You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

CrossEntropySmooth.py 1.6 kB

1234567891011121314151617181920212223242526272829303132333435363738
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """define loss function for network"""
  16. import mindspore.nn as nn
  17. from mindspore import Tensor
  18. from mindspore.common import dtype as mstype
  19. from mindspore.nn.loss.loss import _Loss
  20. from mindspore.ops import functional as F
  21. from mindspore.ops import operations as P
  22. class CrossEntropySmooth(_Loss):
  23. """CrossEntropy"""
  24. def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
  25. super(CrossEntropySmooth, self).__init__()
  26. self.onehot = P.OneHot()
  27. self.sparse = sparse
  28. self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
  29. self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
  30. self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
  31. def construct(self, logit, label):
  32. if self.sparse:
  33. label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
  34. loss = self.ce(logit, label)
  35. return loss