You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """YoloV3 train."""
  16. import os
  17. import time
  18. import argparse
  19. import datetime
  20. from mindspore.context import ParallelMode
  21. from mindspore.nn.optim.momentum import Momentum
  22. from mindspore import Tensor
  23. import mindspore.nn as nn
  24. from mindspore import context
  25. from mindspore.communication.management import init, get_rank, get_group_size
  26. from mindspore.train.callback import ModelCheckpoint, RunContext
  27. from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
  28. from mindspore import amp
  29. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  30. from mindspore.common import set_seed
  31. from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper
  32. from src.logger import get_logger
  33. from src.util import AverageMeter, get_param_groups
  34. from src.lr_scheduler import get_lr
  35. from src.yolo_dataset import create_yolo_dataset
  36. from src.initializer import default_recurisive_init, load_yolov3_params
  37. from src.config import ConfigYOLOV3DarkNet53
  38. from src.util import keep_loss_fp32
  39. set_seed(1)
  40. class BuildTrainNetwork(nn.Cell):
  41. def __init__(self, network, criterion):
  42. super(BuildTrainNetwork, self).__init__()
  43. self.network = network
  44. self.criterion = criterion
  45. def construct(self, input_data, label):
  46. output = self.network(input_data)
  47. loss = self.criterion(output, label)
  48. return loss
  49. def parse_args():
  50. """Parse train arguments."""
  51. parser = argparse.ArgumentParser('mindspore coco training')
  52. # device related
  53. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  54. help='device where the code will be implemented. (Default: Ascend)')
  55. # dataset related
  56. parser.add_argument('--data_dir', type=str, help='Train dataset directory.')
  57. parser.add_argument('--per_batch_size', default=32, type=int, help='Batch size for Training. Default: 32.')
  58. # network related
  59. parser.add_argument('--pretrained_backbone', default='', type=str,
  60. help='The ckpt file of DarkNet53. Default: "".')
  61. parser.add_argument('--resume_yolov3', default='', type=str,
  62. help='The ckpt file of YOLOv3, which used to fine tune. Default: ""')
  63. # optimizer and lr related
  64. parser.add_argument('--lr_scheduler', default='exponential', type=str,
  65. help='Learning rate scheduler, options: exponential, cosine_annealing. Default: exponential')
  66. parser.add_argument('--lr', default=0.001, type=float, help='Learning rate. Default: 0.001')
  67. parser.add_argument('--lr_epochs', type=str, default='220,250',
  68. help='Epoch of changing of lr changing, split with ",". Default: 220,250')
  69. parser.add_argument('--lr_gamma', type=float, default=0.1,
  70. help='Decrease lr by a factor of exponential lr_scheduler. Default: 0.1')
  71. parser.add_argument('--eta_min', type=float, default=0., help='Eta_min in cosine_annealing scheduler. Default: 0')
  72. parser.add_argument('--T_max', type=int, default=320, help='T-max in cosine_annealing scheduler. Default: 320')
  73. parser.add_argument('--max_epoch', type=int, default=320, help='Max epoch num to train the model. Default: 320')
  74. parser.add_argument('--warmup_epochs', default=0, type=float, help='Warmup epochs. Default: 0')
  75. parser.add_argument('--weight_decay', type=float, default=0.0005, help='Weight decay factor. Default: 0.0005')
  76. parser.add_argument('--momentum', type=float, default=0.9, help='Momentum. Default: 0.9')
  77. # loss related
  78. parser.add_argument('--loss_scale', type=int, default=1024, help='Static loss scale. Default: 1024')
  79. parser.add_argument('--label_smooth', type=int, default=0, help='Whether to use label smooth in CE. Default:0')
  80. parser.add_argument('--label_smooth_factor', type=float, default=0.1,
  81. help='Smooth strength of original one-hot. Default: 0.1')
  82. # logging related
  83. parser.add_argument('--log_interval', type=int, default=100, help='Logging interval steps. Default: 100')
  84. parser.add_argument('--ckpt_path', type=str, default='outputs/', help='Checkpoint save location. Default: outputs/')
  85. parser.add_argument('--ckpt_interval', type=int, default=None, help='Save checkpoint interval. Default: None')
  86. parser.add_argument('--is_save_on_master', type=int, default=1,
  87. help='Save ckpt on master or all rank, 1 for master, 0 for all ranks. Default: 1')
  88. # distributed related
  89. parser.add_argument('--is_distributed', type=int, default=1,
  90. help='Distribute train or not, 1 for yes, 0 for no. Default: 1')
  91. parser.add_argument('--rank', type=int, default=0, help='Local rank of distributed. Default: 0')
  92. parser.add_argument('--group_size', type=int, default=1, help='World size of device. Default: 1')
  93. # profiler init
  94. parser.add_argument('--need_profiler', type=int, default=0,
  95. help='Whether use profiler. 0 for no, 1 for yes. Default: 0')
  96. # reset default config
  97. parser.add_argument('--training_shape', type=str, default="", help='Fix training shape. Default: ""')
  98. parser.add_argument('--resize_rate', type=int, default=None,
  99. help='Resize rate for multi-scale training. Default: None')
  100. args, _ = parser.parse_known_args()
  101. if args.lr_scheduler == 'cosine_annealing' and args.max_epoch > args.T_max:
  102. args.T_max = args.max_epoch
  103. args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
  104. args.data_root = os.path.join(args.data_dir, 'train2014')
  105. args.annFile = os.path.join(args.data_dir, 'annotations/instances_train2014.json')
  106. return args
  107. def conver_training_shape(args):
  108. training_shape = [int(args.training_shape), int(args.training_shape)]
  109. return training_shape
  110. def network_init(args):
  111. devid = int(os.getenv('DEVICE_ID', '0'))
  112. context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
  113. device_target=args.device_target, save_graphs=True, device_id=devid)
  114. # init distributed
  115. if args.is_distributed:
  116. if args.device_target == "Ascend":
  117. init()
  118. else:
  119. init("nccl")
  120. args.rank = get_rank()
  121. args.group_size = get_group_size()
  122. # select for master rank save ckpt or all rank save, compatible for model parallel
  123. args.rank_save_ckpt_flag = 0
  124. if args.is_save_on_master:
  125. if args.rank == 0:
  126. args.rank_save_ckpt_flag = 1
  127. else:
  128. args.rank_save_ckpt_flag = 1
  129. # logger
  130. args.outputs_dir = os.path.join(args.ckpt_path,
  131. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  132. args.logger = get_logger(args.outputs_dir, args.rank)
  133. args.logger.save_args(args)
  134. def parallel_init(args):
  135. context.reset_auto_parallel_context()
  136. parallel_mode = ParallelMode.STAND_ALONE
  137. degree = 1
  138. if args.is_distributed:
  139. parallel_mode = ParallelMode.DATA_PARALLEL
  140. degree = get_group_size()
  141. context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=degree)
  142. def train():
  143. """Train function."""
  144. args = parse_args()
  145. network_init(args)
  146. if args.need_profiler:
  147. from mindspore.profiler.profiling import Profiler
  148. profiler = Profiler(output_path=args.outputs_dir, is_detail=True, is_show_op_path=True)
  149. loss_meter = AverageMeter('loss')
  150. parallel_init(args)
  151. network = YOLOV3DarkNet53(is_training=True)
  152. # default is kaiming-normal
  153. default_recurisive_init(network)
  154. load_yolov3_params(args, network)
  155. network = YoloWithLossCell(network)
  156. args.logger.info('finish get network')
  157. config = ConfigYOLOV3DarkNet53()
  158. config.label_smooth = args.label_smooth
  159. config.label_smooth_factor = args.label_smooth_factor
  160. if args.training_shape:
  161. config.multi_scale = [conver_training_shape(args)]
  162. if args.resize_rate:
  163. config.resize_rate = args.resize_rate
  164. ds, data_size = create_yolo_dataset(image_dir=args.data_root, anno_path=args.annFile, is_training=True,
  165. batch_size=args.per_batch_size, max_epoch=args.max_epoch,
  166. device_num=args.group_size, rank=args.rank, config=config)
  167. args.logger.info('Finish loading dataset')
  168. args.steps_per_epoch = int(data_size / args.per_batch_size / args.group_size)
  169. if not args.ckpt_interval:
  170. args.ckpt_interval = args.steps_per_epoch
  171. lr = get_lr(args)
  172. opt = Momentum(params=get_param_groups(network),
  173. learning_rate=Tensor(lr),
  174. momentum=args.momentum,
  175. weight_decay=args.weight_decay,
  176. loss_scale=args.loss_scale)
  177. is_gpu = context.get_context("device_target") == "GPU"
  178. if is_gpu:
  179. loss_scale_value = 1.0
  180. loss_scale = FixedLossScaleManager(loss_scale_value, drop_overflow_update=False)
  181. network = amp.build_train_network(network, optimizer=opt, loss_scale_manager=loss_scale,
  182. level="O2", keep_batchnorm_fp32=False)
  183. keep_loss_fp32(network)
  184. else:
  185. network = TrainingWrapper(network, opt, sens=args.loss_scale)
  186. network.set_train()
  187. if args.rank_save_ckpt_flag:
  188. # checkpoint save
  189. ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
  190. ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval,
  191. keep_checkpoint_max=ckpt_max_num)
  192. save_ckpt_path = os.path.join(args.outputs_dir, 'ckpt_' + str(args.rank) + '/')
  193. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  194. directory=save_ckpt_path,
  195. prefix='{}'.format(args.rank))
  196. cb_params = _InternalCallbackParam()
  197. cb_params.train_network = network
  198. cb_params.epoch_num = ckpt_max_num
  199. cb_params.cur_epoch_num = 1
  200. run_context = RunContext(cb_params)
  201. ckpt_cb.begin(run_context)
  202. old_progress = -1
  203. t_end = time.time()
  204. data_loader = ds.create_dict_iterator(output_numpy=True, num_epochs=1)
  205. for i, data in enumerate(data_loader):
  206. images = data["image"]
  207. input_shape = images.shape[2:4]
  208. args.logger.info('iter[{}], shape{}'.format(i, input_shape[0]))
  209. images = Tensor.from_numpy(images)
  210. batch_y_true_0 = Tensor.from_numpy(data['bbox1'])
  211. batch_y_true_1 = Tensor.from_numpy(data['bbox2'])
  212. batch_y_true_2 = Tensor.from_numpy(data['bbox3'])
  213. batch_gt_box0 = Tensor.from_numpy(data['gt_box1'])
  214. batch_gt_box1 = Tensor.from_numpy(data['gt_box2'])
  215. batch_gt_box2 = Tensor.from_numpy(data['gt_box3'])
  216. loss = network(images, batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1,
  217. batch_gt_box2)
  218. loss_meter.update(loss.asnumpy())
  219. if args.rank_save_ckpt_flag:
  220. # ckpt progress
  221. cb_params.cur_step_num = i + 1 # current step number
  222. cb_params.batch_num = i + 2
  223. ckpt_cb.step_end(run_context)
  224. if i % args.log_interval == 0:
  225. time_used = time.time() - t_end
  226. epoch = int(i / args.steps_per_epoch)
  227. fps = args.per_batch_size * (i - old_progress) * args.group_size / time_used
  228. if args.rank == 0:
  229. args.logger.info(
  230. 'epoch[{}], iter[{}], {}, {:.2f} imgs/sec, lr:{}'.format(epoch, i, loss_meter, fps, lr[i]))
  231. t_end = time.time()
  232. loss_meter.reset()
  233. old_progress = i
  234. if (i + 1) % args.steps_per_epoch == 0 and args.rank_save_ckpt_flag:
  235. cb_params.cur_epoch_num += 1
  236. if args.need_profiler:
  237. if i == 10:
  238. profiler.analyse()
  239. break
  240. args.logger.info('==========end training===============')
  241. if __name__ == "__main__":
  242. train()