You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 9.6 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Train SSD and get checkpoint files."""
  16. import argparse
  17. import ast
  18. import mindspore.nn as nn
  19. from mindspore import context, Tensor
  20. from mindspore.communication.management import init, get_rank
  21. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
  22. from mindspore.train import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  25. from mindspore.common import set_seed, dtype
  26. from src.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2, ssd_mobilenet_v1_fpn, ssd_resnet50_fpn, ssd_vgg16
  27. from src.config import config
  28. from src.dataset import create_ssd_dataset, create_mindrecord
  29. from src.lr_schedule import get_lr
  30. from src.init_params import init_net_param, filter_checkpoint_parameter_by_list
  31. set_seed(1)
  32. def get_args():
  33. parser = argparse.ArgumentParser(description="SSD training")
  34. parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
  35. help="run platform, support Ascend, GPU and CPU.")
  36. parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False,
  37. help="If set it true, only create Mindrecord, default is False.")
  38. parser.add_argument("--distribute", type=ast.literal_eval, default=False,
  39. help="Run distribute, default is False.")
  40. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  41. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
  42. parser.add_argument("--lr", type=float, default=0.05, help="Learning rate, default is 0.05.")
  43. parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
  44. parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
  45. parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.")
  46. parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
  47. parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
  48. parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
  49. parser.add_argument("--save_checkpoint_epochs", type=int, default=10, help="Save checkpoint epochs, default is 10.")
  50. parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
  51. parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
  52. help="Filter head weight parameters, default is False.")
  53. parser.add_argument('--freeze_layer', type=str, default="none", choices=["none", "backbone"],
  54. help="freeze the weights of network, support freeze the backbone's weights, "
  55. "default is not freezing.")
  56. args_opt = parser.parse_args()
  57. return args_opt
  58. def ssd_model_build(args_opt):
  59. if config.model == "ssd300":
  60. backbone = ssd_mobilenet_v2()
  61. ssd = SSD300(backbone=backbone, config=config)
  62. init_net_param(ssd)
  63. if args_opt.freeze_layer == "backbone":
  64. for param in backbone.feature_1.trainable_params():
  65. param.requires_grad = False
  66. elif config.model == "ssd_mobilenet_v1_fpn":
  67. ssd = ssd_mobilenet_v1_fpn(config=config)
  68. init_net_param(ssd)
  69. if config.feature_extractor_base_param != "":
  70. param_dict = load_checkpoint(config.feature_extractor_base_param)
  71. for x in list(param_dict.keys()):
  72. param_dict["network.feature_extractor.mobilenet_v1." + x] = param_dict[x]
  73. del param_dict[x]
  74. load_param_into_net(ssd.feature_extractor.mobilenet_v1.network, param_dict)
  75. elif config.model == "ssd_resnet50_fpn":
  76. ssd = ssd_resnet50_fpn(config=config)
  77. init_net_param(ssd)
  78. if config.feature_extractor_base_param != "":
  79. param_dict = load_checkpoint(config.feature_extractor_base_param)
  80. for x in list(param_dict.keys()):
  81. param_dict["network.feature_extractor.resnet." + x] = param_dict[x]
  82. del param_dict[x]
  83. load_param_into_net(ssd.feature_extractor.resnet, param_dict)
  84. elif config.model == "ssd_vgg16":
  85. ssd = ssd_vgg16(config=config)
  86. init_net_param(ssd)
  87. if config.feature_extractor_base_param != "":
  88. param_dict = load_checkpoint(config.feature_extractor_base_param)
  89. from src.vgg16 import ssd_vgg_key_mapper
  90. for k in ssd_vgg_key_mapper:
  91. v = ssd_vgg_key_mapper[k]
  92. param_dict["network.backbone." + v + ".weight"] = param_dict[k + ".weight"]
  93. del param_dict[k + ".weight"]
  94. load_param_into_net(ssd.backbone, param_dict)
  95. else:
  96. raise ValueError(f'config.model: {config.model} is not supported')
  97. return ssd
  98. def main():
  99. args_opt = get_args()
  100. rank = 0
  101. device_num = 1
  102. if args_opt.run_platform == "CPU":
  103. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  104. else:
  105. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id)
  106. if args_opt.distribute:
  107. device_num = args_opt.device_num
  108. context.reset_auto_parallel_context()
  109. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
  110. device_num=device_num)
  111. init()
  112. if config.model == "ssd_resnet50_fpn":
  113. context.set_auto_parallel_context(all_reduce_fusion_config=[90, 183, 279])
  114. if config.model == "ssd_vgg16":
  115. context.set_auto_parallel_context(all_reduce_fusion_config=[20, 41, 62])
  116. else:
  117. context.set_auto_parallel_context(all_reduce_fusion_config=[29, 58, 89])
  118. rank = get_rank()
  119. mindrecord_file = create_mindrecord(args_opt.dataset, "ssd.mindrecord", True)
  120. if args_opt.only_create_dataset:
  121. return
  122. loss_scale = float(args_opt.loss_scale)
  123. if args_opt.run_platform == "CPU":
  124. loss_scale = 1.0
  125. # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
  126. use_multiprocessing = (args_opt.run_platform != "CPU")
  127. dataset = create_ssd_dataset(mindrecord_file, repeat_num=1, batch_size=args_opt.batch_size,
  128. device_num=device_num, rank=rank, use_multiprocessing=use_multiprocessing)
  129. dataset_size = dataset.get_dataset_size()
  130. print(f"Create dataset done! dataset size is {dataset_size}")
  131. ssd = ssd_model_build(args_opt)
  132. if ("use_float16" in config and config.use_float16) or args_opt.run_platform == "GPU":
  133. ssd.to_float(dtype.float16)
  134. net = SSDWithLossCell(ssd, config)
  135. # checkpoint
  136. ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
  137. save_ckpt_path = './ckpt_' + str(rank) + '/'
  138. ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=save_ckpt_path, config=ckpt_config)
  139. if args_opt.pre_trained:
  140. param_dict = load_checkpoint(args_opt.pre_trained)
  141. if args_opt.filter_weight:
  142. filter_checkpoint_parameter_by_list(param_dict, config.checkpoint_filter_list)
  143. load_param_into_net(net, param_dict, True)
  144. lr = Tensor(get_lr(global_step=args_opt.pre_trained_epoch_size * dataset_size,
  145. lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
  146. warmup_epochs=config.warmup_epochs,
  147. total_epochs=args_opt.epoch_size,
  148. steps_per_epoch=dataset_size))
  149. if "use_global_norm" in config and config.use_global_norm:
  150. opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
  151. config.momentum, config.weight_decay, 1.0)
  152. net = TrainingWrapper(net, opt, loss_scale, True)
  153. else:
  154. opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
  155. config.momentum, config.weight_decay, loss_scale)
  156. net = TrainingWrapper(net, opt, loss_scale)
  157. callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
  158. model = Model(net)
  159. dataset_sink_mode = False
  160. if args_opt.mode == "sink" and args_opt.run_platform != "CPU":
  161. print("In sink mode, one epoch return a loss.")
  162. dataset_sink_mode = True
  163. print("Start train SSD, the first epoch will be slower because of the graph compilation.")
  164. model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)
  165. if __name__ == '__main__':
  166. main()