# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """define loss function for network""" import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.nn.loss.loss import _Loss from mindspore.ops import functional as F from mindspore.ops import operations as P class CrossEntropySmooth(_Loss): """CrossEntropy""" def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000): super(CrossEntropySmooth, self).__init__() self.onehot = P.OneHot() self.sparse = sparse self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction) def construct(self, logit, label): if self.sparse: label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) loss = self.ce(logit, label) return loss