You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 7.1 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # less required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Train SSD and get checkpoint files."""
  16. import argparse
  17. import ast
  18. import mindspore.nn as nn
  19. from mindspore import context, Tensor
  20. from mindspore.communication.management import init, get_rank
  21. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
  22. from mindspore.train import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  25. from mindspore.common import set_seed, dtype
  26. from src.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2
  27. from src.config import config
  28. from src.dataset import create_ssd_dataset, create_mindrecord
  29. from src.lr_schedule import get_lr
  30. from src.init_params import init_net_param, filter_checkpoint_parameter
  31. set_seed(1)
  32. def get_args():
  33. parser = argparse.ArgumentParser(description="SSD training")
  34. parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
  35. help="run platform, support Ascend, GPU and CPU.")
  36. parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False,
  37. help="If set it true, only create Mindrecord, default is False.")
  38. parser.add_argument("--distribute", type=ast.literal_eval, default=False,
  39. help="Run distribute, default is False.")
  40. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  41. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
  42. parser.add_argument("--lr", type=float, default=0.05, help="Learning rate, default is 0.05.")
  43. parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
  44. parser.add_argument("--dataset", type=str, default="coco", help="Dataset, defalut is coco.")
  45. parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.")
  46. parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
  47. parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
  48. parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
  49. parser.add_argument("--save_checkpoint_epochs", type=int, default=10, help="Save checkpoint epochs, default is 10.")
  50. parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
  51. parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
  52. help="Filter head weight parameters, default is False.")
  53. parser.add_argument('--freeze_layer', type=str, default="none", choices=["none", "backbone"],
  54. help="freeze the weights of network, support freeze the backbone's weights, "
  55. "default is not freezing.")
  56. args_opt = parser.parse_args()
  57. return args_opt
  58. def main():
  59. args_opt = get_args()
  60. rank = 0
  61. device_num = 1
  62. if args_opt.run_platform == "CPU":
  63. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  64. else:
  65. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id)
  66. if args_opt.distribute:
  67. device_num = args_opt.device_num
  68. context.reset_auto_parallel_context()
  69. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
  70. device_num=device_num)
  71. init()
  72. rank = get_rank()
  73. mindrecord_file = create_mindrecord(args_opt.dataset, "ssd.mindrecord", True)
  74. if not args_opt.only_create_dataset:
  75. loss_scale = float(args_opt.loss_scale)
  76. if args_opt.run_platform == "CPU":
  77. loss_scale = 1.0
  78. # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
  79. use_multiprocessing = (args_opt.run_platform != "CPU")
  80. dataset = create_ssd_dataset(mindrecord_file, repeat_num=1, batch_size=args_opt.batch_size,
  81. device_num=device_num, rank=rank, use_multiprocessing=use_multiprocessing)
  82. dataset_size = dataset.get_dataset_size()
  83. print("Create dataset done!")
  84. backbone = ssd_mobilenet_v2()
  85. ssd = SSD300(backbone=backbone, config=config)
  86. if args_opt.run_platform == "GPU":
  87. ssd.to_float(dtype.float16)
  88. net = SSDWithLossCell(ssd, config)
  89. init_net_param(net)
  90. # checkpoint
  91. ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
  92. save_ckpt_path = './ckpt_' + str(rank) + '/'
  93. ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=save_ckpt_path, config=ckpt_config)
  94. if args_opt.pre_trained:
  95. param_dict = load_checkpoint(args_opt.pre_trained)
  96. if args_opt.filter_weight:
  97. filter_checkpoint_parameter(param_dict)
  98. load_param_into_net(net, param_dict)
  99. if args_opt.freeze_layer == "backbone":
  100. for param in backbone.feature_1.trainable_params():
  101. param.requires_grad = False
  102. lr = Tensor(get_lr(global_step=args_opt.pre_trained_epoch_size * dataset_size,
  103. lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
  104. warmup_epochs=config.warmup_epochs,
  105. total_epochs=args_opt.epoch_size,
  106. steps_per_epoch=dataset_size))
  107. opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
  108. config.momentum, config.weight_decay, loss_scale)
  109. net = TrainingWrapper(net, opt, loss_scale)
  110. callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
  111. model = Model(net)
  112. dataset_sink_mode = False
  113. if args_opt.mode == "sink" and args_opt.run_platform != "CPU":
  114. print("In sink mode, one epoch return a loss.")
  115. dataset_sink_mode = True
  116. print("Start train SSD, the first epoch will be slower because of the graph compilation.")
  117. model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)
  118. if __name__ == '__main__':
  119. main()