@@ -24,8 +24,8 @@
package org.apache.tools.bzip2;
import java.io.OutputStream;
import java.io.IOException;
import java.io.OutputStream;
/**
* An output stream that compresses into the BZip2 format (without the file
@@ -528,19 +528,12 @@ public class CBZip2OutputStream extends OutputStream
*/
private int last;
/**
* Index in fmap[] of original string after sorting.
*/
private int origPtr;
/**
* Always: in the range 0 .. 9. The current block size is 100000 * this
* number.
*/
private final int blockSize100k;
private boolean blockRandomised;
private int bsBuff;
private int bsLive;
private final CRC crc = new CRC();
@@ -549,14 +542,6 @@ public class CBZip2OutputStream extends OutputStream
private int nMTF;
/*
* Used when sorting. If too many long comparisons happen, we stop sorting,
* randomise the block slightly, and try again.
*/
private int workDone;
private int workLimit;
private boolean firstAttempt;
private int currentChar = -1;
private int runLength = 0;
@@ -567,7 +552,8 @@ public class CBZip2OutputStream extends OutputStream
/**
* All memory intensive stuff.
*/
private CBZip2OutputStream.Data data;
private Data data;
private BlockSort blockSorter;
private OutputStream out;
@@ -592,7 +578,7 @@ public class CBZip2OutputStream extends OutputStream
* Constructs a new <tt>CBZip2OutputStream</tt> with a blocksize of 900k.
*
* <p>
* <b>Attention: </b>The caller is resonsible to write the two BZip2 magic
* <b>Attention: </b>The caller is resp onsible to write the two BZip2 magic
* bytes <tt>"BZ"</tt> to the specified stream prior to calling this
* constructor.
* </p>
@@ -613,7 +599,7 @@ public class CBZip2OutputStream extends OutputStream
* Constructs a new <tt>CBZip2OutputStream</tt> with specified blocksize.
*
* <p>
* <b>Attention: </b>The caller is resonsible to write the two BZip2 magic
* <b>Attention: </b>The caller is resp onsible to write the two BZip2 magic
* bytes <tt>"BZ"</tt> to the specified stream prior to calling this
* constructor.
* </p>
@@ -652,6 +638,8 @@ public class CBZip2OutputStream extends OutputStream
init();
}
/** {@inheritDoc} */
@Override
public void write(final int b) throws IOException {
if (this.out != null) {
write0(b);
@@ -660,6 +648,19 @@ public class CBZip2OutputStream extends OutputStream
}
}
/**
* Writes the current byte to the buffer, run-length encoding it
* if it has been repeated at least four times (the first step
* RLEs sequences of four identical bytes).
*
* <p>Flushes the current block before writing data if it is
* full.</p>
*
* <p>"write to the buffer" means adding to data.buffer starting
* two steps "after" this.last - initially starting at index 1
* (not 0) - and updating this.last to point to the last index
* written minus 1.</p>
*/
private void writeRun() throws IOException {
final int lastShadow = this.last;
@@ -717,6 +718,7 @@ public class CBZip2OutputStream extends OutputStream
/**
* Overriden to close the stream.
*/
@Override
protected void finalize() throws Throwable {
finish();
super.finalize();
@@ -735,10 +737,12 @@ public class CBZip2OutputStream extends OutputStream
} finally {
this.out = null;
this.data = null;
this.blockSorter = null;
}
}
}
@Override
public void close() throws IOException {
if (out != null) {
OutputStream outShadow = this.out;
@@ -747,6 +751,7 @@ public class CBZip2OutputStream extends OutputStream
}
}
@Override
public void flush() throws IOException {
OutputStream outShadow = this.out;
if (outShadow != null) {
@@ -760,6 +765,7 @@ public class CBZip2OutputStream extends OutputStream
// this.out.write('Z');
this.data = new Data(this.blockSize100k);
this.blockSorter = new BlockSort(this.data);
/*
* Write `magic' bytes h indicating file-format == huffmanised, followed
@@ -821,12 +827,8 @@ public class CBZip2OutputStream extends OutputStream
/* Now the block's CRC, so it is in a known place. */
bsPutInt(this.blockCRC);
/* Now a single bit indicating randomisation. */
if (this.blockRandomised) {
bsW(1, 1);
} else {
bsW(1, 0);
}
/* Now a single bit indicating no randomisation. */
bsW(1, 0);
/* Finally, block's contents proper. */
moveToFrontCodeAndSend();
@@ -857,6 +859,7 @@ public class CBZip2OutputStream extends OutputStream
return this.blockSize100k;
}
@Override
public void write(final byte[] buf, int offs, final int len)
throws IOException {
if (offs < 0) {
@@ -879,6 +882,10 @@ public class CBZip2OutputStream extends OutputStream
}
}
/**
* Keeps track of the last bytes written and implicitly performs
* run-length encoding as the first step of the bzip2 algorithm.
*/
private void write0(int b) throws IOException {
if (this.currentChar != -1) {
b &= 0xff;
@@ -990,7 +997,7 @@ public class CBZip2OutputStream extends OutputStream
sendMTFValues6(nGroups, alphaSize);
/* And finally, the block data proper */
sendMTFValues7(nSelectors );
sendMTFValues7();
}
private void sendMTFValues0(final int nGroups, final int alphaSize) {
@@ -1343,7 +1350,7 @@ public class CBZip2OutputStream extends OutputStream
this.bsLive = bsLiveShadow;
}
private void sendMTFValues7(final int nSelectors ) throws IOException {
private void sendMTFValues7() throws IOException {
final Data dataShadow = this.data;
final byte[][] len = dataShadow.sendMTFValues_len;
final int[][] code = dataShadow.sendMTFValues_code;
@@ -1391,545 +1398,22 @@ public class CBZip2OutputStream extends OutputStream
}
private void moveToFrontCodeAndSend() throws IOException {
bsW(24, this.origPtr);
bsW(24, this.data. origPtr);
generateMTFValues();
sendMTFValues();
}
/**
* This is the most hammered method of this class.
*
* <p>
* This is the version using unrolled loops. Normally I never use such ones
* in Java code. The unrolling has shown a noticable performance improvement
* on JRE 1.4.2 (Linux i586 / HotSpot Client). Of course it depends on the
* JIT compiler of the vm.
* </p>
*/
private boolean mainSimpleSort(final Data dataShadow, final int lo,
final int hi, final int d) {
final int bigN = hi - lo + 1;
if (bigN < 2) {
return this.firstAttempt && (this.workDone > this.workLimit);
}
int hp = 0;
while (INCS[hp] < bigN) {
hp++;
}
final int[] fmap = dataShadow.fmap;
final char[] quadrant = dataShadow.quadrant;
final byte[] block = dataShadow.block;
final int lastShadow = this.last;
final int lastPlus1 = lastShadow + 1;
final boolean firstAttemptShadow = this.firstAttempt;
final int workLimitShadow = this.workLimit;
int workDoneShadow = this.workDone;
// Following block contains unrolled code which could be shortened by
// coding it in additional loops.
HP: while (--hp >= 0) {
final int h = INCS[hp];
final int mj = lo + h - 1;
for (int i = lo + h; i <= hi;) {
// copy
for (int k = 3; (i <= hi) && (--k >= 0); i++) {
final int v = fmap[i];
final int vd = v + d;
int j = i;
// for (int a;
// (j > mj) && mainGtU((a = fmap[j - h]) + d, vd,
// block, quadrant, lastShadow);
// j -= h) {
// fmap[j] = a;
// }
//
// unrolled version:
// start inline mainGTU
boolean onceRunned = false;
int a = 0;
HAMMER: while (true) {
if (onceRunned) {
fmap[j] = a;
if ((j -= h) <= mj) {
break HAMMER;
}
} else {
onceRunned = true;
}
a = fmap[j - h];
int i1 = a + d;
int i2 = vd;
// following could be done in a loop, but
// unrolled it for performance:
if (block[i1 + 1] == block[i2 + 1]) {
if (block[i1 + 2] == block[i2 + 2]) {
if (block[i1 + 3] == block[i2 + 3]) {
if (block[i1 + 4] == block[i2 + 4]) {
if (block[i1 + 5] == block[i2 + 5]) {
if (block[(i1 += 6)] == block[(i2 += 6)]) {
int x = lastShadow;
X: while (x > 0) {
x -= 4;
if (block[i1 + 1] == block[i2 + 1]) {
if (quadrant[i1] == quadrant[i2]) {
if (block[i1 + 2] == block[i2 + 2]) {
if (quadrant[i1 + 1] == quadrant[i2 + 1]) {
if (block[i1 + 3] == block[i2 + 3]) {
if (quadrant[i1 + 2] == quadrant[i2 + 2]) {
if (block[i1 + 4] == block[i2 + 4]) {
if (quadrant[i1 + 3] == quadrant[i2 + 3]) {
if ((i1 += 4) >= lastPlus1) {
i1 -= lastPlus1;
}
if ((i2 += 4) >= lastPlus1) {
i2 -= lastPlus1;
}
workDoneShadow++;
continue X;
} else if ((quadrant[i1 + 3] > quadrant[i2 + 3])) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((quadrant[i1 + 2] > quadrant[i2 + 2])) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((quadrant[i1 + 1] > quadrant[i2 + 1])) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((quadrant[i1] > quadrant[i2])) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
}
break HAMMER;
} // while x > 0
else {
if ((block[i1] & 0xff) > (block[i2] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
}
} else if ((block[i1 + 5] & 0xff) > (block[i2 + 5] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
} else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
continue HAMMER;
} else {
break HAMMER;
}
} // HAMMER
// end inline mainGTU
fmap[j] = v;
}
if (firstAttemptShadow && (i <= hi)
&& (workDoneShadow > workLimitShadow)) {
break HP;
}
}
}
this.workDone = workDoneShadow;
return firstAttemptShadow && (workDoneShadow > workLimitShadow);
}
private static void vswap(int[] fmap, int p1, int p2, int n) {
n += p1;
while (p1 < n) {
int t = fmap[p1];
fmap[p1++] = fmap[p2];
fmap[p2++] = t;
}
}
private static byte med3(byte a, byte b, byte c) {
return (a < b) ? (b < c ? b : a < c ? c : a) : (b > c ? b : a > c ? c
: a);
}
private void blockSort() {
this.workLimit = WORK_FACTOR * this.last;
this.workDone = 0;
this.blockRandomised = false;
this.firstAttempt = true;
mainSort();
if (this.firstAttempt && (this.workDone > this.workLimit)) {
randomiseBlock();
this.workLimit = this.workDone = 0;
this.firstAttempt = false;
mainSort();
}
int[] fmap = this.data.fmap;
this.origPtr = -1;
for (int i = 0, lastShadow = this.last; i <= lastShadow; i++) {
if (fmap[i] == 0) {
this.origPtr = i;
break;
}
}
// assert (this.origPtr != -1) : this.origPtr;
blockSorter.blockSort(data, last);
}
/**
* Method "mainQSort3", file "blocksort.c", BZip2 1.0.2
/*
* Performs Move-To-Front on the Burrows-Wheeler transformed
* buffer, storing the MTFed data in data.sfmap in RUNA/RUNB
* run-length-encoded form.
*
* <p>Keeps track of byte frequencies in data.mtfFreq at the same time.</p>
*/
private void mainQSort3(final Data dataShadow, final int loSt,
final int hiSt, final int dSt) {
final int[] stack_ll = dataShadow.stack_ll;
final int[] stack_hh = dataShadow.stack_hh;
final int[] stack_dd = dataShadow.stack_dd;
final int[] fmap = dataShadow.fmap;
final byte[] block = dataShadow.block;
stack_ll[0] = loSt;
stack_hh[0] = hiSt;
stack_dd[0] = dSt;
for (int sp = 1; --sp >= 0;) {
final int lo = stack_ll[sp];
final int hi = stack_hh[sp];
final int d = stack_dd[sp];
if ((hi - lo < SMALL_THRESH) || (d > DEPTH_THRESH)) {
if (mainSimpleSort(dataShadow, lo, hi, d)) {
return;
}
} else {
final int d1 = d + 1;
final int med = med3(block[fmap[lo] + d1],
block[fmap[hi] + d1], block[fmap[(lo + hi) >>> 1] + d1]) & 0xff;
int unLo = lo;
int unHi = hi;
int ltLo = lo;
int gtHi = hi;
while (true) {
while (unLo <= unHi) {
final int n = ((int) block[fmap[unLo] + d1] & 0xff)
- med;
if (n == 0) {
final int temp = fmap[unLo];
fmap[unLo++] = fmap[ltLo];
fmap[ltLo++] = temp;
} else if (n < 0) {
unLo++;
} else {
break;
}
}
while (unLo <= unHi) {
final int n = ((int) block[fmap[unHi] + d1] & 0xff)
- med;
if (n == 0) {
final int temp = fmap[unHi];
fmap[unHi--] = fmap[gtHi];
fmap[gtHi--] = temp;
} else if (n > 0) {
unHi--;
} else {
break;
}
}
if (unLo <= unHi) {
final int temp = fmap[unLo];
fmap[unLo++] = fmap[unHi];
fmap[unHi--] = temp;
} else {
break;
}
}
if (gtHi < ltLo) {
stack_ll[sp] = lo;
stack_hh[sp] = hi;
stack_dd[sp] = d1;
sp++;
} else {
int n = ((ltLo - lo) < (unLo - ltLo)) ? (ltLo - lo)
: (unLo - ltLo);
vswap(fmap, lo, unLo - n, n);
int m = ((hi - gtHi) < (gtHi - unHi)) ? (hi - gtHi)
: (gtHi - unHi);
vswap(fmap, unLo, hi - m + 1, m);
n = lo + unLo - ltLo - 1;
m = hi - (gtHi - unHi) + 1;
stack_ll[sp] = lo;
stack_hh[sp] = n;
stack_dd[sp] = d;
sp++;
stack_ll[sp] = n + 1;
stack_hh[sp] = m - 1;
stack_dd[sp] = d1;
sp++;
stack_ll[sp] = m;
stack_hh[sp] = hi;
stack_dd[sp] = d;
sp++;
}
}
}
}
private void mainSort() {
final Data dataShadow = this.data;
final int[] runningOrder = dataShadow.mainSort_runningOrder;
final int[] copy = dataShadow.mainSort_copy;
final boolean[] bigDone = dataShadow.mainSort_bigDone;
final int[] ftab = dataShadow.ftab;
final byte[] block = dataShadow.block;
final int[] fmap = dataShadow.fmap;
final char[] quadrant = dataShadow.quadrant;
final int lastShadow = this.last;
final int workLimitShadow = this.workLimit;
final boolean firstAttemptShadow = this.firstAttempt;
// Set up the 2-byte frequency table
for (int i = 65537; --i >= 0;) {
ftab[i] = 0;
}
/*
* In the various block-sized structures, live data runs from 0 to
* last+NUM_OVERSHOOT_BYTES inclusive. First, set up the overshoot area
* for block.
*/
for (int i = 0; i < NUM_OVERSHOOT_BYTES; i++) {
block[lastShadow + i + 2] = block[(i % (lastShadow + 1)) + 1];
}
for (int i = lastShadow + NUM_OVERSHOOT_BYTES +1; --i >= 0;) {
quadrant[i] = 0;
}
block[0] = block[lastShadow + 1];
// Complete the initial radix sort:
int c1 = block[0] & 0xff;
for (int i = 0; i <= lastShadow; i++) {
final int c2 = block[i + 1] & 0xff;
ftab[(c1 << 8) + c2]++;
c1 = c2;
}
for (int i = 1; i <= 65536; i++)
ftab[i] += ftab[i - 1];
c1 = block[1] & 0xff;
for (int i = 0; i < lastShadow; i++) {
final int c2 = block[i + 2] & 0xff;
fmap[--ftab[(c1 << 8) + c2]] = i;
c1 = c2;
}
fmap[--ftab[((block[lastShadow + 1] & 0xff) << 8) + (block[1] & 0xff)]] = lastShadow;
/*
* Now ftab contains the first loc of every small bucket. Calculate the
* running order, from smallest to largest big bucket.
*/
for (int i = 256; --i >= 0;) {
bigDone[i] = false;
runningOrder[i] = i;
}
for (int h = 364; h != 1;) {
h /= 3;
for (int i = h; i <= 255; i++) {
final int vv = runningOrder[i];
final int a = ftab[(vv + 1) << 8] - ftab[vv << 8];
final int b = h - 1;
int j = i;
for (int ro = runningOrder[j - h]; (ftab[(ro + 1) << 8] - ftab[ro << 8]) > a; ro = runningOrder[j
- h]) {
runningOrder[j] = ro;
j -= h;
if (j <= b) {
break;
}
}
runningOrder[j] = vv;
}
}
/*
* The main sorting loop.
*/
for (int i = 0; i <= 255; i++) {
/*
* Process big buckets, starting with the least full.
*/
final int ss = runningOrder[i];
// Step 1:
/*
* Complete the big bucket [ss] by quicksorting any unsorted small
* buckets [ss, j]. Hopefully previous pointer-scanning phases have
* already completed many of the small buckets [ss, j], so we don't
* have to sort them at all.
*/
for (int j = 0; j <= 255; j++) {
final int sb = (ss << 8) + j;
final int ftab_sb = ftab[sb];
if ((ftab_sb & SETMASK) != SETMASK) {
final int lo = ftab_sb & CLEARMASK;
final int hi = (ftab[sb + 1] & CLEARMASK) - 1;
if (hi > lo) {
mainQSort3(dataShadow, lo, hi, 2);
if (firstAttemptShadow
&& (this.workDone > workLimitShadow)) {
return;
}
}
ftab[sb] = ftab_sb | SETMASK;
}
}
// Step 2:
// Now scan this big bucket so as to synthesise the
// sorted order for small buckets [t, ss] for all t != ss.
for (int j = 0; j <= 255; j++) {
copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
}
for (int j = ftab[ss << 8] & CLEARMASK, hj = (ftab[(ss + 1) << 8] & CLEARMASK); j < hj; j++) {
final int fmap_j = fmap[j];
c1 = block[fmap_j] & 0xff;
if (!bigDone[c1]) {
fmap[copy[c1]] = (fmap_j == 0) ? lastShadow : (fmap_j - 1);
copy[c1]++;
}
}
for (int j = 256; --j >= 0;)
ftab[(j << 8) + ss] |= SETMASK;
// Step 3:
/*
* The ss big bucket is now done. Record this fact, and update the
* quadrant descriptors. Remember to update quadrants in the
* overshoot area too, if necessary. The "if (i < 255)" test merely
* skips this updating for the last bucket processed, since updating
* for the last bucket is pointless.
*/
bigDone[ss] = true;
if (i < 255) {
final int bbStart = ftab[ss << 8] & CLEARMASK;
final int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart;
int shifts = 0;
while ((bbSize >> shifts) > 65534) {
shifts++;
}
for (int j = 0; j < bbSize; j++) {
final int a2update = fmap[bbStart + j];
final char qVal = (char) (j >> shifts);
quadrant[a2update] = qVal;
if (a2update < NUM_OVERSHOOT_BYTES) {
quadrant[a2update + lastShadow + 1] = qVal;
}
}
}
}
}
private void randomiseBlock() {
final boolean[] inUse = this.data.inUse;
final byte[] block = this.data.block;
final int lastShadow = this.last;
for (int i = 256; --i >= 0;)
inUse[i] = false;
int rNToGo = 0;
int rTPos = 0;
for (int i = 0, j = 1; i <= lastShadow; i = j, j++) {
if (rNToGo == 0) {
rNToGo = (char) BZip2Constants.rNums[rTPos];
if (++rTPos == 512) {
rTPos = 0;
}
}
rNToGo--;
block[j] ^= ((rNToGo == 1) ? 1 : 0);
// handle 16 bit signed numbers
inUse[block[j] & 0xff] = true;
}
this.blockRandomised = true;
}
private void generateMTFValues() {
final int lastShadow = this.last;
final Data dataShadow = this.data;
@@ -2033,9 +1517,10 @@ public class CBZip2OutputStream extends OutputStream
this.nMTF = wr + 1;
}
private static final class Data extends Object {
static final class Data extends Object {
// with blockSize 900k
/* maps unsigned byte => "does it occur in block" */
final boolean[] inUse = new boolean[256]; // 256 byte
final byte[] unseqToSeq = new byte[256]; // 256 byte
final int[] mtfFreq = new int[MAX_ALPHA_SIZE]; // 1032 byte
@@ -2054,23 +1539,19 @@ public class CBZip2OutputStream extends OutputStream
final byte[] sendMTFValues2_pos = new byte[N_GROUPS]; // 6 byte
final boolean[] sentMTFValues4_inUse16 = new boolean[16]; // 16 byte
final int[] stack_ll = new int[QSORT_STACK_SIZE]; // 4000 byte
final int[] stack_hh = new int[QSORT_STACK_SIZE]; // 4000 byte
final int[] stack_dd = new int[QSORT_STACK_SIZE]; // 4000 byte
final int[] mainSort_runningOrder = new int[256]; // 1024 byte
final int[] mainSort_copy = new int[256]; // 1024 byte
final boolean[] mainSort_bigDone = new boolean[256]; // 256 byte
final int[] heap = new int[MAX_ALPHA_SIZE + 2]; // 1040 byte
final int[] weight = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
final int[] parent = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
final int[] ftab = new int[65537]; // 262148 byte
// ------------
// 333408 byte
/* holds the RLEd block of original data starting at index 1.
* After sorting the last byte added to the buffer is at index
* 0. */
final byte[] block; // 900021 byte
/* maps index in Burrows-Wheeler transformed block => index of
* byte in original block */
final int[] fmap; // 3600000 byte
final char[] sfmap; // 3600000 byte
// ------------
@@ -2078,11 +1559,12 @@ public class CBZip2OutputStream extends OutputStream
// ============
/**
* Array instance identical to sfmap, both are used only
* temporarily and indepently, so we do not need to allocate
* additional memory.
* Index of original line in Burrows-Wheeler table.
*
* <p>This is the index in fmap that points to the last byte
* of the original data.</p>
*/
final char[] quadrant ;
int origPtr ;
Data(int blockSize100k) {
super();
@@ -2091,7 +1573,6 @@ public class CBZip2OutputStream extends OutputStream
this.block = new byte[(n + 1 + NUM_OVERSHOOT_BYTES)];
this.fmap = new int[n];
this.sfmap = new char[2 * n];
this.quadrant = this.sfmap;
}
}