Browse Source

添加 'gpu_mnist_example/train_gcu.py'

liuzx-patch-1
liuzxtest02 2 years ago
parent
commit
b018e6f2c9
1 changed files with 167 additions and 0 deletions
  1. +167
    -0
      gpu_mnist_example/train_gcu.py

+ 167
- 0
gpu_mnist_example/train_gcu.py View File

@@ -0,0 +1,167 @@
#!/usr/bin/python
#coding=utf-8
'''
If there are Chinese comments in the code,please add at the beginning:
#!/usr/bin/python
#coding=utf-8

示例选用的数据集是MnistDataset_torch.zip
数据集结构是:
MnistDataset_torch.zip
├── test
│ ├── MNIST/processed/test.pt
│ └── MNIST/processed/training.pt
│ ├── MNIST/raw/train-images-idx3-ubyte
│ └── MNIST/raw/train-labels-idx1-ubyte
│ ├── MNIST/raw/t10k-images-idx3-ubyte
│ └── MNIST/raw/t10k-labels-idx1-ubyte
├── train
│ ├── MNIST/processed/test.pt
│ └── MNIST/processed/training.pt
│ ├── MNIST/raw/train-images-idx3-ubyte
│ └── MNIST/raw/train-labels-idx1-ubyte
│ ├── MNIST/raw/t10k-images-idx3-ubyte
│ └── MNIST/raw/t10k-labels-idx1-ubyte



示例选用的预训练模型文件为:mnist_epoch1_0.86.pkl


代码会自动放置在/tmp/code目录下。
数据集在界面选择后,会自动放置在/tmp/dataset目录下。
预训练模型文件在界面选择后,会自动放置在/tmp/pretrainmodel目录下。
输出的模型文件也需要放置在/tmp/output目录下,平台会自动下载/tmp/output目录下的文件。
如果选用了多数据集,则应在/tmp/dataset后带上数据集名称,比如/tmp/dataset/MnistDataset_torch/train
'''

import torch
from model import Model
import numpy as np
from torchvision.datasets import mnist
from torch.nn import CrossEntropyLoss
from torch.optim import SGD
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
import argparse
import os

import importlib.util

def is_torch_dtu_available():
if importlib.util.find_spec("torch_dtu") is None:
return False
if importlib.util.find_spec("torch_dtu.core") is None:
return False
return importlib.util.find_spec("torch_dtu.core.dtu_model") is not None

# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--epoch_size', type=int, default=1, help='how much epoch to train')
parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch')


if __name__ == '__main__':
#获取参数并忽略超参数报错
args, unknown = parser.parse_known_args()
#初始化导入数据集和预训练模型到容器内
openi_context = prepare()

#获取数据集路径,预训练模型路径,输出路径
dataset_path = openi_context.dataset_path
pretrain_model_path = openi_context.pretrain_model_path
output_path = openi_context.output_path

dataset_path_A = dataset_path + "/MnistDataset_torch"
pretrain_model_path_A = pretrain_model_path + "/MNIST_PytorchExample_GPU_test34_model_7f9j"

print("dataset_path:")
print(os.listdir(dataset_path))
os.listdir(dataset_path)
print("pretrain_model_path:")
print(os.listdir(pretrain_model_path))
os.listdir(pretrain_model_path)

print("output_path:")
print(os.listdir(output_path))
os.listdir(output_path)
# load DPU envs-xx.sh
DTU_FLAG = True
if is_torch_dtu_available():
import torch_dtu
import torch_dtu.distributed as dist
import torch_dtu.core.dtu_model as dm
from torch_dtu.nn.parallel import DistributedDataParallel as torchDDP
print('dtu is available: True')
device = dm.dtu_device()
DTU_FLAG = True
else:
print('dtu is available: False')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
DTU_FLAG = False
# 参数声明
model = Model().to(device)
optimizer = SGD(model.parameters(), lr=1e-1)
#log output
batch_size = args.batch_size
train_dataset = mnist.MNIST(root=dataset_path_A + "/train", train=True, transform=ToTensor(),download=False)
test_dataset = mnist.MNIST(root=dataset_path_A + "/test", train=False, transform=ToTensor(),download=False)
train_loader = DataLoader(train_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
model = Model().to(device)
sgd = SGD(model.parameters(), lr=1e-1)
cost = CrossEntropyLoss()
epochs = args.epoch_size
print('epoch_size is:{}'.format(epochs))

# 如果有保存的模型,则加载模型,并在其基础上继续训练
if os.path.exists(pretrain_model_path_A+"/mnist_epoch1_0.70.pkl"):
checkpoint = torch.load(pretrain_model_path_A+"/mnist_epoch1_0.70.pkl")
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
print('加载 epoch {} 权重成功!'.format(start_epoch))
else:
start_epoch = 0
print('无保存模型,将从头开始训练!')

for _epoch in range(start_epoch, epochs):
print('the {} epoch_size begin'.format(_epoch + 1))
model.train()
for idx, (train_x, train_label) in enumerate(train_loader):
train_x = train_x.to(device)
train_label = train_label.to(device)
label_np = np.zeros((train_label.shape[0], 10))
sgd.zero_grad()
predict_y = model(train_x.float())
loss = cost(predict_y, train_label.long())
if idx % 10 == 0:
print('idx: {}, loss: {}'.format(idx, loss.sum().item()))
loss.backward()
if DTU_FLAG:
dm.optimizer_step(sgd, barrier=True)
else:
sgd.step()
correct = 0
_sum = 0
model.eval()
for idx, (test_x, test_label) in enumerate(test_loader):
test_x = test_x
test_label = test_label
predict_y = model(test_x.to(device).float()).detach()
predict_ys = np.argmax(predict_y.cpu(), axis=-1)
label_np = test_label.numpy()
_ = predict_ys == test_label
correct += np.sum(_.numpy(), axis=-1)
_sum += _.shape[0]
print('accuracy: {:.2f}'.format(correct / _sum))
#The model output location is placed under /tmp/output
state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':_epoch+1}
torch.save(state, '/tmp/output/mnist_epoch{}_{:.2f}.pkl'.format(_epoch+1, correct / _sum))
print('test:')
print(os.listdir("/tmp/output"))

Loading…
Cancel
Save