|
- # coding: utf-8
- #================================================================#
- # Copyright (C) 2020 Freecss All rights reserved.
- #
- # File Name :basic_model.py
- # Author :freecss
- # Email :karlfreecss@gmail.com
- # Created Date :2020/11/21
- # Description :
- #
- #================================================================#
-
- import sys
- sys.path.append("..")
-
- import torch
- from torch.utils.data import Dataset
-
- import os
- from multiprocessing import Pool
-
- class XYDataset(Dataset):
- def __init__(self, X, Y, transform=None):
- self.X = X
- self.Y = torch.LongTensor(Y)
-
- self.n_sample = len(X)
- self.transform = transform
-
- def __len__(self):
- return len(self.X)
-
- def __getitem__(self, index):
- assert index < len(self), 'index range error'
-
- img = self.X[index]
- if self.transform is not None:
- img = self.transform(img)
-
- label = self.Y[index]
-
- return (img, label)
-
- class FakeRecorder():
- def __init__(self):
- pass
-
- def print(self, *x):
- pass
-
- class BasicModel():
- def __init__(self,
- model,
- criterion,
- optimizer,
- device,
- batch_size = 1,
- num_epochs = 10,
- stop_loss = 0.01,
- num_workers = 0,
- save_interval = None,
- save_dir = None,
- transform = None,
- collate_fn = None,
- recorder = None):
-
- self.model = model.to(device)
-
- self.batch_size = batch_size
- self.num_epochs = num_epochs
- self.stop_loss = stop_loss
- self.num_workers = num_workers
-
- self.criterion = criterion
- self.optimizer = optimizer
- self.transform = transform
- self.device = device
-
- if recorder is None:
- recorder = FakeRecorder()
- self.recorder = recorder
-
- self.save_interval = save_interval
- self.save_dir = save_dir
- self.collate_fn = collate_fn
- pass
-
- def _fit(self, data_loader, n_epoch, stop_loss):
- recorder = self.recorder
- recorder.print("model fitting")
-
- min_loss = 999999999
- for epoch in range(n_epoch):
- loss_value = self.train_epoch(data_loader)
- recorder.print(f"{epoch}/{n_epoch} model training loss is {loss_value}")
- if loss_value < min_loss:
- min_loss = loss_value
- if epoch > 0 and self.save_interval is not None and epoch % self.save_interval == 0:
- assert self.save_dir is not None
- self.save(self.save_dir)
- if stop_loss is not None and loss_value < stop_loss:
- break
- recorder.print("Model fitted, minimal loss is ", min_loss)
- return loss_value
-
- def fit(self, data_loader = None,
- X = None,
- y = None):
- if data_loader is None:
- collate_fn = self.collate_fn
- transform = self.transform
-
- train_dataset = XYDataset(X, y, transform=transform)
- sampler = None
- data_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size, \
- shuffle=True, sampler=sampler, num_workers=int(self.num_workers), \
- collate_fn=collate_fn)
- return self._fit(data_loader, self.num_epochs, self.stop_loss)
-
- def train_epoch(self, data_loader):
- model = self.model
- criterion = self.criterion
- optimizer = self.optimizer
- device = self.device
-
- model.train()
-
- loss_value = 0
- for _, data in enumerate(data_loader):
- X = data[0].to(device)
- Y = data[1].to(device)
- pred_Y = model(X)
-
- loss = criterion(pred_Y, Y)
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- loss_value += loss.item()
-
- return loss_value
-
- def _predict(self, data_loader):
- model = self.model
- device = self.device
-
- model.eval()
-
- with torch.no_grad():
- results = []
- for _, data in enumerate(data_loader):
- X = data[0].to(device)
- pred_Y = model(X)
- results.append(pred_Y)
-
- return torch.cat(results, axis=0)
-
- def predict(self, data_loader = None, X = None, print_prefix = ""):
- if data_loader is None:
- collate_fn = self.collate_fn
- transform = self.transform
-
- Y = [0] * len(X)
- val_dataset = XYDataset(X, Y, transform=transform)
- sampler = None
- data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, \
- shuffle=False, sampler=sampler, num_workers=int(self.num_workers), \
- collate_fn=collate_fn)
-
- recorder = self.recorder
- recorder.print('Start Predict ', print_prefix)
- Y = self._predict(data_loader).argmax(axis=1)
- return [int(y) for y in Y]
-
- def predict_proba(self, data_loader = None, X = None, print_prefix = ""):
- if data_loader is None:
- collate_fn = self.collate_fn
- transform = self.transform
-
- Y = [0] * len(X)
- val_dataset = XYDataset(X, Y, transform=transform)
- sampler = None
- data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, \
- shuffle=False, sampler=sampler, num_workers=int(self.num_workers), \
- collate_fn=collate_fn)
-
- recorder = self.recorder
- recorder.print('Start Predict ', print_prefix)
- return torch.softmax(self._predict(data_loader), axis=1).cpu().numpy()
-
- def _val(self, data_loader, print_prefix):
- model = self.model
- criterion = self.criterion
- recorder = self.recorder
- device = self.device
- recorder.print('Start val ', print_prefix)
-
- model.eval()
-
- n_correct = 0
- pred_num = 0
- loss_value = 0
- with torch.no_grad():
- for _, data in enumerate(data_loader):
- X = data[0].to(device)
- Y = data[1].to(device)
-
- pred_Y = model(X)
-
- correct_num = sum(Y == pred_Y.argmax(axis=1))
- loss = criterion(pred_Y, Y)
- loss_value += loss.item()
-
- n_correct += correct_num
- pred_num += len(X)
-
- accuracy = float(n_correct) / float(pred_num)
- recorder.print('[%s] Val loss: %f, accuray: %f' % (print_prefix, loss_value, accuracy))
- return accuracy
-
- def val(self, data_loader = None, X = None, y = None, print_prefix = ""):
- if data_loader is None:
- collate_fn = self.collate_fn
- transform = self.transform
-
- val_dataset = XYDataset(X, y, transform=transform)
- sampler = None
- data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, \
- shuffle=True, sampler=sampler, num_workers=int(self.num_workers), \
- collate_fn=collate_fn)
- return self._val(data_loader, print_prefix)
-
- def score(self, data_loader = None, X = None, y = None, print_prefix = ""):
- return self.val(data_loader, X, y, print_prefix)
-
- def save(self, save_dir):
- recorder = self.recorder
- if not os.path.exists(save_dir):
- os.mkdir(save_dir)
- recorder.print("Saving model and opter")
- save_path = os.path.join(save_dir, "net.pth")
- torch.save(self.model.state_dict(), save_path)
-
- save_path = os.path.join(save_dir, "opt.pth")
- torch.save(self.optimizer.state_dict(), save_path)
-
- def load(self, load_dir):
- recorder = self.recorder
- recorder.print("Loading model and opter")
- load_path = os.path.join(load_dir, "net.pth")
- self.model.load_state_dict(torch.load(load_path))
-
- load_path = os.path.join(load_dir, "opt.pth")
- self.optimizer.load_state_dict(torch.load(load_path))
-
- if __name__ == "__main__":
- pass
-
|