import numpy as np import torch from torch.autograd import Variable import matplotlib.pyplot as plt """ Using pytorch to do linear regression """ torch.manual_seed(2018) # generate data x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], [9.779], [6.182], [7.59], [2.167], [7.042], [10.791], [5.313], [7.997], [3.1]], dtype=np.float32) y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], [3.366], [2.596], [2.53], [1.221], [2.827], [3.465], [1.65], [2.904], [1.3]], dtype=np.float32) # draw the data plt.plot(x_train, y_train, 'bo') plt.show() # convert to tensor x_train = torch.from_numpy(x_train) y_train = torch.from_numpy(y_train) # define model parameters w = Variable(torch.randn(1), requires_grad=True) b = Variable(torch.zeros(1), requires_grad=True) # construct the linear model x_train = Variable(x_train) y_train = Variable(y_train) def linear_model(x): return x*w + b # first predictive y_pred = linear_model(x_train) # draw the real & predictived data plt.plot(x_train.data.numpy(), y_train.data.numpy(), 'bo', label="Real") plt.plot(x_train.data.numpy(), y_pred.data.numpy(), 'ro', label="Estimated") plt.legend() plt.show() # define the loss function def get_loss(y_pred, y): return torch.mean((y_pred - y)**2) loss = get_loss(y_pred, y_train) print("loss = %f" % float(loss)) # auto-grad loss.backward() print("w.grad = %f" % float(w.grad)) print("b.grad = %f" % float(b.grad)) # upgrade parameters eta = 1e-2 w.data = w.data - eta*w.grad.data b.data = b.data - eta*w.grad.data y_pred = linear_model(x_train) plt.plot(x_train.data.numpy(), y_train.data.numpy(), 'bo', label="Real") plt.plot(x_train.data.numpy(), y_pred.data.numpy(), 'ro', label="Estimated") plt.legend() plt.show() for i in range(10): y_pred = linear_model(x_train) loss = get_loss(y_pred, y_train) w.grad.zero_() b.grad.zero_() loss.backward() w.data = w.data - eta*w.grad.data b.data = b.data - eta*b.grad.data print("epoch: %3d, loss: %f" % (i, loss.data[0]))