/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #define protected public #define private public #include "parser/common/op_parser_factory.h" #include "parser/tensorflow/tensorflow_parser.h" #include "graph/operator_reg.h" #include "register/op_registry.h" #include "external/register/register.h" #include "parser/common/register_tbe.h" #include "st/parser_st_utils.h" #include "tests/depends/ops_stub/ops_stub.h" #include "parser/common/acl_graph_parser_util.h" #include "metadef/third_party/graphengine/inc/external/ge/ge_api_types.h" #include "omg/parser/parser_factory.h" #include "common/pre_checker.h" #include "common/util.h" #include "external/parser/tensorflow_parser.h" #undef protected #undef private using namespace std; using namespace domi::tensorflow; using namespace domi; using namespace testing; using namespace std; using namespace google::protobuf; static const string GRAPH_DEFAULT_NAME = "default"; namespace ge { class STestTensorflowParser : public testing::Test { protected: void SetUp() { ParerSTestsUtils::ClearParserInnerCtx(); } void TearDown() {} public: void RegisterCustomOp(); }; static Status ParseParams(const google::protobuf::Message* op_src, ge::Operator& op_dest) { return SUCCESS; } void STestTensorflowParser::RegisterCustomOp() { REGISTER_CUSTOM_OP("Add") .FrameworkType(domi::TENSORFLOW) .OriginOpType("Add") .ParseParamsFn(ParseParams); std::vector reg_datas = domi::OpRegistry::Instance()->registrationDatas; for (auto reg_data : reg_datas) { OpRegistrationTbe::Instance()->Finalize(reg_data); domi::OpRegistry::Instance()->Register(reg_data); } domi::OpRegistry::Instance()->registrationDatas.clear(); } namespace { NodeDef *MallocNodeDef(const string &name, const string &type) { NodeDef* node_def = new (std::nothrow) NodeDef(); if (node_def != nullptr) { node_def->set_name(name); node_def->set_op(type); } return node_def; } void GenOriginNodeDef(ge::TensorFlowModelParser *tensorflow_parser, vector &node_name_list) { NodeDef* pre_node_a = MallocNodeDef("pre_node_a", "Const"); EXPECT_NE(pre_node_a, nullptr); { ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = pre_node_a->mutable_attr(); tensorflow::AttrValue attr_dtype; attr_dtype.set_type(tensorflow::DT_FLOAT); (*node_attr_map)["dtype"] = attr_dtype; tensorflow::AttrValue attr_value; tensorflow::TensorProto* tensor = attr_value.mutable_tensor(); tensor->add_bool_val(true); tensor->set_dtype(tensorflow::DT_BOOL); (*node_attr_map)["value"] = attr_value; } tensorflow_parser->nodedef_map_["pre_node_a"] = pre_node_a; node_name_list.push_back("pre_node_a"); NodeDef* pre_node_ctrl_in = MallocNodeDef("pre_node_ctrl_in", "Const"); EXPECT_NE(pre_node_ctrl_in, nullptr); { ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = pre_node_ctrl_in->mutable_attr(); tensorflow::AttrValue attr_dtype; attr_dtype.set_type(tensorflow::DT_FLOAT); (*node_attr_map)["dtype"] = attr_dtype; tensorflow::AttrValue attr_value; tensorflow::TensorProto* tensor = attr_value.mutable_tensor(); tensor->add_bool_val(true); tensor->set_dtype(tensorflow::DT_BOOL); (*node_attr_map)["value"] = attr_value; } tensorflow_parser->nodedef_map_["pre_node_ctrl_in"] = pre_node_ctrl_in; node_name_list.push_back("pre_node_ctrl_in"); NodeDef* post_node_b = MallocNodeDef("post_node_b", "Identity"); EXPECT_NE(post_node_b, nullptr); tensorflow_parser->nodedef_map_["post_node_b"] = post_node_b; node_name_list.push_back("post_node_b"); NodeDef* post_node_c = MallocNodeDef("post_node_c", "Identity"); EXPECT_NE(post_node_c, nullptr); tensorflow_parser->nodedef_map_["post_node_c"] = post_node_c; node_name_list.push_back("post_node_c"); NodeDef* post_node_d = MallocNodeDef("post_node_d", "Identity"); EXPECT_NE(post_node_d, nullptr); tensorflow_parser->nodedef_map_["post_node_d"] = post_node_d; node_name_list.push_back("post_node_d"); } void FreeNodeDefMap(ge::TensorFlowModelParser *tensorflow_parser, set &malloc_node_name_list) { for (auto &item : tensorflow_parser->nodedef_map_) { if (item.second != nullptr && malloc_node_name_list.count(item.first) > 0) { delete (item.second); item.second = nullptr; } } } void GenFusionScopesResult(shared_ptr &scope_graph, FusionScopesResult *fusion_rlt, const string &fusion_op_name) { if (fusion_rlt == nullptr) { return; } fusion_rlt->InsertInputs("scope_node_1", {0}); // scope input 0 fusion_rlt->InsertOutputs("scope_node_m", {0}); // scope output 0 fusion_rlt->InsertOutputs("scope_node_n", {1}); // scope output 1 fusion_rlt->SetType(ge::kScopeToMultiNodes); fusion_rlt->SetName(fusion_op_name); fusion_rlt->SetDescription("Description for fusion node"); // Add inner nodes in sequence. auto node1 = fusion_rlt->AddInnerNode("inner_node_1", "Unique"); // add inner node1 CHECK_INNER_NODE_CONDITION(node1 != nullptr, fusion_rlt); auto ret = node1 ->InsertInput(ge::kInputFromFusionScope, 0) // Input from 0th of boundary (a) .InsertOutput(ge::kOutputToFusionScope, 0) // Output to 0th of boundary (b) .InsertOutput("inner_node_2", 0) // Output to input 0th of internal node 2 .BuildInnerNode(); // Construct an internal Operator CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt); string str_val = "This is a string."; node1->MutableOperator()->SetAttr("key1", 2); // Set integer attribute node1->MutableOperator()->SetAttr("key2", str_val); // Set the string attribute node1->MutableOperator()->SetAttr("key3", true); // Set boolean attribute auto node2 = fusion_rlt->AddInnerNode("inner_node_2", "Identity"); // add inner node2 CHECK_INNER_NODE_CONDITION(node2 != nullptr, fusion_rlt); ret = node2 ->InsertInput("inner_node_1", 1) // The input comes from the 1st output of internal node 1 .InsertOutput("inner_node_3", 0) // Output to input 0th of internal node 3 .BuildInnerNode(); CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt); node2->SetInputFormat("x", "NHWC"); node2->SetOutputFormat("y", "NHWC"); auto node3 = fusion_rlt->AddInnerNode("inner_node_3", "Identity"); // add inner node3 CHECK_INNER_NODE_CONDITION(node3 != nullptr, fusion_rlt); ret = node3 ->InsertInput("inner_node_2", 0) // The input comes from the 0th output of internal node 2 .InsertOutput(ge::kOutputToFusionScope, 1) // Output to 1st of boundary (c) .BuildInnerNode(); CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt); scope_graph->impl_->AddFusionScopesResult(fusion_rlt); } void GenOriginContext(ge::TensorFlowModelParser *tensorflow_parser, const string &fusion_op_name) { // op_node_context for fusion op ge::OpNodeContext op_node_context; op_node_context.input_map["pre_node_a"].push_back({0, 0}); op_node_context.input_map["pre_node_ctrl_in"].push_back({-1, -1}); // ctrl edges op_node_context.output_map["post_node_b"].push_back({0, 0}); op_node_context.output_map["post_node_c"].push_back({1, 0}); op_node_context.output_map["post_node_d"].push_back({-1, -1}); // ctrl edges tensorflow_parser->op_node_context_map_[fusion_op_name] = op_node_context; tensorflow_parser->SaveEdgesControlInfo(fusion_op_name, -1); // op_node_context for pre_node_a ge::OpNodeContext op_node_context_a; op_node_context_a.output_map[fusion_op_name].push_back({0, 0}); tensorflow_parser->op_node_context_map_["pre_node_a"] = op_node_context_a; // op_node_context for pre_node_ctrl_in ge::OpNodeContext op_node_context_ctrl_in; op_node_context_ctrl_in.output_map[fusion_op_name].push_back({-1, -1}); // ctrl edges tensorflow_parser->op_node_context_map_["pre_node_ctrl_in"] = op_node_context_ctrl_in; // op_node_context for post_node_b ge::OpNodeContext op_node_context_b; op_node_context_b.input_map[fusion_op_name].push_back({0, 0}); tensorflow_parser->op_node_context_map_["post_node_b"] = op_node_context_b; // op_node_context for post_node_c ge::OpNodeContext op_node_context_c; op_node_context_c.input_map[fusion_op_name].push_back({1, 0}); op_node_context_c.output_map["post_node_d"].push_back({0, 0}); tensorflow_parser->op_node_context_map_["post_node_c"] = op_node_context_c; // op_node_context for post_node_d ge::OpNodeContext op_node_context_d; op_node_context_d.input_map["post_node_c"].push_back({0, 0}); op_node_context_d.input_map[fusion_op_name].push_back({-1, -1}); // ctrl edges tensorflow_parser->op_node_context_map_["post_node_d"] = op_node_context_d; tensorflow_parser->SaveEdgesControlInfo("post_node_d", -1); string fusion_op_type = ge::kScopeToMultiNodes; string description = "fusion op description"; tensorflow_parser->fusion_op_type_map_[fusion_op_name].push_back(fusion_op_type); tensorflow_parser->fusion_op_type_map_[fusion_op_name].push_back(description); } void register_tbe_op() { std::vector registrationDatas = OpRegistry::Instance()->registrationDatas; for(OpRegistrationData reg_data : registrationDatas) { OpRegistrationTbe::Instance()->Finalize(reg_data); OpRegistry::Instance()->Register(reg_data); } OpRegistry::Instance()->registrationDatas.clear(); } } namespace { REG_OP(Data) .INPUT(x, TensorType::ALL()) .OUTPUT(y, TensorType::ALL()) .ATTR(index, Int, 0) .OP_END_FACTORY_REG(Data) REG_OP(Add) .INPUT(x1, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16, DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128, DT_COMPLEX64, DT_STRING})) .INPUT(x2, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16, DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128, DT_COMPLEX64, DT_STRING})) .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16, DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128, DT_COMPLEX64, DT_STRING})) .OP_END_FACTORY_REG(Add) } struct MemBuffer { void* data; uint32_t size; }; static MemBuffer* MemBufferFromFile(const char *path) { char path_temp[PATH_MAX + 1] = {0x00}; if(strlen(path) > PATH_MAX || nullptr == realpath(path, path_temp)) { return nullptr; } FILE *fp = fopen(path_temp, "r+"); if (fp == nullptr) { return nullptr; } // get model file length if (0 != fseek(fp, 0, SEEK_END)) { fclose(fp); return nullptr; } long file_length = ftell(fp); if (fseek(fp, 0, SEEK_SET)) { fclose(fp); return nullptr; } if (file_length <= 0) { fclose(fp); return nullptr; } // alloc model buffer void *data = malloc((unsigned int)file_length); if (!data) { fclose(fp); return nullptr; } // read file into memory uint32_t read_size = (uint32_t)fread(data, 1, (unsigned int)file_length, fp); // check if read success if ((long)read_size != file_length) { free(data); data = nullptr; fclose(fp); return nullptr; } // close model file fclose(fp); // create an MemBuffer MemBuffer* membuf = new MemBuffer(); if (!membuf) { free(data); data = nullptr; return nullptr; } membuf->data = malloc((unsigned int)read_size); // set size && data membuf->size = (uint32_t)read_size; memcpy((char*)membuf->data, (char*)data, read_size); free(data); return membuf; } /// placeholder0 placeholder1 /// | /\ /\ | /// | / \/ \ | /// | / /\ \ | /// | | / \ | | /// | add0 mul0 | /// | / /c | \ | /// mul1 --- / | add1 /// \ | | /// \ ---- add2 | /// | | /// retval0 retval1 void CreateGraphDef(domi::tensorflow::GraphDef &graph_def) { // 1. add node auto placeholder0 = graph_def.add_node(); auto placeholder1 = graph_def.add_node(); auto add0 = graph_def.add_node(); auto add1 = graph_def.add_node(); auto mul0 = graph_def.add_node(); auto mul1 = graph_def.add_node(); auto add2 = graph_def.add_node(); auto retval0 = graph_def.add_node(); auto retval1 = graph_def.add_node(); // 2. set info placeholder0->set_name("placeholder0"); placeholder0->set_op("PlaceHolder"); placeholder1->set_name("placeholder1"); placeholder1->set_op("PlaceHolder"); add0->set_name("add0"); add0->set_op("Add"); add1->set_name("add1"); add1->set_op("Add"); add2->set_name("add2"); add2->set_op("Add"); mul0->set_name("mul0"); mul0->set_op("Mul"); mul1->set_name("mul1"); mul1->set_op("Mul"); retval0->set_name("retval0"); retval0->set_op("_RetVal"); retval1->set_name("retval1"); retval1->set_op("_RetVal"); // 3. add edges add0->add_input("placeholder0"); add0->add_input("placeholder1"); mul0->add_input("placeholder0"); mul0->add_input("placeholder1"); mul1->add_input("placeholder0"); mul1->add_input("add0"); mul1->add_input("^mul0"); add1->add_input("mul0"); add1->add_input("placeholder1"); add2->add_input("mul1"); add2->add_input("mul0"); retval0->add_input("add2:0"); retval1->add_input("add1:0"); } TEST_F(STestTensorflowParser, tensorflow_parser_success) { RegisterCustomOp(); std::string case_dir = __FILE__; ParserOperator unused("Add"); case_dir = case_dir.substr(0, case_dir.find_last_of("/")); std::string model_file = case_dir + "/origin_models/tf_add.pb"; std::map parser_params; ge::Graph graph; auto ret = ge::aclgrphParseTensorFlow(model_file.c_str(), parser_params, graph); ASSERT_EQ(ret, SUCCESS); ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph); auto output_nodes_info = compute_graph->GetGraphOutNodesInfo(); ASSERT_EQ(output_nodes_info.size(), 1); EXPECT_EQ((output_nodes_info.at(0).first->GetName()), "add_test_1"); EXPECT_EQ((output_nodes_info.at(0).second), 0); auto &net_out_name = ge::GetParserContext().net_out_nodes; ASSERT_EQ(net_out_name.size(), 1); EXPECT_EQ(net_out_name.at(0), "add_test_1:0"); } TEST_F(STestTensorflowParser, tensorflow_model_Failed) { ge::Graph graph; std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); std::string modelFile = caseDir + "/origin_models/model.pb"; auto status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph); EXPECT_EQ(status, ge::GRAPH_FAILED); modelFile = caseDir + "/origin_models/test_depth_wise_conv2d.pb"; status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph); EXPECT_EQ(status, ge::GRAPH_FAILED); } TEST_F(STestTensorflowParser, tensorflow_model_not_exist) { ge::Graph graph; std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); // model file is not exist std::string modelFile = caseDir + "/origin_models/conv2d_explicit1_pad.pb"; auto status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph); EXPECT_EQ(status, ge::GRAPH_FAILED); } TEST_F(STestTensorflowParser, parser_tensorflow_model) { std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); std::string modelFile = caseDir + "/origin_models/tf_add.pb"; const char *model_file = modelFile.c_str(); std::string op_name = "ge_ascend_irgraph"; ge::Graph graph(op_name); std::map parser_options = { {ge::AscendString(ge::ir_option::INPUT_FORMAT), ge::AscendString("NHWC")}, }; auto ret_graph = ge::aclgrphParseTensorFlow(model_file, parser_options, graph); EXPECT_EQ(ret_graph, ge::FAILED); // parser tensorflow model out_node_size is equal to index string graph_name; AclGrphParseUtil acl_graph_parse_util; std::map out_nodes_with_node_and_index = { {AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:1")}}; ParerSTestsUtils::ClearParserInnerCtx(); auto ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name); ret_graph = ge::aclgrphParseTensorFlow(model_file, graph); EXPECT_EQ(ret_graph, domi::FAILED); // parser tensorflow model success modelFile = caseDir + "/origin_models/model.pb"; model_file = modelFile.c_str(); out_nodes_with_node_and_index = {{AscendString(ge::ir_option::OUT_NODES), AscendString("x:0;y:0")}}; ParerSTestsUtils::ClearParserInnerCtx(); ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name); ret_graph = ge::aclgrphParseTensorFlow(model_file, graph); EXPECT_EQ(ret_graph, domi::SUCCESS); } TEST_F(STestTensorflowParser, tensorflow_parser_to_json) { TensorFlowModelParser modelParser; std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); std::string modelFile = caseDir + "/origin_models/tf_add.pb"; std::string jsonFile = caseDir + "/origin_models/test.json"; const char *model_file = modelFile.c_str(); const char *json_file = jsonFile.c_str(); Status ret = modelParser.ToJson(model_file, json_file); EXPECT_EQ(ret, SUCCESS); } TEST_F(STestTensorflowParser, tensorflow_parserfrommemory_failed) { TensorFlowModelParser modelParser; std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); std::string modelFile = caseDir + "/origin_models/tf_add.pb"; const char *data = modelFile.c_str(); uint32_t size = 1; ge::Graph graph; std::map parser_params; Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph); ASSERT_EQ(ret, SUCCESS); modelFile = caseDir + "/origin_models/tf_add.pb"; parser_params = {{AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}}; ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph); ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph); ret = modelParser.ParseFromMemory(data, size, compute_graph); EXPECT_EQ(ret, INTERNAL_ERROR); } TEST_F(STestTensorflowParser, modelparser_parsefrommemory_success) { std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); std::string modelFile = caseDir + "/origin_models/tf_add.pb"; const char* tmp_tf_pb_model = modelFile.c_str(); ge::Graph graph; std::map parser_params; Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph); ASSERT_EQ(ret, SUCCESS); ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph); TensorFlowModelParser modelParser; MemBuffer* memBuffer = MemBufferFromFile(tmp_tf_pb_model); PreChecker::Instance().HasError() == false; ret = modelParser.ParseFromMemory((char*)memBuffer->data, memBuffer->size, compute_graph); free(memBuffer->data); delete memBuffer; } TEST_F(STestTensorflowParser, weightsparser_parsefrommemory_success) { std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); std::string modelFile = caseDir + "/origin_models/tf_add.pb"; const char* tmp_tf_pb_model = modelFile.c_str(); ge::Graph graph; std::map parser_params; Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph); ASSERT_EQ(ret, SUCCESS); ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph); auto weights_parser = domi::WeightsParserFactory::Instance()->CreateWeightsParser(domi::TENSORFLOW); MemBuffer* memBuffer = MemBufferFromFile(tmp_tf_pb_model); ret = weights_parser->ParseFromMemory((char*)memBuffer->data, memBuffer->size, compute_graph); free(memBuffer->data); delete memBuffer; EXPECT_EQ(SUCCESS, ret); } std::string getGraphCallbackV2(string subgraph_name) { std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); subgraph_name = caseDir + "/origin_models/tf_add.pb"; return subgraph_name; } TEST_F(STestTensorflowParser, parser_ParseProtoWithSubgraphV2) { std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); const std::string root_proto = caseDir + "/origin_models/tf_add.pb"; ge::Graph graph; std::map parser_params; Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph); ASSERT_EQ(ret, SUCCESS); ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph); domi::GetGraphCallbackV2 callback(&getGraphCallbackV2); TensorFlowModelParser parser; ret = parser.ParseProtoWithSubgraph(root_proto, callback, root_graph); } TEST_F(STestTensorflowParser, parser_ConvertToGeDataType) { // convert to ge type success const uint32_t type1 = domi::tensorflow::DataType::DT_FLOAT; TensorFlowModelParser parser; ge::DataType dataType = parser.ConvertToGeDataType(type1); ASSERT_EQ(dataType, ge::DataType::DT_FLOAT); const uint32_t type2 = 80; // invalid type dataType = parser.ConvertToGeDataType(type2); ASSERT_EQ(dataType, ge::DataType::DT_UNDEFINED); } TEST_F(STestTensorflowParser, tensorflow_ParserProto_failed) { std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); const std::string root_proto = caseDir + "/origin_models/avgpool3dgrad.pb.txt"; domi::tensorflow::GraphDef graphDef; ge::Graph graph; std::map parser_params; Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph); ASSERT_EQ(ret, FAILED); ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph); TensorFlowModelParser tensorflow_parser; ret = tensorflow_parser.ParseProto(reinterpret_cast(&graphDef), root_graph); EXPECT_EQ(PARAM_INVALID, ret); // proto解析失败 bool protoRet = parser::ReadProtoFromText(root_proto.c_str(), &graphDef); ASSERT_EQ(protoRet, false); ret = tensorflow_parser.ParseProto(reinterpret_cast(&graphDef), root_graph); ASSERT_EQ(ret, PARAM_INVALID); // // 解析 // const std::string tensorflow_pb_txt_file = caseDir + "/origin_models/model.pb"; // ret = ge::aclgrphParseTensorFlow(tensorflow_pb_txt_file.c_str(), parser_params, graph); // ASSERT_EQ(ret, SUCCESS); // root_graph = ge::GraphUtils::GetComputeGraph(graph); // ret = tensorflow_parser.ParseProto(reinterpret_cast(&graphDef), root_graph); } TEST_F(STestTensorflowParser, tensorflow_parserAllGraph_failed) { std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); const std::string root_proto = caseDir + "/origin_models/conv2d.pb"; domi::tensorflow::GraphDef graphDef; CreateGraphDef(graphDef); auto no_op = graphDef.add_node(); no_op->set_name("no_op"); no_op->set_op("NoOp"); no_op->add_input("placeholder0"); no_op->add_input("placeholder1"); ge::Graph graph; std::map parser_params; Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph); ASSERT_EQ(ret, SUCCESS); ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph); TensorFlowModelParser tensorflow_parser; ret = tensorflow_parser.ParseAllGraph(reinterpret_cast(&graphDef), root_graph); EXPECT_EQ(INTERNAL_ERROR, ret); } TEST_F(STestTensorflowParser, test_parse_acl_output_nodes) { AclGrphParseUtil acl_graph_parse_util; string graph_name; // case 1: Normal with 'node and index' ParerSTestsUtils::ClearParserInnerCtx(); GetParserContext().type = domi::ONNX; std::map out_nodes_with_node_and_index = { {AscendString(ge::ir_option::OUT_NODES), AscendString("Out1:0;Out2:1")}}; ParerSTestsUtils::ClearParserInnerCtx(); auto ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name); ASSERT_EQ(ret, SUCCESS); EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 2); EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 2); EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 0); // case 2: Normal with 'tensor name' ParerSTestsUtils::ClearParserInnerCtx(); GetParserContext().type = domi::ONNX; std::map out_nodes_with_tensor_name = { {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out_tensor_2")}}; ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_tensor_name, graph_name); ASSERT_EQ(ret, SUCCESS); EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0); EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0); EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 2); // case 3: Failed with 'node and index' before 'tensor name' ParerSTestsUtils::ClearParserInnerCtx(); GetParserContext().type = domi::ONNX; std::map out_nodes_mode_mixex_pre = { {AscendString(ge::ir_option::OUT_NODES), AscendString("Out1:0;Out2:1;Out_tensor_1;Out_tensor_2")}}; ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_pre, graph_name); ASSERT_EQ(ret, PARAM_INVALID); EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 2); EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 2); EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 0); // case 4: Failed with 'node and index' inserted in 'tensor name' ParerSTestsUtils::ClearParserInnerCtx(); GetParserContext().type = domi::ONNX; std::map out_nodes_mode_mixex_mid = { {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out1:0;Out2:1;Out_tensor_2")}}; ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_mid, graph_name); ASSERT_EQ(ret, PARAM_INVALID); EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0); EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0); EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 1); // case 5: Failed with 'node and index' after 'tensor name' ParerSTestsUtils::ClearParserInnerCtx(); GetParserContext().type = domi::ONNX; std::map out_nodes_mode_mixex_post = { {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out_tensor_2;Out1:0;Out2:1")}}; ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_post, graph_name); ASSERT_EQ(ret, PARAM_INVALID); EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0); EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0); EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 2); } TEST_F(STestTensorflowParser, parse_AutoMappingByOp) { static const string KEY_STRING = "key_string"; static const string KEY_INT = "key_int"; static const string KEY_FLOAT = "key_float"; static const string KEY_BOOL = "key_bool"; static const string KEY_TYPE = "key_type"; static const string VALUE_STRING = "string"; static const int64_t VALUE_INT = 1; static const float VALUE_FLOAT = 1.0; static const bool VALUE_BOOL = true; static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT; std::cout << "test data_type value_type: " << (int64_t)VALUE_TYPE << std::endl; static const string VALUE_NAME = "test_name"; ge::OpDescPtr op_desc = std::make_shared(); NodeDef node_def; domi::tensorflow::AttrValue value; ge::Operator op = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc); node_def.set_name(VALUE_NAME); value.set_s(VALUE_STRING); TensorFlowUtil::AddNodeAttr(KEY_STRING, value, &node_def); value.set_i(VALUE_INT); TensorFlowUtil::AddNodeAttr(KEY_INT, value, &node_def); value.set_f(VALUE_FLOAT); TensorFlowUtil::AddNodeAttr(KEY_FLOAT, value, &node_def); value.set_b(VALUE_BOOL); TensorFlowUtil::AddNodeAttr(KEY_BOOL, value, &node_def); value.set_type(VALUE_TYPE); TensorFlowUtil::AddNodeAttr(KEY_TYPE, value, &node_def); domi::Status status = domi::AutoMappingFn(reinterpret_cast(&node_def), op); EXPECT_EQ(domi::SUCCESS, status); EXPECT_EQ(VALUE_NAME, op_desc->GetName()); string value_string = ""; ge::AttrUtils::GetStr(op_desc, KEY_STRING, value_string); EXPECT_EQ(VALUE_STRING, value_string); int64_t value_int = 0; ge::AttrUtils::GetInt(op_desc, KEY_INT, value_int); EXPECT_EQ(VALUE_INT, value_int); float value_float = 0.0; ge::AttrUtils::GetFloat(op_desc, KEY_FLOAT, value_float); EXPECT_EQ(VALUE_FLOAT, value_float); bool value_bool = false; ge::AttrUtils::GetBool(op_desc, KEY_BOOL, value_bool); EXPECT_EQ(VALUE_BOOL, value_bool); ge::DataType data_type = ge::DT_UNDEFINED; ge::AttrUtils::GetDataType(op_desc, KEY_TYPE, data_type); EXPECT_EQ(ge::DT_FLOAT, data_type); // test AutoMappingByOpFn ge::OpDescPtr op_desc_dest = std::make_shared(); ge::Operator op_dest = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc_dest); status = domi::AutoMappingByOpFn(op, op_dest); EXPECT_EQ(domi::SUCCESS, status); EXPECT_EQ(VALUE_NAME, op_dest.GetName()); value_string = ""; ge::AttrUtils::GetStr(op_desc_dest, KEY_STRING, value_string); EXPECT_EQ(VALUE_STRING, value_string); value_int = 0; ge::AttrUtils::GetInt(op_desc_dest, KEY_INT, value_int); EXPECT_EQ(VALUE_INT, value_int); value_float = 0.0; ge::AttrUtils::GetFloat(op_desc_dest, KEY_FLOAT, value_float); EXPECT_EQ(VALUE_FLOAT, value_float); value_bool = false; ge::AttrUtils::GetBool(op_desc_dest, KEY_BOOL, value_bool); EXPECT_EQ(VALUE_BOOL, value_bool); data_type = ge::DT_UNDEFINED; ge::AttrUtils::GetDataType(op_desc_dest, KEY_TYPE, data_type); EXPECT_EQ(ge::DT_FLOAT, data_type); } TEST_F(STestTensorflowParser, parse_ParseNodeDef) { NodeDef * node_def = new NodeDef(); node_def->set_name("test_name"); node_def->set_op("PlaceholderWithDefault"); bool isDatasetInit = true; TensorFlowModelParser model_parser; Status ret = model_parser.AdaptOpType(node_def, isDatasetInit); EXPECT_EQ(domi::SUCCESS, ret); node_def->set_op("Add"); ret = model_parser.AdaptOpType(node_def, isDatasetInit); EXPECT_EQ(domi::SUCCESS, ret); delete node_def; } TEST_F(STestTensorflowParser, parse_AddFmkNode) { TensorFlowModelParser modelParser; std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); std::string modelFile = caseDir + "/origin_models/tf_add.pb"; ge::Graph graph; string graph_name; AclGrphParseUtil acl_graph_parse_util; std::map parser_options = {{AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}}; ParerSTestsUtils::ClearParserInnerCtx(); Status ret = acl_graph_parse_util.ParseParamsBeforeGraph(parser_options, graph_name); ret = aclgrphParseTensorFlow(modelFile.c_str(), parser_options, graph); ASSERT_EQ(ret, SUCCESS); ge::ComputeGraphPtr compute_graph = std::make_shared(GRAPH_DEFAULT_NAME); tensorflow::GraphDef *graphDef = new (std::nothrow) tensorflow::GraphDef(); ScopePassManager pass_manager; std::shared_ptr scope_graph = pass_manager.BuildScopeGraph(graphDef); std::string fusion_op_name = "fusion_op_name"; FusionScopesResult *fusion_rlt = new (std::nothrow) FusionScopesResult(); EXPECT_NE(fusion_rlt, nullptr); fusion_rlt->Init(); GenFusionScopesResult(scope_graph, fusion_rlt, fusion_op_name); GenOriginContext(&modelParser, fusion_op_name); // origin inner node def NodeDef* node_def = MallocNodeDef("scope_node_1", "Add"); EXPECT_NE(node_def, nullptr); modelParser.fusion_op_nodedef_map_[fusion_op_name].push_back(node_def); bool train_flag_backup = ge::GetParserContext().train_flag; ge::GetParserContext().train_flag = true; REGISTER_CUSTOM_OP("Identity") .FrameworkType(domi::TENSORFLOW) .OriginOpType("Identity") .ParseParamsFn(ParseParams) .ImplyType(ImplyType::TVM); REGISTER_CUSTOM_OP("Constant") .FrameworkType(domi::TENSORFLOW) .OriginOpType("Const") .ParseParamsFn(ParseParams) .ImplyType(ImplyType::TVM); register_tbe_op(); std::vector node_name_list; GenOriginNodeDef(&modelParser, node_name_list); std::set malloc_node_name_list(node_name_list.begin(), node_name_list.end()); node_name_list.push_back(fusion_op_name); ret = modelParser.AddFmkNode(compute_graph, scope_graph, node_name_list, false); EXPECT_EQ(ret, PARAM_INVALID); EXPECT_EQ(modelParser.scope_inner_node_map_.size(), 0); EXPECT_EQ(modelParser.nodedef_map_.size(), 5); ret = modelParser.AddEdges(compute_graph); EXPECT_EQ(ret, SUCCESS); // release resource delete graphDef; delete node_def; modelParser.DeleteFuisonNodeDef(); FreeNodeDefMap(&modelParser, malloc_node_name_list); ge::GetParserContext().train_flag = train_flag_backup; } TEST_F(STestTensorflowParser, parse_AddScopeInnerNode) { TensorFlowModelParser modelParser; std::string caseDir = __FILE__; std::size_t idx = caseDir.find_last_of("/"); caseDir = caseDir.substr(0, idx); std::string modelFile = caseDir + "/origin_models/tf_add.pb"; std::string op_name = "ge_ascend_irgraph"; ge::Graph graph(op_name); ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph); std::map parser_params = { {AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}}; Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph); EXPECT_EQ(ret, SUCCESS); std::mutex graph_mutex; tensorflow::NodeDef *node_def = new NodeDef(); node_def->set_name("FastrcnnPredictions"); node_def->set_op("FastrcnnPredictions"); // can't find in scope_inner_node_map ret = modelParser.AddScopeInnerNode(&modelParser, compute_graph, &graph_mutex, node_def); EXPECT_EQ(ret, PARAM_INVALID); delete node_def; } } // namespace ge