You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

basic_model.py 8.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. # coding: utf-8
  2. #================================================================#
  3. # Copyright (C) 2020 Freecss All rights reserved.
  4. #
  5. # File Name :basic_model.py
  6. # Author :freecss
  7. # Email :karlfreecss@gmail.com
  8. # Created Date :2020/11/21
  9. # Description :
  10. #
  11. #================================================================#
  12. import sys
  13. sys.path.append("..")
  14. import torch
  15. from torch.utils.data import Dataset
  16. import os
  17. from multiprocessing import Pool
  18. class XYDataset(Dataset):
  19. def __init__(self, X, Y, transform=None):
  20. self.X = X
  21. self.Y = torch.LongTensor(Y)
  22. self.n_sample = len(X)
  23. self.transform = transform
  24. def __len__(self):
  25. return len(self.X)
  26. def __getitem__(self, index):
  27. assert index < len(self), 'index range error'
  28. img = self.X[index]
  29. if self.transform is not None:
  30. img = self.transform(img)
  31. label = self.Y[index]
  32. return (img, label)
  33. class FakeRecorder():
  34. def __init__(self):
  35. pass
  36. def print(self, *x):
  37. pass
  38. class BasicModel():
  39. def __init__(self,
  40. model,
  41. criterion,
  42. optimizer,
  43. device,
  44. batch_size = 1,
  45. num_epochs = 10,
  46. stop_loss = 0.01,
  47. num_workers = 0,
  48. save_interval = None,
  49. save_dir = None,
  50. transform = None,
  51. collate_fn = None,
  52. recorder = None):
  53. self.model = model.to(device)
  54. self.batch_size = batch_size
  55. self.num_epochs = num_epochs
  56. self.stop_loss = stop_loss
  57. self.num_workers = num_workers
  58. self.criterion = criterion
  59. self.optimizer = optimizer
  60. self.transform = transform
  61. self.device = device
  62. if recorder is None:
  63. recorder = FakeRecorder()
  64. self.recorder = recorder
  65. self.save_interval = save_interval
  66. self.save_dir = save_dir
  67. self.collate_fn = collate_fn
  68. pass
  69. def _fit(self, data_loader, n_epoch, stop_loss):
  70. recorder = self.recorder
  71. recorder.print("model fitting")
  72. min_loss = 999999999
  73. for epoch in range(n_epoch):
  74. loss_value = self.train_epoch(data_loader)
  75. recorder.print(f"{epoch}/{n_epoch} model training loss is {loss_value}")
  76. if loss_value < min_loss:
  77. min_loss = loss_value
  78. if epoch > 0 and self.save_interval is not None and epoch % self.save_interval == 0:
  79. assert self.save_dir is not None
  80. self.save(self.save_dir)
  81. if stop_loss is not None and loss_value < stop_loss:
  82. break
  83. recorder.print("Model fitted, minimal loss is ", min_loss)
  84. return loss_value
  85. def fit(self, data_loader = None,
  86. X = None,
  87. y = None):
  88. if data_loader is None:
  89. collate_fn = self.collate_fn
  90. transform = self.transform
  91. train_dataset = XYDataset(X, y, transform=transform)
  92. sampler = None
  93. data_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size, \
  94. shuffle=True, sampler=sampler, num_workers=int(self.num_workers), \
  95. collate_fn=collate_fn)
  96. return self._fit(data_loader, self.num_epochs, self.stop_loss)
  97. def train_epoch(self, data_loader):
  98. model = self.model
  99. criterion = self.criterion
  100. optimizer = self.optimizer
  101. device = self.device
  102. model.train()
  103. loss_value = 0
  104. for _, data in enumerate(data_loader):
  105. X = data[0].to(device)
  106. Y = data[1].to(device)
  107. pred_Y = model(X)
  108. loss = criterion(pred_Y, Y)
  109. optimizer.zero_grad()
  110. loss.backward()
  111. optimizer.step()
  112. loss_value += loss.item()
  113. return loss_value
  114. def _predict(self, data_loader):
  115. model = self.model
  116. device = self.device
  117. model.eval()
  118. with torch.no_grad():
  119. results = []
  120. for _, data in enumerate(data_loader):
  121. X = data[0].to(device)
  122. pred_Y = model(X)
  123. results.append(pred_Y)
  124. return torch.cat(results, axis=0)
  125. def predict(self, data_loader = None, X = None, print_prefix = ""):
  126. if data_loader is None:
  127. collate_fn = self.collate_fn
  128. transform = self.transform
  129. Y = [0] * len(X)
  130. val_dataset = XYDataset(X, Y, transform=transform)
  131. sampler = None
  132. data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, \
  133. shuffle=False, sampler=sampler, num_workers=int(self.num_workers), \
  134. collate_fn=collate_fn)
  135. recorder = self.recorder
  136. recorder.print('Start Predict ', print_prefix)
  137. Y = self._predict(data_loader).argmax(axis=1)
  138. return [int(y) for y in Y]
  139. def predict_proba(self, data_loader = None, X = None, print_prefix = ""):
  140. if data_loader is None:
  141. collate_fn = self.collate_fn
  142. transform = self.transform
  143. Y = [0] * len(X)
  144. val_dataset = XYDataset(X, Y, transform=transform)
  145. sampler = None
  146. data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, \
  147. shuffle=False, sampler=sampler, num_workers=int(self.num_workers), \
  148. collate_fn=collate_fn)
  149. recorder = self.recorder
  150. recorder.print('Start Predict ', print_prefix)
  151. return torch.softmax(self._predict(data_loader), axis=1).cpu().numpy()
  152. def _val(self, data_loader, print_prefix):
  153. model = self.model
  154. criterion = self.criterion
  155. recorder = self.recorder
  156. device = self.device
  157. recorder.print('Start val ', print_prefix)
  158. model.eval()
  159. n_correct = 0
  160. pred_num = 0
  161. loss_value = 0
  162. with torch.no_grad():
  163. for _, data in enumerate(data_loader):
  164. X = data[0].to(device)
  165. Y = data[1].to(device)
  166. pred_Y = model(X)
  167. correct_num = sum(Y == pred_Y.argmax(axis=1))
  168. loss = criterion(pred_Y, Y)
  169. loss_value += loss.item()
  170. n_correct += correct_num
  171. pred_num += len(X)
  172. accuracy = float(n_correct) / float(pred_num)
  173. recorder.print('[%s] Val loss: %f, accuray: %f' % (print_prefix, loss_value, accuracy))
  174. return accuracy
  175. def val(self, data_loader = None, X = None, y = None, print_prefix = ""):
  176. if data_loader is None:
  177. collate_fn = self.collate_fn
  178. transform = self.transform
  179. val_dataset = XYDataset(X, y, transform=transform)
  180. sampler = None
  181. data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, \
  182. shuffle=True, sampler=sampler, num_workers=int(self.num_workers), \
  183. collate_fn=collate_fn)
  184. return self._val(data_loader, print_prefix)
  185. def score(self, data_loader = None, X = None, y = None, print_prefix = ""):
  186. return self.val(data_loader, X, y, print_prefix)
  187. def save(self, save_dir):
  188. recorder = self.recorder
  189. if not os.path.exists(save_dir):
  190. os.mkdir(save_dir)
  191. recorder.print("Saving model and opter")
  192. save_path = os.path.join(save_dir, "net.pth")
  193. torch.save(self.model.state_dict(), save_path)
  194. save_path = os.path.join(save_dir, "opt.pth")
  195. torch.save(self.optimizer.state_dict(), save_path)
  196. def load(self, load_dir):
  197. recorder = self.recorder
  198. recorder.print("Loading model and opter")
  199. load_path = os.path.join(load_dir, "net.pth")
  200. self.model.load_state_dict(torch.load(load_path))
  201. load_path = os.path.join(load_dir, "opt.pth")
  202. self.optimizer.load_state_dict(torch.load(load_path))
  203. if __name__ == "__main__":
  204. pass

An efficient Python toolkit for Abductive Learning (ABL), a novel paradigm that integrates machine learning and logical reasoning in a unified framework.