|
-
-
- """
- 示例选用的数据集是MnistDataset_mindspore.zip
- 数据集结构是:
- MnistDataset_mindspore.zip
- ├── test
- │ ├── t10k-images-idx3-ubyte
- │ └── t10k-labels-idx1-ubyte
- └── train
- ├── train-images-idx3-ubyte
- └── train-labels-idx1-ubyte
-
- 使用注意事项:
- 1、在代码中加入args, unknown = parser.parse_known_args(),可忽略掉--ckpt_url参数报错等参数问题
- 2、用户需要调用c2net的python sdk包
- """
- import time
- import os
- import argparse
- from config import mnist_cfg as cfg
- from dataset import create_dataset
- from lenet import LeNet5
- import mindspore.nn as nn
- import numpy as np
- from mindspore import context
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore import load_checkpoint, load_param_into_net
- from mindspore.train import Model
- from mindspore import Tensor
- #导入c2net包
- from c2net.context import prepare, upload_output
-
-
- parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
-
- parser.add_argument(
- '--device_target',
- type=str,
- default="Ascend",
- choices=['Ascend', 'CPU'],
- help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
-
- parser.add_argument('--epoch_size',
- type=int,
- default=5,
- help='Training epochs.')
-
- if __name__ == "__main__":
- ###请在代码中加入args, unknown = parser.parse_known_args(),可忽略掉--ckpt_url参数报错等参数问题
- args, unknown = parser.parse_known_args()
- #初始化导入数据集和预训练模型到容器内
- c2net_context = prepare()
- #获取数据集路径
- MnistDataset_mindspore_path = c2net_context.dataset_path+"/"+"MnistDataset_mindspore"
- #获取预训练模型路径
- Mindspore_MNIST_Example_Model_path = c2net_context.pretrain_model_path+"/"+"Mindspore_MNIST_Example_Model"
- #获取输出路径
- save_path = c2net_context.output_path
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- network = LeNet5(cfg.num_classes)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- repeat_size = cfg.epoch_size
- net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
- #model = Model(network, net_loss, net_opt, metrics={"Accuracy"})
- model = Model(network, net_loss, net_opt)
-
-
- print("============== Starting Testing ==============")
- load_param_into_net(network, load_checkpoint(os.path.join(Mindspore_MNIST_Example_Model_path, "checkpoint_lenet-1_1875.ckpt")))
- ds_test = create_dataset(os.path.join(MnistDataset_mindspore_path, "test"), batch_size=1).create_dict_iterator()
- data = next(ds_test)
- images = data["image"].asnumpy()
- labels = data["label"].asnumpy()
- print('Tensor:', Tensor(data['image']))
- output = model.predict(Tensor(data['image']))
- predicted = np.argmax(output.asnumpy(), axis=1)
- pred = np.argmax(output.asnumpy(), axis=1)
- print('predicted:', predicted)
- print('pred:', pred)
-
- print(f'Predicted: "{predicted[0]}", Actual: "{labels[0]}"')
- filename = 'result.txt'
- file_path = os.path.join(save_path, filename)
- with open(file_path, 'a+') as file:
- file.write(" {}: {:.2f} \n".format("Predicted", predicted[0]))
-
- ###上传训练结果到启智平台,注意必须将要输出的模型存储在c2net_context.output_path
- upload_output()
|