |
|
|
|
shutil.rmtree(dump_path) |
|
|
|
add = Net() |
|
|
|
add(Tensor(x), Tensor(y)) |
|
|
|
time.sleep(5) |
|
|
|
assert len(os.listdir(dump_file_path)) == 1 |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_e2e_dump(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
pwd = os.getcwd() |
|
|
|
dump_path = pwd + "/dump" |
|
|
|
change_current_dump_json('e2e_dump.json', dump_path) |
|
|
|
os.environ['MINDSPORE_DUMP_CONFIG'] = pwd + "/e2e_dump.json" |
|
|
|
device_id = context.get_context("device_id") |
|
|
|
dump_file_path = pwd + '/dump/Net/device_{}/iteration_1/'.format(device_id) |
|
|
|
if os.path.isdir(dump_path): |
|
|
|
shutil.rmtree(dump_path) |
|
|
|
add = Net() |
|
|
|
add(Tensor(x), Tensor(y)) |
|
|
|
time.sleep(5) |
|
|
|
assert len(os.listdir(dump_file_path)) == 5 |