| @@ -108,6 +108,9 @@ sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] | |||
| # eval | |||
| sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| # inference | |||
| sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| # Run in docker | |||
| @@ -143,6 +146,13 @@ sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] | |||
| sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| ``` | |||
| 5. Inference | |||
| ```shell | |||
| # inference | |||
| sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| # Script Description | |||
| ## Script and Sample Code | |||
| @@ -151,9 +161,11 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| . | |||
| └─faster_rcnn | |||
| ├─README.md // descriptions about fasterrcnn | |||
| ├─ascend310_infer //application for 310 inference | |||
| ├─scripts | |||
| ├─run_standalone_train_ascend.sh // shell script for standalone on ascend | |||
| ├─run_distribute_train_ascend.sh // shell script for distributed on ascend | |||
| ├─run_infer_310.sh // shell script for 310 inference | |||
| └─run_eval_ascend.sh // shell script for eval on ascend | |||
| ├─src | |||
| ├─FasterRcnn | |||
| @@ -168,12 +180,15 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| ├─resnet50.py // backbone network | |||
| ├─roi_align.py // roi align network | |||
| └─rpn.py // region proposal network | |||
| ├─aipp.cfg // aipp config file | |||
| ├─config.py // total config | |||
| ├─dataset.py // create dataset and process dataset | |||
| ├─lr_schedule.py // learning ratio generator | |||
| ├─network_define.py // network define for fasterrcnn | |||
| └─util.py // routine operation | |||
| ├─export.py // script to export AIR,MINDIR,ONNX model | |||
| ├─eval.py //eval scripts | |||
| ├─postprogress.py // post process for 310 inference | |||
| └─train.py // train scripts | |||
| ``` | |||
| @@ -265,6 +280,44 @@ Eval result will be stored in the example path, whose folder name is "eval". Und | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.631 | |||
| ``` | |||
| ## Model Export | |||
| ```shell | |||
| python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] | |||
| ``` | |||
| `EXPORT_FORMAT` shoule be in ["AIR", "ONNX", "MINDIR"] | |||
| ## Inference Process | |||
| ### Usage | |||
| Before performing inference, the air file must bu exported by export script on the Ascend910 environment. | |||
| ```shell | |||
| # Ascend310 inference | |||
| sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| ### result | |||
| Inference result is saved in current path, you can find result like this in log file. | |||
| ```log | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.349 | |||
| Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.570 | |||
| Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.369 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.435 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.295 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.476 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.503 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.330 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.547 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.622 | |||
| ``` | |||
| # Model Description | |||
| ## Performance | |||
| @@ -111,6 +111,9 @@ sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] | |||
| # 评估 | |||
| sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| #推理 | |||
| sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| # 在docker上运行 | |||
| @@ -146,6 +149,13 @@ sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] | |||
| sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| ``` | |||
| 5. 推理 | |||
| ```shell | |||
| # 推理 | |||
| sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| # 脚本说明 | |||
| ## 脚本及样例代码 | |||
| @@ -154,9 +164,11 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| . | |||
| └─faster_rcnn | |||
| ├─README.md // Faster R-CNN相关说明 | |||
| ├─ascend310_infer //实现310推理源代码 | |||
| ├─scripts | |||
| ├─run_standalone_train_ascend.sh // Ascend单机shell脚本 | |||
| ├─run_distribute_train_ascend.sh // Ascend分布式shell脚本 | |||
| ├─run_infer_310.sh // Ascend推理shell脚本 | |||
| └─run_eval_ascend.sh // Ascend评估shell脚本 | |||
| ├─src | |||
| ├─FasterRcnn | |||
| @@ -171,12 +183,15 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| ├─resnet50.py // 骨干网络 | |||
| ├─roi_align.py // ROI对齐网络 | |||
| └─rpn.py // 区域候选网络 | |||
| ├─aipp.cfg // aipp 配置文件 | |||
| ├─config.py // 总配置 | |||
| ├─dataset.py // 创建并处理数据集 | |||
| ├─lr_schedule.py // 学习率生成器 | |||
| ├─network_define.py // Faster R-CNN网络定义 | |||
| └─util.py // 例行操作 | |||
| ├─export.py // 导出 AIR,MINDIR,ONNX模型的脚本 | |||
| ├─eval.py // 评估脚本 | |||
| ├─postprogress.py // 310推理后处理脚本 | |||
| └─train.py // 训练脚本 | |||
| ``` | |||
| @@ -268,6 +283,44 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.631 | |||
| ``` | |||
| ## 模型导出 | |||
| ```shell | |||
| python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] | |||
| ``` | |||
| `EXPORT_FORMAT` 可选 ["AIR", "ONNX", "MINDIR"] | |||
| ## 推理过程 | |||
| ### 使用方法 | |||
| 在推理之前需要在昇腾910环境上完成模型的导出。 | |||
| ```shell | |||
| # Ascend310 inference | |||
| sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| ### 结果 | |||
| 推理的结果保存在当前目录下,在日志文件中可以找到类似以下的结果。 | |||
| ```log | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.349 | |||
| Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.570 | |||
| Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.369 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.435 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.295 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.476 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.503 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.330 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.547 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.622 | |||
| ``` | |||
| # 模型描述 | |||
| ## 性能 | |||
| @@ -0,0 +1,62 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef ACLMANAGER_H | |||
| #define ACLMANAGER_H | |||
| #include <map> | |||
| #include <iostream> | |||
| #include <string> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "acl/acl.h" | |||
| #include "CommonDataType.h" | |||
| #include "ModelProcess.h" | |||
| #include "DvppCommon.h" | |||
| struct ModelInfo { | |||
| std::string modelPath; | |||
| uint32_t modelWidth; | |||
| uint32_t modelHeight; | |||
| uint32_t outputNum; | |||
| }; | |||
| class AclProcess { | |||
| public: | |||
| AclProcess(int deviceId, const std::string &om_path, uint32_t width, uint32_t height); | |||
| ~AclProcess() {} | |||
| void Release(); | |||
| int InitResource(); | |||
| int Process(const std::string& imageFile, std::map<double, double> *costTime_map); | |||
| private: | |||
| int InitModule(); | |||
| int Preprocess(const std::string& imageFile); | |||
| int ModelInfer(std::map<double, double> *costTime_map); | |||
| int WriteResult(const std::string& imageFile); | |||
| int ReadFile(const std::string &filePath, RawData *fileData); | |||
| int32_t deviceId_; | |||
| ModelInfo modelInfo_; | |||
| aclrtContext context_; | |||
| aclrtStream stream_; | |||
| std::shared_ptr<ModelProcess> modelProcess_; | |||
| std::shared_ptr<DvppCommon> dvppCommon_; | |||
| bool keepRatio_; | |||
| std::vector<void *> outputBuffers_; | |||
| std::vector<size_t> outputSizes_; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,95 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef COMMONDATATYPE_H | |||
| #define COMMONDATATYPE_H | |||
| #include <stdio.h> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "acl/acl.h" | |||
| #include "acl/ops/acl_dvpp.h" | |||
| #define DVPP_ALIGN_UP(x, align) ((((x) + ((align)-1)) / (align)) * (align)) | |||
| #define OK 0 | |||
| #define ERROR -1 | |||
| #define INVALID_POINTER -2 | |||
| #define READ_FILE_FAIL -3 | |||
| #define OPEN_FILE_FAIL -4 | |||
| #define INIT_FAIL -5 | |||
| #define INVALID_PARAM -6 | |||
| #define DECODE_FAIL -7 | |||
| const float SEC2MS = 1000.0; | |||
| const int YUV_BGR_SIZE_CONVERT_3 = 3; | |||
| const int YUV_BGR_SIZE_CONVERT_2 = 2; | |||
| const int VPC_WIDTH_ALIGN = 16; | |||
| const int VPC_HEIGHT_ALIGN = 2; | |||
| // Description of image data | |||
| struct ImageInfo { | |||
| uint32_t width; // Image width | |||
| uint32_t height; // Image height | |||
| uint32_t lenOfByte; // Size of image data, bytes | |||
| std::shared_ptr<uint8_t> data; // Smart pointer of image data | |||
| }; | |||
| // Description of data in device | |||
| struct RawData { | |||
| size_t lenOfByte; // Size of memory, bytes | |||
| std::shared_ptr<void> data; // Smart pointer of data | |||
| }; | |||
| // define the structure of an rectangle | |||
| struct Rectangle { | |||
| uint32_t leftTopX; | |||
| uint32_t leftTopY; | |||
| uint32_t rightBottomX; | |||
| uint32_t rightBottomY; | |||
| }; | |||
| enum VpcProcessType { | |||
| VPC_PT_DEFAULT = 0, | |||
| VPC_PT_PADDING, // Resize with locked ratio and paste on upper left corner | |||
| VPC_PT_FIT, // Resize with locked ratio and paste on middle location | |||
| VPC_PT_FILL, // Resize with locked ratio and paste on whole locatin, the input image may be cropped | |||
| }; | |||
| struct DvppDataInfo { | |||
| uint32_t width = 0; // Width of image | |||
| uint32_t height = 0; // Height of image | |||
| uint32_t widthStride = 0; // Width after align up | |||
| uint32_t heightStride = 0; // Height after align up | |||
| acldvppPixelFormat format = PIXEL_FORMAT_YUV_SEMIPLANAR_420; // Format of image | |||
| uint32_t frameId = 0; // Needed by video | |||
| uint32_t dataSize = 0; // Size of data in byte | |||
| uint8_t *data = nullptr; // Image data | |||
| }; | |||
| struct CropRoiConfig { | |||
| uint32_t left; | |||
| uint32_t right; | |||
| uint32_t down; | |||
| uint32_t up; | |||
| }; | |||
| struct DvppCropInputInfo { | |||
| DvppDataInfo dataInfo; | |||
| CropRoiConfig roi; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,139 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef DVPP_COMMON_H | |||
| #define DVPP_COMMON_H | |||
| #include <memory> | |||
| #include "CommonDataType.h" | |||
| #include "acl/ops/acl_dvpp.h" | |||
| const int MODULUS_NUM_2 = 2; | |||
| const uint32_t ODD_NUM_1 = 1; | |||
| const uint32_t JPEGD_STRIDE_WIDTH = 128; // Jpegd module output width need to align up to 128 | |||
| const uint32_t JPEGD_STRIDE_HEIGHT = 16; // Jpegd module output height need to align up to 16 | |||
| const uint32_t VPC_STRIDE_WIDTH = 16; // Vpc module output width need to align up to 16 | |||
| const uint32_t VPC_STRIDE_HEIGHT = 2; // Vpc module output height need to align up to 2 | |||
| const uint32_t YUV422_WIDTH_NU = 2; // Width of YUV422, WidthStride = Width * 2 | |||
| const uint32_t YUV444_RGB_WIDTH_NU = 3; // Width of YUV444 and RGB888, WidthStride = Width * 3 | |||
| const uint32_t XRGB_WIDTH_NU = 4; // Width of XRGB8888, WidthStride = Width * 4 | |||
| const uint32_t JPEG_OFFSET = 8; // Offset of input file for jpegd module | |||
| const uint32_t MAX_JPEGD_WIDTH = 8192; // Max width of jpegd module | |||
| const uint32_t MAX_JPEGD_HEIGHT = 8192; // Max height of jpegd module | |||
| const uint32_t MIN_JPEGD_WIDTH = 32; // Min width of jpegd module | |||
| const uint32_t MIN_JPEGD_HEIGHT = 32; // Min height of jpegd module | |||
| const uint32_t MAX_RESIZE_WIDTH = 4096; // Max width stride of resize module | |||
| const uint32_t MAX_RESIZE_HEIGHT = 4096; // Max height stride of resize module | |||
| const uint32_t MIN_RESIZE_WIDTH = 32; // Min width stride of resize module | |||
| const uint32_t MIN_RESIZE_HEIGHT = 6; // Min height stride of resize module | |||
| const float MIN_RESIZE_SCALE = 0.03125; // Min resize scale of resize module | |||
| const float MAX_RESIZE_SCALE = 16.0; // Min resize scale of resize module | |||
| const uint32_t MAX_VPC_WIDTH = 4096; // Max width of picture to VPC(resize/crop) | |||
| const uint32_t MAX_VPC_HEIGHT = 4096; // Max height of picture to VPC(resize/crop) | |||
| const uint32_t MIN_VPC_WIDTH = 32; // Min width of picture to VPC(resize/crop) | |||
| const uint32_t MIN_VPC_HEIGHT = 6; // Min height of picture to VPC(resize/crop) | |||
| const uint32_t MIN_CROP_WIDTH = 10; // Min width of crop area | |||
| const uint32_t MIN_CROP_HEIGHT = 6; // Min height of crop area | |||
| const uint8_t YUV_GREYER_VALUE = 128; // Filling value of the resized YUV image | |||
| #define CONVERT_TO_ODD(NUM) (((NUM) % MODULUS_NUM_2 != 0) ? (NUM) : ((NUM) - 1)) | |||
| #define CONVERT_TO_EVEN(NUM) (((NUM) % MODULUS_NUM_2 == 0) ? (NUM) : ((NUM) - 1)) | |||
| #define CHECK_ODD(num) ((num) % MODULUS_NUM_2 != 0) | |||
| #define CHECK_EVEN(num) ((num) % MODULUS_NUM_2 == 0) | |||
| #define RELEASE_DVPP_DATA(dvppDataPtr) do { \ | |||
| int retMacro; \ | |||
| if (dvppDataPtr != nullptr) { \ | |||
| retMacro = acldvppFree(dvppDataPtr); \ | |||
| if (retMacro != OK) { \ | |||
| std::cout << "Failed to free memory on dvpp, ret = " << retMacro << "." << std::endl; \ | |||
| } \ | |||
| dvppDataPtr = nullptr; \ | |||
| } \ | |||
| } while (0); | |||
| class DvppCommon { | |||
| public: | |||
| explicit DvppCommon(aclrtStream dvppStream); | |||
| ~DvppCommon(); | |||
| int Init(void); | |||
| int DeInit(void); | |||
| static int GetVpcDataSize(uint32_t widthVpc, uint32_t heightVpc, acldvppPixelFormat format, | |||
| uint32_t *vpcSize); | |||
| static int GetVpcInputStrideSize(uint32_t width, uint32_t height, acldvppPixelFormat format, | |||
| uint32_t *widthStride, uint32_t *heightStride); | |||
| static int GetVpcOutputStrideSize(uint32_t width, uint32_t height, acldvppPixelFormat format, | |||
| uint32_t *widthStride, uint32_t *heightStride); | |||
| static void GetJpegDecodeStrideSize(uint32_t width, uint32_t height, uint32_t *widthStride, uint32_t *heightStride); | |||
| static int GetJpegImageInfo(const void *data, uint32_t dataSize, uint32_t *width, uint32_t *height, | |||
| int32_t *components); | |||
| static int GetJpegDecodeDataSize(const void *data, uint32_t dataSize, acldvppPixelFormat format, | |||
| uint32_t *decSize); | |||
| int VpcResize(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, bool withSynchronize, | |||
| VpcProcessType processType = VPC_PT_DEFAULT); | |||
| int JpegDecode(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, bool withSynchronize); | |||
| int CombineResizeProcess(std::shared_ptr<DvppDataInfo> input, const DvppDataInfo &output, bool withSynchronize, | |||
| VpcProcessType processType = VPC_PT_DEFAULT); | |||
| int CombineJpegdProcess(const RawData& imageInfo, acldvppPixelFormat format, bool withSynchronize); | |||
| std::shared_ptr<DvppDataInfo> GetInputImage(); | |||
| std::shared_ptr<DvppDataInfo> GetDecodedImage(); | |||
| std::shared_ptr<DvppDataInfo> GetResizedImage(); | |||
| void ReleaseDvppBuffer(); | |||
| private: | |||
| int SetDvppPicDescData(std::shared_ptr<DvppDataInfo> dataInfo, std::shared_ptr<acldvppPicDesc>picDesc); | |||
| int ResizeProcess(std::shared_ptr<acldvppPicDesc> inputDesc, | |||
| std::shared_ptr<acldvppPicDesc> outputDesc, bool withSynchronize); | |||
| int ResizeWithPadding(std::shared_ptr<acldvppPicDesc> inputDesc, std::shared_ptr<acldvppPicDesc> outputDesc, | |||
| const CropRoiConfig &cropRoi, const CropRoiConfig &pasteRoi, bool withSynchronize); | |||
| void GetCropRoi(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| VpcProcessType processType, CropRoiConfig *cropRoi); | |||
| void GetPasteRoi(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| VpcProcessType processType, CropRoiConfig *pasteRoi); | |||
| int CheckResizeParams(const DvppDataInfo &input, const DvppDataInfo &output); | |||
| int TransferImageH2D(const RawData& imageInfo, const std::shared_ptr<DvppDataInfo>& jpegInput); | |||
| int CreateStreamDesc(std::shared_ptr<DvppDataInfo> data); | |||
| int DestroyResource(); | |||
| std::shared_ptr<acldvppRoiConfig> cropAreaConfig_ = nullptr; | |||
| std::shared_ptr<acldvppRoiConfig> pasteAreaConfig_ = nullptr; | |||
| std::shared_ptr<acldvppPicDesc> resizeInputDesc_ = nullptr; | |||
| std::shared_ptr<acldvppPicDesc> resizeOutputDesc_ = nullptr; | |||
| std::shared_ptr<acldvppPicDesc> decodeOutputDesc_ = nullptr; | |||
| std::shared_ptr<acldvppResizeConfig> resizeConfig_ = nullptr; | |||
| acldvppChannelDesc *dvppChannelDesc_ = nullptr; | |||
| aclrtStream dvppStream_ = nullptr; | |||
| std::shared_ptr<DvppDataInfo> inputImage_ = nullptr; | |||
| std::shared_ptr<DvppDataInfo> decodedImage_ = nullptr; | |||
| std::shared_ptr<DvppDataInfo> resizedImage_ = nullptr; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,63 @@ | |||
| /* | |||
| * Copyright(C) 2020. Huawei Technologies Co.,Ltd. All rights reserved. | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MODELPROCSS_H | |||
| #define MODELPROCSS_H | |||
| #include <cstdio> | |||
| #include <vector> | |||
| #include <unordered_map> | |||
| #include <mutex> | |||
| #include <map> | |||
| #include <memory> | |||
| #include <string> | |||
| #include "acl/acl.h" | |||
| #include "CommonDataType.h" | |||
| class ModelProcess { | |||
| public: | |||
| explicit ModelProcess(const int deviceId); | |||
| ModelProcess(); | |||
| ~ModelProcess(); | |||
| int Init(const std::string &modelPath); | |||
| int DeInit(); | |||
| int ModelInference(const std::vector<void *> &inputBufs, | |||
| const std::vector<size_t> &inputSizes, | |||
| const std::vector<void *> &ouputBufs, | |||
| const std::vector<size_t> &outputSizes, | |||
| std::map<double, double> *costTime_map); | |||
| aclmdlDesc *GetModelDesc(); | |||
| int ReadBinaryFile(const std::string &fileName, uint8_t **buffShared, int *buffLength); | |||
| private: | |||
| aclmdlDataset *CreateAndFillDataset(const std::vector<void *> &bufs, const std::vector<size_t> &sizes); | |||
| void DestroyDataset(aclmdlDataset *dataset); | |||
| std::mutex mtx_ = {}; | |||
| int deviceId_ = 0; | |||
| uint32_t modelId_ = 0; | |||
| void *modelDevPtr_ = nullptr; | |||
| size_t modelDevPtrSize_ = 0; | |||
| void *weightDevPtr_ = nullptr; | |||
| size_t weightDevPtrSize_ = 0; | |||
| aclrtContext contextModel_ = nullptr; | |||
| std::shared_ptr<aclmdlDesc> modelDesc_ = nullptr; | |||
| bool isDeInit_ = false; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,355 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "AclProcess.h" | |||
| #include <sys/time.h> | |||
| #include <thread> | |||
| #include <string> | |||
| /* | |||
| * @description Implementation of constructor for class AclProcess with parameter list | |||
| * @attention context is passed in as a parameter after being created in ResourceManager::InitResource | |||
| */ | |||
| AclProcess::AclProcess(int deviceId, const std::string &om_path, uint32_t width, uint32_t height) | |||
| : deviceId_(deviceId), stream_(nullptr), modelProcess_(nullptr), dvppCommon_(nullptr), keepRatio_(false) { | |||
| modelInfo_.modelPath = om_path; | |||
| modelInfo_.modelWidth = width; | |||
| modelInfo_.modelHeight = height; | |||
| } | |||
| /* | |||
| * @description Release all the resource | |||
| * @attention context will be released in ResourceManager::Release | |||
| */ | |||
| void AclProcess::Release() { | |||
| // Synchronize stream and release Dvpp channel | |||
| dvppCommon_->DeInit(); | |||
| // Release stream | |||
| if (stream_ != nullptr) { | |||
| int ret = aclrtDestroyStream(stream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to destroy the stream, ret = " << ret << "."; | |||
| } | |||
| stream_ = nullptr; | |||
| } | |||
| // Destroy resources of modelProcess_ | |||
| modelProcess_->DeInit(); | |||
| // Release Dvpp buffer | |||
| dvppCommon_->ReleaseDvppBuffer(); | |||
| return; | |||
| } | |||
| /* | |||
| * @description Initialize the modules used by this sample | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::InitModule() { | |||
| // Create Dvpp common object | |||
| if (dvppCommon_ == nullptr) { | |||
| dvppCommon_ = std::make_shared<DvppCommon>(stream_); | |||
| int retDvppCommon = dvppCommon_->Init(); | |||
| if (retDvppCommon != OK) { | |||
| std::cout << "Failed to initialize dvppCommon, ret = " << retDvppCommon << std::endl; | |||
| return retDvppCommon; | |||
| } | |||
| } | |||
| // Create model inference object | |||
| if (modelProcess_ == nullptr) { | |||
| modelProcess_ = std::make_shared<ModelProcess>(deviceId_); | |||
| } | |||
| // Initialize ModelProcess module | |||
| int ret = modelProcess_->Init(modelInfo_.modelPath); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to initialize the model process module, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "Initialized the model process module successfully." << std::endl; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description Create resource for this sample | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::InitResource() { | |||
| int ret = aclInit(nullptr); // Initialize ACL | |||
| if (ret != OK) { | |||
| std::cout << "Failed to init acl, ret = " << ret << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtSetDevice(deviceId_); | |||
| if (ret != ACL_SUCCESS) { | |||
| std::cout << "acl set device " << deviceId_ << "intCode = "<< static_cast<int32_t>(ret) << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "set device "<< deviceId_ << " success" << std::endl; | |||
| // create context (set current) | |||
| ret = aclrtCreateContext(&context_, deviceId_); | |||
| if (ret != ACL_SUCCESS) { | |||
| std::cout << "acl create context failed, deviceId = " << deviceId_ << | |||
| "intCode = "<< static_cast<int32_t>(ret) << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "create context success" << std::endl; | |||
| ret = aclrtCreateStream(&stream_); // Create stream for application | |||
| if (ret != OK) { | |||
| std::cout << "Failed to create the acl stream, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "Created the acl stream successfully." << std::endl; | |||
| // Initialize dvpp module | |||
| if (InitModule() != OK) { | |||
| return INIT_FAIL; | |||
| } | |||
| aclmdlDesc *modelDesc = modelProcess_->GetModelDesc(); | |||
| size_t outputSize = aclmdlGetNumOutputs(modelDesc); | |||
| modelInfo_.outputNum = outputSize; | |||
| for (size_t i = 0; i < outputSize; i++) { | |||
| size_t bufferSize = aclmdlGetOutputSizeByIndex(modelDesc, i); | |||
| void *outputBuffer = nullptr; | |||
| ret = aclrtMalloc(&outputBuffer, bufferSize, ACL_MEM_MALLOC_NORMAL_ONLY); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to malloc buffer, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| outputBuffers_.push_back(outputBuffer); | |||
| outputSizes_.push_back(bufferSize); | |||
| } | |||
| return OK; | |||
| } | |||
| int AclProcess::WriteResult(const std::string& imageFile) { | |||
| std::string homePath = "./result_Files"; | |||
| void *resHostBuf = nullptr; | |||
| for (size_t i = 0; i < outputBuffers_.size(); ++i) { | |||
| size_t output_size; | |||
| void * netOutput; | |||
| netOutput = outputBuffers_[i]; | |||
| output_size = outputSizes_[i]; | |||
| int ret = aclrtMallocHost(&resHostBuf, output_size); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to print the result, malloc host failed, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtMemcpy(resHostBuf, output_size, netOutput, | |||
| output_size, ACL_MEMCPY_DEVICE_TO_HOST); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to print result, memcpy device to host failed, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| int pos = imageFile.rfind('/'); | |||
| std::string fileName(imageFile, pos + 1); | |||
| fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), "_" + std::to_string(i) + ".bin"); | |||
| std::string outFileName = homePath + "/" + fileName; | |||
| FILE * outputFile = fopen(outFileName.c_str(), "wb"); | |||
| fwrite(resHostBuf, output_size, sizeof(char), outputFile); | |||
| fclose(outputFile); | |||
| outputFile = nullptr; | |||
| ret = aclrtFreeHost(resHostBuf); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtFree host output memory failed" << std::endl; | |||
| return ret; | |||
| } | |||
| } | |||
| return OK; | |||
| } | |||
| /** | |||
| * Read a file, store it into the RawData structure | |||
| * | |||
| * @param filePath file to read to | |||
| * @param fileData RawData structure to store in | |||
| * @return OK if create success, int code otherwise | |||
| */ | |||
| int AclProcess::ReadFile(const std::string &filePath, RawData *fileData) { | |||
| // Open file with reading mode | |||
| FILE *fp = fopen(filePath.c_str(), "rb"); | |||
| if (fp == nullptr) { | |||
| std::cout << "Failed to open file, filePath = " << filePath << std::endl; | |||
| return OPEN_FILE_FAIL; | |||
| } | |||
| // Get the length of input file | |||
| fseek(fp, 0, SEEK_END); | |||
| size_t fileSize = ftell(fp); | |||
| fseek(fp, 0, SEEK_SET); | |||
| // If file not empty, read it into FileInfo and return it | |||
| if (fileSize > 0) { | |||
| fileData->lenOfByte = fileSize; | |||
| fileData->data = std::make_shared<uint8_t>(); | |||
| fileData->data.reset(new uint8_t[fileSize], std::default_delete<uint8_t[]>()); | |||
| uint32_t readRet = fread(fileData->data.get(), 1, fileSize, fp); | |||
| if (readRet == 0) { | |||
| fclose(fp); | |||
| return READ_FILE_FAIL; | |||
| } | |||
| fclose(fp); | |||
| return OK; | |||
| } | |||
| fclose(fp); | |||
| return INVALID_PARAM; | |||
| } | |||
| /* | |||
| * @description Preprocess the input image | |||
| * @param imageFile input image path | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::Preprocess(const std::string& imageFile) { | |||
| RawData imageInfo; | |||
| int ret = ReadFile(imageFile, &imageInfo); // Read image data from input image file | |||
| if (ret != OK) { | |||
| std::cout << "Failed to read file, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Run process of jpegD | |||
| ret = dvppCommon_->CombineJpegdProcess(imageInfo, PIXEL_FORMAT_YUV_SEMIPLANAR_420, true); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to execute image decoded of preprocess module, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Get output of decode jpeg image | |||
| std::shared_ptr<DvppDataInfo> decodeOutData = dvppCommon_->GetDecodedImage(); | |||
| // Run resize application function | |||
| DvppDataInfo resizeOutData; | |||
| resizeOutData.height = modelInfo_.modelHeight; | |||
| resizeOutData.width = modelInfo_.modelWidth; | |||
| resizeOutData.format = PIXEL_FORMAT_YUV_SEMIPLANAR_420; | |||
| ret = dvppCommon_->CombineResizeProcess(decodeOutData, resizeOutData, true, VPC_PT_DEFAULT); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to execute image resized of preprocess module, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| RELEASE_DVPP_DATA(decodeOutData->data); | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description Inference of model | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::ModelInfer(std::map<double, double> *costTime_map) { | |||
| // Get output of resize module | |||
| std::shared_ptr<DvppDataInfo> resizeOutData = dvppCommon_->GetResizedImage(); | |||
| std::shared_ptr<DvppDataInfo> inputImg = dvppCommon_->GetInputImage(); | |||
| float widthScale, heightScale; | |||
| if (keepRatio_) { | |||
| widthScale = static_cast<float>(resizeOutData->width) / inputImg->width; | |||
| if (widthScale > static_cast<float>(resizeOutData->height) / inputImg->height) { | |||
| widthScale = static_cast<float>(resizeOutData->height) / inputImg->height; | |||
| } | |||
| heightScale = widthScale; | |||
| } else { | |||
| widthScale = static_cast<float>(resizeOutData->width) / inputImg->width; | |||
| heightScale = static_cast<float>(resizeOutData->height) / inputImg->height; | |||
| } | |||
| aclFloat16 inputWidth = aclFloatToFloat16(static_cast<float>(inputImg->width)); | |||
| aclFloat16 inputHeight = aclFloatToFloat16(static_cast<float>(inputImg->height)); | |||
| aclFloat16 resizeWidthRatioFp16 = aclFloatToFloat16(widthScale); | |||
| aclFloat16 resizeHeightRatioFp16 = aclFloatToFloat16(heightScale); | |||
| aclFloat16 *im_info = reinterpret_cast<aclFloat16 *>(malloc(sizeof(aclFloat16) * 4)); | |||
| im_info[0] = inputHeight; | |||
| im_info[1] = inputWidth; | |||
| im_info[2] = resizeHeightRatioFp16; | |||
| im_info[3] = resizeWidthRatioFp16; | |||
| void *imInfo_dst = nullptr; | |||
| int ret = aclrtMalloc(&imInfo_dst, 8, ACL_MEM_MALLOC_NORMAL_ONLY); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| std::cout << "aclrtMalloc failed, ret = " << ret << std::endl; | |||
| aclrtFree(imInfo_dst); | |||
| return ret; | |||
| } | |||
| ret = aclrtMemcpy(reinterpret_cast<uint8_t *>(imInfo_dst), 8, im_info, 8, ACL_MEMCPY_HOST_TO_DEVICE); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| std::cout << "aclrtMemcpy failed, ret = " << ret << std::endl; | |||
| aclrtFree(imInfo_dst); | |||
| return ret; | |||
| } | |||
| std::vector<void *> inputBuffers({resizeOutData->data, imInfo_dst}); | |||
| std::vector<size_t> inputSizes({resizeOutData->dataSize, 4*2}); | |||
| for (size_t i = 0; i < modelInfo_.outputNum; i++) { | |||
| aclrtMemset(outputBuffers_[i], outputSizes_[i], 0, outputSizes_[i]); | |||
| } | |||
| // Execute classification model | |||
| ret = modelProcess_->ModelInference(inputBuffers, inputSizes, outputBuffers_, outputSizes_, costTime_map); | |||
| if (ret != OK) { | |||
| aclrtFree(imInfo_dst); | |||
| std::cout << "Failed to execute the classification model, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtFree(imInfo_dst); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtFree image info failed" << std::endl; | |||
| return ret; | |||
| } | |||
| RELEASE_DVPP_DATA(resizeOutData->data); | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description Process classification | |||
| * | |||
| * @par Function | |||
| * 1.Dvpp module preprocess | |||
| * 2.Execute classification model | |||
| * 3.Execute single operator | |||
| * 4.Write result | |||
| * | |||
| * @param imageFile input file path | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::Process(const std::string& imageFile, std::map<double, double> *costTime_map) { | |||
| struct timeval begin = {0}; | |||
| struct timeval end = {0}; | |||
| gettimeofday(&begin, nullptr); | |||
| int ret = Preprocess(imageFile); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| ret = ModelInfer(costTime_map); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| ret = WriteResult(imageFile); | |||
| if (ret != OK) { | |||
| std::cout << "write result failed." << std::endl; | |||
| return ret; | |||
| } | |||
| gettimeofday(&end, nullptr); | |||
| const double costMs = SEC2MS * (end.tv_sec - begin.tv_sec) + (end.tv_usec - begin.tv_usec) / SEC2MS; | |||
| std::cout << "[Process Delay] cost: " << costMs << "ms." << std::endl; | |||
| return OK; | |||
| } | |||
| @@ -0,0 +1,41 @@ | |||
| # Copyright (c) Huawei Technologies Co., Ltd. 2020. All rights reserved. | |||
| # CMake lowest version requirement | |||
| cmake_minimum_required(VERSION 3.5.1) | |||
| # Add definitions ENABLE_DVPP_INTERFACE to use dvpp api | |||
| add_definitions(-DENABLE_DVPP_INTERFACE) | |||
| # project information | |||
| project(InferClassification) | |||
| # Check environment variable | |||
| if(NOT DEFINED ENV{ASCEND_HOME}) | |||
| message(FATAL_ERROR "please define environment variable:ASCEND_HOME") | |||
| endif() | |||
| # Compile options | |||
| add_compile_options(-std=c++11 -fPIE -g -fstack-protector-all -Werror -Wreturn-type) | |||
| # Skip build rpath | |||
| set(CMAKE_SKIP_BUILD_RPATH True) | |||
| # Set output directory | |||
| set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/) | |||
| set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SRC_ROOT}/out) | |||
| # Set include directory and library directory | |||
| #set(ACL_INC_DIR $ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/$ENV{ARCH_PATTERN}/include) | |||
| #set(ACL_LIB_DIR $ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/$ENV{ARCH_PATTERN}/lib64/stub) | |||
| set(ACL_INC_DIR $ENV{ASCEND_HOME}/acllib/include) | |||
| set(ACL_LIB_DIR $ENV{ASCEND_HOME}/acllib/lib64/stub) | |||
| # Header path | |||
| include_directories(${ACL_INC_DIR}) | |||
| include_directories(${PROJECT_SRC_ROOT}/../inc) | |||
| # add host lib path | |||
| link_directories(${ACL_LIB_DIR}) | |||
| add_executable(main AclProcess.cpp | |||
| DvppCommon.cpp | |||
| ModelProcess.cpp | |||
| main.cpp) | |||
| target_link_libraries(main ascendcl gflags acl_dvpp pthread) | |||
| @@ -0,0 +1,735 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include "../inc/DvppCommon.h" | |||
| #include "../inc/CommonDataType.h" | |||
| static auto g_resizeConfigDeleter = [](acldvppResizeConfig *p) { acldvppDestroyResizeConfig(p); }; | |||
| static auto g_picDescDeleter = [](acldvppPicDesc *picDesc) { acldvppDestroyPicDesc(picDesc); }; | |||
| static auto g_roiConfigDeleter = [](acldvppRoiConfig *p) { acldvppDestroyRoiConfig(p); }; | |||
| DvppCommon::DvppCommon(aclrtStream dvppStream):dvppStream_(dvppStream) {} | |||
| /* | |||
| * @description: Create a channel for processing image data, | |||
| * the channel description is created by acldvppCreateChannelDesc | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::Init(void) { | |||
| dvppChannelDesc_ = acldvppCreateChannelDesc(); | |||
| if (dvppChannelDesc_ == nullptr) { | |||
| return -1; | |||
| } | |||
| int ret = acldvppCreateChannel(dvppChannelDesc_); | |||
| if (ret != 0) { | |||
| std::cout << "Failed to create dvpp channel, ret = " << ret << "." << std::endl; | |||
| acldvppDestroyChannelDesc(dvppChannelDesc_); | |||
| dvppChannelDesc_ = nullptr; | |||
| return ret; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: destroy the channel and the channel description used by image. | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::DeInit(void) { | |||
| int ret = aclrtSynchronizeStream(dvppStream_); // int ret | |||
| if (ret != OK) { | |||
| std::cout << "Failed to synchronize stream, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppDestroyChannel(dvppChannelDesc_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to destory dvpp channel, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppDestroyChannelDesc(dvppChannelDesc_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to destroy dvpp channel description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Release the memory that is allocated in the interfaces which are started with "Combine" | |||
| */ | |||
| void DvppCommon::ReleaseDvppBuffer() { | |||
| if (resizedImage_ != nullptr) { | |||
| RELEASE_DVPP_DATA(resizedImage_->data); | |||
| } | |||
| if (decodedImage_ != nullptr) { | |||
| RELEASE_DVPP_DATA(decodedImage_->data); | |||
| } | |||
| if (inputImage_ != nullptr) { | |||
| RELEASE_DVPP_DATA(inputImage_->data); | |||
| } | |||
| } | |||
| /* | |||
| * @description: Get the size of buffer used to save image for VPC according to width, height and format | |||
| * @param width specifies the width of the output image | |||
| * @param height specifies the height of the output image | |||
| * @param format specifies the format of the output image | |||
| * @param: vpcSize is used to save the result size | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetVpcDataSize(uint32_t width, uint32_t height, acldvppPixelFormat format, uint32_t *vpcSize) { | |||
| if (format != PIXEL_FORMAT_YUV_SEMIPLANAR_420 && format != PIXEL_FORMAT_YVU_SEMIPLANAR_420) { | |||
| std::cout << "Format[" << format << "] for VPC is not supported, just support NV12 or NV21." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| uint32_t widthStride = DVPP_ALIGN_UP(width, VPC_WIDTH_ALIGN); | |||
| uint32_t heightStride = DVPP_ALIGN_UP(height, VPC_HEIGHT_ALIGN); | |||
| *vpcSize = widthStride * heightStride * YUV_BGR_SIZE_CONVERT_3 / YUV_BGR_SIZE_CONVERT_2; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get the aligned width and height of the input image according to the image format | |||
| * @param: width specifies the width before alignment | |||
| * @param: height specifies the height before alignment | |||
| * @param: format specifies the image format | |||
| * @param: widthStride is used to save the width after alignment | |||
| * @param: heightStride is used to save the height after alignment | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetVpcInputStrideSize(uint32_t width, uint32_t height, acldvppPixelFormat format, | |||
| uint32_t *widthStride, uint32_t *heightStride) { | |||
| uint32_t inputWidthStride; | |||
| if (format >= PIXEL_FORMAT_YUV_400 && format <= PIXEL_FORMAT_YVU_SEMIPLANAR_444) { | |||
| inputWidthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH); | |||
| } else if (format >= PIXEL_FORMAT_YUYV_PACKED_422 && format <= PIXEL_FORMAT_VYUY_PACKED_422) { | |||
| inputWidthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH) * YUV422_WIDTH_NU; | |||
| } else if (format >= PIXEL_FORMAT_YUV_PACKED_444 && format <= PIXEL_FORMAT_BGR_888) { | |||
| inputWidthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH) * YUV444_RGB_WIDTH_NU; | |||
| } else if (format >= PIXEL_FORMAT_ARGB_8888 && format <= PIXEL_FORMAT_BGRA_8888) { | |||
| inputWidthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH) * XRGB_WIDTH_NU; | |||
| } else { | |||
| std::cout << "Input format[" << format << "] for VPC is invalid, please check it." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| uint32_t inputHeightStride = DVPP_ALIGN_UP(height, VPC_STRIDE_HEIGHT); | |||
| if (inputWidthStride > MAX_RESIZE_WIDTH || inputWidthStride < MIN_RESIZE_WIDTH) { | |||
| std::cout << "Input width stride " << inputWidthStride << " is invalid, not in [" << MIN_RESIZE_WIDTH \ | |||
| << ", " << MAX_RESIZE_WIDTH << "]." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| if (inputHeightStride > MAX_RESIZE_HEIGHT || inputHeightStride < MIN_RESIZE_HEIGHT) { | |||
| std::cout << "Input height stride " << inputHeightStride << " is invalid, not in [" << MIN_RESIZE_HEIGHT \ | |||
| << ", " << MAX_RESIZE_HEIGHT << "]." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| *widthStride = inputWidthStride; | |||
| *heightStride = inputHeightStride; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get the aligned width and height of the output image according to the image format | |||
| * @param: width specifies the width before alignment | |||
| * @param: height specifies the height before alignment | |||
| * @param: format specifies the image format | |||
| * @param: widthStride is used to save the width after alignment | |||
| * @param: heightStride is used to save the height after alignment | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetVpcOutputStrideSize(uint32_t width, uint32_t height, acldvppPixelFormat format, | |||
| uint32_t *widthStride, uint32_t *heightStride) { | |||
| if (format != PIXEL_FORMAT_YUV_SEMIPLANAR_420 && format != PIXEL_FORMAT_YVU_SEMIPLANAR_420) { | |||
| std::cout << "Output format[" << format << "] is not supported, just support NV12 or NV21." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| *widthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH); | |||
| *heightStride = DVPP_ALIGN_UP(height, VPC_STRIDE_HEIGHT); | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Set picture description information and execute resize function | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @param: processType specifies whether to perform proportional scaling, default is non-proportional resize | |||
| * @return: OK if success, other values if failure | |||
| * @attention: This function can be called only when the DvppCommon object is initialized with Init | |||
| */ | |||
| int DvppCommon::VpcResize(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| bool withSynchronize, VpcProcessType processType) { | |||
| acldvppPicDesc *inputDesc = acldvppCreatePicDesc(); | |||
| acldvppPicDesc *outputDesc = acldvppCreatePicDesc(); | |||
| resizeInputDesc_.reset(inputDesc, g_picDescDeleter); | |||
| resizeOutputDesc_.reset(outputDesc, g_picDescDeleter); | |||
| // Set dvpp picture descriptin info of input image | |||
| int ret = SetDvppPicDescData(input, resizeInputDesc_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set dvpp input picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Set dvpp picture descriptin info of output image | |||
| ret = SetDvppPicDescData(output, resizeOutputDesc_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set dvpp output picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (processType == VPC_PT_DEFAULT) { | |||
| return ResizeProcess(resizeInputDesc_, resizeOutputDesc_, withSynchronize); | |||
| } | |||
| // Get crop area according to the processType | |||
| CropRoiConfig cropRoi = {0}; | |||
| GetCropRoi(input, output, processType, &cropRoi); | |||
| // The width and height of the original image will be resized by the same ratio | |||
| CropRoiConfig pasteRoi = {0}; | |||
| GetPasteRoi(input, output, processType, &pasteRoi); | |||
| return ResizeWithPadding(resizeInputDesc_, resizeOutputDesc_, cropRoi, pasteRoi, withSynchronize); | |||
| } | |||
| /* | |||
| * @description: Set image description information | |||
| * @param: dataInfo specifies the image information | |||
| * @param: picsDesc specifies the picture description information to be set | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::SetDvppPicDescData(std::shared_ptr<DvppDataInfo> dataInfo, std::shared_ptr<acldvppPicDesc>picDesc) { | |||
| int ret = acldvppSetPicDescData(picDesc.get(), dataInfo->data); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set data for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescSize(picDesc.get(), dataInfo->dataSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set size for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescFormat(picDesc.get(), dataInfo->format); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set format for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescWidth(picDesc.get(), dataInfo->width); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set width for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescHeight(picDesc.get(), dataInfo->height); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set height for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescWidthStride(picDesc.get(), dataInfo->widthStride); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set aligned width for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescHeightStride(picDesc.get(), dataInfo->heightStride); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set aligned height for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Check whether the image format and zoom ratio meet the requirements | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::CheckResizeParams(const DvppDataInfo &input, const DvppDataInfo &output) { | |||
| if (output.format != PIXEL_FORMAT_YUV_SEMIPLANAR_420 && output.format != PIXEL_FORMAT_YVU_SEMIPLANAR_420) { | |||
| std::cout << "Output format[" << output.format << "]is not supported, just support NV12 or NV21." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| float heightScale = static_cast<float>(output.height) / input.height; | |||
| if (heightScale < MIN_RESIZE_SCALE || heightScale > MAX_RESIZE_SCALE) { | |||
| std::cout << "Resize scale should be in range [1/16, 32], which is " << heightScale << "." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| float widthScale = static_cast<float>(output.width) / input.width; | |||
| if (widthScale < MIN_RESIZE_SCALE || widthScale > MAX_RESIZE_SCALE) { | |||
| std::cout << "Resize scale should be in range [1/16, 32], which is " << widthScale << "." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Scale the input image to the size specified by the output image and | |||
| * saves the result to the output image (non-proportionate scaling) | |||
| * @param: inputDesc specifies the description information of the input image | |||
| * @param: outputDesc specifies the description information of the output image | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::ResizeProcess(std::shared_ptr<acldvppPicDesc>inputDesc, | |||
| std::shared_ptr<acldvppPicDesc>outputDesc, | |||
| bool withSynchronize) { | |||
| acldvppResizeConfig *resizeConfig = acldvppCreateResizeConfig(); | |||
| if (resizeConfig == nullptr) { | |||
| std::cout << "Failed to create dvpp resize config." << std::endl; | |||
| return INVALID_POINTER; | |||
| } | |||
| resizeConfig_.reset(resizeConfig, g_resizeConfigDeleter); | |||
| int ret = acldvppVpcResizeAsync(dvppChannelDesc_, inputDesc.get(), outputDesc.get(), | |||
| resizeConfig_.get(), dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to resize asynchronously, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (withSynchronize) { | |||
| ret = aclrtSynchronizeStream(dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to synchronize stream, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Crop the image from the input image based on the specified area and | |||
| * paste the cropped image to the specified position of the target image | |||
| * as the output image | |||
| * @param: inputDesc specifies the description information of the input image | |||
| * @param: outputDesc specifies the description information of the output image | |||
| * @param: cropRoi specifies the cropped area | |||
| * @param: pasteRoi specifies the pasting area | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @return: OK if success, other values if failure | |||
| * @attention: If the width and height of the crop area are different from those of the | |||
| * paste area, the image is scaled again | |||
| */ | |||
| int DvppCommon::ResizeWithPadding(std::shared_ptr<acldvppPicDesc> inputDesc, | |||
| std::shared_ptr<acldvppPicDesc> outputDesc, | |||
| const CropRoiConfig &cropRoi, const CropRoiConfig &pasteRoi, bool withSynchronize) { | |||
| acldvppRoiConfig *cropRoiCfg = acldvppCreateRoiConfig(cropRoi.left, cropRoi.right, cropRoi.up, cropRoi.down); | |||
| if (cropRoiCfg == nullptr) { | |||
| std::cout << "Failed to create dvpp roi config for corp area." << std::endl; | |||
| return INVALID_POINTER; | |||
| } | |||
| cropAreaConfig_.reset(cropRoiCfg, g_roiConfigDeleter); | |||
| acldvppRoiConfig *pastRoiCfg = acldvppCreateRoiConfig(pasteRoi.left, pasteRoi.right, pasteRoi.up, pasteRoi.down); | |||
| if (pastRoiCfg == nullptr) { | |||
| std::cout << "Failed to create dvpp roi config for paster area." << std::endl; | |||
| return INVALID_POINTER; | |||
| } | |||
| pasteAreaConfig_.reset(pastRoiCfg, g_roiConfigDeleter); | |||
| int ret = acldvppVpcCropAndPasteAsync(dvppChannelDesc_, inputDesc.get(), outputDesc.get(), cropAreaConfig_.get(), | |||
| pasteAreaConfig_.get(), dvppStream_); | |||
| if (ret != OK) { | |||
| // release resource. | |||
| std::cout << "Failed to crop and paste asynchronously, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (withSynchronize) { | |||
| ret = aclrtSynchronizeStream(dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed tp synchronize stream, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get crop area | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: processType specifies whether to perform proportional scaling | |||
| * @param: cropRoi is used to save the info of the crop roi area | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| void DvppCommon::GetCropRoi(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| VpcProcessType processType, CropRoiConfig *cropRoi) { | |||
| // When processType is not VPC_PT_FILL, crop area is the whole input image | |||
| if (processType != VPC_PT_FILL) { | |||
| cropRoi->right = CONVERT_TO_ODD(input->width - ODD_NUM_1); | |||
| cropRoi->down = CONVERT_TO_ODD(input->height - ODD_NUM_1); | |||
| return; | |||
| } | |||
| bool widthRatioSmaller = true; | |||
| // The scaling ratio is based on the smaller ratio to ensure the smallest edge to fill the targe edge | |||
| float resizeRatio = static_cast<float>(input->width) / output->width; | |||
| if (resizeRatio > (static_cast<float>(input->height) / output->height)) { | |||
| resizeRatio = static_cast<float>(input->height) / output->height; | |||
| widthRatioSmaller = false; | |||
| } | |||
| const int halfValue = 2; | |||
| // The left and up must be even, right and down must be odd which is required by acl | |||
| if (widthRatioSmaller) { | |||
| cropRoi->left = 0; | |||
| cropRoi->right = CONVERT_TO_ODD(input->width - ODD_NUM_1); | |||
| cropRoi->up = CONVERT_TO_EVEN(static_cast<uint32_t>((input->height - output->height * resizeRatio) / | |||
| halfValue)); | |||
| cropRoi->down = CONVERT_TO_ODD(input->height - cropRoi->up - ODD_NUM_1); | |||
| return; | |||
| } | |||
| cropRoi->up = 0; | |||
| cropRoi->down = CONVERT_TO_ODD(input->height - ODD_NUM_1); | |||
| cropRoi->left = CONVERT_TO_EVEN(static_cast<uint32_t>((input->width - output->width * resizeRatio) / halfValue)); | |||
| cropRoi->right = CONVERT_TO_ODD(input->width - cropRoi->left - ODD_NUM_1); | |||
| return; | |||
| } | |||
| /* | |||
| * @description: Get paste area | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: processType specifies whether to perform proportional scaling | |||
| * @param: pasteRio is used to save the info of the paste area | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| void DvppCommon::GetPasteRoi(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| VpcProcessType processType, CropRoiConfig *pasteRoi) { | |||
| if (processType == VPC_PT_FILL) { | |||
| pasteRoi->right = CONVERT_TO_ODD(output->width - ODD_NUM_1); | |||
| pasteRoi->down = CONVERT_TO_ODD(output->height - ODD_NUM_1); | |||
| return; | |||
| } | |||
| bool widthRatioLarger = true; | |||
| // The scaling ratio is based on the larger ratio to ensure the largest edge to fill the targe edge | |||
| float resizeRatio = static_cast<float>(input->width) / output->width; | |||
| if (resizeRatio < (static_cast<float>(input->height) / output->height)) { | |||
| resizeRatio = static_cast<float>(input->height) / output->height; | |||
| widthRatioLarger = false; | |||
| } | |||
| // Left and up is 0 when the roi paste on the upper left corner | |||
| if (processType == VPC_PT_PADDING) { | |||
| pasteRoi->right = (input->width / resizeRatio) - ODD_NUM_1; | |||
| pasteRoi->down = (input->height / resizeRatio) - ODD_NUM_1; | |||
| pasteRoi->right = CONVERT_TO_ODD(pasteRoi->right); | |||
| pasteRoi->down = CONVERT_TO_ODD(pasteRoi->down); | |||
| return; | |||
| } | |||
| const int halfValue = 2; | |||
| // Left and up is 0 when the roi paste on the middler location | |||
| if (widthRatioLarger) { | |||
| pasteRoi->left = 0; | |||
| pasteRoi->right = output->width - ODD_NUM_1; | |||
| pasteRoi->up = (output->height - (input->height / resizeRatio)) / halfValue; | |||
| pasteRoi->down = output->height - pasteRoi->up - ODD_NUM_1; | |||
| } else { | |||
| pasteRoi->up = 0; | |||
| pasteRoi->down = output->height - ODD_NUM_1; | |||
| pasteRoi->left = (output->width - (input->width / resizeRatio)) / halfValue; | |||
| pasteRoi->right = output->width - pasteRoi->left - ODD_NUM_1; | |||
| } | |||
| // The left must be even and align to 16, up must be even, right and down must be odd which is required by acl | |||
| pasteRoi->left = DVPP_ALIGN_UP(CONVERT_TO_EVEN(pasteRoi->left), VPC_WIDTH_ALIGN); | |||
| pasteRoi->right = CONVERT_TO_ODD(pasteRoi->right); | |||
| pasteRoi->up = CONVERT_TO_EVEN(pasteRoi->up); | |||
| pasteRoi->down = CONVERT_TO_ODD(pasteRoi->down); | |||
| return; | |||
| } | |||
| /* | |||
| * @description: Resize the image specified by input and save the result to member variable resizedImage_ | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @param: processType specifies whether to perform proportional scaling, default is non-proportional resize | |||
| * @return: OK if success, other values if failure | |||
| * @attention: This function can be called only when the DvppCommon object is initialized with Init | |||
| */ | |||
| int DvppCommon::CombineResizeProcess(std::shared_ptr<DvppDataInfo> input, const DvppDataInfo &output, | |||
| bool withSynchronize, VpcProcessType processType) { | |||
| int ret = CheckResizeParams(*input, output); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| // Get widthStride and heightStride for input and output image according to the format | |||
| ret = GetVpcInputStrideSize(input->widthStride, input->heightStride, input->format, | |||
| &(input->widthStride), &(input->heightStride)); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| resizedImage_ = std::make_shared<DvppDataInfo>(); | |||
| resizedImage_->width = output.width; | |||
| resizedImage_->height = output.height; | |||
| resizedImage_->format = output.format; | |||
| ret = GetVpcOutputStrideSize(output.width, output.height, output.format, &(resizedImage_->widthStride), | |||
| &(resizedImage_->heightStride)); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| // Get output buffer size for resize output | |||
| ret = GetVpcDataSize(output.width, output.height, output.format, &(resizedImage_->dataSize)); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| // Malloc buffer for output of resize module | |||
| // Need to pay attention to release of the buffer | |||
| ret = acldvppMalloc(reinterpret_cast<void **>(&(resizedImage_->data)), resizedImage_->dataSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to malloc " << resizedImage_->dataSize << " bytes on dvpp for resize" << std::endl; | |||
| return ret; | |||
| } | |||
| aclrtMemset(resizedImage_->data, resizedImage_->dataSize, YUV_GREYER_VALUE, resizedImage_->dataSize); | |||
| resizedImage_->frameId = input->frameId; | |||
| ret = VpcResize(input, resizedImage_, withSynchronize, processType); | |||
| if (ret != OK) { | |||
| // Release the output buffer when resize failed, otherwise release it after use | |||
| RELEASE_DVPP_DATA(resizedImage_->data); | |||
| } | |||
| return ret; | |||
| } | |||
| /* | |||
| * @description: Set the description of the output image and decode | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @return: OK if success, other values if failure | |||
| * @attention: This function can be called only when the DvppCommon object is initialized with Init | |||
| */ | |||
| int DvppCommon::JpegDecode(std::shared_ptr<DvppDataInfo> input, | |||
| std::shared_ptr<DvppDataInfo> output, | |||
| bool withSynchronize) { | |||
| acldvppPicDesc *outputDesc = acldvppCreatePicDesc(); | |||
| decodeOutputDesc_.reset(outputDesc, g_picDescDeleter); | |||
| int ret = SetDvppPicDescData(output, decodeOutputDesc_); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| ret = acldvppJpegDecodeAsync(dvppChannelDesc_, input->data, input->dataSize, decodeOutputDesc_.get(), dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to decode jpeg, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (withSynchronize) { | |||
| ret = aclrtSynchronizeStream(dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to synchronize stream, ret = " << ret << "." << std::endl; | |||
| return DECODE_FAIL; | |||
| } | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get the aligned width and height of the image after decoding | |||
| * @param: width specifies the width before alignment | |||
| * @param: height specifies the height before alignment | |||
| * @param: widthStride is used to save the width after alignment | |||
| * @param: heightStride is used to save the height after alignment | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| void DvppCommon::GetJpegDecodeStrideSize(uint32_t width, uint32_t height, | |||
| uint32_t *widthStride, uint32_t *heightStride) { | |||
| *widthStride = DVPP_ALIGN_UP(width, JPEGD_STRIDE_WIDTH); | |||
| *heightStride = DVPP_ALIGN_UP(height, JPEGD_STRIDE_HEIGHT); | |||
| } | |||
| /* | |||
| * @description: Get picture width and height and number of channels from image data | |||
| * @param: data specifies the memory to store the image data | |||
| * @param: dataSize specifies the size of the image data | |||
| * @param: width is used to save the image width | |||
| * @param: height is used to save the image height | |||
| * @param: components is used to save the number of channels | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetJpegImageInfo(const void *data, uint32_t dataSize, uint32_t *width, uint32_t *height, | |||
| int32_t *components) { | |||
| uint32_t widthTmp; | |||
| uint32_t heightTmp; | |||
| int32_t componentsTmp; | |||
| int ret = acldvppJpegGetImageInfo(data, dataSize, &widthTmp, &heightTmp, &componentsTmp); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to get image info of jpeg, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (widthTmp > MAX_JPEGD_WIDTH || widthTmp < MIN_JPEGD_WIDTH) { | |||
| std::cout << "Input width is invalid, not in [" << MIN_JPEGD_WIDTH << ", " | |||
| << MAX_JPEGD_WIDTH << "]." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| if (heightTmp > MAX_JPEGD_HEIGHT || heightTmp < MIN_JPEGD_HEIGHT) { | |||
| std::cout << "Input height is invalid, not in [" << MIN_JPEGD_HEIGHT << ", " | |||
| << MAX_JPEGD_HEIGHT << "]." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| *width = widthTmp; | |||
| *height = heightTmp; | |||
| *components = componentsTmp; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get the size of the buffer for storing decoded images based on the image data, size, and format | |||
| * @param: data specifies the memory to store the image data | |||
| * @param: dataSize specifies the size of the image data | |||
| * @param: format specifies the image format | |||
| * @param: decSize is used to store the result size | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetJpegDecodeDataSize(const void *data, uint32_t dataSize, acldvppPixelFormat format, | |||
| uint32_t *decSize) { | |||
| uint32_t outputSize; | |||
| int ret = acldvppJpegPredictDecSize(data, dataSize, format, &outputSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to predict decode size of jpeg image, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| *decSize = outputSize; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Decode the image specified by imageInfo and save the result to member variable decodedImage_ | |||
| * @param: imageInfo specifies image information | |||
| * @param: format specifies the image format | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @return: OK if success, other values if failure | |||
| * @attention: This function can be called only when the DvppCommon object is initialized with Init | |||
| */ | |||
| int DvppCommon::CombineJpegdProcess(const RawData& imageInfo, acldvppPixelFormat format, bool withSynchronize) { | |||
| int32_t components; | |||
| inputImage_ = std::make_shared<DvppDataInfo>(); | |||
| inputImage_->format = format; | |||
| int ret = GetJpegImageInfo(imageInfo.data.get(), imageInfo.lenOfByte, &(inputImage_->width), &(inputImage_->height), | |||
| &components); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to get input image info, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Get the buffer size of decode output according to the input data and output format | |||
| uint32_t outBuffSize; | |||
| ret = GetJpegDecodeDataSize(imageInfo.data.get(), imageInfo.lenOfByte, format, &outBuffSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to get size of decode output buffer, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // In TransferImageH2D function, device buffer will be alloced to store the input image | |||
| // Need to pay attention to release of the buffer | |||
| ret = TransferImageH2D(imageInfo, inputImage_); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| decodedImage_ = std::make_shared<DvppDataInfo>(); | |||
| decodedImage_->format = format; | |||
| decodedImage_->width = inputImage_->width; | |||
| decodedImage_->height = inputImage_->height; | |||
| GetJpegDecodeStrideSize(inputImage_->width, inputImage_->height, &(decodedImage_->widthStride), | |||
| &(decodedImage_->heightStride)); | |||
| decodedImage_->dataSize = outBuffSize; | |||
| // Need to pay attention to release of the buffer | |||
| ret = acldvppMalloc(reinterpret_cast<void **>(&decodedImage_->data), decodedImage_->dataSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to malloc memory on dvpp, ret = " << ret << "." << std::endl; | |||
| RELEASE_DVPP_DATA(inputImage_->data); | |||
| return ret; | |||
| } | |||
| ret = JpegDecode(inputImage_, decodedImage_, withSynchronize); | |||
| if (ret != OK) { | |||
| RELEASE_DVPP_DATA(inputImage_->data); | |||
| inputImage_->data = nullptr; | |||
| RELEASE_DVPP_DATA(decodedImage_->data); | |||
| decodedImage_->data = nullptr; | |||
| return ret; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Transfer data from host to device | |||
| * @param: imageInfo specifies the image data on the host | |||
| * @param: jpegInput is used to save the buffer and its size which is allocate on the device | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::TransferImageH2D(const RawData& imageInfo, const std::shared_ptr<DvppDataInfo>& jpegInput) { | |||
| if (imageInfo.lenOfByte == 0) { | |||
| std::cout << "The input buffer size on host should not be empty." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| uint8_t* inDevBuff = nullptr; | |||
| int ret = acldvppMalloc(reinterpret_cast<void **>(&inDevBuff), imageInfo.lenOfByte); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to malloc " << imageInfo.lenOfByte << " bytes on dvpp, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Copy the image data from host to device | |||
| ret = aclrtMemcpyAsync(inDevBuff, imageInfo.lenOfByte, imageInfo.data.get(), imageInfo.lenOfByte, | |||
| ACL_MEMCPY_HOST_TO_DEVICE, dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to copy " << imageInfo.lenOfByte << " bytes from host to device" << std::endl; | |||
| RELEASE_DVPP_DATA(inDevBuff); | |||
| return ret; | |||
| } | |||
| // Attention: We must call the aclrtSynchronizeStream to ensure the task of memory replication has been completed | |||
| // after calling aclrtMemcpyAsync | |||
| ret = aclrtSynchronizeStream(dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to synchronize stream, ret = " << ret << "." << std::endl; | |||
| RELEASE_DVPP_DATA(inDevBuff); | |||
| return ret; | |||
| } | |||
| jpegInput->data = inDevBuff; | |||
| jpegInput->dataSize = imageInfo.lenOfByte; | |||
| return OK; | |||
| } | |||
| std::shared_ptr<DvppDataInfo> DvppCommon::GetInputImage() { | |||
| return inputImage_; | |||
| } | |||
| std::shared_ptr<DvppDataInfo> DvppCommon::GetDecodedImage() { | |||
| return decodedImage_; | |||
| } | |||
| std::shared_ptr<DvppDataInfo> DvppCommon::GetResizedImage() { | |||
| return resizedImage_; | |||
| } | |||
| DvppCommon::~DvppCommon() {} | |||
| @@ -0,0 +1,226 @@ | |||
| /* | |||
| * Copyright(C) 2020. Huawei Technologies Co.,Ltd. All rights reserved. | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <sys/time.h> | |||
| #include <fstream> | |||
| #include "../inc/ModelProcess.h" | |||
| ModelProcess::ModelProcess(const int deviceId) { | |||
| deviceId_ = deviceId; | |||
| } | |||
| ModelProcess::ModelProcess() {} | |||
| ModelProcess::~ModelProcess() { | |||
| if (!isDeInit_) { | |||
| DeInit(); | |||
| } | |||
| } | |||
| void ModelProcess::DestroyDataset(aclmdlDataset *dataset) { | |||
| // Just release the DataBuffer object and DataSet object, remain the buffer, because it is managerd by user | |||
| if (dataset != nullptr) { | |||
| for (size_t i = 0; i < aclmdlGetDatasetNumBuffers(dataset); i++) { | |||
| aclDataBuffer* dataBuffer = aclmdlGetDatasetBuffer(dataset, i); | |||
| if (dataBuffer != nullptr) { | |||
| aclDestroyDataBuffer(dataBuffer); | |||
| dataBuffer = nullptr; | |||
| } | |||
| } | |||
| aclmdlDestroyDataset(dataset); | |||
| } | |||
| } | |||
| aclmdlDesc *ModelProcess::GetModelDesc() { | |||
| return modelDesc_.get(); | |||
| } | |||
| int ModelProcess::ModelInference(const std::vector<void *> &inputBufs, | |||
| const std::vector<size_t> &inputSizes, | |||
| const std::vector<void *> &ouputBufs, | |||
| const std::vector<size_t> &outputSizes, | |||
| std::map<double, double> *costTime_map) { | |||
| std::cout << "ModelProcess:Begin to inference." << std::endl; | |||
| aclmdlDataset *input = nullptr; | |||
| input = CreateAndFillDataset(inputBufs, inputSizes); | |||
| if (input == nullptr) { | |||
| return INVALID_POINTER; | |||
| } | |||
| int ret = 0; | |||
| aclmdlDataset *output = nullptr; | |||
| output = CreateAndFillDataset(ouputBufs, outputSizes); | |||
| if (output == nullptr) { | |||
| DestroyDataset(input); | |||
| input = nullptr; | |||
| return INVALID_POINTER; | |||
| } | |||
| struct timeval start; | |||
| struct timeval end; | |||
| double startTime_ms; | |||
| double endTime_ms; | |||
| mtx_.lock(); | |||
| gettimeofday(&start, NULL); | |||
| ret = aclmdlExecute(modelId_, input, output); | |||
| gettimeofday(&end, NULL); | |||
| startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000; | |||
| endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000; | |||
| costTime_map->insert(std::pair<double, double>(startTime_ms, endTime_ms)); | |||
| mtx_.unlock(); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlExecute failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| DestroyDataset(input); | |||
| DestroyDataset(output); | |||
| return OK; | |||
| } | |||
| int ModelProcess::DeInit() { | |||
| isDeInit_ = true; | |||
| int ret = aclmdlUnload(modelId_); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlUnload failed, ret["<< ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| if (modelDevPtr_ != nullptr) { | |||
| ret = aclrtFree(modelDevPtr_); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtFree failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| modelDevPtr_ = nullptr; | |||
| } | |||
| if (weightDevPtr_ != nullptr) { | |||
| ret = aclrtFree(weightDevPtr_); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtFree failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| weightDevPtr_ = nullptr; | |||
| } | |||
| return OK; | |||
| } | |||
| /** | |||
| * Read a binary file, store the data into a uint8_t array | |||
| * | |||
| * @param fileName the file for reading | |||
| * @param buffShared a shared pointer to a uint8_t array for storing file | |||
| * @param buffLength the length of the array | |||
| * @return OK if create success, error code otherwise | |||
| */ | |||
| int ModelProcess::ReadBinaryFile(const std::string &fileName, uint8_t **buffShared, int *buffLength) { | |||
| std::ifstream inFile(fileName, std::ios::in | std::ios::binary); | |||
| if (!inFile) { | |||
| std::cout << "FaceFeatureLib: read file " << fileName << " fail." <<std::endl; | |||
| return READ_FILE_FAIL; | |||
| } | |||
| inFile.seekg(0, inFile.end); | |||
| *buffLength = inFile.tellg(); | |||
| inFile.seekg(0, inFile.beg); | |||
| uint8_t *tempShared = reinterpret_cast<uint8_t *>(malloc(*buffLength)); | |||
| inFile.read(reinterpret_cast<char *>(tempShared), *buffLength); | |||
| inFile.close(); | |||
| *buffShared = tempShared; | |||
| std::cout << "read file: fileName=" << fileName << ", size=" << *buffLength << "." << std::endl; | |||
| return OK; | |||
| } | |||
| int ModelProcess::Init(const std::string &modelPath) { | |||
| std::cout << "ModelProcess:Begin to init instance." << std::endl; | |||
| int modelSize = 0; | |||
| uint8_t *modelData = nullptr; | |||
| int ret = ReadBinaryFile(modelPath, &modelData, &modelSize); | |||
| if (ret != OK) { | |||
| std::cout << "read model file failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclmdlQuerySizeFromMem(modelData, modelSize, &modelDevPtrSize_, &weightDevPtrSize_); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlQuerySizeFromMem failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "modelDevPtrSize_[" << modelDevPtrSize_ << "]" << std::endl; | |||
| std::cout << " weightDevPtrSize_[" << weightDevPtrSize_ << "]." << std::endl; | |||
| ret = aclrtMalloc(&modelDevPtr_, modelDevPtrSize_, ACL_MEM_MALLOC_HUGE_FIRST); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtMalloc dev_ptr failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtMalloc(&weightDevPtr_, weightDevPtrSize_, ACL_MEM_MALLOC_HUGE_FIRST); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtMalloc weight_ptr failed, ret[" << ret << "] " << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclmdlLoadFromMemWithMem(modelData, modelSize, &modelId_, modelDevPtr_, modelDevPtrSize_, | |||
| weightDevPtr_, weightDevPtrSize_); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlLoadFromMemWithMem failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtGetCurrentContext(&contextModel_); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtMalloc weight_ptr failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| aclmdlDesc *modelDesc = aclmdlCreateDesc(); | |||
| if (modelDesc == nullptr) { | |||
| std::cout << "aclmdlCreateDesc failed." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclmdlGetDesc(modelDesc, modelId_); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlGetDesc ret fail, ret:" << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| modelDesc_.reset(modelDesc, aclmdlDestroyDesc); | |||
| free(modelData); | |||
| return OK; | |||
| } | |||
| aclmdlDataset *ModelProcess::CreateAndFillDataset(const std::vector<void *> &bufs, const std::vector<size_t> &sizes) { | |||
| aclmdlDataset *dataset = aclmdlCreateDataset(); | |||
| if (dataset == nullptr) { | |||
| std::cout << "ACL_ModelInputCreate failed." << std::endl; | |||
| return nullptr; | |||
| } | |||
| for (size_t i = 0; i < bufs.size(); ++i) { | |||
| aclDataBuffer *data = aclCreateDataBuffer(bufs[i], sizes[i]); | |||
| if (data == nullptr) { | |||
| DestroyDataset(dataset); | |||
| std::cout << "aclCreateDataBuffer failed." << std::endl; | |||
| return nullptr; | |||
| } | |||
| int ret = aclmdlAddDatasetBuffer(dataset, data); | |||
| if (ret != OK) { | |||
| DestroyDataset(dataset); | |||
| std::cout << "ACL_ModelInputDataAdd failed, ret[" << ret << "]." << std::endl; | |||
| return nullptr; | |||
| } | |||
| } | |||
| return dataset; | |||
| } | |||
| @@ -0,0 +1,56 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| path_cur=$(cd "`dirname $0`"; pwd) | |||
| build_type="Release" | |||
| function preparePath() { | |||
| rm -rf $1 | |||
| mkdir -p $1 | |||
| cd $1 | |||
| } | |||
| function buildA300() { | |||
| if [ ! "${ARCH_PATTERN}" ]; then | |||
| # set ARCH_PATTERN to acllib when it was not specified by user | |||
| export ARCH_PATTERN=acllib | |||
| echo "ARCH_PATTERN is set to the default value: ${ARCH_PATTERN}" | |||
| else | |||
| echo "ARCH_PATTERN is set to ${ARCH_PATTERN} by user, reset it to ${ARCH_PATTERN}/acllib" | |||
| export ARCH_PATTERN=${ARCH_PATTERN}/acllib | |||
| fi | |||
| path_build=$path_cur/build | |||
| preparePath $path_build | |||
| cmake -DCMAKE_BUILD_TYPE=$build_type .. | |||
| make -j | |||
| ret=$? | |||
| cd .. | |||
| return ${ret} | |||
| } | |||
| # set ASCEND_VERSION to ascend-toolkit/latest when it was not specified by user | |||
| if [ ! "${ASCEND_VERSION}" ]; then | |||
| export ASCEND_VERSION=ascend-toolkit/latest | |||
| echo "Set ASCEND_VERSION to the default value: ${ASCEND_VERSION}" | |||
| else | |||
| echo "ASCEND_VERSION is set to ${ASCEND_VERSION} by user" | |||
| fi | |||
| buildA300 | |||
| if [ $? -ne 0 ]; then | |||
| exit 1 | |||
| fi | |||
| @@ -0,0 +1,123 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <dirent.h> | |||
| #include <sys/stat.h> | |||
| #include <gflags/gflags.h> | |||
| #include <unistd.h> | |||
| #include <cstring> | |||
| #include <fstream> | |||
| #include "../inc/AclProcess.h" | |||
| #include "../inc/CommonDataType.h" | |||
| DEFINE_string(om_path, "./fasterrcnn.om", "om model path."); | |||
| DEFINE_string(data_path, "./test.jpg", "om model path."); | |||
| DEFINE_int32(width, 1280, "width"); | |||
| DEFINE_int32(height, 768, "height"); | |||
| DEFINE_int32(device_id, 0, "height"); | |||
| static bool is_file(const std::string &filename) { | |||
| struct stat buffer; | |||
| return (stat(filename.c_str(), &buffer) == 0 && S_ISREG(buffer.st_mode)); | |||
| } | |||
| static bool is_dir(const std::string &filefodler) { | |||
| struct stat buffer; | |||
| return (stat(filefodler.c_str(), &buffer) == 0 && S_ISDIR(buffer.st_mode)); | |||
| } | |||
| /* | |||
| * @description Initialize and run AclProcess module | |||
| * @param resourceInfo resource info of deviceIds, model info, single Operator Path, etc | |||
| * @param file the absolute path of input file | |||
| * @return int int code | |||
| */ | |||
| int main(int argc, char* argv[]) { | |||
| gflags::ParseCommandLineFlags(&argc, &argv, true); | |||
| std::cout << "OM File Path :" << FLAGS_om_path << std::endl; | |||
| std::cout << "data Path :" << FLAGS_data_path << std::endl; | |||
| std::cout << "width :" << FLAGS_width << std::endl; | |||
| std::cout << "height :" << FLAGS_height << std::endl; | |||
| std::cout << "deviceId :" << FLAGS_device_id << std::endl; | |||
| char omAbsPath[PATH_MAX]; | |||
| if (realpath(FLAGS_om_path.c_str(), omAbsPath) == nullptr) { | |||
| std::cout << "Failed to get the om real path." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| if (access(omAbsPath, R_OK) == -1) { | |||
| std::cout << "ModelPath " << omAbsPath << " doesn't exist or read failed." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| char dataAbsPath[PATH_MAX]; | |||
| if (realpath(FLAGS_data_path.c_str(), dataAbsPath) == nullptr) { | |||
| std::cout << "Failed to get the data real path." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| if (access(dataAbsPath, R_OK) == -1) { | |||
| std::cout << "data paeh " << dataAbsPath << " doesn't exist or read failed." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| std::map<double, double> costTime_map; | |||
| AclProcess aclProcess(FLAGS_device_id, FLAGS_om_path, FLAGS_width, FLAGS_height); | |||
| int ret = aclProcess.InitResource(); | |||
| if (ret != OK) { | |||
| aclProcess.Release(); | |||
| return ret; | |||
| } | |||
| if (is_file(FLAGS_data_path)) { | |||
| aclProcess.Process(FLAGS_data_path, &costTime_map); | |||
| } else if (is_dir(FLAGS_data_path)) { | |||
| struct dirent * filename; | |||
| DIR * dir; | |||
| dir = opendir(FLAGS_data_path.c_str()); | |||
| if (dir == nullptr) { | |||
| return ERROR; | |||
| } | |||
| while ((filename = readdir(dir)) != nullptr) { | |||
| if (strcmp(filename->d_name, ".") == 0 || strcmp(filename->d_name, "..") == 0) { | |||
| continue; | |||
| } | |||
| std::string wholePath = FLAGS_data_path + "/" + filename->d_name; | |||
| aclProcess.Process(wholePath, &costTime_map); | |||
| } | |||
| } else { | |||
| std::cout << " input image path error" << std::endl; | |||
| } | |||
| double average = 0.0; | |||
| int infer_cnt = 0; | |||
| char tmpCh[256]; | |||
| for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) { | |||
| double diff = 0.0; | |||
| diff = iter->second - iter->first; | |||
| average += diff; | |||
| infer_cnt++; | |||
| } | |||
| average = average/infer_cnt; | |||
| memset(tmpCh, 0, sizeof(tmpCh)); | |||
| snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms of infer_count %d \n", average, infer_cnt); | |||
| std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl; | |||
| std::string file_name = "./time_Result" + std::string("/test_perform_static.txt"); | |||
| std::ofstream file_stream(file_name.c_str(), std::ios::trunc); | |||
| file_stream << tmpCh; | |||
| file_stream.close(); | |||
| costTime_map.clear(); | |||
| aclProcess.Release(); | |||
| return OK; | |||
| } | |||
| @@ -19,7 +19,7 @@ import numpy as np | |||
| import mindspore as ms | |||
| from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context | |||
| from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50 | |||
| from src.FasterRcnn.faster_rcnn_r50 import FasterRcnn_Infer | |||
| from src.config import config | |||
| parser = argparse.ArgumentParser(description='fasterrcnn_export') | |||
| @@ -34,15 +34,17 @@ args = parser.parse_args() | |||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | |||
| if __name__ == '__main__': | |||
| net = Faster_Rcnn_Resnet50(config=config) | |||
| net = FasterRcnn_Infer(config=config) | |||
| param_dict = load_checkpoint(args.ckpt_file) | |||
| load_param_into_net(net, param_dict) | |||
| param_dict_new = {} | |||
| for key, value in param_dict.items(): | |||
| param_dict_new["network." + key] = value | |||
| load_param_into_net(net, param_dict_new) | |||
| img = Tensor(np.zeros([config.test_batch_size, 3, config.img_height, config.img_width]), ms.float16) | |||
| img_metas = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, 4]), ms.float16) | |||
| gt_bboxes = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, config.num_gts]), ms.float16) | |||
| gt_label = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, config.num_gts]), ms.int32) | |||
| gt_num = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, config.num_gts]), ms.bool_) | |||
| export(net, img, img_metas, gt_bboxes, gt_label, gt_num, file_name=args.file_name, file_format=args.file_format) | |||
| export(net, img, img_metas, file_name=args.file_name, file_format=args.file_format) | |||
| @@ -0,0 +1,72 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # less required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """post process for 310 inference""" | |||
| import argparse | |||
| import numpy as np | |||
| from pycocotools.coco import COCO | |||
| from src.config import config | |||
| from src.util import coco_eval, bbox2result_1image, results2json | |||
| dst_width = 1280 | |||
| dst_height = 768 | |||
| parser = argparse.ArgumentParser(description="FasterRcnn inference") | |||
| parser.add_argument("--ann_file", type=str, required=True, help="ann file.") | |||
| parser.add_argument("--img_path", type=str, required=True, help="image file path.") | |||
| args = parser.parse_args() | |||
| def get_eval_result(ann_file, img_path): | |||
| max_num = 128 | |||
| result_path = "./result_Files/" | |||
| outputs = [] | |||
| dataset_coco = COCO(ann_file) | |||
| img_ids = dataset_coco.getImgIds() | |||
| for img_id in img_ids: | |||
| file_id = str(img_id).zfill(12) | |||
| bbox_result_file = result_path + file_id + "_0.bin" | |||
| label_result_file = result_path + file_id + "_1.bin" | |||
| mask_result_file = result_path + file_id + "_2.bin" | |||
| all_bbox = np.fromfile(bbox_result_file, dtype=np.float16).reshape(80000, 5) | |||
| all_label = np.fromfile(label_result_file, dtype=np.int32).reshape(80000, 1) | |||
| all_mask = np.fromfile(mask_result_file, dtype=np.bool_).reshape(80000, 1) | |||
| all_bbox_squee = np.squeeze(all_bbox) | |||
| all_label_squee = np.squeeze(all_label) | |||
| all_mask_squee = np.squeeze(all_mask) | |||
| all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :] | |||
| all_labels_tmp_mask = all_label_squee[all_mask_squee] | |||
| if all_bboxes_tmp_mask.shape[0] > max_num: | |||
| inds = np.argsort(-all_bboxes_tmp_mask[:, -1]) | |||
| inds = inds[:max_num] | |||
| all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds] | |||
| all_labels_tmp_mask = all_labels_tmp_mask[inds] | |||
| outputs_tmp = bbox2result_1image(all_bboxes_tmp_mask, all_labels_tmp_mask, config.num_classes) | |||
| outputs.append(outputs_tmp) | |||
| eval_types = ["bbox"] | |||
| result_files = results2json(dataset_coco, outputs, "./results.pkl") | |||
| coco_eval(result_files, eval_types, dataset_coco, single_result=False) | |||
| if __name__ == '__main__': | |||
| get_eval_result(args.ann_file, args.img_path) | |||
| @@ -0,0 +1,92 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 3 ] | |||
| then | |||
| echo "Usage: sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| model=$(get_real_path $1) | |||
| data_path=$(get_real_path $2) | |||
| ann_file=$(get_real_path $3) | |||
| echo $model | |||
| echo $data_path | |||
| echo $ann_file | |||
| export ASCEND_HOME=/usr/local/Ascend/ | |||
| export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ones:$LD_LIBRARY_PATH | |||
| export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages/te.egg:$ASCEND_HOME/atc/python/site-packages/topi.egg:$ASCEND_HOME/atc/python/site-packages/auto_tune.egg::$ASCEND_HOME/atc/python/site-packages/schedule_search.egg:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/opp | |||
| function air_to_om() | |||
| { | |||
| atc --input_format=NCHW --framework=1 --model=$model --input_shape="x:1, 3, 768, 1280; im_info: 1, 4" --output=fasterrcnn --insert_op_conf=../src/aipp.cfg --precision_mode=allow_fp32_to_fp16 --soc_version=Ascend310 | |||
| } | |||
| function compile_app() | |||
| { | |||
| cd ../ascend310_infer/src | |||
| sh build.sh | |||
| cd - | |||
| } | |||
| function infer() | |||
| { | |||
| if [ -d result_Files ]; then | |||
| rm -rf ./result_Files | |||
| fi | |||
| if [ -d time_Result ]; then | |||
| rm -rf ./time_Result | |||
| fi | |||
| mkdir result_Files | |||
| mkdir time_Result | |||
| ../ascend310_infer/src/out/main --om_path=./fasterrcnn.om --data_path=$data_path | |||
| } | |||
| function cal_acc() | |||
| { | |||
| python ../postprocess.py --ann_file=$ann_file --img_path=$data_path &> log & | |||
| } | |||
| air_to_om | |||
| if [ $? -ne 0 ]; then | |||
| echo "air to om failed" | |||
| exit 1 | |||
| fi | |||
| compile_app | |||
| if [ $? -ne 0 ]; then | |||
| echo "compile app code failed" | |||
| exit 1 | |||
| fi | |||
| infer | |||
| if [ $? -ne 0 ]; then | |||
| echo "excute inference failed" | |||
| exit 1 | |||
| fi | |||
| cal_acc | |||
| if [ $? -ne 0 ]; then | |||
| echo "calculate accuracy failed" | |||
| exit 1 | |||
| fi | |||
| @@ -423,3 +423,13 @@ class Faster_Rcnn_Resnet50(nn.Cell): | |||
| multi_level_anchors += (Tensor(anchors.astype(np.float16)),) | |||
| return multi_level_anchors | |||
| class FasterRcnn_Infer(nn.Cell): | |||
| def __init__(self, config): | |||
| super(FasterRcnn_Infer, self).__init__() | |||
| self.network = Faster_Rcnn_Resnet50(config) | |||
| self.network.set_train(False) | |||
| def construct(self, img_data, img_metas): | |||
| output = self.network(img_data, img_metas, None, None, None) | |||
| return output | |||
| @@ -0,0 +1,26 @@ | |||
| aipp_op { | |||
| aipp_mode : static | |||
| input_format : YUV420SP_U8 | |||
| related_input_rank : 0 | |||
| csc_switch : true | |||
| rbuv_swap_switch : false | |||
| matrix_r0c0 : 256 | |||
| matrix_r0c1 : 0 | |||
| matrix_r0c2 : 359 | |||
| matrix_r1c0 : 256 | |||
| matrix_r1c1 : -88 | |||
| matrix_r1c2 : -183 | |||
| matrix_r2c0 : 256 | |||
| matrix_r2c1 : 454 | |||
| matrix_r2c2 : 0 | |||
| input_bias_0 : 0 | |||
| input_bias_1 : 128 | |||
| input_bias_2 : 128 | |||
| mean_chn_0 : 124 | |||
| mean_chn_1 : 117 | |||
| mean_chn_2 : 104 | |||
| var_reci_chn_0 : 0.0171247538316637 | |||
| var_reci_chn_1 : 0.0175070028011204 | |||
| var_reci_chn_2 : 0.0174291938997821 | |||
| } | |||
| @@ -122,6 +122,18 @@ pip install mmcv=0.2.14 | |||
| Note: | |||
| 1. VALIDATION_JSON_FILE is a label json file for evaluation. | |||
| 5. Execute inference script. | |||
| After training, you can start inference as follows: | |||
| ```shell | |||
| # inference | |||
| bash run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| Note: | |||
| 1. AIR_PATH is a model file, exported by export script file on the Ascend910 environment. | |||
| 2. ANN_FILE_PATH is a annotation file for inference. | |||
| # Run in docker | |||
| 1. Build docker images | |||
| @@ -155,6 +167,13 @@ bash run_distribute_train.sh [RANK_TABLE_FILE] [PRETRAINED_CKPT] | |||
| bash run_eval.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| ``` | |||
| 5. Inference. | |||
| ```shell | |||
| # inference | |||
| bash run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| # [Script Description](#contents) | |||
| ## [Script and Sample Code](#contents) | |||
| @@ -163,9 +182,11 @@ bash run_eval.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| . | |||
| └─MaskRcnn | |||
| ├─README.md # README | |||
| ├─ascend310_infer #application for 310 inference | |||
| ├─scripts # shell script | |||
| ├─run_standalone_train.sh # training in standalone mode(1pcs) | |||
| ├─run_distribute_train.sh # training in parallel mode(8 pcs) | |||
| ├─run_infer_310.sh #shell script for 310 inference | |||
| └─run_eval.sh # evaluation | |||
| ├─src | |||
| ├─maskrcnn | |||
| @@ -181,13 +202,16 @@ bash run_eval.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] | |||
| ├─resnet50.py # backbone network | |||
| ├─roi_align.py # roi align network | |||
| └─rpn.py # reagion proposal network | |||
| ├─aipp.cfg #aipp config file | |||
| ├─config.py # network configuration | |||
| ├─dataset.py # dataset utils | |||
| ├─lr_schedule.py # leanring rate geneatore | |||
| ├─network_define.py # network define for maskrcnn | |||
| └─util.py # routine operation | |||
| ├─mindspore_hub_conf.py # mindspore hub interface | |||
| ├─export.py #script to export AIR,MINDIR,ONNX model | |||
| ├─eval.py # evaluation scripts | |||
| ├─postprogress.py #post process for 310 inference | |||
| └─train.py # training scripts | |||
| ``` | |||
| @@ -468,6 +492,61 @@ Accumulating evaluation results... | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586 | |||
| ``` | |||
| ## Model Export | |||
| ```shell | |||
| python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] | |||
| ``` | |||
| `EXPORT_FORMAT` shoule be in ["AIR", "ONNX", "MINDIR"] | |||
| ## Inference Process | |||
| ### Usage | |||
| Before performing inference, the air file must bu exported by export script on the 910 environment. | |||
| ```shell | |||
| # Ascend310 inference | |||
| sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| ### result | |||
| Inference result is saved in current path, you can find result like this in log file. | |||
| ```bash | |||
| Evaluate annotation type *bbox* | |||
| Accumulating evaluation results... | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.3368 | |||
| Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.589 | |||
| Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.394 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.218 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.411 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.476 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.305 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.489 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.514 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.323 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.562 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.657 | |||
| Evaluate annotation type *segm* | |||
| Accumulating evaluation results... | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.323 | |||
| Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.544 | |||
| Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.336 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.147 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.353 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.479 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.278 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.422 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.439 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.248 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.478 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.594 | |||
| ``` | |||
| # Model Description | |||
| ## Performance | |||
| @@ -122,6 +122,18 @@ pip install mmcv=0.2.14 | |||
| 注: | |||
| 1. VALIDATION_JSON_FILE是用于评估的标签JSON文件。 | |||
| 5. 执行推理脚本。 | |||
| 训练结束后,按照如下步骤启动推理: | |||
| ```bash | |||
| # 评估 | |||
| sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| 注: | |||
| 1. AIR_PATH是在910上使用export脚本导出的模型。 | |||
| 2. ANN_FILE_PATH是推理使用的标注文件。 | |||
| # 脚本说明 | |||
| ## 脚本和样例代码 | |||
| @@ -130,9 +142,11 @@ pip install mmcv=0.2.14 | |||
| . | |||
| └─MaskRcnn | |||
| ├─README.md # README | |||
| ├─ascend310_infer #实现310推理源代码 | |||
| ├─scripts # shell脚本 | |||
| ├─run_standalone_train.sh # 单机模式训练(单卡) | |||
| ├─run_distribute_train.sh # 并行模式训练(8卡) | |||
| ├─run_infer_310.sh # Ascend推理shell脚本 | |||
| └─run_eval.sh # 评估 | |||
| ├─src | |||
| ├─maskrcnn | |||
| @@ -148,13 +162,16 @@ pip install mmcv=0.2.14 | |||
| ├─resnet50.py # 骨干网 | |||
| ├─roi_align.py # 兴趣点对齐网络 | |||
| └─rpn.py # 区域候选网络 | |||
| ├─aipp.cfg #aipp 配置文件 | |||
| ├─config.py # 网络配置 | |||
| ├─dataset.py # 数据集工具 | |||
| ├─lr_schedule.py # 学习率生成器 | |||
| ├─network_define.py # MaskRCNN的网络定义 | |||
| └─util.py # 例行操作 | |||
| ├─mindspore_hub_conf.py # MindSpore hub接口 | |||
| ├─export.py #导出 AIR,MINDIR,ONNX模型的脚本 | |||
| ├─eval.py # 评估脚本 | |||
| ├─postprogress.py #310推理后处理脚本 | |||
| └─train.py # 训练脚本 | |||
| ``` | |||
| @@ -410,6 +427,61 @@ sh run_eval.sh [VALIDATION_ANN_FILE_JSON] [CHECKPOINT_PATH] | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.558 | |||
| ``` | |||
| ## 模型导出 | |||
| ```shell | |||
| python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] | |||
| ``` | |||
| `EXPORT_FORMAT` 选项 ["AIR", "ONNX", "MINDIR"] | |||
| ## 推理过程 | |||
| ### 使用方法 | |||
| 在推理之前需要在昇腾910环境上完成模型的导出。 | |||
| ```shell | |||
| # Ascend310 推理 | |||
| sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] | |||
| ``` | |||
| ### 结果 | |||
| 推理的结果保存在当前目录下,在日志文件中可以找到类似以下的结果。 | |||
| ```bash | |||
| Evaluate annotation type *bbox* | |||
| Accumulating evaluation results... | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.3368 | |||
| Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.589 | |||
| Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.394 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.218 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.411 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.476 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.305 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.489 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.514 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.323 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.562 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.657 | |||
| Evaluate annotation type *segm* | |||
| Accumulating evaluation results... | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.323 | |||
| Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.544 | |||
| Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.336 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.147 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.353 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.479 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.278 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.422 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.439 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.248 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.478 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.594 | |||
| ``` | |||
| # 模型说明 | |||
| ## 性能 | |||
| @@ -0,0 +1,62 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef ACLMANAGER_H | |||
| #define ACLMANAGER_H | |||
| #include <map> | |||
| #include <iostream> | |||
| #include <string> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "acl/acl.h" | |||
| #include "CommonDataType.h" | |||
| #include "ModelProcess.h" | |||
| #include "DvppCommon.h" | |||
| struct ModelInfo { | |||
| std::string modelPath; | |||
| uint32_t modelWidth; | |||
| uint32_t modelHeight; | |||
| uint32_t outputNum; | |||
| }; | |||
| class AclProcess { | |||
| public: | |||
| AclProcess(int deviceId, const std::string &om_path, uint32_t width, uint32_t height); | |||
| ~AclProcess() {} | |||
| void Release(); | |||
| int InitResource(); | |||
| int Process(const std::string& imageFile, std::map<double, double> *costTime_map); | |||
| private: | |||
| int InitModule(); | |||
| int Preprocess(const std::string& imageFile); | |||
| int ModelInfer(std::map<double, double> *costTime_map); | |||
| int WriteResult(const std::string& imageFile); | |||
| int ReadFile(const std::string &filePath, RawData *fileData); | |||
| int32_t deviceId_; | |||
| ModelInfo modelInfo_; | |||
| aclrtContext context_; | |||
| aclrtStream stream_; | |||
| std::shared_ptr<ModelProcess> modelProcess_; | |||
| std::shared_ptr<DvppCommon> dvppCommon_; | |||
| bool keepRatio_; | |||
| std::vector<void *> outputBuffers_; | |||
| std::vector<size_t> outputSizes_; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,95 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef COMMONDATATYPE_H | |||
| #define COMMONDATATYPE_H | |||
| #include <stdio.h> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "acl/acl.h" | |||
| #include "acl/ops/acl_dvpp.h" | |||
| #define DVPP_ALIGN_UP(x, align) ((((x) + ((align)-1)) / (align)) * (align)) | |||
| #define OK 0 | |||
| #define ERROR -1 | |||
| #define INVALID_POINTER -2 | |||
| #define READ_FILE_FAIL -3 | |||
| #define OPEN_FILE_FAIL -4 | |||
| #define INIT_FAIL -5 | |||
| #define INVALID_PARAM -6 | |||
| #define DECODE_FAIL -7 | |||
| const float SEC2MS = 1000.0; | |||
| const int YUV_BGR_SIZE_CONVERT_3 = 3; | |||
| const int YUV_BGR_SIZE_CONVERT_2 = 2; | |||
| const int VPC_WIDTH_ALIGN = 16; | |||
| const int VPC_HEIGHT_ALIGN = 2; | |||
| // Description of image data | |||
| struct ImageInfo { | |||
| uint32_t width; // Image width | |||
| uint32_t height; // Image height | |||
| uint32_t lenOfByte; // Size of image data, bytes | |||
| std::shared_ptr<uint8_t> data; // Smart pointer of image data | |||
| }; | |||
| // Description of data in device | |||
| struct RawData { | |||
| size_t lenOfByte; // Size of memory, bytes | |||
| std::shared_ptr<void> data; // Smart pointer of data | |||
| }; | |||
| // define the structure of an rectangle | |||
| struct Rectangle { | |||
| uint32_t leftTopX; | |||
| uint32_t leftTopY; | |||
| uint32_t rightBottomX; | |||
| uint32_t rightBottomY; | |||
| }; | |||
| enum VpcProcessType { | |||
| VPC_PT_DEFAULT = 0, | |||
| VPC_PT_PADDING, // Resize with locked ratio and paste on upper left corner | |||
| VPC_PT_FIT, // Resize with locked ratio and paste on middle location | |||
| VPC_PT_FILL, // Resize with locked ratio and paste on whole locatin, the input image may be cropped | |||
| }; | |||
| struct DvppDataInfo { | |||
| uint32_t width = 0; // Width of image | |||
| uint32_t height = 0; // Height of image | |||
| uint32_t widthStride = 0; // Width after align up | |||
| uint32_t heightStride = 0; // Height after align up | |||
| acldvppPixelFormat format = PIXEL_FORMAT_YUV_SEMIPLANAR_420; // Format of image | |||
| uint32_t frameId = 0; // Needed by video | |||
| uint32_t dataSize = 0; // Size of data in byte | |||
| uint8_t *data = nullptr; // Image data | |||
| }; | |||
| struct CropRoiConfig { | |||
| uint32_t left; | |||
| uint32_t right; | |||
| uint32_t down; | |||
| uint32_t up; | |||
| }; | |||
| struct DvppCropInputInfo { | |||
| DvppDataInfo dataInfo; | |||
| CropRoiConfig roi; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,139 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef DVPP_COMMON_H | |||
| #define DVPP_COMMON_H | |||
| #include <memory> | |||
| #include "CommonDataType.h" | |||
| #include "acl/ops/acl_dvpp.h" | |||
| const int MODULUS_NUM_2 = 2; | |||
| const uint32_t ODD_NUM_1 = 1; | |||
| const uint32_t JPEGD_STRIDE_WIDTH = 128; // Jpegd module output width need to align up to 128 | |||
| const uint32_t JPEGD_STRIDE_HEIGHT = 16; // Jpegd module output height need to align up to 16 | |||
| const uint32_t VPC_STRIDE_WIDTH = 16; // Vpc module output width need to align up to 16 | |||
| const uint32_t VPC_STRIDE_HEIGHT = 2; // Vpc module output height need to align up to 2 | |||
| const uint32_t YUV422_WIDTH_NU = 2; // Width of YUV422, WidthStride = Width * 2 | |||
| const uint32_t YUV444_RGB_WIDTH_NU = 3; // Width of YUV444 and RGB888, WidthStride = Width * 3 | |||
| const uint32_t XRGB_WIDTH_NU = 4; // Width of XRGB8888, WidthStride = Width * 4 | |||
| const uint32_t JPEG_OFFSET = 8; // Offset of input file for jpegd module | |||
| const uint32_t MAX_JPEGD_WIDTH = 8192; // Max width of jpegd module | |||
| const uint32_t MAX_JPEGD_HEIGHT = 8192; // Max height of jpegd module | |||
| const uint32_t MIN_JPEGD_WIDTH = 32; // Min width of jpegd module | |||
| const uint32_t MIN_JPEGD_HEIGHT = 32; // Min height of jpegd module | |||
| const uint32_t MAX_RESIZE_WIDTH = 4096; // Max width stride of resize module | |||
| const uint32_t MAX_RESIZE_HEIGHT = 4096; // Max height stride of resize module | |||
| const uint32_t MIN_RESIZE_WIDTH = 32; // Min width stride of resize module | |||
| const uint32_t MIN_RESIZE_HEIGHT = 6; // Min height stride of resize module | |||
| const float MIN_RESIZE_SCALE = 0.03125; // Min resize scale of resize module | |||
| const float MAX_RESIZE_SCALE = 16.0; // Min resize scale of resize module | |||
| const uint32_t MAX_VPC_WIDTH = 4096; // Max width of picture to VPC(resize/crop) | |||
| const uint32_t MAX_VPC_HEIGHT = 4096; // Max height of picture to VPC(resize/crop) | |||
| const uint32_t MIN_VPC_WIDTH = 32; // Min width of picture to VPC(resize/crop) | |||
| const uint32_t MIN_VPC_HEIGHT = 6; // Min height of picture to VPC(resize/crop) | |||
| const uint32_t MIN_CROP_WIDTH = 10; // Min width of crop area | |||
| const uint32_t MIN_CROP_HEIGHT = 6; // Min height of crop area | |||
| const uint8_t YUV_GREYER_VALUE = 128; // Filling value of the resized YUV image | |||
| #define CONVERT_TO_ODD(NUM) (((NUM) % MODULUS_NUM_2 != 0) ? (NUM) : ((NUM) - 1)) | |||
| #define CONVERT_TO_EVEN(NUM) (((NUM) % MODULUS_NUM_2 == 0) ? (NUM) : ((NUM) - 1)) | |||
| #define CHECK_ODD(num) ((num) % MODULUS_NUM_2 != 0) | |||
| #define CHECK_EVEN(num) ((num) % MODULUS_NUM_2 == 0) | |||
| #define RELEASE_DVPP_DATA(dvppDataPtr) do { \ | |||
| int retMacro; \ | |||
| if (dvppDataPtr != nullptr) { \ | |||
| retMacro = acldvppFree(dvppDataPtr); \ | |||
| if (retMacro != OK) { \ | |||
| std::cout << "Failed to free memory on dvpp, ret = " << retMacro << "." << std::endl; \ | |||
| } \ | |||
| dvppDataPtr = nullptr; \ | |||
| } \ | |||
| } while (0); | |||
| class DvppCommon { | |||
| public: | |||
| explicit DvppCommon(aclrtStream dvppStream); | |||
| ~DvppCommon(); | |||
| int Init(void); | |||
| int DeInit(void); | |||
| static int GetVpcDataSize(uint32_t widthVpc, uint32_t heightVpc, acldvppPixelFormat format, | |||
| uint32_t *vpcSize); | |||
| static int GetVpcInputStrideSize(uint32_t width, uint32_t height, acldvppPixelFormat format, | |||
| uint32_t *widthStride, uint32_t *heightStride); | |||
| static int GetVpcOutputStrideSize(uint32_t width, uint32_t height, acldvppPixelFormat format, | |||
| uint32_t *widthStride, uint32_t *heightStride); | |||
| static void GetJpegDecodeStrideSize(uint32_t width, uint32_t height, uint32_t *widthStride, uint32_t *heightStride); | |||
| static int GetJpegImageInfo(const void *data, uint32_t dataSize, uint32_t *width, uint32_t *height, | |||
| int32_t *components); | |||
| static int GetJpegDecodeDataSize(const void *data, uint32_t dataSize, acldvppPixelFormat format, | |||
| uint32_t *decSize); | |||
| int VpcResize(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, bool withSynchronize, | |||
| VpcProcessType processType = VPC_PT_DEFAULT); | |||
| int JpegDecode(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, bool withSynchronize); | |||
| int CombineResizeProcess(std::shared_ptr<DvppDataInfo> input, const DvppDataInfo &output, bool withSynchronize, | |||
| VpcProcessType processType = VPC_PT_DEFAULT); | |||
| int CombineJpegdProcess(const RawData& imageInfo, acldvppPixelFormat format, bool withSynchronize); | |||
| std::shared_ptr<DvppDataInfo> GetInputImage(); | |||
| std::shared_ptr<DvppDataInfo> GetDecodedImage(); | |||
| std::shared_ptr<DvppDataInfo> GetResizedImage(); | |||
| void ReleaseDvppBuffer(); | |||
| private: | |||
| int SetDvppPicDescData(std::shared_ptr<DvppDataInfo> dataInfo, std::shared_ptr<acldvppPicDesc>picDesc); | |||
| int ResizeProcess(std::shared_ptr<acldvppPicDesc> inputDesc, | |||
| std::shared_ptr<acldvppPicDesc> outputDesc, bool withSynchronize); | |||
| int ResizeWithPadding(std::shared_ptr<acldvppPicDesc> inputDesc, std::shared_ptr<acldvppPicDesc> outputDesc, | |||
| const CropRoiConfig &cropRoi, const CropRoiConfig &pasteRoi, bool withSynchronize); | |||
| void GetCropRoi(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| VpcProcessType processType, CropRoiConfig *cropRoi); | |||
| void GetPasteRoi(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| VpcProcessType processType, CropRoiConfig *pasteRoi); | |||
| int CheckResizeParams(const DvppDataInfo &input, const DvppDataInfo &output); | |||
| int TransferImageH2D(const RawData& imageInfo, const std::shared_ptr<DvppDataInfo>& jpegInput); | |||
| int CreateStreamDesc(std::shared_ptr<DvppDataInfo> data); | |||
| int DestroyResource(); | |||
| std::shared_ptr<acldvppRoiConfig> cropAreaConfig_ = nullptr; | |||
| std::shared_ptr<acldvppRoiConfig> pasteAreaConfig_ = nullptr; | |||
| std::shared_ptr<acldvppPicDesc> resizeInputDesc_ = nullptr; | |||
| std::shared_ptr<acldvppPicDesc> resizeOutputDesc_ = nullptr; | |||
| std::shared_ptr<acldvppPicDesc> decodeOutputDesc_ = nullptr; | |||
| std::shared_ptr<acldvppResizeConfig> resizeConfig_ = nullptr; | |||
| acldvppChannelDesc *dvppChannelDesc_ = nullptr; | |||
| aclrtStream dvppStream_ = nullptr; | |||
| std::shared_ptr<DvppDataInfo> inputImage_ = nullptr; | |||
| std::shared_ptr<DvppDataInfo> decodedImage_ = nullptr; | |||
| std::shared_ptr<DvppDataInfo> resizedImage_ = nullptr; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,63 @@ | |||
| /* | |||
| * Copyright(C) 2020. Huawei Technologies Co.,Ltd. All rights reserved. | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MODELPROCSS_H | |||
| #define MODELPROCSS_H | |||
| #include <cstdio> | |||
| #include <vector> | |||
| #include <unordered_map> | |||
| #include <mutex> | |||
| #include <map> | |||
| #include <memory> | |||
| #include <string> | |||
| #include "acl/acl.h" | |||
| #include "CommonDataType.h" | |||
| class ModelProcess { | |||
| public: | |||
| explicit ModelProcess(const int deviceId); | |||
| ModelProcess(); | |||
| ~ModelProcess(); | |||
| int Init(const std::string &modelPath); | |||
| int DeInit(); | |||
| int ModelInference(const std::vector<void *> &inputBufs, | |||
| const std::vector<size_t> &inputSizes, | |||
| const std::vector<void *> &ouputBufs, | |||
| const std::vector<size_t> &outputSizes, | |||
| std::map<double, double> *costTime_map); | |||
| aclmdlDesc *GetModelDesc(); | |||
| int ReadBinaryFile(const std::string &fileName, uint8_t **buffShared, int *buffLength); | |||
| private: | |||
| aclmdlDataset *CreateAndFillDataset(const std::vector<void *> &bufs, const std::vector<size_t> &sizes); | |||
| void DestroyDataset(aclmdlDataset *dataset); | |||
| std::mutex mtx_ = {}; | |||
| int deviceId_ = 0; | |||
| uint32_t modelId_ = 0; | |||
| void *modelDevPtr_ = nullptr; | |||
| size_t modelDevPtrSize_ = 0; | |||
| void *weightDevPtr_ = nullptr; | |||
| size_t weightDevPtrSize_ = 0; | |||
| aclrtContext contextModel_ = nullptr; | |||
| std::shared_ptr<aclmdlDesc> modelDesc_ = nullptr; | |||
| bool isDeInit_ = false; | |||
| }; | |||
| #endif | |||
| @@ -0,0 +1,355 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "AclProcess.h" | |||
| #include <sys/time.h> | |||
| #include <thread> | |||
| #include <string> | |||
| /* | |||
| * @description Implementation of constructor for class AclProcess with parameter list | |||
| * @attention context is passed in as a parameter after being created in ResourceManager::InitResource | |||
| */ | |||
| AclProcess::AclProcess(int deviceId, const std::string &om_path, uint32_t width, uint32_t height) | |||
| : deviceId_(deviceId), stream_(nullptr), modelProcess_(nullptr), dvppCommon_(nullptr), keepRatio_(true) { | |||
| modelInfo_.modelPath = om_path; | |||
| modelInfo_.modelWidth = width; | |||
| modelInfo_.modelHeight = height; | |||
| } | |||
| /* | |||
| * @description Release all the resource | |||
| * @attention context will be released in ResourceManager::Release | |||
| */ | |||
| void AclProcess::Release() { | |||
| // Synchronize stream and release Dvpp channel | |||
| dvppCommon_->DeInit(); | |||
| // Release stream | |||
| if (stream_ != nullptr) { | |||
| int ret = aclrtDestroyStream(stream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to destroy the stream, ret = " << ret << "."; | |||
| } | |||
| stream_ = nullptr; | |||
| } | |||
| // Destroy resources of modelProcess_ | |||
| modelProcess_->DeInit(); | |||
| // Release Dvpp buffer | |||
| dvppCommon_->ReleaseDvppBuffer(); | |||
| return; | |||
| } | |||
| /* | |||
| * @description Initialize the modules used by this sample | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::InitModule() { | |||
| // Create Dvpp common object | |||
| if (dvppCommon_ == nullptr) { | |||
| dvppCommon_ = std::make_shared<DvppCommon>(stream_); | |||
| int retDvppCommon = dvppCommon_->Init(); | |||
| if (retDvppCommon != OK) { | |||
| std::cout << "Failed to initialize dvppCommon, ret = " << retDvppCommon << std::endl; | |||
| return retDvppCommon; | |||
| } | |||
| } | |||
| // Create model inference object | |||
| if (modelProcess_ == nullptr) { | |||
| modelProcess_ = std::make_shared<ModelProcess>(deviceId_); | |||
| } | |||
| // Initialize ModelProcess module | |||
| int ret = modelProcess_->Init(modelInfo_.modelPath); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to initialize the model process module, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "Initialized the model process module successfully." << std::endl; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description Create resource for this sample | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::InitResource() { | |||
| int ret = aclInit(nullptr); // Initialize ACL | |||
| if (ret != OK) { | |||
| std::cout << "Failed to init acl, ret = " << ret << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtSetDevice(deviceId_); | |||
| if (ret != ACL_SUCCESS) { | |||
| std::cout << "acl set device " << deviceId_ << "intCode = "<< static_cast<int32_t>(ret) << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "set device "<< deviceId_ << " success" << std::endl; | |||
| // create context (set current) | |||
| ret = aclrtCreateContext(&context_, deviceId_); | |||
| if (ret != ACL_SUCCESS) { | |||
| std::cout << "acl create context failed, deviceId = " << deviceId_ << | |||
| "intCode = "<< static_cast<int32_t>(ret) << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "create context success" << std::endl; | |||
| ret = aclrtCreateStream(&stream_); // Create stream for application | |||
| if (ret != OK) { | |||
| std::cout << "Failed to create the acl stream, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "Created the acl stream successfully." << std::endl; | |||
| // Initialize dvpp module | |||
| if (InitModule() != OK) { | |||
| return INIT_FAIL; | |||
| } | |||
| aclmdlDesc *modelDesc = modelProcess_->GetModelDesc(); | |||
| size_t outputSize = aclmdlGetNumOutputs(modelDesc); | |||
| modelInfo_.outputNum = outputSize; | |||
| for (size_t i = 0; i < outputSize; i++) { | |||
| size_t bufferSize = aclmdlGetOutputSizeByIndex(modelDesc, i); | |||
| void *outputBuffer = nullptr; | |||
| ret = aclrtMalloc(&outputBuffer, bufferSize, ACL_MEM_MALLOC_NORMAL_ONLY); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to malloc buffer, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| outputBuffers_.push_back(outputBuffer); | |||
| outputSizes_.push_back(bufferSize); | |||
| } | |||
| return OK; | |||
| } | |||
| int AclProcess::WriteResult(const std::string& imageFile) { | |||
| std::string homePath = "./result_Files"; | |||
| void *resHostBuf = nullptr; | |||
| for (size_t i = 0; i < outputBuffers_.size(); ++i) { | |||
| size_t output_size; | |||
| void * netOutput; | |||
| netOutput = outputBuffers_[i]; | |||
| output_size = outputSizes_[i]; | |||
| int ret = aclrtMallocHost(&resHostBuf, output_size); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to print the result, malloc host failed, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtMemcpy(resHostBuf, output_size, netOutput, | |||
| output_size, ACL_MEMCPY_DEVICE_TO_HOST); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to print result, memcpy device to host failed, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| int pos = imageFile.rfind('/'); | |||
| std::string fileName(imageFile, pos + 1); | |||
| fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), "_" + std::to_string(i) + ".bin"); | |||
| std::string outFileName = homePath + "/" + fileName; | |||
| FILE * outputFile = fopen(outFileName.c_str(), "wb"); | |||
| fwrite(resHostBuf, output_size, sizeof(char), outputFile); | |||
| fclose(outputFile); | |||
| outputFile = nullptr; | |||
| ret = aclrtFreeHost(resHostBuf); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtFree host output memory failed" << std::endl; | |||
| return ret; | |||
| } | |||
| } | |||
| return OK; | |||
| } | |||
| /** | |||
| * Read a file, store it into the RawData structure | |||
| * | |||
| * @param filePath file to read to | |||
| * @param fileData RawData structure to store in | |||
| * @return OK if create success, int code otherwise | |||
| */ | |||
| int AclProcess::ReadFile(const std::string &filePath, RawData *fileData) { | |||
| // Open file with reading mode | |||
| FILE *fp = fopen(filePath.c_str(), "rb"); | |||
| if (fp == nullptr) { | |||
| std::cout << "Failed to open file, filePath = " << filePath << std::endl; | |||
| return OPEN_FILE_FAIL; | |||
| } | |||
| // Get the length of input file | |||
| fseek(fp, 0, SEEK_END); | |||
| size_t fileSize = ftell(fp); | |||
| fseek(fp, 0, SEEK_SET); | |||
| // If file not empty, read it into FileInfo and return it | |||
| if (fileSize > 0) { | |||
| fileData->lenOfByte = fileSize; | |||
| fileData->data = std::make_shared<uint8_t>(); | |||
| fileData->data.reset(new uint8_t[fileSize], std::default_delete<uint8_t[]>()); | |||
| uint32_t readRet = fread(fileData->data.get(), 1, fileSize, fp); | |||
| if (readRet == 0) { | |||
| fclose(fp); | |||
| return READ_FILE_FAIL; | |||
| } | |||
| fclose(fp); | |||
| return OK; | |||
| } | |||
| fclose(fp); | |||
| return INVALID_PARAM; | |||
| } | |||
| /* | |||
| * @description Preprocess the input image | |||
| * @param imageFile input image path | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::Preprocess(const std::string& imageFile) { | |||
| RawData imageInfo; | |||
| int ret = ReadFile(imageFile, &imageInfo); // Read image data from input image file | |||
| if (ret != OK) { | |||
| std::cout << "Failed to read file, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Run process of jpegD | |||
| ret = dvppCommon_->CombineJpegdProcess(imageInfo, PIXEL_FORMAT_YUV_SEMIPLANAR_420, true); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to execute image decoded of preprocess module, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Get output of decode jpeg image | |||
| std::shared_ptr<DvppDataInfo> decodeOutData = dvppCommon_->GetDecodedImage(); | |||
| // Run resize application function | |||
| DvppDataInfo resizeOutData; | |||
| resizeOutData.height = modelInfo_.modelHeight; | |||
| resizeOutData.width = modelInfo_.modelWidth; | |||
| resizeOutData.format = PIXEL_FORMAT_YUV_SEMIPLANAR_420; | |||
| ret = dvppCommon_->CombineResizeProcess(decodeOutData, resizeOutData, true, VPC_PT_PADDING); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to execute image resized of preprocess module, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| RELEASE_DVPP_DATA(decodeOutData->data); | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description Inference of model | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::ModelInfer(std::map<double, double> *costTime_map) { | |||
| // Get output of resize module | |||
| std::shared_ptr<DvppDataInfo> resizeOutData = dvppCommon_->GetResizedImage(); | |||
| std::shared_ptr<DvppDataInfo> inputImg = dvppCommon_->GetInputImage(); | |||
| float widthScale, heightScale; | |||
| if (keepRatio_) { | |||
| widthScale = static_cast<float>(resizeOutData->width) / inputImg->width; | |||
| if (widthScale > static_cast<float>(resizeOutData->height) / inputImg->height) { | |||
| widthScale = static_cast<float>(resizeOutData->height) / inputImg->height; | |||
| } | |||
| heightScale = widthScale; | |||
| } else { | |||
| widthScale = static_cast<float>(resizeOutData->width) / inputImg->width; | |||
| heightScale = static_cast<float>(resizeOutData->height) / inputImg->height; | |||
| } | |||
| aclFloat16 inputWidth = aclFloatToFloat16(static_cast<float>(inputImg->width)); | |||
| aclFloat16 inputHeight = aclFloatToFloat16(static_cast<float>(inputImg->height)); | |||
| aclFloat16 resizeWidthRatioFp16 = aclFloatToFloat16(widthScale); | |||
| aclFloat16 resizeHeightRatioFp16 = aclFloatToFloat16(heightScale); | |||
| aclFloat16 *im_info = reinterpret_cast<aclFloat16 *>(malloc(sizeof(aclFloat16) * 4)); | |||
| im_info[0] = inputHeight; | |||
| im_info[1] = inputWidth; | |||
| im_info[2] = resizeHeightRatioFp16; | |||
| im_info[3] = resizeWidthRatioFp16; | |||
| void *imInfo_dst = nullptr; | |||
| int ret = aclrtMalloc(&imInfo_dst, 8, ACL_MEM_MALLOC_NORMAL_ONLY); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| std::cout << "aclrtMalloc failed, ret = " << ret << std::endl; | |||
| aclrtFree(imInfo_dst); | |||
| return ret; | |||
| } | |||
| ret = aclrtMemcpy(reinterpret_cast<uint8_t *>(imInfo_dst), 8, im_info, 8, ACL_MEMCPY_HOST_TO_DEVICE); | |||
| if (ret != ACL_ERROR_NONE) { | |||
| std::cout << "aclrtMemcpy failed, ret = " << ret << std::endl; | |||
| aclrtFree(imInfo_dst); | |||
| return ret; | |||
| } | |||
| std::vector<void *> inputBuffers({resizeOutData->data, imInfo_dst}); | |||
| std::vector<size_t> inputSizes({resizeOutData->dataSize, 4*2}); | |||
| for (size_t i = 0; i < modelInfo_.outputNum; i++) { | |||
| aclrtMemset(outputBuffers_[i], outputSizes_[i], 0, outputSizes_[i]); | |||
| } | |||
| // Execute classification model | |||
| ret = modelProcess_->ModelInference(inputBuffers, inputSizes, outputBuffers_, outputSizes_, costTime_map); | |||
| if (ret != OK) { | |||
| aclrtFree(imInfo_dst); | |||
| std::cout << "Failed to execute the classification model, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtFree(imInfo_dst); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtFree image info failed" << std::endl; | |||
| return ret; | |||
| } | |||
| RELEASE_DVPP_DATA(resizeOutData->data); | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description Process classification | |||
| * | |||
| * @par Function | |||
| * 1.Dvpp module preprocess | |||
| * 2.Execute classification model | |||
| * 3.Execute single operator | |||
| * 4.Write result | |||
| * | |||
| * @param imageFile input file path | |||
| * @return int int code | |||
| */ | |||
| int AclProcess::Process(const std::string& imageFile, std::map<double, double> *costTime_map) { | |||
| struct timeval begin = {0}; | |||
| struct timeval end = {0}; | |||
| gettimeofday(&begin, nullptr); | |||
| int ret = Preprocess(imageFile); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| ret = ModelInfer(costTime_map); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| ret = WriteResult(imageFile); | |||
| if (ret != OK) { | |||
| std::cout << "write result failed." << std::endl; | |||
| return ret; | |||
| } | |||
| gettimeofday(&end, nullptr); | |||
| const double costMs = SEC2MS * (end.tv_sec - begin.tv_sec) + (end.tv_usec - begin.tv_usec) / SEC2MS; | |||
| std::cout << "[Process Delay] cost: " << costMs << "ms." << std::endl; | |||
| return OK; | |||
| } | |||
| @@ -0,0 +1,41 @@ | |||
| # Copyright (c) Huawei Technologies Co., Ltd. 2020. All rights reserved. | |||
| # CMake lowest version requirement | |||
| cmake_minimum_required(VERSION 3.5.1) | |||
| # Add definitions ENABLE_DVPP_INTERFACE to use dvpp api | |||
| add_definitions(-DENABLE_DVPP_INTERFACE) | |||
| # project information | |||
| project(InferClassification) | |||
| # Check environment variable | |||
| if(NOT DEFINED ENV{ASCEND_HOME}) | |||
| message(FATAL_ERROR "please define environment variable:ASCEND_HOME") | |||
| endif() | |||
| # Compile options | |||
| add_compile_options(-std=c++11 -fPIE -g -fstack-protector-all -Werror -Wreturn-type) | |||
| # Skip build rpath | |||
| set(CMAKE_SKIP_BUILD_RPATH True) | |||
| # Set output directory | |||
| set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/) | |||
| set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SRC_ROOT}/out) | |||
| # Set include directory and library directory | |||
| #set(ACL_INC_DIR $ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/$ENV{ARCH_PATTERN}/include) | |||
| #set(ACL_LIB_DIR $ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/$ENV{ARCH_PATTERN}/lib64/stub) | |||
| set(ACL_INC_DIR $ENV{ASCEND_HOME}/acllib/include) | |||
| set(ACL_LIB_DIR $ENV{ASCEND_HOME}/acllib/lib64/stub) | |||
| # Header path | |||
| include_directories(${ACL_INC_DIR}) | |||
| include_directories(${PROJECT_SRC_ROOT}/../inc) | |||
| # add host lib path | |||
| link_directories(${ACL_LIB_DIR}) | |||
| add_executable(main AclProcess.cpp | |||
| DvppCommon.cpp | |||
| ModelProcess.cpp | |||
| main.cpp) | |||
| target_link_libraries(main ascendcl gflags acl_dvpp pthread) | |||
| @@ -0,0 +1,735 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include "../inc/DvppCommon.h" | |||
| #include "../inc/CommonDataType.h" | |||
| static auto g_resizeConfigDeleter = [](acldvppResizeConfig *p) { acldvppDestroyResizeConfig(p); }; | |||
| static auto g_picDescDeleter = [](acldvppPicDesc *picDesc) { acldvppDestroyPicDesc(picDesc); }; | |||
| static auto g_roiConfigDeleter = [](acldvppRoiConfig *p) { acldvppDestroyRoiConfig(p); }; | |||
| DvppCommon::DvppCommon(aclrtStream dvppStream):dvppStream_(dvppStream) {} | |||
| /* | |||
| * @description: Create a channel for processing image data, | |||
| * the channel description is created by acldvppCreateChannelDesc | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::Init(void) { | |||
| dvppChannelDesc_ = acldvppCreateChannelDesc(); | |||
| if (dvppChannelDesc_ == nullptr) { | |||
| return -1; | |||
| } | |||
| int ret = acldvppCreateChannel(dvppChannelDesc_); | |||
| if (ret != 0) { | |||
| std::cout << "Failed to create dvpp channel, ret = " << ret << "." << std::endl; | |||
| acldvppDestroyChannelDesc(dvppChannelDesc_); | |||
| dvppChannelDesc_ = nullptr; | |||
| return ret; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: destroy the channel and the channel description used by image. | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::DeInit(void) { | |||
| int ret = aclrtSynchronizeStream(dvppStream_); // int ret | |||
| if (ret != OK) { | |||
| std::cout << "Failed to synchronize stream, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppDestroyChannel(dvppChannelDesc_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to destory dvpp channel, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppDestroyChannelDesc(dvppChannelDesc_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to destroy dvpp channel description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Release the memory that is allocated in the interfaces which are started with "Combine" | |||
| */ | |||
| void DvppCommon::ReleaseDvppBuffer() { | |||
| if (resizedImage_ != nullptr) { | |||
| RELEASE_DVPP_DATA(resizedImage_->data); | |||
| } | |||
| if (decodedImage_ != nullptr) { | |||
| RELEASE_DVPP_DATA(decodedImage_->data); | |||
| } | |||
| if (inputImage_ != nullptr) { | |||
| RELEASE_DVPP_DATA(inputImage_->data); | |||
| } | |||
| } | |||
| /* | |||
| * @description: Get the size of buffer used to save image for VPC according to width, height and format | |||
| * @param width specifies the width of the output image | |||
| * @param height specifies the height of the output image | |||
| * @param format specifies the format of the output image | |||
| * @param: vpcSize is used to save the result size | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetVpcDataSize(uint32_t width, uint32_t height, acldvppPixelFormat format, uint32_t *vpcSize) { | |||
| if (format != PIXEL_FORMAT_YUV_SEMIPLANAR_420 && format != PIXEL_FORMAT_YVU_SEMIPLANAR_420) { | |||
| std::cout << "Format[" << format << "] for VPC is not supported, just support NV12 or NV21." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| uint32_t widthStride = DVPP_ALIGN_UP(width, VPC_WIDTH_ALIGN); | |||
| uint32_t heightStride = DVPP_ALIGN_UP(height, VPC_HEIGHT_ALIGN); | |||
| *vpcSize = widthStride * heightStride * YUV_BGR_SIZE_CONVERT_3 / YUV_BGR_SIZE_CONVERT_2; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get the aligned width and height of the input image according to the image format | |||
| * @param: width specifies the width before alignment | |||
| * @param: height specifies the height before alignment | |||
| * @param: format specifies the image format | |||
| * @param: widthStride is used to save the width after alignment | |||
| * @param: heightStride is used to save the height after alignment | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetVpcInputStrideSize(uint32_t width, uint32_t height, acldvppPixelFormat format, | |||
| uint32_t *widthStride, uint32_t *heightStride) { | |||
| uint32_t inputWidthStride; | |||
| if (format >= PIXEL_FORMAT_YUV_400 && format <= PIXEL_FORMAT_YVU_SEMIPLANAR_444) { | |||
| inputWidthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH); | |||
| } else if (format >= PIXEL_FORMAT_YUYV_PACKED_422 && format <= PIXEL_FORMAT_VYUY_PACKED_422) { | |||
| inputWidthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH) * YUV422_WIDTH_NU; | |||
| } else if (format >= PIXEL_FORMAT_YUV_PACKED_444 && format <= PIXEL_FORMAT_BGR_888) { | |||
| inputWidthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH) * YUV444_RGB_WIDTH_NU; | |||
| } else if (format >= PIXEL_FORMAT_ARGB_8888 && format <= PIXEL_FORMAT_BGRA_8888) { | |||
| inputWidthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH) * XRGB_WIDTH_NU; | |||
| } else { | |||
| std::cout << "Input format[" << format << "] for VPC is invalid, please check it." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| uint32_t inputHeightStride = DVPP_ALIGN_UP(height, VPC_STRIDE_HEIGHT); | |||
| if (inputWidthStride > MAX_RESIZE_WIDTH || inputWidthStride < MIN_RESIZE_WIDTH) { | |||
| std::cout << "Input width stride " << inputWidthStride << " is invalid, not in [" << MIN_RESIZE_WIDTH \ | |||
| << ", " << MAX_RESIZE_WIDTH << "]." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| if (inputHeightStride > MAX_RESIZE_HEIGHT || inputHeightStride < MIN_RESIZE_HEIGHT) { | |||
| std::cout << "Input height stride " << inputHeightStride << " is invalid, not in [" << MIN_RESIZE_HEIGHT \ | |||
| << ", " << MAX_RESIZE_HEIGHT << "]." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| *widthStride = inputWidthStride; | |||
| *heightStride = inputHeightStride; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get the aligned width and height of the output image according to the image format | |||
| * @param: width specifies the width before alignment | |||
| * @param: height specifies the height before alignment | |||
| * @param: format specifies the image format | |||
| * @param: widthStride is used to save the width after alignment | |||
| * @param: heightStride is used to save the height after alignment | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetVpcOutputStrideSize(uint32_t width, uint32_t height, acldvppPixelFormat format, | |||
| uint32_t *widthStride, uint32_t *heightStride) { | |||
| if (format != PIXEL_FORMAT_YUV_SEMIPLANAR_420 && format != PIXEL_FORMAT_YVU_SEMIPLANAR_420) { | |||
| std::cout << "Output format[" << format << "] is not supported, just support NV12 or NV21." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| *widthStride = DVPP_ALIGN_UP(width, VPC_STRIDE_WIDTH); | |||
| *heightStride = DVPP_ALIGN_UP(height, VPC_STRIDE_HEIGHT); | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Set picture description information and execute resize function | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @param: processType specifies whether to perform proportional scaling, default is non-proportional resize | |||
| * @return: OK if success, other values if failure | |||
| * @attention: This function can be called only when the DvppCommon object is initialized with Init | |||
| */ | |||
| int DvppCommon::VpcResize(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| bool withSynchronize, VpcProcessType processType) { | |||
| acldvppPicDesc *inputDesc = acldvppCreatePicDesc(); | |||
| acldvppPicDesc *outputDesc = acldvppCreatePicDesc(); | |||
| resizeInputDesc_.reset(inputDesc, g_picDescDeleter); | |||
| resizeOutputDesc_.reset(outputDesc, g_picDescDeleter); | |||
| // Set dvpp picture descriptin info of input image | |||
| int ret = SetDvppPicDescData(input, resizeInputDesc_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set dvpp input picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Set dvpp picture descriptin info of output image | |||
| ret = SetDvppPicDescData(output, resizeOutputDesc_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set dvpp output picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (processType == VPC_PT_DEFAULT) { | |||
| return ResizeProcess(resizeInputDesc_, resizeOutputDesc_, withSynchronize); | |||
| } | |||
| // Get crop area according to the processType | |||
| CropRoiConfig cropRoi = {0}; | |||
| GetCropRoi(input, output, processType, &cropRoi); | |||
| // The width and height of the original image will be resized by the same ratio | |||
| CropRoiConfig pasteRoi = {0}; | |||
| GetPasteRoi(input, output, processType, &pasteRoi); | |||
| return ResizeWithPadding(resizeInputDesc_, resizeOutputDesc_, cropRoi, pasteRoi, withSynchronize); | |||
| } | |||
| /* | |||
| * @description: Set image description information | |||
| * @param: dataInfo specifies the image information | |||
| * @param: picsDesc specifies the picture description information to be set | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::SetDvppPicDescData(std::shared_ptr<DvppDataInfo> dataInfo, std::shared_ptr<acldvppPicDesc>picDesc) { | |||
| int ret = acldvppSetPicDescData(picDesc.get(), dataInfo->data); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set data for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescSize(picDesc.get(), dataInfo->dataSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set size for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescFormat(picDesc.get(), dataInfo->format); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set format for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescWidth(picDesc.get(), dataInfo->width); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set width for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescHeight(picDesc.get(), dataInfo->height); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set height for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescWidthStride(picDesc.get(), dataInfo->widthStride); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set aligned width for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = acldvppSetPicDescHeightStride(picDesc.get(), dataInfo->heightStride); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to set aligned height for dvpp picture description, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Check whether the image format and zoom ratio meet the requirements | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::CheckResizeParams(const DvppDataInfo &input, const DvppDataInfo &output) { | |||
| if (output.format != PIXEL_FORMAT_YUV_SEMIPLANAR_420 && output.format != PIXEL_FORMAT_YVU_SEMIPLANAR_420) { | |||
| std::cout << "Output format[" << output.format << "]is not supported, just support NV12 or NV21." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| float heightScale = static_cast<float>(output.height) / input.height; | |||
| if (heightScale < MIN_RESIZE_SCALE || heightScale > MAX_RESIZE_SCALE) { | |||
| std::cout << "Resize scale should be in range [1/16, 32], which is " << heightScale << "." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| float widthScale = static_cast<float>(output.width) / input.width; | |||
| if (widthScale < MIN_RESIZE_SCALE || widthScale > MAX_RESIZE_SCALE) { | |||
| std::cout << "Resize scale should be in range [1/16, 32], which is " << widthScale << "." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Scale the input image to the size specified by the output image and | |||
| * saves the result to the output image (non-proportionate scaling) | |||
| * @param: inputDesc specifies the description information of the input image | |||
| * @param: outputDesc specifies the description information of the output image | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::ResizeProcess(std::shared_ptr<acldvppPicDesc>inputDesc, | |||
| std::shared_ptr<acldvppPicDesc>outputDesc, | |||
| bool withSynchronize) { | |||
| acldvppResizeConfig *resizeConfig = acldvppCreateResizeConfig(); | |||
| if (resizeConfig == nullptr) { | |||
| std::cout << "Failed to create dvpp resize config." << std::endl; | |||
| return INVALID_POINTER; | |||
| } | |||
| resizeConfig_.reset(resizeConfig, g_resizeConfigDeleter); | |||
| int ret = acldvppVpcResizeAsync(dvppChannelDesc_, inputDesc.get(), outputDesc.get(), | |||
| resizeConfig_.get(), dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to resize asynchronously, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (withSynchronize) { | |||
| ret = aclrtSynchronizeStream(dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to synchronize stream, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Crop the image from the input image based on the specified area and | |||
| * paste the cropped image to the specified position of the target image | |||
| * as the output image | |||
| * @param: inputDesc specifies the description information of the input image | |||
| * @param: outputDesc specifies the description information of the output image | |||
| * @param: cropRoi specifies the cropped area | |||
| * @param: pasteRoi specifies the pasting area | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @return: OK if success, other values if failure | |||
| * @attention: If the width and height of the crop area are different from those of the | |||
| * paste area, the image is scaled again | |||
| */ | |||
| int DvppCommon::ResizeWithPadding(std::shared_ptr<acldvppPicDesc> inputDesc, | |||
| std::shared_ptr<acldvppPicDesc> outputDesc, | |||
| const CropRoiConfig &cropRoi, const CropRoiConfig &pasteRoi, bool withSynchronize) { | |||
| acldvppRoiConfig *cropRoiCfg = acldvppCreateRoiConfig(cropRoi.left, cropRoi.right, cropRoi.up, cropRoi.down); | |||
| if (cropRoiCfg == nullptr) { | |||
| std::cout << "Failed to create dvpp roi config for corp area." << std::endl; | |||
| return INVALID_POINTER; | |||
| } | |||
| cropAreaConfig_.reset(cropRoiCfg, g_roiConfigDeleter); | |||
| acldvppRoiConfig *pastRoiCfg = acldvppCreateRoiConfig(pasteRoi.left, pasteRoi.right, pasteRoi.up, pasteRoi.down); | |||
| if (pastRoiCfg == nullptr) { | |||
| std::cout << "Failed to create dvpp roi config for paster area." << std::endl; | |||
| return INVALID_POINTER; | |||
| } | |||
| pasteAreaConfig_.reset(pastRoiCfg, g_roiConfigDeleter); | |||
| int ret = acldvppVpcCropAndPasteAsync(dvppChannelDesc_, inputDesc.get(), outputDesc.get(), cropAreaConfig_.get(), | |||
| pasteAreaConfig_.get(), dvppStream_); | |||
| if (ret != OK) { | |||
| // release resource. | |||
| std::cout << "Failed to crop and paste asynchronously, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (withSynchronize) { | |||
| ret = aclrtSynchronizeStream(dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed tp synchronize stream, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get crop area | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: processType specifies whether to perform proportional scaling | |||
| * @param: cropRoi is used to save the info of the crop roi area | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| void DvppCommon::GetCropRoi(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| VpcProcessType processType, CropRoiConfig *cropRoi) { | |||
| // When processType is not VPC_PT_FILL, crop area is the whole input image | |||
| if (processType != VPC_PT_FILL) { | |||
| cropRoi->right = CONVERT_TO_ODD(input->width - ODD_NUM_1); | |||
| cropRoi->down = CONVERT_TO_ODD(input->height - ODD_NUM_1); | |||
| return; | |||
| } | |||
| bool widthRatioSmaller = true; | |||
| // The scaling ratio is based on the smaller ratio to ensure the smallest edge to fill the targe edge | |||
| float resizeRatio = static_cast<float>(input->width) / output->width; | |||
| if (resizeRatio > (static_cast<float>(input->height) / output->height)) { | |||
| resizeRatio = static_cast<float>(input->height) / output->height; | |||
| widthRatioSmaller = false; | |||
| } | |||
| const int halfValue = 2; | |||
| // The left and up must be even, right and down must be odd which is required by acl | |||
| if (widthRatioSmaller) { | |||
| cropRoi->left = 0; | |||
| cropRoi->right = CONVERT_TO_ODD(input->width - ODD_NUM_1); | |||
| cropRoi->up = CONVERT_TO_EVEN(static_cast<uint32_t>((input->height - output->height * resizeRatio) / | |||
| halfValue)); | |||
| cropRoi->down = CONVERT_TO_ODD(input->height - cropRoi->up - ODD_NUM_1); | |||
| return; | |||
| } | |||
| cropRoi->up = 0; | |||
| cropRoi->down = CONVERT_TO_ODD(input->height - ODD_NUM_1); | |||
| cropRoi->left = CONVERT_TO_EVEN(static_cast<uint32_t>((input->width - output->width * resizeRatio) / halfValue)); | |||
| cropRoi->right = CONVERT_TO_ODD(input->width - cropRoi->left - ODD_NUM_1); | |||
| return; | |||
| } | |||
| /* | |||
| * @description: Get paste area | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: processType specifies whether to perform proportional scaling | |||
| * @param: pasteRio is used to save the info of the paste area | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| void DvppCommon::GetPasteRoi(std::shared_ptr<DvppDataInfo> input, std::shared_ptr<DvppDataInfo> output, | |||
| VpcProcessType processType, CropRoiConfig *pasteRoi) { | |||
| if (processType == VPC_PT_FILL) { | |||
| pasteRoi->right = CONVERT_TO_ODD(output->width - ODD_NUM_1); | |||
| pasteRoi->down = CONVERT_TO_ODD(output->height - ODD_NUM_1); | |||
| return; | |||
| } | |||
| bool widthRatioLarger = true; | |||
| // The scaling ratio is based on the larger ratio to ensure the largest edge to fill the targe edge | |||
| float resizeRatio = static_cast<float>(input->width) / output->width; | |||
| if (resizeRatio < (static_cast<float>(input->height) / output->height)) { | |||
| resizeRatio = static_cast<float>(input->height) / output->height; | |||
| widthRatioLarger = false; | |||
| } | |||
| // Left and up is 0 when the roi paste on the upper left corner | |||
| if (processType == VPC_PT_PADDING) { | |||
| pasteRoi->right = (input->width / resizeRatio) - ODD_NUM_1; | |||
| pasteRoi->down = (input->height / resizeRatio) - ODD_NUM_1; | |||
| pasteRoi->right = CONVERT_TO_ODD(pasteRoi->right); | |||
| pasteRoi->down = CONVERT_TO_ODD(pasteRoi->down); | |||
| return; | |||
| } | |||
| const int halfValue = 2; | |||
| // Left and up is 0 when the roi paste on the middler location | |||
| if (widthRatioLarger) { | |||
| pasteRoi->left = 0; | |||
| pasteRoi->right = output->width - ODD_NUM_1; | |||
| pasteRoi->up = (output->height - (input->height / resizeRatio)) / halfValue; | |||
| pasteRoi->down = output->height - pasteRoi->up - ODD_NUM_1; | |||
| } else { | |||
| pasteRoi->up = 0; | |||
| pasteRoi->down = output->height - ODD_NUM_1; | |||
| pasteRoi->left = (output->width - (input->width / resizeRatio)) / halfValue; | |||
| pasteRoi->right = output->width - pasteRoi->left - ODD_NUM_1; | |||
| } | |||
| // The left must be even and align to 16, up must be even, right and down must be odd which is required by acl | |||
| pasteRoi->left = DVPP_ALIGN_UP(CONVERT_TO_EVEN(pasteRoi->left), VPC_WIDTH_ALIGN); | |||
| pasteRoi->right = CONVERT_TO_ODD(pasteRoi->right); | |||
| pasteRoi->up = CONVERT_TO_EVEN(pasteRoi->up); | |||
| pasteRoi->down = CONVERT_TO_ODD(pasteRoi->down); | |||
| return; | |||
| } | |||
| /* | |||
| * @description: Resize the image specified by input and save the result to member variable resizedImage_ | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @param: processType specifies whether to perform proportional scaling, default is non-proportional resize | |||
| * @return: OK if success, other values if failure | |||
| * @attention: This function can be called only when the DvppCommon object is initialized with Init | |||
| */ | |||
| int DvppCommon::CombineResizeProcess(std::shared_ptr<DvppDataInfo> input, const DvppDataInfo &output, | |||
| bool withSynchronize, VpcProcessType processType) { | |||
| int ret = CheckResizeParams(*input, output); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| // Get widthStride and heightStride for input and output image according to the format | |||
| ret = GetVpcInputStrideSize(input->widthStride, input->heightStride, input->format, | |||
| &(input->widthStride), &(input->heightStride)); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| resizedImage_ = std::make_shared<DvppDataInfo>(); | |||
| resizedImage_->width = output.width; | |||
| resizedImage_->height = output.height; | |||
| resizedImage_->format = output.format; | |||
| ret = GetVpcOutputStrideSize(output.width, output.height, output.format, &(resizedImage_->widthStride), | |||
| &(resizedImage_->heightStride)); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| // Get output buffer size for resize output | |||
| ret = GetVpcDataSize(output.width, output.height, output.format, &(resizedImage_->dataSize)); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| // Malloc buffer for output of resize module | |||
| // Need to pay attention to release of the buffer | |||
| ret = acldvppMalloc(reinterpret_cast<void **>(&(resizedImage_->data)), resizedImage_->dataSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to malloc " << resizedImage_->dataSize << " bytes on dvpp for resize" << std::endl; | |||
| return ret; | |||
| } | |||
| aclrtMemset(resizedImage_->data, resizedImage_->dataSize, YUV_GREYER_VALUE, resizedImage_->dataSize); | |||
| resizedImage_->frameId = input->frameId; | |||
| ret = VpcResize(input, resizedImage_, withSynchronize, processType); | |||
| if (ret != OK) { | |||
| // Release the output buffer when resize failed, otherwise release it after use | |||
| RELEASE_DVPP_DATA(resizedImage_->data); | |||
| } | |||
| return ret; | |||
| } | |||
| /* | |||
| * @description: Set the description of the output image and decode | |||
| * @param: input specifies the input image information | |||
| * @param: output specifies the output image information | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @return: OK if success, other values if failure | |||
| * @attention: This function can be called only when the DvppCommon object is initialized with Init | |||
| */ | |||
| int DvppCommon::JpegDecode(std::shared_ptr<DvppDataInfo> input, | |||
| std::shared_ptr<DvppDataInfo> output, | |||
| bool withSynchronize) { | |||
| acldvppPicDesc *outputDesc = acldvppCreatePicDesc(); | |||
| decodeOutputDesc_.reset(outputDesc, g_picDescDeleter); | |||
| int ret = SetDvppPicDescData(output, decodeOutputDesc_); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| ret = acldvppJpegDecodeAsync(dvppChannelDesc_, input->data, input->dataSize, decodeOutputDesc_.get(), dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to decode jpeg, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (withSynchronize) { | |||
| ret = aclrtSynchronizeStream(dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to synchronize stream, ret = " << ret << "." << std::endl; | |||
| return DECODE_FAIL; | |||
| } | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get the aligned width and height of the image after decoding | |||
| * @param: width specifies the width before alignment | |||
| * @param: height specifies the height before alignment | |||
| * @param: widthStride is used to save the width after alignment | |||
| * @param: heightStride is used to save the height after alignment | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| void DvppCommon::GetJpegDecodeStrideSize(uint32_t width, uint32_t height, | |||
| uint32_t *widthStride, uint32_t *heightStride) { | |||
| *widthStride = DVPP_ALIGN_UP(width, JPEGD_STRIDE_WIDTH); | |||
| *heightStride = DVPP_ALIGN_UP(height, JPEGD_STRIDE_HEIGHT); | |||
| } | |||
| /* | |||
| * @description: Get picture width and height and number of channels from image data | |||
| * @param: data specifies the memory to store the image data | |||
| * @param: dataSize specifies the size of the image data | |||
| * @param: width is used to save the image width | |||
| * @param: height is used to save the image height | |||
| * @param: components is used to save the number of channels | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetJpegImageInfo(const void *data, uint32_t dataSize, uint32_t *width, uint32_t *height, | |||
| int32_t *components) { | |||
| uint32_t widthTmp; | |||
| uint32_t heightTmp; | |||
| int32_t componentsTmp; | |||
| int ret = acldvppJpegGetImageInfo(data, dataSize, &widthTmp, &heightTmp, &componentsTmp); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to get image info of jpeg, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| if (widthTmp > MAX_JPEGD_WIDTH || widthTmp < MIN_JPEGD_WIDTH) { | |||
| std::cout << "Input width is invalid, not in [" << MIN_JPEGD_WIDTH << ", " | |||
| << MAX_JPEGD_WIDTH << "]." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| if (heightTmp > MAX_JPEGD_HEIGHT || heightTmp < MIN_JPEGD_HEIGHT) { | |||
| std::cout << "Input height is invalid, not in [" << MIN_JPEGD_HEIGHT << ", " | |||
| << MAX_JPEGD_HEIGHT << "]." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| *width = widthTmp; | |||
| *height = heightTmp; | |||
| *components = componentsTmp; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Get the size of the buffer for storing decoded images based on the image data, size, and format | |||
| * @param: data specifies the memory to store the image data | |||
| * @param: dataSize specifies the size of the image data | |||
| * @param: format specifies the image format | |||
| * @param: decSize is used to store the result size | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::GetJpegDecodeDataSize(const void *data, uint32_t dataSize, acldvppPixelFormat format, | |||
| uint32_t *decSize) { | |||
| uint32_t outputSize; | |||
| int ret = acldvppJpegPredictDecSize(data, dataSize, format, &outputSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to predict decode size of jpeg image, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| *decSize = outputSize; | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Decode the image specified by imageInfo and save the result to member variable decodedImage_ | |||
| * @param: imageInfo specifies image information | |||
| * @param: format specifies the image format | |||
| * @param: withSynchronize specifies whether to execute synchronously | |||
| * @return: OK if success, other values if failure | |||
| * @attention: This function can be called only when the DvppCommon object is initialized with Init | |||
| */ | |||
| int DvppCommon::CombineJpegdProcess(const RawData& imageInfo, acldvppPixelFormat format, bool withSynchronize) { | |||
| int32_t components; | |||
| inputImage_ = std::make_shared<DvppDataInfo>(); | |||
| inputImage_->format = format; | |||
| int ret = GetJpegImageInfo(imageInfo.data.get(), imageInfo.lenOfByte, &(inputImage_->width), &(inputImage_->height), | |||
| &components); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to get input image info, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Get the buffer size of decode output according to the input data and output format | |||
| uint32_t outBuffSize; | |||
| ret = GetJpegDecodeDataSize(imageInfo.data.get(), imageInfo.lenOfByte, format, &outBuffSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to get size of decode output buffer, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // In TransferImageH2D function, device buffer will be alloced to store the input image | |||
| // Need to pay attention to release of the buffer | |||
| ret = TransferImageH2D(imageInfo, inputImage_); | |||
| if (ret != OK) { | |||
| return ret; | |||
| } | |||
| decodedImage_ = std::make_shared<DvppDataInfo>(); | |||
| decodedImage_->format = format; | |||
| decodedImage_->width = inputImage_->width; | |||
| decodedImage_->height = inputImage_->height; | |||
| GetJpegDecodeStrideSize(inputImage_->width, inputImage_->height, &(decodedImage_->widthStride), | |||
| &(decodedImage_->heightStride)); | |||
| decodedImage_->dataSize = outBuffSize; | |||
| // Need to pay attention to release of the buffer | |||
| ret = acldvppMalloc(reinterpret_cast<void **>(&decodedImage_->data), decodedImage_->dataSize); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to malloc memory on dvpp, ret = " << ret << "." << std::endl; | |||
| RELEASE_DVPP_DATA(inputImage_->data); | |||
| return ret; | |||
| } | |||
| ret = JpegDecode(inputImage_, decodedImage_, withSynchronize); | |||
| if (ret != OK) { | |||
| RELEASE_DVPP_DATA(inputImage_->data); | |||
| inputImage_->data = nullptr; | |||
| RELEASE_DVPP_DATA(decodedImage_->data); | |||
| decodedImage_->data = nullptr; | |||
| return ret; | |||
| } | |||
| return OK; | |||
| } | |||
| /* | |||
| * @description: Transfer data from host to device | |||
| * @param: imageInfo specifies the image data on the host | |||
| * @param: jpegInput is used to save the buffer and its size which is allocate on the device | |||
| * @return: OK if success, other values if failure | |||
| */ | |||
| int DvppCommon::TransferImageH2D(const RawData& imageInfo, const std::shared_ptr<DvppDataInfo>& jpegInput) { | |||
| if (imageInfo.lenOfByte == 0) { | |||
| std::cout << "The input buffer size on host should not be empty." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| uint8_t* inDevBuff = nullptr; | |||
| int ret = acldvppMalloc(reinterpret_cast<void **>(&inDevBuff), imageInfo.lenOfByte); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to malloc " << imageInfo.lenOfByte << " bytes on dvpp, ret = " << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| // Copy the image data from host to device | |||
| ret = aclrtMemcpyAsync(inDevBuff, imageInfo.lenOfByte, imageInfo.data.get(), imageInfo.lenOfByte, | |||
| ACL_MEMCPY_HOST_TO_DEVICE, dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to copy " << imageInfo.lenOfByte << " bytes from host to device" << std::endl; | |||
| RELEASE_DVPP_DATA(inDevBuff); | |||
| return ret; | |||
| } | |||
| // Attention: We must call the aclrtSynchronizeStream to ensure the task of memory replication has been completed | |||
| // after calling aclrtMemcpyAsync | |||
| ret = aclrtSynchronizeStream(dvppStream_); | |||
| if (ret != OK) { | |||
| std::cout << "Failed to synchronize stream, ret = " << ret << "." << std::endl; | |||
| RELEASE_DVPP_DATA(inDevBuff); | |||
| return ret; | |||
| } | |||
| jpegInput->data = inDevBuff; | |||
| jpegInput->dataSize = imageInfo.lenOfByte; | |||
| return OK; | |||
| } | |||
| std::shared_ptr<DvppDataInfo> DvppCommon::GetInputImage() { | |||
| return inputImage_; | |||
| } | |||
| std::shared_ptr<DvppDataInfo> DvppCommon::GetDecodedImage() { | |||
| return decodedImage_; | |||
| } | |||
| std::shared_ptr<DvppDataInfo> DvppCommon::GetResizedImage() { | |||
| return resizedImage_; | |||
| } | |||
| DvppCommon::~DvppCommon() {} | |||
| @@ -0,0 +1,226 @@ | |||
| /* | |||
| * Copyright(C) 2020. Huawei Technologies Co.,Ltd. All rights reserved. | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <sys/time.h> | |||
| #include <fstream> | |||
| #include "../inc/ModelProcess.h" | |||
| ModelProcess::ModelProcess(const int deviceId) { | |||
| deviceId_ = deviceId; | |||
| } | |||
| ModelProcess::ModelProcess() {} | |||
| ModelProcess::~ModelProcess() { | |||
| if (!isDeInit_) { | |||
| DeInit(); | |||
| } | |||
| } | |||
| void ModelProcess::DestroyDataset(aclmdlDataset *dataset) { | |||
| // Just release the DataBuffer object and DataSet object, remain the buffer, because it is managerd by user | |||
| if (dataset != nullptr) { | |||
| for (size_t i = 0; i < aclmdlGetDatasetNumBuffers(dataset); i++) { | |||
| aclDataBuffer* dataBuffer = aclmdlGetDatasetBuffer(dataset, i); | |||
| if (dataBuffer != nullptr) { | |||
| aclDestroyDataBuffer(dataBuffer); | |||
| dataBuffer = nullptr; | |||
| } | |||
| } | |||
| aclmdlDestroyDataset(dataset); | |||
| } | |||
| } | |||
| aclmdlDesc *ModelProcess::GetModelDesc() { | |||
| return modelDesc_.get(); | |||
| } | |||
| int ModelProcess::ModelInference(const std::vector<void *> &inputBufs, | |||
| const std::vector<size_t> &inputSizes, | |||
| const std::vector<void *> &ouputBufs, | |||
| const std::vector<size_t> &outputSizes, | |||
| std::map<double, double> *costTime_map) { | |||
| std::cout << "ModelProcess:Begin to inference." << std::endl; | |||
| aclmdlDataset *input = nullptr; | |||
| input = CreateAndFillDataset(inputBufs, inputSizes); | |||
| if (input == nullptr) { | |||
| return INVALID_POINTER; | |||
| } | |||
| int ret = 0; | |||
| aclmdlDataset *output = nullptr; | |||
| output = CreateAndFillDataset(ouputBufs, outputSizes); | |||
| if (output == nullptr) { | |||
| DestroyDataset(input); | |||
| input = nullptr; | |||
| return INVALID_POINTER; | |||
| } | |||
| struct timeval start; | |||
| struct timeval end; | |||
| double startTime_ms; | |||
| double endTime_ms; | |||
| mtx_.lock(); | |||
| gettimeofday(&start, NULL); | |||
| ret = aclmdlExecute(modelId_, input, output); | |||
| gettimeofday(&end, NULL); | |||
| startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000; | |||
| endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000; | |||
| costTime_map->insert(std::pair<double, double>(startTime_ms, endTime_ms)); | |||
| mtx_.unlock(); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlExecute failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| DestroyDataset(input); | |||
| DestroyDataset(output); | |||
| return OK; | |||
| } | |||
| int ModelProcess::DeInit() { | |||
| isDeInit_ = true; | |||
| int ret = aclmdlUnload(modelId_); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlUnload failed, ret["<< ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| if (modelDevPtr_ != nullptr) { | |||
| ret = aclrtFree(modelDevPtr_); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtFree failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| modelDevPtr_ = nullptr; | |||
| } | |||
| if (weightDevPtr_ != nullptr) { | |||
| ret = aclrtFree(weightDevPtr_); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtFree failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| weightDevPtr_ = nullptr; | |||
| } | |||
| return OK; | |||
| } | |||
| /** | |||
| * Read a binary file, store the data into a uint8_t array | |||
| * | |||
| * @param fileName the file for reading | |||
| * @param buffShared a shared pointer to a uint8_t array for storing file | |||
| * @param buffLength the length of the array | |||
| * @return OK if create success, error code otherwise | |||
| */ | |||
| int ModelProcess::ReadBinaryFile(const std::string &fileName, uint8_t **buffShared, int *buffLength) { | |||
| std::ifstream inFile(fileName, std::ios::in | std::ios::binary); | |||
| if (!inFile) { | |||
| std::cout << "FaceFeatureLib: read file " << fileName << " fail." <<std::endl; | |||
| return READ_FILE_FAIL; | |||
| } | |||
| inFile.seekg(0, inFile.end); | |||
| *buffLength = inFile.tellg(); | |||
| inFile.seekg(0, inFile.beg); | |||
| uint8_t *tempShared = reinterpret_cast<uint8_t *>(malloc(*buffLength)); | |||
| inFile.read(reinterpret_cast<char *>(tempShared), *buffLength); | |||
| inFile.close(); | |||
| *buffShared = tempShared; | |||
| std::cout << "read file: fileName=" << fileName << ", size=" << *buffLength << "." << std::endl; | |||
| return OK; | |||
| } | |||
| int ModelProcess::Init(const std::string &modelPath) { | |||
| std::cout << "ModelProcess:Begin to init instance." << std::endl; | |||
| int modelSize = 0; | |||
| uint8_t *modelData = nullptr; | |||
| int ret = ReadBinaryFile(modelPath, &modelData, &modelSize); | |||
| if (ret != OK) { | |||
| std::cout << "read model file failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclmdlQuerySizeFromMem(modelData, modelSize, &modelDevPtrSize_, &weightDevPtrSize_); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlQuerySizeFromMem failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| std::cout << "modelDevPtrSize_[" << modelDevPtrSize_ << "]" << std::endl; | |||
| std::cout << " weightDevPtrSize_[" << weightDevPtrSize_ << "]." << std::endl; | |||
| ret = aclrtMalloc(&modelDevPtr_, modelDevPtrSize_, ACL_MEM_MALLOC_HUGE_FIRST); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtMalloc dev_ptr failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtMalloc(&weightDevPtr_, weightDevPtrSize_, ACL_MEM_MALLOC_HUGE_FIRST); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtMalloc weight_ptr failed, ret[" << ret << "] " << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclmdlLoadFromMemWithMem(modelData, modelSize, &modelId_, modelDevPtr_, modelDevPtrSize_, | |||
| weightDevPtr_, weightDevPtrSize_); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlLoadFromMemWithMem failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclrtGetCurrentContext(&contextModel_); | |||
| if (ret != OK) { | |||
| std::cout << "aclrtMalloc weight_ptr failed, ret[" << ret << "]." << std::endl; | |||
| return ret; | |||
| } | |||
| aclmdlDesc *modelDesc = aclmdlCreateDesc(); | |||
| if (modelDesc == nullptr) { | |||
| std::cout << "aclmdlCreateDesc failed." << std::endl; | |||
| return ret; | |||
| } | |||
| ret = aclmdlGetDesc(modelDesc, modelId_); | |||
| if (ret != OK) { | |||
| std::cout << "aclmdlGetDesc ret fail, ret:" << ret << "." << std::endl; | |||
| return ret; | |||
| } | |||
| modelDesc_.reset(modelDesc, aclmdlDestroyDesc); | |||
| free(modelData); | |||
| return OK; | |||
| } | |||
| aclmdlDataset *ModelProcess::CreateAndFillDataset(const std::vector<void *> &bufs, const std::vector<size_t> &sizes) { | |||
| aclmdlDataset *dataset = aclmdlCreateDataset(); | |||
| if (dataset == nullptr) { | |||
| std::cout << "ACL_ModelInputCreate failed." << std::endl; | |||
| return nullptr; | |||
| } | |||
| for (size_t i = 0; i < bufs.size(); ++i) { | |||
| aclDataBuffer *data = aclCreateDataBuffer(bufs[i], sizes[i]); | |||
| if (data == nullptr) { | |||
| DestroyDataset(dataset); | |||
| std::cout << "aclCreateDataBuffer failed." << std::endl; | |||
| return nullptr; | |||
| } | |||
| int ret = aclmdlAddDatasetBuffer(dataset, data); | |||
| if (ret != OK) { | |||
| DestroyDataset(dataset); | |||
| std::cout << "ACL_ModelInputDataAdd failed, ret[" << ret << "]." << std::endl; | |||
| return nullptr; | |||
| } | |||
| } | |||
| return dataset; | |||
| } | |||
| @@ -0,0 +1,56 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| path_cur=$(cd "`dirname $0`"; pwd) | |||
| build_type="Release" | |||
| function preparePath() { | |||
| rm -rf $1 | |||
| mkdir -p $1 | |||
| cd $1 | |||
| } | |||
| function buildA300() { | |||
| if [ ! "${ARCH_PATTERN}" ]; then | |||
| # set ARCH_PATTERN to acllib when it was not specified by user | |||
| export ARCH_PATTERN=acllib | |||
| echo "ARCH_PATTERN is set to the default value: ${ARCH_PATTERN}" | |||
| else | |||
| echo "ARCH_PATTERN is set to ${ARCH_PATTERN} by user, reset it to ${ARCH_PATTERN}/acllib" | |||
| export ARCH_PATTERN=${ARCH_PATTERN}/acllib | |||
| fi | |||
| path_build=$path_cur/build | |||
| preparePath $path_build | |||
| cmake -DCMAKE_BUILD_TYPE=$build_type .. | |||
| make -j | |||
| ret=$? | |||
| cd .. | |||
| return ${ret} | |||
| } | |||
| # set ASCEND_VERSION to ascend-toolkit/latest when it was not specified by user | |||
| if [ ! "${ASCEND_VERSION}" ]; then | |||
| export ASCEND_VERSION=ascend-toolkit/latest | |||
| echo "Set ASCEND_VERSION to the default value: ${ASCEND_VERSION}" | |||
| else | |||
| echo "ASCEND_VERSION is set to ${ASCEND_VERSION} by user" | |||
| fi | |||
| buildA300 | |||
| if [ $? -ne 0 ]; then | |||
| exit 1 | |||
| fi | |||
| @@ -0,0 +1,123 @@ | |||
| /* | |||
| * Copyright (c) 2020.Huawei Technologies Co., Ltd. All rights reserved. | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <dirent.h> | |||
| #include <sys/stat.h> | |||
| #include <gflags/gflags.h> | |||
| #include <unistd.h> | |||
| #include <cstring> | |||
| #include <fstream> | |||
| #include "../inc/AclProcess.h" | |||
| #include "../inc/CommonDataType.h" | |||
| DEFINE_string(om_path, "./maskrcnn.om", "om model path."); | |||
| DEFINE_string(data_path, "./test.jpg", "om model path."); | |||
| DEFINE_int32(width, 1280, "width"); | |||
| DEFINE_int32(height, 768, "height"); | |||
| DEFINE_int32(device_id, 0, "height"); | |||
| static bool is_file(const std::string &filename) { | |||
| struct stat buffer; | |||
| return (stat(filename.c_str(), &buffer) == 0 && S_ISREG(buffer.st_mode)); | |||
| } | |||
| static bool is_dir(const std::string &filefodler) { | |||
| struct stat buffer; | |||
| return (stat(filefodler.c_str(), &buffer) == 0 && S_ISDIR(buffer.st_mode)); | |||
| } | |||
| /* | |||
| * @description Initialize and run AclProcess module | |||
| * @param resourceInfo resource info of deviceIds, model info, single Operator Path, etc | |||
| * @param file the absolute path of input file | |||
| * @return int int code | |||
| */ | |||
| int main(int argc, char* argv[]) { | |||
| gflags::ParseCommandLineFlags(&argc, &argv, true); | |||
| std::cout << "OM File Path :" << FLAGS_om_path << std::endl; | |||
| std::cout << "data Path :" << FLAGS_data_path << std::endl; | |||
| std::cout << "width :" << FLAGS_width << std::endl; | |||
| std::cout << "height :" << FLAGS_height << std::endl; | |||
| std::cout << "deviceId :" << FLAGS_device_id << std::endl; | |||
| char omAbsPath[PATH_MAX]; | |||
| if (realpath(FLAGS_om_path.c_str(), omAbsPath) == nullptr) { | |||
| std::cout << "Failed to get the om real path." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| if (access(omAbsPath, R_OK) == -1) { | |||
| std::cout << "ModelPath " << omAbsPath << " doesn't exist or read failed." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| char dataAbsPath[PATH_MAX]; | |||
| if (realpath(FLAGS_data_path.c_str(), dataAbsPath) == nullptr) { | |||
| std::cout << "Failed to get the data real path." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| if (access(dataAbsPath, R_OK) == -1) { | |||
| std::cout << "data paeh " << dataAbsPath << " doesn't exist or read failed." << std::endl; | |||
| return INVALID_PARAM; | |||
| } | |||
| std::map<double, double> costTime_map; | |||
| AclProcess aclProcess(FLAGS_device_id, FLAGS_om_path, FLAGS_width, FLAGS_height); | |||
| int ret = aclProcess.InitResource(); | |||
| if (ret != OK) { | |||
| aclProcess.Release(); | |||
| return ret; | |||
| } | |||
| if (is_file(FLAGS_data_path)) { | |||
| aclProcess.Process(FLAGS_data_path, &costTime_map); | |||
| } else if (is_dir(FLAGS_data_path)) { | |||
| struct dirent * filename; | |||
| DIR * dir; | |||
| dir = opendir(FLAGS_data_path.c_str()); | |||
| if (dir == nullptr) { | |||
| return ERROR; | |||
| } | |||
| while ((filename = readdir(dir)) != nullptr) { | |||
| if (strcmp(filename->d_name, ".") == 0 || strcmp(filename->d_name, "..") == 0) { | |||
| continue; | |||
| } | |||
| std::string wholePath = FLAGS_data_path + "/" + filename->d_name; | |||
| aclProcess.Process(wholePath, &costTime_map); | |||
| } | |||
| } else { | |||
| std::cout << " input image path error" << std::endl; | |||
| } | |||
| double average = 0.0; | |||
| int infer_cnt = 0; | |||
| char tmpCh[256]; | |||
| for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) { | |||
| double diff = 0.0; | |||
| diff = iter->second - iter->first; | |||
| average += diff; | |||
| infer_cnt++; | |||
| } | |||
| average = average/infer_cnt; | |||
| memset(tmpCh, 0, sizeof(tmpCh)); | |||
| snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms of infer_count %d \n", average, infer_cnt); | |||
| std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl; | |||
| std::string file_name = "./time_Result" + std::string("/test_perform_static.txt"); | |||
| std::ofstream file_stream(file_name.c_str(), std::ios::trunc); | |||
| file_stream << tmpCh; | |||
| file_stream.close(); | |||
| costTime_map.clear(); | |||
| aclProcess.Release(); | |||
| return OK; | |||
| } | |||
| @@ -18,7 +18,7 @@ import numpy as np | |||
| from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export | |||
| from src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50 | |||
| from src.maskrcnn.mask_rcnn_r50 import MaskRcnn_Infer | |||
| from src.config import config | |||
| parser = argparse.ArgumentParser(description='maskrcnn export') | |||
| @@ -34,19 +34,20 @@ args = parser.parse_args() | |||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | |||
| if __name__ == '__main__': | |||
| net = Mask_Rcnn_Resnet50(config=config) | |||
| net = MaskRcnn_Infer(config=config) | |||
| param_dict = load_checkpoint(args.ckpt_file) | |||
| load_param_into_net(net, param_dict) | |||
| param_dict_new = {} | |||
| for key, value in param_dict.items(): | |||
| param_dict_new["network." + key] = value | |||
| load_param_into_net(net, param_dict_new) | |||
| net.set_train(False) | |||
| bs = config.test_batch_size | |||
| img = Tensor(np.zeros([args.batch_size, 3, config.img_height, config.img_width], np.float16)) | |||
| img_metas = Tensor(np.zeros([args.batch_size, 4], np.float16)) | |||
| gt_bboxes = Tensor(np.zeros([args.batch_size, config.num_gts, 4], np.float16)) | |||
| gt_labels = Tensor(np.zeros([args.batch_size, config.num_gts], np.int32)) | |||
| gt_num = Tensor(np.zeros([args.batch_size, config.num_gts], np.bool)) | |||
| gt_mask = Tensor(np.zeros([args.batch_size, config.num_gts], np.bool)) | |||
| input_data = [img, img_metas, gt_bboxes, gt_labels, gt_num, gt_mask] | |||
| input_data = [img, img_metas] | |||
| export(net, *input_data, file_name=args.file_name, file_format=args.file_format) | |||
| @@ -0,0 +1,96 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # less required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """post process for 310 inference""" | |||
| import argparse | |||
| import numpy as np | |||
| from PIL import Image | |||
| from pycocotools.coco import COCO | |||
| from src.config import config | |||
| from src.util import coco_eval, bbox2result_1image, results2json, get_seg_masks | |||
| dst_width = 1280 | |||
| dst_height = 768 | |||
| parser = argparse.ArgumentParser(description="maskrcnn inference") | |||
| parser.add_argument("--ann_file", type=str, required=True, help="ann file.") | |||
| parser.add_argument("--img_path", type=str, required=True, help="image file path.") | |||
| args = parser.parse_args() | |||
| def get_imgSize(file_name): | |||
| img = Image.open(file_name) | |||
| return img.size | |||
| def get_resizeRatio(img_size): | |||
| org_width, org_height = img_size | |||
| resize_ratio = dst_width / org_width | |||
| if resize_ratio > dst_height / org_height: | |||
| resize_ratio = dst_height / org_height | |||
| return resize_ratio | |||
| def get_eval_result(ann_file, img_path): | |||
| max_num = 128 | |||
| result_path = "./result_Files/" | |||
| outputs = [] | |||
| dataset_coco = COCO(ann_file) | |||
| img_ids = dataset_coco.getImgIds() | |||
| for img_id in img_ids: | |||
| file_id = str(img_id).zfill(12) | |||
| file = img_path + "/" + file_id + ".jpg" | |||
| img_size = get_imgSize(file) | |||
| resize_ratio = get_resizeRatio(img_size) | |||
| img_metas = np.array([img_size[1], img_size[0]] + [resize_ratio, resize_ratio]) | |||
| bbox_result_file = result_path + file_id + "_0.bin" | |||
| label_result_file = result_path + file_id + "_1.bin" | |||
| mask_result_file = result_path + file_id + "_2.bin" | |||
| mask_fb_result_file = result_path + file_id + "_3.bin" | |||
| all_bbox = np.fromfile(bbox_result_file, dtype=np.float16).reshape(80000, 5) | |||
| all_label = np.fromfile(label_result_file, dtype=np.int32).reshape(80000, 1) | |||
| all_mask = np.fromfile(mask_result_file, dtype=np.bool_).reshape(80000, 1) | |||
| all_mask_fb = np.fromfile(mask_fb_result_file, dtype=np.float16).reshape(80000, 28, 28) | |||
| all_bbox_squee = np.squeeze(all_bbox) | |||
| all_label_squee = np.squeeze(all_label) | |||
| all_mask_squee = np.squeeze(all_mask) | |||
| all_mask_fb_squee = np.squeeze(all_mask_fb) | |||
| all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :] | |||
| all_labels_tmp_mask = all_label_squee[all_mask_squee] | |||
| all_mask_fb_tmp_mask = all_mask_fb_squee[all_mask_squee, :, :] | |||
| if all_bboxes_tmp_mask.shape[0] > max_num: | |||
| inds = np.argsort(-all_bboxes_tmp_mask[:, -1]) | |||
| inds = inds[:max_num] | |||
| all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds] | |||
| all_labels_tmp_mask = all_labels_tmp_mask[inds] | |||
| all_mask_fb_tmp_mask = all_mask_fb_tmp_mask[inds] | |||
| bbox_results = bbox2result_1image(all_bboxes_tmp_mask, all_labels_tmp_mask, config.num_classes) | |||
| segm_results = get_seg_masks(all_mask_fb_tmp_mask, all_bboxes_tmp_mask, all_labels_tmp_mask, img_metas, | |||
| True, config.num_classes) | |||
| outputs.append((bbox_results, segm_results)) | |||
| eval_types = ["bbox", "segm"] | |||
| result_files = results2json(dataset_coco, outputs, "./results.pkl") | |||
| coco_eval(result_files, eval_types, dataset_coco, single_result=False) | |||
| if __name__ == '__main__': | |||
| get_eval_result(args.ann_file, args.img_path) | |||
| @@ -0,0 +1,92 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 3 ] | |||
| then | |||
| echo "Usage: sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| model=$(get_real_path $1) | |||
| data_path=$(get_real_path $2) | |||
| ann_file=$(get_real_path $3) | |||
| echo $model | |||
| echo $data_path | |||
| echo $ann_file | |||
| export ASCEND_HOME=/usr/local/Ascend/ | |||
| export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ones:$LD_LIBRARY_PATH | |||
| export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages/te.egg:$ASCEND_HOME/atc/python/site-packages/topi.egg:$ASCEND_HOME/atc/python/site-packages/auto_tune.egg::$ASCEND_HOME/atc/python/site-packages/schedule_search.egg:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/opp | |||
| function air_to_om() | |||
| { | |||
| atc --input_format=NCHW --framework=1 --model=$model --input_shape="x:1, 3, 768, 1280; im_info: 1, 4" --output=maskrcnn --insert_op_conf=../src/aipp.cfg --precision_mode=allow_fp32_to_fp16 --soc_version=Ascend310 | |||
| } | |||
| function compile_app() | |||
| { | |||
| cd ../ascend310_infer/src | |||
| sh build.sh | |||
| cd - | |||
| } | |||
| function infer() | |||
| { | |||
| if [ -d result_Files ]; then | |||
| rm -rf ./result_Files | |||
| fi | |||
| if [ -d time_Result ]; then | |||
| rm -rf ./time_Result | |||
| fi | |||
| mkdir result_Files | |||
| mkdir time_Result | |||
| ../ascend310_infer/src/out/main --om_path=./maskrcnn.om --data_path=$data_path | |||
| } | |||
| function cal_acc() | |||
| { | |||
| python ../postprocess.py --ann_file=$ann_file --img_path=$data_path &> log & | |||
| } | |||
| air_to_om | |||
| if [ $? -ne 0 ]; then | |||
| echo "air to om failed" | |||
| exit 1 | |||
| fi | |||
| compile_app | |||
| if [ $? -ne 0 ]; then | |||
| echo "compile app code failed" | |||
| exit 1 | |||
| fi | |||
| infer | |||
| if [ $? -ne 0 ]; then | |||
| echo "excute inference failed" | |||
| exit 1 | |||
| fi | |||
| cal_acc | |||
| if [ $? -ne 0 ]; then | |||
| echo "calculate accuracy failed" | |||
| exit 1 | |||
| fi | |||
| @@ -0,0 +1,26 @@ | |||
| aipp_op { | |||
| aipp_mode : static | |||
| input_format : YUV420SP_U8 | |||
| related_input_rank : 0 | |||
| csc_switch : true | |||
| rbuv_swap_switch : false | |||
| matrix_r0c0 : 256 | |||
| matrix_r0c1 : 0 | |||
| matrix_r0c2 : 359 | |||
| matrix_r1c0 : 256 | |||
| matrix_r1c1 : -88 | |||
| matrix_r1c2 : -183 | |||
| matrix_r2c0 : 256 | |||
| matrix_r2c1 : 454 | |||
| matrix_r2c2 : 0 | |||
| input_bias_0 : 0 | |||
| input_bias_1 : 128 | |||
| input_bias_2 : 128 | |||
| mean_chn_0 : 124 | |||
| mean_chn_1 : 117 | |||
| mean_chn_2 : 104 | |||
| var_reci_chn_0 : 0.0171247538316637 | |||
| var_reci_chn_1 : 0.0175070028011204 | |||
| var_reci_chn_2 : 0.0174291938997821 | |||
| } | |||
| @@ -567,3 +567,13 @@ class Mask_Rcnn_Resnet50(nn.Cell): | |||
| roi_feats_mask_test = self.cast(roi_feats_mask_test, mstype.float16) | |||
| mask_fb_pred_all = self.rcnn_mask(roi_feats_mask_test) | |||
| return mask_fb_pred_all | |||
| class MaskRcnn_Infer(nn.Cell): | |||
| def __init__(self, config): | |||
| super(MaskRcnn_Infer, self).__init__() | |||
| self.network = Mask_Rcnn_Resnet50(config) | |||
| self.network.set_train(False) | |||
| def construct(self, img_data, img_metas): | |||
| output = self.network(img_data, img_metas, None, None, None, None) | |||
| return output | |||