|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export checkpoint file into air, onnx, mindir models"""
- import argparse
- import numpy as np
-
- from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
-
- from src.maskrcnn.mask_rcnn_r50 import MaskRcnn_Infer
- from src.config import config
-
- parser = argparse.ArgumentParser(description='maskrcnn export')
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--batch_size", type=int, default=1, help="batch size")
- parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
- parser.add_argument("--file_name", type=str, default="maskrcnn", help="output file name.")
- parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
- parser.add_argument('--device_target', type=str, default="Ascend",
- choices=['Ascend', 'GPU', 'CPU'], help='device target (default: Ascend)')
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- if args.device_target == "Ascend":
- context.set_context(device_id=args.device_id)
-
- if __name__ == '__main__':
- net = MaskRcnn_Infer(config=config)
- param_dict = load_checkpoint(args.ckpt_file)
-
- param_dict_new = {}
- for key, value in param_dict.items():
- param_dict_new["network." + key] = value
-
- load_param_into_net(net, param_dict_new)
- net.set_train(False)
-
- bs = config.test_batch_size
-
- img = Tensor(np.zeros([args.batch_size, 3, config.img_height, config.img_width], np.float16))
- img_metas = Tensor(np.zeros([args.batch_size, 4], np.float16))
-
- input_data = [img, img_metas]
- export(net, *input_data, file_name=args.file_name, file_format=args.file_format)
|