|
|
|
@@ -0,0 +1,41 @@ |
|
|
|
import tensorflow as tf |
|
|
|
import os |
|
|
|
import numpy as np |
|
|
|
from tensorflow.python.framework import graph_util |
|
|
|
|
|
|
|
pb_file_path = os.getcwd() |
|
|
|
|
|
|
|
def generate_case_1(): |
|
|
|
with tf.compat.v1.Session(graph=tf.Graph()) as sess: |
|
|
|
grads_1 = tf.compat.v1.placeholder(dtype="float16", shape=(1,2,2,2,1)) |
|
|
|
grads_2 = tf.compat.v1.placeholder(dtype="float16", shape=(1,2,2,2,1)) |
|
|
|
grads = tf.add(grads_1, grads_2) |
|
|
|
orig_input_shape = tf.constant(np.array([1,3,3,3,1]).astype("int32")) |
|
|
|
op = tf.raw_ops.AvgPool3DGrad(orig_input_shape=orig_input_shape, |
|
|
|
grad=grads, |
|
|
|
ksize=[1,2,2,2,1], |
|
|
|
strides=[1,1,1,1,1], |
|
|
|
padding="VALID", |
|
|
|
data_format='NDHWC', |
|
|
|
name='AvgPool3DGrad') |
|
|
|
|
|
|
|
tf.io.write_graph(sess.graph, logdir="./", name="avgpool3dgrad_case_1.pb", as_text=False) |
|
|
|
|
|
|
|
def generate_case_2(): |
|
|
|
with tf.compat.v1.Session(graph=tf.Graph()) as sess: |
|
|
|
grads_1 = tf.compat.v1.placeholder(dtype="float16", shape=(1,1,2,2,2)) |
|
|
|
grads_2 = tf.compat.v1.placeholder(dtype="float16", shape=(1,1,2,2,2)) |
|
|
|
grads = tf.add(grads_1, grads_2) |
|
|
|
orig_input_shape = tf.constant(np.array([1,1,3,3,3]).astype("int32"), ) |
|
|
|
op = tf.raw_ops.AvgPool3DGrad(orig_input_shape=orig_input_shape, |
|
|
|
grad=grads, |
|
|
|
ksize=[1,1,2,2,2], |
|
|
|
strides=[1,1,1,1,1], |
|
|
|
padding="VALID", |
|
|
|
data_format='NCDHW', |
|
|
|
name='AvgPool3DGrad') |
|
|
|
|
|
|
|
tf.io.write_graph(sess.graph, logdir="./", name="avgpool3dgrad.pb.txt", as_text=False) |
|
|
|
|
|
|
|
if __name__=='__main__': |
|
|
|
generate_case_2() |