|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train imagenet."""
- import argparse
- import os
-
- from mindspore import Tensor
- from mindspore import context
- from mindspore import ParallelMode
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.nn.optim.rmsprop import RMSProp
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common import set_seed
-
- from src.config import nasnet_a_mobile_config_gpu as cfg
- from src.dataset import create_dataset
- from src.nasnet_a_mobile import NASNetAMobile, CrossEntropy
- from src.lr_generator import get_lr
-
-
- set_seed(cfg.random_seed)
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='image classification training')
- parser.add_argument('--dataset_path', type=str, default='', help='Dataset path')
- parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
- parser.add_argument('--is_distributed', action='store_true', default=False,
- help='distributed training')
- parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform')
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
- if os.getenv('DEVICE_ID', "not_set").isdigit():
- context.set_context(device_id=int(os.getenv('DEVICE_ID')))
-
- # init distributed
- if args_opt.is_distributed:
- if args_opt.platform == "Ascend":
- init()
- else:
- init("nccl")
- cfg.rank = get_rank()
- cfg.group_size = get_group_size()
- parallel_mode = ParallelMode.DATA_PARALLEL
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=cfg.group_size,
- gradients_mean=True)
- else:
- cfg.rank = 0
- cfg.group_size = 1
-
- # dataloader
- dataset = create_dataset(args_opt.dataset_path, cfg, True)
- batches_per_epoch = dataset.get_dataset_size()
-
- # network
- net = NASNetAMobile(cfg.num_classes)
- if args_opt.resume:
- ckpt = load_checkpoint(args_opt.resume)
- load_param_into_net(net, ckpt)
-
- #loss
- loss = CrossEntropy(smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes, factor=cfg.aux_factor)
-
- # learning rate schedule
- lr = get_lr(lr_init=cfg.lr_init, lr_decay_rate=cfg.lr_decay_rate,
- num_epoch_per_decay=cfg.num_epoch_per_decay, total_epochs=cfg.epoch_size,
- steps_per_epoch=batches_per_epoch, is_stair=True)
- lr = Tensor(lr)
-
- # optimizer
- decayed_params = []
- no_decayed_params = []
- for param in net.trainable_params():
- if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
- decayed_params.append(param)
- else:
- no_decayed_params.append(param)
- group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
- {'params': no_decayed_params},
- {'order_params': net.trainable_params()}]
- optimizer = RMSProp(group_params, lr, decay=cfg.rmsprop_decay, weight_decay=cfg.weight_decay,
- momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale)
-
- model = Model(net, loss_fn=loss, optimizer=optimizer)
-
- print("============== Starting Training ==============")
- loss_cb = LossMonitor(per_print_times=batches_per_epoch)
- time_cb = TimeMonitor(data_size=batches_per_epoch)
- callbacks = [loss_cb, time_cb]
- config_ck = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=cfg.keep_checkpoint_max)
- save_ckpt_path = os.path.join(cfg.ckpt_path, 'ckpt_' + str(cfg.rank) + '/')
- ckpoint_cb = ModelCheckpoint(prefix=f"nasnet-a-mobile-rank{cfg.rank}", directory=save_ckpt_path, config=config_ck)
- if args_opt.is_distributed & cfg.is_save_on_master:
- if cfg.rank == 0:
- callbacks.append(ckpoint_cb)
- model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
- else:
- callbacks.append(ckpoint_cb)
- model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
- print("train success")
|