You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 2.2 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. eval.
  17. """
  18. import os
  19. import argparse
  20. from dataset import create_dataset
  21. from config import config
  22. from mindspore import context
  23. from mindspore.model_zoo.mobilenet import mobilenet_v2
  24. from mindspore.train.model import Model
  25. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  26. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  27. parser = argparse.ArgumentParser(description='Image classification')
  28. parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
  29. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  30. args_opt = parser.parse_args()
  31. device_id = int(os.getenv('DEVICE_ID'))
  32. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False)
  33. context.set_context(enable_task_sink=True)
  34. context.set_context(enable_loop_sink=True)
  35. context.set_context(enable_mem_reuse=True)
  36. if __name__ == '__main__':
  37. loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
  38. net = mobilenet_v2()
  39. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size)
  40. step_size = dataset.get_dataset_size()
  41. if args_opt.checkpoint_path:
  42. param_dict = load_checkpoint(args_opt.checkpoint_path)
  43. load_param_into_net(net, param_dict)
  44. net.set_train(False)
  45. model = Model(net, loss_fn=loss, metrics={'acc'})
  46. res = model.eval(dataset)
  47. print("result:", res, "ckpt=", args_opt.checkpoint_path)