| @@ -95,7 +95,7 @@ Status CaffeDataParser::ParseParamsForInput(const domi::caffe::LayerParameter *l | |||
| std::map<std::string, std::vector<int64_t>> input_dims = ctx.input_dims; | |||
| string name = layer->name(); | |||
| std::map<std::string, std::vector<int64_t>>::const_iterator search = input_dims.find(name); | |||
| if (search == input_dims.end()) { | |||
| if (search == input_dims.cend()) { | |||
| REPORT_INPUT_ERROR("E11005", std::vector<std::string>({"input"}), std::vector<std::string>({layer->name()})); | |||
| GELOGE(PARAM_INVALID, "[Check][Param] Caffe prototxt has no input_param or user " | |||
| "should set --input_shape in atc parameter, caffe layer name [%s], layer type [%s].", | |||
| @@ -140,7 +140,7 @@ Status CaffeDataParser::ParseParamsForDummyData(const domi::caffe::LayerParamete | |||
| std::map<std::string, std::vector<int64_t>> input_dims = ctx.input_dims; | |||
| string name = layer->name(); | |||
| std::map<std::string, std::vector<int64_t>>::const_iterator search = input_dims.find(name); | |||
| if (search == input_dims.end()) { | |||
| if (search == input_dims.cend()) { | |||
| REPORT_INPUT_ERROR("E11005", std::vector<std::string>({"input"}), std::vector<std::string>({layer->name()})); | |||
| GELOGE(PARAM_INVALID, "[Check][Param] Caffe prototxt has no input_param or user " | |||
| "should set --input_shape in atc parameter, caffe layer name [%s], layer type [%s].", | |||
| @@ -617,8 +617,9 @@ Status CaffeModelParser::CreateCustomOperator(string op_name, string op_type, co | |||
| } | |||
| void CaffeModelParser::AddOutputInfoToContext(string layer_name, int32_t top_index) const { | |||
| auto iter_node_name = ge::GetParserContext().out_nodes_map.find(layer_name); | |||
| if (iter_node_name != ge::GetParserContext().out_nodes_map.end()) { | |||
| std::map<std::string, std::vector<int32_t>>::const_iterator iter_node_name = | |||
| ge::GetParserContext().out_nodes_map.find(layer_name); | |||
| if (iter_node_name != ge::GetParserContext().out_nodes_map.cend()) { | |||
| iter_node_name->second.emplace_back(top_index); | |||
| } else { | |||
| std::vector<int32_t> index_v; | |||
| @@ -1028,7 +1029,7 @@ Status CaffeModelParser::AddEdges(ge::ComputeGraphPtr &graph) { | |||
| // Find the layer for this input | |||
| std::map<std::string, ge::NodePtr>::const_iterator bottom_node_iter = | |||
| node_map.find(bottom_blob_layer_pair.first); | |||
| if (top_node_iter != node_map.end() && bottom_node_iter != node_map.end()) { | |||
| if (top_node_iter != node_map.cend() && bottom_node_iter != node_map.cend()) { | |||
| // Output node top_node_iter->second, | |||
| // Output index top_blob_layer_pair.second | |||
| // input node bottom_node_iter->second | |||
| @@ -1099,7 +1100,7 @@ Status CaffeModelParser::AddUserOutNodesTop() { | |||
| for (const auto &out_pair : user_out_nodes) { | |||
| std::map<std::string, std::vector<std::string>>::const_iterator layer_iter = layer_tops_map_.find(out_pair.first); | |||
| GELOGI("Add to output, node name: %s", out_pair.first.c_str()); | |||
| if (layer_iter != layer_tops_map_.end()) { | |||
| if (layer_iter != layer_tops_map_.cend()) { | |||
| if (static_cast<uint32_t>(out_pair.second) >= (layer_iter->second).size()) { | |||
| ErrorManager::GetInstance().ATCReportErrMessage( | |||
| "E11016", {"opname", "outputindex", "totlaloutputindex", "inputindex", "totlalinputindex"}, | |||
| @@ -1113,7 +1114,7 @@ Status CaffeModelParser::AddUserOutNodesTop() { | |||
| string top_name = layer_iter->second[out_pair.second]; | |||
| std::map<std::string, ge::NodePtr>::const_iterator top_node_iter = node_map.find(out_pair.first); | |||
| if (top_node_iter != node_map.end()) { | |||
| if (top_node_iter != node_map.cend()) { | |||
| ge::GetParserContext().out_tensor_names.push_back(top_name); | |||
| GELOGI("The top of out node [%s] is [%s]", out_pair.first.c_str(), top_name.c_str()); | |||
| } | |||
| @@ -1147,7 +1148,7 @@ Status CaffeModelParser::AddOutputTop(const domi::caffe::NetParameter &proto_mes | |||
| std::map<std::string, std::vector<std::pair<std::string, int32_t>>>::const_iterator t_iter = | |||
| top_blobs_map_.find(top); | |||
| GE_RETURN_WITH_LOG_IF_FALSE(t_iter != top_blobs_map_.end(), | |||
| GE_RETURN_WITH_LOG_IF_FALSE(t_iter != top_blobs_map_.cend(), | |||
| "[Check][Param]Failed to find top: %s, layer name:%s", top.c_str(), | |||
| layer.name().c_str()); | |||
| @@ -1161,7 +1162,7 @@ Status CaffeModelParser::AddOutputTop(const domi::caffe::NetParameter &proto_mes | |||
| // Find the layer for this output | |||
| std::map<std::string, ge::NodePtr>::const_iterator top_node_iter = node_map.find(layer.name()); | |||
| GELOGI("output in top_blob: %s", layer.name().c_str()); | |||
| if (top_node_iter != node_map.end()) { | |||
| if (top_node_iter != node_map.cend()) { | |||
| ge::GetParserContext().out_tensor_names.push_back(top_origin); | |||
| ge::GetParserContext().default_out_nodes.push_back(std::make_pair(layer.name(), i)); | |||
| GELOGI("The top of out node [%s] is [%s]", layer.name().c_str(), top_origin.c_str()); | |||
| @@ -1396,7 +1397,7 @@ void CaffeModelParser::SaveOrigionLayerTops(domi::caffe::LayerParameter &layer) | |||
| tops.push_back(top); | |||
| } | |||
| std::map<std::string, std::vector<std::string>>::const_iterator it = layer_tops_map_.find(name); | |||
| if (it == layer_tops_map_.end()) { | |||
| if (it == layer_tops_map_.cend()) { | |||
| layer_tops_map_[name] = tops; | |||
| } | |||
| return; | |||
| @@ -2163,7 +2164,7 @@ Status CaffeWeightsParser::ConvertLayerParameter(const google::protobuf::Message | |||
| // The weight processing also needs to judge the duplicate operator, which is reserved here and processed later. | |||
| std::map<std::string, std::string>::const_iterator iter = caffe_op_map.find(layer_type); | |||
| if (iter == caffe_op_map.end()) { | |||
| if (iter == caffe_op_map.cend()) { | |||
| GELOGW("Unrecognized layer type %s , layer name: %s, layer ignored.", layer_type.c_str(), layer_name.c_str()); | |||
| continue; | |||
| } | |||
| @@ -2289,7 +2290,7 @@ Status CaffeWeightsParser::ConvertNetParameter(const NetParameter ¶m, ge::Co | |||
| // The weight processing also needs to judge the duplicate operator, which is reserved here and processed later. | |||
| std::map<std::string, std::string>::const_iterator iter = caffe_op_map.find(layer.type()); | |||
| if (iter == caffe_op_map.end()) { | |||
| if (iter == caffe_op_map.cend()) { | |||
| GELOGW("Unrecognized layer type %s , layer name: %s, layer ignored.", layer.type().c_str(), layer_name.c_str()); | |||
| continue; | |||
| } | |||
| @@ -309,10 +309,11 @@ domi::Status AclGrphParseUtil::ParseAclOutputNodes(const string &out_nodes) { | |||
| return PARAM_INVALID; | |||
| } | |||
| auto iter = ge::GetParserContext().out_nodes_map.find(key_value_v[0]); | |||
| std::map<std::string, std::vector<int32_t>>::const_iterator iter = | |||
| ge::GetParserContext().out_nodes_map.find(key_value_v[0]); | |||
| int32_t index = stoi(StringUtils::Trim(key_value_v[1])); | |||
| GELOGD("Get output info: node[%s] and index[%d]", key_value_v[0].c_str(), index); | |||
| if (iter != ge::GetParserContext().out_nodes_map.end()) { | |||
| if (iter != ge::GetParserContext().out_nodes_map.cend()) { | |||
| iter->second.emplace_back(index); | |||
| } else { | |||
| std::vector<int32_t> index_v; | |||
| @@ -587,8 +588,8 @@ domi::Status AclGrphParseUtil::CheckOptions(const std::map<AscendString, AscendS | |||
| } | |||
| string key_str = key_ascend; | |||
| auto it = ge::ir_option::ir_parser_suppported_options.find(key_str); | |||
| if (it == ge::ir_option::ir_parser_suppported_options.end()) { | |||
| std::set<std::string>::const_iterator it = ge::ir_option::ir_parser_suppported_options.find(key_str); | |||
| if (it == ge::ir_option::ir_parser_suppported_options.cend()) { | |||
| ErrorManager::GetInstance().ATCReportErrMessage("E10016", {"parameter", "opname"}, {"parser_params", key_str}); | |||
| GELOGE(PARAM_INVALID, "[Check][Param] Input options include unsupported option(%s).Please check!", key_ascend); | |||
| return PARAM_INVALID; | |||
| @@ -51,7 +51,7 @@ FMK_FUNC_HOST_VISIBILITY std::shared_ptr<OpParserFactory> OpParserFactory::Insta | |||
| static std::map<domi::FrameworkType, std::shared_ptr<OpParserFactory>> instances; | |||
| std::map<domi::FrameworkType, std::shared_ptr<OpParserFactory>>::const_iterator iter = instances.find(framework); | |||
| if (iter == instances.end()) { | |||
| if (iter == instances.cend()) { | |||
| std::shared_ptr<OpParserFactory> instance(new (std::nothrow) OpParserFactory()); | |||
| if (instance == nullptr) { | |||
| REPORT_CALL_ERROR("E19999", "create OpParserFactory failed"); | |||
| @@ -68,7 +68,7 @@ FMK_FUNC_HOST_VISIBILITY std::shared_ptr<OpParserFactory> OpParserFactory::Insta | |||
| FMK_FUNC_HOST_VISIBILITY std::shared_ptr<OpParser> OpParserFactory::CreateOpParser(const std::string &op_type) { | |||
| // First look for CREATOR_FUN based on OpType, then call CREATOR_FUN to create OpParser. | |||
| std::map<std::string, CREATOR_FUN>::const_iterator iter = op_parser_creator_map_.find(op_type); | |||
| if (iter != op_parser_creator_map_.end()) { | |||
| if (iter != op_parser_creator_map_.cend()) { | |||
| return iter->second(); | |||
| } | |||
| REPORT_INNER_ERROR("E19999", "param op_type invalid, Not supported type: %s", op_type.c_str()); | |||
| @@ -79,7 +79,7 @@ FMK_FUNC_HOST_VISIBILITY std::shared_ptr<OpParser> OpParserFactory::CreateOpPars | |||
| FMK_FUNC_HOST_VISIBILITY std::shared_ptr<OpParser> OpParserFactory::CreateFusionOpParser(const std::string &op_type) { | |||
| // First look for CREATOR_FUN based on OpType, then call CREATOR_FUN to create OpParser. | |||
| std::map<std::string, CREATOR_FUN>::const_iterator iter = fusion_op_parser_creator_map_.find(op_type); | |||
| if (iter != fusion_op_parser_creator_map_.end()) { | |||
| if (iter != fusion_op_parser_creator_map_.cend()) { | |||
| return iter->second(); | |||
| } | |||
| REPORT_INNER_ERROR("E19999", "param op_type invalid, Not supported fusion op type: %s", op_type.c_str()); | |||
| @@ -103,12 +103,12 @@ FMK_FUNC_HOST_VISIBILITY void OpParserFactory::RegisterCreator(const std::string | |||
| FMK_FUNC_HOST_VISIBILITY bool OpParserFactory::OpParserIsRegistered(const std::string &op_type, bool is_fusion_op) { | |||
| if (is_fusion_op) { | |||
| std::map<std::string, CREATOR_FUN>::const_iterator iter = fusion_op_parser_creator_map_.find(op_type); | |||
| if (iter != fusion_op_parser_creator_map_.end()) { | |||
| if (iter != fusion_op_parser_creator_map_.cend()) { | |||
| return true; | |||
| } | |||
| } else { | |||
| std::map<std::string, CREATOR_FUN>::const_iterator iter = op_parser_creator_map_.find(op_type); | |||
| if (iter != op_parser_creator_map_.end()) { | |||
| if (iter != op_parser_creator_map_.cend()) { | |||
| return true; | |||
| } | |||
| } | |||
| @@ -218,8 +218,8 @@ Status PreChecker::Save(string file) { | |||
| // Constructing JSON information of operators in order of network | |||
| for (auto id : ops_) { | |||
| auto iter = op_map_.find(id); | |||
| GE_CHK_BOOL_RET_STATUS(iter != op_map_.end(), FAILED, "[Check][Param] don't find this op."); | |||
| map<OpId, Info>::const_iterator iter = op_map_.find(id); | |||
| GE_CHK_BOOL_RET_STATUS(iter != op_map_.cend(), FAILED, "[Check][Param] don't find this op."); | |||
| Info &info = iter->second; | |||
| // Initialization operator general information | |||
| @@ -426,7 +426,7 @@ void ProtoFileParser::CheckConflictOp(const char *caffe_proto_file, const char * | |||
| std::map<std::string, std::pair<int, string>> &caffe_op_identifier_map, | |||
| std::map<std::string, std::pair<int, string>> &custom_op_identifier_map) { | |||
| std::map<std::string, std::pair<int, string>>::const_iterator iter = custom_op_identifier_map.begin(); | |||
| for (; iter != custom_op_identifier_map.end(); ++iter) { | |||
| for (; iter != custom_op_identifier_map.cend(); ++iter) { | |||
| if (caffe_op_identifier_map.count(iter->first) > 0) { | |||
| string message_name = iter->first; | |||
| auto caffe_pair = caffe_op_identifier_map[iter->first]; | |||
| @@ -454,7 +454,7 @@ void ProtoFileParser::CheckConflictIdentifier(const char *caffe_proto_file, cons | |||
| std::map<int, std::pair<string, string>> caffe_identifier_op_map, | |||
| std::map<int, std::pair<string, string>> custom_identifier_op_map) { | |||
| std::map<int, std::pair<string, string>>::const_iterator iter = custom_identifier_op_map.begin(); | |||
| for (; iter != custom_identifier_op_map.end(); ++iter) { | |||
| for (; iter != custom_identifier_op_map.cend(); ++iter) { | |||
| if (caffe_identifier_op_map.count(iter->first) > 0) { | |||
| int identifier = iter->first; | |||
| auto caffe_pair = caffe_identifier_op_map[iter->first]; | |||
| @@ -106,7 +106,7 @@ void TBEPluginLoader::GetCustomOpPath(std::string &customop_path) { | |||
| std::string fmk_type; | |||
| domi::FrameworkType type = domi::TENSORFLOW; | |||
| std::map<string, string>::const_iterator it = options_.find(FRAMEWORK_TYPE); | |||
| if (it != options_.end()) { | |||
| if (it != options_.cend()) { | |||
| type = static_cast<domi::FrameworkType>(std::strtol(it->second.c_str(), nullptr, 10)); | |||
| } | |||
| fmk_type = ge::TypeUtils::FmkTypeToSerialString(type); | |||
| @@ -72,7 +72,7 @@ Status OnnxConstantParser::ParseConvertData(const ge::onnx::TensorProto &tensor_ | |||
| int32_t datatype_val_size = 0; | |||
| std::map<uint32_t, int32_t>::const_iterator iter = datatype_val_size_map.find(data_type); | |||
| if (iter != datatype_val_size_map.end()) { | |||
| if (iter != datatype_val_size_map.cend()) { | |||
| datatype_val_size = iter->second; | |||
| } else { | |||
| REPORT_INNER_ERROR("E19999", "data_type %ld not support.", data_type); | |||
| @@ -385,7 +385,7 @@ Status OnnxModelParser::ConstructOriType(const ge::onnx::NodeProto *node_proto, | |||
| int64_t version = 0; | |||
| if (!domain.empty()) { | |||
| std::map<std::string, int64_t>::const_iterator it = domain_verseion_.find(domain); | |||
| if (it != domain_verseion_.end()) { | |||
| if (it != domain_verseion_.cend()) { | |||
| version = it->second; | |||
| } else { | |||
| REPORT_INNER_ERROR("E19999", "The opset of domain[%s] has no responding version.", domain.c_str()); | |||
| @@ -494,14 +494,14 @@ Status OnnxModelParser::SetOperatorInputs() { | |||
| for (auto input_node_index : input_node_indexs) { | |||
| for (auto out_node_index : output_node_indexs) { | |||
| std::map<std::string, ge::Operator>::const_iterator input_op_iter = name_operator_.find(input_node_index.first); | |||
| if (input_op_iter == name_operator_.end()) { | |||
| if (input_op_iter == name_operator_.cend()) { | |||
| REPORT_INNER_ERROR("E19999", "Node: %s can not find in name_operator map.", input_node_index.first.c_str()); | |||
| GELOGE(INTERNAL_ERROR, "[Check][Param] Node: %s can not find in name_operator map.", | |||
| input_node_index.first.c_str()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| std::map<std::string, ge::Operator>::const_iterator output_op_iter = name_operator_.find(out_node_index.first); | |||
| if (output_op_iter == name_operator_.end()) { | |||
| if (output_op_iter == name_operator_.cend()) { | |||
| REPORT_INNER_ERROR("E19999", "Node: %s can not find in name_operator map.", out_node_index.first.c_str()); | |||
| GELOGE(INTERNAL_ERROR, "[Check][Param] Node: %s can not find in name_operator map.", | |||
| out_node_index.first.c_str()); | |||
| @@ -666,7 +666,7 @@ Status OnnxModelParser::GetGraphInputs(ge::onnx::GraphProto &onnx_graph, std::ve | |||
| } | |||
| for (auto in_name : input_node_names_) { | |||
| std::map<std::string, ge::Operator>::const_iterator in_op = name_operator_.find(in_name); | |||
| if (in_op == name_operator_.end()) { | |||
| if (in_op == name_operator_.cend()) { | |||
| GELOGE(PARAM_INVALID, "[Get][Inputs] Model assigned input node name: %s can not find in graph.", | |||
| in_name.c_str()); | |||
| REPORT_INNER_ERROR("E19999", "Model assigned input node name: %s can not find in graph.", | |||
| @@ -684,7 +684,7 @@ Status OnnxModelParser::GetGraphOutputs(std::vector<std::pair<Operator, std::vec | |||
| for (auto output_name : output_node_names_) { | |||
| std::map<std::string, std::vector<std::pair<std::string, int>>>::const_iterator itr = | |||
| outputs_map_.find(output_name); | |||
| if (itr == outputs_map_.end()) { | |||
| if (itr == outputs_map_.cend()) { | |||
| GELOGE(PARAM_INVALID, "[Get][Outputs] Can not find output:%s in graph.", output_name.c_str()); | |||
| REPORT_INNER_ERROR("E19999", "[Get][Outputs] Can not find output:%s in graph.", output_name.c_str()); | |||
| return PARAM_INVALID; | |||
| @@ -694,7 +694,7 @@ Status OnnxModelParser::GetGraphOutputs(std::vector<std::pair<Operator, std::vec | |||
| for (const auto &node_name_index : node_names_indexes) { | |||
| auto node_name = node_name_index.first; | |||
| std::map<std::string, ge::Operator>::const_iterator out_op_itr = name_operator_.find(node_name); | |||
| if (out_op_itr == name_operator_.end()) { | |||
| if (out_op_itr == name_operator_.cend()) { | |||
| GELOGE(PARAM_INVALID, "[Get][Operator] Can not find operator: %s in graph.", node_name.c_str()); | |||
| REPORT_INNER_ERROR("E19999", "Can not find operator: %s in graph.", node_name.c_str()); | |||
| return PARAM_INVALID; | |||
| @@ -817,7 +817,7 @@ Status OnnxModelParser::ModelParseToGraph(const ge::onnx::ModelProto &onnx_model | |||
| if (arg.onnx_graph == nullptr) { | |||
| std::map<std::string, ge::onnx::GraphProto *>::const_iterator itr = name_to_onnx_graph.find(arg.graph_name); | |||
| if (itr == name_to_onnx_graph.end()) { | |||
| if (itr == name_to_onnx_graph.cend()) { | |||
| GELOGE(FAILED, "[Find][OnnxGraph] Can not find onnx graph, graph:%s.", arg.graph_name.c_str()); | |||
| REPORT_INNER_ERROR("E19999", "Can not find onnx graph, graph:%s.", arg.graph_name.c_str()); | |||
| return FAILED; | |||
| @@ -105,7 +105,7 @@ domi::Status IfSubgraphAdapter::GetSubgraphsAllInputs(ge::onnx::GraphProto &onnx | |||
| for (const auto &input : graph_inputs) { | |||
| std::set<std::string>::const_iterator out_iter = graph_outputs.find(input); | |||
| if (out_iter == graph_outputs.end()) { | |||
| if (out_iter == graph_outputs.cend()) { | |||
| // Record input node need to be constructed | |||
| all_inputs.emplace(input); | |||
| } | |||
| @@ -27,7 +27,7 @@ std::shared_ptr<SubgraphAdapter> SubgraphAdapterFactory::CreateSubgraphAdapter( | |||
| const std::string &op_type) { | |||
| // First look for CREATOR_FUN based on OpType, then call CREATOR_FUN to create SubgraphAdapter. | |||
| std::map<std::string, CREATOR_FUN>::const_iterator iter = subgraph_adapter_creator_map_.find(op_type); | |||
| if (iter != subgraph_adapter_creator_map_.end()) { | |||
| if (iter != subgraph_adapter_creator_map_.cend()) { | |||
| return iter->second(); | |||
| } | |||
| @@ -203,9 +203,9 @@ domi::Status RemapFunctionDef(FunctionDef *fdef, const string &name, NameMapHelp | |||
| ret_name.c_str(), return_value.c_str(), name.c_str()); | |||
| return domi::INTERNAL_ERROR); | |||
| const auto iter = tensor_renaming.find(return_value); | |||
| const std::map<string, string>::const_iterator iter = tensor_renaming.find(return_value); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(iter == tensor_renaming.end(), | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(iter == tensor_renaming.cend(), | |||
| REPORT_INNER_ERROR("E19999", "can not find value[%s] in tensor_renaming map", | |||
| return_value.c_str()); | |||
| return domi::INTERNAL_ERROR, | |||
| @@ -228,7 +228,7 @@ domi::Status GraphToFunctionDef::RecordResult(ge::ComputeGraphPtr graph, | |||
| GE_CHECK_NOTNULL(anchor->GetOwnerNode()->GetOpDesc()); | |||
| int32_t type = anchor->GetOwnerNode()->GetOpDesc()->GetOutputDesc(anchor->GetIdx()).GetDataType(); | |||
| std::map<int32_t, int32_t>::const_iterator iter = GE_TENSORFLOW_DATA_TYPE_MAP.find(type); | |||
| GE_IF_BOOL_EXEC(iter == GE_TENSORFLOW_DATA_TYPE_MAP.end(), | |||
| GE_IF_BOOL_EXEC(iter == GE_TENSORFLOW_DATA_TYPE_MAP.cend(), | |||
| REPORT_INNER_ERROR("E19999", "datatype:%d of output:%d in node:%s:%s is not supported", | |||
| type, anchor->GetIdx(), anchor->GetOwnerNode()->GetName().c_str(), | |||
| anchor->GetOwnerNode()->GetName().c_str()); | |||
| @@ -305,7 +305,7 @@ domi::Status GraphToFunctionDef::RecordArg(ge::ComputeGraphPtr graph, const vect | |||
| int32_t type = tensor_desc_ptr->GetDataType(); | |||
| std::map<int32_t, int32_t>::const_iterator iter = GE_TENSORFLOW_DATA_TYPE_MAP.find(type); | |||
| GE_IF_BOOL_EXEC(iter == GE_TENSORFLOW_DATA_TYPE_MAP.end(), | |||
| GE_IF_BOOL_EXEC(iter == GE_TENSORFLOW_DATA_TYPE_MAP.cend(), | |||
| REPORT_INNER_ERROR("E19999", "datatype:%d of input:%d in node:%s:%s is not supported", | |||
| type, anchor->GetIdx(), anchor->GetOwnerNode()->GetName().c_str(), | |||
| anchor->GetOwnerNode()->GetName().c_str()); | |||
| @@ -383,7 +383,7 @@ Status ParserGraphOptimizer::RebuildOutputAnchors(vector<ge::OutDataAnchorPtr> & | |||
| ge::DataType data_type = src_out_desc.GetDataType(); | |||
| const std::map<int32_t, int32_t>::const_iterator iter = GE_TENSORFLOW_DATA_TYPE_MAP.find((int32_t)data_type); | |||
| GE_IF_BOOL_EXEC( | |||
| iter == GE_TENSORFLOW_DATA_TYPE_MAP.end(), | |||
| iter == GE_TENSORFLOW_DATA_TYPE_MAP.cend(), | |||
| REPORT_INNER_ERROR("E19999", "datatype:%d of output:%d in node:%s:%s is not supported", | |||
| data_type, out_anchor->GetIdx(), src_node->GetName().c_str(), src_node->GetName().c_str()); | |||
| GELOGE(PARAM_INVALID, "data_type %s not supported", ge::TypeUtils::DataTypeToSerialString(data_type).c_str()); | |||
| @@ -419,7 +419,7 @@ Status ParserGraphOptimizer::RebuildInputAnchors(vector<ge::InDataAnchorPtr> &in | |||
| ge::DataType data_type = tensorDescPtr->GetDataType(); | |||
| const std::map<int32_t, int32_t>::const_iterator iter = GE_TENSORFLOW_DATA_TYPE_MAP.find((int32_t)data_type); | |||
| GE_IF_BOOL_EXEC( | |||
| iter == GE_TENSORFLOW_DATA_TYPE_MAP.end(), | |||
| iter == GE_TENSORFLOW_DATA_TYPE_MAP.cend(), | |||
| REPORT_INNER_ERROR("E19999", "datatype:%d of input:%d in node:%s:%s is not supported", | |||
| data_type, in_anchor->GetIdx(), dst_node->GetName().c_str(), dst_node->GetName().c_str()); | |||
| GELOGE(PARAM_INVALID, "data_type %s not supported", ge::TypeUtils::DataTypeToSerialString(data_type).c_str()); | |||
| @@ -496,7 +496,7 @@ Status TensorFlowModelParser::AddNode(const domi::tensorflow::NodeDef *node_def, | |||
| string node_name = node_def->name(); | |||
| string node_op = node_def->op(); | |||
| std::map<std::string, std::string>::const_iterator type_it = tensorflow_op_map.find(node_op); | |||
| if (type_it == tensorflow_op_map.end()) { | |||
| if (type_it == tensorflow_op_map.cend()) { | |||
| GELOGI("Can not find,maybe this node has no plugin node_name is %s, node_op is %s ", node_name.c_str(), | |||
| node_op.c_str()); | |||
| ge::OpDescPtr op_desc; | |||
| @@ -555,7 +555,7 @@ Status TensorFlowModelParser::AddNode(const domi::tensorflow::NodeDef *node_def, | |||
| GE_CHECK_NOTNULL(fusion_op_parser); | |||
| // Find all children of the fusion operator | |||
| std::map<string, vector<const NodeDef *>>::const_iterator iter = fusion_op_nodedef_map_.find(node_def->name()); | |||
| if (iter == fusion_op_nodedef_map_.end()) { | |||
| if (iter == fusion_op_nodedef_map_.cend()) { | |||
| REPORT_INNER_ERROR("E19999", "FusionOp node %s has no children node, check invalid", node_name.c_str()); | |||
| GELOGE(FAILED, "FusionOp node %s has no children node!", node_name.c_str()); | |||
| return INTERNAL_ERROR; | |||
| @@ -760,7 +760,7 @@ Status TensorFlowModelParser::AddEdges(ge::ComputeGraphPtr &graph) { | |||
| std::map<std::string, std::vector<std::pair<int32_t, int32_t>>>::const_iterator | |||
| input_iter = dest_input_map.find(src_op_name); | |||
| // Find output and input | |||
| if (input_iter == dest_input_map.end()) { | |||
| if (input_iter == dest_input_map.cend()) { | |||
| continue; | |||
| } | |||
| auto iter = node_map_.find(src_op_name); | |||
| @@ -923,7 +923,7 @@ Status TensorFlowModelParser::ParseNodeDef(TensorFlowModelParser *parser, ge::Co | |||
| std::map<std::string, std::string>::const_iterator iterator = parser->adaptedOpTypeMap_.find(node_name); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG( | |||
| iterator == parser->adaptedOpTypeMap_.end(), | |||
| iterator == parser->adaptedOpTypeMap_.cend(), | |||
| REPORT_INNER_ERROR("E19999", "get adapted op type failed, node name = %s", node_name.c_str()); | |||
| return FAILED, "get adapted op type failed, node name = %s", node_name.c_str()); | |||
| @@ -1378,7 +1378,7 @@ Status TensorFlowModelParser::Parse(const char *model_path, ge::ComputeGraphPtr | |||
| const std::map<std::string, domi::tensorflow::GraphDef>::const_iterator | |||
| iter = function_name_to_graphdef.find(arg.function_name); | |||
| if (iter == function_name_to_graphdef.end()) { | |||
| if (iter == function_name_to_graphdef.cend()) { | |||
| ErrorManager::GetInstance().ATCReportErrMessage("E12013", {"functionname"}, {arg.function_name}); | |||
| GELOGE(FAILED, "Failed to get subgraph by function name %s", arg.function_name.c_str()); | |||
| return FAILED; | |||
| @@ -1871,7 +1871,7 @@ Status TensorFlowModelParser::UpdateAllNodeOpContext(shared_ptr<ge::ScopeGraph> | |||
| // This node is a fusion operator | |||
| const std::map<std::string, OpNodeContext>::const_iterator | |||
| fusion_iter = tmp_fusion_op_node_context_map.find(info.fusion_node_name); | |||
| if (fusion_iter == tmp_fusion_op_node_context_map.end()) { | |||
| if (fusion_iter == tmp_fusion_op_node_context_map.cend()) { | |||
| OpNodeContext op_node_context; | |||
| tmp_fusion_op_node_context_map[info.fusion_node_name] = op_node_context; | |||
| tmp_op_node_name_list.push_back(info.fusion_node_name); | |||
| @@ -2121,7 +2121,7 @@ Status TensorFlowModelParser::NormalizeInputOrOutputMap( | |||
| string name = to_string(pair.first) + ":" + to_string(pair.second); | |||
| const std::set<std::string>::const_iterator compare_iter = compare_set.find(name); | |||
| if (compare_iter != compare_set.end()) { | |||
| if (compare_iter != compare_set.cend()) { | |||
| // pair<from,to> repeat, ignore | |||
| continue; | |||
| } | |||
| @@ -2160,7 +2160,7 @@ void TensorFlowModelParser::SaveEdgesControlInfo(const string &node_name, const | |||
| void TensorFlowModelParser::UpdateEdgesControlInfo(const ge::ScopeFusionOpInfo &info) { | |||
| const std::map<std::string, std::vector<int32_t>>::const_iterator iter = edges_control_map.find(info.node_name); | |||
| if (iter != edges_control_map.end()) { | |||
| if (iter != edges_control_map.cend()) { | |||
| // Delete the original fusion operator node information and add the fusion operator control edge information | |||
| edges_control_map.erase(iter); | |||
| edges_control_map[info.fusion_node_name].push_back(kControlSlot); | |||
| @@ -2485,7 +2485,7 @@ Status TensorFlowModelParser::OptimizeIdentityByOutput(map<string, NodeDef *> &n | |||
| const std::map<std::string, NodeDef *>::const_iterator node_def_iter = nodedef_map.find(curr_node_name); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG( | |||
| (node_def_iter == nodedef_map.end()), | |||
| (node_def_iter == nodedef_map.cend()), | |||
| REPORT_INNER_ERROR("E19999", "Node:%s can't find in nodedef_map, check invalid", curr_node_name.c_str()); | |||
| return INTERNAL_ERROR, "Can't find nodedef"); | |||
| domi::tensorflow::NodeDef *curr_node_def = node_def_iter->second; | |||
| @@ -2508,7 +2508,7 @@ Status TensorFlowModelParser::OptimizeIdentityByOutput(map<string, NodeDef *> &n | |||
| // Deal with non _Retval output operator of Identity. | |||
| if (has_out_retval) { | |||
| std::map<std::string, std::vector<std::pair<int32_t, int32_t>>>::const_iterator output_iter = output_map.begin(); | |||
| for (; output_iter != output_map.end(); ++output_iter) { | |||
| for (; output_iter != output_map.cend(); ++output_iter) { | |||
| const string &output_node_name = output_iter->first; | |||
| domi::tensorflow::NodeDef *output_node_def = nodedef_map[output_node_name]; | |||
| GE_CHECK_NOTNULL(output_node_def); | |||
| @@ -3757,8 +3757,8 @@ void TensorFlowModelParser::UpdateInnerInputMap(const string &fusion_op_name, Op | |||
| op_node_context.input_map.insert(tmp_input_map.begin(), tmp_input_map.end()); | |||
| // update output map of pre node | |||
| for (const auto &in_iter : op_node_context.input_map) { | |||
| auto src_iter = op_node_context_map_.find(in_iter.first); | |||
| if (src_iter != op_node_context_map_.end()) { | |||
| unordered_map<string, OpNodeContext>::const_iterator src_iter = op_node_context_map_.find(in_iter.first); | |||
| if (src_iter != op_node_context_map_.cend()) { | |||
| std::vector<std::pair<int32_t, int32_t>> input_pairs = in_iter.second; | |||
| OpNodeContext &src_context = src_iter->second; | |||
| src_context.output_map[node_name].assign(input_pairs.begin(), input_pairs.end()); | |||
| @@ -3806,8 +3806,8 @@ void TensorFlowModelParser::UpdateInnerOutputMap(const string &fusion_op_name, O | |||
| op_node_context.output_map.insert(tmp_output_map.begin(), tmp_output_map.end()); | |||
| // update input map of pre node | |||
| for (const auto &out_iter : op_node_context.output_map) { | |||
| auto dst_iter = op_node_context_map_.find(out_iter.first); | |||
| if (dst_iter != op_node_context_map_.end()) { | |||
| unordered_map<string, OpNodeContext>::const_iterator dst_iter = op_node_context_map_.find(out_iter.first); | |||
| if (dst_iter != op_node_context_map_.cend()) { | |||
| std::vector<std::pair<int32_t, int32_t>> output_pairs = out_iter.second; | |||
| OpNodeContext &dst_context = dst_iter->second; | |||
| dst_context.input_map[node_name].assign(output_pairs.begin(), output_pairs.end()); | |||
| @@ -3905,7 +3905,7 @@ Status TensorFlowModelParser::AddFusionNodeDef(shared_ptr<ge::ScopeGraph> &scope | |||
| for (size_t i = 0; i < op_node_list_size; ++i) { | |||
| const string op_node_name = node_name_list[i]; | |||
| std::map<string, vector<const NodeDef *>>::const_iterator iter = fusion_op_nodedef_map_.find(op_node_name); | |||
| if (iter != fusion_op_nodedef_map_.end()) { | |||
| if (iter != fusion_op_nodedef_map_.cend()) { | |||
| vector<string> fusion_op_info = fusion_op_type_map_[op_node_name]; | |||
| if (fusion_op_info[0] != ge::kScopeToMultiNodes) { | |||
| NodeDef *node_def = new (std::nothrow) NodeDef(); | |||