From b7b80b7ec5cb5973781ca178c0ba9f1d8d1c56e7 Mon Sep 17 00:00:00 2001 From: Shuhui Bu Date: Thu, 27 Sep 2018 23:10:42 +0800 Subject: [PATCH] Add contents in README.md --- 0_python/02 Print Statement.py | 134 ------ 0_python/03 Data Structure.py | 386 ----------------- 0_python/05 Control Flow.py | 175 -------- 0_python/07 Class.py | 298 ------------- ...ntroduction.ipynb => 0_Introduction.ipynb} | 0 0_python/{01 Basics.ipynb => 1_Basics.ipynb} | 0 ...tatement.ipynb => 2_Print_Statement.ipynb} | 0 ...ructure.ipynb => 3_Data_Structure_1.ipynb} | 0 ...cture 2.ipynb => 4_Data_Structure_2.ipynb} | 0 ...ontrol Flow.ipynb => 5_Control_Flow.ipynb} | 0 .../{06 Function.ipynb => 6_Function.ipynb} | 0 0_python/{07 Class.ipynb => 7_Class.ipynb} | 0 1_logistic_regression/Least_squares.ipynb | 112 +++-- 1_logistic_regression/Least_squares.py | 15 + .../Logistic_regression.ipynb | 23 +- 1_logistic_regression/Logistic_regression.py | 1 + 1_nn/mlp_bp.ipynb | 2 +- 1_nn/mlp_bp.py | 2 +- 1_nn/softmax_ce.ipynb | 5 +- 1_nn/softmax_ce.py | 2 +- .../1_NN/{logistic-regression => }/data.txt | 0 .../logistic-regression.ipynb | 0 .../logistic-regression.py | 0 .../1_NN/{nn_intro.ipynb => nn_summary.ipynb} | 0 2_pytorch/2_CNN/googlenet.ipynb | 2 +- 2_pytorch/2_CNN/googlenet.py | 206 +++++++++ 2_pytorch/2_CNN/resnet.ipynb | 2 +- 2_pytorch/2_CNN/resnet.py | 191 +++++++++ 2_pytorch/imgs/Ipython-auto.png | Bin 0 -> 1669 bytes 2_pytorch/imgs/Ipython-help.png | Bin 0 -> 5523 bytes 2_pytorch/imgs/Jupyter主页面.png | Bin 0 -> 29929 bytes 2_pytorch/imgs/Notebook主界面.png | Bin 0 -> 47591 bytes 2_pytorch/imgs/autograd_Variable.png | Bin 0 -> 4477 bytes 2_pytorch/imgs/autograd_Variable.svg | 2 + 2_pytorch/imgs/del/img1.png | Bin 0 -> 55712 bytes 2_pytorch/imgs/del/img2.png | Bin 0 -> 56557 bytes 2_pytorch/imgs/install-1.png | Bin 0 -> 87539 bytes 2_pytorch/imgs/install-2.png | Bin 0 -> 68499 bytes 2_pytorch/imgs/nn_lenet.png | Bin 0 -> 16925 bytes README.md | 61 ++- References.md | 19 + dataset_circle.csv | 400 ------------------ 42 files changed, 575 insertions(+), 1463 deletions(-) delete mode 100644 0_python/02 Print Statement.py delete mode 100644 0_python/03 Data Structure.py delete mode 100644 0_python/05 Control Flow.py delete mode 100644 0_python/07 Class.py rename 0_python/{00 Introduction.ipynb => 0_Introduction.ipynb} (100%) rename 0_python/{01 Basics.ipynb => 1_Basics.ipynb} (100%) rename 0_python/{02 Print Statement.ipynb => 2_Print_Statement.ipynb} (100%) rename 0_python/{03 Data Structure.ipynb => 3_Data_Structure_1.ipynb} (100%) rename 0_python/{04 Data Structure 2.ipynb => 4_Data_Structure_2.ipynb} (100%) rename 0_python/{05 Control Flow.ipynb => 5_Control_Flow.ipynb} (100%) rename 0_python/{06 Function.ipynb => 6_Function.ipynb} (100%) rename 0_python/{07 Class.ipynb => 7_Class.ipynb} (100%) rename 2_pytorch/1_NN/{logistic-regression => }/data.txt (100%) rename 2_pytorch/1_NN/{logistic-regression => }/logistic-regression.ipynb (100%) rename 2_pytorch/1_NN/{logistic-regression => }/logistic-regression.py (100%) rename 2_pytorch/1_NN/{nn_intro.ipynb => nn_summary.ipynb} (100%) create mode 100644 2_pytorch/2_CNN/googlenet.py create mode 100644 2_pytorch/2_CNN/resnet.py create mode 100644 2_pytorch/imgs/Ipython-auto.png create mode 100644 2_pytorch/imgs/Ipython-help.png create mode 100644 2_pytorch/imgs/Jupyter主页面.png create mode 100644 2_pytorch/imgs/Notebook主界面.png create mode 100644 2_pytorch/imgs/autograd_Variable.png create mode 100644 2_pytorch/imgs/autograd_Variable.svg create mode 100644 2_pytorch/imgs/del/img1.png create mode 100644 2_pytorch/imgs/del/img2.png create mode 100644 2_pytorch/imgs/install-1.png create mode 100644 2_pytorch/imgs/install-2.png create mode 100644 2_pytorch/imgs/nn_lenet.png delete mode 100644 dataset_circle.csv diff --git a/0_python/02 Print Statement.py b/0_python/02 Print Statement.py deleted file mode 100644 index 487ed44..0000000 --- a/0_python/02 Print Statement.py +++ /dev/null @@ -1,134 +0,0 @@ -# --- -# jupyter: -# jupytext_format_version: '1.2' -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# language_info: -# codemirror_mode: -# name: ipython -# version: 3 -# file_extension: .py -# mimetype: text/x-python -# name: python -# nbconvert_exporter: python -# pygments_lexer: ipython3 -# version: 3.5.2 -# --- - -# All the IPython Notebooks in this lecture series are available at https://github.com/rajathkumarmp/Python-Lectures - -# # Print Statement - -# The **print** statement can be used in the following different ways : -# -# - print("Hello World") -# - print("Hello", ) -# - print("Hello" + ) -# - print("Hello %s" % ) - -print("Hello World") - -# In Python, single, double and triple quotes are used to denote a string. -# Most use single quotes when declaring a single character. -# Double quotes when declaring a line and triple quotes when declaring a paragraph/multiple lines. - -print('Hey') - -print("""My name is Rajath Kumar M.P. - -I love Python.""") - -# Strings can be assigned to variable say _string1_ and _string2_ which can called when using the print statement. - -# + {"scrolled": true} -string1 = 'World' -print('Hello', string1) - -string2 = '!' -print('Hello', string1, string2) -# - - -# String concatenation is the "addition" of two strings. Observe that while concatenating there will be no space between the strings. - -print('Hello' + string1 + string2) - -# **%s** is used to refer to a variable which contains a string. - -print("Hello %s" % string1) - -# Similarly, when using other data types -# -# - %s -> string -# - %d -> Integer -# - %f -> Float -# - %o -> Octal -# - %x -> Hexadecimal -# - %e -> exponential -# -# This can be used for conversions inside the print statement itself. - -print("Actual Number = %d" % 18) -print("Float of the number = %f" % 18) -print("Octal equivalent of the number = %o" % 18) -print("Hexadecimal equivalent of the number = %x" % 18) -print("Exponential equivalent of the number = %e" % 18) - -# When referring to multiple variables parenthesis is used. - -print "Hello %s %s" %(string1,string2) - -# ## Other Examples - -# The following are other different ways the print statement can be put to use. - -print("I want %%d to be printed %s" %'here') - -print('_A'*10) - -print("Jan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug") - -print("\n".join("Jan Feb Mar Apr May Jun Jul Aug".split(" "))) - -print("I want \\n to be printed.") - -print """ -Routine: -\t- Eat -\t- Sleep\n\t- Repeat -""" - -# # PrecisionWidth and FieldWidth - -# Fieldwidth is the width of the entire number and precision is the width towards the right. One can alter these widths based on the requirements. -# -# The default Precision Width is set to 6. - -"%f" % 3.121312312312 - -# Notice upto 6 decimal points are returned. To specify the number of decimal points, '%(fieldwidth).(precisionwidth)f' is used. - -"%.5f" % 3.121312312312 - -# If the field width is set more than the necessary than the data right aligns itself to adjust to the specified values. - -"%9.5f" % 3.121312312312 - -# Zero padding is done by adding a 0 at the start of fieldwidth. - -"%020.5f" % 3.121312312312 - -# For proper alignment, a space can be left blank in the field width so that when a negative number is used, proper alignment is maintained. - -print "% 9f" % 3.121312312312 -print "% 9f" % -3.121312312312 - -# '+' sign can be returned at the beginning of a positive number by adding a + sign at the beginning of the field width. - -print "%+9f" % 3.121312312312 -print "% 9f" % -3.121312312312 - -# As mentioned above, the data right aligns itself when the field width mentioned is larger than the actualy field width. But left alignment can be done by specifying a negative symbol in the field width. - -"%-9.3f" % 3.121312312312 diff --git a/0_python/03 Data Structure.py b/0_python/03 Data Structure.py deleted file mode 100644 index 38775c7..0000000 --- a/0_python/03 Data Structure.py +++ /dev/null @@ -1,386 +0,0 @@ -# --- -# jupyter: -# jupytext_format_version: '1.2' -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# language_info: -# codemirror_mode: -# name: ipython -# version: 3 -# file_extension: .py -# mimetype: text/x-python -# name: python -# nbconvert_exporter: python -# pygments_lexer: ipython3 -# version: 3.5.2 -# --- - -# All the IPython Notebooks in this lecture series are available at https://github.com/rajathkumarmp/Python-Lectures - -# # Data Structures - -# In simple terms, It is the the collection or group of data in a particular structure. - -# ## Lists - -# Lists are the most commonly used data structure. Think of it as a sequence of data that is enclosed in square brackets and data are separated by a comma. Each of these data can be accessed by calling it's index value. -# -# Lists are declared by just equating a variable to '[ ]' or list. - -a = [] - -print(type(a)) - -# One can directly assign the sequence of data to a list x as shown. - -x = ['apple', 'orange', 'peach'] - -# ### Indexing - -# In python, Indexing starts from 0. Thus now the list x, which has two elements will have apple at 0 index and orange at 1 index. - -x[0] - -# Indexing can also be done in reverse order. That is the last element can be accessed first. Here, indexing starts from -1. Thus index value -1 will be orange and index -2 will be apple. - -x[-1] - -# As you might have already guessed, x[0] = x[-2], x[1] = x[-1]. This concept can be extended towards lists with more many elements. - -y = ['carrot','potato'] - -# Here we have declared two lists x and y each containing its own data. Now, these two lists can again be put into another list say z which will have it's data as two lists. This list inside a list is called as nested lists and is how an array would be declared which we will see later. - -z = [x,y] -print(z) - -# Indexing in nested lists can be quite confusing if you do not understand how indexing works in python. So let us break it down and then arrive at a conclusion. -# -# Let us access the data 'apple' in the above nested list. -# First, at index 0 there is a list ['apple','orange'] and at index 1 there is another list ['carrot','potato']. Hence z[0] should give us the first list which contains 'apple'. - -z1 = z[0] -print(z1) - -# Now observe that z1 is not at all a nested list thus to access 'apple', z1 should be indexed at 0. - -z1[0] - -# Instead of doing the above, In python, you can access 'apple' by just writing the index values each time side by side. - -z[0][0] - -# If there was a list inside a list inside a list then you can access the innermost value by executing z[ ][ ][ ]. - -# ### Slicing - -# Indexing was only limited to accessing a single element, Slicing on the other hand is accessing a sequence of data inside the list. In other words "slicing" the list. -# -# Slicing is done by defining the index values of the first element and the last element from the parent list that is required in the sliced list. It is written as parentlist[ a : b ] where a,b are the index values from the parent list. If a or b is not defined then the index value is considered to be the first value for a if a is not defined and the last value for b when b is not defined. - -num = [0,1,2,3,4,5,6,7,8,9] - -print(num[0:4]) -print(num[4:]) - -# You can also slice a parent list with a fixed length or step length. - -num[:9:3] - -# ### Built in List Functions - -# To find the length of the list or the number of elements in a list, **len( )** is used. - -len(num) - -# If the list consists of all integer elements then **min( )** and **max( )** gives the minimum and maximum value in the list. - -min(num) - -max(num) - -# Lists can be concatenated by adding, '+' them. The resultant list will contain all the elements of the lists that were added. The resultant list will not be a nested list. - -[1,2,3] + [5,4,7] - -# There might arise a requirement where you might need to check if a particular element is there in a predefined list. Consider the below list. - -names = ['Earth','Air','Fire','Water'] - -# To check if 'Fire' and 'Rajath' is present in the list names. A conventional approach would be to use a for loop and iterate over the list and use the if condition. But in python you can use 'a in b' concept which would return 'True' if a is present in b and 'False' if not. - -'Fire' in names - -'Rajath' in names - -# In a list with elements as string, **max( )** and **min( )** is applicable. **max( )** would return a string element whose ASCII value is the highest and the lowest when **min( )** is used. Note that only the first index of each element is considered each time and if they value is the same then second index considered so on and so forth. - -mlist = ['bzaa','ds','nc','az','z','klm'] - -print(max(mlist)) -print(min(mlist)) - -# Here the first index of each element is considered and thus z has the highest ASCII value thus it is returned and minimum ASCII is a. But what if numbers are declared as strings? - -nlist = ['1','94','93','1000'] - -print(max(nlist)) -print(min(nlist)) - -# Even if the numbers are declared in a string the first index of each element is considered and the maximum and minimum values are returned accordingly. - -# But if you want to find the **max( )** string element based on the length of the string then another parameter 'key=len' is declared inside the **max( )** and **min( )** function. - -print(max(names, key=len)) -print(min(names, key=len)) - -# But even 'Water' has length 5. **max()** or **min()** function returns the first element when there are two or more elements with the same length. -# -# Any other built in function can be used or lambda function (will be discussed later) in place of len. -# -# A string can be converted into a list by using the **list()** function. - -list('hello') - -# **append( )** is used to add a element at the end of the list. - -lst = [1,1,4,8,7] - -lst.append(1) -print(lst) - -# **count( )** is used to count the number of a particular element that is present in the list. - -lst.count(1) - -# **append( )** function can also be used to add a entire list at the end. Observe that the resultant list becomes a nested list. - -lst1 = [5,4,2,8] - -lst.append(lst1) -print(lst) - -# But if nested list is not what is desired then **extend( )** function can be used. - -lst.extend(lst1) -print(lst) - -# **index( )** is used to find the index value of a particular element. Note that if there are multiple elements of the same value then the first index value of that element is returned. - -lst.index(1) - -# **insert(x,y)** is used to insert a element y at a specified index value x. **append( )** function made it only possible to insert at the end. - -lst.insert(5, 'name') -print(lst) - -# **insert(x,y)** inserts but does not replace element. If you want to replace the element with another element you simply assign the value to that particular index. - -lst[5] = 'Python' -print(lst) - -# **pop( )** function return the last element in the list. This is similar to the operation of a stack. Hence it wouldn't be wrong to tell that lists can be used as a stack. - -lst.pop() - -# Index value can be specified to pop a ceratin element corresponding to that index value. - -lst.pop(0) - -# **pop( )** is used to remove element based on it's index value which can be assigned to a variable. One can also remove element by specifying the element itself using the **remove( )** function. - -lst.remove('Python') -print(lst) - -# Alternative to **remove** function but with using index value is **del** - -del lst[1] -print(lst) - -# The entire elements present in the list can be reversed by using the **reverse()** function. - -lst.reverse() -print(lst) - -# Note that the nested list [5,4,2,8] is treated as a single element of the parent list lst. Thus the elements inside the nested list is not reversed. -# -# Python offers built in operation **sort( )** to arrange the elements in ascending order. - -lst.sort() -print(lst) - -# For descending order, By default the reverse condition will be False for reverse. Hence changing it to True would arrange the elements in descending order. - -lst.sort(reverse=True) -print(lst) - -# Similarly for lists containing string elements, **sort( )** would sort the elements based on it's ASCII value in ascending and by specifying reverse=True in descending. - -names.sort() -print(names) -names.sort(reverse=True) -print(names) - -# To sort based on length key=len should be specified as shown. - -names.sort(key=len) -print(names) -names.sort(key=len,reverse=True) -print(names) - -# ### Copying a list - -# Most of the new python programmers commit this mistake. Consider the following, - -lista= [2,1,4,3] - -listb = lista -print(listb) - -# Here, We have declared a list, lista = [2,1,4,3]. This list is copied to listb by assigning it's value and it get's copied as seen. Now we perform some random operations on lista. - -lista.pop() -print(lista) -lista.append(9) -print(lista) - -print listb - -# listb has also changed though no operation has been performed on it. This is because you have assigned the same memory space of lista to listb. So how do fix this? -# -# If you recall, in slicing we had seen that parentlist[a:b] returns a list from parent list with start index a and end index b and if a and b is not mentioned then by default it considers the first and last element. We use the same concept here. By doing so, we are assigning the data of lista to listb as a variable. - -lista = [2,1,4,3] - -listb = lista[:] -print(listb) - -lista.pop() -print(lista) -lista.append(9) -print(lista) - -print(listb) - -# ## Tuples - -# Tuples are similar to lists but only big difference is the elements inside a list can be changed but in tuple it cannot be changed. Think of tuples as something which has to be True for a particular something and cannot be True for no other values. For better understanding, Recall **divmod()** function. - -xyz = divmod(10,3) -print(xyz) -print(type(xyz)) - -# Here the quotient has to be 3 and the remainder has to be 1. These values cannot be changed whatsoever when 10 is divided by 3. Hence divmod returns these values in a tuple. - -# To define a tuple, A variable is assigned to paranthesis ( ) or tuple( ). - -tup = () -tup2 = tuple() - -# If you want to directly declare a tuple it can be done by using a comma at the end of the data. - -27, - -# 27 when multiplied by 2 yields 54, But when multiplied with a tuple the data is repeated twice. - -2*(27,) - -# Values can be assigned while declaring a tuple. It takes a list as input and converts it into a tuple or it takes a string and converts it into a tuple. - -# + {"scrolled": true} -tup3 = tuple([1,2,3]) -print(tup3) -tup4 = tuple('Hello') -print(tup4) -# - - -# It follows the same indexing and slicing as Lists. - -print(tup3[1]) -tup5 = tup4[:3] -print(tup5) - -# ### Mapping one tuple to another - -(a,b,c)= ('alpha','beta','gamma') - -print(a,b,c) - -d = tuple('RajathKumarMP') -print(d) - -# ### Built In Tuple functions - -# **count()** function counts the number of specified element that is present in the tuple. - -d.count('a') - -# **index()** function returns the index of the specified element. If the elements are more than one then the index of the first element of that specified element is returned - -d.index('a') - -# ## Sets - -# Sets are mainly used to eliminate repeated numbers in a sequence/list. It is also used to perform some standard set operations. -# -# Sets are declared as set() which will initialize a empty set. Also set([sequence]) can be executed to declare a set with elements - -set1 = set() -print(type(set1)) - -set0 = set([1,2,2,3,3,4]) -print(set0) - -# elements 2,3 which are repeated twice are seen only once. Thus in a set each element is distinct. - -# ### Built-in Functions - -set1 = set([1,2,3]) - -set2 = set([2,3,4,5]) - -# **union( )** function returns a set which contains all the elements of both the sets without repition. - -set1.union(set2) - -# **add( )** will add a particular element into the set. Note that the index of the newly added element is arbitrary and can be placed anywhere not neccessarily in the end. - -set1.add(0) -set1 - -# **intersection( )** function outputs a set which contains all the elements that are in both sets. - -set1.intersection(set2) - -# **difference( )** function ouptuts a set which contains elements that are in set1 and not in set2. - -set1.difference(set2) - -# **symmetric_difference( )** function ouputs a function which contains elements that are in one of the sets. - -set2.symmetric_difference(set1) - -# **issubset( ), isdisjoint( ), issuperset( )** is used to check if the set1/set2 is a subset, disjoint or superset of set2/set1 respectively. - -set1.issubset(set2) - -set2.isdisjoint(set1) - -set2.issuperset(set1) - -# **pop( )** is used to remove an arbitrary element in the set - -set1.pop() -print(set1) - -# **remove( )** function deletes the specified element from the set. - -set1.remove(2) -set1 - -# **clear( )** is used to clear all the elements and make that set an empty set. - -set1.clear() -set1 diff --git a/0_python/05 Control Flow.py b/0_python/05 Control Flow.py deleted file mode 100644 index 17588c4..0000000 --- a/0_python/05 Control Flow.py +++ /dev/null @@ -1,175 +0,0 @@ -# --- -# jupyter: -# jupytext_format_version: '1.2' -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# language_info: -# codemirror_mode: -# name: ipython -# version: 3 -# file_extension: .py -# mimetype: text/x-python -# name: python -# nbconvert_exporter: python -# pygments_lexer: ipython3 -# version: 3.5.2 -# --- - -# All the IPython Notebooks in this lecture series are available at https://github.com/rajathkumarmp/Python-Lectures - -# # Control Flow Statements - -# ## If - -# if some_condition: -# -# algorithm - -x = 12 -if x >10: - print("Hello") - -# ## If-else - -# if some_condition: -# -# algorithm -# -# else: -# -# algorithm - -x = 12 -if x > 10: - print("hello") -else: - print("world") - -# ## if-elif - -# if some_condition: -# -# algorithm -# -# elif some_condition: -# -# algorithm -# -# else: -# -# algorithm - -x = 10 -y = 12 -if x > y: - print("x>y") -elif x < y: - print("x y: - print("x>y") -elif x < y: - print("x=7: - break - -# ## Continue - -# This continues the rest of the loop. Sometimes when a condition is satisfied there are chances of the loop getting terminated. This can be avoided using continue statement. - -for i in range(10): - if i>4: - print("The end.") - continue - elif i<7: - print(i) - -# ## List Comprehensions - -# Python makes it simple to generate a required list with a single line of code using list comprehensions. For example If i need to generate multiples of say 27 I write the code using for loop as, - -res = [] -for i in range(1,11): - x = 27*i - res.append(x) -print res - -# Since you are generating another list altogether and that is what is required, List comprehensions is a more efficient way to solve this problem. - -[27*x for x in range(1,11)] - -# That's it!. Only remember to enclose it in square brackets - -# Understanding the code, The first bit of the code is always the algorithm and then leave a space and then write the necessary loop. But you might be wondering can nested loops be extended to list comprehensions? Yes you can. - -[27*x for x in range(1,20) if x<=10] - -# Let me add one more loop to make you understand better, - -[27*z for i in range(50) if i==27 for z in range(1,11)] diff --git a/0_python/07 Class.py b/0_python/07 Class.py deleted file mode 100644 index 81f6e37..0000000 --- a/0_python/07 Class.py +++ /dev/null @@ -1,298 +0,0 @@ -# --- -# jupyter: -# jupytext_format_version: '1.2' -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# language_info: -# codemirror_mode: -# name: ipython -# version: 3 -# file_extension: .py -# mimetype: text/x-python -# name: python -# nbconvert_exporter: python -# pygments_lexer: ipython3 -# version: 3.5.2 -# --- - -# All the IPython Notebooks in this lecture series are available at https://github.com/rajathkumarmp/Python-Lectures - -# # Classes - -# Variables, Lists, Dictionaries etc in python is a object. Without getting into the theory part of Object Oriented Programming, explanation of the concepts will be done along this tutorial. - -# A class is declared as follows - -# class class_name: -# -# Functions - -class FirstClass: - pass - -# **pass** in python means do nothing. - -# Above, a class object named "FirstClass" is declared now consider a "egclass" which has all the characteristics of "FirstClass". So all you have to do is, equate the "egclass" to "FirstClass". In python jargon this is called as creating an instance. "egclass" is the instance of "FirstClass" - -egclass = FirstClass() - -type(egclass) - -type(FirstClass) - -# Now let us add some "functionality" to the class. So that our "FirstClass" is defined in a better way. A function inside a class is called as a "Method" of that class - -# Most of the classes will have a function named "\_\_init\_\_". These are called as magic methods. In this method you basically initialize the variables of that class or any other initial algorithms which is applicable to all methods is specified in this method. A variable inside a class is called an attribute. - -# These helps simplify the process of initializing a instance. For example, -# -# Without the use of magic method or \_\_init\_\_ which is otherwise called as constructors. One had to define a **init( )** method and call the **init( )** function. - -eg0 = FirstClass() -eg0.init() - -# But when the constructor is defined the \_\_init\_\_ is called thus intializing the instance created. - -# We will make our "FirstClass" to accept two variables name and symbol. -# -# I will be explaining about the "self" in a while. - -class FirstClass: - def __init__(self,name,symbol): - self.name = name - self.symbol = symbol - -# Now that we have defined a function and added the \_\_init\_\_ method. We can create a instance of FirstClass which now accepts two arguments. - -eg1 = FirstClass('one',1) -eg2 = FirstClass('two',2) - -print(eg1.name, eg1.symbol) -print(eg2.name, eg2.symbol) - -# **dir( )** function comes very handy in looking into what the class contains and what all method it offers - -dir(FirstClass) - -# **dir( )** of an instance also shows it's defined attributes. - -dir(eg1) - -# Changing the FirstClass function a bit, - -class FirstClass: - def __init__(self,name,symbol): - self.n = name - self.s = symbol - -# Changing self.name and self.symbol to self.n and self.s respectively will yield, - -eg1 = FirstClass('one',1) -eg2 = FirstClass('two',2) - -print(eg1.name, eg1.symbol) -print(eg2.name, eg2.symbol) - -# AttributeError, Remember variables are nothing but attributes inside a class? So this means we have not given the correct attribute for the instance. - -dir(eg1) - -print(eg1.n, eg1.s) -print(eg2.n, eg2.s) - -# So now we have solved the error. Now let us compare the two examples that we saw. -# -# When I declared self.name and self.symbol, there was no attribute error for eg1.name and eg1.symbol and when I declared self.n and self.s, there was no attribute error for eg1.n and eg1.s -# -# From the above we can conclude that self is nothing but the instance itself. -# -# Remember, self is not predefined it is userdefined. You can make use of anything you are comfortable with. But it has become a common practice to use self. - -class FirstClass: - def __init__(asdf1234,name,symbol): - asdf1234.n = name - asdf1234.s = symbol - -eg1 = FirstClass('one',1) -eg2 = FirstClass('two',2) - -print(eg1.n, eg1.s) -print(eg2.n, eg2.s) - -# Since eg1 and eg2 are instances of FirstClass it need not necessarily be limited to FirstClass itself. It might extend itself by declaring other attributes without having the attribute to be declared inside the FirstClass. - -eg1.cube = 1 -eg2.cube = 8 - -dir(eg1) - -# Just like global and local variables as we saw earlier, even classes have it's own types of variables. -# -# Class Attribute : attributes defined outside the method and is applicable to all the instances. -# -# Instance Attribute : attributes defined inside a method and is applicable to only that method and is unique to each instance. - -class FirstClass: - test = 'test' - def __init__(self,name,symbol): - self.name = name - self.symbol = symbol - -# Here test is a class attribute and name is a instance attribute. - -eg3 = FirstClass('Three',3) - -print(eg3.test, eg3.name) - -# Let us add some more methods to FirstClass. - -class FirstClass: - def __init__(self,name,symbol): - self.name = name - self.symbol = symbol - def square(self): - return self.symbol * self.symbol - def cube(self): - return self.symbol * self.symbol * self.symbol - def multiply(self, x): - return self.symbol * x - -eg4 = FirstClass('Five',5) - -print eg4.square() -print eg4.cube() - -eg4.multiply(2) - -# The above can also be written as, - -FirstClass.multiply(eg4,2) - -# ## Inheritance - -# There might be cases where a new class would have all the previous characteristics of an already defined class. So the new class can "inherit" the previous class and add it's own methods to it. This is called as inheritance. - -# Consider class SoftwareEngineer which has a method salary. - -class SoftwareEngineer: - def __init__(self,name,age): - self.name = name - self.age = age - def salary(self, value): - self.money = value - print(self.name,"earns",self.money) - -a = SoftwareEngineer('Kartik',26) - -a.salary(40000) - -dir(SoftwareEngineer) - -# Now consider another class Artist which tells us about the amount of money an artist earns and his artform. - -class Artist: - def __init__(self,name,age): - self.name = name - self.age = age - def money(self,value): - self.money = value - print(self.name,"earns",self.money) - def artform(self, job): - self.job = job - print(self.name,"is a", self.job) - -b = Artist('Nitin',20) - -b.money(50000) -b.artform('Musician') - -dir(Artist) - -# money method and salary method are the same. So we can generalize the method to salary and inherit the SoftwareEngineer class to Artist class. Now the artist class becomes, - -class Artist(SoftwareEngineer): - def artform(self, job): - self.job = job - print(self.name,"is a", self.job) - -c = Artist('Nishanth',21) - -dir(Artist) - -c.salary(60000) -c.artform('Dancer') - -# Suppose say while inheriting a particular method is not suitable for the new class. One can override this method by defining again that method with the same name inside the new class. - -class Artist(SoftwareEngineer): - def artform(self, job): - self.job = job - print(self.name,"is a", self.job) - def salary(self, value): - self.money = value - print(self.name,"earns",self.money) - print("I am overriding the SoftwareEngineer class's salary method") - -c = Artist('Nishanth',21) - -c.salary(60000) -c.artform('Dancer') - -# If not sure how many times methods will be called it will become difficult to declare so many variables to carry each result hence it is better to declare a list and append the result. - -class emptylist: - def __init__(self): - self.data = [] - def one(self,x): - self.data.append(x) - def two(self, x ): - self.data.append(x**2) - def three(self, x): - self.data.append(x**3) - -xc = emptylist() - -xc.one(1) -print xc.data - -# Since xc.data is a list direct list operations can also be performed. - -xc.data.append(8) -print xc.data - -xc.two(3) -print xc.data - -# If the number of input arguments varies from instance to instance asterisk can be used as shown. - -class NotSure: - def __init__(self, *args): - self.data = ''.join(list(args)) - -yz = NotSure('I', 'Do' , 'Not', 'Know', 'What', 'To','Type') - -yz.data - -# # Where to go from here? - -# Practice alone can help you get the hang of python. Give your self problem statements and solve them. You can also sign up to any competitive coding platform for problem statements. The more you code the more you discover and the more you start appreciating the language. -# -# -# Now that you have been introduced to python, You can try out the different python libraries in the field of your interest. I highly recommend you to check out this curated list of Python frameworks, libraries and software http://awesome-python.com -# -# -# The official python documentation : https://docs.python.org/2/ -# -# -# You can also check out Python practice programs written by my friend, Kartik Kannapur. Github Repo : https://github.com/rajathkumarmp/Python-Lectures -# -# -# Enjoy solving problem statements because life is short, you need python! -# -# -# Peace. -# -# -# Rajath Kumar M.P ( rajathkumar dot exe at gmail dot com) diff --git a/0_python/00 Introduction.ipynb b/0_python/0_Introduction.ipynb similarity index 100% rename from 0_python/00 Introduction.ipynb rename to 0_python/0_Introduction.ipynb diff --git a/0_python/01 Basics.ipynb b/0_python/1_Basics.ipynb similarity index 100% rename from 0_python/01 Basics.ipynb rename to 0_python/1_Basics.ipynb diff --git a/0_python/02 Print Statement.ipynb b/0_python/2_Print_Statement.ipynb similarity index 100% rename from 0_python/02 Print Statement.ipynb rename to 0_python/2_Print_Statement.ipynb diff --git a/0_python/03 Data Structure.ipynb b/0_python/3_Data_Structure_1.ipynb similarity index 100% rename from 0_python/03 Data Structure.ipynb rename to 0_python/3_Data_Structure_1.ipynb diff --git a/0_python/04 Data Structure 2.ipynb b/0_python/4_Data_Structure_2.ipynb similarity index 100% rename from 0_python/04 Data Structure 2.ipynb rename to 0_python/4_Data_Structure_2.ipynb diff --git a/0_python/05 Control Flow.ipynb b/0_python/5_Control_Flow.ipynb similarity index 100% rename from 0_python/05 Control Flow.ipynb rename to 0_python/5_Control_Flow.ipynb diff --git a/0_python/06 Function.ipynb b/0_python/6_Function.ipynb similarity index 100% rename from 0_python/06 Function.ipynb rename to 0_python/6_Function.ipynb diff --git a/0_python/07 Class.ipynb b/0_python/7_Class.ipynb similarity index 100% rename from 0_python/07 Class.ipynb rename to 0_python/7_Class.ipynb diff --git a/1_logistic_regression/Least_squares.ipynb b/1_logistic_regression/Least_squares.ipynb index 10cd6c9..b5e6431 100644 --- a/1_logistic_regression/Least_squares.ipynb +++ b/1_logistic_regression/Least_squares.ipynb @@ -18,12 +18,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnX+UHFd15793Rm15xrAeCc+ycluyBHGkRQhrkGJ7o00WiWCBHdsTC2w4TiA/TrxZyG5kvLOMFzaWOGatRTEOe87GHGdJYg7GjG05g/wjCAeJzaIT2YyYkYWCtMi/JDcKFkhjsGYs9Yzu/tFVrerq9169qnrVVT1zP+fMme7q6ur3qmfufe/+JGaGIAiCIITpyHsAgiAIQjERBSEIgiAoEQUhCIIgKBEFIQiCICgRBSEIgiAoEQUhCIIgKBEFIQiCICgRBSEIgiAoEQUhCIIgKJmT9wDScNFFF/HixYvzHoYgCEJbsXfv3p8yc2/UeW2tIBYvXoyRkZG8hyEIgtBWENHLNueJiUkQBEFQIgpCEARBUJKZgiCi84noWSLaR0QHiGizd/xviOhFIhrzflZ6x4mI/icRHSai54jo3VmNTRAEQYgmSx/EaQDrmPl1IioB+C4R/Z332gAzPxo6/wMALvN+rgRwn/dbEARByIHMdhBc43Xvacn7MTWfuAHAV7z37QHQQ0QLshqfIAiCYCZTHwQRdRLRGIBXATzNzM94L33OMyPdS0RzvWNlAEcDb3/FOyYIgtCWDI9WsGbLTiwZfBJrtuzE8Ggl7yHFIlMFwczTzLwSwCUAriCidwK4A8AyAL8CYD6AT8W5JhHdSkQjRDRy/Phx52MWBEFwwfBoBXc8th+V8UkwgMr4JO54bH9bKYmWRDEx8ziAXQDez8zHPDPSaQB/DeAK77QKgIWBt13iHQtf635mXs3Mq3t7I/M8BEEQcmHrjkOYrE43HJusTmPrjkM5jSg+WUYx9RJRj/e4C8D7ABz0/QpERAD6AfzAe8t2AB/1opmuAvAaMx/LanyCIMwcimjK+fH4ZKzjRSTLKKYFAB4gok7UFNHDzPwEEe0kol4ABGAMwB955z8F4BoAhwFMAPi9DMcmCMIMwTfl+Kt135QDAP19+bkxL+7pQkWhDC7u6cphNMnITEEw83MA+hTH12nOZwCfyGo8giDMTEymnDwVxMD6pQ2KCwC6Sp0YWL80tzHFpa1rMQmCMDMYHq1g645D+PH4JC7u6cLA+qXWwr2ophx//EnnVQREQQiCkCtpTURFNuX095XbSiGEkVpMgiDkStpon4H1S9FV6mw41m6mnKIiOwhBmGWkMedkQVoT0Uww5RQVURCCMIsoYsSPCxNRu5tyioqYmARhFlHE5C0xERUX2UEIwiyiiBE/YiIqLqIgBGEWUdSIHzERFRMxMQnCLELMOUIcZAchCLMIMecIcRAFIQizjLzMOUULrxWiEQUhCELmFDG8VohGFIQgtJjZuJIuakE9wYwoCEFoIbN1JV3E8FohGoliEoQWUsREtVagC6PNO7xWMCMKQhBayGxdSUt4bXsiJiahbSmaLd9mPLaJau04NxMSXtueiIIQ2pKi2fJtx2PTZaxd5xaFZEu3H2JiEtqSotnybcfT31fG3TeuQLmnCwSg3NOFu29c0SA423VuRWB4tII1W3ZiyeCTWLNlJ4ZHK3kPqa2RHYTQlhTNlh9nPFEr6SLMLWhSYs05RfObFG3nNROQHYTQlhQtKsblePKemy9oKwbl0Mrx2NJOO512QRSE0Ja0KirG1mThcjwD65ei1EkNx0qd1LKIH5WgDVPECKQi7LxmGpkpCCI6n4ieJaJ9RHSAiDZ7x5cQ0TNEdJiIhojoPO/4XO/5Ye/1xVmNTWh/bGz5aQmvpH2ThUpJOB9PeOluWso7xiRQs7rXLsh75zUTIeZs/vKIiABcwMyvE1EJwHcB/AmATwJ4jJm/TkRfArCPme8joo8DeBcz/xERfRjAbzHzzabPWL16NY+MjGQyfkFYs2WnMiS13NOF3YPrZtznFuXzkxL2QQC1nU4RlVneENFeZl4ddV5mOwiu8br3tOT9MIB1AB71jj8AoN97fIP3HN7r7/WUjCAkJk1US14mi7xNJe2a1NaKXeVsI9MoJiLqBLAXwC8B+F8AngcwzsxT3imvAPC/vTKAowDAzFNE9BqAtwD4aZZjFGYuaaNadEltjNoqO6tEr7y7vrVzUpvkWrglUwXBzNMAVhJRD4C/BbAs7TWJ6FYAtwLAokWL0l5OmMGkrSCqSmrzyTKE0iaZzoY02c8iaAWgRVFMzDwOYBeAfwOgh4h8xXQJAH/PXwGwEAC81y8E8DPFte5n5tXMvLq3tzfzsQvtS1pTTdBkoSKLEEpfqE9Wp9HpWViTmEriONgFQUeWUUy93s4BRNQF4H0Afoiaovigd9rHAHzDe7zdew7v9Z2clQddyIUk/oA0PgQXUS39fWXsHlwHnTPMpV8gKNQBYJq5vnOIu5qXnADBBVnuIBYA2EVEzwH4HoCnmfkJAJ8C8EkiOoyaj+HL3vlfBvAW7/gnAQxmODahxSRZ0aZdBbt0trYihNKlUM/b0S3MDLKMYnqOmfuY+V3M/E5m/qx3/AVmvoKZf4mZP8TMp73jb3jPf8l7/YWsxia0niTCL63AdBnV0orIHpdCvae7pDwuOQFCHKQWk9ASkgg/FwLTlbO1FZE9rqKXhkcreP2NqabjrczGFmYGoiCElpBE+OUd7hkm68geV9FLW3ccQvVss/vugvPmSGSSEAtREEJLiBJ+qpBMVwIzLnk163G1S9HtsF6brKYeozC7yKzURiuQUhvFwUao6s4xlUgAsjPrqMYDoNDlGmzuc7uWyohL0brutRO2pTZEQQipSVsDJw+Bphvz3DkdGFestLMYS1wBZ3ufZ0NNotkwxyzJvRaTMHtIG22UR0imbswq5ZDFWJKE8LrsWpdkvEXq1CZ5Hq1BfBBCatIK+DTOaJ2ZKGplHlfgu3aMJykDYnOfw/fj3ptXpl5RF7FTm+R5tAZREEJq0kYbJXVGqwTXwKP7AEY9ikcnzHRjntddwhvVs5k7xuMIOF/o64zB/n3WCfKRl0/gyeeO4eREbXfU01XCpuuXWwt3W2XWSp9A0SLcZipiYhJSkzaJLKlJRCW4qtPcFOIZNj0Mj1YwcaY5T6Cr1Ik7r1vekpLRtpnZ4fIbqjEHd00qQf7VPUfqygEAxierGHhkn7WZyEaZfWZ4P24bGmtZ7ad2LUnebsgOQkiNi/DMJDkGccwJ/rkq5ybQvKp2rRDCq+u1y3qxbW8lMuxXpxiAmvIK3uc496N6lq2r2kat1odHK3hwz5GmHU6cyrlxaeeS5O2EKAjBCXmUh9YJLt25gL7f8gVz4yWRxTGnqEw/2/ZWsGFVGbsOHrcK+w1DQFNUVZz7AdgrlCgToMn8ZfKPpBXoUpI8e0RBCG2LSnCVOqnBBwGcE2bDoxWtAI2z+o7rtNWZfnYdPK4MndUpsSAXdjXXWlLdD4K+nbWtvT5qtW66d1H+keD1heIhCkJoW3SCS3fMF0gq4jg340YgxY24sVFWp85MYXi00vB5qvuxdlkvhr53FNXpRjVR6ohXl8m0WtftXAiI9I9kZYIS3CAKQmhrdIJLlV2sW5WXOglrl/Vi5eZv1fMg5nWXcOd16kifuII9bsSNjamoOq32Iajux+pL52Pz4wcSRzFFodu53HLVoshdhoSlFhtREMKswCSIps8yvrbnCM4Gjp2cqNZCZtGsbOIK/LhhvKZWp0HidMZzkQth2qn1dJcwd04HXpusKv0LEpbanoiCEApB1jH0plW5ovApAP0qPa7AjxtxEz4fUPsRVH6ILLDJNzk5UUVXqVObmJdX4UUhHaIghNxphQPTdlUeRrVKTxJiGXcVHzy/77Pfashj8CFdH1QHBBV2BxGmQzXbwj4NwOxTkLDU9kQUhJA7UQ7M4dEKNm0/YOUf0OGfe/vD+5qEnQmdCSSN2SbubmlcoRxUx13twsIKO879Mpm9dPfM9e5Rqry6QxSEkAvBf2JTDP3waAUDj+xrCFs1+QdM+OduHBqzOj+LDmxJdks29vukuzCVMLUJs9WRpPudy92jhNO6RUptCC0nXMlUx8U9XdruaL5/IC79fWX0aGz3QZPNvO4Stn7wcudCJUkVUpuyEkmuq6soa5NsV+oklDoabVxJu9+5rMoqVV7dIjsIoeXYrFB9YXObYbWfNERy0/XLc+slkCTc08Z+n+S6OmHaqfA5AEAnEc4yx6qaG4Xr8FcJp3WLKIg2IQu7atJrph2L6Z+VgIZrmuoRJQ2RzNNhmjTcM8rnobtuBxGWDD4ZS6lMM6Or1GmlQNPeM9fhrxJO65bMTExEtJCIdhHRPxHRASL6E+/4JiKqENGY93NN4D13ENFhIjpEROuzGlu7kaS5TFbXdDEW3T9ruacLL265FrsH19UFz8D6pU2mDCC9f6C/r4zdg+uaPi9rsqpCqrouUBP2uu/J9D20oqKtbtxp7odUeXVLZi1HiWgBgAXM/H0iejOAvQD6AdwE4HVm/rPQ+e8A8BCAKwBcDODvAfwyM2ttEbOl5WgWLTmTXtPFWOK2i9RFMQHtGTaZVZRNVGgq0Pg9FaVtp0QxtR7blqOZmZiY+RiAY97jXxDRDwGYvqUbAHydmU8DeJGIDqOmLP4xqzG2C1nYVZNe08VYwiaeC7tKIAJuGxrD1h2Hmv6hVeaVNNEqLgVIkmtlVYU0eN0lg08qzwl+T0XJTXB9P6TKqzta4oMgosUA+gA8A2ANgD8moo8CGAFwOzOfRE157Am87RUoFAoR3QrgVgBYtGhRpuMuClnYVZNe09VY/H/iOII+aoVsU/xN9Xkbh8awafuB2PWJVNe6bWgMG4fGmno1uCCOMrL9nkSYCiYyD3MlojcB2AZgIzP/HMB9AN4OYCVqO4x74lyPme9n5tXMvLq3t9f5eItIFnbVpNd0PRbbsMSw70OXvBW1k9FFUI1PVo2+lOHRCtZs2Yklg09izZaddWEdvpY/Ktcd1eL6fsQWL7gg0x0EEZVQUw4PMvNjAMDMPwm8/pcAnvCeVgAsDLz9Eu/YrCcLU0DSa7oei63JyjZ5S7eTsenQptuB6HY5UeNxWc5ap0g3bT9QqNIWYv9PThHvXWYKgogIwJcB/JCZvxA4vsDzTwDAbwH4gfd4O4CvEdEXUHNSXwbg2azG125kYQpIek2XJRNsTSE2Pg7dCtmmQ5vpc+LmC0RdLwk6xTY+WW3qC+HTavORZDEnp6j3LksT0xoAvwNgXSik9fNEtJ+IngOwFsBtAMDMBwA8DOCfAHwTwCdMEUxCsUga/mprCtHtDDqJIkMx45SOUH1OVL5A3OslodNQma8oWcKSxZycot67LKOYvota3lOYpwzv+RyAz2U1JiE7knYMszWF6MpF24Rk2q7idTsQ3S7Hd0T7pqtwe0+XNn/TTqUoWcIuo+2KaG7JkqJmgEsmteCENH/gNqaQNDZ1mw5tBGDDKvU4dMpp7bLe+njKXnvPXQePZyLUyoY5FCVL2FWEW1HNLVlS1AxwURCCE1rxB26jSILOaN9H0NNVQqmTlD0MfBjAroPHtZ8LNPd63ra30iDEtu2tZJpxPPDovtS9pbPEVVOg2di/uqgNlURBCE4YWL+0qSx3q4WXro/B+GQVpQ7CvO4Sxieq2gqylfFJbd2isHJS9bg2CbG0JhP/XFe9pbMw4biKnGqVuaVIZqyiJC2GEQUhuCPsccqw45kKkzO6epbRfd4cjP7p1dpyIQAaHOyA3qQRR4i5Mpm4ikrK0oTjYoyt2I0W0YxVxKRF6QchOGHrjkNN5o+4PRtUyWg2r/nYlgnRFbYLEhVBohNWquM2ESo283NFUSNmfFqR5Ff0e1AUZAchOCGtWcC0ogNgtdqLckb7wju8nTd1tNMRx2YcdW9avZotasSMTyvMLUW/B0VBFITghLRmgagVnY29XyW0fcLCO7id15mcTGOPI8Si7k2rnbJFjZgJkrW5pR3uQREQE5PghLRmAdOKzna1199XrvcxAM4ll/lJdACUZhzV2EudhFOnp4wmH9ueElH3ptWrWanTJPfAFtlBCE5IaxaIWtHZrvZMZUCizDj+2Hu6S3j9jal6/4m0Jp+oe9Pq1WxRI2ZaidwDOzJrGNQKZkvDoNmAqXkNgMRZ1D5xGh3pzg33ZE4rTII5G6os7FY37hFmD7k3DBJmJ2liy88vddSVgCrGP03/bJ3zWmXGMdVeAvQ7ijhzDytEBupKIk0vieAY/EZM4xNVWSELiRAFITgjaTSOavdweupswzlJnJY2VVxVZhyb0hxhJ3Lcuet6SaRpIxseg28isxmPIKgQBSE4IyoSSbe61r3v9of34bahscSr36gqrjqnpCkaKkhwpxE3EslFWHD4fkbNd6aXqxDcIwpCcIZOuIUb7IRXs0lNOknHA5jNOGEHpqq9KdC4+4gr8JM4pnU+C9sGRqbxCIIKCXMtAK3Mos1yPKaeDaadhU20TpIsV911fTNOVBlyP4T1npsujwyJjJNZDcQPswz22wDQlNznNzCKQuL8hTiIgsiZpI12ijietcvUPcKj+kfblL4Inm+L6rqE2pziKL5gfoWuOVFcgW9zzSA2TY+iGhhJnL8QFzEx5UzRShunGY+uXLauNaeu9IWNSUdH2Da/YVUZuw4e15plgp9vIspJniSuPo7j3UY5BhsYSRST4AJREDlTtJowJj/Cmi07jcIvqjWnqW5RUFjqciKiVr+qSCK/R4Mq1DWJIjaFsmZZHiIqssq/P0WsCCq0L2Jiypm4tmuXqHwNus/1TTMms5PJ5h8ugeELZ10JizjmFx/T7seFIs7THKgzlwH290cQ4iI7iJzJq5OULm5/w6pyQ6c0AE1ZvoB9sbzgyhawq8rqP3fZaMZFOYs8zYFSGkLIA1EQOZPXP75O2O06eLxukjEJVkBdLM+/dpx8B1cC1qQEXCjivM2BYj4SWk1mCoKIFgL4CoC3orYAvZ+Zv0hE8wEMAVgM4CUANzHzSSIiAF8EcA2ACQC/y8zfz2p8RSKPf3yTsFO110xbLA9QF9wLjyVNqQ6bHUzSaw+PVpw6z2X1L7QDWe4gpgDczszfJ6I3A9hLRE8D+F0A32bmLUQ0CGAQwKcAfADAZd7PlQDu834LMbERRrrVdgcRhkcrkaajYDlsG4E3PFpRmqr8sfjn2JqgTHNUHU8joP1xqZRDUud5u5e9EIU3O8hMQTDzMQDHvMe/IKIfAigDuAHAe7zTHgDwHdQUxA0AvsK18rJ7iKiHiBZ41xEssRVGunIS08xN54cFb/d5nTh1ZjpWOeytOw5pO7f5+RO2JqioOaqUSRoBbcpBCCbw6Qr3qXYe7Vz2YiYqPEFNS6KYiGgxgD4AzwB4a0Do/zNqJiigpjyOBt72indMiIFtr10/UkiVfas7f/fgOtx780pMnGkWllGZziY7/UPPHMXwaEVrggofj9tPWHf+5scPWGWMR/kYwtFM4WinqETBdkP6Oc8eMndSE9GbAGwDsJGZf04BgcTMTESxGlIQ0a0AbgWARYsWuRzqjCCOI7W/r4zbhsZiXce0EzAJPJOz29+1EAEqWdrpmb2S9pDWHT85UcXJieZdENBopurpLtXP0xHcEdhkPQPtW/Yib2e90Doy3UEQUQk15fAgMz/mHf4JES3wXl8A4FXveAXAwsDbL/GONcDM9zPzamZe3durLu0wm4mbVxH3eJQS0DGwfilMlYImq9NK5QCcUyAVg3Iwfb6tIJ6sTmPT9gNNuQ6vvzGFUmd0nSP/3tgIynYue5Fn7o7QWjJTEF5U0pcB/JCZvxB4aTuAj3mPPwbgG4HjH6UaVwF4TfwP8YlbEyju+aZEOpPA6+8r45arFhmVhA5Vsb8wceeoY3yy2vRZ1bOMC86bU0/c0xXF8+9NlKDsJNImthWtcKMK6ec8e8hyB7EGwO8AWEdEY97PNQC2AHgfEf0IwG94zwHgKQAvADgM4C8BfDzDsc1Y4mYhB88HorOcdRm9t1y1KNJBeVf/Ctxyld4s2NNVUgoenQ3fp5MIG1bpe1H7Jh9fsJd7utDTVTJeM8xrk1Xr6q5RCukss7FvdlEKN+pImukutB9ZRjF9F9AuGN+rOJ8BfCKr8cx00oQdxslyTpNPMDxawba9amHXVerEpuuXK69tahkK1ExQ2/ZWsPrS+cZoJ78mlC/IVTkT55c6lP6G4K4g6h74v29/eF+svImiFW40IUl7swPJpJ4BuAg7jCOckgoHnfM2bHJRXTuqIY5qrKY5+W09w0Je9Vkq84ltddc42dvi/BWKhlZBENFTAD7OzC+1bjhCEuLkD+hWvbblNNKgu5bJ5BIsXX1+qQPjE1XrKKYogWsS8i6SwOLutnTRUj3dNXOYJKcJrca0g/hrAN8iogcAfJ6ZzXF+Qm7YrDxNuwxAXZAPcBuZEqdgXni845NVdJU6ce/NK7Ump/B1khboi7NDihLaca6lc7UwS3KakA9aJzUzPwLg3QD+BYARIvrPRPRJ/6dlIxTq6CJcbMIOTbsMXW5DVGRSXHTRL2uX9TbNyzRenRP41OmpBodukmibOFFErp3Kr02q12CvTVYlOU3IhSgfxBkApwDMBfBmAGczH5GgRLWCHHh0HzZtP4DxyWrTDiAsCJPYtxluV6f9fWWMvHwCDz1zFNPM6CTCuxdd2FBe3BeyOn+DX0wQADY/fqDBJDM+WVWW3LA1y8RdpeuE9qbtBxKZgkw7niz9E2K6EnSYfBDvB/AF1PIT3s3MEy0bldCEShhVp7leD4lxzkxUVvyTR5lbVK/5oa+uBIgfxeRH9kwzY/fzJ5rO80NSo9qUbt1xqMlmH/a9xDHxxI0i0gnn8clqrDpVPqZqtLZmtbiI6UowYdpBfBrAh5j5QKsGI+ixWSn6ymH34Lq6qcQX6muX9WLoe0dRnT4ndEudFBm541KA2JagAOzalKZZVQeVXk93CcyoC3Xb60W1AfWxDVU17XhGXj6BB/ccMe4Sk9BOobVC69EqCGb+tVYORDBjK4x+PD6pFOpDzx5tXpF7T02Cac2Wnc4ESBxziL8LMu1ckjqhw/cnqs6S7nq6irgqbOeuq0a7bW+lQTkQoE0OjIOE1gomJA+iTbAVRhf3dKnNUWebzTXVs1wX9DpTjEsBYqvkfOd4lHlId08mzkw19bQIEmcnY1qlqxTrxJkppcK5sKtUb7zkm89UpkDb8TKAXQePW83BhItWrMLMRRREmxAWRj3dJbz+xlSD4PeFma5CqwqToE/bRS2MP7ao8r22znH/HN9R73Nyoqo1g5nKiocJCnCdHyasxMK7EwAodRBOnZmqj9G/nzpzXfizssxRyasnutAeiIJoI1TCSCW0okpTBNEJ+jRd1EzCVGVLD1OOoXz8+Yb9B6ZGQzb4vpzg+2z8MHF2Fapxqj4ryxyVNKVThJmPKIiCkCRSSGeCUbYI7SCA0OCkNgl6U1mMDatqQvm2obGmsUYJ07v6V2D1pfPrSiwqPNcGWzOYrWkpOIbh0YqyppLJDxP+XpYMPmk9fp05ycV90iF1lQQdoiAKgOtQQ92qUHVMV+LC1NxHlbfgf26cqBgC6hFEr01WE69ebe3oJpNMT1epaQymXVT4eiYFH+V7CY5TN0Y/Qk1W+UIrEQVRALIINdStCqOuF2WGUfVmCI41qm2oKoLIL6GRdK62dnSdoA6ak4JE7Th8wa5T8CMvn8Cug8eNZqLwOOOOURCyRBREAShSqKFJKIbzEoL4Y9UluPm9GEz9odOWK496f1yHrOn+B9+nm1PQ1xI0E6mimPwdiCuzmyC4QBREAShSqKFJKN594wqtA/xCrwGPzhzjH4/bHzqOkkiTiKZC972Ey5ObzELh56qdQHgHEnyfbSisIGRBpj2pBTtsisq1qhWlTimVe7rQ31fGwPqlNYd3iFNe7oEuAsk/Hqc/dBaF6Pr7yvXOcLsH10XmWai+l3tuurwpYc8WlTLR7dqC+SCCkAeiIApAf5+5hWMrW1HqWopWxiexZstOAMCbzm/eeFanWVtpNVi249TpKeux5J3NG/W9+OjumQqVMjHtQKRaq5AnYmLKAVOegIpW1ssJmmHC9vA4lVZtOrVFUYRs3qSmq7XLehuivQC9LyHrZDhBSIooiBaTJKQ1KjLINb5Q9EtDBDFVWu0gqpe4CM9FVdPJRLs5ZlVz9vM9ovwdpgzzIihJYfYiCqLFJNkNREUGZYUpF0IV0TTNrFV2cVbCHQSlKaddCO8Qo0J4s6zWKghpEB9Ei9EJysr4pNYBHRUZlAXDoxWtHd23xasUlM65HGclnLXiy5Kk/qK7+lfg3ptXRvo7BKGVZLaDIKK/AvCbAF5l5nd6xzYB+EMAfhnK/8rMT3mv3QHgDwBMA/hPzLwjq7HlicneHBQowLlVeNmQPBUX25IeujakQK1aqqnonq8Eg591YVcJpU5qKvUBMCarjY0Kg1Vms5pfVqTxF9n4O/KenzC7yHIH8TcA3q84fi8zr/R+fOXwDgAfBrDce89fEFFz0+EZgK6fcpDwKjxJb2UVcVa3JpPQyYmqsdheT3cJKzd/CxuHxuqfNT5ZBRiY111qWCG/UVV3sU3inB0erWDg0X0N8xt4dF8m0V66sOOsW4O2KppNEIAMFQQz/wOA5n6Sam4A8HVmPs3MLwI4DOCKrMaWJ+HQSR1BgWIbbhlFnMb3aZyjJyeqyu5s1bOM7vPmNOQg6D4nyedvfvxAww4FqIXfbn7cbVNEk6B2OZ8wcb4/QXBBHk7qPyaijwIYAXA7M58EUAawJ3DOK96xGUnQlKCKFAKaBYqLipsm/0ewPenA+qWxuqWlGYPLfgS6ktpRHePiYhLUA+uXYuCRfQ19Okod5MTZXKSSLMLsoNVO6vsAvB3ASgDHANwT9wJEdCsRjRDRyPHj6Ttq5Y0r85ENulWsnwgX9oGEdy09XjkNl2NwtTvKCpUpKVJQh7eGjnzuWe5OBEEFcYaRMES0GMATvpNa95rnoAYz3+29tgPAJmb+R9P1V69ezSMjI45H3XriOh6TOipV3c50VUaYfz+jAAAdJ0lEQVRtagbFpavU6Uz4q+5BuLNckN++ahHu6l8R+zNUu5u5czqUn+MHDdhWY03yvavGUySFKrQHRLSXmVdHntdKBUFEC5j5mPf4NgBXMvOHiWg5gK+h5ne4GMC3AVzGzEZJ1C4KwmXkSVohYdvOkgC8uOVa7fvjJunN6y7hzuuWW887PM61y3qx6+BxY7vVDavKGHr2qLL/NgB0lzrw3298l/UYdOa/ed0lvFE9q/wOTNFdBBgzy/05+PNU/a3E+VuSiCdBR+4KgogeAvAeABcB+AmAO73nK1FbtL4E4N8HFManAfw+gCkAG5n576I+ox0UhOtVn05oJe0XoLteJ1FTUTqb94Xp6Sph0/X2igFIvlPxK59uNPTkjnPvlww+qRT2BODem1cqha/NfekqdeL8UofSN6Iq9Z3kbyXr3YYon/YmdwXRCtpBQbgW6Cah5a/4464ydcLYJFB04/DHkkZo2CofFS9tuRaLI1p8dhLhLHPkGJN8d2nNcCqS/K24/rsLIqau9sdWQUipDcfYmnCSRp5E9Y6IW+vJPxa373KWnc+SKgdCbf660iQ+/mtR9yZJhFW42KELkvytZBnx1MrikUK+SKkNh6ji4+OUfbZh7bLepmvadDeLipW36bscJMvoq6SlNvzy2B+5cqH1e0z3JmmEld83w5QQ2dNVsi4RfmFXKXYvkCwjniTcdvYgOwiHqISzTR9iW4ZHK9i2t9JwTQKwYdW5HIm4/7xRPah1AiVud7YogjuvNEbPH49P1qOVHnzmCGwsqCbBljT/JKp166brl9fPM5UIL3UQTp2ZqkdN2Xbbc5lfEqZIHRCFbBEF4RCToPGdj2laSOoU0K6D5/JB4v7zRgmyKHOKi3BcW7t90Hdw6vSUMtTUn+dd/StwV/+KhjF0aExPWQi2qNat/n2IKhE+cWaqyZk9WZ3G7Q/vU77fx7UCD5Kl8hGKhSgIh0QV4ktrn7fZHcT957UVZFGowlKDq2Hdynd4tKL0f4QJO0F1OR1rl/U2vC+oxHTO1aySEnU+mqjS38HXl2gc7qbS6sFrAeeUhG9KS6skslQ+QrEQH4RDouzOaW20UXZlX0j7TX2AaLv5+SX1n0CUIAui8r08uOdIpC/Ef59JOehasOp2U9v2VrQ2+v6+MjasKtfvTSdRg3nOJbq/hVOnp2IV1zPtbqJ8S1LcT0iLKAiH+E5NnZM1rSkjqt+zLwyAc019TCu7W/7yH5tKbQO1P4o4q2pb3wvQqCRN5i2gphiChf0ANM0zjG9+UQlB34fjK6RpZqNCSYP/tzCvu7E8yfhkNZaQTrPoyKq4nyie2YMoCMf095Vxz02XZxLhY4qqiSsMhkcr2P28utiuugC3njg7o6CSjPLZhM1FQLRSAc6ZX8ICq9XVUPv7yug+r9mKG+cz0yw6soo2kqqyswfxQWRAljZanWM4rjDYtN1cAtsmUsZHZ29X1XnyTSx+qW+Tz2bb3gpWXzq/YQy2wk0Vl59HeKaLz/TnENd/klW0kYS5zh5kB5ER/X1l7B5c12QiyYo4ce/DoxVtUTufOCtCnenrlqsWGU0sUeYTlc+iI0aORFhg2dwjXSMg3fEoXOUjJMnJyCpXRarKzh5kBzFDiBO9ZCv4bTOBTTumXQePK8M0t+44VI/oMmUdB9uXRjm0w4QFVtQ9+szwfjy450h91+Pb1kdePmEVkaXCZUhokrDiu29c4XwnK2GuswdREDOEOGYtW1OAX7rCRqAkNX3574tqnKTzPXQS4SNXLmxKMFMJLNM9Gh6tNCgHn8nqNB565misMiS2n+kSXYmVu29ckbr0SRgJc509iIKYQdhm/Zps/0EYtTaeYUEA2AsHWzt41KpUp2jOMuOu/hVNCWZBwR8+rhKYW3cc0kZexS1DEsZFN8AoWl0fqRVzEvJHFIRjXJRBzrqUcpx2oicnqnUTUWV8EgOP7gMY9Z4Lrgre9feVMfLyifpq3c9RAGqVSXXC21c0KoEVp3ChSdjriv8VyeYujmMhC8RJ7RAX8eGuYsxNTlWVwzPsTNZRneamhjwuCt6pchSGnj2KgUf3aXc7UXbvOOGYpnasH7lyYcvawiZFHMdCFkg/CIe4qMHv4hpx6vUHO8Tp2o/aoOtAZ0vcHhA2Na1MPSvKPV1NZjNV6Y5bvFalRW+QIz0ahDhIP4gccLHNT3sNXW0jlT06LFQYjUUFdQXxVFzc05VKiMY1hZiUpT8OU0MjXxkFnbmmiJ+i29zFcSxkgSgIh7hITLJpCKQTAlGhoGEhrCuR4e9WVKvSUic1+CCAmsBd/JauWI2KbOetIphVHFUkMIxqlxQMuy26QDX16halILhGfBAOcZGYZFtvSeWfiCpDEVZUNiGo4eJ2N//KQtx8xcKG5jYMYPfzJ1KVX4hKmgsyzYzh0QpWbv4WNg6NRRYJ9Cn3dFnViCoqqu//q3uOSE0kITNEQTgkaQcy22tEOV1NQk6lqGyqw6qK2z353DFrX0WcUNDgvE1d5eZ1l3DHY/uV5i+TWWn34DqU29iZa1OHSmoiCS4RE5OBJDZ1F7bqpElnOjNNJ5FSUZlCUE2+DJvwWB8GsHjwyXpCm9/tTUVw3ro+CADAjFhjAM4pgHbOArZVtu2wGxLaA1EQGuLE0LeKKP+ESviVOghvOn8Obhsaw6btB0AEjE9UG0oxbNp+oL4aP7/UUS8tEaesRRTTzPjqniMAYFQSwTmp5trTVcJrEY7zsJ8hqABa7cx1Gf1k66dph92Q0B5kFuZKRH8F4DcBvMrM7/SOzQcwBGAxgJcA3MTMJ4mIAHwRwDUAJgD8LjN/P+ozsgxzNYWbDqxfmiq7OCk2oYxBgXRhVwmnzkyhOq3+jrtKndiwqtzk1I0Kd+3pKuH01NnYq3igtpt5/u5rIs8zzdVUu8mfUxEct65DT21as0poq2CDbZhrlgri1wG8DuArAQXxeQAnmHkLEQ0CmMfMnyKiawD8R9QUxJUAvsjMV0Z9RpYKwhRD31XqbFqlg9AgiNP+o+pWnnFWpDa5BbosYR0E4N6bVwI4pxB7ukt4/Y2ppgQ6HS8F8iWiorJ090AlKOd1l3DndcsLIxx19z/YWzuu8pIoJsEFuedBMPM/ENHi0OEbALzHe/wAgO8A+JR3/Ctc01Z7iKiHiBYw87GsxheFyZ4fFkwqwZimDk6UectlbkFcM5J/tm4HZaOQfGzmqZpru8T86+6/f8+TmC2Lno8hzCwyzaT2FMQTgR3EODP3eI8JwElm7iGiJwBsYebveq99G8CnmNm4PchyB6EzD8Qxq9hmFw+PVrD58QP1mkc6E49NNnVwhdlhsTvoIMBy4Q9AbV7yd0sAsHFozPj+7lIHblx1CXYdPK5VJnGyxm3JIxPaNjs8i/kKgoncdxBRMDMTUWztRES3ArgVABYtWuR8XEHmzumoC0LffGGzSvaxcRYOj1Yw8Oi+BvNU0lj9sFKz2h1wLfkt+PmlDkJHB+H0VGPz0a5SJ4iaI4gmq9PYtP1A0/kqJqpn685qHXFKbtiQV8CBbVHENFFHRS8BIrQ3rc6D+AkRLQAA7/er3vEKgIWB8y7xjjXBzPcz82pmXt3b29yz2AW+QAnG2b9RrQk/VUJXqYNqGcYBbEMnt+44pHUih4lSODZx8mHOouY78U0/PV0lgNAk7Hu6Srj7xhUYn1BHEI1PVhM5rVX4fShckVcPZdvcjqRRR64KOwqCjlbvILYD+BiALd7vbwSO/zERfR01J/VrefofTAIl2AXNRRST7erRRuGkWYlOM9d3CCqF9Ys3pgDEK4mRFAZw+8P7ALhZ4edZCjvoM9CZLW0WEqqdQqt7QAizj8wUBBE9hJpD+iIiegXAnagphoeJ6A8AvAzgJu/0p1CLYDqMWpjr72U1LhtMAsW0pU/yT2kjcP3eCFHXTyu8TUlw08y447H9yrDYLPA/D0inJPw+1ln2c7A18yR1rutMZLrvQBLlBFdIuW8FOueiyUGbJpw17INQ4Se8BZPcohrkZAER8Ktvm4/dz5/I7DOC9HSVMHbn1Ynea7ofrvIFWlFm2xQuq1J84vQWorB1UkstJgW6gnk6B20aW3Z/XxlbP3h5Q8Melam6epZxcqKqtTX7q9jJ6rSxjlEUPV0lY9E8ZjhXDp0d+vGOT1YT29RNfaxdCfBW+DdM4bJFb2QktDeiIBToCubpHLSV8Ull57Y4nzf6p1fjpS3X1pLILDZ1QSEUdFYCasFhAwHYdP3yeqvPJPj3zJZ53SXc86HLjUotOE9dlzwVpj7Wrlb3us+oeOZIF+hMYf7fZZrikIJgQmoxaVAlJJlCXIMre//9cYibvwCcU0yq8/2dhOo6KlOZ3z2tv6+MzY8fiDX2IH5mr40vpKvU2ZD5rMuh8H0/cUNVXfTnMGHybwBwFkq7dlmvMjR47bJeSZwTMkV2EDGw6VmQxLwQDleMk91sOl9ngth0/fKmlee9N6+st9Y8qdkp2bBtbwVrl/Va7mAYG4fG8PY7nsLGoTHoLE0X93QlMuW46M+hI6o5k834bNl18His44LgCtlBxCAcheKq+UyS/AUbdIUFTVFXaQXaZHUauw4ex4ZVZTz0zNEIAVrLtfDPUWV0+wL9NsPuQkeWJTlsvzMXEUV5hukKsxtREDEJbul10SVxTBjDoxWjOSZueY/g+3xhqBKIutDMKKEzr7sUucOojE+mKheuKmanM+9F3eusTDC2wtmFOcvGVCYZ1UIWiIkpBXFMGCoH6/BoBQOP7NNeX+WE/PObV2q7onUS1c/bsKomVFUOXVMGrkmg/fnNKzH6p1drP9+nQxHtFYezzHhxy7UNPaKzNBclwUbwuxpf1Nwlo1rICsmDSInNyk0XKw9w3cwSxhRLr7qeX+Cv7JWADiezBfskmIrk+eYcU7FAU35BuK5TEnRx/EVaJavugU2uSprP083d1LtE8iEEFbn3g2gFRVAQNthW9Qzy5zevNAoXX2BUxiebqr/qqsFGNQLyq88u1rT79F8fHq00dKHzK8KWe7pw6vSUslc0cM50ZOofYZNkVhRFUZRx6HqX2FYTFmYfha/mOpOIEhRJnIlRzYF827pK+eiUQNRSwDeblA02b9XKee6cc0Ld1Ev6npsub2oGVBmfrIfjli2EbJFawRYlxDTrcF5h9iIKIiU2AitujaR53aWmEhyV8UkMPNpcwM5VJEvQpq0qU+2/rgs33Tg0hpGXTxh7SQfHnVS4FrFAXd47CdP3JQhpEAWREhuBZdsXAKjZ8O+8bjk2P36gyZZfnWbc9vAYbhsaqwsiF9VVidBg1gmGh/orfH9Ops/66p4jWPP2+Thx6kyTsNp0/XKrsSTdjdkqStfCPIsdTdwxtkuHPaH9kCimlNgIrHDpDhNbP1gzw+hCSZkbs7btk9L0MDcLs/6+cj16JtgiM4o9L5xMXP7BJhpHZzZhACs3f8sYuZNFtI/rWkxJx9jfV8buwXVN0V+CkAZRECnRCazw8eA/sC5M1D++ZstOq8/2k9JsmtJEEQ6DXbNlJzYOjcUOV5326hwlEVY2wtaUzT4+WcXAI/u0wjSLwnquk9jyam4kCCpEQaQkSXy+7j1rl/U2FN2z4cfjkw0C+Z6bLo83AQ9/lRou/BeXNJVk4+zGdJ9TPctaYZpFRrLtAsEWyZoWioQoiJToKr9GrZrPL5279X47z10Hj8desV/YVWp43t9Xbigdbou/Sk1b9uOqt81L/F6T+SiY7NffV8ZZQ3i2Tpi6FuaA+wS+LMYoCEkRJ7UD4kTkqMJE/f7PSVaJ45NVfGZ4P+7qX1E/dud1yxM1DnKxSn3pZ9HXCOdRzOsu4c7rlmNg/VIMPLJPmR8Rdv6anPM6YZpFtI9rB7FEJAlFQhREizGFiSblwT1HsPrS+cooJFNRwTC+YDWZl+Z1l/DzySltnaUoJeOXFwkqgZMTVdz+yD585IqFMHnxg9Fhi9+iVhAdBK0wzSrax2U+hEQkCUVCMqlbQDBsMau7bSqrYJPJ7WcwA4hs0zny8gllf4KocUSNxc/INkEA7r15pbYcSJoWpYIwW5BM6gIQNqXEpaerhFNnpqxqG5lW7iqzRamTcMF5c/DapLpuUDjnoZMIG1adWyk/uOdIk4AudVKkKcQ0zijlAJzrDaE79bWE93omkncCn9D+iILICFNBOxsIwNidV1srGZMTM4nZYuLMVMPzaWZs21vB6kvnawX0BefNiRRAaRL7onpD+NcXilWSRGhfREFkRNpooA4iLBl8Ehf3dNWzkHWZzDZOzCg7+WeG91s0+JmuKxkV4dW7agU7sH6p0d+iKzwYrNOkuw8Evf8hDi5W3nmv3otYkkRoP3IJcyWil4hoPxGNEdGId2w+ET1NRD/yfiePl2whqj4PQPqIoGnmpj7XuwfX4aUt19Z7QrhqVP+Z4f346p4jVg1+fIGnooOoPn9dRjAA/PZVi7TXZ5zzU/utUF/acm29DtSSwScxcWYKpVB/0mBP7TS4yLYuQn8GyacQXJDnDmItM/808HwQwLeZeQsRDXrPP5XP0OwwbeOjTClRpbeDhFd+rquIPqhxOKvwV8Mq89k0c72goGkFu3twXd1UpbpH/o7Bd3aHI59OTlTRQTUfjc6HkhQXK+8irN6lwqvggiIlyt0A4AHv8QMA+nMcixUmQWAqCQGolYPp/LgrP93ORnVenMgqXxDffeMKdChCUqvTjI1DY1rl6M/Dz/7WRbUG57tp+4Gm3IiznI1D2sXKuwir96J14BPak7wUBAP4FhHtJaJbvWNvZeZj3uN/BvDWfIZmj0kQ9PeVsWFVObI4n4+fTa2r0xS3z7WtiSNOjZ9gye5aNrP1W+uE52GTOaxz0DPg3ITjIpO5CNnQSTP8BSFIXgri3zLzuwF8AMAniOjXgy9yLTlDKX6I6FYiGiGikePHj7dgqHqiBMGug8etV+cXzJ1Tr6Aatq+XOqLDR4PEKfhmu6qNU7LbdI3wPEwrXX8XZIOrgnYuVt5FWb1LhVchLbn4IJi54v1+lYj+FsAVAH5CRAuY+RgRLQDwqua99wO4H6glyrVqzCqiyiIkNkuEtx2h52l6JoTf29NdUpYWnzunA50ETHg9s9+YmsbIyycaPqenq2SV40GA1k+gC8EF9Al7OlyYcFxkMks2tDBTaHkmNRFdAKCDmX/hPX4awGcBvBfAzwJO6vnM/F9M1ypCJnWSZvIqfKdsVAN6VX5FuI+z7hrzukt4o3q2MWGugwBCQzJeV6kT7150IXY/f6LpGr991aJ63SdV2QzduOOSpI930s8ShNmGbSZ1HiamtwL4LhHtA/AsgCeZ+ZsAtgB4HxH9CMBveM8Lj2kbH+Wo9rHZdfjHNz9+IFHPhK5SJ5jR9N7qWUZ1muvls31b9Z4XTirH8dAzR+uP+/vK2Pqhy+t+k/DGx8askiRMeF53qckMJw5YQXBPy01MzPwCgKamBcz8M9R2ETMGk/lEt+swhScOj1a0nebCPRNUn2HKQJ5mrgvZ/r6yNpktnCsRDLmNmxyWJEw4uJMSE44gZIsU6ysYnxne31TnyDchmXpC25hXbMw2/nXefsdTysS5TiI8f/c1kfOwwWRO0/l3JBJHENJTZBOToGF4tIJteytNpSb8InlRBfmisDF5+Z/xkSsXKl/XHU9CVJiwhGkKQr5ILaYCoQpPZdTCZQG92SWYn2AiaHqKarbjO6L9+kydRPjIlQsbGhOlJSrb13XGuCAI8RAFUSCiHNQ6s0uc/ARf6OqioYI7kbv6VzhVCGFUHeTi5nwIgpAdoiAKhM2KGnATX1+YWP2InA9BEPJDnNQFwibHYSYRlfMhCEI2SEe5NqQwq/oWUYSidoIg6BEFUTBmg2PWz2HQ7V2lJLUgFANREEJLiWrFKhnRglAcREEILcXUirU8w01qgtBuiIIQWorOv0CAOKYFoWBIJrXQUorQTEcQBDtEQQgtpSjNdARBiEZMTEJLmW2hvILQzoiCEFrObAjlFYSZgJiYBEEQBCWiIARBEAQloiAEQRAEJaIgBEEQBCWiIARBEAQlbV3um4iOA3g54dsvAvBTh8MpCjN1XsDMndtMnRcgcysqlzJzb9RJba0g0kBEIzb10NuNmTovYObObabOC5C5tTtiYhIEQRCUiIIQBEEQlMxmBXF/3gPIiJk6L2Dmzm2mzguQubU1s9YHIQiCIJiZzTsIQRAEwcCMVRBENJ+IniaiH3m/52nO+yYRjRPRE6HjS4joGSI6TERDRHRea0YeTYy5fcw750dE9LHA8e8Q0SEiGvN+/mXrRq8c5/u98RwmokHF63O97+Cw950sDrx2h3f8EBGtb+W4bUg6NyJaTESTge/oS60eexQWc/t1Ivo+EU0R0QdDryn/NotAynlNB76z7a0bdUYw84z8AfB5AIPe40EA/0Nz3nsBXAfgidDxhwF82Hv8JQD/Ie85xZkbgPkAXvB+z/Mez/Ne+w6A1XnPwxtLJ4DnAbwNwHkA9gF4R+icjwP4kvf4wwCGvMfv8M6fC2CJd53OvOfkaG6LAfwg7zmknNtiAO8C8BUAH7T528z7J828vNdez3sOLn9m7A4CwA0AHvAePwCgX3USM38bwC+Cx4iIAKwD8GjU+3PCZm7rATzNzCeY+SSApwG8v0Xji8MVAA4z8wvMfAbA11GbX5DgfB8F8F7vO7oBwNeZ+TQzvwjgsHe9opBmbkUncm7M/BIzPwfgbOi9Rf7bTDOvGcdMVhBvZeZj3uN/BvDWGO99C4BxZp7ynr8CoEgNDGzmVgZwNPA8PIe/9rbB/y1ngRQ1zoZzvO/kNdS+I5v35kmauQHAEiIaJaL/Q0S/lvVgY5Lm3hf5e0s7tvOJaISI9hBRkRaViWjrhkFE9PcA/pXipU8HnzAzE1FbhWtlPLdbmLlCRG8GsA3A76C2XRaKwzEAi5j5Z0S0CsAwES1n5p/nPTDByKXe/9bbAOwkov3M/Hzeg0pKWysIZv4N3WtE9BMiWsDMx4hoAYBXY1z6ZwB6iGiOt6q7BEAl5XBj4WBuFQDvCTy/BDXfA5i54v3+BRF9DbVtdV4KogJgYeC56l7757xCRHMAXIjad2Tz3jxJPDeuGbRPAwAz7yWi5wH8MoCRzEdtR5p7r/3bLACp/qYC/1svENF3APSh5tNoS2ayiWk7AD864mMAvmH7Ru+fcxcAP0Ih1vtbgM3cdgC4mojmeVFOVwPYQURziOgiACCiEoDfBPCDFoxZx/cAXOZFjZ2HmqM2HP0RnO8HAez0vqPtAD7sRQItAXAZgGdbNG4bEs+NiHqJqBMAvNXoZag5c4uCzdx0KP82MxpnXBLPy5vPXO/xRQDWAPinzEbaCvL2kmf1g5od99sAfgTg7wHM946vBvC/A+f9XwDHAUyiZm9c7x1/G2rC5jCARwDMzXtOCeb2+974DwP4Pe/YBQD2AngOwAEAX0TOkT8ArgHw/1BbaX3aO/ZZANd7j8/3voPD3nfytsB7P+297xCAD+T93biaG4AN3vczBuD7AK7Ley4J5vYr3v/UKdR2fAdMf5tF+Uk6LwC/CmA/apFP+wH8Qd5zSfsjmdSCIAiCkplsYhIEQRBSIApCEARBUCIKQhAEQVAiCkIQBEFQIgpCEARBUCIKQhAcQUQLiehFIprvPZ/nPV+c78gEIRmiIATBEcx8FMB9ALZ4h7YAuJ+ZX8ptUIKQAsmDEASHeNnpewH8FYA/BLCSmav5jkoQktHWtZgEoWgwc5WIBgB8E8DVohyEdkZMTILgng+gVo31nXkPRBDSIApCEBxCRCsBvA/AVQBu86rtCkJbIgpCEBzhNV66D8BGZj4CYCuAP8t3VIKQHFEQguCOPwRwhJmf9p7/BYB/TUT/LscxCUJiJIpJEARBUCI7CEEQBEGJKAhBEARBiSgIQRAEQYkoCEEQBEGJKAhBEARBiSgIQRAEQYkoCEEQBEGJKAhBEARByf8HmtTKQFtOxCAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJztnX+UHFd15793Rm15xrAeCc+ycluyBHGkRQhrkGJ7o00WiWCBHdsTC2w4TiA/TrxZyG5kvLOMFzaWOGatRTEOe87GHGdJYg7GjG05g/wjCAeJzaIT2YyYkYWCtMi/JDcKFkhjsGYs9Yzu/tFVrerq9169qnrVVT1zP+fMme7q6ur3qmfufe/+JGaGIAiCIITpyHsAgiAIQjERBSEIgiAoEQUhCIIgKBEFIQiCICgRBSEIgiAoEQUhCIIgKBEFIQiCICgRBSEIgiAoEQUhCIIgKJmT9wDScNFFF/HixYvzHoYgCEJbsXfv3p8yc2/UeW2tIBYvXoyRkZG8hyEIgtBWENHLNueJiUkQBEFQIgpCEARBUJKZgiCi84noWSLaR0QHiGizd/xviOhFIhrzflZ6x4mI/icRHSai54jo3VmNTRAEQYgmSx/EaQDrmPl1IioB+C4R/Z332gAzPxo6/wMALvN+rgRwn/dbEARByIHMdhBc43Xvacn7MTWfuAHAV7z37QHQQ0QLshqfIAiCYCZTHwQRdRLRGIBXATzNzM94L33OMyPdS0RzvWNlAEcDb3/FOyYIgtCWDI9WsGbLTiwZfBJrtuzE8Ggl7yHFIlMFwczTzLwSwCUAriCidwK4A8AyAL8CYD6AT8W5JhHdSkQjRDRy/Phx52MWBEFwwfBoBXc8th+V8UkwgMr4JO54bH9bKYmWRDEx8ziAXQDez8zHPDPSaQB/DeAK77QKgIWBt13iHQtf635mXs3Mq3t7I/M8BEEQcmHrjkOYrE43HJusTmPrjkM5jSg+WUYx9RJRj/e4C8D7ABz0/QpERAD6AfzAe8t2AB/1opmuAvAaMx/LanyCIMwcimjK+fH4ZKzjRSTLKKYFAB4gok7UFNHDzPwEEe0kol4ABGAMwB955z8F4BoAhwFMAPi9DMcmCMIMwTfl+Kt135QDAP19+bkxL+7pQkWhDC7u6cphNMnITEEw83MA+hTH12nOZwCfyGo8giDMTEymnDwVxMD6pQ2KCwC6Sp0YWL80tzHFpa1rMQmCMDMYHq1g645D+PH4JC7u6cLA+qXWwr2ophx//EnnVQREQQiCkCtpTURFNuX095XbSiGEkVpMgiDkStpon4H1S9FV6mw41m6mnKIiOwhBmGWkMedkQVoT0Uww5RQVURCCMIsoYsSPCxNRu5tyioqYmARhFlHE5C0xERUX2UEIwiyiiBE/YiIqLqIgBGEWUdSIHzERFRMxMQnCLELMOUIcZAchCLMIMecIcRAFIQizjLzMOUULrxWiEQUhCELmFDG8VohGFIQgtJjZuJIuakE9wYwoCEFoIbN1JV3E8FohGoliEoQWUsREtVagC6PNO7xWMCMKQhBayGxdSUt4bXsiJiahbSmaLd9mPLaJau04NxMSXtueiIIQ2pKi2fJtx2PTZaxd5xaFZEu3H2JiEtqSotnybcfT31fG3TeuQLmnCwSg3NOFu29c0SA423VuRWB4tII1W3ZiyeCTWLNlJ4ZHK3kPqa2RHYTQlhTNlh9nPFEr6SLMLWhSYs05RfObFG3nNROQHYTQlhQtKsblePKemy9oKwbl0Mrx2NJOO512QRSE0Ja0KirG1mThcjwD65ei1EkNx0qd1LKIH5WgDVPECKQi7LxmGpkpCCI6n4ieJaJ9RHSAiDZ7x5cQ0TNEdJiIhojoPO/4XO/5Ye/1xVmNTWh/bGz5aQmvpH2ThUpJOB9PeOluWso7xiRQs7rXLsh75zUTIeZs/vKIiABcwMyvE1EJwHcB/AmATwJ4jJm/TkRfArCPme8joo8DeBcz/xERfRjAbzHzzabPWL16NY+MjGQyfkFYs2WnMiS13NOF3YPrZtznFuXzkxL2QQC1nU4RlVneENFeZl4ddV5mOwiu8br3tOT9MIB1AB71jj8AoN97fIP3HN7r7/WUjCAkJk1US14mi7xNJe2a1NaKXeVsI9MoJiLqBLAXwC8B+F8AngcwzsxT3imvAPC/vTKAowDAzFNE9BqAtwD4aZZjFGYuaaNadEltjNoqO6tEr7y7vrVzUpvkWrglUwXBzNMAVhJRD4C/BbAs7TWJ6FYAtwLAokWL0l5OmMGkrSCqSmrzyTKE0iaZzoY02c8iaAWgRVFMzDwOYBeAfwOgh4h8xXQJAH/PXwGwEAC81y8E8DPFte5n5tXMvLq3tzfzsQvtS1pTTdBkoSKLEEpfqE9Wp9HpWViTmEriONgFQUeWUUy93s4BRNQF4H0Afoiaovigd9rHAHzDe7zdew7v9Z2clQddyIUk/oA0PgQXUS39fWXsHlwHnTPMpV8gKNQBYJq5vnOIu5qXnADBBVnuIBYA2EVEzwH4HoCnmfkJAJ8C8EkiOoyaj+HL3vlfBvAW7/gnAQxmODahxSRZ0aZdBbt0trYihNKlUM/b0S3MDLKMYnqOmfuY+V3M/E5m/qx3/AVmvoKZf4mZP8TMp73jb3jPf8l7/YWsxia0niTCL63AdBnV0orIHpdCvae7pDwuOQFCHKQWk9ASkgg/FwLTlbO1FZE9rqKXhkcreP2NqabjrczGFmYGoiCElpBE+OUd7hkm68geV9FLW3ccQvVss/vugvPmSGSSEAtREEJLiBJ+qpBMVwIzLnk163G1S9HtsF6brKYeozC7yKzURiuQUhvFwUao6s4xlUgAsjPrqMYDoNDlGmzuc7uWyohL0brutRO2pTZEQQipSVsDJw+Bphvz3DkdGFestLMYS1wBZ3ufZ0NNotkwxyzJvRaTMHtIG22UR0imbswq5ZDFWJKE8LrsWpdkvEXq1CZ5Hq1BfBBCatIK+DTOaJ2ZKGplHlfgu3aMJykDYnOfw/fj3ptXpl5RF7FTm+R5tAZREEJq0kYbJXVGqwTXwKP7AEY9ikcnzHRjntddwhvVs5k7xuMIOF/o64zB/n3WCfKRl0/gyeeO4eREbXfU01XCpuuXWwt3W2XWSp9A0SLcZipiYhJSkzaJLKlJRCW4qtPcFOIZNj0Mj1YwcaY5T6Cr1Ik7r1vekpLRtpnZ4fIbqjEHd00qQf7VPUfqygEAxierGHhkn7WZyEaZfWZ4P24bGmtZ7ad2LUnebsgOQkiNi/DMJDkGccwJ/rkq5ybQvKp2rRDCq+u1y3qxbW8lMuxXpxiAmvIK3uc496N6lq2r2kat1odHK3hwz5GmHU6cyrlxaeeS5O2EKAjBCXmUh9YJLt25gL7f8gVz4yWRxTGnqEw/2/ZWsGFVGbsOHrcK+w1DQFNUVZz7AdgrlCgToMn8ZfKPpBXoUpI8e0RBCG2LSnCVOqnBBwGcE2bDoxWtAI2z+o7rtNWZfnYdPK4MndUpsSAXdjXXWlLdD4K+nbWtvT5qtW66d1H+keD1heIhCkJoW3SCS3fMF0gq4jg340YgxY24sVFWp85MYXi00vB5qvuxdlkvhr53FNXpRjVR6ohXl8m0WtftXAiI9I9kZYIS3CAKQmhrdIJLlV2sW5WXOglrl/Vi5eZv1fMg5nWXcOd16kifuII9bsSNjamoOq32Iajux+pL52Pz4wcSRzFFodu53HLVoshdhoSlFhtREMKswCSIps8yvrbnCM4Gjp2cqNZCZtGsbOIK/LhhvKZWp0HidMZzkQth2qn1dJcwd04HXpusKv0LEpbanoiCEApB1jH0plW5ovApAP0qPa7AjxtxEz4fUPsRVH6ILLDJNzk5UUVXqVObmJdX4UUhHaIghNxphQPTdlUeRrVKTxJiGXcVHzy/77Pfashj8CFdH1QHBBV2BxGmQzXbwj4NwOxTkLDU9kQUhJA7UQ7M4dEKNm0/YOUf0OGfe/vD+5qEnQmdCSSN2SbubmlcoRxUx13twsIKO879Mpm9dPfM9e5Rqry6QxSEkAvBf2JTDP3waAUDj+xrCFs1+QdM+OduHBqzOj+LDmxJdks29vukuzCVMLUJs9WRpPudy92jhNO6RUptCC0nXMlUx8U9XdruaL5/IC79fWX0aGz3QZPNvO4Stn7wcudCJUkVUpuyEkmuq6soa5NsV+oklDoabVxJu9+5rMoqVV7dIjsIoeXYrFB9YXObYbWfNERy0/XLc+slkCTc08Z+n+S6OmHaqfA5AEAnEc4yx6qaG4Xr8FcJp3WLKIg2IQu7atJrph2L6Z+VgIZrmuoRJQ2RzNNhmjTcM8rnobtuBxGWDD4ZS6lMM6Or1GmlQNPeM9fhrxJO65bMTExEtJCIdhHRPxHRASL6E+/4JiKqENGY93NN4D13ENFhIjpEROuzGlu7kaS5TFbXdDEW3T9ruacLL265FrsH19UFz8D6pU2mDCC9f6C/r4zdg+uaPi9rsqpCqrouUBP2uu/J9D20oqKtbtxp7odUeXVLZi1HiWgBgAXM/H0iejOAvQD6AdwE4HVm/rPQ+e8A8BCAKwBcDODvAfwyM2ttEbOl5WgWLTmTXtPFWOK2i9RFMQHtGTaZVZRNVGgq0Pg9FaVtp0QxtR7blqOZmZiY+RiAY97jXxDRDwGYvqUbAHydmU8DeJGIDqOmLP4xqzG2C1nYVZNe08VYwiaeC7tKIAJuGxrD1h2Hmv6hVeaVNNEqLgVIkmtlVYU0eN0lg08qzwl+T0XJTXB9P6TKqzta4oMgosUA+gA8A2ANgD8moo8CGAFwOzOfRE157Am87RUoFAoR3QrgVgBYtGhRpuMuClnYVZNe09VY/H/iOII+aoVsU/xN9Xkbh8awafuB2PWJVNe6bWgMG4fGmno1uCCOMrL9nkSYCiYyD3MlojcB2AZgIzP/HMB9AN4OYCVqO4x74lyPme9n5tXMvLq3t9f5eItIFnbVpNd0PRbbsMSw70OXvBW1k9FFUI1PVo2+lOHRCtZs2Yklg09izZaddWEdvpY/Ktcd1eL6fsQWL7gg0x0EEZVQUw4PMvNjAMDMPwm8/pcAnvCeVgAsDLz9Eu/YrCcLU0DSa7oei63JyjZ5S7eTsenQptuB6HY5UeNxWc5ap0g3bT9QqNIWYv9PThHvXWYKgogIwJcB/JCZvxA4vsDzTwDAbwH4gfd4O4CvEdEXUHNSXwbg2azG125kYQpIek2XJRNsTSE2Pg7dCtmmQ5vpc+LmC0RdLwk6xTY+WW3qC+HTavORZDEnp6j3LksT0xoAvwNgXSik9fNEtJ+IngOwFsBtAMDMBwA8DOCfAHwTwCdMEUxCsUga/mprCtHtDDqJIkMx45SOUH1OVL5A3OslodNQma8oWcKSxZycot67LKOYvota3lOYpwzv+RyAz2U1JiE7knYMszWF6MpF24Rk2q7idTsQ3S7Hd0T7pqtwe0+XNn/TTqUoWcIuo+2KaG7JkqJmgEsmteCENH/gNqaQNDZ1mw5tBGDDKvU4dMpp7bLe+njKXnvPXQePZyLUyoY5FCVL2FWEW1HNLVlS1AxwURCCE1rxB26jSILOaN9H0NNVQqmTlD0MfBjAroPHtZ8LNPd63ra30iDEtu2tZJpxPPDovtS9pbPEVVOg2di/uqgNlURBCE4YWL+0qSx3q4WXro/B+GQVpQ7CvO4Sxieq2gqylfFJbd2isHJS9bg2CbG0JhP/XFe9pbMw4biKnGqVuaVIZqyiJC2GEQUhuCPsccqw45kKkzO6epbRfd4cjP7p1dpyIQAaHOyA3qQRR4i5Mpm4ikrK0oTjYoyt2I0W0YxVxKRF6QchOGHrjkNN5o+4PRtUyWg2r/nYlgnRFbYLEhVBohNWquM2ESo283NFUSNmfFqR5Ff0e1AUZAchOCGtWcC0ogNgtdqLckb7wju8nTd1tNMRx2YcdW9avZotasSMTyvMLUW/B0VBFITghLRmgagVnY29XyW0fcLCO7id15mcTGOPI8Si7k2rnbJFjZgJkrW5pR3uQREQE5PghLRmAdOKzna1199XrvcxAM4ll/lJdACUZhzV2EudhFOnp4wmH9ueElH3ptWrWanTJPfAFtlBCE5IaxaIWtHZrvZMZUCizDj+2Hu6S3j9jal6/4m0Jp+oe9Pq1WxRI2ZaidwDOzJrGNQKZkvDoNmAqXkNgMRZ1D5xGh3pzg33ZE4rTII5G6os7FY37hFmD7k3DBJmJ2liy88vddSVgCrGP03/bJ3zWmXGMdVeAvQ7ijhzDytEBupKIk0vieAY/EZM4xNVWSELiRAFITgjaTSOavdweupswzlJnJY2VVxVZhyb0hxhJ3Lcuet6SaRpIxseg28isxmPIKgQBSE4IyoSSbe61r3v9of34bahscSr36gqrjqnpCkaKkhwpxE3EslFWHD4fkbNd6aXqxDcIwpCcIZOuIUb7IRXs0lNOknHA5jNOGEHpqq9KdC4+4gr8JM4pnU+C9sGRqbxCIIKCXMtAK3Mos1yPKaeDaadhU20TpIsV911fTNOVBlyP4T1npsujwyJjJNZDcQPswz22wDQlNznNzCKQuL8hTiIgsiZpI12ijietcvUPcKj+kfblL4Inm+L6rqE2pziKL5gfoWuOVFcgW9zzSA2TY+iGhhJnL8QFzEx5UzRShunGY+uXLauNaeu9IWNSUdH2Da/YVUZuw4e15plgp9vIspJniSuPo7j3UY5BhsYSRST4AJREDlTtJowJj/Cmi07jcIvqjWnqW5RUFjqciKiVr+qSCK/R4Mq1DWJIjaFsmZZHiIqssq/P0WsCCq0L2Jiypm4tmuXqHwNus/1TTMms5PJ5h8ugeELZ10JizjmFx/T7seFIs7THKgzlwH290cQ4iI7iJzJq5OULm5/w6pyQ6c0AE1ZvoB9sbzgyhawq8rqP3fZaMZFOYs8zYFSGkLIA1EQOZPXP75O2O06eLxukjEJVkBdLM+/dpx8B1cC1qQEXCjivM2BYj4SWk1mCoKIFgL4CoC3orYAvZ+Zv0hE8wEMAVgM4CUANzHzSSIiAF8EcA2ACQC/y8zfz2p8RSKPf3yTsFO110xbLA9QF9wLjyVNqQ6bHUzSaw+PVpw6z2X1L7QDWe4gpgDczszfJ6I3A9hLRE8D+F0A32bmLUQ0CGAQwKcAfADAZd7PlQDu834LMbERRrrVdgcRhkcrkaajYDlsG4E3PFpRmqr8sfjn2JqgTHNUHU8joP1xqZRDUud5u5e9EIU3O8hMQTDzMQDHvMe/IKIfAigDuAHAe7zTHgDwHdQUxA0AvsK18rJ7iKiHiBZ41xEssRVGunIS08xN54cFb/d5nTh1ZjpWOeytOw5pO7f5+RO2JqioOaqUSRoBbcpBCCbw6Qr3qXYe7Vz2YiYqPEFNS6KYiGgxgD4AzwB4a0Do/zNqJiigpjyOBt72indMiIFtr10/UkiVfas7f/fgOtx780pMnGkWllGZziY7/UPPHMXwaEVrggofj9tPWHf+5scPWGWMR/kYwtFM4WinqETBdkP6Oc8eMndSE9GbAGwDsJGZf04BgcTMTESxGlIQ0a0AbgWARYsWuRzqjCCOI7W/r4zbhsZiXce0EzAJPJOz29+1EAEqWdrpmb2S9pDWHT85UcXJieZdENBopurpLtXP0xHcEdhkPQPtW/Yib2e90Doy3UEQUQk15fAgMz/mHf4JES3wXl8A4FXveAXAwsDbL/GONcDM9zPzamZe3durLu0wm4mbVxH3eJQS0DGwfilMlYImq9NK5QCcUyAVg3Iwfb6tIJ6sTmPT9gNNuQ6vvzGFUmd0nSP/3tgIynYue5Fn7o7QWjJTEF5U0pcB/JCZvxB4aTuAj3mPPwbgG4HjH6UaVwF4TfwP8YlbEyju+aZEOpPA6+8r45arFhmVhA5Vsb8wceeoY3yy2vRZ1bOMC86bU0/c0xXF8+9NlKDsJNImthWtcKMK6ec8e8hyB7EGwO8AWEdEY97PNQC2AHgfEf0IwG94zwHgKQAvADgM4C8BfDzDsc1Y4mYhB88HorOcdRm9t1y1KNJBeVf/Ctxyld4s2NNVUgoenQ3fp5MIG1bpe1H7Jh9fsJd7utDTVTJeM8xrk1Xr6q5RCukss7FvdlEKN+pImukutB9ZRjF9F9AuGN+rOJ8BfCKr8cx00oQdxslyTpNPMDxawba9amHXVerEpuuXK69tahkK1ExQ2/ZWsPrS+cZoJ78mlC/IVTkT55c6lP6G4K4g6h74v29/eF+svImiFW40IUl7swPJpJ4BuAg7jCOckgoHnfM2bHJRXTuqIY5qrKY5+W09w0Je9Vkq84ltddc42dvi/BWKhlZBENFTAD7OzC+1bjhCEuLkD+hWvbblNNKgu5bJ5BIsXX1+qQPjE1XrKKYogWsS8i6SwOLutnTRUj3dNXOYJKcJrca0g/hrAN8iogcAfJ6ZzXF+Qm7YrDxNuwxAXZAPcBuZEqdgXni845NVdJU6ce/NK7Ump/B1khboi7NDihLaca6lc7UwS3KakA9aJzUzPwLg3QD+BYARIvrPRPRJ/6dlIxTq6CJcbMIOTbsMXW5DVGRSXHTRL2uX9TbNyzRenRP41OmpBodukmibOFFErp3Kr02q12CvTVYlOU3IhSgfxBkApwDMBfBmAGczH5GgRLWCHHh0HzZtP4DxyWrTDiAsCJPYtxluV6f9fWWMvHwCDz1zFNPM6CTCuxdd2FBe3BeyOn+DX0wQADY/fqDBJDM+WVWW3LA1y8RdpeuE9qbtBxKZgkw7niz9E2K6EnSYfBDvB/AF1PIT3s3MEy0bldCEShhVp7leD4lxzkxUVvyTR5lbVK/5oa+uBIgfxeRH9kwzY/fzJ5rO80NSo9qUbt1xqMlmH/a9xDHxxI0i0gnn8clqrDpVPqZqtLZmtbiI6UowYdpBfBrAh5j5QKsGI+ixWSn6ymH34Lq6qcQX6muX9WLoe0dRnT4ndEudFBm541KA2JagAOzalKZZVQeVXk93CcyoC3Xb60W1AfWxDVU17XhGXj6BB/ccMe4Sk9BOobVC69EqCGb+tVYORDBjK4x+PD6pFOpDzx5tXpF7T02Cac2Wnc4ESBxziL8LMu1ckjqhw/cnqs6S7nq6irgqbOeuq0a7bW+lQTkQoE0OjIOE1gomJA+iTbAVRhf3dKnNUWebzTXVs1wX9DpTjEsBYqvkfOd4lHlId08mzkw19bQIEmcnY1qlqxTrxJkppcK5sKtUb7zkm89UpkDb8TKAXQePW83BhItWrMLMRRREmxAWRj3dJbz+xlSD4PeFma5CqwqToE/bRS2MP7ao8r22znH/HN9R73Nyoqo1g5nKiocJCnCdHyasxMK7EwAodRBOnZmqj9G/nzpzXfizssxRyasnutAeiIJoI1TCSCW0okpTBNEJ+jRd1EzCVGVLD1OOoXz8+Yb9B6ZGQzb4vpzg+2z8MHF2Fapxqj4ryxyVNKVThJmPKIiCkCRSSGeCUbYI7SCA0OCkNgl6U1mMDatqQvm2obGmsUYJ07v6V2D1pfPrSiwqPNcGWzOYrWkpOIbh0YqyppLJDxP+XpYMPmk9fp05ycV90iF1lQQdoiAKgOtQQ92qUHVMV+LC1NxHlbfgf26cqBgC6hFEr01WE69ebe3oJpNMT1epaQymXVT4eiYFH+V7CY5TN0Y/Qk1W+UIrEQVRALIINdStCqOuF2WGUfVmCI41qm2oKoLIL6GRdK62dnSdoA6ak4JE7Th8wa5T8CMvn8Cug8eNZqLwOOOOURCyRBREAShSqKFJKIbzEoL4Y9UluPm9GEz9odOWK496f1yHrOn+B9+nm1PQ1xI0E6mimPwdiCuzmyC4QBREAShSqKFJKN594wqtA/xCrwGPzhzjH4/bHzqOkkiTiKZC972Ey5ObzELh56qdQHgHEnyfbSisIGRBpj2pBTtsisq1qhWlTimVe7rQ31fGwPqlNYd3iFNe7oEuAsk/Hqc/dBaF6Pr7yvXOcLsH10XmWai+l3tuurwpYc8WlTLR7dqC+SCCkAeiIApAf5+5hWMrW1HqWopWxiexZstOAMCbzm/eeFanWVtpNVi249TpKeux5J3NG/W9+OjumQqVMjHtQKRaq5AnYmLKAVOegIpW1ssJmmHC9vA4lVZtOrVFUYRs3qSmq7XLehuivQC9LyHrZDhBSIooiBaTJKQ1KjLINb5Q9EtDBDFVWu0gqpe4CM9FVdPJRLs5ZlVz9vM9ovwdpgzzIihJYfYiCqLFJNkNREUGZYUpF0IV0TTNrFV2cVbCHQSlKaddCO8Qo0J4s6zWKghpEB9Ei9EJysr4pNYBHRUZlAXDoxWtHd23xasUlM65HGclnLXiy5Kk/qK7+lfg3ptXRvo7BKGVZLaDIKK/AvCbAF5l5nd6xzYB+EMAfhnK/8rMT3mv3QHgDwBMA/hPzLwjq7HlicneHBQowLlVeNmQPBUX25IeujakQK1aqqnonq8Eg591YVcJpU5qKvUBMCarjY0Kg1Vms5pfVqTxF9n4O/KenzC7yHIH8TcA3q84fi8zr/R+fOXwDgAfBrDce89fEFFz0+EZgK6fcpDwKjxJb2UVcVa3JpPQyYmqsdheT3cJKzd/CxuHxuqfNT5ZBRiY111qWCG/UVV3sU3inB0erWDg0X0N8xt4dF8m0V66sOOsW4O2KppNEIAMFQQz/wOA5n6Sam4A8HVmPs3MLwI4DOCKrMaWJ+HQSR1BgWIbbhlFnMb3aZyjJyeqyu5s1bOM7vPmNOQg6D4nyedvfvxAww4FqIXfbn7cbVNEk6B2OZ8wcb4/QXBBHk7qPyaijwIYAXA7M58EUAawJ3DOK96xGUnQlKCKFAKaBYqLipsm/0ewPenA+qWxuqWlGYPLfgS6ktpRHePiYhLUA+uXYuCRfQ19Okod5MTZXKSSLMLsoNVO6vsAvB3ASgDHANwT9wJEdCsRjRDRyPHj6Ttq5Y0r85ENulWsnwgX9oGEdy09XjkNl2NwtTvKCpUpKVJQh7eGjnzuWe5OBEEFcYaRMES0GMATvpNa95rnoAYz3+29tgPAJmb+R9P1V69ezSMjI45H3XriOh6TOipV3c50VUaYfz+jAAAdJ0lEQVRtagbFpavU6Uz4q+5BuLNckN++ahHu6l8R+zNUu5u5czqUn+MHDdhWY03yvavGUySFKrQHRLSXmVdHntdKBUFEC5j5mPf4NgBXMvOHiWg5gK+h5ne4GMC3AVzGzEZJ1C4KwmXkSVohYdvOkgC8uOVa7fvjJunN6y7hzuuWW887PM61y3qx6+BxY7vVDavKGHr2qLL/NgB0lzrw3298l/UYdOa/ed0lvFE9q/wOTNFdBBgzy/05+PNU/a3E+VuSiCdBR+4KgogeAvAeABcB+AmAO73nK1FbtL4E4N8HFManAfw+gCkAG5n576I+ox0UhOtVn05oJe0XoLteJ1FTUTqb94Xp6Sph0/X2igFIvlPxK59uNPTkjnPvlww+qRT2BODem1cqha/NfekqdeL8UofSN6Iq9Z3kbyXr3YYon/YmdwXRCtpBQbgW6Cah5a/4464ydcLYJFB04/DHkkZo2CofFS9tuRaLI1p8dhLhLHPkGJN8d2nNcCqS/K24/rsLIqau9sdWQUipDcfYmnCSRp5E9Y6IW+vJPxa373KWnc+SKgdCbf660iQ+/mtR9yZJhFW42KELkvytZBnx1MrikUK+SKkNh6ji4+OUfbZh7bLepmvadDeLipW36bscJMvoq6SlNvzy2B+5cqH1e0z3JmmEld83w5QQ2dNVsi4RfmFXKXYvkCwjniTcdvYgOwiHqISzTR9iW4ZHK9i2t9JwTQKwYdW5HIm4/7xRPah1AiVud7YogjuvNEbPH49P1qOVHnzmCGwsqCbBljT/JKp166brl9fPM5UIL3UQTp2ZqkdN2Xbbc5lfEqZIHRCFbBEF4RCToPGdj2laSOoU0K6D5/JB4v7zRgmyKHOKi3BcW7t90Hdw6vSUMtTUn+dd/StwV/+KhjF0aExPWQi2qNat/n2IKhE+cWaqyZk9WZ3G7Q/vU77fx7UCD5Kl8hGKhSgIh0QV4ktrn7fZHcT957UVZFGowlKDq2Hdynd4tKL0f4QJO0F1OR1rl/U2vC+oxHTO1aySEnU+mqjS38HXl2gc7qbS6sFrAeeUhG9KS6skslQ+QrEQH4RDouzOaW20UXZlX0j7TX2AaLv5+SX1n0CUIAui8r08uOdIpC/Ef59JOehasOp2U9v2VrQ2+v6+MjasKtfvTSdRg3nOJbq/hVOnp2IV1zPtbqJ8S1LcT0iLKAiH+E5NnZM1rSkjqt+zLwyAc019TCu7W/7yH5tKbQO1P4o4q2pb3wvQqCRN5i2gphiChf0ANM0zjG9+UQlB34fjK6RpZqNCSYP/tzCvu7E8yfhkNZaQTrPoyKq4nyie2YMoCMf095Vxz02XZxLhY4qqiSsMhkcr2P28utiuugC3njg7o6CSjPLZhM1FQLRSAc6ZX8ICq9XVUPv7yug+r9mKG+cz0yw6soo2kqqyswfxQWRAljZanWM4rjDYtN1cAtsmUsZHZ29X1XnyTSx+qW+Tz2bb3gpWXzq/YQy2wk0Vl59HeKaLz/TnENd/klW0kYS5zh5kB5ER/X1l7B5c12QiyYo4ce/DoxVtUTufOCtCnenrlqsWGU0sUeYTlc+iI0aORFhg2dwjXSMg3fEoXOUjJMnJyCpXRarKzh5kBzFDiBO9ZCv4bTOBTTumXQePK8M0t+44VI/oMmUdB9uXRjm0w4QFVtQ9+szwfjy450h91+Pb1kdePmEVkaXCZUhokrDiu29c4XwnK2GuswdREDOEOGYtW1OAX7rCRqAkNX3574tqnKTzPXQS4SNXLmxKMFMJLNM9Gh6tNCgHn8nqNB565misMiS2n+kSXYmVu29ckbr0SRgJc509iIKYQdhm/Zps/0EYtTaeYUEA2AsHWzt41KpUp2jOMuOu/hVNCWZBwR8+rhKYW3cc0kZexS1DEsZFN8AoWl0fqRVzEvJHFIRjXJRBzrqUcpx2oicnqnUTUWV8EgOP7gMY9Z4Lrgre9feVMfLyifpq3c9RAGqVSXXC21c0KoEVp3ChSdjriv8VyeYujmMhC8RJ7RAX8eGuYsxNTlWVwzPsTNZRneamhjwuCt6pchSGnj2KgUf3aXc7UXbvOOGYpnasH7lyYcvawiZFHMdCFkg/CIe4qMHv4hpx6vUHO8Tp2o/aoOtAZ0vcHhA2Na1MPSvKPV1NZjNV6Y5bvFalRW+QIz0ahDhIP4gccLHNT3sNXW0jlT06LFQYjUUFdQXxVFzc05VKiMY1hZiUpT8OU0MjXxkFnbmmiJ+i29zFcSxkgSgIh7hITLJpCKQTAlGhoGEhrCuR4e9WVKvSUic1+CCAmsBd/JauWI2KbOetIphVHFUkMIxqlxQMuy26QDX16halILhGfBAOcZGYZFtvSeWfiCpDEVZUNiGo4eJ2N//KQtx8xcKG5jYMYPfzJ1KVX4hKmgsyzYzh0QpWbv4WNg6NRRYJ9Cn3dFnViCoqqu//q3uOSE0kITNEQTgkaQcy22tEOV1NQk6lqGyqw6qK2z353DFrX0WcUNDgvE1d5eZ1l3DHY/uV5i+TWWn34DqU29iZa1OHSmoiCS4RE5OBJDZ1F7bqpElnOjNNJ5FSUZlCUE2+DJvwWB8GsHjwyXpCm9/tTUVw3ro+CADAjFhjAM4pgHbOArZVtu2wGxLaA1EQGuLE0LeKKP+ESviVOghvOn8Obhsaw6btB0AEjE9UG0oxbNp+oL4aP7/UUS8tEaesRRTTzPjqniMAYFQSwTmp5trTVcJrEY7zsJ8hqABa7cx1Gf1k66dph92Q0B5kFuZKRH8F4DcBvMrM7/SOzQcwBGAxgJcA3MTMJ4mIAHwRwDUAJgD8LjN/P+ozsgxzNYWbDqxfmiq7OCk2oYxBgXRhVwmnzkyhOq3+jrtKndiwqtzk1I0Kd+3pKuH01NnYq3igtpt5/u5rIs8zzdVUu8mfUxEct65DT21as0poq2CDbZhrlgri1wG8DuArAQXxeQAnmHkLEQ0CmMfMnyKiawD8R9QUxJUAvsjMV0Z9RpYKwhRD31XqbFqlg9AgiNP+o+pWnnFWpDa5BbosYR0E4N6bVwI4pxB7ukt4/Y2ppgQ6HS8F8iWiorJ090AlKOd1l3DndcsLIxx19z/YWzuu8pIoJsEFuedBMPM/ENHi0OEbALzHe/wAgO8A+JR3/Ctc01Z7iKiHiBYw87GsxheFyZ4fFkwqwZimDk6UectlbkFcM5J/tm4HZaOQfGzmqZpru8T86+6/f8+TmC2Lno8hzCwyzaT2FMQTgR3EODP3eI8JwElm7iGiJwBsYebveq99G8CnmNm4PchyB6EzD8Qxq9hmFw+PVrD58QP1mkc6E49NNnVwhdlhsTvoIMBy4Q9AbV7yd0sAsHFozPj+7lIHblx1CXYdPK5VJnGyxm3JIxPaNjs8i/kKgoncdxBRMDMTUWztRES3ArgVABYtWuR8XEHmzumoC0LffGGzSvaxcRYOj1Yw8Oi+BvNU0lj9sFKz2h1wLfkt+PmlDkJHB+H0VGPz0a5SJ4iaI4gmq9PYtP1A0/kqJqpn685qHXFKbtiQV8CBbVHENFFHRS8BIrQ3rc6D+AkRLQAA7/er3vEKgIWB8y7xjjXBzPcz82pmXt3b29yz2AW+QAnG2b9RrQk/VUJXqYNqGcYBbEMnt+44pHUih4lSODZx8mHOouY78U0/PV0lgNAk7Hu6Srj7xhUYn1BHEI1PVhM5rVX4fShckVcPZdvcjqRRR64KOwqCjlbvILYD+BiALd7vbwSO/zERfR01J/VrefofTAIl2AXNRRST7erRRuGkWYlOM9d3CCqF9Ys3pgDEK4mRFAZw+8P7ALhZ4edZCjvoM9CZLW0WEqqdQqt7QAizj8wUBBE9hJpD+iIiegXAnagphoeJ6A8AvAzgJu/0p1CLYDqMWpjr72U1LhtMAsW0pU/yT2kjcP3eCFHXTyu8TUlw08y447H9yrDYLPA/D0inJPw+1ln2c7A18yR1rutMZLrvQBLlBFdIuW8FOueiyUGbJpw17INQ4Se8BZPcohrkZAER8Ktvm4/dz5/I7DOC9HSVMHbn1Ynea7ofrvIFWlFm2xQuq1J84vQWorB1UkstJgW6gnk6B20aW3Z/XxlbP3h5Q8Melam6epZxcqKqtTX7q9jJ6rSxjlEUPV0lY9E8ZjhXDp0d+vGOT1YT29RNfaxdCfBW+DdM4bJFb2QktDeiIBToCubpHLSV8Ull57Y4nzf6p1fjpS3X1pLILDZ1QSEUdFYCasFhAwHYdP3yeqvPJPj3zJZ53SXc86HLjUotOE9dlzwVpj7Wrlb3us+oeOZIF+hMYf7fZZrikIJgQmoxaVAlJJlCXIMre//9cYibvwCcU0yq8/2dhOo6KlOZ3z2tv6+MzY8fiDX2IH5mr40vpKvU2ZD5rMuh8H0/cUNVXfTnMGHybwBwFkq7dlmvMjR47bJeSZwTMkV2EDGw6VmQxLwQDleMk91sOl9ngth0/fKmlee9N6+st9Y8qdkp2bBtbwVrl/Va7mAYG4fG8PY7nsLGoTHoLE0X93QlMuW46M+hI6o5k834bNl18His44LgCtlBxCAcheKq+UyS/AUbdIUFTVFXaQXaZHUauw4ex4ZVZTz0zNEIAVrLtfDPUWV0+wL9NsPuQkeWJTlsvzMXEUV5hukKsxtREDEJbul10SVxTBjDoxWjOSZueY/g+3xhqBKIutDMKKEzr7sUucOojE+mKheuKmanM+9F3eusTDC2wtmFOcvGVCYZ1UIWiIkpBXFMGCoH6/BoBQOP7NNeX+WE/PObV2q7onUS1c/bsKomVFUOXVMGrkmg/fnNKzH6p1drP9+nQxHtFYezzHhxy7UNPaKzNBclwUbwuxpf1Nwlo1rICsmDSInNyk0XKw9w3cwSxhRLr7qeX+Cv7JWADiezBfskmIrk+eYcU7FAU35BuK5TEnRx/EVaJavugU2uSprP083d1LtE8iEEFbn3g2gFRVAQNthW9Qzy5zevNAoXX2BUxiebqr/qqsFGNQLyq88u1rT79F8fHq00dKHzK8KWe7pw6vSUslc0cM50ZOofYZNkVhRFUZRx6HqX2FYTFmYfha/mOpOIEhRJnIlRzYF827pK+eiUQNRSwDeblA02b9XKee6cc0Ld1Ev6npsub2oGVBmfrIfjli2EbJFawRYlxDTrcF5h9iIKIiU2AitujaR53aWmEhyV8UkMPNpcwM5VJEvQpq0qU+2/rgs33Tg0hpGXTxh7SQfHnVS4FrFAXd47CdP3JQhpEAWREhuBZdsXAKjZ8O+8bjk2P36gyZZfnWbc9vAYbhsaqwsiF9VVidBg1gmGh/orfH9Ops/66p4jWPP2+Thx6kyTsNp0/XKrsSTdjdkqStfCPIsdTdwxtkuHPaH9kCimlNgIrHDpDhNbP1gzw+hCSZkbs7btk9L0MDcLs/6+cj16JtgiM4o9L5xMXP7BJhpHZzZhACs3f8sYuZNFtI/rWkxJx9jfV8buwXVN0V+CkAZRECnRCazw8eA/sC5M1D++ZstOq8/2k9JsmtJEEQ6DXbNlJzYOjcUOV5326hwlEVY2wtaUzT4+WcXAI/u0wjSLwnquk9jyam4kCCpEQaQkSXy+7j1rl/U2FN2z4cfjkw0C+Z6bLo83AQ9/lRou/BeXNJVk4+zGdJ9TPctaYZpFRrLtAsEWyZoWioQoiJToKr9GrZrPL5279X47z10Hj8desV/YVWp43t9Xbigdbou/Sk1b9uOqt81L/F6T+SiY7NffV8ZZQ3i2Tpi6FuaA+wS+LMYoCEkRJ7UD4kTkqMJE/f7PSVaJ45NVfGZ4P+7qX1E/dud1yxM1DnKxSn3pZ9HXCOdRzOsu4c7rlmNg/VIMPLJPmR8Rdv6anPM6YZpFtI9rB7FEJAlFQhREizGFiSblwT1HsPrS+cooJFNRwTC+YDWZl+Z1l/DzySltnaUoJeOXFwkqgZMTVdz+yD585IqFMHnxg9Fhi9+iVhAdBK0wzSrax2U+hEQkCUVCMqlbQDBsMau7bSqrYJPJ7WcwA4hs0zny8gllf4KocUSNxc/INkEA7r15pbYcSJoWpYIwW5BM6gIQNqXEpaerhFNnpqxqG5lW7iqzRamTcMF5c/DapLpuUDjnoZMIG1adWyk/uOdIk4AudVKkKcQ0zijlAJzrDaE79bWE93omkncCn9D+iILICFNBOxsIwNidV1srGZMTM4nZYuLMVMPzaWZs21vB6kvnawX0BefNiRRAaRL7onpD+NcXilWSRGhfREFkRNpooA4iLBl8Ehf3dNWzkHWZzDZOzCg7+WeG91s0+JmuKxkV4dW7agU7sH6p0d+iKzwYrNOkuw8Evf8hDi5W3nmv3otYkkRoP3IJcyWil4hoPxGNEdGId2w+ET1NRD/yfiePl2whqj4PQPqIoGnmpj7XuwfX4aUt19Z7QrhqVP+Z4f346p4jVg1+fIGnooOoPn9dRjAA/PZVi7TXZ5zzU/utUF/acm29DtSSwScxcWYKpVB/0mBP7TS4yLYuQn8GyacQXJDnDmItM/808HwQwLeZeQsRDXrPP5XP0OwwbeOjTClRpbeDhFd+rquIPqhxOKvwV8Mq89k0c72goGkFu3twXd1UpbpH/o7Bd3aHI59OTlTRQTUfjc6HkhQXK+8irN6lwqvggiIlyt0A4AHv8QMA+nMcixUmQWAqCQGolYPp/LgrP93ORnVenMgqXxDffeMKdChCUqvTjI1DY1rl6M/Dz/7WRbUG57tp+4Gm3IiznI1D2sXKuwir96J14BPak7wUBAP4FhHtJaJbvWNvZeZj3uN/BvDWfIZmj0kQ9PeVsWFVObI4n4+fTa2r0xS3z7WtiSNOjZ9gye5aNrP1W+uE52GTOaxz0DPg3ITjIpO5CNnQSTP8BSFIXgri3zLzuwF8AMAniOjXgy9yLTlDKX6I6FYiGiGikePHj7dgqHqiBMGug8etV+cXzJ1Tr6Aatq+XOqLDR4PEKfhmu6qNU7LbdI3wPEwrXX8XZIOrgnYuVt5FWb1LhVchLbn4IJi54v1+lYj+FsAVAH5CRAuY+RgRLQDwqua99wO4H6glyrVqzCqiyiIkNkuEtx2h52l6JoTf29NdUpYWnzunA50ETHg9s9+YmsbIyycaPqenq2SV40GA1k+gC8EF9Al7OlyYcFxkMks2tDBTaHkmNRFdAKCDmX/hPX4awGcBvBfAzwJO6vnM/F9M1ypCJnWSZvIqfKdsVAN6VX5FuI+z7hrzukt4o3q2MWGugwBCQzJeV6kT7150IXY/f6LpGr991aJ63SdV2QzduOOSpI930s8ShNmGbSZ1HiamtwL4LhHtA/AsgCeZ+ZsAtgB4HxH9CMBveM8Lj2kbH+Wo9rHZdfjHNz9+IFHPhK5SJ5jR9N7qWUZ1muvls31b9Z4XTirH8dAzR+uP+/vK2Pqhy+t+k/DGx8askiRMeF53qckMJw5YQXBPy01MzPwCgKamBcz8M9R2ETMGk/lEt+swhScOj1a0nebCPRNUn2HKQJ5mrgvZ/r6yNpktnCsRDLmNmxyWJEw4uJMSE44gZIsU6ysYnxne31TnyDchmXpC25hXbMw2/nXefsdTysS5TiI8f/c1kfOwwWRO0/l3JBJHENJTZBOToGF4tIJteytNpSb8InlRBfmisDF5+Z/xkSsXKl/XHU9CVJiwhGkKQr5ILaYCoQpPZdTCZQG92SWYn2AiaHqKarbjO6L9+kydRPjIlQsbGhOlJSrb13XGuCAI8RAFUSCiHNQ6s0uc/ARf6OqioYI7kbv6VzhVCGFUHeTi5nwIgpAdoiAKhM2KGnATX1+YWP2InA9BEPJDnNQFwibHYSYRlfMhCEI2SEe5NqQwq/oWUYSidoIg6BEFUTBmg2PWz2HQ7V2lJLUgFANREEJLiWrFKhnRglAcREEILcXUirU8w01qgtBuiIIQWorOv0CAOKYFoWBIJrXQUorQTEcQBDtEQQgtpSjNdARBiEZMTEJLmW2hvILQzoiCEFrObAjlFYSZgJiYBEEQBCWiIARBEAQloiAEQRAEJaIgBEEQBCWiIARBEAQlbV3um4iOA3g54dsvAvBTh8MpCjN1XsDMndtMnRcgcysqlzJzb9RJba0g0kBEIzb10NuNmTovYObObabOC5C5tTtiYhIEQRCUiIIQBEEQlMxmBXF/3gPIiJk6L2Dmzm2mzguQubU1s9YHIQiCIJiZzTsIQRAEwcCMVRBENJ+IniaiH3m/52nO+yYRjRPRE6HjS4joGSI6TERDRHRea0YeTYy5fcw750dE9LHA8e8Q0SEiGvN+/mXrRq8c5/u98RwmokHF63O97+Cw950sDrx2h3f8EBGtb+W4bUg6NyJaTESTge/oS60eexQWc/t1Ivo+EU0R0QdDryn/NotAynlNB76z7a0bdUYw84z8AfB5AIPe40EA/0Nz3nsBXAfgidDxhwF82Hv8JQD/Ie85xZkbgPkAXvB+z/Mez/Ne+w6A1XnPwxtLJ4DnAbwNwHkA9gF4R+icjwP4kvf4wwCGvMfv8M6fC2CJd53OvOfkaG6LAfwg7zmknNtiAO8C8BUAH7T528z7J828vNdez3sOLn9m7A4CwA0AHvAePwCgX3USM38bwC+Cx4iIAKwD8GjU+3PCZm7rATzNzCeY+SSApwG8v0Xji8MVAA4z8wvMfAbA11GbX5DgfB8F8F7vO7oBwNeZ+TQzvwjgsHe9opBmbkUncm7M/BIzPwfgbOi9Rf7bTDOvGcdMVhBvZeZj3uN/BvDWGO99C4BxZp7ynr8CoEgNDGzmVgZwNPA8PIe/9rbB/y1ngRQ1zoZzvO/kNdS+I5v35kmauQHAEiIaJaL/Q0S/lvVgY5Lm3hf5e0s7tvOJaISI9hBRkRaViWjrhkFE9PcA/pXipU8HnzAzE1FbhWtlPLdbmLlCRG8GsA3A76C2XRaKwzEAi5j5Z0S0CsAwES1n5p/nPTDByKXe/9bbAOwkov3M/Hzeg0pKWysIZv4N3WtE9BMiWsDMx4hoAYBXY1z6ZwB6iGiOt6q7BEAl5XBj4WBuFQDvCTy/BDXfA5i54v3+BRF9DbVtdV4KogJgYeC56l7757xCRHMAXIjad2Tz3jxJPDeuGbRPAwAz7yWi5wH8MoCRzEdtR5p7r/3bLACp/qYC/1svENF3APSh5tNoS2ayiWk7AD864mMAvmH7Ru+fcxcAP0Ih1vtbgM3cdgC4mojmeVFOVwPYQURziOgiACCiEoDfBPCDFoxZx/cAXOZFjZ2HmqM2HP0RnO8HAez0vqPtAD7sRQItAXAZgGdbNG4bEs+NiHqJqBMAvNXoZag5c4uCzdx0KP82MxpnXBLPy5vPXO/xRQDWAPinzEbaCvL2kmf1g5od99sAfgTg7wHM946vBvC/A+f9XwDHAUyiZm9c7x1/G2rC5jCARwDMzXtOCeb2+974DwP4Pe/YBQD2AngOwAEAX0TOkT8ArgHw/1BbaX3aO/ZZANd7j8/3voPD3nfytsB7P+297xCAD+T93biaG4AN3vczBuD7AK7Ley4J5vYr3v/UKdR2fAdMf5tF+Uk6LwC/CmA/apFP+wH8Qd5zSfsjmdSCIAiCkplsYhIEQRBSIApCEARBUCIKQhAEQVAiCkIQBEFQIgpCEARBUCIKQhAcQUQLiehFIprvPZ/nPV+c78gEIRmiIATBEcx8FMB9ALZ4h7YAuJ+ZX8ptUIKQAsmDEASHeNnpewH8FYA/BLCSmav5jkoQktHWtZgEoWgwc5WIBgB8E8DVohyEdkZMTILgng+gVo31nXkPRBDSIApCEBxCRCsBvA/AVQBu86rtCkJbIgpCEBzhNV66D8BGZj4CYCuAP8t3VIKQHFEQguCOPwRwhJmf9p7/BYB/TUT/LscxCUJiJIpJEARBUCI7CEEQBEGJKAhBEARBiSgIQRAEQYkoCEEQBEGJKAhBEARBiSgIQRAEQYkoCEEQBEGJKAhBEARByf8HmtTKQFtOxCAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -106,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -118,7 +118,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXl4VNX5xz8nYYAELQGhFMLqBsoikagoioILCgpRW5eigFqxrf1ZrFKCG4soWNzq2mJdUEFRkIiiUhXcUEQwLCJQQEEIiGxBIQEmyfn9ceeGWe4+d5Yk5/M8eTK5c5dz7mS+9z3vec/7CiklCoVCoai9ZKS6AQqFQqFILEroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOfVS3QCAZs2ayfbt26e6GQqFQlGjWLp06U4pZXO7/dJC6Nu3b8+SJUtS3QyFQqGoUQghNjnZT7luFAqFopajhF6hUChqObZCL4RoKIRYLIRYLoRYJYQYF9r+ghDieyHEstBP99B2IYR4TAixXgixQghxcqI7oVAoFApznPjoDwJ9pZT7hBAB4DMhxLuh90ZKKWdG7X8RcFzo5zTg6dBvVwSDQbZs2cKBAwfcHqrwkYYNG9K6dWsCgUCqm6JQKDxiK/RSS1i/L/RnIPRjlcR+EPBi6LhFQogcIURLKeU2Nw3bsmULRx55JO3bt0cI4eZQhU9IKdm1axdbtmyhQ4cOqW6OQqHwiCMfvRAiUwixDPgJeF9K+WXorftC7plHhBANQttygc1hh28JbXPFgQMHOOqoo5TIpxAhBEcddZQaVSnqPEXFJfSaNJ8OhXPpNWk+RcUlqW6SKxwJvZSyUkrZHWgNnCqE6AKMBjoBpwBNgVFuLiyEGC6EWCKEWLJjxw6zfdycUpEA1GegqOsUFZcw+o2VlJSWI4GS0nJGv7GyRom9q6gbKWUpsAC4UEq5TWocBJ4HTg3tVgK0CTusdWhb9LmmSCnzpZT5zZvbxvsrFApFSpg8by3lwcqIbeXBSibPW5uiFrnHSdRNcyFETuh1FnA+sEYI0TK0TQAFwDehQ+YAQ0LRNz2BvW7987WR9u3bs3Pnzrj3UShqM+noItlaWu5qezriJOqmJTBVCJGJ9mB4TUr5thBivhCiOSCAZcAfQ/u/A/QH1gNlwHX+N1uhUNQ2dBeJbj3rLhKAgjzX03y+0SonixIDUW+Vk5WC1njD1qKXUq6QUuZJKbtJKbtIKceHtveVUnYNbbtGSrkvtF1KKW+WUh4Ter/G5jbYuHEjnTp1YtiwYRx//PEMHjyYDz74gF69enHcccexePFidu/eTUFBAd26daNnz56sWLECgF27dnHBBRfQuXNn/vCHP6AFIWm8/PLLnHrqqXTv3p2bbrqJyspKsyYoFHWGdHWRjOzXkaxAZsS2rEAmI/t1TFGL3JMWuW5sGTECli3z95zdu8Ojj9rutn79el5//XWee+45TjnlFKZPn85nn33GnDlzuP/++2nTpg15eXkUFRUxf/58hgwZwrJlyxg3bhxnnnkm99xzD3PnzuXZZ58FYPXq1cyYMYOFCxcSCAT485//zLRp0xgyZIi//VMoUkBRcQmT561la2k5rXKyGNmvo2NrPF1dJHr7vfYrHagZQp9COnToQNeuXQHo3Lkz5557LkIIunbtysaNG9m0aROzZs0CoG/fvuzatYuff/6ZTz75hDfeeAOAAQMG0KRJEwA+/PBDli5dyimnnAJAeXk5v/71r1PQM4XCX+J1vaSzi6QgL7dGCXs0NUPoHVjeiaJBgwbVrzMyMqr/zsjIoKKiwvWKUSklQ4cOZeLEib62U6FINVauFyciObJfx4gHBdQ8F0m6opKaxclZZ53FtGnTAPjoo49o1qwZv/rVr+jduzfTp08H4N1332XPnj0AnHvuucycOZOffvoJgN27d7Npk6NMowpFBOkWoRKv66UgL5eJl3UlNycLAeTmZDHxsq412pJOF2qGRZ/GjB07luuvv55u3bqRnZ3N1KlTARgzZgxXX301nTt35owzzqBt27YAnHjiiUyYMIELLriAqqoqAoEATz75JO3atUtlNxQ1jHSMUPHD9VLTXSTpigiPBkkV+fn5MrrwyOrVqznhhBNS1CJFOOqzSD96TZpvKKq5OVksLOybghbFPnxAc70oqzxxCCGWSinz7fZTFr1CUQNJxwiV2hCdUltRQq9Q1EDSNUJFuV7SEzUZq1DUQGrDIh5F8lAWvUJRA1FuEoUblNArFDWUVLlJ4ln9qkgNSugVCoVj0jGsU2GP8tH7QP/+/SktLbXc55577uGDDz7wdP6PPvqIiy++2Ha/c845h+gw1WgeffRRysrKPLVDEUm6LVhKBumaeExhjbLo40BKiZSSd955x3bf8ePHJ6FF9jz66KNcc801ZGdnp7opNZq6atmmY1inwp5aY9Enwrp6+OGH6dKlC126dOHRUL6djRs30rFjR4YMGUKXLl3YvHlzRMGQe++9l44dO3LmmWdy9dVX8+CDDwIwbNgwZs6cCWgFRsaMGcPJJ59M165dWbNmDQCLFy/m9NNPJy8vjzPOOIO1a62tpPLycq666ipOOOEELr30UsrLD3/Z/vSnP5Gfn0/nzp0ZM2YMAI899hhbt26lT58+9OnTx3Q/hT111bI1C99MdVinwppaYdEnwrpaunQpzz//PF9++SVSSk477TTOPvtsmjRpwrp165g6dSo9e/aMOOarr75i1qxZLF++nGAwyMknn0yPHj0Mz9+sWTO+/vprnnrqKR588EH+85//0KlTJz799FPq1avHBx98wB133FGdGdOIp59+muzsbFavXs2KFSs4+eSTq9+77777aNq0KZWVlZx77rmsWLGCW265hYcffpgFCxbQrFkz0/26devm6Z7VJeqqZasSj7mgshIyM+33SwK1QujjzZpnxGeffcall15Ko0aNALjsssv49NNPGThwIO3atYsReYCFCxcyaNAgGjZsSMOGDbnkkktMz3/ZZZcB0KNHj+p0xnv37mXo0KGsW7cOIQTBYNCyjZ988gm33HILAN26dYsQ6Ndee40pU6ZQUVHBtm3b+Pbbbw0F3Ol+iSTdojictMfpgqWa2DcrVFinA9auhTvvhCOPhOefT3VrgFoi9Mm2rnTxjwc93XFmZiYVFRUA3H333fTp04fZs2ezceNGzjnnHE/n/v7773nwwQf56quvaNKkCcOGDePAgQOe90sk6ebrdtoeJ5ZtTe2bHWr1qwklJTBuHDz3HGRlwahRICUIkeqW1Q4ffSL8hmeddRZFRUWUlZWxf/9+Zs+ezVlnnWV5TK9evXjrrbc4cOAA+/bt4+2333Z1zb1795Kbq32BXnjhBdv9w1Mhf/PNN9VlDH/++WcaNWpE48aN2b59O++++271MUceeSS//PKL7X7JIt183U7b4ySlbk3tWzpQoyKa9uyBwkI47jh44QW4+WbYsAHuuistRB5qiUWfCL/hySefzLBhwzj11FMB+MMf/kBeXh4bN240PeaUU05h4MCBdOvWjRYtWtC1a1caN27s+Jp///vfGTp0KBMmTGDAgAG2+//pT3/iuuuu44QTTuCEE06ong846aSTyMvLo1OnTrRp04ZevXpVHzN8+HAuvPBCWrVqxYIFC0z3Sxbp5ut20x47yzYd+hbuqjHLU5tu8wrpNhIypbwcHn8cJk2C0lIYPBjGj4cOHVLdshhqTZridPGF7tu3jyOOOIKysjJ69+7NlClTIiZJayKJTFOcbul2/WxPqvtmlDbYiFSmNjYi1ffNlooKmDoVxozR3DX9+8P998NJJyW9KXUuTXG6+A2HDx/Ot99+y4EDBxg6dGiNF/lEk6woDqeGgJ/tGdmvIyNnLidYediYCmSKpEWoGLlqoknHiJl0GAkZIiUUFcEdd8CaNdCzJ0yfDr17p7ZdDrAVeiFEQ+AToEFo/5lSyjFCiA7Aq8BRwFLgWinlISFEA+BFoAewC7hSSrkxQe1PO3SfucIZyYjicOMK8L090QPmJA6grYRRQNpGzKRlCuaPP9b88IsWwQknwOzZMGhQ2vjg7XBi0R8E+kop9wkhAsBnQoh3gb8Bj0gpXxVC/Au4AXg69HuPlPJYIcRVwAPAlV4aJ6VE1JAbWVtJhmsv0aMxt+G3frVn8ry1BKsi71+wSsYV9usGM8FMGxeICWkVq798OYweDe++C7m58OyzMGQI1KtZzhDbqBupsS/0ZyD0I4G+wMzQ9qlAQej1oNDfhN4/V3hQ64YNG7Jr166kCI3CGCklu3btomHDhqluSlxRGKlyBaTaBVFTc9anRZHw77+Ha66BvDzNiv/HP2DdOrj++hon8uDQRy+EyERzzxwLPAlsAEqllBWhXbYA+qeQC2wGkFJWCCH2orl3drppWOvWrdmyZQs7duxwc5jCZxo2bEjr1q1T2oZ4ozDMLFuJNvGXKPdFql0QNXlxU8rm3H76CSZMgH/9SxP0UaO0n5yc5LfFRxwJvZSyEuguhMgBZgOd4r2wEGI4MBygbdu2Me8HAgE6pGGYkiL5xLvy2cgVoJPI0D2/XBDxRJSlS5BC2vPLL/DQQ9pPeTnccIMWVdOqVapb5guuFkxJKUuBBcDpQI4QQn9QtAb0sXQJ0AYg9H5jtEnZ6HNNkVLmSynzmzdv7rH5irpAvC6QcFeAEYlYNKSLc3mwksyQ59KLC0IfzZSE4uD1B1NaLyCqSRw8CI89Bscco61qvfBCWLUK/v3vWiPy4EDohRDNQ5Y8Qogs4HxgNZrg/za021DgzdDrOaG/Cb0/XypHe63Ci788Hh+7HyufC/JyWVjYF7PJIj/95uHiDFApZbUl79a6rkmrWWsUVVUwbRp06gR//St07QqLF8Prr0PH9J7D8IITi74lsEAIsQL4CnhfSvk2MAr4mxBiPZoP/tnQ/s8CR4W2/w0o9L/ZilThxcKM1yr1c1IxGWl2/RTnVE/o1jqk1CJoTj5Zm2xt0gTmzYMPPoBTTkl16xKGk6ibFVLKPCllNyllFynl+ND276SUp0opj5VS/k5KeTC0/UDo72ND73+X6E4okocXEYtX+PyMwkhGJIqf4pyTHTDcrvK/e2DRIujTR1vJum8fvPIKLFkCF1xQY+LhvVLz4oQUKcWLiPkhfH5NKiYjEsWvaJui4hL2HaiI2Z7M1bW1gjVrtNWss2fDr38NTzwBN94I9eunumVJQwm9whVeRCzVYYbRJDoSxa9oG6MFVwCN6tdTkTRO2LIFxo7VcsI3aqQlHLv1VjjiiFS3LOkooVe4wk7EjEIBU7XSMVWJ7vwaNZiNePaWWxekqfPs3q1llHz8cW3S9ZZbNIu+Dkf3pW32SkVqcCKOZvsYZUvMCmQy8bKuQOLcJUbtAUzbkg7WsJP7nPZZHH3CtwdyWZkWKvnAA7B3L1x7rRYy2b69721OF5xmr1RCr6jGSqidfPFSIUxmbW5QL4NSA8s3EW1xK1RO73O8n0dNwJc+VlRoVZ3GjYOtW+Hii7W0wV27JqjV6YNToa8VFaYU/hBvdEwqQgHN2mwk8oloi5fQUT+rWHlpbzpVborrf05KmDULOneGm26Cdu3gk0/grbfqhMi7QfnoFdXEK9TxTLqauV/sLGW3wu33BLCX9AxO7nP0/Xjkyu5xW/HpWLnJ8//cggVa2uDFi+HEE+HNN+GSS2p9mKRXlNArqok3OsbrpKuRAI2cuRwk1VEnZqJk1uYm2QEOBKsSPgHsRqh08TZzlur32UyQl2zazdwV29hTpo1WcrICjB3Y2bFIO30oJXMS2/X/XHGxljZ43jxo00aLqLn2WsjMNN5fASjXjSKMeBcTeXU1GAlQsFLGhBZGD+mLiksoOxQbZ54VyGTMJZ2TkurW6Urb6LQIRm0OH8UYCfLLi36oFnmA0vIgI19f7tj94uShdFfRSm6dsSxpuXUc/89t2AC//722ovWrr+DBB+F//4Nhw5TIO0BZ9Ipq/AgL9BKj7sb9ou9rVg812sr1W9ijrd0+nZoza2mJbbipmcCD9hAKv89u7oebQiZ21nNRcQnTFv0QM+JwkynULbb/c9u3w733aknGAgEtTPLvf4fGjX1vS21GCb0iglSktTUTILN9wbweaqMG7hYTuXFTGLlUZi0t4fIeuSxYs8NRuGk0AmKigNzcD3D+YLBzrVm5lazmD+J17Rj+z/38s2a1P/wwHDigrWS95x5o2dLzdeoySugVKcdIgAKZIsJHD4dFqai4xFQI3VjDbicnzVwqC9bsMAzZdFKcu3FWbC4bo/shMC8363QOxc56trp3dvMH4eePi4MH4emn4b77YOdOuOIKrRDIccfFf+46jBJ6RcoxEyCzbbqwGOEmqsZtxIzbCBEnD539hyooKi6JuJ7R/ejTqTkzvtpMsDJS7gMZ7vLeWI3YzEYSAmznD+J27VRWammD77kHNm2C886DiRMh3zZEXOEAJfSKtMBMgIxWi5pZyYFMQZ9Ozek+7r/VcfRNsgOMucQ4MsWtQLuNEHHigglWGvvYje5HfrumjHtrleeoGzvMRhKDe7a1tfo9r0+QEt55R4ukWblSm2x95hk4/3xv51MYooReUaOwEpTKKsn0RT9QFbZtT1lQC9Uk9qHhVrjdho9alTAMx02lLD9i6a1GTjnZARrUy2BvedDQ/+5rgrovvtDqsX76KRx7LMyYAb/9LWSoYEC/UUKv8JVEx2BbWckGiR4Bc6vZrXC7jUqK3h+M/exGfvpE4GS9wp6yIFmBTNMFWr4kqPv2Wy165s034Te/0XzyN9ygRdUoEoISeoVvJGPlpVMrORojq9lLOKlbqzp8/7zx/42Ig9dJ5GLO8AdvhhBURuW2ivb5g7XPPa4Q3M2btYLbU6dqqYInTIARI7QUwoqEooRe4Rt2E3VFxSWMnbPKkf/cDH3f215bHiNaVpi5FuJxh7gdvZQaiLzRdr9GRdEPXjf3y8qdZHbPTNu9a5c2sfrEE5pPfsQIzaI/6ijb9qcizXRtRAm9Ii7Cv4xWMdhFxSWMfH15RLiklf/cCn3fETOWOdo/ERWZvIxenPi3vY6KjETRSXinGV6qYUW3e/yrX3H8s49z4ktPa6X7hgzRMky2bevpfKnOy1OTUbMeCs9EZ240o1VOlmm1JN1/7paCvFxyTHzb4a6QJtkBJv/2JN/FwUvWRSfL/b2c1yyDppNFV4FMQSAj0nfktRqW3u56lRUMLn6H9568nhOffADOOQdWrNDy0jgQ+ejz6XgtsK5QFr0iDpxYjLpo3GphfXsNzRs7sHPK8rV7CTN04t/2cl4zUcw08MkDZApBlZSusoTasbW0HKRkwJrPuO3Tlzh6z1YWtz6RPxeMZubLI12dq/p8LrYrrFFCn2QS4Xf0es5422L1pRMQcU6rfC9eUwcno9C3GV7DDO3mBMzOmyEEHQrnuno4VEpJViDT0YMw3nt2yc7V3DB3Cif9uI61zdpyw+V38+Exp5LbJNvT+dKtznBNx9Z1I4RoI4RYIIT4VgixSgjx19D2sUKIEiHEstBP/7BjRgsh1gsh1goh+iWyAzUJL0UqEnVOP9pi9qXLzcni+0kDWFjYt1pARvbrGOMigPj95wV5uSws7BtzvUQTb6ZPN+cFTbTNPierzyHhGTy//houuIDHnh1J87K93Nb/Vi667nE+PPY0surX83w/EnV/6ypOfPQVwG1SyhOBnsDNQogTQ+89IqXsHvp5ByD03lVAZ+BC4CkhhMojSmL8jl7P6Udb3HwZC/Jymfy7kyL86rr/HEirqkdOSET1J6PzZhrEXkZ/TlafQ8IehOvXw1VXQY8emtg/8ghL/vsFi866GJmRGff9SNT9ravYum6klNuAbaHXvwghVgNWd3sQ8KqU8iDwvRBiPXAq8IUP7a3RJMLv6PWcfrQl2nXSOCuAEHDrjGVMnrc2xsVg5LaIJ7rCTzeYl3MlKtNn+Hk7FM413Cf8c0qqC+vHH2H8eC1NQf36cNddcPvt0LgxA4GBpx3t26VSkUm1tuLKRy+EaA/kAV8CvYC/CCGGAEvQrP49aA+BRWGHbcHgwSCEGA4MB2jrcCa+ppMIv6PXc/rVFv3L6Eaw7RbxOEmSZXS9ETOWMXbOKtf5X4zOdeuMZYyYsSwmV7wfuHmoOP2cEi6Ke/fC5MnwyCNw6BAMHw53362tbFWkPY7DK4UQRwCzgBFSyp+Bp4FjgO5oFv9Dbi4spZwipcyXUuY3b97czaE1lkT4Hb2e0++2OHUFRc8NmC3isRtZmEX8lJYHLecajIpjG51Lb5XfFZbczo2k3Fd94ICWE/6YY7TUwQMHwurV8OSTSuRrEI6EXggRQBP5aVLKNwCklNullJVSyirgGTT3DEAJ0Cbs8NahbXWeRPgdvZ7T77Y4dQU5XcRjNrLQhdoqRtxsrsFrvLmf8dtmD8Sxc1YZ7p8qX3XRkh+473d/p6RFW7jtNrYf1wWWLoVXXtESkClMMTImUo2t60YIIYBngdVSyofDtrcM+e8BLgW+Cb2eA0wXQjwMtAKOAxb72uoaTCKG2F7P6XopuwVOXQxO5gDMLFYnFZusruM23tzufF4we6iUlgdj8tLrJNVXLSWL/vkCne8fR8GOTSz/zXHc3n8Ey449mYmiBQXJaUWNJV1X9Dqx6HsB1wJ9o0Ip/yGEWCmEWAH0AW4FkFKuAl4DvgXeA26WUnpbh61IOl7DLp26GMws9UwhbC1WN0v6ja5jF2/u9nxeMIqi0Un5qs+FC+Gss+h56/VkVgT586BCBg15mC/anaRWpTokXVf0Oom6+Qxt/Us071gccx9wXxztUqQIrxWEnEZ+mKW5deKOcGpVm40IzEYd+oSrvqgrumyfnz5xq5FDylZ9fvONlmTsrbegZUvu6Hczr3U9n4rMSHnw0r66lpgsXVf0qpWxigji+Ud14mKIJxTQScUmAVzew7gdZg+ZPp2aV7cnN1S2z6jYtx/kWvQh6as+N23S0ga/+CL86ldahslbbuHjxxZR4UNEVrq6MRJJuq7oVUKviCAZ/6hOHgi6JVhSWl7tQ8/JChDIFIY51HUksGDNDtPrQmwt1llLSyLEaNbSkoRNeI7s15GRM5fHXfs1LnbuhPvv1yJnhIDbbtNK+TVtWt3GuIuLkMD6smmMX/fOb5TQKyIY2a9jTDrhpIoQ5nnUS8uDBDIETbIDlJYFTTNmlpSWm+aFiX7IGNWgtRKjeF0R+r5+1X511Z79+7U4+MmTtbTBw4bB2LHQpk3Ebn4twEqWGyOd3EOpzL9khRJ6RSzRMzIJrIBkhNWka7BKkl2/HsX3XGAZZhk+kQzmrgI3YuSXK8KvKBrH7QkGtZWs48fD9u1QUKDFxJ94otFpfWtjMkaH6egeSscVvSofvSKCyfPWxrgV3OaMt4ojdhJj7DR9g1kCsHDsIh7MRMdou5OIimTGUNu2p6oKXn0VTjgBbr4ZOnaEzz+H2bMtRd4vkrHYK12jXNINZdErIoh3uG1lYQGOrC+7SVddhKOHyVYVrsxw41O1uzfJti4t2/P++1BYqCUc69oV5s6Fiy5KbIHaKJLhxkjXKJd0Qwm9IoJ4h9t2FpYTf7hVAfBoEQ4fJpu5cqza7kaM7O5NsicfjdrTdds67ln4EjzwNbRrp0XU/P73kJmaBLKJdmOka5RLuqFcN4oI4h1uW1lYTq2v8GX/cHiRkb6YCozTGhu1PZAp2H+wwtKV4jSVr929SbZ1Gd6eDrtLeKJoEm+9eCvddm2ERx+FtWvh2mtTJvLJIOW5gGoIyqJXRBDvcNvOwnJqfVmlZ7Bzj+htz8kOsO9ABaXlQdN93WB3b5JtXRbk5dJwx48cuHssF3/1DocC9Vlz4wg6PThOi4uvA6RrlEu6IaRNjo9kkJ+fL5csWZLqZih8wCgfjb7yFfC8KlbHzD2Tm5PFwsK+jvaNrpkaryiEx/wbrapNSEx+aSn84x+a5V5RATfdpOWGb9HC3+so0hohxFIpZb7dfsqiVxgST2xyw0BGtZgbxYjHU9/WbJLWyD1ildsGzC18N32PfrBJqBb7eHLZh7dBL+hSWhakfaNMHt+9kC5Tn4Q9ezT/+733wtH+FfxQ1D6U0Cti8Bo9YmTNH6yoitjHy+Sck6yVRu4RJykToidL3fbdLJe90QjDKdFtKC0PkllVyW+/+ZBbP5tOq192sv2Mc2jx5CPQvbunayjqFkroFTHYRc6YWbtmx9322nJunbHMs6vELmul2eSbVfROOOGWv9vIGT/CUaPvZ0QbpOSCdYsY+cmLHLdrM8taHs/fLv4bm7udxkIl8gqHKKFXxGAmUrp1a2btenWVeG0PWLtHoifqjMoWQuRowK1we5mANfPpR9/fUzd/w6iPXqDH1jVsaNqamwruYN7xp4MQCBUnrnCBEnofSaecG/G0x0y8MoWwtHa9uEqcYJVe2M49Eu4qMpsoDh8NuBVut0msjHz64ZQHKzlhxyZu//gFzt3wFT8e0ZTCfn/h9W7nU5lxOIxQxYkr3KDi6H3Ca8GOdGxPn07GNXzt6rs6SUkQvr9TjM4r0PrkJs2Ak7J8buOy3Zb6s3JDtd67nYfefoi5z/2F/JLVTDp7GOcMn8Kr3S+MEHkVJ65wi7LofSLdUrLG0x6zNL9mJffMUhI4cZWYET0aubxHLgvW7DB1d4Rf3wq7yWAvcdluJpiNHnJNy/byl89nMHjZO0iRwfTeV9Bk/N289cV2DpaWkxMWdZMOI0VFzUMJvU+kW84NKz97r0nzLUXMruSelZvCravECKPIFz1HvFGIpZcHqpVbK5HL9sNdQ9mHyvnDV0XcuPgNsoMHea3refz7nGsYMawvA/JyGXB254S0QVH3UELvE6nMuWEkWmbt0V0e4D6pWHTJPd1nr0fjRIuj11WLVqMRPx6oqUxtO7JfR+55/WsKvprL/30+g+Zlpbx7/Bk82PtaDhxzvLLWFQlBCb1PpKqyjJloXd4jN6JyEhCzahOcJxXT+6Lv51QovVjHVmLuxwM1ZW62qioKVn/M+S/dQaMtm/iibVfuGDCBATcW8KESd0UCUZOxPuF2Us5/lczPAAAgAElEQVQvzERrwZodMe1xmsbXri+JzgFulSPejyRWSXezSQnvvQc9esDgwTQ6KgfefZfTNy7nmaduVha8IuHYWvRCiDbAi0ALNINwipTyn0KIpsAMoD2wEbhCSrlHCCGAfwL9gTJgmJTy68Q0P71IRWUZK9EyKpsXb1IxME5MFt2WeEJNnYwovJ67qLjE10li22svXgyjRsFHH0GHDjBtGlx1FWQoG0uRPJy4biqA26SUXwshjgSWCiHeB4YBH0opJwkhCoFCYBRwEXBc6Oc04OnQb4VLnIiKmSsjQwiKiktsXTLhaXydCFdRcYmhC0hvi76PU9eOVR+NtsfzANHbZSTyXieJTX37a9fCnXfCrFnQvDk89piWeKx+fUdtTRbptvZDkRhshV5KuQ3YFnr9ixBiNZALDALOCe02FfgITegHAS9KLS3mIiFEjhCiZeg8Coc4FRWzZf6VUsbsHy2g2fUz2X+o0lUa38nz1pq6gPT4e6c+cLs+Gj0U4plEtYphN5tUDhdCo5FATL9KSmDcOHjuOcjK0opv/+1vcOSRtu1LNulYb1WRGFyNH4UQ7YE84EugRZh4/4jm2gHtIbA57LAtoW0KFzj1g+v+9EyDEnFm+y8s7MsjV3an7FCs6Nn52q382K98uZmi4hJT1070dre+frP9x721ylGdVjsffPSisuhFZ5YLxvbs0Ur3HXssvPCCVqN1wwYYMyYtRR5UvdW6hOOoGyHEEcAsYISU8mcRJixSSimEcJXYXggxHBgO0LZtWzeH1gncTBgW5OVy64xlrs5jZZlbCaJVmgN9FCGENv8YTWbIneS1xqvZ9j1lQfaUxY5KINL9k5MdqN7PjHAL3S6ZGkCD4EFu+fY9OPoa2LsXBg+G8eM1f3yak25rPxSJw5FFL4QIoIn8NCnlG6HN24UQLUPvtwR+Cm0vAdqEHd46tC0CKeUUKWW+lDK/eXPjJfd1GavIEz+224m5GSP7dcSqvHR5sNJQ5OHwg6DEQuStru80hLI8WMnYOatiUkDsO1BBINO+OLZ+b6zuUWZVJVcun8fHzwzn5veegTPOgGXL4KWXaoTIQ/z3WVFzsBX6UBTNs8BqKeXDYW/NAYaGXg8F3gzbPkRo9AT2Kv+8e9yGEbrd3+zLLELnMqMgL5fBPdtair0ZRknRonHbRzNKy4Mx1wpWSRrVr1cdNmrk7oLD98bwHklJv7WfM+/Zm3ngvcep374dfPwxzJ0L3bpV71ZUXOLInZRKVL3VuoMTi74XcC3QVwixLPTTH5gEnC+EWAecF/ob4B3gO2A98AzwZ/+bXftxG5dvVFBbd0MYiYxZorDBPdvaTsRNKOjK4J7m7racrIChgJj5uHUyheDyHua1YnVXSnix8JysgOU5o9lbHqwuBP7QFSdZCl30Per5wwpmv3Q7/y66HykEwy+9k6bLl0Dv3jFtTacEd2akau2HIvk4ibr5DEwNuHMN9pfAzXG2q84ST7ibm1Wr8cSjFxWXMGupsWhlBTIZO7Cz4bmtSgGC5tqZtbSE/HZNLaNz9Jw7uiAbxdw3DGQY+uPDrXS7e6D/fubx2Yz86AXO+X4p2444ipEX3cIbXc7lN02PAINRQboluLMiFWs/FMlHpUBII/wId3MjMl6/5GaTlJlCRFiERue2q/hk1FarPun56KPF2uhaRm4Jy3vw3XcUPHQPg6ZPZ2+DRtx/znVMPfliDgYaWLo41CSnIt1QQp9GuIk/N7NC3RTP9orZuaqktHS76IWuGwYyKC0LOo66sRNOK7H2NDr66Set4Pa//w316iFGjWLhRdcy9/MfOVRablv02yy6JydbczOpRUqKZKOEPo1wYglaWf1gnLgM/I2kcJNYzKjQdVYgk0eu7G7qyok+j9dEZm5GLEXFJTw5p5gB709n+FezaVgZJOOGG7Q4+FatGAAM6H2io3OZTUVIqRYpKVKDSriRAswiMpyEu1lZ/Wax8XaRNG4xi9bo06l5TL+s2msWRbP/YEXExKWX6BA3US9zvvyOVYUTeOUf1zBi4Sss6NCDAcP/RdEf74FWrSzvhRF7y41j9feWB9UiJUVKENImEiIZ5OfnyyVLlqS6GUnBqBhHIFPQqH49SsuDMRZ5ViAzwu/doXCuqZiDsTUPsHHSAB9af5i7ilbyypebqZSSTCHoeXQTvv5hb4xP3MwfL4DvJw2gqLiEcW+tinF1RPfbjbvDrOBJTERJVRVMn87WW0bSas+PLGzXjQfOHsaKlscDWvRQowb1XLtYzJLH5eZkmS4U0+9HPCiXUN1DCLFUSplvt59y3SQZI4suWCmr881IDrtfjHzBdm4MM4EB/4RAj7rRwyUrpWThht0x++mhkHblByfPWxsj9NFzE27cMLZzHVLCu+/C6NGwYgW7WxzDqCvG82n7vIgomtLyoKs8QDpW2TeduqvcolxCCiuU0CcZJ5OiusgvLOxb7YLQxblPp+bM+GozwcrD4hnIFLaRJn4KgZPUADpOyg/GE6US/vDKyQ4gJdXibHi+RYu0tMGffALHHAOvvMIfv2vGlp8P2l7LaYikVdjmkk27mbboh5hRW7yutZoU0qlIPkrok4xVrphwtpaWG4rzjMWbYy3k0J9WAtNr0nzfhMBNBE94+UGzkYTXydbo+2OVx+aYnZu5Z9E0eOAz+PWv4Ykn4MYboX59bjdw9ZjhtO9m2TdnLS2JEHkBpovE3KBCOhVWKKFPMmZphaNplZNl7OapinWDBKtktWCbuTj8FAKnDyt9EtjO7WJ2T8oOVcTk1A/Hycii5c87+OvCV/jdyg+oys7WEo7deisccUT1PkYPyLJDFYYPjsZZgWofvO6Wsgu3tGqvBBas2WF5nBNSWbNYkf4ooU8y0aKSkx1g34GKCAHXh/JmGSmNsBLseKsqRaO3zW4aX+LMLaTvM3bOqgi3y56yoGXBEquHTePyX/jzotcZtvQtbaLz6us59tH7KdpyiMlPLI4ZXUQ/jAwnzTME+w9VVLdRv59mbrDoOZFErnFIVc1iRc1ACX0KMBIVI9eGXcqAcMwEO56qSmbtMvM1R5Pr4iGi9zfav25VsMSIhsEDXLf0Lf60aCZHHCxjXt55XPTGFI5t397VPIUbK9+onUbXSuQah3hLLCpqN0rofcZLZIuZa8Ow9F+GAEHEZKyVYFulK7i8hyaut85YFtNWO1GcUNCV/HZNqx9GRmGhbq1Jp+4loz5lVlVyxYr3+evC6fxm324+OOYUHjv3Oq7/40Bor5UgvO215fYVosKI/lw6FM513H4zN40f98kMlbdGYYYSeh/xO8TNzEoz2maWesCqSMispSWmbXUTxSGgOuJlb3nQszXp1M8cIfxSctHahdz+6Uscs7uEZW1O5P8GjWJrl/yIOrNmo5ro81k9qO3mJsLbafbQ0iOqlNWtSCZK6H0kESFuZlaa3fms3BtgnBs+vK125QCNIl701AZe++rUz6wL7umbljPq4xfovm0d/zuqLaOuvZcHpt7J61EZJe0mbe2Kmi/ZtJsFa3ZYul+i22n2UNDDZhWKZKKE3kfSKcTNStysVqzqbTVb6KTngreq3xpvmmW74ye0CxJ45h7O/O5rSo5szu39R/Bu9/O477fdDdMGW93/cIE261P4XES4+8Uo6kYfEfjlzlIo/EAJvY+kU4iblbhNvKyr6URv41AhDzM3h77dbf1WN2Jvuu+GDXDXXfR59VUONc7h8f438cQJ/WjWrDH3WTxQzD6X6LTKVu6W6L+NLPPoEUH4cU5DMBWKRKCSmvmIk+RbySoxZ/Zwyc3JoiAvl5H9OmoTu1HsD8Wum0XM6Nvd1G+NO2HXjz/CzTdDp07w5ptwxx3U37SR/5v7L9Y+eCkLC/vaxukbfS4PXXFSzMItpxg9FMxGUeHrCRSKVKCE3kfsSrMls8ScWanAktJyek2aD8ARDWMHdMFKaZpZMjydwv6DFY7b4tl19fPPcPfdcOyxWm74P/xBs+rvuw8aN3Z8GrvPRcfsnhlh9FCwGhGo7JSKVKJcN3FgFWduRDLzkYT7u6P9xfoDxspPbxXx4zRdgI5r19XBg/D005qg79wJV1wBEybAcce5O08YTkIPjfrcp1PziOgkMPe1J3pRlELhFSX0HvESSmkXyeI3urgZpc21yiyZIUR16oHovhjlzLHC1QRkZSVMmwb33AObNsF558HEiZBvm4XVN4z6rK8XsJtgtloxrFIRKFKJEnqPeLHO7SJZEoVVLL1RBE6llKYPLTeWaYbA0EUSg5Qwd66WNvibb6BHD/jPfzShTyHRIza70NFEZqdUKOJB+eg9YiZ4JaXlphOtdpEsiaCouMTUz6z7qo0eNGaTqG4sU0cPsM8/h9694ZJL4MABmDEDFi9OC5H3Mp8yoaArj1zZ3XY+QKFIJrYWvRDiOeBi4CcpZZfQtrHAjYCedu8OKeU7ofdGAzcAlcAtUsp5CWh3yrHyx4YLAxy2inMtFtG4xWmqBbPygqBlh7RKTqY/zKKLewcyRUwKBpCUB6sijg/PqhnDqlVwxx0wZw785jeaT/6GGyCQHgW045lPcTIfkOr+KeoWTiz6F4ALDbY/IqXsHvrRRf5E4Cqgc+iYp4QQsUVBawFm9U7DibaKvdQ+NcKNtWnlatlTFrRMSpaTHaD7uP8yYsay6muVlgdBQpPsQITFeiBK5E2v/8MPcN110K0bfPSRNsm6fj388Y8RIj9y5vKI/o2cuTwh0Ulm4a6JXPyWzOgrhQIcCL2U8hMgtk6cMYOAV6WUB6WU3wPrgVPjaF/aEh2yZ0a4MDgN87PDTYHpeCYB95QFDas1Bask2fXr8f2kAdUx7LaFzXftgttug+OPh+nTYcQI+O47uPNOaNQo4phxb62KGDGAFvY57q1VnvtihJXgOinU7hVVIFyRbOKZjP2LEGIIsAS4TUq5B8gFFoXtsyW0rVYSPkQ3KwgdLQx+ZBi0mh8ILzs4sl9Hx4VO4m2DWZ6awt5ttDDJf/wD9u2DIUNg3Dho29b03GapgK0qSHnBSnBH9uvIyNeXR9QJCGQIXyZV0ylVhqJu4HUy9mngGKA7sA14yO0JhBDDhRBLhBBLduyIv8JOqvHLLeMEM6tSXxAVPUcQPYrICaU58LMN0aOVtkcGeKVqGZdc3hvuugvOOQdWrIDnn7cU+URh5KKxFdzooZpPwVGJHC0oFEYI6SDiQwjRHnhbn4w1ey80EYuUcmLovXnAWCnlF1bnz8/Pl0uWLHHb9rTD7QSb1wk5o+pHZlkVneRkcUtWINPc5VRVBTNnauK+bh2ceSZMmgS9epn2JfoeRFeaCueanm2ZUNDVVXuN+psVyKRBvQzD6+iT406zT3r53I3ao6JzFG4RQiyVUtouNPEk9EKIllLKbaHXtwKnSSmvEkJ0Bqaj+eVbAR8Cx0kpLRWlpgi9n5ES8X7ZnZapE8D3kwaYHu92sVaT7ABjLuls3MYPPoDCQli6FLp0gYkTKWrVncn//V/EStMFa3ZYllG8vEcuMxZvNqyPC5AdyOD+y7o5vvdmbrUm2QEOBKsMPwOraCQBliuF9T7o/TT6X3Hzv6QidBRm+Cb0QohXgHOAZsB2YEzo7+5oRuRG4KYw4b8TuB6oAEZIKd+1a0RNEHq/rTAz8fGar9zsfJlCxCTvcnJcNDlZAcYONBH4pUs1gf/gA80tc++9MHgwRSt+9DRy0DM9jrComevm3nconGso2gJ45MruhiLq5L5kBTJpGMgwnDswSlHs5X8l0da/eojUbHy16BNNTRB6v4XZSnx0C9yt1WcmqlbCYNYOvS2W1123TnPRvPYaHHWU9vpPf4IGDQDnDxEjNk4aQHub0n2ZQlAlpe298fLZxeveMsLL/4rf/3fhKBdSzcep0KsUCCY4dY14jZSwy13vNpeOvs1tXVRPlZC2bYPx47U0BfXrawJ/++0xGSW9irxA679Zyggd/T27e+O0clU40Unh/MDL/0oiI3SSmWRPkVpUCgQDjOKr3aSrdUKfTs1jzumk2pFdrLWTuqjhuIoW2rtXi3s/9lhN5IcP19IG33uvYdpgrzl89LS+V5/WxvExVvfG6/oFPW+/1cK4nKyA49TGjbMCrmsRJDJCR4V51h2URW+Akcg6qRPqlKLiEmYtLYk4pwAu73E4xt7tl9CuRqyZMDgq33fgADz1lBYPv3s3XHWVJu7HHmvYDv1c8TgFt5aWV0fXTPvyB5x4GK0Eyuv6BbuSjGMHdq7ezyq1cSBDsP9QRXWUj9PqW15GI05Jp4poisSihN4AK8HQJ9niKQ1n9iBZsObwegK3X0I7QbJzUxj2o7ISXnqJstF3kv3jVj5pn8fzv7+PQddfQsGxsfs79WuH+9b3H6wwDHHU+zmhoCsTCrpGPEAyTFw6iRAou5KM+n2zS21cdqgiZtK2PFjJba8tNzxex2kdXS8k8iGiSC+U0Btgl7As3okwJ9a62y+hU0Gyo6i4hMnvreHEJR8zeuFLHL19I+tbHc/Eq+7ji3YnAbDIwBItKi4xnB+IJnqyz2xNQJ9OzSOOC38YmU0iJmpxmtkchl3K4vD3O5hMLFulhA4/FxwWe91FFa/YJ/IhokgvlI/eADu/bLw+TDu/q2696sVBwN6v3DBg/FHaCVI4RcUlvP7oKzz65C0888a9yGCQPw8qZOA1D1WLPMT6w3XhtRJ5s9KKZqObWUtLTH3YBXm5XN4jt/reZAoR4fbyE7P/hf0HK1wlIbMabdjNvagkaIp4URa9AVYRLBC/i8DKWo+2VvXiIFaW1uBnvohJEQzaU9yxlfvNNzT7/Y1MW7OI7Uc0ZXS/v/B61/OoyDT+Fwl/2Fm5jcDb6lwrt4Y+x6F/NpVSMmtpCfntmiasJOO4t1ZFuF5Ky4OOfOw6djmHrIyHREXHeKmSpqiZKIvehIK8XB664qSE5K+xigJxG21TVFzCwg3GyUWNEwdHsWkTDB0K3brR7fuVPHD2UM4ePoVXul9oKvIQ+bCzm9OIdsOA/cMBDrs1oi3XZGd/LMjLJbt+7L1wc039MzeLRLIyHhIVHaOyaNYdlEVvQSJ9mGYToG6/1GPnWKfuNbXQdu7UomieegqEgNtu44qsXqw5FJvwzCiPju660FMUW81pGFnbTkXKyHJNRVigH9fU++B2fiFR0TEqvLLuoCx6GwrycllY2Dci93oicRM3XVRcYpr8SyfGQtu3TwuNPPpoeOwxuOYabYXr5Mn88dJTDEcwg3u2pUl25ANAd10UFZfYzmkY+fQzXMTYRwuPk3tkVlDEbLsdfsWze4npT1RmVJVFs+6gLPo0w020jdMhdklpOQSD8Mwz2orW7duhoECz6E88sXo/qxHMgjU7DMMDJ89bW+1/t1pFGl6W0G7iNppo4bG7R3cVrYwo0K37npds2h0R3+7GJ+1nKKJdTL9R6ouJl3X1fWSpwivrDkro0ww37iInQ2whq7h49afsO/pmjtiySSvEPXs2nH666fW9uJT04+wKsJj55jOF4OrT2sQsNDISHqt7VFRcEiHyOuXBSl75crOr9BBOr+knZhOkEy/rGndum2hUeGXdQQl9GuJ0FaeVbxwpOWtjMaM+nkqX7Rv4X4sOTBl6P7NadKXVx+WMbKi5LJx+yZ36ie2sRLMHRpWUTCjoGrPQKFzAo7cbCZ9VMXS36SGi8aM6mB3Jzj+TjD4pUo8SehP8SN+a6BSwZiF73bb9j1Efv0CvTSvY3LgFIy6+jTdPPBsptCkZvdg2kuqc734lBivIy2XJpt3V1rMe4w5aJkYzEdYfGEbC4yYM0Eq0zZKkpZNPWk2QKhKBEnoD/Igv9itG2ephET30Pi24kxvee5bzv/2UXVm/Yuy5w5ne/SIO1YuNpIkuvg3WlqPTYb5RjPuMxZuZ8dVmw2uCvV/YjZVrNvIQ4Ng1lEpU/hlFIlD56A3wIwe4H+dwnC9861a+/7+/06boFQ5m1ueZUy/lmVMuZX+DbEfXCcesIpVT3Oagd5IzyCpnfm5OVsSDB2LDFwUwOFSCMN0Lbagc8Qo3qHz0ceDH8Dnec5jljomwZEtL4YEHqHj0UXIPVfBy9/48ccaV7GzUpDpVbq5F4jAjWuVkxSWGbl0MVg89vR1WhVH0h0r4pKVVhEq6+6TVBKkiESihN8CP4bOTwiJmX2a7EMRdO0ph8mSYOBH27GH+Sedyb8+r2Zzzm+p9wpOvGVmJgUwR4aMHTTjbH5UVl8vJcoI4ivBVotH3wyjVbzhGi7jCwz3TXRiN+mtVY1ahiAe1YMoAPxaoWJ3DLkmVaQhiVSW/W/FfPn72j/D3v8Npp0FxMTddeGuEyOuEhz5GJwG78pQ2XHlqm4giGRJYuGF3XMvi7RZPhVMpJUXFJXQf919GzFgWcT+mLfrBVORzc7JMrfyaMGlp9Pm/vOgHlbRMkTCU0BvgtSKR03PY5RiJESspueB/X/Dec39h8ruPEWiTCwsWwLvvQvfujrJhGiUBm7tim+PiIG5CEMP7bVVlqkl2gNFvrDR0K1m5axYW9iW3Bq/qdJLnR+WcUfhJnXDdePE5++HL9br4KNz9cermbxj10Qv02LqGDU1b8+XkKZx22x+0/DQh7LJhmvn63RS+lkD7wrnVC5v06k92/TbLww4gJa6Lb+tCXpNXdTp9aNaE0YmiZlDrhT4dU7Ha+e9H9uvI80/P4a8fPkff75aw7YijuOOiW/jvKReya2cVjce/jxBQWhaMWCI/ds6qauu4YSCjesm/m3QDdlRKycuLfgCwFHu7vuZkBdhrM0Ec7YcPF/JkT1r6Ga3jdB6jJoxOFDUD2/BKIcRzwMXAT1LKLqFtTYEZQHtgI3CFlHKPEEIA/wT6A2XAMCnl13aNSGR4pVWY48h+HWO+vJD8Ze4QFkKXcwjuuQc5bRq/NGjEUz1/y+xel7FbZlrGoV/eIzdm8tJowjKcnKwAByuqXFvVoLlkNkzsb7ufVV+tcuPofUqHCUq/Qx6dlFxUIZUKJzgNr3Qi9L2BfcCLYUL/D2C3lHKSEKIQaCKlHCWE6A/8H5rQnwb8U0p5ml0jEin0VjHYWYHMmALOiMjFRPF+4cwswejtd57ajP5vPgtPPw2ZmXDLLVBYCE2aOIpNN1v1aYYAHrmyO3D4wZaTHWDfgYqISBwrNobF29tFEZndAyPBa5IdYMwlndNG5Mzuf3jtW7cPIRV1o/AD3+LopZSfCCHaR20eBJwTej0V+AgYFdr+otSeHouEEDlCiJZSym3Om+4vZsPkTCFiBMZI4OLJM2LnNirIy4VffoGHH4ZBD0JZGVx/PYwZA61bV5/Hia/WrXtG39tsROPkwaLjpJ/xrLZNNWb3X7/nXtyB6R7Pr6hdOFoZGxL6t8Ms+lIpZU7otQD2SClzhBBvA5OklJ+F3vsQGCWltDTXE2nRmw273bgrnK4WLSouiSg5Z+Y6yc3JYuHfzoR//1vLDb9jB1x2mZY2uFOn6nPpApjhwFrPEODQEAeM3Tb66AVgxIxllsdnBzK4rEdrFqzZYfpQiLeIuhGpWNnqdLVvIvqrUFiRtJWxUkophHA92yeEGA4MB2jbtm28zbCkQb2MakHT3QJOrFYdJ5NiRcUljJy5PMLtY3RThKwi//N34Zkb4bvv4JxzYNIkLSY+7FzRdWNtkdoiqPDrBzIEGRmCgxWRRQWzApkIERvxUh6sZOycVTH7G1EWrKqelDXDTSoEJ6RqYt2u3qtOPFEy6Z6aQVGz8RpHv10I0RIg9Pun0PYSoE3Yfq1D22KQUk6RUuZLKfObN4+tKeoHujCEx2kfCBXRNlrYE8gQ2orRMJyG7E2et9Z0shQAKTn7u6W8/cII/vnWg3DkkVoc/Pz5ESKvn8vtBGkV2tyC7lLJyQqAIEa0c7ICTLysK6VlxhEvpeVBT5OzRgjwddFPqmqcOl0b4DVKxm4BnUIRL14t+jnAUGBS6PebYdv/IoR4FW0ydm8q/fNWwhBeFcmPqBsra6771rWM+vgFTv9hJZtzfsOS+x4nv/DPkGH8nI3HMqyUstpiN3rw/HKgAnCXqsArErjtteWAPxZ3KlP4hvvUzdyBTgwCI8s92TnoFXUPW6EXQryCNvHaTAixBRiDJvCvCSFuADYBV4R2fwct4mY9WnjldQlos2OshMFJ+l83GAnnMbs2c/snL3HR/z5nR3YOY8//I/LGGxn3u5Ndn8sNVouhKqVk9BsrDcMxE4F+PYhP7PU6s4nMJ+/UfeJ1EtnM9WT2GagFUwq/qNVpis0m0awmIuMJo9R99C1+2cmIz6ZzxcoPKA80YMqpl/Fs/iD2N8gmkCE4omG9iMVOdoU2EoEQcMbRTVm4YXfCrhFOTlaAZWMu8HSs1f3wK948GemBrcI0jR5ganJXYYfTydhanevGLLGY2URkPL7egrxcHr2gHWM+m8rHU4Zz+TfzefHkAZw9/Bke63V1dW74YJVkT1nQ1BerW5XlwUrLPDF25GQFLJOLSYnvIp+ZYd7e0vKgZ5+zVZ1Zv4Q4Gf5/qzDNeJPoKRRW1GqhN0ssZjYRWVJaTofCufSaNN+dKJWXwwMPMKDgTK77fCYNr7qC+uv/x/jzbmJXoxzrQ8PEJHxSDowFwAkCGDuwc3UJPy/o98wpTbIDPPS7kywfTuH97DVpvuN7bVVn1i9r2+waJSE3nx+YuZj0/8t4kugpFFbU+lw3RgtTrEIrwy1t/XhTKirg+edh7FjYuhX692f+kBHc/X0mW//9raP4dzj8gDHaX7fsjc5j5ILSqykV5OUy7q1Vttc2Q1+p6WSuICuQGbGS1SwGX58bcRsimejyelb+f8C3EM4+nZobhqT26dRcLaBSJJRabdGb4SRnuuWwXUp44w3o0gWGD4e2beHjjymaMIWbv6msDpNzs1rVan+zof3YgZ1jLMFHruxeXTJvj8nIxQmzlpbQp1NzhyMKyYgZyzhm9DuMmP7T7WoAABBPSURBVLEMMw9Oq5wsTy4SP+oDmGFX5MVJ+5yyYM0OV9sVCr+o9Ra9EdFRE66KWHz0kZaD5ssv4YQTYPZsGDQIhGDypPkJmUA1S8BmFSUUrzCVBytZsGYHl/fI5ZUvN9sIoRarr+9jtEJXF+ZbLax9MxKZKsHpmgU/ImBSGR6qqNvUSaGHSJeOWTREhGtg2TIYPRreew9yc+HZZ2HIEKin3cKi4hJLN4fbtAvhx+miZiRsZiGBduLRJDtga/GXlJbHlebYKOmXmdvMzg2TKNeGU5H1w03kxAWlVsgqEkGddN1EY+ka+O47GDwY8vLgyy/5ZsRd9LnpGTr8rwW9HvyEouISLbTy9eWm5zeabHv0yu6mVZIyhaje7/IemjgaTVxarai0EqZHr+xO8T0XmF5fJ8MgOskNVVLy/aQBETVcE+mG8YITAferfXZ9VytkFYmiVsfRuyHakrorvykXvfmslnisXj0YMYK5F17D7e//EBNrDbLafRGNVSy2Uey2nggt16RAdniedqtkYrqbxDSpmknRcJ3ovDleMIsDTyer1bBwuoO1DvFcz6zvVrUTVDy9wgjf8tEng3QQ+mp+/hkeekj7OXAAbrhBSxvcqpXjLIbhPHpld0uR0L/4JaXlMdkuzbJf2hUU0bNttjcp46e/X1RcElGVSs+AmZuTxf6DFYa1XOGwS8Yqf72TxUbpIvjp0g6z2glOs6cq6h5Jy15Zazh4kBV3TaLN04/QZP9e5nfpTdX4eznv0t7Vu3iZNDMqMhI9kVqQl2v4EDETc7tHs+6OyLXwCRtZsg3qHRZnq1qvD11xUkxRkZLS8uow0FwHYplOJR7TJbQx0WGkirqLEvrKSpg+nf2Fd9Jt62YWtuvGA5cPY0XL48n6uoyJ7UuqRcBtDpom2YGY9MUlpeWMnBmb6MuvyItwn69VAW2zMMcRM5axZNNuy1qv4e32KpLpmMgr1ZZ9TS54rkhv6q7QS6mlCR49GlasYEurY5lwxXg+bZ+nJYIhVnic5iUHzcc95pLOjHtrVYyvO1gpufW1Zdw6Y1m1oPiRTVIIItwl4WGJusWt98nqWi8v+oFexzRl9/5DMaIzdmBnR22xE814Qw39FuVEjDDctrGmVNxS1Dzqpo9+0SIYNQo++QSOOQYmTODo4kZUidggpGj/aPiX1+rO6b55Mz95OGbFvb2w0cCX6yVJWqYQPHTFSZ5Ex0mCMKv5jpysAGMHmteMTUQCMr8nQpORJE2hUEnNjFi9Gi69FE4/HdasgSeegG+/hauuomWTRoaHRPtHC/JyWVjYl+8nDTANT9S395o031Gz9MVJTopb2BEdftlr0nxGzFjm+gFSGcojo/c1PETSDierX61WJ5eWBxn5+nLTsMJEJCDzezFTqoqkKBRG1A2h37xZi57p0gU+/FCr07phA9x8M9SvD3iL7zY7pk+n5hHJyZywtbQ8QlgfuuIkFx08jB53HZ0gzS3xZM50Ipp6wjmz6wSrpKkoJmKFqdmEp9eJULUKVpFO1A2hv/9+ePll+OtftQVQd90FRxwRsYtZpks7K7Zh4PAt1Mv0LVizw7UF3TgrENOeJtkBk73N0a1GL+UIw+l5dBPPx5qJo4SIRV8FeblUWbgOzUTRb1EG/xdyJaKNCoVX6sZk7NixWn6adu0sd3MTQWLkg9Xrs3qx2krLg9xVtJIJBV2rt425pLOnAiR+WI0bd9mfIzoOXy+8PrJfR0a+vtwwvj56ktNqEtpMFBMRneL3RKiKoFGkE3VD6Fu08P2UVuGJXpm26Afy2zU1jJqxm/wNRxdIK7dNk+wAP5dXmOaxsXtY6GkfwsV8T1mQ215fztWntsEqmX14NFP7o4yFPkNgKoqJik7xM55eRdAo0om6GXXjEacRN/FgFeXhZGWuHtkB2JbfW7Jpt2F+dLt22LVFX2FrhQAeubK7aZqGeEoPKhR1BbUy1keiXRRuyckKsP9QhaPcMVaWtJE7IJApaFS/HnvLjfOyRMfMZwrB5T0OW67TFv0QI7SBTGHrYrBqp53Iw+Hc9Ga77vV4r2sjqV7Ipaj5KKG3Id5C3QJYNuYCxw8Lq8k6L+6AskMVEX9XSsmspSXkt2tqKrSN6tezFZJ4FnjZ5abXz69Ir1QRipqLEnob4o1eyRCCDoVzaZWTVb2q1GxlqpPJOjs/8l1FKx0UCqmsflgYEW1NG1mUI/t1tJyPMEvQFp4Hx+w+CMz9827wwxJOtTWdjqkiFDWPuMIrhRAbhRArhRDLhBBLQtuaCiHeF0KsC/32HqeXRMwKVscbwVIpZUwd2oWFfdk4aUB1Tnq/CkLfVbSSlxf94KhQiC5cRmQIUd1/sxzpANf0bGt6fsnh+Vi9xOHGSQOq8+x0KJxL2aEKAlF1B8Nr3saDH7nd0yE/vIrHV/iBHxZ9HynlzrC/C4EPpZSThBCFob9H+XCdhGE1PLZzUdilDA4n2hLzO2viNJOJVSN069TILVUpZXXiNSuLcmFh32oXkNE90i14fVI3OlJnT1mQDKHNYZjNMXjFD0s4HaxpldFS4QeJWDA1CJgaej0VKEjANXzF6gttV0jcSOSt9ndriZmNNIz2cxMJpAvqxMu6GhbzDlZqBb/NHnJ6P/TVvGbRlOH9HTtnVUxsfZVMzMSrH5ZwOljT6VaRS1EziVfoJfBfIcRSIcTw0LYWUsptodc/Av4HsfuM1Re6IC+Xy3vkWoWFR6CvjjXLg+PGEnPjOnCTQyU81bC2OtXxodVE98PJSlCziWgZ+vHTNeLHytR0WN3qdcW2QhFOvEJ/ppTyZOAi4GYhRO/wN6UWpG8oI0KI4UKIJUKIJTt27IizGfFh94VesGaHY2u5UQMtYmVkv44x/udAhn3YYjhuEmM5tTLdpBq2Okd0P6wsT31U4gS/En/5YQmnizXtNbmcQqETl49eSlkS+v2TEGI2cCqwXQjRUkq5TQjREvjJ5NgpwBTQFkzF0454sVuu7nm4Hz0MiPo7npzt0cfmZAfYUxZrMTeol0GmgLJQTdsDFZUs2bQ74jo5WQFHawQEmPrRzUI/wXzhlhl+uEb8WJmqVrcqagueV8YKIRoBGVLKX0Kv3wfGA+cCu8ImY5tKKf9uda50WBnrpWizEfrko11+83hytjfJDnAgWBVT0BpBxKKsrEAmJ7dtzMINu2POcU3PttV5dYzSGZi12y1e6uyqYtgKhTOSkY++BfCZEGI5sBiYK6V8D5gEnC+EWAecF/o77bEaHttNyOo4GQXo28e9tcpTzvasQCZSEnNssEoSrJTVaX91X+6i7/YYtuOVLzdXvy7Iy2Xy706qnleIHog4cVd4CU9tkh2IcW+piUaFwn88u26klN8BMUnTpZS70Kz6WoOVW8JsFGAVFldUXGLoZoHYnO1G17BaUVopZbVYFuTlmi5qio61Dw/1dLtIyEt4avjIRrlGFIrEopKaJYi7ilbG5JHRXTNWNVuduC2cuEP08xwz+h3DBVSZQrBhYn/bfjjByk1lNv+hIkcUivhRpQRTSFFxCbOWlsSkANCTidklLrPDiStJv8bVp7UxfN9suxfswlNVeKBCkVpUrpsEYBQWKdHCNMHcnREe325FuEvHrmiHPuGq57/JFIKrT2sTUeAkXuxWb/q9AlihULhDCX0CsJuINXNnuIlv18XTLHonfGQwoaCrr8IejVFFKbdrBhQKReJQQp8AnFi44E98dtrEetusGVAoFKlDTcYmACcx8rUJuzUDCoUiMagKUykkbazsJJEOyb8UCoU5SugTRF2YgNRj4M3GhCqVrkKRHiihV3jCrsSiWuGqUKQPSugVnrAqsZhby11VCkVNQwm9whNm/ncBagJWoUgz1MpYhSfSoSiHQqFwhhJ6hSfSpSiHQqGwR7luFJ6oayGkCkVNRgm9wjN1IYRUoagNKNeNQqFQ1HKU0CsUCkUtRwm9QqFQ1HKU0CsUCkUtRwm9QqFQ1HLSIk2xEGIHsMnj4c2AnT42J12orf2C2tu32tovUH1LV9pJKZvb7ZQWQh8PQoglTvIx1zRqa7+g9vattvYLVN9qOsp1o1AoFLUcJfQKhUJRy6kNQj8l1Q1IELW1X1B7+1Zb+wWqbzWaGu+jVygUCoU1tcGiVygUCoUFaS/0QoimQoj3hRDrQr+bmOz3nhCiVAjxdtT2DkKIL4UQ64UQM4QQ9ZPTcntc9G1oaJ91QoihYds/EkKsFUIsC/38OnmtN2znhaH2rBdCFBq83yD0GawPfSbtw94bHdq+VgjRL5ntdoLXvgkh2gshysM+o38lu+12OOhbbyHE10KICiHEb6PeM/zfTAfi7Fdl2Gc2J3mtThBSyrT+Af4BFIZeFwIPmOx3LnAJ8HbU9teAq0Kv/wX8KdV9ctM3oCnwXeh3k9DrJqH3PgLyU92PUFsygQ3A0UB9YDlwYtQ+fwb+FXp9FTAj9PrE0P4NgA6h82Smuk8+9a098E2q+xBn39oD3YAXgd86+d9M9U88/Qq9ty/VffDzJ+0temAQMDX0eipQYLSTlPJD4JfwbUIIAfQFZtodnyKc9K0f8L6UcreUcg/wPnBhktrnhlOB9VLK76SUh4BX0foXTnh/ZwLnhj6jQcCrUsqDUsrvgfWh86UL8fQt3bHtm5Ryo5RyBVAVdWw6/2/G069aR00Q+hZSym2h1z8CLVwcexRQKqWsCP29BUinBOpO+pYLbA77O7oPz4eGl3enWFjs2hmxT+gz2Yv2GTk5NpXE0zeADkKIYiHEx0KIsxLdWJfEc+/T+XOLt20NhRBLhBCLhBDpZBx6Ii0KjwghPgB+Y/DWneF/SCmlEKJGhQkluG+DpZQlQogjgVnAtWjDUEX6sA1oK6XcJYToARQJITpLKX9OdcMUlrQLfbeOBuYLIVZKKTekulFeSQuhl1KeZ/aeEGK7EKKllHKbEKIl8JOLU+8CcoQQ9UJWVmugJM7musKHvpUA54T93RrNN4+UsiT0+xchxHS04WqqhL4EaBP2t9G91vfZIoSoBzRG+4ycHJtKPPdNag7fgwBSyqVCiA3A8cCShLfaGfHce9P/zTQgrv+psO/Wd0KIj4A8NJ9/jaQmuG7mAPps/lDgTacHhr5kCwB9Rt3V8UnASd/mARcIIZqEonIuAOYJIeoJIZoBCCECwMXAN0losxlfAceFopzqo01IRkcrhPf3t8D80Gc0B7gqFLnSATgOWJykdjvBc9+EEM2FEJkAIevwOLRJy3TBSd/MMPzfTFA73eK5X6H+NAi9bgb0Ar5NWEuTQapng+1+0PycHwLrgA+ApqHt+cB/wvb7FNgBlKP54/qFth+NJhrrgdeBBqnuk4e+XR9q/3rgutC2RsBSYAWwCvgnKY5UAfoD/0OzfO4MbRsPDAy9bhj6DNaHPpOjw469M3TcWuCiVH82fvUNuDz0+SwDvgYuSXVfPPTtlNB3aj/aCGyV1f9muvx47RdwBrASLVJnJXBDqvsS749aGatQKBS1nJrgulEoFApFHCihVygUilqOEnqFQqGo5SihVygUilqOEnqFQqGo5SihVygUilqOEnqFQqGo5SihVygUilrO/wNIdr7cUZaZzQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJztnXl4VNX5xz8nYYAELQGhFMLqBsoikagoioILCgpRW5eigFqxrf1ZrFKCG4soWNzq2mJdUEFRkIiiUhXcUEQwLCJQQEEIiGxBIQEmyfn9ceeGWe4+d5Yk5/M8eTK5c5dz7mS+9z3vec/7CiklCoVCoai9ZKS6AQqFQqFILEroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOUroFQqFopajhF6hUChqOfVS3QCAZs2ayfbt26e6GQqFQlGjWLp06U4pZXO7/dJC6Nu3b8+SJUtS3QyFQqGoUQghNjnZT7luFAqFopajhF6hUChqObZCL4RoKIRYLIRYLoRYJYQYF9r+ghDieyHEstBP99B2IYR4TAixXgixQghxcqI7oVAoFApznPjoDwJ9pZT7hBAB4DMhxLuh90ZKKWdG7X8RcFzo5zTg6dBvVwSDQbZs2cKBAwfcHqrwkYYNG9K6dWsCgUCqm6JQKDxiK/RSS1i/L/RnIPRjlcR+EPBi6LhFQogcIURLKeU2Nw3bsmULRx55JO3bt0cI4eZQhU9IKdm1axdbtmyhQ4cOqW6OQqHwiCMfvRAiUwixDPgJeF9K+WXorftC7plHhBANQttygc1hh28JbXPFgQMHOOqoo5TIpxAhBEcddZQaVSnqPEXFJfSaNJ8OhXPpNWk+RcUlqW6SKxwJvZSyUkrZHWgNnCqE6AKMBjoBpwBNgVFuLiyEGC6EWCKEWLJjxw6zfdycUpEA1GegqOsUFZcw+o2VlJSWI4GS0nJGv7GyRom9q6gbKWUpsAC4UEq5TWocBJ4HTg3tVgK0CTusdWhb9LmmSCnzpZT5zZvbxvsrFApFSpg8by3lwcqIbeXBSibPW5uiFrnHSdRNcyFETuh1FnA+sEYI0TK0TQAFwDehQ+YAQ0LRNz2BvW7987WR9u3bs3Pnzrj3UShqM+noItlaWu5qezriJOqmJTBVCJGJ9mB4TUr5thBivhCiOSCAZcAfQ/u/A/QH1gNlwHX+N1uhUNQ2dBeJbj3rLhKAgjzX03y+0SonixIDUW+Vk5WC1njD1qKXUq6QUuZJKbtJKbtIKceHtveVUnYNbbtGSrkvtF1KKW+WUh4Ter/G5jbYuHEjnTp1YtiwYRx//PEMHjyYDz74gF69enHcccexePFidu/eTUFBAd26daNnz56sWLECgF27dnHBBRfQuXNn/vCHP6AFIWm8/PLLnHrqqXTv3p2bbrqJyspKsyYoFHWGdHWRjOzXkaxAZsS2rEAmI/t1TFGL3JMWuW5sGTECli3z95zdu8Ojj9rutn79el5//XWee+45TjnlFKZPn85nn33GnDlzuP/++2nTpg15eXkUFRUxf/58hgwZwrJlyxg3bhxnnnkm99xzD3PnzuXZZ58FYPXq1cyYMYOFCxcSCAT485//zLRp0xgyZIi//VMoUkBRcQmT561la2k5rXKyGNmvo2NrPF1dJHr7vfYrHagZQp9COnToQNeuXQHo3Lkz5557LkIIunbtysaNG9m0aROzZs0CoG/fvuzatYuff/6ZTz75hDfeeAOAAQMG0KRJEwA+/PBDli5dyimnnAJAeXk5v/71r1PQM4XCX+J1vaSzi6QgL7dGCXs0NUPoHVjeiaJBgwbVrzMyMqr/zsjIoKKiwvWKUSklQ4cOZeLEib62U6FINVauFyciObJfx4gHBdQ8F0m6opKaxclZZ53FtGnTAPjoo49o1qwZv/rVr+jduzfTp08H4N1332XPnj0AnHvuucycOZOffvoJgN27d7Npk6NMowpFBOkWoRKv66UgL5eJl3UlNycLAeTmZDHxsq412pJOF2qGRZ/GjB07luuvv55u3bqRnZ3N1KlTARgzZgxXX301nTt35owzzqBt27YAnHjiiUyYMIELLriAqqoqAoEATz75JO3atUtlNxQ1jHSMUPHD9VLTXSTpigiPBkkV+fn5MrrwyOrVqznhhBNS1CJFOOqzSD96TZpvKKq5OVksLOybghbFPnxAc70oqzxxCCGWSinz7fZTFr1CUQNJxwiV2hCdUltRQq9Q1EDSNUJFuV7SEzUZq1DUQGrDIh5F8lAWvUJRA1FuEoUblNArFDWUVLlJ4ln9qkgNSugVCoVj0jGsU2GP8tH7QP/+/SktLbXc55577uGDDz7wdP6PPvqIiy++2Ha/c845h+gw1WgeffRRysrKPLVDEUm6LVhKBumaeExhjbLo40BKiZSSd955x3bf8ePHJ6FF9jz66KNcc801ZGdnp7opNZq6atmmY1inwp5aY9Enwrp6+OGH6dKlC126dOHRUL6djRs30rFjR4YMGUKXLl3YvHlzRMGQe++9l44dO3LmmWdy9dVX8+CDDwIwbNgwZs6cCWgFRsaMGcPJJ59M165dWbNmDQCLFy/m9NNPJy8vjzPOOIO1a62tpPLycq666ipOOOEELr30UsrLD3/Z/vSnP5Gfn0/nzp0ZM2YMAI899hhbt26lT58+9OnTx3Q/hT111bI1C99MdVinwppaYdEnwrpaunQpzz//PF9++SVSSk477TTOPvtsmjRpwrp165g6dSo9e/aMOOarr75i1qxZLF++nGAwyMknn0yPHj0Mz9+sWTO+/vprnnrqKR588EH+85//0KlTJz799FPq1avHBx98wB133FGdGdOIp59+muzsbFavXs2KFSs4+eSTq9+77777aNq0KZWVlZx77rmsWLGCW265hYcffpgFCxbQrFkz0/26devm6Z7VJeqqZasSj7mgshIyM+33SwK1QujjzZpnxGeffcall15Ko0aNALjsssv49NNPGThwIO3atYsReYCFCxcyaNAgGjZsSMOGDbnkkktMz3/ZZZcB0KNHj+p0xnv37mXo0KGsW7cOIQTBYNCyjZ988gm33HILAN26dYsQ6Ndee40pU6ZQUVHBtm3b+Pbbbw0F3Ol+iSTdojictMfpgqWa2DcrVFinA9auhTvvhCOPhOefT3VrgFoi9Mm2rnTxjwc93XFmZiYVFRUA3H333fTp04fZs2ezceNGzjnnHE/n/v7773nwwQf56quvaNKkCcOGDePAgQOe90sk6ebrdtoeJ5ZtTe2bHWr1qwklJTBuHDz3HGRlwahRICUIkeqW1Q4ffSL8hmeddRZFRUWUlZWxf/9+Zs+ezVlnnWV5TK9evXjrrbc4cOAA+/bt4+2333Z1zb1795Kbq32BXnjhBdv9w1Mhf/PNN9VlDH/++WcaNWpE48aN2b59O++++271MUceeSS//PKL7X7JIt183U7b4ySlbk3tWzpQoyKa9uyBwkI47jh44QW4+WbYsAHuuistRB5qiUWfCL/hySefzLBhwzj11FMB+MMf/kBeXh4bN240PeaUU05h4MCBdOvWjRYtWtC1a1caN27s+Jp///vfGTp0KBMmTGDAgAG2+//pT3/iuuuu44QTTuCEE06ong846aSTyMvLo1OnTrRp04ZevXpVHzN8+HAuvPBCWrVqxYIFC0z3Sxbp5ut20x47yzYd+hbuqjHLU5tu8wrpNhIypbwcHn8cJk2C0lIYPBjGj4cOHVLdshhqTZridPGF7tu3jyOOOIKysjJ69+7NlClTIiZJayKJTFOcbul2/WxPqvtmlDbYiFSmNjYi1ffNlooKmDoVxozR3DX9+8P998NJJyW9KXUuTXG6+A2HDx/Ot99+y4EDBxg6dGiNF/lEk6woDqeGgJ/tGdmvIyNnLidYediYCmSKpEWoGLlqoknHiJl0GAkZIiUUFcEdd8CaNdCzJ0yfDr17p7ZdDrAVeiFEQ+AToEFo/5lSyjFCiA7Aq8BRwFLgWinlISFEA+BFoAewC7hSSrkxQe1PO3SfucIZyYjicOMK8L090QPmJA6grYRRQNpGzKRlCuaPP9b88IsWwQknwOzZMGhQ2vjg7XBi0R8E+kop9wkhAsBnQoh3gb8Bj0gpXxVC/Au4AXg69HuPlPJYIcRVwAPAlV4aJ6VE1JAbWVtJhmsv0aMxt+G3frVn8ry1BKsi71+wSsYV9usGM8FMGxeICWkVq798OYweDe++C7m58OyzMGQI1KtZzhDbqBupsS/0ZyD0I4G+wMzQ9qlAQej1oNDfhN4/V3hQ64YNG7Jr166kCI3CGCklu3btomHDhqluSlxRGKlyBaTaBVFTc9anRZHw77+Ha66BvDzNiv/HP2DdOrj++hon8uDQRy+EyERzzxwLPAlsAEqllBWhXbYA+qeQC2wGkFJWCCH2orl3drppWOvWrdmyZQs7duxwc5jCZxo2bEjr1q1T2oZ4ozDMLFuJNvGXKPdFql0QNXlxU8rm3H76CSZMgH/9SxP0UaO0n5yc5LfFRxwJvZSyEuguhMgBZgOd4r2wEGI4MBygbdu2Me8HAgE6pGGYkiL5xLvy2cgVoJPI0D2/XBDxRJSlS5BC2vPLL/DQQ9pPeTnccIMWVdOqVapb5guuFkxJKUuBBcDpQI4QQn9QtAb0sXQJ0AYg9H5jtEnZ6HNNkVLmSynzmzdv7rH5irpAvC6QcFeAEYlYNKSLc3mwksyQ59KLC0IfzZSE4uD1B1NaLyCqSRw8CI89Bscco61qvfBCWLUK/v3vWiPy4EDohRDNQ5Y8Qogs4HxgNZrg/za021DgzdDrOaG/Cb0/XypHe63Ci788Hh+7HyufC/JyWVjYF7PJIj/95uHiDFApZbUl79a6rkmrWWsUVVUwbRp06gR//St07QqLF8Prr0PH9J7D8IITi74lsEAIsQL4CnhfSvk2MAr4mxBiPZoP/tnQ/s8CR4W2/w0o9L/ZilThxcKM1yr1c1IxGWl2/RTnVE/o1jqk1CJoTj5Zm2xt0gTmzYMPPoBTTkl16xKGk6ibFVLKPCllNyllFynl+ND276SUp0opj5VS/k5KeTC0/UDo72ND73+X6E4okocXEYtX+PyMwkhGJIqf4pyTHTDcrvK/e2DRIujTR1vJum8fvPIKLFkCF1xQY+LhvVLz4oQUKcWLiPkhfH5NKiYjEsWvaJui4hL2HaiI2Z7M1bW1gjVrtNWss2fDr38NTzwBN94I9eunumVJQwm9whVeRCzVYYbRJDoSxa9oG6MFVwCN6tdTkTRO2LIFxo7VcsI3aqQlHLv1VjjiiFS3LOkooVe4wk7EjEIBU7XSMVWJ7vwaNZiNePaWWxekqfPs3q1llHz8cW3S9ZZbNIu+Dkf3pW32SkVqcCKOZvsYZUvMCmQy8bKuQOLcJUbtAUzbkg7WsJP7nPZZHH3CtwdyWZkWKvnAA7B3L1x7rRYy2b69721OF5xmr1RCr6jGSqidfPFSIUxmbW5QL4NSA8s3EW1xK1RO73O8n0dNwJc+VlRoVZ3GjYOtW+Hii7W0wV27JqjV6YNToa8VFaYU/hBvdEwqQgHN2mwk8oloi5fQUT+rWHlpbzpVborrf05KmDULOneGm26Cdu3gk0/grbfqhMi7QfnoFdXEK9TxTLqauV/sLGW3wu33BLCX9AxO7nP0/Xjkyu5xW/HpWLnJ8//cggVa2uDFi+HEE+HNN+GSS2p9mKRXlNArqok3OsbrpKuRAI2cuRwk1VEnZqJk1uYm2QEOBKsSPgHsRqh08TZzlur32UyQl2zazdwV29hTpo1WcrICjB3Y2bFIO30oJXMS2/X/XHGxljZ43jxo00aLqLn2WsjMNN5fASjXjSKMeBcTeXU1GAlQsFLGhBZGD+mLiksoOxQbZ54VyGTMJZ2TkurW6Urb6LQIRm0OH8UYCfLLi36oFnmA0vIgI19f7tj94uShdFfRSm6dsSxpuXUc/89t2AC//722ovWrr+DBB+F//4Nhw5TIO0BZ9Ipq/AgL9BKj7sb9ou9rVg812sr1W9ijrd0+nZoza2mJbbipmcCD9hAKv89u7oebQiZ21nNRcQnTFv0QM+JwkynULbb/c9u3w733aknGAgEtTPLvf4fGjX1vS21GCb0iglSktTUTILN9wbweaqMG7hYTuXFTGLlUZi0t4fIeuSxYs8NRuGk0AmKigNzcD3D+YLBzrVm5lazmD+J17Rj+z/38s2a1P/wwHDigrWS95x5o2dLzdeoySugVKcdIgAKZIsJHD4dFqai4xFQI3VjDbicnzVwqC9bsMAzZdFKcu3FWbC4bo/shMC8363QOxc56trp3dvMH4eePi4MH4emn4b77YOdOuOIKrRDIccfFf+46jBJ6RcoxEyCzbbqwGOEmqsZtxIzbCBEnD539hyooKi6JuJ7R/ejTqTkzvtpMsDJS7gMZ7vLeWI3YzEYSAmznD+J27VRWammD77kHNm2C886DiRMh3zZEXOEAJfSKtMBMgIxWi5pZyYFMQZ9Ozek+7r/VcfRNsgOMucQ4MsWtQLuNEHHigglWGvvYje5HfrumjHtrleeoGzvMRhKDe7a1tfo9r0+QEt55R4ukWblSm2x95hk4/3xv51MYooReUaOwEpTKKsn0RT9QFbZtT1lQC9Uk9qHhVrjdho9alTAMx02lLD9i6a1GTjnZARrUy2BvedDQ/+5rgrovvtDqsX76KRx7LMyYAb/9LWSoYEC/UUKv8JVEx2BbWckGiR4Bc6vZrXC7jUqK3h+M/exGfvpE4GS9wp6yIFmBTNMFWr4kqPv2Wy165s034Te/0XzyN9ygRdUoEoISeoVvJGPlpVMrORojq9lLOKlbqzp8/7zx/42Ig9dJ5GLO8AdvhhBURuW2ivb5g7XPPa4Q3M2btYLbU6dqqYInTIARI7QUwoqEooRe4Rt2E3VFxSWMnbPKkf/cDH3f215bHiNaVpi5FuJxh7gdvZQaiLzRdr9GRdEPXjf3y8qdZHbPTNu9a5c2sfrEE5pPfsQIzaI/6ijb9qcizXRtRAm9Ii7Cv4xWMdhFxSWMfH15RLiklf/cCn3fETOWOdo/ERWZvIxenPi3vY6KjETRSXinGV6qYUW3e/yrX3H8s49z4ktPa6X7hgzRMky2bevpfKnOy1OTUbMeCs9EZ240o1VOlmm1JN1/7paCvFxyTHzb4a6QJtkBJv/2JN/FwUvWRSfL/b2c1yyDppNFV4FMQSAj0nfktRqW3u56lRUMLn6H9568nhOffADOOQdWrNDy0jgQ+ejz6XgtsK5QFr0iDpxYjLpo3GphfXsNzRs7sHPK8rV7CTN04t/2cl4zUcw08MkDZApBlZSusoTasbW0HKRkwJrPuO3Tlzh6z1YWtz6RPxeMZubLI12dq/p8LrYrrFFCn2QS4Xf0es5422L1pRMQcU6rfC9eUwcno9C3GV7DDO3mBMzOmyEEHQrnuno4VEpJViDT0YMw3nt2yc7V3DB3Cif9uI61zdpyw+V38+Exp5LbJNvT+dKtznBNx9Z1I4RoI4RYIIT4VgixSgjx19D2sUKIEiHEstBP/7BjRgsh1gsh1goh+iWyAzUJL0UqEnVOP9pi9qXLzcni+0kDWFjYt1pARvbrGOMigPj95wV5uSws7BtzvUQTb6ZPN+cFTbTNPierzyHhGTy//houuIDHnh1J87K93Nb/Vi667nE+PPY0surX83w/EnV/6ypOfPQVwG1SyhOBnsDNQogTQ+89IqXsHvp5ByD03lVAZ+BC4CkhhMojSmL8jl7P6Udb3HwZC/Jymfy7kyL86rr/HEirqkdOSET1J6PzZhrEXkZ/TlafQ8IehOvXw1VXQY8emtg/8ghL/vsFi866GJmRGff9SNT9ravYum6klNuAbaHXvwghVgNWd3sQ8KqU8iDwvRBiPXAq8IUP7a3RJMLv6PWcfrQl2nXSOCuAEHDrjGVMnrc2xsVg5LaIJ7rCTzeYl3MlKtNn+Hk7FM413Cf8c0qqC+vHH2H8eC1NQf36cNddcPvt0LgxA4GBpx3t26VSkUm1tuLKRy+EaA/kAV8CvYC/CCGGAEvQrP49aA+BRWGHbcHgwSCEGA4MB2jrcCa+ppMIv6PXc/rVFv3L6Eaw7RbxOEmSZXS9ETOWMXbOKtf5X4zOdeuMZYyYsSwmV7wfuHmoOP2cEi6Ke/fC5MnwyCNw6BAMHw53362tbFWkPY7DK4UQRwCzgBFSyp+Bp4FjgO5oFv9Dbi4spZwipcyXUuY3b97czaE1lkT4Hb2e0++2OHUFRc8NmC3isRtZmEX8lJYHLecajIpjG51Lb5XfFZbczo2k3Fd94ICWE/6YY7TUwQMHwurV8OSTSuRrEI6EXggRQBP5aVLKNwCklNullJVSyirgGTT3DEAJ0Cbs8NahbXWeRPgdvZ7T77Y4dQU5XcRjNrLQhdoqRtxsrsFrvLmf8dtmD8Sxc1YZ7p8qX3XRkh+473d/p6RFW7jtNrYf1wWWLoVXXtESkClMMTImUo2t60YIIYBngdVSyofDtrcM+e8BLgW+Cb2eA0wXQjwMtAKOAxb72uoaTCKG2F7P6XopuwVOXQxO5gDMLFYnFZusruM23tzufF4we6iUlgdj8tLrJNVXLSWL/vkCne8fR8GOTSz/zXHc3n8Ey449mYmiBQXJaUWNJV1X9Dqx6HsB1wJ9o0Ip/yGEWCmEWAH0AW4FkFKuAl4DvgXeA26WUnpbh61IOl7DLp26GMws9UwhbC1WN0v6ja5jF2/u9nxeMIqi0Un5qs+FC+Gss+h56/VkVgT586BCBg15mC/anaRWpTokXVf0Oom6+Qxt/Us071gccx9wXxztUqQIrxWEnEZ+mKW5deKOcGpVm40IzEYd+oSrvqgrumyfnz5xq5FDylZ9fvONlmTsrbegZUvu6Hczr3U9n4rMSHnw0r66lpgsXVf0qpWxigji+Ud14mKIJxTQScUmAVzew7gdZg+ZPp2aV7cnN1S2z6jYtx/kWvQh6as+N23S0ga/+CL86ldahslbbuHjxxZR4UNEVrq6MRJJuq7oVUKviCAZ/6hOHgi6JVhSWl7tQ8/JChDIFIY51HUksGDNDtPrQmwt1llLSyLEaNbSkoRNeI7s15GRM5fHXfs1LnbuhPvv1yJnhIDbbtNK+TVtWt3GuIuLkMD6smmMX/fOb5TQKyIY2a9jTDrhpIoQ5nnUS8uDBDIETbIDlJYFTTNmlpSWm+aFiX7IGNWgtRKjeF0R+r5+1X511Z79+7U4+MmTtbTBw4bB2LHQpk3Ebn4twEqWGyOd3EOpzL9khRJ6RSzRMzIJrIBkhNWka7BKkl2/HsX3XGAZZhk+kQzmrgI3YuSXK8KvKBrH7QkGtZWs48fD9u1QUKDFxJ94otFpfWtjMkaH6egeSscVvSofvSKCyfPWxrgV3OaMt4ojdhJj7DR9g1kCsHDsIh7MRMdou5OIimTGUNu2p6oKXn0VTjgBbr4ZOnaEzz+H2bMtRd4vkrHYK12jXNINZdErIoh3uG1lYQGOrC+7SVddhKOHyVYVrsxw41O1uzfJti4t2/P++1BYqCUc69oV5s6Fiy5KbIHaKJLhxkjXKJd0Qwm9IoJ4h9t2FpYTf7hVAfBoEQ4fJpu5cqza7kaM7O5NsicfjdrTdds67ln4EjzwNbRrp0XU/P73kJmaBLKJdmOka5RLuqFcN4oI4h1uW1lYTq2v8GX/cHiRkb6YCozTGhu1PZAp2H+wwtKV4jSVr929SbZ1Gd6eDrtLeKJoEm+9eCvddm2ERx+FtWvh2mtTJvLJIOW5gGoIyqJXRBDvcNvOwnJqfVmlZ7Bzj+htz8kOsO9ABaXlQdN93WB3b5JtXRbk5dJwx48cuHssF3/1DocC9Vlz4wg6PThOi4uvA6RrlEu6IaRNjo9kkJ+fL5csWZLqZih8wCgfjb7yFfC8KlbHzD2Tm5PFwsK+jvaNrpkaryiEx/wbrapNSEx+aSn84x+a5V5RATfdpOWGb9HC3+so0hohxFIpZb7dfsqiVxgST2xyw0BGtZgbxYjHU9/WbJLWyD1ildsGzC18N32PfrBJqBb7eHLZh7dBL+hSWhakfaNMHt+9kC5Tn4Q9ezT/+733wtH+FfxQ1D6U0Cti8Bo9YmTNH6yoitjHy+Sck6yVRu4RJykToidL3fbdLJe90QjDKdFtKC0PkllVyW+/+ZBbP5tOq192sv2Mc2jx5CPQvbunayjqFkroFTHYRc6YWbtmx9322nJunbHMs6vELmul2eSbVfROOOGWv9vIGT/CUaPvZ0QbpOSCdYsY+cmLHLdrM8taHs/fLv4bm7udxkIl8gqHKKFXxGAmUrp1a2btenWVeG0PWLtHoifqjMoWQuRowK1we5mANfPpR9/fUzd/w6iPXqDH1jVsaNqamwruYN7xp4MQCBUnrnCBEnofSaecG/G0x0y8MoWwtHa9uEqcYJVe2M49Eu4qMpsoDh8NuBVut0msjHz64ZQHKzlhxyZu//gFzt3wFT8e0ZTCfn/h9W7nU5lxOIxQxYkr3KDi6H3Ca8GOdGxPn07GNXzt6rs6SUkQvr9TjM4r0PrkJs2Ak7J8buOy3Zb6s3JDtd67nYfefoi5z/2F/JLVTDp7GOcMn8Kr3S+MEHkVJ65wi7LofSLdUrLG0x6zNL9mJffMUhI4cZWYET0aubxHLgvW7DB1d4Rf3wq7yWAvcdluJpiNHnJNy/byl89nMHjZO0iRwfTeV9Bk/N289cV2DpaWkxMWdZMOI0VFzUMJvU+kW84NKz97r0nzLUXMruSelZvCravECKPIFz1HvFGIpZcHqpVbK5HL9sNdQ9mHyvnDV0XcuPgNsoMHea3refz7nGsYMawvA/JyGXB254S0QVH3UELvE6nMuWEkWmbt0V0e4D6pWHTJPd1nr0fjRIuj11WLVqMRPx6oqUxtO7JfR+55/WsKvprL/30+g+Zlpbx7/Bk82PtaDhxzvLLWFQlBCb1PpKqyjJloXd4jN6JyEhCzahOcJxXT+6Lv51QovVjHVmLuxwM1ZW62qioKVn/M+S/dQaMtm/iibVfuGDCBATcW8KESd0UCUZOxPuF2Us5/lczPAAAgAElEQVQvzERrwZodMe1xmsbXri+JzgFulSPejyRWSXezSQnvvQc9esDgwTQ6KgfefZfTNy7nmaduVha8IuHYWvRCiDbAi0ALNINwipTyn0KIpsAMoD2wEbhCSrlHCCGAfwL9gTJgmJTy68Q0P71IRWUZK9EyKpsXb1IxME5MFt2WeEJNnYwovJ67qLjE10li22svXgyjRsFHH0GHDjBtGlx1FWQoG0uRPJy4biqA26SUXwshjgSWCiHeB4YBH0opJwkhCoFCYBRwEXBc6Oc04OnQb4VLnIiKmSsjQwiKiktsXTLhaXydCFdRcYmhC0hvi76PU9eOVR+NtsfzANHbZSTyXieJTX37a9fCnXfCrFnQvDk89piWeKx+fUdtTRbptvZDkRhshV5KuQ3YFnr9ixBiNZALDALOCe02FfgITegHAS9KLS3mIiFEjhCiZeg8Coc4FRWzZf6VUsbsHy2g2fUz2X+o0lUa38nz1pq6gPT4e6c+cLs+Gj0U4plEtYphN5tUDhdCo5FATL9KSmDcOHjuOcjK0opv/+1vcOSRtu1LNulYb1WRGFyNH4UQ7YE84EugRZh4/4jm2gHtIbA57LAtoW0KFzj1g+v+9EyDEnFm+y8s7MsjV3an7FCs6Nn52q382K98uZmi4hJT1070dre+frP9x721ylGdVjsffPSisuhFZ5YLxvbs0Ur3HXssvPCCVqN1wwYYMyYtRR5UvdW6hOOoGyHEEcAsYISU8mcRJixSSimEcJXYXggxHBgO0LZtWzeH1gncTBgW5OVy64xlrs5jZZlbCaJVmgN9FCGENv8YTWbIneS1xqvZ9j1lQfaUxY5KINL9k5MdqN7PjHAL3S6ZGkCD4EFu+fY9OPoa2LsXBg+G8eM1f3yak25rPxSJw5FFL4QIoIn8NCnlG6HN24UQLUPvtwR+Cm0vAdqEHd46tC0CKeUUKWW+lDK/eXPjJfd1GavIEz+224m5GSP7dcSqvHR5sNJQ5OHwg6DEQuStru80hLI8WMnYOatiUkDsO1BBINO+OLZ+b6zuUWZVJVcun8fHzwzn5veegTPOgGXL4KWXaoTIQ/z3WVFzsBX6UBTNs8BqKeXDYW/NAYaGXg8F3gzbPkRo9AT2Kv+8e9yGEbrd3+zLLELnMqMgL5fBPdtair0ZRknRonHbRzNKy4Mx1wpWSRrVr1cdNmrk7oLD98bwHklJv7WfM+/Zm3ngvcep374dfPwxzJ0L3bpV71ZUXOLInZRKVL3VuoMTi74XcC3QVwixLPTTH5gEnC+EWAecF/ob4B3gO2A98AzwZ/+bXftxG5dvVFBbd0MYiYxZorDBPdvaTsRNKOjK4J7m7racrIChgJj5uHUyheDyHua1YnVXSnix8JysgOU5o9lbHqwuBP7QFSdZCl30Per5wwpmv3Q7/y66HykEwy+9k6bLl0Dv3jFtTacEd2akau2HIvk4ibr5DEwNuHMN9pfAzXG2q84ST7ibm1Wr8cSjFxWXMGupsWhlBTIZO7Cz4bmtSgGC5tqZtbSE/HZNLaNz9Jw7uiAbxdw3DGQY+uPDrXS7e6D/fubx2Yz86AXO+X4p2444ipEX3cIbXc7lN02PAINRQboluLMiFWs/FMlHpUBII/wId3MjMl6/5GaTlJlCRFiERue2q/hk1FarPun56KPF2uhaRm4Jy3vw3XcUPHQPg6ZPZ2+DRtx/znVMPfliDgYaWLo41CSnIt1QQp9GuIk/N7NC3RTP9orZuaqktHS76IWuGwYyKC0LOo66sRNOK7H2NDr66Set4Pa//w316iFGjWLhRdcy9/MfOVRablv02yy6JydbczOpRUqKZKOEPo1wYglaWf1gnLgM/I2kcJNYzKjQdVYgk0eu7G7qyok+j9dEZm5GLEXFJTw5p5gB709n+FezaVgZJOOGG7Q4+FatGAAM6H2io3OZTUVIqRYpKVKDSriRAswiMpyEu1lZ/Wax8XaRNG4xi9bo06l5TL+s2msWRbP/YEXExKWX6BA3US9zvvyOVYUTeOUf1zBi4Sss6NCDAcP/RdEf74FWrSzvhRF7y41j9feWB9UiJUVKENImEiIZ5OfnyyVLlqS6GUnBqBhHIFPQqH49SsuDMRZ5ViAzwu/doXCuqZiDsTUPsHHSAB9af5i7ilbyypebqZSSTCHoeXQTvv5hb4xP3MwfL4DvJw2gqLiEcW+tinF1RPfbjbvDrOBJTERJVRVMn87WW0bSas+PLGzXjQfOHsaKlscDWvRQowb1XLtYzJLH5eZkmS4U0+9HPCiXUN1DCLFUSplvt59y3SQZI4suWCmr881IDrtfjHzBdm4MM4EB/4RAj7rRwyUrpWThht0x++mhkHblByfPWxsj9NFzE27cMLZzHVLCu+/C6NGwYgW7WxzDqCvG82n7vIgomtLyoKs8QDpW2TeduqvcolxCCiuU0CcZJ5OiusgvLOxb7YLQxblPp+bM+GozwcrD4hnIFLaRJn4KgZPUADpOyg/GE6US/vDKyQ4gJdXibHi+RYu0tMGffALHHAOvvMIfv2vGlp8P2l7LaYikVdjmkk27mbboh5hRW7yutZoU0qlIPkrok4xVrphwtpaWG4rzjMWbYy3k0J9WAtNr0nzfhMBNBE94+UGzkYTXydbo+2OVx+aYnZu5Z9E0eOAz+PWv4Ykn4MYboX59bjdw9ZjhtO9m2TdnLS2JEHkBpovE3KBCOhVWKKFPMmZphaNplZNl7OapinWDBKtktWCbuTj8FAKnDyt9EtjO7WJ2T8oOVcTk1A/Hycii5c87+OvCV/jdyg+oys7WEo7deisccUT1PkYPyLJDFYYPjsZZgWofvO6Wsgu3tGqvBBas2WF5nBNSWbNYkf4ooU8y0aKSkx1g34GKCAHXh/JmGSmNsBLseKsqRaO3zW4aX+LMLaTvM3bOqgi3y56yoGXBEquHTePyX/jzotcZtvQtbaLz6us59tH7KdpyiMlPLI4ZXUQ/jAwnzTME+w9VVLdRv59mbrDoOZFErnFIVc1iRc1ACX0KMBIVI9eGXcqAcMwEO56qSmbtMvM1R5Pr4iGi9zfav25VsMSIhsEDXLf0Lf60aCZHHCxjXt55XPTGFI5t397VPIUbK9+onUbXSuQah3hLLCpqN0rofcZLZIuZa8Ow9F+GAEHEZKyVYFulK7i8hyaut85YFtNWO1GcUNCV/HZNqx9GRmGhbq1Jp+4loz5lVlVyxYr3+evC6fxm324+OOYUHjv3Oq7/40Bor5UgvO215fYVosKI/lw6FM513H4zN40f98kMlbdGYYYSeh/xO8TNzEoz2maWesCqSMispSWmbXUTxSGgOuJlb3nQszXp1M8cIfxSctHahdz+6Uscs7uEZW1O5P8GjWJrl/yIOrNmo5ro81k9qO3mJsLbafbQ0iOqlNWtSCZK6H0kESFuZlaa3fms3BtgnBs+vK125QCNIl701AZe++rUz6wL7umbljPq4xfovm0d/zuqLaOuvZcHpt7J61EZJe0mbe2Kmi/ZtJsFa3ZYul+i22n2UNDDZhWKZKKE3kfSKcTNStysVqzqbTVb6KTngreq3xpvmmW74ye0CxJ45h7O/O5rSo5szu39R/Bu9/O477fdDdMGW93/cIE261P4XES4+8Uo6kYfEfjlzlIo/EAJvY+kU4iblbhNvKyr6URv41AhDzM3h77dbf1WN2Jvuu+GDXDXXfR59VUONc7h8f438cQJ/WjWrDH3WTxQzD6X6LTKVu6W6L+NLPPoEUH4cU5DMBWKRKCSmvmIk+RbySoxZ/Zwyc3JoiAvl5H9OmoTu1HsD8Wum0XM6Nvd1G+NO2HXjz/CzTdDp07w5ptwxx3U37SR/5v7L9Y+eCkLC/vaxukbfS4PXXFSzMItpxg9FMxGUeHrCRSKVKCE3kfsSrMls8ScWanAktJyek2aD8ARDWMHdMFKaZpZMjydwv6DFY7b4tl19fPPcPfdcOyxWm74P/xBs+rvuw8aN3Z8GrvPRcfsnhlh9FCwGhGo7JSKVKJcN3FgFWduRDLzkYT7u6P9xfoDxspPbxXx4zRdgI5r19XBg/D005qg79wJV1wBEybAcce5O08YTkIPjfrcp1PziOgkMPe1J3pRlELhFSX0HvESSmkXyeI3urgZpc21yiyZIUR16oHovhjlzLHC1QRkZSVMmwb33AObNsF558HEiZBvm4XVN4z6rK8XsJtgtloxrFIRKFKJEnqPeLHO7SJZEoVVLL1RBE6llKYPLTeWaYbA0EUSg5Qwd66WNvibb6BHD/jPfzShTyHRIza70NFEZqdUKOJB+eg9YiZ4JaXlphOtdpEsiaCouMTUz6z7qo0eNGaTqG4sU0cPsM8/h9694ZJL4MABmDEDFi9OC5H3Mp8yoaArj1zZ3XY+QKFIJrYWvRDiOeBi4CcpZZfQtrHAjYCedu8OKeU7ofdGAzcAlcAtUsp5CWh3yrHyx4YLAxy2inMtFtG4xWmqBbPygqBlh7RKTqY/zKKLewcyRUwKBpCUB6sijg/PqhnDqlVwxx0wZw785jeaT/6GGyCQHgW045lPcTIfkOr+KeoWTiz6F4ALDbY/IqXsHvrRRf5E4Cqgc+iYp4QQsUVBawFm9U7DibaKvdQ+NcKNtWnlatlTFrRMSpaTHaD7uP8yYsay6muVlgdBQpPsQITFeiBK5E2v/8MPcN110K0bfPSRNsm6fj388Y8RIj9y5vKI/o2cuTwh0Ulm4a6JXPyWzOgrhQIcCL2U8hMgtk6cMYOAV6WUB6WU3wPrgVPjaF/aEh2yZ0a4MDgN87PDTYHpeCYB95QFDas1Bask2fXr8f2kAdUx7LaFzXftgttug+OPh+nTYcQI+O47uPNOaNQo4phxb62KGDGAFvY57q1VnvtihJXgOinU7hVVIFyRbOKZjP2LEGIIsAS4TUq5B8gFFoXtsyW0rVYSPkQ3KwgdLQx+ZBi0mh8ILzs4sl9Hx4VO4m2DWZ6awt5ttDDJf/wD9u2DIUNg3Dho29b03GapgK0qSHnBSnBH9uvIyNeXR9QJCGQIXyZV0ylVhqJu4HUy9mngGKA7sA14yO0JhBDDhRBLhBBLduyIv8JOqvHLLeMEM6tSXxAVPUcQPYrICaU58LMN0aOVtkcGeKVqGZdc3hvuugvOOQdWrIDnn7cU+URh5KKxFdzooZpPwVGJHC0oFEYI6SDiQwjRHnhbn4w1ey80EYuUcmLovXnAWCnlF1bnz8/Pl0uWLHHb9rTD7QSb1wk5o+pHZlkVneRkcUtWINPc5VRVBTNnauK+bh2ceSZMmgS9epn2JfoeRFeaCueanm2ZUNDVVXuN+psVyKRBvQzD6+iT406zT3r53I3ao6JzFG4RQiyVUtouNPEk9EKIllLKbaHXtwKnSSmvEkJ0Bqaj+eVbAR8Cx0kpLRWlpgi9n5ES8X7ZnZapE8D3kwaYHu92sVaT7ABjLuls3MYPPoDCQli6FLp0gYkTKWrVncn//V/EStMFa3ZYllG8vEcuMxZvNqyPC5AdyOD+y7o5vvdmbrUm2QEOBKsMPwOraCQBliuF9T7o/TT6X3Hzv6QidBRm+Cb0QohXgHOAZsB2YEzo7+5oRuRG4KYw4b8TuB6oAEZIKd+1a0RNEHq/rTAz8fGar9zsfJlCxCTvcnJcNDlZAcYONBH4pUs1gf/gA80tc++9MHgwRSt+9DRy0DM9jrComevm3nconGso2gJ45MruhiLq5L5kBTJpGMgwnDswSlHs5X8l0da/eojUbHy16BNNTRB6v4XZSnx0C9yt1WcmqlbCYNYOvS2W1123TnPRvPYaHHWU9vpPf4IGDQDnDxEjNk4aQHub0n2ZQlAlpe298fLZxeveMsLL/4rf/3fhKBdSzcep0KsUCCY4dY14jZSwy13vNpeOvs1tXVRPlZC2bYPx47U0BfXrawJ/++0xGSW9irxA679Zyggd/T27e+O0clU40Unh/MDL/0oiI3SSmWRPkVpUCgQDjOKr3aSrdUKfTs1jzumk2pFdrLWTuqjhuIoW2rtXi3s/9lhN5IcP19IG33uvYdpgrzl89LS+V5/WxvExVvfG6/oFPW+/1cK4nKyA49TGjbMCrmsRJDJCR4V51h2URW+Akcg6qRPqlKLiEmYtLYk4pwAu73E4xt7tl9CuRqyZMDgq33fgADz1lBYPv3s3XHWVJu7HHmvYDv1c8TgFt5aWV0fXTPvyB5x4GK0Eyuv6BbuSjGMHdq7ezyq1cSBDsP9QRXWUj9PqW15GI05Jp4poisSihN4AK8HQJ9niKQ1n9iBZsObwegK3X0I7QbJzUxj2o7ISXnqJstF3kv3jVj5pn8fzv7+PQddfQsGxsfs79WuH+9b3H6wwDHHU+zmhoCsTCrpGPEAyTFw6iRAou5KM+n2zS21cdqgiZtK2PFjJba8tNzxex2kdXS8k8iGiSC+U0Btgl7As3okwJ9a62y+hU0Gyo6i4hMnvreHEJR8zeuFLHL19I+tbHc/Eq+7ji3YnAbDIwBItKi4xnB+IJnqyz2xNQJ9OzSOOC38YmU0iJmpxmtkchl3K4vD3O5hMLFulhA4/FxwWe91FFa/YJ/IhokgvlI/eADu/bLw+TDu/q2696sVBwN6v3DBg/FHaCVI4RcUlvP7oKzz65C0888a9yGCQPw8qZOA1D1WLPMT6w3XhtRJ5s9KKZqObWUtLTH3YBXm5XN4jt/reZAoR4fbyE7P/hf0HK1wlIbMabdjNvagkaIp4URa9AVYRLBC/i8DKWo+2VvXiIFaW1uBnvohJEQzaU9yxlfvNNzT7/Y1MW7OI7Uc0ZXS/v/B61/OoyDT+Fwl/2Fm5jcDb6lwrt4Y+x6F/NpVSMmtpCfntmiasJOO4t1ZFuF5Ky4OOfOw6djmHrIyHREXHeKmSpqiZKIvehIK8XB664qSE5K+xigJxG21TVFzCwg3GyUWNEwdHsWkTDB0K3brR7fuVPHD2UM4ePoVXul9oKvIQ+bCzm9OIdsOA/cMBDrs1oi3XZGd/LMjLJbt+7L1wc039MzeLRLIyHhIVHaOyaNYdlEVvQSJ9mGYToG6/1GPnWKfuNbXQdu7UomieegqEgNtu44qsXqw5FJvwzCiPju660FMUW81pGFnbTkXKyHJNRVigH9fU++B2fiFR0TEqvLLuoCx6GwrycllY2Dci93oicRM3XVRcYpr8SyfGQtu3TwuNPPpoeOwxuOYabYXr5Mn88dJTDEcwg3u2pUl25ANAd10UFZfYzmkY+fQzXMTYRwuPk3tkVlDEbLsdfsWze4npT1RmVJVFs+6gLPo0w020jdMhdklpOQSD8Mwz2orW7duhoECz6E88sXo/qxHMgjU7DMMDJ89bW+1/t1pFGl6W0G7iNppo4bG7R3cVrYwo0K37npds2h0R3+7GJ+1nKKJdTL9R6ouJl3X1fWSpwivrDkro0ww37iInQ2whq7h49afsO/pmjtiySSvEPXs2nH666fW9uJT04+wKsJj55jOF4OrT2sQsNDISHqt7VFRcEiHyOuXBSl75crOr9BBOr+knZhOkEy/rGndum2hUeGXdQQl9GuJ0FaeVbxwpOWtjMaM+nkqX7Rv4X4sOTBl6P7NadKXVx+WMbKi5LJx+yZ36ie2sRLMHRpWUTCjoGrPQKFzAo7cbCZ9VMXS36SGi8aM6mB3Jzj+TjD4pUo8SehP8SN+a6BSwZiF73bb9j1Efv0CvTSvY3LgFIy6+jTdPPBsptCkZvdg2kuqc734lBivIy2XJpt3V1rMe4w5aJkYzEdYfGEbC4yYM0Eq0zZKkpZNPWk2QKhKBEnoD/Igv9itG2ephET30Pi24kxvee5bzv/2UXVm/Yuy5w5ne/SIO1YuNpIkuvg3WlqPTYb5RjPuMxZuZ8dVmw2uCvV/YjZVrNvIQ4Ng1lEpU/hlFIlD56A3wIwe4H+dwnC9861a+/7+/06boFQ5m1ueZUy/lmVMuZX+DbEfXCcesIpVT3Oagd5IzyCpnfm5OVsSDB2LDFwUwOFSCMN0Lbagc8Qo3qHz0ceDH8Dnec5jljomwZEtL4YEHqHj0UXIPVfBy9/48ccaV7GzUpDpVbq5F4jAjWuVkxSWGbl0MVg89vR1WhVH0h0r4pKVVhEq6+6TVBKkiESihN8CP4bOTwiJmX2a7EMRdO0ph8mSYOBH27GH+Sedyb8+r2Zzzm+p9wpOvGVmJgUwR4aMHTTjbH5UVl8vJcoI4ivBVotH3wyjVbzhGi7jCwz3TXRiN+mtVY1ahiAe1YMoAPxaoWJ3DLkmVaQhiVSW/W/FfPn72j/D3v8Npp0FxMTddeGuEyOuEhz5GJwG78pQ2XHlqm4giGRJYuGF3XMvi7RZPhVMpJUXFJXQf919GzFgWcT+mLfrBVORzc7JMrfyaMGlp9Pm/vOgHlbRMkTCU0BvgtSKR03PY5RiJESspueB/X/Dec39h8ruPEWiTCwsWwLvvQvfujrJhGiUBm7tim+PiIG5CEMP7bVVlqkl2gNFvrDR0K1m5axYW9iW3Bq/qdJLnR+WcUfhJnXDdePE5++HL9br4KNz9cermbxj10Qv02LqGDU1b8+XkKZx22x+0/DQh7LJhmvn63RS+lkD7wrnVC5v06k92/TbLww4gJa6Lb+tCXpNXdTp9aNaE0YmiZlDrhT4dU7Ha+e9H9uvI80/P4a8fPkff75aw7YijuOOiW/jvKReya2cVjce/jxBQWhaMWCI/ds6qauu4YSCjesm/m3QDdlRKycuLfgCwFHu7vuZkBdhrM0Ec7YcPF/JkT1r6Ga3jdB6jJoxOFDUD2/BKIcRzwMXAT1LKLqFtTYEZQHtgI3CFlHKPEEIA/wT6A2XAMCnl13aNSGR4pVWY48h+HWO+vJD8Ze4QFkKXcwjuuQc5bRq/NGjEUz1/y+xel7FbZlrGoV/eIzdm8tJowjKcnKwAByuqXFvVoLlkNkzsb7ufVV+tcuPofUqHCUq/Qx6dlFxUIZUKJzgNr3Qi9L2BfcCLYUL/D2C3lHKSEKIQaCKlHCWE6A/8H5rQnwb8U0p5ml0jEin0VjHYWYHMmALOiMjFRPF+4cwswejtd57ajP5vPgtPPw2ZmXDLLVBYCE2aOIpNN1v1aYYAHrmyO3D4wZaTHWDfgYqISBwrNobF29tFEZndAyPBa5IdYMwlndNG5Mzuf3jtW7cPIRV1o/AD3+LopZSfCCHaR20eBJwTej0V+AgYFdr+otSeHouEEDlCiJZSym3Om+4vZsPkTCFiBMZI4OLJM2LnNirIy4VffoGHH4ZBD0JZGVx/PYwZA61bV5/Hia/WrXtG39tsROPkwaLjpJ/xrLZNNWb3X7/nXtyB6R7Pr6hdOFoZGxL6t8Ms+lIpZU7otQD2SClzhBBvA5OklJ+F3vsQGCWltDTXE2nRmw273bgrnK4WLSouiSg5Z+Y6yc3JYuHfzoR//1vLDb9jB1x2mZY2uFOn6nPpApjhwFrPEODQEAeM3Tb66AVgxIxllsdnBzK4rEdrFqzZYfpQiLeIuhGpWNnqdLVvIvqrUFiRtJWxUkophHA92yeEGA4MB2jbtm28zbCkQb2MakHT3QJOrFYdJ5NiRcUljJy5PMLtY3RThKwi//N34Zkb4bvv4JxzYNIkLSY+7FzRdWNtkdoiqPDrBzIEGRmCgxWRRQWzApkIERvxUh6sZOycVTH7G1EWrKqelDXDTSoEJ6RqYt2u3qtOPFEy6Z6aQVGz8RpHv10I0RIg9Pun0PYSoE3Yfq1D22KQUk6RUuZLKfObN4+tKeoHujCEx2kfCBXRNlrYE8gQ2orRMJyG7E2et9Z0shQAKTn7u6W8/cII/vnWg3DkkVoc/Pz5ESKvn8vtBGkV2tyC7lLJyQqAIEa0c7ICTLysK6VlxhEvpeVBT5OzRgjwddFPqmqcOl0b4DVKxm4BnUIRL14t+jnAUGBS6PebYdv/IoR4FW0ydm8q/fNWwhBeFcmPqBsra6771rWM+vgFTv9hJZtzfsOS+x4nv/DPkGH8nI3HMqyUstpiN3rw/HKgAnCXqsArErjtteWAPxZ3KlP4hvvUzdyBTgwCI8s92TnoFXUPW6EXQryCNvHaTAixBRiDJvCvCSFuADYBV4R2fwct4mY9WnjldQlos2OshMFJ+l83GAnnMbs2c/snL3HR/z5nR3YOY8//I/LGGxn3u5Ndn8sNVouhKqVk9BsrDcMxE4F+PYhP7PU6s4nMJ+/UfeJ1EtnM9WT2GagFUwq/qNVpis0m0awmIuMJo9R99C1+2cmIz6ZzxcoPKA80YMqpl/Fs/iD2N8gmkCE4omG9iMVOdoU2EoEQcMbRTVm4YXfCrhFOTlaAZWMu8HSs1f3wK948GemBrcI0jR5ganJXYYfTydhanevGLLGY2URkPL7egrxcHr2gHWM+m8rHU4Zz+TfzefHkAZw9/Bke63V1dW74YJVkT1nQ1BerW5XlwUrLPDF25GQFLJOLSYnvIp+ZYd7e0vKgZ5+zVZ1Zv4Q4Gf5/qzDNeJPoKRRW1GqhN0ssZjYRWVJaTofCufSaNN+dKJWXwwMPMKDgTK77fCYNr7qC+uv/x/jzbmJXoxzrQ8PEJHxSDowFwAkCGDuwc3UJPy/o98wpTbIDPPS7kywfTuH97DVpvuN7bVVn1i9r2+waJSE3nx+YuZj0/8t4kugpFFbU+lw3RgtTrEIrwy1t/XhTKirg+edh7FjYuhX692f+kBHc/X0mW//9raP4dzj8gDHaX7fsjc5j5ILSqykV5OUy7q1Vttc2Q1+p6WSuICuQGbGS1SwGX58bcRsimejyelb+f8C3EM4+nZobhqT26dRcLaBSJJRabdGb4SRnuuWwXUp44w3o0gWGD4e2beHjjymaMIWbv6msDpNzs1rVan+zof3YgZ1jLMFHruxeXTJvj8nIxQmzlpbQp1NzhyMKyYgZyzhm9DuMmP7T7WoAABBPSURBVLEMMw9Oq5wsTy4SP+oDmGFX5MVJ+5yyYM0OV9sVCr+o9Ra9EdFRE66KWHz0kZaD5ssv4YQTYPZsGDQIhGDypPkJmUA1S8BmFSUUrzCVBytZsGYHl/fI5ZUvN9sIoRarr+9jtEJXF+ZbLax9MxKZKsHpmgU/ImBSGR6qqNvUSaGHSJeOWTREhGtg2TIYPRreew9yc+HZZ2HIEKin3cKi4hJLN4fbtAvhx+miZiRsZiGBduLRJDtga/GXlJbHlebYKOmXmdvMzg2TKNeGU5H1w03kxAWlVsgqEkGddN1EY+ka+O47GDwY8vLgyy/5ZsRd9LnpGTr8rwW9HvyEouISLbTy9eWm5zeabHv0yu6mVZIyhaje7/IemjgaTVxarai0EqZHr+xO8T0XmF5fJ8MgOskNVVLy/aQBETVcE+mG8YITAferfXZ9VytkFYmiVsfRuyHakrorvykXvfmslnisXj0YMYK5F17D7e//EBNrDbLafRGNVSy2Uey2nggt16RAdniedqtkYrqbxDSpmknRcJ3ovDleMIsDTyer1bBwuoO1DvFcz6zvVrUTVDy9wgjf8tEng3QQ+mp+/hkeekj7OXAAbrhBSxvcqpXjLIbhPHpld0uR0L/4JaXlMdkuzbJf2hUU0bNttjcp46e/X1RcElGVSs+AmZuTxf6DFYa1XOGwS8Yqf72TxUbpIvjp0g6z2glOs6cq6h5Jy15Zazh4kBV3TaLN04/QZP9e5nfpTdX4eznv0t7Vu3iZNDMqMhI9kVqQl2v4EDETc7tHs+6OyLXwCRtZsg3qHRZnq1qvD11xUkxRkZLS8uow0FwHYplOJR7TJbQx0WGkirqLEvrKSpg+nf2Fd9Jt62YWtuvGA5cPY0XL48n6uoyJ7UuqRcBtDpom2YGY9MUlpeWMnBmb6MuvyItwn69VAW2zMMcRM5axZNNuy1qv4e32KpLpmMgr1ZZ9TS54rkhv6q7QS6mlCR49GlasYEurY5lwxXg+bZ+nJYIhVnic5iUHzcc95pLOjHtrVYyvO1gpufW1Zdw6Y1m1oPiRTVIIItwl4WGJusWt98nqWi8v+oFexzRl9/5DMaIzdmBnR22xE814Qw39FuVEjDDctrGmVNxS1Dzqpo9+0SIYNQo++QSOOQYmTODo4kZUidggpGj/aPiX1+rO6b55Mz95OGbFvb2w0cCX6yVJWqYQPHTFSZ5Ex0mCMKv5jpysAGMHmteMTUQCMr8nQpORJE2hUEnNjFi9Gi69FE4/HdasgSeegG+/hauuomWTRoaHRPtHC/JyWVjYl+8nDTANT9S395o031Gz9MVJTopb2BEdftlr0nxGzFjm+gFSGcojo/c1PETSDierX61WJ5eWBxn5+nLTsMJEJCDzezFTqoqkKBRG1A2h37xZi57p0gU+/FCr07phA9x8M9SvD3iL7zY7pk+n5hHJyZywtbQ8QlgfuuIkFx08jB53HZ0gzS3xZM50Ipp6wjmz6wSrpKkoJmKFqdmEp9eJULUKVpFO1A2hv/9+ePll+OtftQVQd90FRxwRsYtZpks7K7Zh4PAt1Mv0LVizw7UF3TgrENOeJtkBk73N0a1GL+UIw+l5dBPPx5qJo4SIRV8FeblUWbgOzUTRb1EG/xdyJaKNCoVX6sZk7NixWn6adu0sd3MTQWLkg9Xrs3qx2krLg9xVtJIJBV2rt425pLOnAiR+WI0bd9mfIzoOXy+8PrJfR0a+vtwwvj56ktNqEtpMFBMRneL3RKiKoFGkE3VD6Fu08P2UVuGJXpm26Afy2zU1jJqxm/wNRxdIK7dNk+wAP5dXmOaxsXtY6GkfwsV8T1mQ215fztWntsEqmX14NFP7o4yFPkNgKoqJik7xM55eRdAo0om6GXXjEacRN/FgFeXhZGWuHtkB2JbfW7Jpt2F+dLt22LVFX2FrhQAeubK7aZqGeEoPKhR1BbUy1keiXRRuyckKsP9QhaPcMVaWtJE7IJApaFS/HnvLjfOyRMfMZwrB5T0OW67TFv0QI7SBTGHrYrBqp53Iw+Hc9Ga77vV4r2sjqV7Ipaj5KKG3Id5C3QJYNuYCxw8Lq8k6L+6AskMVEX9XSsmspSXkt2tqKrSN6tezFZJ4FnjZ5abXz69Ir1QRipqLEnob4o1eyRCCDoVzaZWTVb2q1GxlqpPJOjs/8l1FKx0UCqmsflgYEW1NG1mUI/t1tJyPMEvQFp4Hx+w+CMz9827wwxJOtTWdjqkiFDWPuMIrhRAbhRArhRDLhBBLQtuaCiHeF0KsC/32HqeXRMwKVscbwVIpZUwd2oWFfdk4aUB1Tnq/CkLfVbSSlxf94KhQiC5cRmQIUd1/sxzpANf0bGt6fsnh+Vi9xOHGSQOq8+x0KJxL2aEKAlF1B8Nr3saDH7nd0yE/vIrHV/iBHxZ9HynlzrC/C4EPpZSThBCFob9H+XCdhGE1PLZzUdilDA4n2hLzO2viNJOJVSN069TILVUpZXXiNSuLcmFh32oXkNE90i14fVI3OlJnT1mQDKHNYZjNMXjFD0s4HaxpldFS4QeJWDA1CJgaej0VKEjANXzF6gttV0jcSOSt9ndriZmNNIz2cxMJpAvqxMu6GhbzDlZqBb/NHnJ6P/TVvGbRlOH9HTtnVUxsfZVMzMSrH5ZwOljT6VaRS1EziVfoJfBfIcRSIcTw0LYWUsptodc/Av4HsfuM1Re6IC+Xy3vkWoWFR6CvjjXLg+PGEnPjOnCTQyU81bC2OtXxodVE98PJSlCziWgZ+vHTNeLHytR0WN3qdcW2QhFOvEJ/ppTyZOAi4GYhRO/wN6UWpG8oI0KI4UKIJUKIJTt27IizGfFh94VesGaHY2u5UQMtYmVkv44x/udAhn3YYjhuEmM5tTLdpBq2Okd0P6wsT31U4gS/En/5YQmnizXtNbmcQqETl49eSlkS+v2TEGI2cCqwXQjRUkq5TQjREvjJ5NgpwBTQFkzF0454sVuu7nm4Hz0MiPo7npzt0cfmZAfYUxZrMTeol0GmgLJQTdsDFZUs2bQ74jo5WQFHawQEmPrRzUI/wXzhlhl+uEb8WJmqVrcqagueV8YKIRoBGVLKX0Kv3wfGA+cCu8ImY5tKKf9uda50WBnrpWizEfrko11+83hytjfJDnAgWBVT0BpBxKKsrEAmJ7dtzMINu2POcU3PttV5dYzSGZi12y1e6uyqYtgKhTOSkY++BfCZEGI5sBiYK6V8D5gEnC+EWAecF/o77bEaHttNyOo4GQXo28e9tcpTzvasQCZSEnNssEoSrJTVaX91X+6i7/YYtuOVLzdXvy7Iy2Xy706qnleIHog4cVd4CU9tkh2IcW+piUaFwn88u26klN8BMUnTpZS70Kz6WoOVW8JsFGAVFldUXGLoZoHYnO1G17BaUVopZbVYFuTlmi5qio61Dw/1dLtIyEt4avjIRrlGFIrEopKaJYi7ilbG5JHRXTNWNVuduC2cuEP08xwz+h3DBVSZQrBhYn/bfjjByk1lNv+hIkcUivhRpQRTSFFxCbOWlsSkANCTidklLrPDiStJv8bVp7UxfN9suxfswlNVeKBCkVpUrpsEYBQWKdHCNMHcnREe325FuEvHrmiHPuGq57/JFIKrT2sTUeAkXuxWb/q9AlihULhDCX0CsJuINXNnuIlv18XTLHonfGQwoaCrr8IejVFFKbdrBhQKReJQQp8AnFi44E98dtrEetusGVAoFKlDTcYmACcx8rUJuzUDCoUiMagKUykkbazsJJEOyb8UCoU5SugTRF2YgNRj4M3GhCqVrkKRHiihV3jCrsSiWuGqUKQPSugVnrAqsZhby11VCkVNQwm9whNm/ncBagJWoUgz1MpYhSfSoSiHQqFwhhJ6hSfSpSiHQqGwR7luFJ6oayGkCkVNRgm9wjN1IYRUoagNKNeNQqFQ1HKU0CsUCkUtRwm9QqFQ1HKU0CsUCkUtRwm9QqFQ1HLSIk2xEGIHsMnj4c2AnT42J12orf2C2tu32tovUH1LV9pJKZvb7ZQWQh8PQoglTvIx1zRqa7+g9vattvYLVN9qOsp1o1AoFLUcJfQKhUJRy6kNQj8l1Q1IELW1X1B7+1Zb+wWqbzWaGu+jVygUCoU1tcGiVygUCoUFaS/0QoimQoj3hRDrQr+bmOz3nhCiVAjxdtT2DkKIL4UQ64UQM4QQ9ZPTcntc9G1oaJ91QoihYds/EkKsFUIsC/38OnmtN2znhaH2rBdCFBq83yD0GawPfSbtw94bHdq+VgjRL5ntdoLXvgkh2gshysM+o38lu+12OOhbbyHE10KICiHEb6PeM/zfTAfi7Fdl2Gc2J3mtThBSyrT+Af4BFIZeFwIPmOx3LnAJ8HbU9teAq0Kv/wX8KdV9ctM3oCnwXeh3k9DrJqH3PgLyU92PUFsygQ3A0UB9YDlwYtQ+fwb+FXp9FTAj9PrE0P4NgA6h82Smuk8+9a098E2q+xBn39oD3YAXgd86+d9M9U88/Qq9ty/VffDzJ+0temAQMDX0eipQYLSTlPJD4JfwbUIIAfQFZtodnyKc9K0f8L6UcreUcg/wPnBhktrnhlOB9VLK76SUh4BX0foXTnh/ZwLnhj6jQcCrUsqDUsrvgfWh86UL8fQt3bHtm5Ryo5RyBVAVdWw6/2/G069aR00Q+hZSym2h1z8CLVwcexRQKqWsCP29BUinBOpO+pYLbA77O7oPz4eGl3enWFjs2hmxT+gz2Yv2GTk5NpXE0zeADkKIYiHEx0KIsxLdWJfEc+/T+XOLt20NhRBLhBCLhBDpZBx6Ii0KjwghPgB+Y/DWneF/SCmlEKJGhQkluG+DpZQlQogjgVnAtWjDUEX6sA1oK6XcJYToARQJITpLKX9OdcMUlrQLfbeOBuYLIVZKKTekulFeSQuhl1KeZ/aeEGK7EKKllHKbEKIl8JOLU+8CcoQQ9UJWVmugJM7musKHvpUA54T93RrNN4+UsiT0+xchxHS04WqqhL4EaBP2t9G91vfZIoSoBzRG+4ycHJtKPPdNag7fgwBSyqVCiA3A8cCShLfaGfHce9P/zTQgrv+psO/Wd0KIj4A8NJ9/jaQmuG7mAPps/lDgTacHhr5kCwB9Rt3V8UnASd/mARcIIZqEonIuAOYJIeoJIZoBCCECwMXAN0losxlfAceFopzqo01IRkcrhPf3t8D80Gc0B7gqFLnSATgOWJykdjvBc9+EEM2FEJkAIevwOLRJy3TBSd/MMPzfTFA73eK5X6H+NAi9bgb0Ar5NWEuTQapng+1+0PycHwLrgA+ApqHt+cB/wvb7FNgBlKP54/qFth+NJhrrgdeBBqnuk4e+XR9q/3rgutC2RsBSYAWwCvgnKY5UAfoD/0OzfO4MbRsPDAy9bhj6DNaHPpOjw469M3TcWuCiVH82fvUNuDz0+SwDvgYuSXVfPPTtlNB3aj/aCGyV1f9muvx47RdwBrASLVJnJXBDqvsS749aGatQKBS1nJrgulEoFApFHCihVygUilqOEnqFQqGo5SihVygUilqOEnqFQqGo5SihVygUilqOEnqFQqGo5SihVygUilrO/wNIdr7cUZaZzQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -212,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -969,13 +969,7 @@ "epoch 747: loss = 1765080.409388, a = 736.413451, b = 152.655201\n", "epoch 748: loss = 1764899.846541, a = 736.837393, b = 152.654930\n", "epoch 749: loss = 1764720.003201, a = 737.260487, b = 152.654660\n", - "epoch 750: loss = 1764540.876496, a = 737.682735, b = 152.654390\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 750: loss = 1764540.876496, a = 737.682735, b = 152.654390\n", "epoch 751: loss = 1764362.463568, a = 738.104139, b = 152.654121\n", "epoch 752: loss = 1764184.761567, a = 738.524700, b = 152.653853\n", "epoch 753: loss = 1764007.767659, a = 738.944420, b = 152.653585\n", @@ -1176,7 +1170,13 @@ "epoch 948: loss = 1740073.049267, a = 806.639154, b = 152.610348\n", "epoch 949: loss = 1739992.084021, a = 806.922668, b = 152.610167\n", "epoch 950: loss = 1739911.440986, a = 807.205615, b = 152.609986\n", - "epoch 951: loss = 1739831.118877, a = 807.487996, b = 152.609806\n", + "epoch 951: loss = 1739831.118877, a = 807.487996, b = 152.609806\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 952: loss = 1739751.116414, a = 807.769812, b = 152.609626\n", "epoch 953: loss = 1739671.432323, a = 808.051065, b = 152.609446\n", "epoch 954: loss = 1739592.065335, a = 808.331755, b = 152.609267\n", @@ -1500,13 +1500,7 @@ "epoch 1272: loss = 1725310.896600, a = 874.295618, b = 152.567136\n", "epoch 1273: loss = 1725288.607410, a = 874.443841, b = 152.567042\n", "epoch 1274: loss = 1725266.406608, a = 874.591768, b = 152.566947\n", - "epoch 1275: loss = 1725244.293841, a = 874.739399, b = 152.566853\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 1275: loss = 1725244.293841, a = 874.739399, b = 152.566853\n", "epoch 1276: loss = 1725222.268760, a = 874.886735, b = 152.566759\n", "epoch 1277: loss = 1725200.331014, a = 875.033776, b = 152.566665\n", "epoch 1278: loss = 1725178.480257, a = 875.180523, b = 152.566571\n", @@ -1633,7 +1627,13 @@ "epoch 1399: loss = 1723083.256642, a = 890.934407, b = 152.556509\n", "epoch 1400: loss = 1723069.792927, a = 891.049358, b = 152.556436\n", "epoch 1401: loss = 1723056.382489, a = 891.164079, b = 152.556363\n", - "epoch 1402: loss = 1723043.025115, a = 891.278571, b = 152.556289\n", + "epoch 1402: loss = 1723043.025115, a = 891.278571, b = 152.556289\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 1403: loss = 1723029.720594, a = 891.392834, b = 152.556216\n", "epoch 1404: loss = 1723016.468716, a = 891.506868, b = 152.556144\n", "epoch 1405: loss = 1723003.269272, a = 891.620675, b = 152.556071\n", @@ -1931,7 +1931,13 @@ "epoch 1697: loss = 1720722.510311, a = 916.760321, b = 152.540014\n", "epoch 1698: loss = 1720718.362630, a = 916.823629, b = 152.539974\n", "epoch 1699: loss = 1720714.231237, a = 916.886810, b = 152.539934\n", - "epoch 1700: loss = 1720710.116066, a = 916.949865, b = 152.539893\n", + "epoch 1700: loss = 1720710.116066, a = 916.949865, b = 152.539893\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 1701: loss = 1720706.017053, a = 917.012794, b = 152.539853\n", "epoch 1702: loss = 1720701.934135, a = 917.075597, b = 152.539813\n", "epoch 1703: loss = 1720697.867247, a = 917.138274, b = 152.539773\n", @@ -2273,13 +2279,7 @@ "epoch 2039: loss = 1719939.679051, a = 932.453563, b = 152.529991\n", "epoch 2040: loss = 1719938.588590, a = 932.485490, b = 152.529971\n", "epoch 2041: loss = 1719937.502342, a = 932.517352, b = 152.529950\n", - "epoch 2042: loss = 1719936.420291, a = 932.549151, b = 152.529930\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 2042: loss = 1719936.420291, a = 932.549151, b = 152.529930\n", "epoch 2043: loss = 1719935.342420, a = 932.580887, b = 152.529910\n", "epoch 2044: loss = 1719934.268714, a = 932.612559, b = 152.529890\n", "epoch 2045: loss = 1719933.199154, a = 932.644167, b = 152.529869\n", @@ -2686,7 +2686,13 @@ "epoch 2446: loss = 1719714.693893, a = 941.350072, b = 152.524309\n", "epoch 2447: loss = 1719714.462381, a = 941.364208, b = 152.524300\n", "epoch 2448: loss = 1719714.231731, a = 941.378316, b = 152.524291\n", - "epoch 2449: loss = 1719714.001940, a = 941.392396, b = 152.524282\n", + "epoch 2449: loss = 1719714.001940, a = 941.392396, b = 152.524282\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 2450: loss = 1719713.773003, a = 941.406448, b = 152.524273\n", "epoch 2451: loss = 1719713.544917, a = 941.420472, b = 152.524264\n", "epoch 2452: loss = 1719713.317680, a = 941.434467, b = 152.524255\n", @@ -2694,13 +2700,7 @@ "epoch 2454: loss = 1719712.865738, a = 941.462375, b = 152.524237\n", "epoch 2455: loss = 1719712.641027, a = 941.476287, b = 152.524228\n", "epoch 2456: loss = 1719712.417151, a = 941.490171, b = 152.524219\n", - "epoch 2457: loss = 1719712.194107, a = 941.504027, b = 152.524211\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "epoch 2457: loss = 1719712.194107, a = 941.504027, b = 152.524211\n", "epoch 2458: loss = 1719711.971892, a = 941.517856, b = 152.524202\n", "epoch 2459: loss = 1719711.750502, a = 941.531657, b = 152.524193\n", "epoch 2460: loss = 1719711.529935, a = 941.545430, b = 152.524184\n", @@ -3192,7 +3192,13 @@ "epoch 2946: loss = 1719661.403852, a = 945.820957, b = 152.521453\n", "epoch 2947: loss = 1719661.365180, a = 945.826153, b = 152.521450\n", "epoch 2948: loss = 1719661.326639, a = 945.831339, b = 152.521447\n", - "epoch 2949: loss = 1719661.288228, a = 945.836514, b = 152.521443\n", + "epoch 2949: loss = 1719661.288228, a = 945.836514, b = 152.521443\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "epoch 2950: loss = 1719661.249948, a = 945.841679, b = 152.521440\n", "epoch 2951: loss = 1719661.211798, a = 945.846834, b = 152.521437\n", "epoch 2952: loss = 1719661.173777, a = 945.851978, b = 152.521434\n", @@ -3247,7 +3253,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuclmP+x9/XTE814zRFi6ZSORQpTYUUUXaFyIhF61AOm7V2ba2NUlQ2ilCsw/7CEjlEMRuxEVlEMaMpUq0QNUKqiZqp5nD9/rife3oO93Wfnvs5zMz1fr3mNTP3cx+u636e53t/r+/1ub5fIaVEo9FoNA2XrHQ3QKPRaDTJRRt6jUajaeBoQ6/RaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwNGGXqPRaBo42tBrNBpNA6dJuhsAcNBBB8n27dunuxkajUZTrygpKflJStnKab+MMPTt27enuLg43c3QaDSaeoUQ4hs3++nQjUaj0TRwtKHXaDSaBo6joRdCNBdCfCSEWCGEWCWEmBTe/qQQ4mshRGn4p3t4uxBCPCCEWCeEWCmE6JHsTmg0Go1GjZsY/W5ggJRyhxAiBLwvhHg9/NpoKeXcmP3PAo4M/5wIPBL+7Ymqqio2btzIrl27vB6qCZDmzZvTpk0bQqFQupui0Wh84mjopZGwfkf431D4xy6J/XnAU+Hjlgoh8oQQh0opN3lp2MaNG9lvv/1o3749Qggvh2oCQkrJli1b2LhxIx06dEh3czQajU9cxeiFENlCiFLgR+BNKeWy8Et3hMMz04UQzcLb8oENEYdvDG/zxK5duzjwwAO1kU8jQggOPPBAParSNHqKlpfRd+rbdBizgL5T36ZoeVm6m+QJV4ZeSlkjpewOtAFOEEIcC4wFOgPHAy2Bm71cWAgxQghRLIQo3rx5s2ofL6fUJAH9HmgaO0XLyxj70qeUlVcigbLySsa+9Gm9MvaeVDdSynJgMXCmlHKTNNgNPAGcEN6tDGgbcVib8LbYc82UUvaSUvZq1cpR76/RaDRpYdrCtVRW1URtq6yqYdrCtWlqkXfcqG5aCSHywn/nAL8B1gghDg1vE0Ah8Fn4kPnAFWH1TW9gu9f4fEOkffv2/PTTTwnvo9E0ZDIxRPJdeaWn7ZmIG9XNocAsIUQ2xoPhBSnlq0KIt4UQrQABlAJ/CO//GnA2sA6oAK4MvtkajaahYYZITO/ZDJEAFBZ4nuYLjNZ5OZRZGPXWeTlpaI0/HD16KeVKKWWBlLKblPJYKeXt4e0DpJRdw9suk1LuCG+XUsrrpZSHh1+vt7kN1q9fT+fOnRk+fDhHHXUUl156KYsWLaJv374ceeSRfPTRR2zdupXCwkK6detG7969WblyJQBbtmzhjDPOoEuXLlxzzTUYIiSD2bNnc8IJJ9C9e3euvfZaampqVE3QaBoNmRoiGT2wEzmh7KhtOaFsRg/slKYWeScjct04MnIklJYGe87u3WHGDMfd1q1bx4svvsi//vUvjj/+eJ599lnef/995s+fz5133knbtm0pKCigqKiIt99+myuuuILS0lImTZrEySefzG233caCBQt4/PHHAVi9ejVz5sxhyZIlhEIh/vjHP/LMM89wxRVXBNs/jSYNFC0vY9rCtXxXXknrvBxGD+zk2hvP1BCJ2X6//coE6oehTyMdOnSga9euAHTp0oXTTz8dIQRdu3Zl/fr1fPPNN8ybNw+AAQMGsGXLFn7++WfeffddXnrpJQAGDRpEixYtAHjrrbcoKSnh+OOPB6CyspJf/epXaeiZRhMsiYZeMjlEUliQX68Meyz1w9C78LyTRbNmzer+zsrKqvs/KyuL6upqzytGpZQMGzaMKVOmBNpOjSbd2IVe3BjJ0QM7RT0ooP6FSDIVndQsQU455RSeeeYZAN555x0OOugg9t9/f/r168ezzz4LwOuvv862bdsAOP3005k7dy4//vgjAFu3buWbb1xlGtVoosg0hUqioZfCgnymDOlKfl4OAsjPy2HKkK712pPOFOqHR5/BTJw4kauuuopu3bqRm5vLrFmzAJgwYQJDhw6lS5cu9OnTh3bt2gFwzDHHMHnyZM444wxqa2sJhUI89NBDHHbYYenshqaekYkKlSBCL/U9RJKpiEg1SLro1auXjC08snr1ao4++ug0tUgTiX4vMo++U9+2NKr5eTksGTMgDS2Kf/iAEXrRXnnyEEKUSCl7Oe2nPXqNph6SiQqVhqBOaahoQ6/R1EMyVaGiQy+ZiZ6M1WjqIQ1hEY8mdWiPXqOph+gwicYL2tBrNPWUdIVJEln9qkkP2tBrNBrXZKKsU+OMjtEHwNlnn015ebntPrfddhuLFi3ydf533nmHc845x3G/0047jViZaiwzZsygoqLCVzs00WTagqVUkKmJxzT2aI8+AaSUSCl57bXXHPe9/fbbU9AiZ2bMmMFll11Gbm5uuptSr2msnm0myjo1zjQYjz4Z3tV9993Hsccey7HHHsuMcL6d9evX06lTJ6644gqOPfZYNmzYEFUw5O9//zudOnXi5JNPZujQodxzzz0ADB8+nLlz5wJGgZEJEybQo0cPunbtypo1awD46KOPOOmkkygoKKBPnz6sXWvvJVVWVnLJJZdw9NFHc/7551NZuffLdt1119GrVy+6dOnChAkTAHjggQf47rvv6N+/P/3791fup3GmsXq2KvlmumWdGnsahEefDO+qpKSEJ554gmXLliGl5MQTT+TUU0+lRYsWfPHFF8yaNYvevXtHHfPxxx8zb948VqxYQVVVFT169KBnz56W5z/ooIP45JNPePjhh7nnnnt47LHH6Ny5M++99x5NmjRh0aJF3HLLLXWZMa145JFHyM3NZfXq1axcuZIePXrUvXbHHXfQsmVLampqOP3001m5ciU33HAD9913H4sXL+aggw5S7tetWzdf96wx0Vg9W514rH7SIAx9olnzrHj//fc5//zz2WeffQAYMmQI7733HoMHD+awww6LM/IAS5Ys4bzzzqN58+Y0b96cc889V3n+IUOGANCzZ8+6dMbbt29n2LBhfPHFFwghqKqqsm3ju+++yw033ABAt27dogz0Cy+8wMyZM6murmbTpk18/vnnlgbc7X7JJNNUHG7a43bBUn3smx1a1umCzZvhzjuhaVO46650twZoIIY+1d6VafwTwUx3nJ2dTXV1NQC33nor/fv35+WXX2b9+vWcdtppvs799ddfc8899/Dxxx/TokULhg8fzq5du3zvl0wyLdbttj1uPNv62jcn9OpXBb/8AtOnwz33wM6dcO21ICUIke6WNYwYfTLihqeccgpFRUVUVFSwc+dOXn75ZU455RTbY/r27csrr7zCrl272LFjB6+++qqna27fvp38fOML9OSTTzruH5kK+bPPPqsrY/jzzz+zzz77cMABB/DDDz/w+uuv1x2z33778csvvzjulyoyLdbttj1uUurW175lAvVK0bRnD/zjH3D44TBhAvz61/DZZ/Dwwxlh5KGBePTJiBv26NGD4cOHc8IJJwBwzTXXUFBQwPr165XHHH/88QwePJhu3bpx8MEH07VrVw444ADX17zpppsYNmwYkydPZtCgQY77X3fddVx55ZUcffTRHH300XXzAccddxwFBQV07tyZtm3b0rdv37pjRowYwZlnnknr1q1ZvHixcr9UkWmxbi/tcfJsM6FvkaEaVZ7aTJtXyLSRkJLaWnjuObj1Vvj6azjtNJg6FU48Md0ti6PBpCnOlFjojh072HfffamoqKBfv37MnDkzapK0PpLMNMWZlm43yPaku29WaYOtSGdqYyvSfd8ckRJefx3GjoWVK43601OnwhlnpNyDb3RpijMlbjhixAg+//xzdu3axbBhw+q9kU82qVJxuHUEgmzP6IGdGD13BVU1e52pULZImULFKlQTSyYqZjJhJKTkgw9gzBh47z0jVPPcc3DRRZCV2VFwR0MvhGgOvAs0C+8/V0o5QQjRAXgeOBAoAS6XUu4RQjQDngJ6AluAi6WU65PU/ozDjJlr3JEKFYeXUEDg7YkdMKdwAG1nGAVkrGImI1Mwr1oFt9wC8+fDwQfDQw/BNdcYypp6gBuPfjcwQEq5QwgRAt4XQrwO/BWYLqV8XgjxT+Bq4JHw721SyiOEEJcAdwEX+2mclBKRIZMZjZVUhPaSPRrzKr8Nqj3TFq6lqjb6/lXVyoRkv15QGcyMCYEoyCit/jffGBOsTz0F++0HkyfDyJEQgPIulTiON6TBjvC/ofCPBAYAc8PbZwGF4b/PC/9P+PXThQ9r3bx5c7Zs2ZISQ6OxRkrJli1baN68ebqbkpAKI12hgHSHIOprzvqMKBL+008wahQcdRQ8/zz89a/w1Vcwbly9M/LgMkYvhMjGCM8cATwEfAmUSymrw7tsBMx3IR/YACClrBZCbMcI7/zkpWFt2rRh48aNbN682cthmoBp3rw5bdq0SWsbElVhqDxbiTHxl6zwRbpDEPV5cVPa5tx27DC08NOmGVr44cMNj75du9S3JUBcGXopZQ3QXQiRB7wMdE70wkKIEcAIgHYWNzEUCtGhQ4dEL6NpACS68tkqFGCSTOleUCGIRBRlmSJSyHj27IGZM+Hvf4cff4TzzzfCNMcck+6WBYKnqWIpZTmwGDgJyBNCmA+KNoA5li4D2gKEXz8AY1I29lwzpZS9pJS9WrVq5bP5msZAoiGQyFCAFclYNGQa58qqGrLDkUs/IQhzNFMW1sGbD6aMXkBUn6ithWeegc6d4c9/hqOPhg8/hJdeajBGHlwYeiFEq7AnjxAiB/gNsBrD4F8Y3m0Y8O/w3/PD/xN+/W2pA+0NCj/x8kRi7EGsfC4syGfJmAGoJouCjJtHGmeAGinrPHmv3nV9Ws1ar5ASXnsNCgrgsstg//0NbfzixWCRx6q+48ajPxRYLIRYCXwMvCmlfBW4GfirEGIdRgz+8fD+jwMHhrf/FRgTfLM16cKPh5moVxrkpGIq0uwGaZzTPaHbIPnwQ2MV66BBRkz+2Wfhk0/gzDMzJmVB0LhR3ayUUhZIKbtJKY+VUt4e3v6VlPIEKeURUsrfSil3h7fvCv9/RPj1r5LdCU3q8GPEEjV8QaowUqFECdI45+WGLLfr/O8++PxzKCyEPn1g7VpDC796NQwdmvELnhKlwayM1aQGP0YsCMMX1KRiKpQoQaltipaXsWNXddz2VK6ubRB8++1eLfy++xoTriNHGn83ErSh13jCjxFLt8wwlmQrUYJS21gtuALYp2kTraRxw08/GXnhH3rICMmMHGnkpwkX3WlMaEOv8YSTEbOSAqZrpWO6Et0FNWpQjXi2V9oXpGn07NgBM2YYWvgdO2DYMJg4sd5r4RMhY7NXatKDG+Oo2scqW2JOKJspQ7oCyQuXWLUHULYlE7xhN/c547M4BkRgD+Q9e+DRR43QzA8/GPH4yZOhS5fgG50huM1eqQ29pg47Q+3mi5cOw6Rqc7MmWZRbeL7JaItXQ+X2Pif6ftQHAuljba2RpuDWW400Bf36GWmDTzopSa3OHNwa+oY91azxRKLqmHRIAVVttjLyyWiLH+lokFWs/LQ3kyo3JfSZM/PC9+gBl15qJB177TV4551GYeS9oGP0mjoSNdSJTLqqwi9OnrJXwx30BLCf9Axu7nPs/Zh+cfeEvfhMrNzk+zO3dKmRF/6//4WOHY3VrZdc0uBlkn7Rhl5TR6LqGL+TrlYGaPTcFSCpU52ojJKqzS1yQ+yqqk36BLAXQ2Uab1Ww1LzPKoNc/M1WFqzcxLYKY7SSlxNi4uAuro2024dSKiexPX/mPv/cyCBZVAS/+hU8+CD8/vf1Ji98utCPP00diS4m8htqsDJAVTUyTloYO6QvWl5GxZ54nXlOKJsJ53ZJSapbtyttY9MiWLU5chRjZZBnL/22zsgDlFdWMfrFFa7DL24eSuOLPmXUnNKU5dZx/Zn79lu46iro2hXeesuYcP3yS7j+em3kXaA9ek0dQcgC/WjUvYRfzH1V9VBjvdygDXust9u/cyvmlZQ5yk1VBh6Mh1DkffZyP7wUMnHynouWl/HM0m/jRhxeMoV6xfEzt2XLXi28lPCXvxiVnhqhFj4RtKHXRJGOtLYqA6TaF9T1UPdp5m0xkZcwhVVIZV5JGRf0zGfxms2u5KaxCIhTAXm5H+D+weAUWrMLK9nNHyQa2rH8zO3cuTcv/I4dcMUVMGlSo9bCJ4I29Jq0Y2WAQtkiKkYPe41S0fIypSH04g17nZxUhVQWr9lsKdl0U5z7gJz4XDZW90OgLjfrdg7FyXu2u3dO8weR50+IPXvgscfg9tsNLfx558EddzRoLXwq0IZek3ZUBki1zTQsVnhR1XhVzHhViLh56OzcU03R8rKo61ndj/6dWzHn4w1U1USb+1CWt7w3diM21UhCgOP8QcKhndpamDMHxo/fq4V/+WUtkwwIbeg1GYHKAFmtFlV5yaFsQf/Oreg+6Y06HX2L3BATzrVWpng10F4VIm5CMFU11jF2q/vR67CWTHpllW/VjROqkcSlvds5ev2+1ydICQsXGjloSkuhWzdYsADOOqvBpgxOB9rQa+oVdgalplby7NJvqY3Ytq2iypBqEv/Q8Gq4vcpH7UoYRuKlUlYQWnq7kVNebohmTbLYXlllGX8PNEFdpBa+QweYPbtRpAxOB9rQawIl2RpsOy/ZItEjoPaavRpur6qk2P3BOs5uFadPBm7WK2yrqCInlK1coBVIgrrVqw3ljKmF/8c/YMQILZNMItrQawIjFSsv3XrJsVh5zX7kpF696sj9C25/I0oHb5LMCEXkgzdLCGpiclvFxvzBPuaekAR3wwYji+STT8I++xgTrqNGNaq88OlCG3pNYDhN1BUtL2Pi/FWu4ucqzH1vfGFFnNGyQxVaSCQc4nX0Um5h5K22BzUqin3werlfduEk1T1TtnvLFpgyxVjFamrhx46FVq0c25+ONNMNEW3oNQkR+WW002AXLS9j9IsrouSSdvFzO8x9R84pdbV/Mioy+Rm9uIlv+x0VWRlFN/JOFX6qYcW2+/bnP+aoxx7gmNn/3KuFnzgRDjvM1/nSnZenPqNnPTS+ic3cqKJ1Xo6yWpIZP/dKYUE+eYrYdmQopEVuiGkXHhe4cfCTddHNcn8/51Vl0HSz6CqULQhlRceO/FbDMtvdpKaayz5ZwMKHruSYh+82CnGvXAlPPOHKyMeez8RvgXWN9ug1CeDGYzSNxigb79uvNG/i4C5py9fuR2boJr7t57wqo5htEZMHyBaCWik9ZQl14rvySoSs5dzV7/HX92bTvnwTy9p04Q+F45g3+2+ezmWez8t2jT3a0KeYZMQd/Z4z0bbYfekERJ3TLt+L39TBqSj0rcKvzNBpTkB13iwh6DBmgaeHQ42U5ISyXT0IE7pnUlL442dc/dqjHPvDl6xu1Z7hF07gnY69yG+R6+uUmVZnuL7jGLoRQrQVQiwWQnwuhFglhPhLePtEIUSZEKI0/HN2xDFjhRDrhBBrhRADk9mB+oSfIhXJOmcQbVF96fLzcvh66iCWjBlQZ0BGD+wUFyKAxOPnhQX5LBkzIO56ySbRTJ9ezguG0Va9T3bvQ9IzeC5bBgMGMP2JMeTt2sHIc27k7Csf4J3DjyenaRPf9yNZ97ex4iZGXw3cKKU8BugNXC+EOCb82nQpZffwz2sA4dcuAboAZwIPCyHiP7mNkGTEHf2eM4i2ePkyFhbkM+23x0XF1c34OZBRVY/ckIzqT1bnzbbQXsa+T3bvQ9IehKtXw5Ah0Ls3rFoFDzxAyRsf8nHfs0FkJXw/knV/GyuOoRsp5SZgU/jvX4QQqwG7u30e8LyUcjfwtRBiHXAC8GEA7a3XJCPu6PecQbQlNnRyQE4IIWDUnFKmLVwbF2KwClskoq4IMgzm51zJyvQZed4OYxZY7hP5PqU0hLVhg5FF8oknDC38pEmGFn6//TgPOO+EDoFdKh2ZVBsqnmL0Qoj2QAGwDOgL/EkIcQVQjOH1b8N4CCyNOGwjFg8GIcQIYARAu0aSejQZcUe/5wyqLeaX0YvBdlrE4yZJltX1Rs4pZeL8VZ7zv1ida9ScUkbOKY3LFR8EXh4qbt+npBvFLVuMgtv/+Iehhb/hBmN1q4MWXpMZuJZXCiH2BeYBI6WUPwOPAIcD3TE8/nu9XFhKOVNK2UtK2atVI/mwJCPu6PecQbfFbSgodm5AtYjHaWShUvyUV1bZzjVYFce2OpfZqqArLHmdG0l7rHrnTqPwR8eOcO+9Rl3WtWuNXPGN5HvbEHBl6IUQIQwj/4yU8iUAKeUPUsoaKWUt8ChGeAagDGgbcXib8LZGTzLijn7PGXRb3IaC3C7iUY0sTENtpxFXzTX41ZsHqd9WPRAnzl9luX+6YtX//mg90wpH8uPBbWHcODYV9Da08E8+Ce3bJ/Xa9R0rZyLdOIZuhBACeBxYLaW8L2L7oeH4PcD5wGfhv+cDzwoh7gNaA0cCHwXa6npMMobYfs/peSm7DW5DDG7mAFQeq5uKTXbX8ao3dzqfH1QPlfLKqri89CYpjVXX1vLx3f+k+92TOW/bJj5qcwzXFY7l8w5dmVLVgsLUtKLekqkret149H2By4EBMVLKu4UQnwohVgL9gVEAUspVwAvA58B/gOullP7WYWtSjl/ZpdsQg8pTzxbC0WP1sqTf6jpOenOv5/ODlYrGJK2rPs288L16cfzY66lo0owrL5zARb+7i5I2x+hVqS7J1BW9blQ372Osf4nlNZtj7gDuSKBdmjTht4KQW+WHKs2tm3CEW69aNSJQjTrMCVdzUVds2b4gY+J2I4e0rfpctsxIMrZ4MbRvz6hzbuTfR/ejNiv64eenfY0tMVmmrujVK2M1USTyQXUTYkhECuimYpMALuhp3Q7VQ6Z/51Z17ckPl+2zKvYdBPk2fUj5qs81a2DcOHjpJWNi9f774dpr+Wj6EmoDUGRlahgjmWTqil5t6DVRpOKD6uaBYHqCZeWVdTH0vJwQoWxhmUPdRAKL12xWXhfia7HOKymLMkbzSsqSNuE5emAnRs9dkXDt14TYuNHIIvnEE5Cba/z917/CfvvVtTHh4iIksb5sBhPUvQsabeg1UYwe2CkunXBKjRDqPOrllVWEsgQtckOUV1QpM2aWlVcq88LEPmSsatDaGaNEQxHmvkHVfvXUnq1b92rha2vhz382PPoYmWRQC7BSFcbIpPBQOvMv2aENvSae2BmZFNdotpt0raqV5DZtwvLbzrCVWUZOJIM6VODFGAUVighKReO6PTt3wgMPwF13wc8/w+WXGytabWSSQbQxFaPDTAwPZeKKXp2PXhPFtIVr48IKXnPG2+mI3WiM3aZvUCUAi8RJ8aAyOlbb3SgqUqmhdmxPVRX8859wxBHGKtZ+/Qwt/KxZKdHCp2KxV6aqXDIN7dFrokh0uG3nYQGuvC+nSVfTCMcOk+0qXKnwElN1ujep9i5V7dm0bSfMmQPjx8O6ddC3L7z4Ipx8cuBtsCMVYYxMVblkGtrQa6JIdLjt5GG5iYfbFQCPNcKRw2RVKMeu7V6MkdO9SfXkY1x7pOSU9csZ9/7TcPcXcOyx8MorMGhQciuQ25DsMEamqlwyDR260USR6HDbzsNy631FLvuHvYuMzMVUYJ3W2KrtoWzBzt3VtqEUt6l8ne5Nqr3LyPYc991ann1+HE+/cBvtZCU89RSUlsI556TNyKeCtOcCqidoj14TRaLDbScPy633ZZeewSk8YrY9LzfEjl3VlFdWKff1gtO9SbV3WViQz77rvyT7tvH0/+w9tu2Tx8rRk+j295uhWbOkXDPTyFSVS6YhpEOOj1TQq1cvWVxcnO5maALAKh+NufIV8L0q1kQVnsnPy2HJmAGu9o2tmZqoUYjU/Futqk2KJn/jxr154XNy4G9/i9LCaxoHQogSKWUvp/20R6+xJBFtcvNQVp0xt9KIJ1LfVjVJaxUescttA2oP30vfYx9sEuqMfSK57CPbYBZ0Ka+oolPTKv7xzUKOfOFJqKmB6683tPC/+pXna2gaD9rQa+Lwqx6x8uZ3V9dG7eNncs5N1kqr8IiblAmxk6Ve+67KZW81wnBLbBvKK6toXrWL64rn84dl89h3dwXfDhpCuwfv0SmDNa7Qhl4Th5NyRuXtqo678YUVjJpT6jtU4pS1UjX5ZqfeiSTS8/eqnAlCjhp7PyPb0KSmmotXvsENHzzPwTu2sujw45l26jB2HHk0S7SR17hEG3pNHCojZXq3Km/Xb6jEb3vAPjwSO1FnVbYQokcDXg23nwlYVUw/8v4KWcvZa5Zw43tP03Hbd3ycfwzXn3czxW26ACC0TlzjAW3oAySTcm4k0h6V8coWwtbb9RMqcYNdemGn8EhkqEg1URw5GvBquL0msbKK6UdSWVVDv/Wl/O2/T9Lt+3WsOegwrr7gVt46/IQomaTWiWu8oHX0AeG3YEcmtqd/Z+taoE71Xd2kJIjc3y1W5xUYffKSZsBNWT6vumyvpf7swlDdNv2P2c+P46k54zmw8mf+OmgUZ1/5AG8dcWKUkdc6cY1XtEcfEJmWkjWR9qjS/KpK7qlSErgJlaiIHY1c0DOfxWs2K8Mdkde3w2ky2I8u28sEs9VDruOWjdz43tMMWruELTn7M+OcP9Jx/I0sW7weWV5JXoTqJhNGipr6hzb0AZFpOTfs4ux9p75ta8ScSu7ZhSm8hkqssFK+mDnirSSWfh6odmGtZC7bjwwNHfzLT/xlyXNctPJNdoWaMaPvUGb3uYDxQ3szuCCfwSd2TEobNI0PbegDIp05N6yMlqo9ZsgDvCcViy25Z8bsTTVOrHH0u2rRbjQSxAM1naltRw/sxJRnPuDK9+cwvOQVsmprebrHIB486WKa5x/KeO2ta5KANvQBka7KMiqjdUHP/KjKSUDcqk1wn1TM7Iu5n1tD6cc7tjPmQTxQ0xZmq6igcOHTnD1zKk12/EzRMafx7NlXc9nQ0yjRxl2TRPRkbEB4nZQLCpXRWrxmc1x73KbxdepLsnOA2+WIDyKJVcrDbFVV8H//Z+SFHzuWpv1OJqu0lCGTD6dBAAAgAElEQVSfvc3cuy/VHrwm6Th69EKItsBTwMEYDuFMKeX9QoiWwBygPbAeuEhKuU0IIYD7gbOBCmC4lPKT5DQ/s0hHZRk7o2VVNi/RpGJgnZgsti2JSE3djCj8nrtoeVmgk8S2166thblzjbzwX3wBffoYeeJPOcVVWzWaoHATuqkGbpRSfiKE2A8oEUK8CQwH3pJSThVCjAHGADcDZwFHhn9OBB4J/9Z4xI1RUYUysoSgaHmZY0gmMo2vG6NZtLzMMgRktsXcx21ox66PVtsTeYCY7bIy8n4niZWx/UWLYMwYKCmBLl1g/vyMTBmcaWs/NMnB0dBLKTcBm8J//yKEWA3kA+cBp4V3mwW8g2HozwOekkZazKVCiDwhxKHh82hc4taoqJb510gZt3+sAc1tms3OPTWe0vhOW7hWGQIy9fduY+BOfbR6KCQyiWqnYVdNKkcaQquRQFy/iosNA//WW9CuHTz5JFx2GWQ7ry9INZlYb1WTHDzF6IUQ7YECYBlwcITx/h4jtAPGQ2BDxGEbw9s0HnAbBzfj6dkWnqJq/yVjBjD94u5U7Ik3ek6xdrs49nPLNlC0vEwZ2ond7jXWr9p/0iurXNVpdYrBxy4qi110Zrtg7H//g9/+Fo4/HlasgOnTjW3DhmWkkQddb7Ux4Vp1I4TYF5gHjJRS/iwiDIuUUgohPCW2F0KMAEYAtGvXzsuhjQIvE4aFBfmMmlPq6Tx2nrmdQbRLc2COIoQAK5uYHQ4n+a3xqtq+raKKbRXxoxKIDv/k5Ybq9lMR6aE7JVMDQws/tvhFuOc/0Lw53HYb3Hgj7L+/7XGZQKat/dAkD1eGXggRwjDyz0gpXwpv/sEMyQghDgV+DG8vA9pGHN4mvC0KKeVMYCYYhUd8tr/B4lVG6HV/J2OuYvTAToyaU6o00naG0XwQOBlPr320asPE+avYXV0bFZYIZQlC2YKqGvuPm3lv7O7R/rt2cN3SuVxZMp+mSPjjH41J13qUF17XW208OIZuwiqax4HVUsr7Il6aDwwL/z0M+HfE9iuEQW9gu47Pe8erjNDr/qovswifS0VhQT6X9m6HnylFq6RosXjto4ryyqq4a1XVSvZp2qRONmoV7oK998bqHjWv2sUfls7lvX9ezbXL5rH5jHPIWrsGHnggysgXLS9zFU5KJ7reauPBTYy+L3A5MEAIURr+ORuYCvxGCPEF8Ovw/wCvAV8B64BHgT8G3+yGj1ddvlVBbTMMYWVkVInCLu3dznEibnJhVy7trQ635eWELA2IKsZtki0EF/RU14o1QymRxcLzckK254xle2VVXSHwey86ztbQRd6jJjXVDC39D+/MHMGY/z5JSf7RnHPl/bRdMA86RqcqyLQEdyrStfZDk3rcqG7eB6UDd7rF/hK4PsF2NVoSkbt5WbWaiB69aHkZ80qsjVZOKJuJg7tYntuuFCAYoZ15JWX0OqylrTrHzLljGmQrzX3zUJZlPD7SS3e6B4UF+SAli/7+EKPefZrDt5ZR0rozNwy+iY/aHlv3UI0l0xLc2ZGOtR+a1KNTIGQQQcjdvBgZv19y1SRlthBRHqHVuZ1i9FZtteuTmY8+1lhbXcsqLGF7D956i8IxYygsLuaLVodxzZBbWXSEkRfeLsShJzk1mYY29BmEF/25ygv1UjzbL6pz1UppG3YxC103D2VRXlHlWnXjZDjtjLWv0VFJiaGFX7SoTgu/qkt/Vi9ah3BxLpW6Jy/XCDPpRUqaVKMNfQbhxhO08/rBOnEZBKuk8KLWsCp0nRPKZvrF3ZWhnNjz+FWHeBmxFC0v4/nZi7h8wWMMWvs+u/Na0Gz6dPjDH6B5cwqBwl7uZMCqqQgp9SIlTXrQSc3SgEqRYScrNLHz+lXaeCcljVdUao3+nVvF9cuuvSoVzc7d1VETl37UIV5UL/95o4TdV/+e2dOv4rSvirm/zyX0/f2jFJ36W0Mb75HtldZa/e2VVXqRkiYtCOmghEgFvXr1ksXFxeluRkqwKsYRyhbs07QJ5ZVVcR55Tig7Ku7dYcwCpTEHa28eYP3UQQG0fi/jiz7luWUbqJGSbCHo3bEFn3y7PS4mrorHC+DrqYMoWl7GpFdWxYU6YvvtJdyhKngSpyjZtg3uuotd980gq6aGZ7ufyYN9LuanfVoAhnpon2ZNPIdYVMnj8vNylAvFzPuRCDok1PgQQpRIKXs57adDNynGyqOrqpF1+WYke8Mv+RZfVqcwhsrAQHCGwFTdmHLJGilZ8uXWuP1MKaRT+cFpC9fGGfrYuQkvYRjHuY7KSvjHP2DKFNi+nf8cfSr3nnIZG/IOiTqmvLLKUx4gE7vsm27DVV7RISGNHdrQpxg3k6KmkV8yZkBdCMI0zv07t2LOxxuiVneGsoWj0iRIQ+AmNYCJm/KDiahUIh9eebkhpKTOOMfyw9Yd8OijMHEifPcdnH023Hkn017f4nrFrRuJpJ1ss/ibrTyz9Nu4UVuiobX6JOnUpB5t6FOM22X835VXWhrnOR9tiPeQw//aGZi+U98OzBB4UfBElh9UjST8TrbG3h9lHhspOWvtEsYumQ0/bYSTToLnnoN+/QAYXRsf6lHhtu+q7JvzSsqijLwA5SIxL2hJp8YObehTjCqtcCyt83Kswzy18WGQqlpZZ7BVIY4gDYHbh5U5CewUdlHdk4o91XE59SNxM7Los76Um/87i+O+/4KfOx4FjxXB4MFReeGtHpAVe6otHxwH5ITqYvBmWMoqxOa2vRJYvGaz7XFu0HlrNHZoQ59iYo1KXm6IHbuqowy4OZRXZaS0ws5gJ1pVKRanxGYmEndhIXOfifNXRYVdtlVU2RYssXvYHPv9Om767yz6rV/O9wf8ik8m3keP8TdQtPJ7pt21OG50Efswspw0zxLs3FNd10bzfqrCYLFzIslc45CumsWa+oE29GnAyqhYhTacUgZEojLYiVRVUrVLFWuORZUiwAqzv7HxdbuCJVZ02FrGje/N5pw177E1Z38eGHQdN8y9j0OaN/c0T+HFy7dqp9W1krnGIdESi5qGjTb0AeNH2aIKbViW/ssSIIiajLUz2HbpCi7oaRjXUXNK49rqZBQnF3al12Et6x5GVrJQr96k2/CSVZ9+9csW/vLBc1y84g12N2nK/X0uYXafCxn3u94QNvI3vrDCuUJUBLHvS4cxC1y3XxWmCeI+qdB5azQqtKEPkKAlbiovzWqbKvWAXZGQeSVlyrZ6UXEIqFO8bK+s8u1Nuo0zRxrU/Xft4A/L5nJl8Ss0qa1mbq9B3HviRTTNb824iDqzqlFN7PnsHtROcxOR7VQ9tExFlfa6NalEG/oASYbETeWlOZ3PLrwB1rnhI9vqVA7QSvFipjbw21e3cebWeTn8tLmc4Z+8wnVL55K3awdFx5zKM4Ou4cW7L+OSmPM6Tdo6FTUv/mYri9dstg2/xLZT9VAwZbMaTSrRhj5AMkniZmfc7Fasmm1VLXQyc8Hb1W9NNM2y7fHV1TxYUcKhj97FIb9sYXHHnkzrN4yv2xzJlCFdbftkRaSBVvUpci4iMvxipboxRwRBhbM0miDQhj5AMkniZmfcpgzpqpzoPSBcyEMV5jC3e63f6sXYW+4rJbz0EowbR8HatWzt2oPre4/jtZZH0Tovhyk2DxTV+xKbVtku3BL7v5VnHjsiiDzOrQRTo0kGOqlZgLhJvpWqEnOqh0t+Xg6FBfmMHtjJmNiNYWdYu65SzJjb3T68AknY9fbbcOKJcOGFkJUFL79MyxXFPDRzFF9PHcSSMQMcdfpW78u9Fx0Xt3DLLVYPBdUoKnI9gUaTDrShDxCn0mypLDGnKhVYVl5J36lvA7Bv8/gBXVWNVGaWjEynsHN3teu2+A5dffIJDBwIp58O338P//oXfPopFBZGLXhywul9MVHdMyusHgp2IwKdnVKTTnToJgHsdOZWpDIfSWS8OzZebD5g7OL0dooft+kCTDyHrr74Am69FebMgZYt4d574Y9/9JUy2MSN9NCqz/07t4pSJ4E61p7sRVEajV+0ofeJHymlk5IlaEzjZpU21y6zZJYQdakHYvtilTPHDk8TkJs2we23w2OPQdOmMH48/O1vcMABrq+XKFZ9NtcLOE0w260Y1qkINOlEG3qf+PHOnZQsycJOS2+lwKmRUvnQ8uKZZgksQyRxlJfD3XfDjBlQVQXXXmsY+UMOsT8uycSO2Jyko8nMTqnRJIKO0ftEZfDKyiuVE61OSpZkULS8TBlnNmPVVg8a1SSqF8/U8QFWWQnTpkHHjkZu+MJCWLMGHnwwI4y8n/mUyYVdmX5xd8f5AI0mlTh69EKIfwHnAD9KKY8Nb5sI/B4w0+7dIqV8LfzaWOBqoAa4QUq5MAntTjt28dhIwwB7veJ8m0U0XnGbakFVXhCM7JB2ycnMh1lsce9QtohLwQCSyqraqOMjs2pGUV0NTz5p5IUvK4MzzzQMfffunvuXLBKZT3EzH5Du/mkaF248+ieBMy22T5dSdg//mEb+GOASoEv4mIeFEPFFQRsAqnqnkcR6xX5qn1rhxdu0C7Vsq6iyTUqWlxui+6Q3GDmntO5a5ZVVIKFFbijKY90VY+Qtr29q4bt2hd//Htq0gcWL4fXX44z86Lkrovo3eu6KpKiTVHLXZC5+S6X6SqMBF4ZeSvkuEF8nzprzgOellLullF8D64ATEmhfxhIr2VMRaRjcyvyc8FJgOpFJwG0VVZbVmqpqJblNm0Rp2B0Lmy9eDL17wwUXGNLIl1+GDz+E006LO2bSK6uiRgxgyD4nvbLKd1+ssDO4bgq1+0UXCNekmkQmY/8khLgCKAZulFJuA/KBpRH7bAxva5BEDtFVBaFjDUMQGQbt5gciyw6OHtjJdaGTRNugylMzud0eQwv/xhuGB//443DFFdBE/dFTpQJWVpDyiZ3BHT2wE6NfXBFVJyCUJQKZVM2kVBmaxoHfydhHgMOB7sAm4F6vJxBCjBBCFAshijdvTrzCTroJKizjBpVXaS6Iip0jiB1F5IXTHATZhtjRygnVW3nzo0fof+lZUFwM99xj6OOvusrWyCcLqxCNo8GNHaoFJI5K5mhBo7FCSBeKDyFEe+BVczJW9Vp4IhYp5ZTwawuBiVLKD+3O36tXL1lcXOy17RmH1wk2vxNyVtWPVFkV3eRk8UpOKFsdcorVwo8aBaNHK7XwVvcgttJUJJf1bsfkQuvkZSqs+psTyqZZkyzL65iT426zT/p5363ao9U5Gq8IIUqklL0c9/Nj6IUQh0opN4X/HgWcKKW8RAjRBXgWIy7fGngLOFJKaWtR6ouhD1IpkeiX3W2ZOgF8PXWQ8nivi7Va5IaYcG6X+DaWlxtSyRkzYM8eGDECxo+n6PvauJWmi9dsti2jeEHPfOZ8tMGyPi5AbiiLO4d0c33vVWG1FrkhdlXVWr4HdmokAbYrhc0+mP20+qx4+SxphY5GRWCGXgjxHHAacBDwAzAh/H93DCdyPXBthOEfB1wFVAMjpZSvOzWiPhj6oL0wlfHxm69cdb5sIeKSd7k5Lpa8nBATB1sY+MpKeOghQx65dSsMHWp49Ecc4XvkYGZ6HGlTM9fLve8wZoGl0RbA9Iu7WxpRN/clJ5RN81CW5dyBVYpiP5+VZHv/+iFSvwnUo0829cHQB22Y7YyP6YF79fpURtXOMKjaYbZFed3qapg1y9DCb9xoaOHvvBMKCup2cfsQsWL91EG0dyjdly0EtVI63hs/712i4S0r/HxWgv7cRaJDSPUft4Zep0BQ4DY04lcp4ZS73msuHXOb17qonishSWlII8eNM1axnnACPP20pUzSr5EXGP1XpYwwMV9zujduK1dFEpsULgj8fFaSqdBJZZI9TXrRKRAssNJXe0lX64b+nVvFndNNtSMnrbWbuqiReFILRWrhwVj8tHSppZEH/zl8zLS+Q09s6/oYu3vjd/2CmbffbmFcXk7IdWrjA3JCnmsRJFOho2WejQft0VtgZWTd1Al1S9HyMuaVlEWdUwAX9Nyrsff6JXSqEasyDK7K9y1fDmPHwsKFjlr4yJFQIkHB78or69Q1zyz7FjcRRjsD5Xf9glNJxomDu9TtZ5faOJQl2Lmnuk7l47b6lp/RiFsyqSKaJrloQ2+BncEwJ9kSKQ2nepAsXrN3PYHXL6GTQXIKU1j2Y906Iy/888/zc85+PHjaVbw54EL+UtCNQoWRdxPXjoyt79xdbSlxNPs5ubArkwu7Rj1AshQhnWQYKKeSjOZ9c0ptXLGnOm7StrKqhhtfWGF5vImrB7FPkvkQ0WQW2tBb4JSwLNGJMDfeutcvoVuD5ETR8jIen/shF73+BENXLKQ2FOJffS/m4V7n83PzfWFnraUnWrS8zHJ+IJbYyT7VmoD+nVtFHRf5MFJNIiZrcZpqDsMpZXHk6x0UE8t2KaEjzwV7jb0ZokrU2CfzIaLJLHSM3gKnuGyiMUynuKvpvZrFQcA5rtw8ZP1WOhmkSF59dzXf//lvzJl2GZesWMhzxw3k5GtmMvXkyw0jHyY2Hm4aXjsjryqtqBrdzCspU8awCwvyuaBnft29yRYiKuwVJKrPws7d1Z6SkNmNNpzmXnQSNE2iaI/eAjsFCyQeIrDz1mO9VbM4iJ2ndemjH8alCAbjKe7Ky921Cx56iFNuncQBlb8w/+h+3HvKZXzTorXykMiHnV3YCPytzrULa5hzHOZ7UyMl80rK6HVYy6SVZJz0yqqo0Et5ZZWrGLuJU84hO+chWeoYP1XSNPUT7dErKCzI596LjktK/ho7FYhXtU3R8jKWfGmdXNQ6cXAE1dVGwe0jj4S//Y3SQ45k0LAZ3DD4JlsjD9EPO6c5jdgwDDg/HGBvWCPWc0119sfCgnxym8b7RF6uab7nKiWSnfOQLHWMzqLZeNAevQ3JjGGqJkC9fqknzrdP3WvpoUkJRUWGFn71akML/9RT3LJMWsajrfLomKELM0Wx3ZyGlbft1khZea7pkAUGcU2zD17nF5KljtHyysaD9ugdKCzIZ8mYAVG515OJF9100fIyZfIvkzgP7Z134KSTYMgQqK2FefMMLXz//kpN/aW929EiNzrjpRm6KFpe5jinYRXTz/KgsY81PG7ukaqgiGq7E0Hp2f1o+pOVGVVn0Ww8aEOfYXj5UrsdYpeVVxpa+LPOgv79jZQFjz0Gn31mGPyw0VUZocmFXW1DF5HHqYgsS+g0cRtLrOFxukfjiz5lVERVLDP2PL7oU9+TmkEaWyfnIfZhBPGppoNIU5DK1Nqa9KJDNxmGl3CRmyF2u22buPG92XDXf6FFCyPD5PXXQ456AZWfkJJ5nFMBFlVsPlsIhp7YNm6hkZXhsbtHRcvLeGbpt3GhpsqqGp5btsFTegi31wwS1QTplCFdE85tE4uWVzYetKHPQNyu4rSLjbfasY0/f/A8Q1f8h+qsJjx+ysW80P93/O+nbFrf/2FUqgU3X3K3cWIn/b/qgVErJZMLu8YtNIo04LHbrQyfXTF0r+khYgmiOpgTqc4/k4o+adKPNvQKgkjfmuwUsFZGdb/dOxmx7CWuLi6iaXUVzx83kPv7DmXzvi1ht7GPWWwbSV3O96ASgxUW5FP8zdY679nUuIORiVFlhM0HhpXh8SIDtDPaqiRpmRST1hOkmmSgDb0FQeiLg9Io2z0sIofeP/20nT+tXsjli58lr/IXXul8CveechnrW1pfK7b4Nth7jm6H+VYa9zkfbWDOxxssrwnOcWEvXq5q5CHAdWgonej8M5pkoPPRWxBEDvAgzuEqX3h1NTz9NBW3jCf3++94t30Bd586jM8OOcLVNWJRVaRyi9cc9G5yBtnlzM/Py4l68EC8fFEAl4ZLEGZ6oQ2dI17jBZ2PPgGCGD4neg5V7pg6T7Z7a/j3v+GWW2D1ar5o3Ympl9zBh4cdB0QnX1MlDrOidV5OQsbQa4jB7qFntsOuMIr5UImctJwypKvtKCiTDaaeINUkA23oLQhi+OymsIjqy+wkQWy78iPoM87Qv3fqxLhLJ/BMfq86mSREJ1+z8hJD2SIqRg+G4Wx/YE5CISe7CeJYIleJxt4Pq1S/kVgt4jIfgqlY75AoVv21qzGr0SSC1tFbEIS+2O4cTkmqVBLEY374iidfmMDzz42FDRvg0Ufhs894ts3xUUbeJFL6GJsE7OLj23LxCW2jimRIYMmXWxNaFu+0eCqSGikpWl5G90lvMDJG9/7M0m+VRj4/L0fp5deHSUur93/20m910jJN0tCG3gK/FYncnsMpx0issWq3bRP3z5/Ga0/eQPdNa/nsL+Pgiy/gmmugSRNX2TCtkoAtWLnJdXEQLxLEyH7bVZlqkRti7EufWoaV7MI1S8YMUC7Oqg+Tlm7y/OicM5ogaRShGz8x5yBiuX4XH5nhj4N2Glr435UaWviHT7qIw6ZOYFC/Y6KOc8qGqYr1eyl8LYH2YxbULWwyqz9ZEdlvVR52MFLueC2+bRry+lw0w+1Dsz6MTjT1gwZv6DMxFatT/H5sn0PZMO7vXLHsZZpV7+H54wbyyMlDqWh1MOWvfc24xRsRAsorquoeXFOGdGXi/FV13nHzUBbF32yN8uSDoEZKZi/9FsDW2Dv1NS8nxHaHCeLYOHykIU/1pGWQah238xj1YXSiqR84yiuFEP8CzgF+lFIeG97WEpgDtAfWAxdJKbcJIQRwP3A2UAEMl1J+4tSIZMor7WSOowd2ivvyQuqXuYNhxO4adCSDP/g33HknbNnCom6ncceJQ9mW356de6ptdegX9MyPm7y0mrCMJC8nxO7qWs9eNRghmS+nnO24n51ccNrCtUqDZ/YpEyYog5Y8uim5qCWVGje4lVe6MfT9gB3AUxGG/m5gq5RyqhBiDNBCSnmzEOJs4M8Yhv5E4H4p5YlOjUimobfTYOeEsuMKOCOiFxMl+oVTeYKR29vs35T793xKj3/NMCZZf/MbmDIFevYE3GnTVas+VQhg+sXdgb0PtrzcEDt2VUcpcexYH6G3d1IRqe6BlcFrkRtiwrldMsbIqe5/ZO1brw8hrbrRBEFgOnop5btCiPYxm88DTgv/PQt4B7g5vP0paTw9lgoh8oQQh0opN7lverCohsnZQsQZGCsDl0ieEaewUZ0WftxN8PnncPzx8MQTcPrpUedxE6v1Gp4x91aNaNw8WEwc+6mYq6gvmnHV/TfvuZ9wYKbr+TUNC1crY8OG/tUIj75cSpkX/lsA26SUeUKIV4GpUsr3w6+9BdwspbR115Pp0auG3V7CFW5XixYtL4sqOacKneTn5bCkTxMYMwY+/BCOOgruuAMuuKBOJhnp8WW58NazBLh0xAHrsI05egEYOafU9vjcUBZDerZh8ZrNyodCokXUrUjHyla3q32T0V+Nxo6UrYyVUkohhOfZPiHECGAEQLt27RJthi3NmmTVGTQzLODGazVxMylWtLyM0XNXRIV9rG7K0T9+xU0vzoKxJdC6NcycCVdeCU2aRJ0rtm6sI9JYBBV5/VCWICtLsLs6uqhgTigbIeIVL5VVNUycvypufysqqmrrJmVVeEmF4IZ0Taw71Xs1SUQlk+mpGTT1G786+h+EEIcChH//GN5eBrSN2K9NeFscUsqZUspeUsperVrF1xQNAtMwROq0d4WLaFst7AllCWPFaARuJXvTFq5VTpYCtC3/numv3MOCJ/5Cz+/Wwl13wbp18PvfRxl581xeJ0hrMeYWzJBKXk4IBHFGOy8nxJQhXSmvsFa8lFdW+ZqctUJAoIt+0lXj1O3aAL8qGacFdBpNovj16OcDw4Cp4d//jtj+JyHE8xiTsdvTGZ+3MwzmEDso1Y3Kmzto5zb+9MEcflf6H2qysnmsz2/Jv/M2Bp3axfO53FAjZZ3HbvXg+WVXNeAtVYFfJHDjCyuAYDzudKbwjYypq8KBbhwCK8891TnoNY0PR0MvhHgOY+L1ICHERmAChoF/QQhxNfANcFF499cwFDfrMOSVVyahza6xMwxu0v96IdZw7ru7gt9/9BLXfFxEs+o9zDnuDB7s+ztO/3V3RtgYeatzecVuMVSNlIx96VNLOWYyMK8HiRl7s85sMvPJuw2f+J1EVoWeVO+BXjClCYoGnaZYNYlmNxGZiIxy9NwVZO3ezWXLX+P6D1+gZeXPvBrOC/91OC98KEuwb/MmUYudnAptJAMhoE/Hliz5cmvSrhFJXk6I0gln+DrW7n4EpTdPRXpgO5mm1QNMT+5qnHA7Gdugc92oEoupJiITifUWdjuEOU3X8s5jf+DWtx/js4MPZ/Cw6fzpvJvrjDwYEs5tFVXKWKzpVVZW1djmiXEiLydkm1xMSgI38tlZ6vaWV1b5jjnb1ZkNyhCnIv5vJ9PURbo1yaRBG3pVYjHVRGRZeSUdxiyg79S33RslKQ0tfLdu9Jj4Vw49sh0sWkS/rz/h00OOdDw80phETsqBtQFwgwAmDu5SV8LPD+Y9c0uL3BD3/vY424dTZD/7Tn3b9b22qzMblLetukZZOMwXBKoQk/m5TCSJnkZjR4PPdWO1MMVOWhnpaZvHK3n33Wgt/IsvUtSxN9Pe+B/fvbnAlf4d9j5grPY3PXur81iFoMxqSoUF+Ux6ZZXjtVWYKzXdzBXkhLKjVrKqNPjm3IhXiWSyy+vZxf+BwCSc/Tu3spSk9u/cSi+g0iSVBu3Rq3CTM9122L5yJQwaBKeeCt98Y2jhV62i6PCTGPvyZ3UyOS+rVe32Vw3tJw7uEucJTr+4e13JvG2KkYsb5pWU0b9zK5cjCsnIOaUcPvY1Rs4pRRXBaZ2X4ytEEkR9ABVORV7ctM8ti9ds9rRdowmKBu/RWxGrmnBdxOKrr+C22+DZZ+GAA2DqVPjznyE3t+58yZhAVSVgs1MJJWqYKqtqWLxmMxf0zOe5ZRscDKGh1Tf3sVqhaxrmUTbevopkpkpw+54FoZcO0gEAAA/KSURBVIBJpzxU07hplIYeokM6KjVEXWjghx9g8mT4v/+D7Gy46Sa4+WZo0aJu36LlZbZhDq9pFyKPM42alWFTSQKdjEeL3JCjx19WXplQmmOrpF+qsJlTGCZZoQ23RjaIMJGbEJReIatJBo0ydBOLKjQwtm9rmDABDj8cHnkErryS/xS9R9+8M+hw1wd1E4lFy8sY/eIK5fmtJttmXNxdWSUpW4i6/S7oaRhHq4lLuxWVdoZpxsXdWX7bGcrrm2RZqJO8UCslX08dFFXDNZlhGD+4MeBBtc+p73qFrCZZNGgdvRciPanD9s3mH+XL6DrrQfjpJ/jtb2HyZIp27mOptQZZF76IxU6LbaXdNhOh5SsKZEfmabdLJmaGSZRJ1RRFw01i8+b4QaUDzySv1bJwuou1DolcT9V3u9oJWk+vsSKwfPSpIBMMPQA1NTB7thGH//ZbI13w1KnQy7iPbrMYRjLj4u62RsL84peVV8Zlu1Rlv3QqKGJm22yvKONnvl60vCyqKpWZATM/L4edu6sta7nC3pCMXf56N4uNMsXgZ0o7VLUT3GZP1TQ+Upa9skEgJbzyCj//9Sb2/3ItKw85gsevvpv+1/8u6gvvZ9IstsiI1URqYUG+5UNEZcydHs1mOCLfJiZs5ck2a7LXONvVer33ouPiioqUlVfWyUDzXRjLTCrxmCnSxmTLSDWNF23o33vP0MJ/8AFbW+Yz5rwxvN6pD1Jk8UaM4fGag6ZFbigufXFZeSWj58Yn+gpKeREZ87UroK2SOY6cU0rxN1tta71GttuvkczERF7p9uzrc8FzTWbTeA39ypVwyy2wYAEceih3nT+KRw8/lersvbck1vC4zUsORox7wrldmPTKqrhYd1WNZNQLpYyaU1pnUILIJikEUeGSSFmi6XGbfbK71uyl39L38JZs3bknzuhMHGyfkM3EyWgmKjUM2ignY4ThtY31peKWpv7R+FQ3X38Nl18O3bvDkiVGDH7dOv551OlRRt4k0vDEplSwY9qFRnhDJWGUMnoVrvvFSWqkjDdKhQX5dWqPyNJ3Tiz9apvvZflu1COqcIQEuk96w1Zpkgx1StC5bvy2sbAgnyVjBsSplTSaRGg8hv7HH+GGG6BTJ5g719DCf/WVoYfPzVUantjtkV9ElTzR3N536tuummYuTnJT3MKJWPll36lvM3JOqWeZZE04j4wfo+PGaNqtTi6vrGL0iyuURjEZCciCXsyUriIpGo0VjcPQP/ggdOwIDz8Mw4cblZ2mTo1a8ORH3606pn/nVlHJydzwXXlllGG996LjXB8biek1xiZI80oimTPdGE1zdKS6TlWtVBrFZKwwdfugd4teBavJJBqHod9/fzjrLFi1yshLk29dTMJPqKJ5aO8tNMv0LV6z2bMHfUBOKK49LXJDir3VmF5joukYends4byTAruwTOSir8KCfGpt5L0qoxi0UYbgF3Ilo40ajV8ax2TsFVcYPw54UZBYyRPN+qx+vLbyyirGF33K5MKuddsmnNvFVwGSILzG9VuczxGrwzcLr48e2InRL66w1NfHTnLaTUKrjGIy1ClBT4RqBY0mk2gchj4J2MkT/fLM0m/pdVhLS9WMXfK1WEwDaRe2aZEb4ufKamUeG6eHhZn2IdKYb6uo4sYXVzD0hLbYzVZHqpnaH2ht6LMESqOYLHVKkHp6raDRZBJ6ZawHIuVyybprdsvd3azMNVekAo7l94q/2WqZH92pHU5tMVfY2iGA6Rd3V6ZpSKT0oEbTWNArYwMkNkThlbycEDv3VLvKHWPnSVuFA0LZgn2aNmF7pXVelljNfLYQXNBzr+f6zNJv4wxtKFs4hhjs2ulk5GFvbnrVrtt93uuGSLoXcmnqP9rQO5BooW4BlE44w/XDwm6yzk84oGJPddT/NVIyr6SMXoe1VBrafZo2cTQkiSzwcspNb55fk1mpIjT1F23oHUhUvZIlBB3GLKB1Xk7dqlLVylQ3k3VOceTxRZ+6KBRSU/ewsCLWm7byKEcP7GQ7H6FK0BaZB0d1HwTq+LwXgvCE0+1NZ2KqCE39IyF5pRBivRDiUyFEqRCiOLytpRDiTSHEF+Hf/nV6KURVsDpRBUuNlHF1aJeMGcD6qYPqctIHVRB6fNGnzF76ratCIabhsiJLiLr+q1Z4AlzWu53y/JK987FmicP1UwfV5dnpMGYBFXuqCcXUHYyseZsIQayezYT88FqPrwmCIDz6/lLKnyL+HwO8JaWcKoQYE/7/5gCukzTshsdOIQqnlMGRxHpiQWdNfEYxsWqF6Z1ahaVqpKxLvGbnUS4ZM6AuBGR1j0wP3pzUjVXqbKuoIksYcxiqOQa/BOEJZ4I3rTNaaoIgGQumzgNmhf+eBRQm4RqBYveFdiokbmXk7fb36ompRhpW+3lRApkGdcqQrpbFvKtqjILfqoec2Q9zNa9KTRnZ34nzV8Vp62tlciZeg/CEM8GbzrSKXJr6SaKGXgJvCCFKhBAjwtsOllJuCv/9PXBwgtdIOnZf6MKCfC7ome+YxMzEXB2ryoPjxRPzEjrwkkMlMtWwsTrV9aF1xPbDzUpQ1US0hMBDI0GsTM2E1a1+V2xrNJEkauhPllL2AM4CrhdC9It8URoifUszIoQYIYQoFkIUb968OcFmJIbTF3rxms2uveV9mjWpyxgZG38OZTnLFiPxkhjLrZfpJdWw3Tli+2HneZqjEjcElfgrCE84U7xpndFSkygJxeillGXh3z8KIV4GTgB+EEIcKqXcJIQ4FPhRcexMYCYYC6YSaUeiOC1X9z3cjx0GxPyfSM722GPzckOWKZGbNckiW0BFuKbtruoair/ZGnWdvJyQqzUCApRxdJX0E9QLt1QEERoJYmWqXt2qaSj4XhkrhNgHyJJS/hL++03gduB0YEvEZGxLKeVNdufKhJWxfoo2W2FOPjoVerbS58fWWVWdo0VuiF1VtXEFrRFELcrKCWXTo90BLPlya9w5Luvdri6vjlU6A1W7veKnzq4uhq3RuMPtythEQjcHA+8LIVYAHwELpJT/AaYCvxFCfAH8Ovx/xmM3PHaakDVxMwowt096ZZWvnO05oWykJO7YqlpJVY2sS/trxnKXfrXNsh3PLdtQ93dhQT7Tfntc3bxC7EDETbjCjzy1RW4oLrylJxo1muDxHbqRUn4FxCVNl1JuwfDqGwx2YQnVKMBOFle0vExZeSo2Z7vVNexWlNZIWWcsCwvylYuaYrX2kVJPr4uE/MhTI0c2OjSi0SQXndQsSYwv+jQuj4wZmrGr2eombOEmHGKe5/Cxr1kuoMoWgi+nnO3YDzfYhalU8x9aOaLRJE4qQjcaBUXLy5hXUhaXAsBMJuaUuMwJN6Ek8xpDT2xr+bpqux+c5KlaHqjRpBed6yYJWMkiJYZME9ThjEh9ux2RIR2noh3mhKuZ/yZbCIae2DaqwEmiOK3eDHoFsEaj8YY29EnAaSJWFc7wom83jadKvRM5Mphc2DVQwx6LVUUpr2sGNBpN8tCGPgm48XAhGH12xmi9HdYMaDSa9KEnY5OAG418Q8JpzYBGo0kOusJUGskYLztFZELyL41Go0Yb+iTRGCYgTQ28akyoU+lqNJmBNvQaXziVWNQrXDWazEEbeo0v7Eos5jfwUJVGU9/Qhl7jC1X8XYCegNVoMgy9Mlbji0woyqHRaNyhDb3GF5lSlEOj0TijQzcaXzQ2CalGU5/Rhl7jm8YgIdVoGgI6dKPRaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwMmINMVCiM3ANz4PPwj4KcDmZAoNtV/QcPvWUPsFum+ZymFSylZOO2WEoU8EIUSxm3zM9Y2G2i9ouH1rqP0C3bf6jg7daDQaTQNHG3qNRqNp4DQEQz8z3Q1IEg21X9Bw+9ZQ+wW6b/Waeh+j12g0Go09DcGj12g0Go0NGW/ohRAthRBvCiG+CP9uodjvP0KIciHEqzHbOwghlgkh1gkh5gghmqam5c546Nuw8D5fCCGGRWx/RwixVghRGv75Vepab9nOM8PtWSeEGGPxerPwe7Au/J60j3htbHj7WiHEwFS22w1++yaEaC+EqIx4j/6Z6rY74aJv/YQQnwghqoUQF8a8ZvnZzAQS7FdNxHs2P3WtThJSyoz+Ae4GxoT/HgPcpdjvdOBc4NWY7S8Al4T//idwXbr75KVvQEvgq/DvFuG/W4Rfewfole5+hNuSDXwJdASaAiuAY2L2+SPwz/DflwBzwn8fE96/GdAhfJ7sdPcpoL61Bz5Ldx8S7Ft7oBvwFHChm89mun8S6Vf4tR3p7kOQPxnv0QPnAbPCf88CCq12klK+BfwSuU0IIYABwFyn49OEm74NBN6UUm6VUm4D3gTOTFH7vHACsE5K+ZWUcg/wPEb/Ions71zg9PB7dB7wvJRyt5Tya2Bd+HyZQiJ9y3Qc+yalXC+lXAnUxhybyZ/NRPrV4KgPhv5gKeWm8N/fAwd7OPZAoFxKWR3+fyOQSQnU3fQtH9gQ8X9sH54IDy9vTbNhcWpn1D7h92Q7xnvk5th0kkjfADoIIZYLIf4rhDgl2Y31SCL3PpPft0Tb1lwIUSyEWCqEyCTn0BcZUXhECLEIOMTipXGR/0gppRCiXsmEkty3S6WUZUKI/YB5wOUYw1BN5rAJaCel3CKE6AkUCSG6SCl/TnfDNLYcFv5udQTeFkJ8KqX8Mt2N8ktGGHop5a9VrwkhfhBCHCql3CSEOBT40cOptwB5QogmYS+rDVCWYHM9EUDfyoDTIv5vgxGbR0pZFv79ixDiWYzharoMfRnQNuJ/q3tt7rNRCNEEOADjPXJzbDrx3TdpBHx3A0gpS4QQXwJHAcVJb7U7Ern3ys9mBpDQZyriu/WVEOIdoAAj5l8vqQ+hm/mAOZs/DPi32wPDX7LFgDmj7un4FOCmbwuBM4QQLcKqnDOAhUKIJkKIgwCEECHgHOCzFLRZxcfAkWGVU1OMCclYtUJkfy8E3g6/R/OBS8LKlQ7AkcBHKWq3G3z3TQjRSgiRDRD2Do/EmLTMFNz0TYXlZzNJ7fSK736F+9Ms/PdBQF/g86S1NBWkezbY6QcjzvkW8AWwCGgZ3t4LeCxiv/eAzUAlRjxuYHh7RwyjsQ54EWiW7j756NtV4favA64Mb9sHKAFWAquA+0mzUgU4G/gfhuczLrztdmBw+O/m4fdgXfg96Rhx7LjwcWuBs9L93gTVN+CC8PtTCnwCnJvuvvjo2/Hh79ROjBHYKrvPZqb8+O0X0Af4FEOp8ylwdbr7kuiPXhmr0Wg0DZz6ELrRaDQaTQJoQ6/RaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwNGGXqPRaBo42tBrNBpNA+f/ATews6G10pN3AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJztnXuclmP+x9/XTE814zRFi6ZSORQpTYUUUXaFyIhF61AOm7V2ba2NUlQ2ilCsw/7CEjlEMRuxEVlEMaMpUq0QNUKqiZqp5nD9/rife3oO93Wfnvs5zMz1fr3mNTP3cx+u636e53t/r+/1ub5fIaVEo9FoNA2XrHQ3QKPRaDTJRRt6jUajaeBoQ6/RaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwNGGXqPRaBo42tBrNBpNA6dJuhsAcNBBB8n27dunuxkajUZTrygpKflJStnKab+MMPTt27enuLg43c3QaDSaeoUQ4hs3++nQjUaj0TRwtKHXaDSaBo6joRdCNBdCfCSEWCGEWCWEmBTe/qQQ4mshRGn4p3t4uxBCPCCEWCeEWCmE6JHsTmg0Go1GjZsY/W5ggJRyhxAiBLwvhHg9/NpoKeXcmP3PAo4M/5wIPBL+7Ymqqio2btzIrl27vB6qCZDmzZvTpk0bQqFQupui0Wh84mjopZGwfkf431D4xy6J/XnAU+Hjlgoh8oQQh0opN3lp2MaNG9lvv/1o3749Qggvh2oCQkrJli1b2LhxIx06dEh3czQajU9cxeiFENlCiFLgR+BNKeWy8Et3hMMz04UQzcLb8oENEYdvDG/zxK5duzjwwAO1kU8jQggOPPBAParSNHqKlpfRd+rbdBizgL5T36ZoeVm6m+QJV4ZeSlkjpewOtAFOEEIcC4wFOgPHAy2Bm71cWAgxQghRLIQo3rx5s2ofL6fUJAH9HmgaO0XLyxj70qeUlVcigbLySsa+9Gm9MvaeVDdSynJgMXCmlHKTNNgNPAGcEN6tDGgbcVib8LbYc82UUvaSUvZq1cpR76/RaDRpYdrCtVRW1URtq6yqYdrCtWlqkXfcqG5aCSHywn/nAL8B1gghDg1vE0Ah8Fn4kPnAFWH1TW9gu9f4fEOkffv2/PTTTwnvo9E0ZDIxRPJdeaWn7ZmIG9XNocAsIUQ2xoPhBSnlq0KIt4UQrQABlAJ/CO//GnA2sA6oAK4MvtkajaahYYZITO/ZDJEAFBZ4nuYLjNZ5OZRZGPXWeTlpaI0/HD16KeVKKWWBlLKblPJYKeXt4e0DpJRdw9suk1LuCG+XUsrrpZSHh1+vt7kN1q9fT+fOnRk+fDhHHXUUl156KYsWLaJv374ceeSRfPTRR2zdupXCwkK6detG7969WblyJQBbtmzhjDPOoEuXLlxzzTUYIiSD2bNnc8IJJ9C9e3euvfZaampqVE3QaBoNmRoiGT2wEzmh7KhtOaFsRg/slKYWeScjct04MnIklJYGe87u3WHGDMfd1q1bx4svvsi//vUvjj/+eJ599lnef/995s+fz5133knbtm0pKCigqKiIt99+myuuuILS0lImTZrEySefzG233caCBQt4/PHHAVi9ejVz5sxhyZIlhEIh/vjHP/LMM89wxRVXBNs/jSYNFC0vY9rCtXxXXknrvBxGD+zk2hvP1BCJ2X6//coE6oehTyMdOnSga9euAHTp0oXTTz8dIQRdu3Zl/fr1fPPNN8ybNw+AAQMGsGXLFn7++WfeffddXnrpJQAGDRpEixYtAHjrrbcoKSnh+OOPB6CyspJf/epXaeiZRhMsiYZeMjlEUliQX68Meyz1w9C78LyTRbNmzer+zsrKqvs/KyuL6upqzytGpZQMGzaMKVOmBNpOjSbd2IVe3BjJ0QM7RT0ooP6FSDIVndQsQU455RSeeeYZAN555x0OOugg9t9/f/r168ezzz4LwOuvv862bdsAOP3005k7dy4//vgjAFu3buWbb1xlGtVoosg0hUqioZfCgnymDOlKfl4OAsjPy2HKkK712pPOFOqHR5/BTJw4kauuuopu3bqRm5vLrFmzAJgwYQJDhw6lS5cu9OnTh3bt2gFwzDHHMHnyZM444wxqa2sJhUI89NBDHHbYYenshqaekYkKlSBCL/U9RJKpiEg1SLro1auXjC08snr1ao4++ug0tUgTiX4vMo++U9+2NKr5eTksGTMgDS2Kf/iAEXrRXnnyEEKUSCl7Oe2nPXqNph6SiQqVhqBOaahoQ6/R1EMyVaGiQy+ZiZ6M1WjqIQ1hEY8mdWiPXqOph+gwicYL2tBrNPWUdIVJEln9qkkP2tBrNBrXZKKsU+OMjtEHwNlnn015ebntPrfddhuLFi3ydf533nmHc845x3G/0047jViZaiwzZsygoqLCVzs00WTagqVUkKmJxzT2aI8+AaSUSCl57bXXHPe9/fbbU9AiZ2bMmMFll11Gbm5uuptSr2msnm0myjo1zjQYjz4Z3tV9993Hsccey7HHHsuMcL6d9evX06lTJ6644gqOPfZYNmzYEFUw5O9//zudOnXi5JNPZujQodxzzz0ADB8+nLlz5wJGgZEJEybQo0cPunbtypo1awD46KOPOOmkkygoKKBPnz6sXWvvJVVWVnLJJZdw9NFHc/7551NZuffLdt1119GrVy+6dOnChAkTAHjggQf47rvv6N+/P/3791fup3GmsXq2KvlmumWdGnsahEefDO+qpKSEJ554gmXLliGl5MQTT+TUU0+lRYsWfPHFF8yaNYvevXtHHfPxxx8zb948VqxYQVVVFT169KBnz56W5z/ooIP45JNPePjhh7nnnnt47LHH6Ny5M++99x5NmjRh0aJF3HLLLXWZMa145JFHyM3NZfXq1axcuZIePXrUvXbHHXfQsmVLampqOP3001m5ciU33HAD9913H4sXL+aggw5S7tetWzdf96wx0Vg9W514rH7SIAx9olnzrHj//fc5//zz2WeffQAYMmQI7733HoMHD+awww6LM/IAS5Ys4bzzzqN58+Y0b96cc889V3n+IUOGANCzZ8+6dMbbt29n2LBhfPHFFwghqKqqsm3ju+++yw033ABAt27dogz0Cy+8wMyZM6murmbTpk18/vnnlgbc7X7JJNNUHG7a43bBUn3smx1a1umCzZvhzjuhaVO46650twZoIIY+1d6VafwTwUx3nJ2dTXV1NQC33nor/fv35+WXX2b9+vWcdtppvs799ddfc8899/Dxxx/TokULhg8fzq5du3zvl0wyLdbttj1uPNv62jcn9OpXBb/8AtOnwz33wM6dcO21ICUIke6WNYwYfTLihqeccgpFRUVUVFSwc+dOXn75ZU455RTbY/r27csrr7zCrl272LFjB6+++qqna27fvp38fOML9OSTTzruH5kK+bPPPqsrY/jzzz+zzz77cMABB/DDDz/w+uuv1x2z33778csvvzjulyoyLdbttj1uUurW175lAvVK0bRnD/zjH3D44TBhAvz61/DZZ/Dwwxlh5KGBePTJiBv26NGD4cOHc8IJJwBwzTXXUFBQwPr165XHHH/88QwePJhu3bpx8MEH07VrVw444ADX17zpppsYNmwYkydPZtCgQY77X3fddVx55ZUcffTRHH300XXzAccddxwFBQV07tyZtm3b0rdv37pjRowYwZlnnknr1q1ZvHixcr9UkWmxbi/tcfJsM6FvkaEaVZ7aTJtXyLSRkJLaWnjuObj1Vvj6azjtNJg6FU48Md0ti6PBpCnOlFjojh072HfffamoqKBfv37MnDkzapK0PpLMNMWZlm43yPaku29WaYOtSGdqYyvSfd8ckRJefx3GjoWVK43601OnwhlnpNyDb3RpijMlbjhixAg+//xzdu3axbBhw+q9kU82qVJxuHUEgmzP6IGdGD13BVU1e52pULZImULFKlQTSyYqZjJhJKTkgw9gzBh47z0jVPPcc3DRRZCV2VFwR0MvhGgOvAs0C+8/V0o5QQjRAXgeOBAoAS6XUu4RQjQDngJ6AluAi6WU65PU/ozDjJlr3JEKFYeXUEDg7YkdMKdwAG1nGAVkrGImI1Mwr1oFt9wC8+fDwQfDQw/BNdcYypp6gBuPfjcwQEq5QwgRAt4XQrwO/BWYLqV8XgjxT+Bq4JHw721SyiOEEJcAdwEX+2mclBKRIZMZjZVUhPaSPRrzKr8Nqj3TFq6lqjb6/lXVyoRkv15QGcyMCYEoyCit/jffGBOsTz0F++0HkyfDyJEQgPIulTiON6TBjvC/ofCPBAYAc8PbZwGF4b/PC/9P+PXThQ9r3bx5c7Zs2ZISQ6OxRkrJli1baN68ebqbkpAKI12hgHSHIOprzvqMKBL+008wahQcdRQ8/zz89a/w1Vcwbly9M/LgMkYvhMjGCM8cATwEfAmUSymrw7tsBMx3IR/YACClrBZCbMcI7/zkpWFt2rRh48aNbN682cthmoBp3rw5bdq0SWsbElVhqDxbiTHxl6zwRbpDEPV5cVPa5tx27DC08NOmGVr44cMNj75du9S3JUBcGXopZQ3QXQiRB7wMdE70wkKIEcAIgHYWNzEUCtGhQ4dEL6NpACS68tkqFGCSTOleUCGIRBRlmSJSyHj27IGZM+Hvf4cff4TzzzfCNMcck+6WBYKnqWIpZTmwGDgJyBNCmA+KNoA5li4D2gKEXz8AY1I29lwzpZS9pJS9WrVq5bP5msZAoiGQyFCAFclYNGQa58qqGrLDkUs/IQhzNFMW1sGbD6aMXkBUn6ithWeegc6d4c9/hqOPhg8/hJdeajBGHlwYeiFEq7AnjxAiB/gNsBrD4F8Y3m0Y8O/w3/PD/xN+/W2pA+0NCj/x8kRi7EGsfC4syGfJmAGoJouCjJtHGmeAGinrPHmv3nV9Ws1ar5ASXnsNCgrgsstg//0NbfzixWCRx6q+48ajPxRYLIRYCXwMvCmlfBW4GfirEGIdRgz+8fD+jwMHhrf/FRgTfLM16cKPh5moVxrkpGIq0uwGaZzTPaHbIPnwQ2MV66BBRkz+2Wfhk0/gzDMzJmVB0LhR3ayUUhZIKbtJKY+VUt4e3v6VlPIEKeURUsrfSil3h7fvCv9/RPj1r5LdCU3q8GPEEjV8QaowUqFECdI45+WGLLfr/O8++PxzKCyEPn1g7VpDC796NQwdmvELnhKlwayM1aQGP0YsCMMX1KRiKpQoQaltipaXsWNXddz2VK6ubRB8++1eLfy++xoTriNHGn83ErSh13jCjxFLt8wwlmQrUYJS21gtuALYp2kTraRxw08/GXnhH3rICMmMHGnkpwkX3WlMaEOv8YSTEbOSAqZrpWO6Et0FNWpQjXi2V9oXpGn07NgBM2YYWvgdO2DYMJg4sd5r4RMhY7NXatKDG+Oo2scqW2JOKJspQ7oCyQuXWLUHULYlE7xhN/c547M4BkRgD+Q9e+DRR43QzA8/GPH4yZOhS5fgG50huM1eqQ29pg47Q+3mi5cOw6Rqc7MmWZRbeL7JaItXQ+X2Pif6ftQHAuljba2RpuDWW400Bf36GWmDTzopSa3OHNwa+oY91azxRKLqmHRIAVVttjLyyWiLH+lokFWs/LQ3kyo3JfSZM/PC9+gBl15qJB177TV4551GYeS9oGP0mjoSNdSJTLqqwi9OnrJXwx30BLCf9Axu7nPs/Zh+cfeEvfhMrNzk+zO3dKmRF/6//4WOHY3VrZdc0uBlkn7Rhl5TR6LqGL+TrlYGaPTcFSCpU52ojJKqzS1yQ+yqqk36BLAXQ2Uab1Ww1LzPKoNc/M1WFqzcxLYKY7SSlxNi4uAuro2024dSKiexPX/mPv/cyCBZVAS/+hU8+CD8/vf1Ji98utCPP00diS4m8htqsDJAVTUyTloYO6QvWl5GxZ54nXlOKJsJ53ZJSapbtyttY9MiWLU5chRjZZBnL/22zsgDlFdWMfrFFa7DL24eSuOLPmXUnNKU5dZx/Zn79lu46iro2hXeesuYcP3yS7j+em3kXaA9ek0dQcgC/WjUvYRfzH1V9VBjvdygDXust9u/cyvmlZQ5yk1VBh6Mh1DkffZyP7wUMnHynouWl/HM0m/jRhxeMoV6xfEzt2XLXi28lPCXvxiVnhqhFj4RtKHXRJGOtLYqA6TaF9T1UPdp5m0xkZcwhVVIZV5JGRf0zGfxms2u5KaxCIhTAXm5H+D+weAUWrMLK9nNHyQa2rH8zO3cuTcv/I4dcMUVMGlSo9bCJ4I29Jq0Y2WAQtkiKkYPe41S0fIypSH04g17nZxUhVQWr9lsKdl0U5z7gJz4XDZW90OgLjfrdg7FyXu2u3dO8weR50+IPXvgscfg9tsNLfx558EddzRoLXwq0IZek3ZUBki1zTQsVnhR1XhVzHhViLh56OzcU03R8rKo61ndj/6dWzHn4w1U1USb+1CWt7w3diM21UhCgOP8QcKhndpamDMHxo/fq4V/+WUtkwwIbeg1GYHKAFmtFlV5yaFsQf/Oreg+6Y06HX2L3BATzrVWpng10F4VIm5CMFU11jF2q/vR67CWTHpllW/VjROqkcSlvds5ev2+1ydICQsXGjloSkuhWzdYsADOOqvBpgxOB9rQa+oVdgalplby7NJvqY3Ytq2iypBqEv/Q8Gq4vcpH7UoYRuKlUlYQWnq7kVNebohmTbLYXlllGX8PNEFdpBa+QweYPbtRpAxOB9rQawIl2RpsOy/ZItEjoPaavRpur6qk2P3BOs5uFadPBm7WK2yrqCInlK1coBVIgrrVqw3ljKmF/8c/YMQILZNMItrQawIjFSsv3XrJsVh5zX7kpF696sj9C25/I0oHb5LMCEXkgzdLCGpiclvFxvzBPuaekAR3wwYji+STT8I++xgTrqNGNaq88OlCG3pNYDhN1BUtL2Pi/FWu4ucqzH1vfGFFnNGyQxVaSCQc4nX0Um5h5K22BzUqin3werlfduEk1T1TtnvLFpgyxVjFamrhx46FVq0c25+ONNMNEW3oNQkR+WW002AXLS9j9IsrouSSdvFzO8x9R84pdbV/Mioy+Rm9uIlv+x0VWRlFN/JOFX6qYcW2+/bnP+aoxx7gmNn/3KuFnzgRDjvM1/nSnZenPqNnPTS+ic3cqKJ1Xo6yWpIZP/dKYUE+eYrYdmQopEVuiGkXHhe4cfCTddHNcn8/51Vl0HSz6CqULQhlRceO/FbDMtvdpKaayz5ZwMKHruSYh+82CnGvXAlPPOHKyMeez8RvgXWN9ug1CeDGYzSNxigb79uvNG/i4C5py9fuR2boJr7t57wqo5htEZMHyBaCWik9ZQl14rvySoSs5dzV7/HX92bTvnwTy9p04Q+F45g3+2+ezmWez8t2jT3a0KeYZMQd/Z4z0bbYfekERJ3TLt+L39TBqSj0rcKvzNBpTkB13iwh6DBmgaeHQ42U5ISyXT0IE7pnUlL442dc/dqjHPvDl6xu1Z7hF07gnY69yG+R6+uUmVZnuL7jGLoRQrQVQiwWQnwuhFglhPhLePtEIUSZEKI0/HN2xDFjhRDrhBBrhRADk9mB+oSfIhXJOmcQbVF96fLzcvh66iCWjBlQZ0BGD+wUFyKAxOPnhQX5LBkzIO56ySbRTJ9ezguG0Va9T3bvQ9IzeC5bBgMGMP2JMeTt2sHIc27k7Csf4J3DjyenaRPf9yNZ97ex4iZGXw3cKKU8BugNXC+EOCb82nQpZffwz2sA4dcuAboAZwIPCyHiP7mNkGTEHf2eM4i2ePkyFhbkM+23x0XF1c34OZBRVY/ckIzqT1bnzbbQXsa+T3bvQ9IehKtXw5Ah0Ls3rFoFDzxAyRsf8nHfs0FkJXw/knV/GyuOoRsp5SZgU/jvX4QQqwG7u30e8LyUcjfwtRBiHXAC8GEA7a3XJCPu6PecQbQlNnRyQE4IIWDUnFKmLVwbF2KwClskoq4IMgzm51zJyvQZed4OYxZY7hP5PqU0hLVhg5FF8oknDC38pEmGFn6//TgPOO+EDoFdKh2ZVBsqnmL0Qoj2QAGwDOgL/EkIcQVQjOH1b8N4CCyNOGwjFg8GIcQIYARAu0aSejQZcUe/5wyqLeaX0YvBdlrE4yZJltX1Rs4pZeL8VZ7zv1ida9ScUkbOKY3LFR8EXh4qbt+npBvFLVuMgtv/+Iehhb/hBmN1q4MWXpMZuJZXCiH2BeYBI6WUPwOPAIcD3TE8/nu9XFhKOVNK2UtK2atVI/mwJCPu6PecQbfFbSgodm5AtYjHaWShUvyUV1bZzjVYFce2OpfZqqArLHmdG0l7rHrnTqPwR8eOcO+9Rl3WtWuNXPGN5HvbEHBl6IUQIQwj/4yU8iUAKeUPUsoaKWUt8ChGeAagDGgbcXib8LZGTzLijn7PGXRb3IaC3C7iUY0sTENtpxFXzTX41ZsHqd9WPRAnzl9luX+6YtX//mg90wpH8uPBbWHcODYV9Da08E8+Ce3bJ/Xa9R0rZyLdOIZuhBACeBxYLaW8L2L7oeH4PcD5wGfhv+cDzwoh7gNaA0cCHwXa6npMMobYfs/peSm7DW5DDG7mAFQeq5uKTXbX8ao3dzqfH1QPlfLKqri89CYpjVXX1vLx3f+k+92TOW/bJj5qcwzXFY7l8w5dmVLVgsLUtKLekqkret149H2By4EBMVLKu4UQnwohVgL9gVEAUspVwAvA58B/gOullP7WYWtSjl/ZpdsQg8pTzxbC0WP1sqTf6jpOenOv5/ODlYrGJK2rPs288L16cfzY66lo0owrL5zARb+7i5I2x+hVqS7J1BW9blQ372Osf4nlNZtj7gDuSKBdmjTht4KQW+WHKs2tm3CEW69aNSJQjTrMCVdzUVds2b4gY+J2I4e0rfpctsxIMrZ4MbRvz6hzbuTfR/ejNiv64eenfY0tMVmmrujVK2M1USTyQXUTYkhECuimYpMALuhp3Q7VQ6Z/51Z17ckPl+2zKvYdBPk2fUj5qs81a2DcOHjpJWNi9f774dpr+Wj6EmoDUGRlahgjmWTqil5t6DVRpOKD6uaBYHqCZeWVdTH0vJwQoWxhmUPdRAKL12xWXhfia7HOKymLMkbzSsqSNuE5emAnRs9dkXDt14TYuNHIIvnEE5Cba/z917/CfvvVtTHh4iIksb5sBhPUvQsabeg1UYwe2CkunXBKjRDqPOrllVWEsgQtckOUV1QpM2aWlVcq88LEPmSsatDaGaNEQxHmvkHVfvXUnq1b92rha2vhz382PPoYmWRQC7BSFcbIpPBQOvMv2aENvSae2BmZFNdotpt0raqV5DZtwvLbzrCVWUZOJIM6VODFGAUVighKReO6PTt3wgMPwF13wc8/w+WXGytabWSSQbQxFaPDTAwPZeKKXp2PXhPFtIVr48IKXnPG2+mI3WiM3aZvUCUAi8RJ8aAyOlbb3SgqUqmhdmxPVRX8859wxBHGKtZ+/Qwt/KxZKdHCp2KxV6aqXDIN7dFrokh0uG3nYQGuvC+nSVfTCMcOk+0qXKnwElN1ujep9i5V7dm0bSfMmQPjx8O6ddC3L7z4Ipx8cuBtsCMVYYxMVblkGtrQa6JIdLjt5GG5iYfbFQCPNcKRw2RVKMeu7V6MkdO9SfXkY1x7pOSU9csZ9/7TcPcXcOyx8MorMGhQciuQ25DsMEamqlwyDR260USR6HDbzsNy631FLvuHvYuMzMVUYJ3W2KrtoWzBzt3VtqEUt6l8ne5Nqr3LyPYc991ann1+HE+/cBvtZCU89RSUlsI556TNyKeCtOcCqidoj14TRaLDbScPy633ZZeewSk8YrY9LzfEjl3VlFdWKff1gtO9SbV3WViQz77rvyT7tvH0/+w9tu2Tx8rRk+j295uhWbOkXDPTyFSVS6YhpEOOj1TQq1cvWVxcnO5maALAKh+NufIV8L0q1kQVnsnPy2HJmAGu9o2tmZqoUYjU/Futqk2KJn/jxr154XNy4G9/i9LCaxoHQogSKWUvp/20R6+xJBFtcvNQVp0xt9KIJ1LfVjVJaxUescttA2oP30vfYx9sEuqMfSK57CPbYBZ0Ka+oolPTKv7xzUKOfOFJqKmB6683tPC/+pXna2gaD9rQa+Lwqx6x8uZ3V9dG7eNncs5N1kqr8IiblAmxk6Ve+67KZW81wnBLbBvKK6toXrWL64rn84dl89h3dwXfDhpCuwfv0SmDNa7Qhl4Th5NyRuXtqo678YUVjJpT6jtU4pS1UjX5ZqfeiSTS8/eqnAlCjhp7PyPb0KSmmotXvsENHzzPwTu2sujw45l26jB2HHk0S7SR17hEG3pNHCojZXq3Km/Xb6jEb3vAPjwSO1FnVbYQokcDXg23nwlYVUw/8v4KWcvZa5Zw43tP03Hbd3ycfwzXn3czxW26ACC0TlzjAW3oAySTcm4k0h6V8coWwtbb9RMqcYNdemGn8EhkqEg1URw5GvBquL0msbKK6UdSWVVDv/Wl/O2/T9Lt+3WsOegwrr7gVt46/IQomaTWiWu8oHX0AeG3YEcmtqd/Z+taoE71Xd2kJIjc3y1W5xUYffKSZsBNWT6vumyvpf7swlDdNv2P2c+P46k54zmw8mf+OmgUZ1/5AG8dcWKUkdc6cY1XtEcfEJmWkjWR9qjS/KpK7qlSErgJlaiIHY1c0DOfxWs2K8Mdkde3w2ky2I8u28sEs9VDruOWjdz43tMMWruELTn7M+OcP9Jx/I0sW7weWV5JXoTqJhNGipr6hzb0AZFpOTfs4ux9p75ta8ScSu7ZhSm8hkqssFK+mDnirSSWfh6odmGtZC7bjwwNHfzLT/xlyXNctPJNdoWaMaPvUGb3uYDxQ3szuCCfwSd2TEobNI0PbegDIp05N6yMlqo9ZsgDvCcViy25Z8bsTTVOrHH0u2rRbjQSxAM1naltRw/sxJRnPuDK9+cwvOQVsmprebrHIB486WKa5x/KeO2ta5KANvQBka7KMiqjdUHP/KjKSUDcqk1wn1TM7Iu5n1tD6cc7tjPmQTxQ0xZmq6igcOHTnD1zKk12/EzRMafx7NlXc9nQ0yjRxl2TRPRkbEB4nZQLCpXRWrxmc1x73KbxdepLsnOA2+WIDyKJVcrDbFVV8H//Z+SFHzuWpv1OJqu0lCGTD6dBAAAgAElEQVSfvc3cuy/VHrwm6Th69EKItsBTwMEYDuFMKeX9QoiWwBygPbAeuEhKuU0IIYD7gbOBCmC4lPKT5DQ/s0hHZRk7o2VVNi/RpGJgnZgsti2JSE3djCj8nrtoeVmgk8S2166thblzjbzwX3wBffoYeeJPOcVVWzWaoHATuqkGbpRSfiKE2A8oEUK8CQwH3pJSThVCjAHGADcDZwFHhn9OBB4J/9Z4xI1RUYUysoSgaHmZY0gmMo2vG6NZtLzMMgRktsXcx21ox66PVtsTeYCY7bIy8n4niZWx/UWLYMwYKCmBLl1g/vyMTBmcaWs/NMnB0dBLKTcBm8J//yKEWA3kA+cBp4V3mwW8g2HozwOekkZazKVCiDwhxKHh82hc4taoqJb510gZt3+sAc1tms3OPTWe0vhOW7hWGQIy9fduY+BOfbR6KCQyiWqnYVdNKkcaQquRQFy/iosNA//WW9CuHTz5JFx2GWQ7ry9INZlYb1WTHDzF6IUQ7YECYBlwcITx/h4jtAPGQ2BDxGEbw9s0HnAbBzfj6dkWnqJq/yVjBjD94u5U7Ik3ek6xdrs49nPLNlC0vEwZ2ond7jXWr9p/0iurXNVpdYrBxy4qi110Zrtg7H//g9/+Fo4/HlasgOnTjW3DhmWkkQddb7Ux4Vp1I4TYF5gHjJRS/iwiDIuUUgohPCW2F0KMAEYAtGvXzsuhjQIvE4aFBfmMmlPq6Tx2nrmdQbRLc2COIoQAK5uYHQ4n+a3xqtq+raKKbRXxoxKIDv/k5Ybq9lMR6aE7JVMDQws/tvhFuOc/0Lw53HYb3Hgj7L+/7XGZQKat/dAkD1eGXggRwjDyz0gpXwpv/sEMyQghDgV+DG8vA9pGHN4mvC0KKeVMYCYYhUd8tr/B4lVG6HV/J2OuYvTAToyaU6o00naG0XwQOBlPr320asPE+avYXV0bFZYIZQlC2YKqGvuPm3lv7O7R/rt2cN3SuVxZMp+mSPjjH41J13qUF17XW208OIZuwiqax4HVUsr7Il6aDwwL/z0M+HfE9iuEQW9gu47Pe8erjNDr/qovswifS0VhQT6X9m6HnylFq6RosXjto4ryyqq4a1XVSvZp2qRONmoV7oK998bqHjWv2sUfls7lvX9ezbXL5rH5jHPIWrsGHnggysgXLS9zFU5KJ7reauPBTYy+L3A5MEAIURr+ORuYCvxGCPEF8Ovw/wCvAV8B64BHgT8G3+yGj1ddvlVBbTMMYWVkVInCLu3dznEibnJhVy7trQ635eWELA2IKsZtki0EF/RU14o1QymRxcLzckK254xle2VVXSHwey86ztbQRd6jJjXVDC39D+/MHMGY/z5JSf7RnHPl/bRdMA86RqcqyLQEdyrStfZDk3rcqG7eB6UDd7rF/hK4PsF2NVoSkbt5WbWaiB69aHkZ80qsjVZOKJuJg7tYntuuFCAYoZ15JWX0OqylrTrHzLljGmQrzX3zUJZlPD7SS3e6B4UF+SAli/7+EKPefZrDt5ZR0rozNwy+iY/aHlv3UI0l0xLc2ZGOtR+a1KNTIGQQQcjdvBgZv19y1SRlthBRHqHVuZ1i9FZtteuTmY8+1lhbXcsqLGF7D956i8IxYygsLuaLVodxzZBbWXSEkRfeLsShJzk1mYY29BmEF/25ygv1UjzbL6pz1UppG3YxC103D2VRXlHlWnXjZDjtjLWv0VFJiaGFX7SoTgu/qkt/Vi9ah3BxLpW6Jy/XCDPpRUqaVKMNfQbhxhO08/rBOnEZBKuk8KLWsCp0nRPKZvrF3ZWhnNjz+FWHeBmxFC0v4/nZi7h8wWMMWvs+u/Na0Gz6dPjDH6B5cwqBwl7uZMCqqQgp9SIlTXrQSc3SgEqRYScrNLHz+lXaeCcljVdUao3+nVvF9cuuvSoVzc7d1VETl37UIV5UL/95o4TdV/+e2dOv4rSvirm/zyX0/f2jFJ36W0Mb75HtldZa/e2VVXqRkiYtCOmghEgFvXr1ksXFxeluRkqwKsYRyhbs07QJ5ZVVcR55Tig7Ku7dYcwCpTEHa28eYP3UQQG0fi/jiz7luWUbqJGSbCHo3bEFn3y7PS4mrorHC+DrqYMoWl7GpFdWxYU6YvvtJdyhKngSpyjZtg3uuotd980gq6aGZ7ufyYN9LuanfVoAhnpon2ZNPIdYVMnj8vNylAvFzPuRCDok1PgQQpRIKXs57adDNynGyqOrqpF1+WYke8Mv+RZfVqcwhsrAQHCGwFTdmHLJGilZ8uXWuP1MKaRT+cFpC9fGGfrYuQkvYRjHuY7KSvjHP2DKFNi+nf8cfSr3nnIZG/IOiTqmvLLKUx4gE7vsm27DVV7RISGNHdrQpxg3k6KmkV8yZkBdCMI0zv07t2LOxxuiVneGsoWj0iRIQ+AmNYCJm/KDiahUIh9eebkhpKTOOMfyw9Yd8OijMHEifPcdnH023Hkn017f4nrFrRuJpJ1ss/ibrTyz9Nu4UVuiobX6JOnUpB5t6FOM22X835VXWhrnOR9tiPeQw//aGZi+U98OzBB4UfBElh9UjST8TrbG3h9lHhspOWvtEsYumQ0/bYSTToLnnoN+/QAYXRsf6lHhtu+q7JvzSsqijLwA5SIxL2hJp8YObehTjCqtcCyt83Kswzy18WGQqlpZZ7BVIY4gDYHbh5U5CewUdlHdk4o91XE59SNxM7Los76Um/87i+O+/4KfOx4FjxXB4MFReeGtHpAVe6otHxwH5ITqYvBmWMoqxOa2vRJYvGaz7XFu0HlrNHZoQ59iYo1KXm6IHbuqowy4OZRXZaS0ws5gJ1pVKRanxGYmEndhIXOfifNXRYVdtlVU2RYssXvYHPv9Om767yz6rV/O9wf8ik8m3keP8TdQtPJ7pt21OG50Efswspw0zxLs3FNd10bzfqrCYLFzIslc45CumsWa+oE29GnAyqhYhTacUgZEojLYiVRVUrVLFWuORZUiwAqzv7HxdbuCJVZ02FrGje/N5pw177E1Z38eGHQdN8y9j0OaN/c0T+HFy7dqp9W1krnGIdESi5qGjTb0AeNH2aIKbViW/ssSIIiajLUz2HbpCi7oaRjXUXNK49rqZBQnF3al12Et6x5GVrJQr96k2/CSVZ9+9csW/vLBc1y84g12N2nK/X0uYXafCxn3u94QNvI3vrDCuUJUBLHvS4cxC1y3XxWmCeI+qdB5azQqtKEPkKAlbiovzWqbKvWAXZGQeSVlyrZ6UXEIqFO8bK+s8u1Nuo0zRxrU/Xft4A/L5nJl8Ss0qa1mbq9B3HviRTTNb824iDqzqlFN7PnsHtROcxOR7VQ9tExFlfa6NalEG/oASYbETeWlOZ3PLrwB1rnhI9vqVA7QSvFipjbw21e3cebWeTn8tLmc4Z+8wnVL55K3awdFx5zKM4Ou4cW7L+OSmPM6Tdo6FTUv/mYri9dstg2/xLZT9VAwZbMaTSrRhj5AMkniZmfc7Fasmm1VLXQyc8Hb1W9NNM2y7fHV1TxYUcKhj97FIb9sYXHHnkzrN4yv2xzJlCFdbftkRaSBVvUpci4iMvxipboxRwRBhbM0miDQhj5AMkniZmfcpgzpqpzoPSBcyEMV5jC3e63f6sXYW+4rJbz0EowbR8HatWzt2oPre4/jtZZH0Tovhyk2DxTV+xKbVtku3BL7v5VnHjsiiDzOrQRTo0kGOqlZgLhJvpWqEnOqh0t+Xg6FBfmMHtjJmNiNYWdYu65SzJjb3T68AknY9fbbcOKJcOGFkJUFL79MyxXFPDRzFF9PHcSSMQMcdfpW78u9Fx0Xt3DLLVYPBdUoKnI9gUaTDrShDxCn0mypLDGnKhVYVl5J36lvA7Bv8/gBXVWNVGaWjEynsHN3teu2+A5dffIJDBwIp58O338P//oXfPopFBZGLXhywul9MVHdMyusHgp2IwKdnVKTTnToJgHsdOZWpDIfSWS8OzZebD5g7OL0dooft+kCTDyHrr74Am69FebMgZYt4d574Y9/9JUy2MSN9NCqz/07t4pSJ4E61p7sRVEajV+0ofeJHymlk5IlaEzjZpU21y6zZJYQdakHYvtilTPHDk8TkJs2we23w2OPQdOmMH48/O1vcMABrq+XKFZ9NtcLOE0w260Y1qkINOlEG3qf+PHOnZQsycJOS2+lwKmRUvnQ8uKZZgksQyRxlJfD3XfDjBlQVQXXXmsY+UMOsT8uycSO2Jyko8nMTqnRJIKO0ftEZfDKyiuVE61OSpZkULS8TBlnNmPVVg8a1SSqF8/U8QFWWQnTpkHHjkZu+MJCWLMGHnwwI4y8n/mUyYVdmX5xd8f5AI0mlTh69EKIfwHnAD9KKY8Nb5sI/B4w0+7dIqV8LfzaWOBqoAa4QUq5MAntTjt28dhIwwB7veJ8m0U0XnGbakFVXhCM7JB2ycnMh1lsce9QtohLwQCSyqraqOMjs2pGUV0NTz5p5IUvK4MzzzQMfffunvuXLBKZT3EzH5Du/mkaF248+ieBMy22T5dSdg//mEb+GOASoEv4mIeFEPFFQRsAqnqnkcR6xX5qn1rhxdu0C7Vsq6iyTUqWlxui+6Q3GDmntO5a5ZVVIKFFbijKY90VY+Qtr29q4bt2hd//Htq0gcWL4fXX44z86Lkrovo3eu6KpKiTVHLXZC5+S6X6SqMBF4ZeSvkuEF8nzprzgOellLullF8D64ATEmhfxhIr2VMRaRjcyvyc8FJgOpFJwG0VVZbVmqpqJblNm0Rp2B0Lmy9eDL17wwUXGNLIl1+GDz+E006LO2bSK6uiRgxgyD4nvbLKd1+ssDO4bgq1+0UXCNekmkQmY/8khLgCKAZulFJuA/KBpRH7bAxva5BEDtFVBaFjDUMQGQbt5gciyw6OHtjJdaGTRNugylMzud0eQwv/xhuGB//443DFFdBE/dFTpQJWVpDyiZ3BHT2wE6NfXBFVJyCUJQKZVM2kVBmaxoHfydhHgMOB7sAm4F6vJxBCjBBCFAshijdvTrzCTroJKizjBpVXaS6Iip0jiB1F5IXTHATZhtjRygnVW3nzo0fof+lZUFwM99xj6OOvusrWyCcLqxCNo8GNHaoFJI5K5mhBo7FCSBeKDyFEe+BVczJW9Vp4IhYp5ZTwawuBiVLKD+3O36tXL1lcXOy17RmH1wk2vxNyVtWPVFkV3eRk8UpOKFsdcorVwo8aBaNHK7XwVvcgttJUJJf1bsfkQuvkZSqs+psTyqZZkyzL65iT426zT/p5363ao9U5Gq8IIUqklL0c9/Nj6IUQh0opN4X/HgWcKKW8RAjRBXgWIy7fGngLOFJKaWtR6ouhD1IpkeiX3W2ZOgF8PXWQ8nivi7Va5IaYcG6X+DaWlxtSyRkzYM8eGDECxo+n6PvauJWmi9dsti2jeEHPfOZ8tMGyPi5AbiiLO4d0c33vVWG1FrkhdlXVWr4HdmokAbYrhc0+mP20+qx4+SxphY5GRWCGXgjxHHAacBDwAzAh/H93DCdyPXBthOEfB1wFVAMjpZSvOzWiPhj6oL0wlfHxm69cdb5sIeKSd7k5Lpa8nBATB1sY+MpKeOghQx65dSsMHWp49Ecc4XvkYGZ6HGlTM9fLve8wZoGl0RbA9Iu7WxpRN/clJ5RN81CW5dyBVYpiP5+VZHv/+iFSvwnUo0829cHQB22Y7YyP6YF79fpURtXOMKjaYbZFed3qapg1y9DCb9xoaOHvvBMKCup2cfsQsWL91EG0dyjdly0EtVI63hs/712i4S0r/HxWgv7cRaJDSPUft4Zep0BQ4DY04lcp4ZS73msuHXOb17qonishSWlII8eNM1axnnACPP20pUzSr5EXGP1XpYwwMV9zujduK1dFEpsULgj8fFaSqdBJZZI9TXrRKRAssNJXe0lX64b+nVvFndNNtSMnrbWbuqiReFILRWrhwVj8tHSppZEH/zl8zLS+Q09s6/oYu3vjd/2CmbffbmFcXk7IdWrjA3JCnmsRJFOho2WejQft0VtgZWTd1Al1S9HyMuaVlEWdUwAX9Nyrsff6JXSqEasyDK7K9y1fDmPHwsKFjlr4yJFQIkHB78or69Q1zyz7FjcRRjsD5Xf9glNJxomDu9TtZ5faOJQl2Lmnuk7l47b6lp/RiFsyqSKaJrloQ2+BncEwJ9kSKQ2nepAsXrN3PYHXL6GTQXIKU1j2Y906Iy/888/zc85+PHjaVbw54EL+UtCNQoWRdxPXjoyt79xdbSlxNPs5ubArkwu7Rj1AshQhnWQYKKeSjOZ9c0ptXLGnOm7StrKqhhtfWGF5vImrB7FPkvkQ0WQW2tBb4JSwLNGJMDfeutcvoVuD5ETR8jIen/shF73+BENXLKQ2FOJffS/m4V7n83PzfWFnraUnWrS8zHJ+IJbYyT7VmoD+nVtFHRf5MFJNIiZrcZpqDsMpZXHk6x0UE8t2KaEjzwV7jb0ZokrU2CfzIaLJLHSM3gKnuGyiMUynuKvpvZrFQcA5rtw8ZP1WOhmkSF59dzXf//lvzJl2GZesWMhzxw3k5GtmMvXkyw0jHyY2Hm4aXjsjryqtqBrdzCspU8awCwvyuaBnft29yRYiKuwVJKrPws7d1Z6SkNmNNpzmXnQSNE2iaI/eAjsFCyQeIrDz1mO9VbM4iJ2ndemjH8alCAbjKe7Ky921Cx56iFNuncQBlb8w/+h+3HvKZXzTorXykMiHnV3YCPytzrULa5hzHOZ7UyMl80rK6HVYy6SVZJz0yqqo0Et5ZZWrGLuJU84hO+chWeoYP1XSNPUT7dErKCzI596LjktK/ho7FYhXtU3R8jKWfGmdXNQ6cXAE1dVGwe0jj4S//Y3SQ45k0LAZ3DD4JlsjD9EPO6c5jdgwDDg/HGBvWCPWc0119sfCgnxym8b7RF6uab7nKiWSnfOQLHWMzqLZeNAevQ3JjGGqJkC9fqknzrdP3WvpoUkJRUWGFn71akML/9RT3LJMWsajrfLomKELM0Wx3ZyGlbft1khZea7pkAUGcU2zD17nF5KljtHyysaD9ugdKCzIZ8mYAVG515OJF9100fIyZfIvkzgP7Z134KSTYMgQqK2FefMMLXz//kpN/aW929EiNzrjpRm6KFpe5jinYRXTz/KgsY81PG7ukaqgiGq7E0Hp2f1o+pOVGVVn0Ww8aEOfYXj5UrsdYpeVVxpa+LPOgv79jZQFjz0Gn31mGPyw0VUZocmFXW1DF5HHqYgsS+g0cRtLrOFxukfjiz5lVERVLDP2PL7oU9+TmkEaWyfnIfZhBPGppoNIU5DK1Nqa9KJDNxmGl3CRmyF2u22buPG92XDXf6FFCyPD5PXXQ456AZWfkJJ5nFMBFlVsPlsIhp7YNm6hkZXhsbtHRcvLeGbpt3GhpsqqGp5btsFTegi31wwS1QTplCFdE85tE4uWVzYetKHPQNyu4rSLjbfasY0/f/A8Q1f8h+qsJjx+ysW80P93/O+nbFrf/2FUqgU3X3K3cWIn/b/qgVErJZMLu8YtNIo04LHbrQyfXTF0r+khYgmiOpgTqc4/k4o+adKPNvQKgkjfmuwUsFZGdb/dOxmx7CWuLi6iaXUVzx83kPv7DmXzvi1ht7GPWWwbSV3O96ASgxUW5FP8zdY679nUuIORiVFlhM0HhpXh8SIDtDPaqiRpmRST1hOkmmSgDb0FQeiLg9Io2z0sIofeP/20nT+tXsjli58lr/IXXul8CveechnrW1pfK7b4Nth7jm6H+VYa9zkfbWDOxxssrwnOcWEvXq5q5CHAdWgonej8M5pkoPPRWxBEDvAgzuEqX3h1NTz9NBW3jCf3++94t30Bd586jM8OOcLVNWJRVaRyi9cc9G5yBtnlzM/Py4l68EC8fFEAl4ZLEGZ6oQ2dI17jBZ2PPgGCGD4neg5V7pg6T7Z7a/j3v+GWW2D1ar5o3Ympl9zBh4cdB0QnX1MlDrOidV5OQsbQa4jB7qFntsOuMIr5UImctJwypKvtKCiTDaaeINUkA23oLQhi+OymsIjqy+wkQWy78iPoM87Qv3fqxLhLJ/BMfq86mSREJ1+z8hJD2SIqRg+G4Wx/YE5CISe7CeJYIleJxt4Pq1S/kVgt4jIfgqlY75AoVv21qzGr0SSC1tFbEIS+2O4cTkmqVBLEY374iidfmMDzz42FDRvg0Ufhs894ts3xUUbeJFL6GJsE7OLj23LxCW2jimRIYMmXWxNaFu+0eCqSGikpWl5G90lvMDJG9/7M0m+VRj4/L0fp5deHSUur93/20m910jJN0tCG3gK/FYncnsMpx0issWq3bRP3z5/Ga0/eQPdNa/nsL+Pgiy/gmmugSRNX2TCtkoAtWLnJdXEQLxLEyH7bVZlqkRti7EufWoaV7MI1S8YMUC7Oqg+Tlm7y/OicM5ogaRShGz8x5yBiuX4XH5nhj4N2Glr435UaWviHT7qIw6ZOYFC/Y6KOc8qGqYr1eyl8LYH2YxbULWwyqz9ZEdlvVR52MFLueC2+bRry+lw0w+1Dsz6MTjT1gwZv6DMxFatT/H5sn0PZMO7vXLHsZZpV7+H54wbyyMlDqWh1MOWvfc24xRsRAsorquoeXFOGdGXi/FV13nHzUBbF32yN8uSDoEZKZi/9FsDW2Dv1NS8nxHaHCeLYOHykIU/1pGWQah238xj1YXSiqR84yiuFEP8CzgF+lFIeG97WEpgDtAfWAxdJKbcJIQRwP3A2UAEMl1J+4tSIZMor7WSOowd2ivvyQuqXuYNhxO4adCSDP/g33HknbNnCom6ncceJQ9mW356de6ptdegX9MyPm7y0mrCMJC8nxO7qWs9eNRghmS+nnO24n51ccNrCtUqDZ/YpEyYog5Y8uim5qCWVGje4lVe6MfT9gB3AUxGG/m5gq5RyqhBiDNBCSnmzEOJs4M8Yhv5E4H4p5YlOjUimobfTYOeEsuMKOCOiFxMl+oVTeYKR29vs35T793xKj3/NMCZZf/MbmDIFevYE3GnTVas+VQhg+sXdgb0PtrzcEDt2VUcpcexYH6G3d1IRqe6BlcFrkRtiwrldMsbIqe5/ZO1brw8hrbrRBEFgOnop5btCiPYxm88DTgv/PQt4B7g5vP0paTw9lgoh8oQQh0opN7lverCohsnZQsQZGCsDl0ieEaewUZ0WftxN8PnncPzx8MQTcPrpUedxE6v1Gp4x91aNaNw8WEwc+6mYq6gvmnHV/TfvuZ9wYKbr+TUNC1crY8OG/tUIj75cSpkX/lsA26SUeUKIV4GpUsr3w6+9BdwspbR115Pp0auG3V7CFW5XixYtL4sqOacKneTn5bCkTxMYMwY+/BCOOgruuAMuuKBOJhnp8WW58NazBLh0xAHrsI05egEYOafU9vjcUBZDerZh8ZrNyodCokXUrUjHyla3q32T0V+Nxo6UrYyVUkohhOfZPiHECGAEQLt27RJthi3NmmTVGTQzLODGazVxMylWtLyM0XNXRIV9rG7K0T9+xU0vzoKxJdC6NcycCVdeCU2aRJ0rtm6sI9JYBBV5/VCWICtLsLs6uqhgTigbIeIVL5VVNUycvypufysqqmrrJmVVeEmF4IZ0Taw71Xs1SUQlk+mpGTT1G786+h+EEIcChH//GN5eBrSN2K9NeFscUsqZUspeUsperVrF1xQNAtMwROq0d4WLaFst7AllCWPFaARuJXvTFq5VTpYCtC3/numv3MOCJ/5Cz+/Wwl13wbp18PvfRxl581xeJ0hrMeYWzJBKXk4IBHFGOy8nxJQhXSmvsFa8lFdW+ZqctUJAoIt+0lXj1O3aAL8qGacFdBpNovj16OcDw4Cp4d//jtj+JyHE8xiTsdvTGZ+3MwzmEDso1Y3Kmzto5zb+9MEcflf6H2qysnmsz2/Jv/M2Bp3axfO53FAjZZ3HbvXg+WVXNeAtVYFfJHDjCyuAYDzudKbwjYypq8KBbhwCK8891TnoNY0PR0MvhHgOY+L1ICHERmAChoF/QQhxNfANcFF499cwFDfrMOSVVyahza6xMwxu0v96IdZw7ru7gt9/9BLXfFxEs+o9zDnuDB7s+ztO/3V3RtgYeatzecVuMVSNlIx96VNLOWYyMK8HiRl7s85sMvPJuw2f+J1EVoWeVO+BXjClCYoGnaZYNYlmNxGZiIxy9NwVZO3ezWXLX+P6D1+gZeXPvBrOC/91OC98KEuwb/MmUYudnAptJAMhoE/Hliz5cmvSrhFJXk6I0gln+DrW7n4EpTdPRXpgO5mm1QNMT+5qnHA7Gdugc92oEoupJiITifUWdjuEOU3X8s5jf+DWtx/js4MPZ/Cw6fzpvJvrjDwYEs5tFVXKWKzpVVZW1djmiXEiLydkm1xMSgI38tlZ6vaWV1b5jjnb1ZkNyhCnIv5vJ9PURbo1yaRBG3pVYjHVRGRZeSUdxiyg79S33RslKQ0tfLdu9Jj4Vw49sh0sWkS/rz/h00OOdDw80phETsqBtQFwgwAmDu5SV8LPD+Y9c0uL3BD3/vY424dTZD/7Tn3b9b22qzMblLetukZZOMwXBKoQk/m5TCSJnkZjR4PPdWO1MMVOWhnpaZvHK3n33Wgt/IsvUtSxN9Pe+B/fvbnAlf4d9j5grPY3PXur81iFoMxqSoUF+Ux6ZZXjtVWYKzXdzBXkhLKjVrKqNPjm3IhXiWSyy+vZxf+BwCSc/Tu3spSk9u/cSi+g0iSVBu3Rq3CTM9122L5yJQwaBKeeCt98Y2jhV62i6PCTGPvyZ3UyOS+rVe32Vw3tJw7uEucJTr+4e13JvG2KkYsb5pWU0b9zK5cjCsnIOaUcPvY1Rs4pRRXBaZ2X4ytEEkR9ABVORV7ctM8ti9ds9rRdowmKBu/RWxGrmnBdxOKrr+C22+DZZ+GAA2DqVPjznyE3t+58yZhAVSVgs1MJJWqYKqtqWLxmMxf0zOe5ZRscDKGh1Tf3sVqhaxrmUTbevopkpkpw+54FoZcO0gEAAA/KSURBVIBJpzxU07hplIYeokM6KjVEXWjghx9g8mT4v/+D7Gy46Sa4+WZo0aJu36LlZbZhDq9pFyKPM42alWFTSQKdjEeL3JCjx19WXplQmmOrpF+qsJlTGCZZoQ23RjaIMJGbEJReIatJBo0ydBOLKjQwtm9rmDABDj8cHnkErryS/xS9R9+8M+hw1wd1E4lFy8sY/eIK5fmtJttmXNxdWSUpW4i6/S7oaRhHq4lLuxWVdoZpxsXdWX7bGcrrm2RZqJO8UCslX08dFFXDNZlhGD+4MeBBtc+p73qFrCZZNGgdvRciPanD9s3mH+XL6DrrQfjpJ/jtb2HyZIp27mOptQZZF76IxU6LbaXdNhOh5SsKZEfmabdLJmaGSZRJ1RRFw01i8+b4QaUDzySv1bJwuou1DolcT9V3u9oJWk+vsSKwfPSpIBMMPQA1NTB7thGH//ZbI13w1KnQy7iPbrMYRjLj4u62RsL84peVV8Zlu1Rlv3QqKGJm22yvKONnvl60vCyqKpWZATM/L4edu6sta7nC3pCMXf56N4uNMsXgZ0o7VLUT3GZP1TQ+Upa9skEgJbzyCj//9Sb2/3ItKw85gsevvpv+1/8u6gvvZ9IstsiI1URqYUG+5UNEZcydHs1mOCLfJiZs5ck2a7LXONvVer33ouPiioqUlVfWyUDzXRjLTCrxmCnSxmTLSDWNF23o33vP0MJ/8AFbW+Yz5rwxvN6pD1Jk8UaM4fGag6ZFbigufXFZeSWj58Yn+gpKeREZ87UroK2SOY6cU0rxN1tta71GttuvkczERF7p9uzrc8FzTWbTeA39ypVwyy2wYAEceih3nT+KRw8/lersvbck1vC4zUsORox7wrldmPTKqrhYd1WNZNQLpYyaU1pnUILIJikEUeGSSFmi6XGbfbK71uyl39L38JZs3bknzuhMHGyfkM3EyWgmKjUM2ignY4ThtY31peKWpv7R+FQ3X38Nl18O3bvDkiVGDH7dOv551OlRRt4k0vDEplSwY9qFRnhDJWGUMnoVrvvFSWqkjDdKhQX5dWqPyNJ3Tiz9apvvZflu1COqcIQEuk96w1Zpkgx1StC5bvy2sbAgnyVjBsSplTSaRGg8hv7HH+GGG6BTJ5g719DCf/WVoYfPzVUantjtkV9ElTzR3N536tuummYuTnJT3MKJWPll36lvM3JOqWeZZE04j4wfo+PGaNqtTi6vrGL0iyuURjEZCciCXsyUriIpGo0VjcPQP/ggdOwIDz8Mw4cblZ2mTo1a8ORH3606pn/nVlHJydzwXXlllGG996LjXB8biek1xiZI80oimTPdGE1zdKS6TlWtVBrFZKwwdfugd4teBavJJBqHod9/fzjrLFi1yshLk29dTMJPqKJ5aO8tNMv0LV6z2bMHfUBOKK49LXJDir3VmF5joukYends4byTAruwTOSir8KCfGpt5L0qoxi0UYbgF3Ilo40ajV8ax2TsFVcYPw54UZBYyRPN+qx+vLbyyirGF33K5MKuddsmnNvFVwGSILzG9VuczxGrwzcLr48e2InRL66w1NfHTnLaTUKrjGIy1ClBT4RqBY0mk2gchj4J2MkT/fLM0m/pdVhLS9WMXfK1WEwDaRe2aZEb4ufKamUeG6eHhZn2IdKYb6uo4sYXVzD0hLbYzVZHqpnaH2ht6LMESqOYLHVKkHp6raDRZBJ6ZawHIuVyybprdsvd3azMNVekAo7l94q/2WqZH92pHU5tMVfY2iGA6Rd3V6ZpSKT0oEbTWNArYwMkNkThlbycEDv3VLvKHWPnSVuFA0LZgn2aNmF7pXVelljNfLYQXNBzr+f6zNJv4wxtKFs4hhjs2ulk5GFvbnrVrtt93uuGSLoXcmnqP9rQO5BooW4BlE44w/XDwm6yzk84oGJPddT/NVIyr6SMXoe1VBrafZo2cTQkiSzwcspNb55fk1mpIjT1F23oHUhUvZIlBB3GLKB1Xk7dqlLVylQ3k3VOceTxRZ+6KBRSU/ewsCLWm7byKEcP7GQ7H6FK0BaZB0d1HwTq+LwXgvCE0+1NZ2KqCE39IyF5pRBivRDiUyFEqRCiOLytpRDiTSHEF+Hf/nV6KURVsDpRBUuNlHF1aJeMGcD6qYPqctIHVRB6fNGnzF76ratCIabhsiJLiLr+q1Z4AlzWu53y/JK987FmicP1UwfV5dnpMGYBFXuqCcXUHYyseZsIQayezYT88FqPrwmCIDz6/lLKnyL+HwO8JaWcKoQYE/7/5gCukzTshsdOIQqnlMGRxHpiQWdNfEYxsWqF6Z1ahaVqpKxLvGbnUS4ZM6AuBGR1j0wP3pzUjVXqbKuoIksYcxiqOQa/BOEJZ4I3rTNaaoIgGQumzgNmhf+eBRQm4RqBYveFdiokbmXk7fb36ompRhpW+3lRApkGdcqQrpbFvKtqjILfqoec2Q9zNa9KTRnZ34nzV8Vp62tlciZeg/CEM8GbzrSKXJr6SaKGXgJvCCFKhBAjwtsOllJuCv/9PXBwgtdIOnZf6MKCfC7ome+YxMzEXB2ryoPjxRPzEjrwkkMlMtWwsTrV9aF1xPbDzUpQ1US0hMBDI0GsTM2E1a1+V2xrNJEkauhPllL2AM4CrhdC9It8URoifUszIoQYIYQoFkIUb968OcFmJIbTF3rxms2uveV9mjWpyxgZG38OZTnLFiPxkhjLrZfpJdWw3Tli+2HneZqjEjcElfgrCE84U7xpndFSkygJxeillGXh3z8KIV4GTgB+EEIcKqXcJIQ4FPhRcexMYCYYC6YSaUeiOC1X9z3cjx0GxPyfSM722GPzckOWKZGbNckiW0BFuKbtruoair/ZGnWdvJyQqzUCApRxdJX0E9QLt1QEERoJYmWqXt2qaSj4XhkrhNgHyJJS/hL++03gduB0YEvEZGxLKeVNdufKhJWxfoo2W2FOPjoVerbS58fWWVWdo0VuiF1VtXEFrRFELcrKCWXTo90BLPlya9w5Luvdri6vjlU6A1W7veKnzq4uhq3RuMPtythEQjcHA+8LIVYAHwELpJT/AaYCvxFCfAH8Ovx/xmM3PHaakDVxMwowt096ZZWvnO05oWykJO7YqlpJVY2sS/trxnKXfrXNsh3PLdtQ93dhQT7Tfntc3bxC7EDETbjCjzy1RW4oLrylJxo1muDxHbqRUn4FxCVNl1JuwfDqGwx2YQnVKMBOFle0vExZeSo2Z7vVNexWlNZIWWcsCwvylYuaYrX2kVJPr4uE/MhTI0c2OjSi0SQXndQsSYwv+jQuj4wZmrGr2eombOEmHGKe5/Cxr1kuoMoWgi+nnO3YDzfYhalU8x9aOaLRJE4qQjcaBUXLy5hXUhaXAsBMJuaUuMwJN6Ek8xpDT2xr+bpqux+c5KlaHqjRpBed6yYJWMkiJYZME9ThjEh9ux2RIR2noh3mhKuZ/yZbCIae2DaqwEmiOK3eDHoFsEaj8YY29EnAaSJWFc7wom83jadKvRM5Mphc2DVQwx6LVUUpr2sGNBpN8tCGPgm48XAhGH12xmi9HdYMaDSa9KEnY5OAG418Q8JpzYBGo0kOusJUGskYLztFZELyL41Go0Yb+iTRGCYgTQ28akyoU+lqNJmBNvQaXziVWNQrXDWazEEbeo0v7Eos5jfwUJVGU9/Qhl7jC1X8XYCegNVoMgy9Mlbji0woyqHRaNyhDb3GF5lSlEOj0TijQzcaXzQ2CalGU5/Rhl7jm8YgIdVoGgI6dKPRaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwMmINMVCiM3ANz4PPwj4KcDmZAoNtV/QcPvWUPsFum+ZymFSylZOO2WEoU8EIUSxm3zM9Y2G2i9ouH1rqP0C3bf6jg7daDQaTQNHG3qNRqNp4DQEQz8z3Q1IEg21X9Bw+9ZQ+wW6b/Waeh+j12g0Go09DcGj12g0Go0NGW/ohRAthRBvCiG+CP9uodjvP0KIciHEqzHbOwghlgkh1gkh5gghmqam5c546Nuw8D5fCCGGRWx/RwixVghRGv75Vepab9nOM8PtWSeEGGPxerPwe7Au/J60j3htbHj7WiHEwFS22w1++yaEaC+EqIx4j/6Z6rY74aJv/YQQnwghqoUQF8a8ZvnZzAQS7FdNxHs2P3WtThJSyoz+Ae4GxoT/HgPcpdjvdOBc4NWY7S8Al4T//idwXbr75KVvQEvgq/DvFuG/W4Rfewfole5+hNuSDXwJdASaAiuAY2L2+SPwz/DflwBzwn8fE96/GdAhfJ7sdPcpoL61Bz5Ldx8S7Ft7oBvwFHChm89mun8S6Vf4tR3p7kOQPxnv0QPnAbPCf88CCq12klK+BfwSuU0IIYABwFyn49OEm74NBN6UUm6VUm4D3gTOTFH7vHACsE5K+ZWUcg/wPEb/Ions71zg9PB7dB7wvJRyt5Tya2Bd+HyZQiJ9y3Qc+yalXC+lXAnUxhybyZ/NRPrV4KgPhv5gKeWm8N/fAwd7OPZAoFxKWR3+fyOQSQnU3fQtH9gQ8X9sH54IDy9vTbNhcWpn1D7h92Q7xnvk5th0kkjfADoIIZYLIf4rhDgl2Y31SCL3PpPft0Tb1lwIUSyEWCqEyCTn0BcZUXhECLEIOMTipXGR/0gppRCiXsmEkty3S6WUZUKI/YB5wOUYw1BN5rAJaCel3CKE6AkUCSG6SCl/TnfDNLYcFv5udQTeFkJ8KqX8Mt2N8ktGGHop5a9VrwkhfhBCHCql3CSEOBT40cOptwB5QogmYS+rDVCWYHM9EUDfyoDTIv5vgxGbR0pZFv79ixDiWYzharoMfRnQNuJ/q3tt7rNRCNEEOADjPXJzbDrx3TdpBHx3A0gpS4QQXwJHAcVJb7U7Ern3ys9mBpDQZyriu/WVEOIdoAAj5l8vqQ+hm/mAOZs/DPi32wPDX7LFgDmj7un4FOCmbwuBM4QQLcKqnDOAhUKIJkKIgwCEECHgHOCzFLRZxcfAkWGVU1OMCclYtUJkfy8E3g6/R/OBS8LKlQ7AkcBHKWq3G3z3TQjRSgiRDRD2Do/EmLTMFNz0TYXlZzNJ7fSK736F+9Ms/PdBQF/g86S1NBWkezbY6QcjzvkW8AWwCGgZ3t4LeCxiv/eAzUAlRjxuYHh7RwyjsQ54EWiW7j756NtV4favA64Mb9sHKAFWAquA+0mzUgU4G/gfhuczLrztdmBw+O/m4fdgXfg96Rhx7LjwcWuBs9L93gTVN+CC8PtTCnwCnJvuvvjo2/Hh79ROjBHYKrvPZqb8+O0X0Af4FEOp8ylwdbr7kuiPXhmr0Wg0DZz6ELrRaDQaTQJoQ6/RaDQNHG3oNRqNpoGjDb1Go9E0cLSh12g0mgaONvQajUbTwNGGXqPRaBo42tBrNBpNA+f/ATews6G10pN3AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -3293,7 +3299,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -3853,7 +3859,7 @@ "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", @@ -4079,7 +4085,7 @@ { "data": { "text/html": [ - "" + "" ], "text/plain": [ "" @@ -4149,7 +4155,10 @@ "y = at^2 + bt + c\n", "$$\n", "The we need at least three data to compute the parameters $a, b, c$.\n", - "\n" + "\n", + "$$\n", + "L = \\sum_{i=1}^N (y_i - at^2 - bt - c)^2\n", + "$$\n" ] }, { @@ -4185,6 +4194,23 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to get the update items?\n", + "\n", + "$$\n", + "L = \\sum_{i=1}^N (y_i - at^2 - bt - c)^2\n", + "$$\n", + "\n", + "\\begin{eqnarray}\n", + "\\frac{\\partial L}{\\partial a} & = & - 2\\sum_{i=1}^N (y_i - at^2 - bt -c) t^2 \\\\\n", + "\\frac{\\partial L}{\\partial b} & = & - 2\\sum_{i=1}^N (y_i - at^2 - bt -c) t \\\\\n", + "\\frac{\\partial L}{\\partial c} & = & - 2\\sum_{i=1}^N (y_i - at^2 - bt -c)\n", + "\\end{eqnarray}" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/1_logistic_regression/Least_squares.py b/1_logistic_regression/Least_squares.py index 8e0e7e3..313f820 100644 --- a/1_logistic_regression/Least_squares.py +++ b/1_logistic_regression/Least_squares.py @@ -239,6 +239,9 @@ plt.show() # $$ # The we need at least three data to compute the parameters $a, b, c$. # +# $$ +# L = \sum_{i=1}^N (y_i - at^2 - bt - c)^2 +# $$ # # + @@ -256,6 +259,18 @@ plt.scatter(t, y) plt.show() # - +# ### How to get the update items? +# +# $$ +# L = \sum_{i=1}^N (y_i - at^2 - bt - c)^2 +# $$ +# +# \begin{eqnarray} +# \frac{\partial L}{\partial a} & = & - 2\sum_{i=1}^N (y_i - at^2 - bt -c) t^2 \\ +# \frac{\partial L}{\partial b} & = & - 2\sum_{i=1}^N (y_i - at^2 - bt -c) t \\ +# \frac{\partial L}{\partial c} & = & - 2\sum_{i=1}^N (y_i - at^2 - bt -c) +# \end{eqnarray} + # ## How to use sklearn to solve linear problem? # # diff --git a/1_logistic_regression/Logistic_regression.ipynb b/1_logistic_regression/Logistic_regression.ipynb index 5dbcea2..1b0d7d0 100644 --- a/1_logistic_regression/Logistic_regression.ipynb +++ b/1_logistic_regression/Logistic_regression.ipynb @@ -20,6 +20,7 @@ "\n", "逻辑回归就是一种减小预测范围,将预测值限定为$[0,1]$间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在$z=0$时,十分敏感,在$z>>0$或$z<<0$处,都不敏感,将预测值限定为$(0,1)$。\n", "\n", + "FIXME: this figure is wrong\n", "![LogisticFunction](images/fig2.gif)\n", "\n" ] @@ -158,7 +159,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -174,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -197,16 +198,16 @@ { "data": { "text/plain": [ - "Text(0.5,1,'Original Data')" + "Text(0.5, 1.0, 'Original Data')" ] }, - "execution_count": 6, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXWYlFUXwH93ensXlu5u6VYklJI2AAVBRFEQBQVRVBoMpEsQRAUJERBQQlK6O6S7WRY2pmfu98cs++0ws7AxGyzv73l4nt03zj3vsHPee889IaSUKCgoKCg8XagyWgEFBQUFhfRHMf4KCgoKTyGK8VdQUFB4ClGMv4KCgsJTiGL8FRQUFJ5CFOOvoKCg8BSiGH+FLIcQYqAQYqavr02CLCmEKO4LWQoKaY1Q4vwVMjNCiK7AJ0AxIApYCnwupbyXkXp5QwghgRJSyjNezm0CagE2QAKngUXAOCmlJbXyFRSSizLzV8i0CCE+Ab4F+gMhuIxnIWCtEEKXyD2a9NMw2XwgpQwC8uB6oXUAVgohRMaqpfA0ohh/hUyJECIYGAr0llKullLapJQXgNeAwkCnuOuGCCH+EELMFUJEAV3jjs1NIOtNIcRFIUSEEOIrIcQFIcQLCe6fG/dz4TjXTRchxCUhxB0hxBcJ5NQQQuwQQtwTQlwXQkxO7CX0KKSUsVLKTUAroDbw0uPkCyE2x91+SAgRI4RoL4QIE0L8JYS4LYSIjPs5f3L1UXg6UYy/QmalDmAAliQ8KKWMAVYCLyY43Br4AwgFfkt4vRCiLDAVeAPXjDsEyPeYsZ8FSgGNgEFCiDJxxx1AXyAcl9FuBPRM5nMlfJZLwF7gucfJl1LWi7umopQyUEq5ENf3dzau1VBBwARMTqk+Ck8XivFXyKyEA3eklHYv567HnX/ADinln1JKp5TS9NC1rwArpJRbpZRWYBAun/ujGCqlNEkpDwGHgIoAUsp9UsqdUkp73CpkOvB88h/NjWtAtpTIl1JGSCkXSymNUspoYKQP9FF4SsjM/lGFp5s7QLgQQuPlBZAn7vwDLj9CTt6E56WURiFExGPGvpHgZyMQCCCEKAmMBaoB/ri+P/seI+tx5AO2p0S+EMIfGAc0BcLiDgcJIdRSSkcq9VLI4igzf4XMyg7AArRLeFAIEQg0A9YnOPyomfx1IN4PLoTwA7KnUKdpwH+4Im6CgYFAijdrhRAFgKrAlhTK/wSXe6pm3PUPXEPKBrLCY1GMv0KmREp5H9eG7yQhRFMhhFYIURj4HbgCzEmiqD+AlkKIOnGbp0NIuXEMwhVuGiOEKA28nxIhQgh/IcTzwDJgN649jKTIvwkUfUgfE3BPCJENGJwSfRSeThTjr5BpkVJ+h2v2+z0uo7gLlwunUVJj46WUx4DewAJcq4AY4BauVUVy6Qe8DkQDPwILk3n/ZCFENC4jPh5YDDSVUjqTKH8I8EtcNNBrcTL8cLnAdgKrk/tACk8vSpKXwlNFnNvoHi7XyvmM1kdBIaNQZv4KWR4hRMs4V0sArlXEEeBCxmqloJCxKMZf4WmgNa6QymtACaCDVJa8Ck85ittHQUFB4SlEmfkrKCgoPIVk2iSv8PBwWbhw4YxWQ0FBQeGJYt++fXeklDked12mNf6FCxdm7969Ga2GgoKCwhOFEOJiUq5T3D4KCgoKTyGK8VdQUFB4ClGMv4KCgsJTiGL8FRQUFJ5CFOOvoKCg8BSSaaN9FLIODruDk3vPIoSgZLWiqNXqjFZJQeGpRzH+CmnKoX+PMeyVMditrn4sWoOWIYv7Uf7ZMo+5U0FBIS1R3D4KaUZURDRftvyGqIhojNEmjNEm7t+OYmDzUcTci81o9RQUnmoU46+QZmxauB3pcHocl1KyedGODNBIQUHhAYrxV0gzoiKisZptHsetZhv370RngEYKCgoP8InxF0L8JIS4JYQ4msj5+kKI+0KIg3H/BvliXIXMTaUG5dD76zyO6wxaKjUsnwEaKSgoPMBXM/+fgaaPuWaLlLJS3L9hPhpXIRNTrm5pKjeqgCFAH3/MEKCnetPKlK5RPAM1gxO7TvNJg8G0ydaFd575mC1LdmWoPgoK6Y1Pon2klJvjmmsrKMQjhGDw4n5smLeVNbM3goCmbzWkQce6CJHSHuqp58Su0/RvNBSL0dXGN/aekW/fnEj03bdo3v2FDNNLQSE98Vkzlzjj/5eU0mM9L4Soj6tZ9RVc3ZT6xTXWfvi6d4F3AQoWLFj14sUkFadTUEgW/RoN4dBGjz8/grMH8vuNmUoegsITjRBin5Sy2uOuS68N3/1AISllRWAS8Ke3i6SUM6SU1aSU1XLkeGw5aoUMxm6zc2rfWS6fvJpm8vetPcT2ZXt8Ghp69uAFr8fNsRai78b4bBwFhcxMuiR5SSmjEvy8UggxVQgRLqW8kx7jK/ie7cv3MPqtKTjtThwOB7kL52TYsgHkLZbbJ/JP7jnDwOYjsdscANitDt4f35UW776Yatm5CoYTE+n5MhEqFQEh/qmWr6DwJJAuM38hRG4R5+QVQtSIGzciPcZW8D2X/rvKqNfHExMZizHahMVo5dJ/V+nfaChOp2dcf3KxWmx83nQEURExGKNMGKNMWM1Wfuj7M2cPXUi1/DeHtPeIQtL762n9QVO0Om2q5SsoPAn4KtRzPrADKCWEuCKEeFsI8Z4Q4r24S14BjgohDgETgQ5S6Rz/xPL3jLXx5RoeIJ2S6MgYjmw+kWr5+9cexmH3fInYrHZWz9qQavl1Wlfng0lvExIejFavwRCgp23vZnQb2THVshUUnhR8Fe3zyG+NlHIyMNkXY2VWTDEmDm48hlqjplKDcugMnvHtWYXblyO8GmeAyJv3Ui3fGG3C29zA6XASHekbn3zTtxrSuEt9YiJj8Q/2Q6NVylwpPF0of/E+4N/ftzO621TUmv8vpIYs6U/lhhUyUKu0o0azyuxZfQBzrMXtuMPmoGydUqmWX6lBOex2h8dxQ6CBZ9vVTLX8B6hUKoKzB/lMnoLCk4RS3iGV3Lx4m9FvTcFitMT7p41RJga1/pbYKGNGq5cmNOhYl1yFc6Iz/N8/bgjQ89K7L5KzQHiq5WfLHUbnQa+i99fH5wMYAvSUqVWC2q0eG8GmoKCQBJSZfypZ99tmHF6KlyFg29LdNO5SP911Smv0fnom7RjJssmr+XfRdvwC/Wjdqyn1Xq3tszE6ftaWCs+VYdXM9RijjdR7pQ71XqmlxOArKPgIxfinkth7Rhw2u8dxp92JMcqUARqlD36BfnT4rC0dPmubZmOUr1ua8nVLp5l8BYWnGcXtk0pqvlQFvb/e84QQVGtaKf0VUlBQUEgCivFPJc/UK0vNl6pgCDDEHzME6Gn5fmPyl8iTgZq5I6Xk5J4zbFq4jSunrmW0OgpJwGqxEXE9EoeXzW8FhdSiuH1SiRCCgfP6sHPFPtb/thmNTkuTrvWp3CjzRPpERUQzoPFwrpy6hkqlwm53ULN5ZQbO66OEOGZCHA4HPw2cx7Ipa5BSotNr6Tq8Pa17Ncto1RSyED4r7OZrqlWrJvfu3ZvRamQJBrX5lj2rDsSXSgDQ++l448uX6fh5uwzULPNx5fR11vy0gfsR0dRqUZWaL1VJ903mn76Yx5IJK+OrjoIrA/mTme/ToEPddNVF4ckjqYXdFOOfxTEbLbQN64rdy6Z0jgLZmXfxhwzQKnOyceE2xnSbit3uwGFzYAg0UKZGcUat+iLdVkgOu4M22bpijjF7nCtQOh8/HR+fLnooPLlktqqeChmEzWIDvL/gLUZr+iqTiTEbLYztPg2LyYojboVkjjFzYtdpNi7Ylm56GKNNHqUzHnDn6t1000Mh66MY/yxOUFgg+bxsPKs1Kmq+VCUDNMqcHNv2Hyq159fBHGth4/yt6aZHYGgAQWGBXs8Vr1Q43fRQyPooxv8p4JNZPfELNKDVuVwXen8dwdmDlEJmCdAZdIktkLyH8qYRQgh6jHnTs+qon47u37yRbnooZH2UUI+ngDI1SzDz2Dj++uEfLp24Srm6pWj2diMCQwMyWrVMQ9k6JdEZtBij3RPzDAF6mr/z/9aOV05dY9mU1Vw/f4tKDcrR7O1GBAT7tgdAo9efIzA0gF+H/M7NC7coVqkwb43oSOkaJXw6jsLTjbLhq5Du3L4SwZ+TVnF6/zmKVy5C2w+bkyN/9oxWi5N7zvBZkxE4HU6cTicOh5O2vZvR/ZtOCCHY+88hhrT7DrvVgcPuiF9BTd37LaE5QjJafQUFQIn2UciknD96iT7PfonVbMNutaPRadDptYzfOpwiFQpltHpYzVZ2rzpATGQslRtVIFchVztRp9PJ6wXfI+JapNv1Gp2GVj2b8P7YrhmgrYKCJ0q0j0KmZNIHMzFG/T+ixW61Y4w2MemDWRmsmQudQUfNl6pw9cwN3qvSn2aGjnz64jD2rz3stY+w3Wpn25+7M0BTBYXUofj8FdKM21ciWDpxJaf2nqXoM4Vo1+cljm076fXaY9u9H08uTqeTHcv3sun37Rj8dDTp1jDZxeG+7jSR3X/vx2JyhcIe3HCE/3afTrTMgn+wX6r1VlBIbxTjr5AmXDh2mY/qfoHVbMVudXBs23+s/mkDWr3Ga36B3i/1nc+cTidD2o3mwPojmGMtCCHYuHA7HQa0ptNXryZJxo0Lt9j11z6sZlv8MSnBZrETmjOUyBuRbl3M9P562nzQPNW6KyikN4rbRyFNmNpnNqZoE3ara7ZstzkwxZjxD/b3aHGpM2hp+nbDVI+5d82heMMPrmJ2FqOF+V8v5faViCTJuHTiKlq9ZxN3u9VOzoLZKVA6H4ZAA/7Bfmj1Whp1eo6m3RqkWncFhfRGmfkrpAlHNp/AWyzBvZv3qdG8Mgc2HEWr02Cz2qncsDzdv059DPv2Zbs9WksCqNRq9q09TNO3Hm+k85XIHZcV7Y5Gq6Z09RK8N7YLJ/ec4c7Vu5SsWpScBXOkWm8FhYxAMf4KaYIhUE9MpGeZAp1By/Dln3Ht7A0u/3eNAqXzkq+4b0pfBwT7o9aoPJrLq1QC/yBDIne5k694Hio1LM/BDUfdXD9avZa2HzVHCKHE2ytkCRS3j0Ka0KJHY3QP+fG1ei1NuzVECEG+4nmo1aKqzww/QOOu9VF7KcAmgRrNk17K4rM5vanfvg46g9Zl7GuW4PuNQ8hdOKfPdFVQyGgU46+QKBaThbs3InE6vfQofgxvDnmVmi9VQavTIFSuJux2m53DW49z+eRVX6sKQKGyBfhgYjd0Bh3+QX74B/sREOLPyL8+x5CEEg0Ou4NpfWfTMf97bPp9Bzo/Hb2ndmfSjlGUrFrM4/qUfC7GaBNHtpxIs89AQSGpKEleGYyUkkObjnH24AXyFMtFzeZVUGsytkm51WJjyoc/sW7OvwD4BfnRc3xXGnZ8LllyTDEmOhZ4j9j7xvhjQgiCsgfy24VpSTLIKSHmXiwHNhxFZ9BSuVEFdF42cL0xre9s/v5xnVs0kt5fz2dzevNs25rxx/5dtIMfP53DzYu3CckRTKcvX6b1B80QQjxS/h9jV/DzVwvQ6NTYbQ4KlS3A8OUDyJY7LGUPqqDgBSXDN53ZvnwPi75fzr3bUdRoVpkOA9oQliv0kfeYYs30bzSUi8ev4LDa0eg1BIUFMn7riAwtdzD6rSls+n07VpO7ERy2bABVktGhbPXsjUz5cJbHJqxfoIEPp77DC53q+Uzn1GK12GibravbMz+gWKXC/LB/NAA7VuxlZMdxbi8IIQR1Wlfnq98/TvTF7SoNMdqtQYtao6JElaJM2vm1j59G4WlGyfBNR+Z/s5RRr0/g6Nb/uHLyGsunrKZHpX7cu33/kff9Mngh5w5dxBxjxma1Y4o2c+fqXUa/NcXjWrvNzrxRi+mQvwdtwrowosM4bl687fNnibkXy8YF2zyMoMVoYd7IxcmSdfvSHa/RNxaTlduXkxZ6mV7ERMbgNTwJuH35TvzPs7+c75GnIKVk25+7GfLy6ETlLx63ws3wAzjsTs4ducS1szdSobmCQspQjH8qiY0yMnfYH25fbLvNQcw9I0snrHzkvevnbvEIK3Q6nBz+9zjmhwzFN50nMm/kEiKu3SX2vpEtf+ygZ/UB3L8TlSrdZ34+l05FetKlZG8Wfvcnt6/cQaP1Pnu9fv5msuSXrF4Mv0DPKBu9n45S1T196BlJSI5gDAHe3VAJ/f3Xz99KVMb+dUc4ufes13ORN71PBDRaNVER0cnQVEHBN/jE+AshfhJC3BJCHE3kvBBCTBRCnBFCHBZCZJkuIucPX0Sr9zSWNouNvf8ceuS9TkfiG4YywWbitbM32LF8b3y5AQCnU2KOtfD3j+tSoDXYrDY+qvMFS8av5ObF21w7c4M5Qxfxw8e/ei1rr1IJytYqmawxqjWpSP5SedEZ/u9z1xm0FC5fgEoNy6dI75RybPtJBrf9jh6V+jG1z2zuXHVfeajVarp/28mzjr6/nrcS9D3I76UxzgOcDicndpzyeq5Wi6po9Z6RSE6npEiFgsTej2XpxL8Z9fp4fhv5B5E37yXn8RQUko2vZv4/A00fcb4ZUCLu37vANB+Nm+GE5Q6Nz2JNiBCQs2D4I+997uVaaHTuBkEIQclqxfAL/H+9mHOHL3pcB2A1WTmeSK2cx7Ft6W5uXbrjtvKwmKwc33GSpt0aujUwEQJ0/no6DUpaiYQHqNVqxmwayqv9WpGrUA5yFc5B+wFtGL1+MCpV+i06Ny3cxoDGw9i+bA/nDl9kxbQ1vFuxn4fbrFm3Rgyc14fiVYoQEh5EtSaVGLd5mNvM/+2v30CdyMpIq9eSLY/3fZ52H71ESI5gtAlehHp/He+NeZPouzG8VfojZg2cz8YF25g3cgldS33I2UMXUv/wCgqJ4JMkLynlZiFE4Udc0hr4Vbp2l3cKIUKFEHmklNd9MX5Gkq94HopXLsLJPWew2/7/EtD56Xjl45aPvLfbyI4c2HCEyBv3MMWYMQTo0Rm09J/d0+26PEVzeSQugauccMGy+VOk99GtJzB5aRLudDjJXyIP/Wa9z7xRS7h7PZIytUvRbWRHCpVJ/lh+AQa6DutA12EdUqRnanE4HEz6YJabn95ucxB738icYYvoN8v9s67Tqjp1WlVPVF61xhX59OdefNNpEgmDJYQAvUFLrZbe99mCswcx/eD3/DlpFbtXHiA8Xxjt+rTgmXplGfXGeO7fiY5fCVrNNqxmG0NeHs13/wwiT9FcqfkIFBS8kl4ZvvmAywl+vxJ3zM34CyHexbUyoGDBgumkWuoZ+uenDH9tLCd2nkKtVaNSqeg1sRvl6pR65H3B2YOYeXQsW5fs5vT+c+QrnpsGHZ/FP8i9SmSxioUp+kwhzuw/hy1Bc2+NVk3rXo9acCVO7qK50Pvp3FxJAGqthhwFslOnVXXqt6+bItmZiZsXbnuN4HE6nOxfezhFMht2fI7chXMysuN4ou5EI6Ukd9FcDFr0ySPDSoOzBfHm4Nd4c/Brbsd3/X3AqwvwxrlbvF2+L/VerkX/n3uhVmdsCLBC1iJTlXeQUs4AZoAr1DOD1UkyIeHBfL9hCHeuRhB9N4b8pfKi1Xk3AuePXOTK6RsUqVCQ/CXyoNVpadChLg06PNrQfr1qION6TGfbn3uQTkmB0nn5+Mf345uNJJcXOz/PnCGL3I49KINQo1nlFMnMjASGBeBweC/FHJor5d23ytYuxdzzU7l6+jpqrZo8RVI+O9cZtBgT2be3mW1sXbqLElWL8nKfFikeQ0HhYdLL+F8FCiT4PX/csSxFeL7shOfzHp9vjDbxxUujOL3/HGqNGrvVTvVmlflifp9EXxQJCQgJ4MsFH2O12LBZbEnuG+uwOzi9/xwanYZiFQvHJyJZjBa6DG/PkvEribwRiZSSohUL88X8Pmi8lEh4UgnOFkSNZlXYveqA2/6GwV/Pa/1aeb3HYrKwfu4Wdv69j2y5w2j5fmOKVSzscZ0Qgvwl86Zax2bdG7J47F9utYTc9DFaWT5ltWL8FXxKen3LlwMfCCEWADWB+1nB358cJn0wk5N7zmCz/N9ts2f1QX4bsThZ/nCdXpvkjNW9/xxi1OvjcdgcSCkJDAtg8OJ+LBn/N1uX7EKr12Kz2ilZrRif/vJBqmav3nA6nem6sZsY/X/uxYj2Yzn873E0Og0Om4P2A1rz/Gt1PK41xZr5sPZAbpy7hdloQaVWsW7uv/Sd8R6NXk9ehnNS6fTVq5zed47Dm49jNXl/ARi97M8oKKQGn2T4CiHmA/WBcOAmMBjQAkgpfxCu6eZkXBFBRuAtKeUj03eftAzfR+GwO2gR2Cm+dWFCQnMGs+iG71sYXj93g7fL9XV72QDxxcoS+vq1ei31O9Th09kfpHpcp9PJvFFL+GPsCmLvGSlQOh8fTOxGlReeSbXs1HJi1ykuHrtCtaaVCM+bzes1i8Ys55dBCz32QvyCDPxxc5ZHLwJfcvbQBT5rMpx7t9x9QGqNmsZd6/PxjPfSbGwA6YwBnAhVcJqOo5C2KOUdMhFWs5WWQZ29buoZAvSsiJ7r0/EunrhCrxoDsMR6bnQiwFsgv1avYUX03FTXFfrhk1/4a/pat6Q3vb+O79YNTnaeQEKObT/J9H6/cO7wRbLlDuX1L16mSdcGj62nAxB7P5Zhr43l6JYT8TP/N756hY6ftfW49sM6Azmx87THcUOAnpfefZEytUpSu2XVNHsJHNlygoHNR2K3OrDb7Oj9dASEBjBt37dpVgNIOm4g7/UH2z7XAU1pRMi3CK1SuvpJRCnvkInQGXQUfaaQx3GhEj6fEUspGdJ2tHfDD14NP7hKDdi8rEySgynGxIpp/3iUMbAYrcwdtiiRux7PyT1nGNB4GCd2nsZitHL93C0m9/6JRWNWJOn+bzpP4si/x7GabRijTFhMVuaNXMyWJbs8rg0IDfAqwxxrYdnU1YzpPpUO+XukWQx+hefKMOPwGNp82IxaLary5tD2zDo2Dr2/nj/GruCzpiMY12M6549c9Ml4UtqREe3Bthewu/7ZjyHvdkQ6lczjrIxi/NOJvjN64BdoiE/W0hm0BIYG8N6YLj4d5+rp69y+cifR80IlvM6WC5XNn+oqmxHXIlFrvP9JXTx+JcVyZ3+1wKOejsVo4bfhf2CzeveRP+D+nSj2rT3k8WIzx1r4ffQyj+vb9GqaaJkHu8VVfyn6bgyD2nxHWq2a8xTJRY/RbzJ8+We81q8VTqeTHhX78fNXC9j3zyFW/7SB3rUHsnWp58sr2Vg2g4wCEkZESZA2pMnz81HIOijGP50oWbUYM4+N4+U+L1GjeWU6ft6Wn06M93kCj81qT3ST9UH1yYAQ//g+tWqtGkOAnj7TexAVEc2BDUdSXGs+PH92r64tIaCIl5XPA0yx5kTDMQHOHrzg9bjD4STyxqPLIETfjUnUleWthELNl6rSrm8LtAYt/sF+qNTeP8uoO1GcP3LpkWP7it9HL+Pujcj4fQinw4nFaGXcuz/gsCf+uSUJxxWQ3l6gJnCkz/MpZAxZJ6bvCSBngXC6f9MpTccoVDY/foEGj+xdoRLUb1+Hz+d+ROTNe/w5aRXHd5yiSIWCtOndjJUz17N0wkp0Bi12q53ilYswbPkAgrMFJXlsg7+edn1eYsmElW6uH52fjjcHe5aG2Lf2EBN7zeTmhVtodBqavd2Id0d39gh9zVciN/dueS+MFpLj0ZuTeYrmcq22Hqouqtaoqda4otd73hrWgTa9mnJs+0lmfzmfSyc8X4ZCJbDbUucme5iI65Gs/XUTd65GUqVRBWq2qIJarWb7sr0eG/cANoudS/9dpUj5VCREasuC0IB8yE0o/BHajN+kV0g7lJn/E4h03sMZ+yvOqBFI01/IBF9clUrFwHl9MATo42f3hkADxSsX4ZOZ7yOEIFvuMLqNfJ3vNwyh14RunNh5muVTVmOz2Ii9b8RisnJyzxm+6TQp2bq9NaIjXYe1J1vuUNQaNSWqFuXrVV96dMI6te8sg9t+x7UzN3DYXTPZVTPXM7b7Dx4y3xzS3mvBtda9mqD3e7SrSq1R88Gkt93u12gl/kFOOvYvk+h9YblCebZtTVq+38RjbHCF3BarVPiRYyeHAxuO0KVEb+YMXcSyyav4pvNEPq43CKvZSmCo95wOh91BQEjS8j0SRVsVNKWBhJ+jFlQ5wNA4dbKfcKS04IyZhfNOC5x32uCMnYeUvn3hZyRKtM8ThrT9h7z7RtxS3Qz4gzoXIvsitxC9O9fusvaXTdy+EkHlhhWo07p6ou6P96r09+pa0eo1zL88nZBw34f+DXl5NNv/3OPhN9fqtcy7NI3QHO7Zt1sW72Taxz8TcS0Svb+Odh+9ROfBr6JWq5FScmz7Sc4fuUT+knmoWL+ch+vryL/b+P3rUdy6oqJi3Wheff822XOrIeQbVH7NE9XTarHx6QtDORvXd0Fn0CJUqmQ3tnkUDoeDDvne9Qjx1Pvp6DbqdcJyhTL2nWluvRFUahWlqhdj4vZRqR5fSjMyZiqYloC0g6EZIugjhOrRzYiyMlI6kHdfB9sJXN8zAD/Q10YV5jlByUwkNdpHcfs8Ycj7/UEmjMIwguMqMmYyInhg/NHwvNno+Hm7JMmMvhvj9bhaoyb2vjFNjP/l/6553TDV6jXcunTHw/g/93Itnm1XE4vJis6gjTfuphgTAxoP5/yRS0inRKVWkbNgOGM2DXXTu1ylfxj683lcES0PsEHUEKShMUJ4/yro9FrGbBrK7pUH2L/+CNnzhPJC5+cTzRNIKk6nkxXT1rBkwkqiIqIxRZk8rrGYrKybu5kpu7/h1L6zLJu8Gq1eg9PhJFfhHAz6o1+qdHiAEAZE0McQ9LFP5GUJLJvBdpL/G34AE1h3IK2HEDrvLsMnCcX4pyO3Lt1m7ojFHNp4lOz5stH+0zbUbJ701gbSeRfs59yPSdixxsCKX3Zgsgzk+dfq8NK7LyYrcqd608qs/mmDx+ahIcBA7iI5kywnOZSqXowrp655bBDbrXbyFc/t9R4hhMdzzRo4jzMHLriVbrh6+joT3p/BoEUJjKNlCwkN//G9/iz9MZyIGwZqtPyFVh90IDCRME+1Wk22K7lDAAAgAElEQVTtltWonUjFzpQwqddM1s7Z7BEW+zAarQYhBD1Gv8mrn7Tk5J6zZMsTRsmqRZOU46CQMqR1L6581IdP2MG2HxTjr5BUbl26TY/K/TFFm3DYnVw7e5NTe8/xzrdv0LpXsyRK8dyimTUyDyt+zo7ZqAZOc+7QRf75ZROTdn7ttQzEzYu3uXTiCvlK5CFvMZeR7TToFbYt3UVslAmbxYZQCXQGLX2n90iz8gyvD2zHliW7MCfYmNb762n5fmMCQrwbYW9464ZmtznYvnwvDofj/5UwVaHgdIWbrlkQxpQv8mM1C6QUnD6ynr9n7eWH/aMJCgtM/cM9hojrkaz5eZOH3g9jCNDToseL8b9nyx3m0xeQQuIIdS4kBtxn/oCI2w/JAigbvunEvFFLMEaZ3OryW4wWZn0+D6s5kYSshxCqUNBW4MF/2+1rWv6cFR5n+ONkmqxcO3ODTQu2ud1rs9oY3n4s3cp8xMiO43mnwsd82fJrLCYL4Xmz8ePRsbzWvxXl6pSiYcdnGb9lBHVaJ17XPrXkL5mX8VuGU7lRBfT+enIUyM7bX7/Ou991TpacxCJupEMinQnq7Qe8DcIPq1kw7at8WEwqpHTNnK1mG5E37rNkwt8pf6BkcO7wRbfuZglRqVXoDDr0fjrqtK7OC50zT5P7pwq/FiC87ZFpwfBCuquTFigz/3TAYXewbu4W720bheDq6esUqZB4HLzb5aFjkBEdQUZzbI8BjVZie8hzYI61sGvlfhp3qR9/bM6wRez8a198oxCAA+uPMKP/HHpP7k5ojhBXgblhKX3K5FOsYmG+WzsoVTJqtajK5j92un22QgjKPVsKjVbDnasRXD93i/wl6xLi341z++fizVtis9jYsXwvXYa0T5U+SSFXoRxe6zyp1Coq1i9H3TY1eKZemST/TYArs3vd3M0sn7oGU4yJ+q/VoV2fFh69IRSShlBlg7CfkPc+Annf5V9V50KETkYIz77UTyKK8U8HNszfmujs3m61E5rTtbkZcy+WuzfukatQeKIhjEKdD3KsB8tmQvMfRIj9gLtsoRLs+msfzf1ep2ztkrw3tgt//bDWo6mJ1WxjzeyNfDDp7SfWf9xjTBeObDlB7H0j5lgLen8dOoOO3pO7M+y1Mez6ax9avRar2cYLnevxat+5OBxDcN/4dRH6mJwBX1GwdD5KVivGf7tOu2Uea/Vaek3slqKOaePfn8GG37bERwT9NnIJG+Zt5YcDo9O0GN2TgnTcRMZMAssmEIHg/ybCvwNCJO78ELrKkONfcJwFNKAu9MR+T7yhGP90YN2czW4uiISUqFKEwLAARnebwsb529Do1EinpNNXr9D+0zZe7xFCC4ZGVGxaH7/gnphi7pIwcEY6ZXw26KFNx/i43qBE/ctWsw2n0/nEdokKz5uN2ScnsnHeVk7tO0uhcgV4sfPz/DxoAbv+dl/pbJi3hdxFclKoXCHOHDjvtlowBOhpl4718ocvH8CY7tPYuWIfCMieJxt9f3wvRYb/+rmbrPv1X7d+AHarncsnrzG1z8/0+eFdX6r+xCGd95ARbcF5D9dL/xZEf4u0n0CEDH/kvUII0BRPFz3TGyXOPx0Y2Hwke1Yf9DiuUqsYteoLti7ZxdpfNrmVEdb76+k7vQeN3nh0Dfkrp67xRYuvuXs9EqESmKI9676rNSpCc4Zw93okD/93l6pRnMk7v07Zg2VSnE4nrYI6e5RlBgjLFcLUfd/xxUujuHr6BhqtGpvFRufBr9JhgGeVz7TGFGPCHGshNGdIimeV63/bwoT3Z3jtyaxSC2b/NzF+cx9cCWWLx/1FxPVIVzmLj5onK5P7ScMZMxVipgEPR1bpEDnWIdTeo8ueVJQ4/0xEs7cbcWTLCbckHYCgbIGUrV2CQa2+8ejiZDFamP/1ksca//wl8/LzyYmcP3KJEztPMePTORgfihl32J34B/lhijFjNduwW+1otGo0ei0fTunum4fMRDjsDqyJrHRi75sIz5uN6Qe+5/zRS9y7dZ8SVYomGuaZ1vgF+uEXmDq/fFju0ERr/EinZO2vm+gy1NUwaNmUVfw44Lf4ENOLxy6zZvYGph/8Puu+AKy78TT8gNC5kriymPFPKkq0TzrwbLuaPP9aHfR+OrR6DX6BBvyD/Rj256dYjNZEq0PefUzRsgcIISj6TCFqt6rmtSyzSq2iZPXizDw6jja9m/HM82Vp+X4TZhz63qPsQlZAq9NSqKx390m5uqXify5SviCVG1bIMMPvKyrWL4vez7tfX0qIjowFXAX0Ehp+cNUHun87iiUTVqaLrhmCuhDgxa0pHaDOk+7qZBaUmX86IISg36yevNznJQ5sOEpQtkCebVsDv0A/nE4ngWGBHtUphYAytZLXTCNb7jCebVuT7X/u9ujU1f7T1uTIn50eo9/0yTOlBad2rcF0+wdCs99FbahJ3gr9UGlSlmT20dR3+KzpSGwWG06HE7VGjc5Py/tjfVtCOzOgVqsZsqQ/nzQc4tGvwRBooFYLlwfg3KGLXktu2yx2dv+9n65D0z7SKSMQAW8iTX8CCVfEGtCUQGhLZ5RaGY4y809HilQoRLuPXuLFzs/HL/VVKhW9xr/lVjxMpRLoAwx0//qNZI/Rf3ZPXurxInp/PUIICpcvwNervkhd5cd0YNUPw8mf8yPKVDxGgSLXCQ9bhuliI5z2yymSV/7ZMkzZ/TUvdKpHyapFaf5OI6Yf+D5Z4ZO+4saFW3zV6huaGTrSMqgTY9/9gdgoL9mjqeCZ58vx6iet0CVYARgC9FR8vixVXnDVIArJEYzD5t09lC1P1q3jIzTFEGFTQZUHVwE7HejqIrL9mNGqZSjKhm8m4eDGo/w2cjHXz92kdI0SdB78aooiPx4gpcRhd6DRZv7F3bWz1xF3XyRXAfcNWocDomPrka3kzAzSLPXE3o+la8kPiYqIxhkX8aXVayhasTCTdozyeejg/nWHWTlrPVaTlUavP8ezL9d0i+T6oOZnnDlwwW2PQO+vZ8SKz6jUoLxPdclsSCnBedNVrvqhPsVSOsC6AxyXQVMGtBWf2LBOZcP3CaNSg/I+/fIJIdLN8D+YQKT0y3Jk0zaef8Fzg1atBr0m808AYqOMLPhmKZsWbker09D8nRdo07sZGq2GtXM2Y4q1xBt+cLlZLh67wvEdpyhXp9QjJCefKi8888jWoMOXf8ZXrb7hwtHLqLVqHHYn73z7RpY3/BD39+llc1c6brsqeDrvuPYBhABNecg2K8skdHlDMf4pRErJX9P/4beRS4i8cY8CpfLSY0wXqjeplNGqpRvSGYuMHgWm5YANqauOCB6C0CRvE1ljCCax14bNlrm/fDarjY/qfMG1szfjcyl+HrSAgxuPMmLF55zefy6R4m2Si8ev+Nz4P46wXKFM3vUNV05fJ+pOFEWeKYRfQOb+jNMaef9zcFwlPvFPArbDyJgpiKBPMlK1NEXx+aeQRWNWML3fHCKu3sXpcHLx+BWGthvNwY1HM1q1dENGdgfTMlxhdE6w7kZGtHdVH00GtVrUZdf6UKxm91eA2ahCGjL3Bu2Wxbu4eemOWxKdxWjl4MajnN5/juKVCnttBoMQFCyTLx01dSd/iTyUrV1KMfzSDNbteGZ8W8C0OCNUSjcU458CHHYHv434w2NGZzFZmf3l/AzSKn2RtmNgP457aQkJ0oI0LkyWrICQAIILT+DkwUAsJhWxUWqsFsGdiOcILdjD6z2mGBM/fTGPTkV60rlYL+YOX5TkAnm+5OjWE26VSeOR8N/uM7z4Zn30fnqE6v8vNq1OQ/6SedJ91q/gBenAI0Qq/tyjq64+6WQ5t4/T6WT3ygNsWbwTvyADTbo2oESVoj4dI+pujNd4eoBL/6Ws+fkTh/0c3ucOFrAdT7a4Sg1rYTFt59iWNWhUtyhW7UUKFvIemeOwO+hbbxCX/7sanxw3/5s/2b/uCGM2DU3XjbpchXOgM2g9kvRUGhU58mcnMDSASTtHMbHXTA6sP4Jao6Z+hzr0Gv9Wpt5QvHL6Oksn/M2FY5cpW7skbXo3J3uesIxWy+cIVQBSUxbsR3F/CWjA8GJit2UJspTxdzqdDGk3mgMbjmKOMaNSq1j90wa6jexIu498V7clKCwArVaDzew5M8hX4ilJGtEUA+mlSikG0KZs81Dvp6dK41aPvW7X3/u5duaGm8G1mqycPnCeI1tO8Ey9sska12Ky8POghayZvRGbxUb1ZpV5b0wXchYIR0orMnoimOaDNIK2EiL4K4TWNUbjLg34bfhi4P+6qFSCgGB/qjd17f/kLZabb1Z/iZQyUxv8BxzbfpLPmgzHZrHjsDs4sfMUf/2wlsm7vyZf8az39y1CvkHe7RjXxD6uNaoqFBHkm05pmZUs5fbZvfIAB9YfiV+GOx2uxuCzPp9H5K37qZYfez+WZVNXM+3jn6ny4jPoH+oqpffT8dbwDqke50lAaMuC9hkgoT9bBUKP8H81Tcc+sfu01zo2NouNk7vPJFvely2/YfmU1UTfjcEca2Hb0t30qv4Zsfdjkfc/BeOvca0zHWDbh7z7OjIu/yAsZwjfrh1EnmK50Pnp0Oq1FK9SlLGbh3n0TH4SDD/AuB7TMcda4sNBbRY7sVFGfvx0bgZrljYIbQlEjnWuNpZ+HV0v9xyrXWWd45CWrTjvtMV5swrOO+2Qlq0ZqLFvyFIz/y2Ld3rUzwFXL9oD6w7T8PVH18l5FFdOXePDOl9gM9swGy3oA/RodWr0fkFERUSTt3hu3hvThSIVCjJr4G8c3fofBcvko12fFqmK18/MiGwzkFHfgflPkBbQ1UYED3L70qQFuQrmQO+vw2J09/HrDFpyFMieLFlnDpznxM7TbqsIp8OJKcbMmtkraNNhPR51YaQVGfszIuQrAMrULMEvpyZx+/IdNDoN2XI/ue4RU4yJKyc9XZfSKdm/7nAGaOQbpJRgXoU0/goyBvRNEAFdESpXPSOhCkUEdPV+r3kD8l4f4rt62Y8iI3tC6ASEoUH6PEAa4JOZvxCiqRDipBDijBDiMy/nuwohbgshDsb9S5NqYn5BBlQqz9mVUAmPWXpyGfP2NGIiYzHHbfJaYi2YYizUbF6FNfaF/HJqEoXLF6B7+Y9ZPO4vjm79jzWzN9Kr+mcZHgEkpWTVrPV0KtKT5n4d6VltAIc2HUu1XCH8UIUMRpXrAKrcx1Flm4XQpH0GbYMOddDq3DthCSHiu18lh/NHLrltxj7AYrTw366jruJfHtjjfMTu4+csmCPdDP/Ov/bxXpX+tM3Wlb71vuLotv98Ilej06BKpLy3f/CT2xhGRn/jCum07Qf7KYidgYx4Gel8fKa1jP4aj3aOmJHR36SJrulFqo2/EEINTAGaAWWBjkIIb07XhVLKSnH/0iRls0nXBmi99K0FqNYk5Q2XrWYrx3ee8ijA5rA72LZsd3yf21mfzyP2Xiw2iz3uvBOL0cK4d6cnWrwtIdGRMZw/eglTrJfokSRy8fhl+r8wlKa69rQOeZNpH//Mwu/+ZOpHs7l58TY2i53T+8/xRYtRPjMY6U1ASABj/x1K4XIF0Oq1aPUailcpwrgtI5LduCRv8dx41LkGdH46ilQoEecHfhgNaJK3r+BLNszfwogOYzl78AIx92I5uvU/Brw4jMObk7/R/jBanZbn29fx+B7p/XW06tU01fIzAum4AcbfcK/tYwHHzbiaP4/BcSmR4xd9oV6G4Qu3Tw3gjJTyHIAQYgHQGkj9X2IyKVGlKN1GdWTW5/NQa9TxM7rhyz9LtDNWUhAq4ZLlpSxKQr/u/nWH3TI5H3Dr8h2i78YQnN17yVyb1caE939kw7ytaHUaHHYHr/ZvxZuDX0uWn/jOtbt8VPdLjFFGpARjtIkV0/7B6XC49Q4GVyz67C/mM2bT0CTLT28cDgen9p7DYXdQukZxt4zlIhUK8eORsURcj0SlEoTlSlltmrK1S5KvRB4uHr8S31pRCFc4ZrN32oBmL1j+xW3mJ3SIgLdS82gpRkrJ9H5zPFxeVrONUa+PZ8GVGake48PJbxNx9S7Htp9Eq9Ngs9h47uVatO/fOtWyMwTbIdcKzuNFbgLrZgh4/dH3q8LBedvL8eS5GDMbvjD++YCE1beuADW9XPeyEKIecAroK6X0qNglhHgXeBegYMGUFSJr91ELGnR8jgPrDqP311OtScVUGX5wzYaqN63MntUH3ApjafVaXnzz+fjfA4L9ib4b43G/EHhP9IljRv85bFqwDZvFFp8stOj7FeTIn53m3ZPeLHr5lNVYzVa3iWxiHbwALhxLWdG09ODErtMMbvMtZqMFIQQqlYqB8/t4ZFCnNvxQCMHo9YOZ2PNHti7ZhdPhpFSNEnz843uE5ghByjHI6LFgWhgX7fMMIngwQpMxhfJMMWbu3/YevBBxLZL96w4/srxDUvAL9OO7tYO4cuoa18/dpFC5AuQsEJ4qmRmKKhzwFpmmBlXex98f8D5Ej8Z95eAHAb18o18GkerCbkKIV4CmUsrucb93BmpKKT9IcE12IEZKaRFC9ADaSykbPkpuZivsFnnzHn3rDeLujUgcdicqlaBw+YJ8t25QfJbkkgl/89MX892Sv7R6DXXb1uSLeX28yrXb7LQJ7eK161Seorn49czkJOv4ebMR7F1zKMnXl6lZgok7RiX5+vTCFGOiQ/4eHk1p9P56fjk9Kc3izR12B06n02M/4QG+DtW8fyeKs4cukj1vWJKDApxOJ62CO3vM/B/w/Ku1+XLhxz7TMSsgpUTeeREcV3B/CRgQ4UsQj2nTKKVEGn+CmKkgzSAMENgL4Z85czXSs7DbVaBAgt/zxx2LR0oZkeDXmcB3Phg3XQnLFcqs4+PYv+4I187coOgzhSj/bGm3//w2vZtx6cQV1v76L1q9FrvVTpnaJek73XuWKrg2Fu2JdGG6dzsqWToWr1yEQxuPeSSgqTUq1FqNWwN3vb+OLsO812+3mq2c3HMWvb+OElWKpvsf+LY/93jteex0OFn/22Ze65c27ge1Ro3aW9OPOHz1OUgpmTVwHkvG/41W73LzFalQiJF/fZ6oa/ABKpWKZ9vVZP3cLV7Pm7xEuz3tCCEg2y+uCB37eRBqQIMIGfVYw//gfhHwNtK/qyvkVwTh2up8svGF8d8DlBBCFMFl9DsAbk40IUQeKeX1uF9bASd8MG66o1arXW6HJt7Pq1Qq+vzQg86DX+PC0UvkKpyT/I9J+vIP9id7njBuXbrjca5MzeQ1c2ndqynLp65xM/46g5YK9cpQ8flyLBy9DON9E7kKhdNjTBeqvui5Cb75jx18//ZUhBBIpyQoWyAj/vo8XfsBREVEY7d5ZlDbLDbu3UreCzEzsnHBNpZNXuXm5juz/xwjOozju7WDHnt/78lvs2nBdo/WjYYAPQ07PpsmOj/pCHU+RPgypP2SK9RTUxIhkmf+hFCDyDp9D1Id7SOltAMfAGtwGfXfpZTHhBDDhBAP0jU/FEIcE0IcAj4EuqZ23MxM9jxhVH2x4mMNP7hmFR9MetutDZ9KJTAEGHjnu07JGjc8X3bGbx1BhefKIFQCQ4CeZt0bMXTpp3T8vB1LI37mb9NvzDk3lfLPlubGhVtuUUiXT17luy6TMUWbMUaZMMWYuXXpDp++MNSrMU4rKjcsHx9BlRBDoIFqjVMetZVZ+GPsCo98FLvNwdGt/yUpGTEgOIB+s3uiM2hRqV2fkyHQQJnaJanfvk6a6JxVEJqCCG3ZZBv+rIhPPgEp5Upg5UPHBiX4+XPgc1+MlRWp3bIa364dxG8jF3P11DVKVitGp69eoVDZAo+/+SGKlC/I2H+HefVPCyGIvhvDqNcncHzHKVQqQXB4EP1n96JywwqsmrUeu5dOT1azjf3rjlCjWeUUP2OynqFCId74LD9Fim4kKMzCzn9CWLMgL8Uql6JyowpJliPtl5DG+a4GHbraCL82CFXG9+uNjvAMCgCXey72XixhOUMeK+OFN+pRqloxVv+0kai70dRuWY2aL1Vxa9yioPAolE5eWYA7VyOY3u9Xdq88gFavoclbDeky9DWPmHcpJd0rfMzVU9fcQj/1/npmHPqeOUMXsW7uZg/5hkADH019hxc61UvzZwFwxv4M0eN4EF1hs6iwOcLwy78KtS5py25p2Y6MfB9XqV4b4Afq7IjsSxCqjF26T+o9i79nrPVoqRgSHsTC6z8qBlwhVSidvDIIY7SJNbM3sG/dEfIUyUmrnk0oUCrt6rbHRhnpWf0z7t+OwulwQjT8OWklp/ef8/Afn9h1mtuX7njE/DtsdpZPW0ON5lXYunSXh0vCaXfwTL0yXsd3OBzsXX2Q80cukb9UXmq1qJqqDmLSGQPRY0kYV6/VO9ESA9aFoEt88zxehpTI+wNwD80zuZJ6Yn5ABHskoSdK7P1Ydv61H6vZSvWmlQjPl/rY7je+aMeWP3YQe9+I1WxDpRJo9Vo++qEHSFdEjze3l6+Jiojm7xlrOb7jFIXK5adVz6ZPdkinQrJQjL8PiYqIpme1Ady7fR+L0Ypao2LVrA0M/uMTqjdNG5fJP79swhhldBn+OKxmG8d3nOLMgfMUr1wk/vidKxFeSxnYbQ6un71J96/fYMn4vzh/9FJ8KKEhQE+L9xqTs2AOj/ui7kbT97mvuH0lAqvJis5PR3C2ICZsH5nycEz7cRAaLyXWLWDZAIGPN/44LoPTm+/cBuZ/IInGf/eqAwx7dQwqlUBKidPhpOvwDrz6yeMrjz6KbLnD+PHIWJZPXcP+dYfJXSQndVvXYPGEvxjx2lhUahXPvVyT3lO6ExQWmKqxEuPmxdv0rD4Ac4wZq9nG3n8OsXzKGkZvGEKpasnrxJaeSCnBtsfVeUtTHqFNXlBEysd1IkSWqoOZ9Yy/3WZn98oD3L4SQemaJdL1D3nBt0u5ez0yPtrGYXfisFsY3W0qC65MT5PZ3MndZ7zGfAsBZw9dcDP+JaoWjc9iTYjeX0elBuXQaDWM2TSU1T9tZOOCrfgFGWj5XhNqtajqdewZ/edw7ezNeJmmaDNWk5UJ781g2LIBKXsgERrXYMMLKs8XkHcZfnhP6gGS6POPjTIy7NUxHg17fhm0kCovPEOxioWTpksihIQH03nQq3Qe9CpREdF0Kdmb2HuxyLiZ/5Ylu7h88hpT936bJqG2Mz6dQ8zdmPiMdLvVjt1qZ+w705h+4Hufj+cLXL12O4PzRtwBJ1JfFxE6ESG852akajzpRMZOg9jZIKOQ6mKI4C8R+ro+HysjyFLG/9rZG/StNwhzjBm7zY5QqXimXlmG/tk/0cQdX7Jt6R6vTV5M0SaunblB/pJJyCZMJoXLFfDaTAQhPHoL5CmSi/od6vLv7zvijZpGpyEkPJgmb7ly7nQGHa16NqFVz0TiWROwedEOj5eJw+5k96r9OByOlPmuNSVAUxDsZ3Cvp2FABCStpaNQ50Bqy4PtIO4vAT/wS1oE1a6/96NSexpdm8XG2jn/ptr4J2T1Txuwmm1umdl2q50rp6+nusm7lJK/f1zHou+XExURTYXnyvDOt53Yu+ag11IkF49dxhRjwi/QN0XcpLS6VmyOK6ApB7paKX6ZyfufxtXZSfA3Z9mGjP0J8YgVobSfBfsF0BRDaAonfbzo78A4n3j3oeOsax8p268I3ZPfqztLGf8RHcYRefOeW4LQ4X+PsXTiKl7rl7qlelLwD/beD9Vhd+IXlDYVEZt0a8iCb/90M/4arZq8xXJ5NRqfzHyf0jVKsGzyKozRZp5tV4M3vngZ/yTot3/dYWYNnMeVU9fIUzSXR5z5A1ITQyCEgLAfkZHvgv2iKyFHOiBoAEKXtIqdUjpcLxHbgQRH1eDXPMm9BmwWm9difFJKt2Q5X3D+yCXvMqXk8slrqTL+swbO489Jq+Jf9jtX7OPQpmNo9d6/+kKlQqPzjVmQ9svIux1cZTGkxVVfR1MSsv2CEMn7PkhnDFh349lr1wzGBV7dgVKaXIld1n1xrkRbgpXCowsASmdsXDG4h5PmzMiYyYhsaVKbMl3JMk6siOuRXDh62SMz1GKysmrmunTRoU3v5hgeKh2tUqsoUbVompUkCMsZwrgtwylVozgqtQqNVk2tltUYvW6w1xmWSqWi5XuNmXl0HPMuTqPnuLcICQ9+7Dh7Vh9gUOtvObX3LMYoE2cPXsBus8fHmcfLV6uo+mLFVEWsCHVuVOHLEeGLEWEzEDl3oHpc8a0EyOgxcY3l3dvyCX39JPttazSrjNPu6TrS++up90rtJOuSFEpWL5ZoyfEiFVKeXBdzL5alE/52c11JKbEYreQsmMMttwRcxeyebVsjSatkaTuJtGxGOrwUPHtwzf3+4IwAGQvYXS8B2wlkzNQUPM2jXrjeq+DKqK/Butd1Xsbg2jfahoye8PjhnLfiMoG9YD/9+PufALKM8XfYHSS2mvQWu54WNO5SnxfefB6dQYt/sB9+gQbyl8zDV7+nba2VIuULMnnn1yyP+pUVMXMZ/Ee/x5YJSC7T+//qUX/I6ZAIAX6BrhWPX6CB0Jwh9J3eHmmcj4yZgUxBP98HCE1xhK4aQuWf5HuktMbN2B42CBZkzKQkywnLFUr3bzuh89OhUqsQwrX5/dzLtahYv1yS5SSFxm8+j1+gey8KnUFLiapFU7RnZbPaMMWYuHzymtcS5w67w9Wusmnl+L9Vvb+e4lWK0ueHdx8pWzrv4rzzMjLiNeS9vsjbDXBGjfRYJUlnFNiO4Ln3YoGklFF+CKHKBmpveS8a0Hv22pVSgmkpnjN3i6tI3+NQ5UqkTakATcpXYpmJLOP2yZE/OzkKZOfq6Rtux7V6LQ06pM8GjRCCj6a+Q8fP23Jyz1nC82WjdI3i6VYbJynVSx0OB1dOXsM/2J8c+ZMetnjl5HWvxx12J31/fI+Lxy5ToFQ+6rVyoDa2Q3e/JlIAACAASURBVEZJwA4xk5CGJoiQ0enzOcgYvNbeBnB4f4bEaNu7OZUalGf93M2YjVaee7kmz9Qr6/PnCAgJYMrur5nW9xf2rDmAVueqFtttVNJXO+AqiDex10z+Xbgdp9NJnmK5sZg8a/0IIchfMi9f/f4x187e5Pzhi+QplovilYp4keqOvPcJ2E/gmsnHHTT+Dtoy4Ncu4ZWPkJLIZvxjECHfIiO7gLTjWgn4xfXa9VY00UmiqwVp8n484Vgqf6T/m2Ccg3vIsB4R1DvZumdGslSS18m9Z/m00VDsdgdWkxW/QAO5CudgwraRSfJpZ3W2L9/DmO7TsJptOOwOSlQpyqBFnyTJJfV6ofe5fdmz/lBIeDB/3JoFuGbd8latOAP8EJrKiGyzEKq0CV18gJRO5K06IO96ntTVQpXt1zQdPyP59MWhHN160q2Mt0qtQq1WuQUiqNQCIVQ4nU6eeb4sfX7okaRSJNJ5F3mrHl6NqqY0qvDlboecd9qB/RjuLwIt+L+BKnhgMp8uTgfHTaTxd3BcAG01hF+rRLO2nRGvxW36J0SAri6qbD89fiwpkcbZEDsTnJGgKYUI/iLJe08ZRVKTvLKU8QdXmdy1c/7l5oXblK9bmrpta6Qq6SircP7oJXrX+twtLFSlVlGwdD5mHB7z2Nnsqp/WM+XD2W7+Y72/nm4jO9Luo5cAkJZtyHu9vRt/BGhroMo+x+OMlFaXH1UVilCnPiHOaVwCUUNwd/0YENnnIrSpq3WfUdhtdk7tO4dGq6Z45SIeYcOXT17l/Sqferjm1Fo1+Yrn5vq5WzidcTNuKeMT/YQQBIYF8MvpSY/NKZD2S8g7LfDqY1flQZXz34euP4OM6AjSBhhBBIAqDyL7wvjeuWmJtB1H3n0jromLDdCB0COy/47QZN5chtTy1Gb4hoQH80rflhmtRqbDVUXSPVLC6XBy48ItTu0791jfctO3GmKOtfDrkN8xx1rQ++noOLAdbT9snuCqR00kJNgOIu0X3fr8Oo2LIXoEIFzRGNpyiNApCHXKM2lV/u2QqlCXj99xDbRlEEGfILRJrwuU6FPY40IN1UXSzZ23Z/UBRr0xAafDiXRKAkL8Gb78M7ccjmtnb6L5X3vnHR5HdfXh98z2lWTJcqEZiAkdAoReA4QaTO89hFCSUANfKIEQWkLHIQk19BJ6x/RiCJAAhgCmB2MMprjIstr2nfP9cceypN2VVtKudmXd93n8eMvszNFodebOuef+fkF/TvLPprM0Lj2aa9++lLeff58/H3wVifbFyVtVSSVSPHvbVPY5edfeA/FNAKcW3J7J3w+hXHsO8a8M416CxJNo9msksDaEflqWnvx8SGBNGPskGrsT0h9D4EdI9BDEN35Ijl/tLHHJ35KfObPmdVsFvAjH52PBd819fl5E2OuEXdjjuJ3paIkRHRXJ7egJbkSvFwAJoql30I5/QPpDY4OXeoNuk3Lp99HmY5CxD5pJu+TTaMet4C6E8HZIzVFm8q+veMM/RcK9+gX1C818gTYf7xmCCDj10DAZCeZfAFcq5n49n/P2vbzbHVu8PcFp25/HPd/c0KnfNPFHK5DK49oWCPlZc7NVCYaDLJzTktcnIRlLMfP9vv1oRRwY9Sd04cmY35kLhMCpQ2p/k/8zTi1E96dSlifiWwap+12Fjl7dLDHdPpbeWX/7dXJa+8D0s6/aj44Sx3GoG12bt5VTJIQ0/IWCYwpNQNu5EH/Q1IJTr5DbjZGBzP9Msm2fjLacYfr1szOh4zZ0/p6mk2QIUU2Z8kF2BqbkEQf3e7T5l2g2dx6klDx3+8t5L9qZTJZ/P/525/Pxy4/lJ/ts2s0uVBwhFAmxx/HGeH3FtZbP2xEXioZYZYOViopHwtsiY+6HyD4Q2ARqf42MfRLxFbn6ukpQTaGJZ9DYP9H0ktG62V9G7Mg/GU+STmaobai8xO9QsMvR2/PI356iec7CzvJPuCbEpGO2L+kaBAltjY55GJr2xyRKb6QpEZBR4M4pYid+NDMTOm6m++RiGtxmNHZ3rys6S07yJXPh6nlXo1k0/ghSe1RJDzfro6+599JHmTn9K9KpTE65DsDNuLTO734R/N0tx7HCmhN47OpniLXFWX/7H3HMpYfRuLT5/a6xySpMXGdFPn9nZueksOMIkdow2x+2dc4xCiGBVZH6Pw3iJ6wsmv7MyESQ6pQSMR1pl3RbB6LZOZB4ynQHhbY2ZaQliBGX/Nua27nyqOv4z5S3UVWWW3lpTr3pN6y56aqVDq2s1IyKcu3bl3Lf5Y/y2sNvUtNQw94n7sK2ZXB+cgKroeOeRNv+Asl/Gc/TwI8gWeRiO00DWZCQN1nXlSQkXy1O4K1UZOd57YU9Sfa7fbQvPnjtE87Y6ULSyTRu1u3W+9+TdXqsN/D5fRx85t4cfKZpuZw5fRZffvA14gjLTFwKEeGSZ87mxjPu4vk7XyGTyrDRz37MbyYfQc2o4tdSDGdUFV34a9Aepc7ks5DYAiJ7AuDGn4aWReWiDLRfi0b2RkblXzw5HFniun16Q1U5fpMz+eL9Wd00acK1YW6cfiVLrTi8bl3LyVtP/5frTr2d2Z99y+il6jnk7H3Y9dgd+/XFV00bLZT0W15CL8YNLGLMsUM/QZsOoHuPNYADkT1w6i/px08zODT9Edp0IDldLhI1o8Vw3zpIxXLMev+Xt/4ujnTW68M1IbY5YAtOvfHXeffR0dLBWZMu4vN3Z+L3+0inMmyx58acfvsJ+Pwj2yvAjPr3y9/rH1gfZ8w9qNtu2oVzft8RpOE6JFTaFd6lZsR2+/TG5/+dyVcfz84RI8uk0jx2zTMcfUn/bBOXRNqa25ly/XPcft79naWBpm+buf7/7iDRkeyXnLHG7vUSf2+LakJG70UTxmwl+gskvK2Z7PX/wFtK3/X3FUSixQm8lQoJrImGtjJ3HJ0XoxD4JkJou5IdJ5vJ8uX0r/LHIMJaW6xGIORn0jE78JP9NkNV+fD1T3n1oTcIhPz89OCtmLj2Ckw+9gY+e3sG6WSmc0bl9Uff4r7LHuWgM/fOu/+RQ5qCU52L7jJTr+WXFdc4mni06pN/sYyo5P/9zLk5WjQAmVSWrz6ZXYGIqov7Ln+M2865h0wqk6P4mIwluevCB9n7pEnFjx7jD/SS+GuANIS392qt3SejjcDbjejCEyH9gfljxA+jzq9I7VUarjKLi+L3mLuYyO5IzREl9YJ1fA7BSDBHRhpg1JhaJv/rgs7nqspVv/kHL9z5CslYCnGEh656ksPP3Z/XHnkzZ4CTjKd47JpnbPL3rw4EgY4eb4Qh0tfARrx/vaOaBaTq9f9HVPJfad0V8+rZByNB1tp89QpEVD28+9IH3H7ufbnS0F1IJdK0NbfTMK5vj1lDoWX8Yag/Fwlu1mvPtfjGIWPuRrPfg9sK/pUqZrwt4uerr37C+y+PpWHcKDaZtD7BPpQhu6KaheTzaOJpkDokum/OgjMRYdIx2zPl+ue69euHokH2PGGXbtt++PqnvHDHKyS8C4Vmjdrobefcm7c7CCDekV8AbSQh4oOGyV7dPwukQKLgXxWJHmQ2Cm5RYI4njIT3KLhvzcxCW8+G1FuAg4a2R+rPQ5zyiDoOlhGV/JdbeRk23W1D3pjydmfftONziNaG2eXo0t2+D0ce+ftTeUecXQkE/f1zlors5Xnx9kg6zmgkvHvR8wfiWxp8Sxd/3BKjqlxx1LW8dM9riIDP58MX8HH5i+ey0jorFvH5LNp8NKTfMcqWOGj8EbT2OEAh8TRILVJzGL+86BAWfNfMa4+8ZXwakmm2O3grDjxjz277/NeD/8lZ0AXGBL6usTZn7YbjCBvuOPw16EuBhDaHsc+g8YchO8eYs4S27RxYiFOL1l8BLadgRvoZwA/R/SC4Sd59qtuGNu0H2oKpF7mQfAFdMAPGPFGVk8QjKvkD/P6uk7jvskd5/LpnSbQn2HjSBvzyzwczqrH8y82rmdb5bb2+H64JcdDv9+rXhKFED0ETzxlrRo0BYRCfp6defX8MhZh67+u8fN/rOZr7f9j9Yu6ceU3fP0vy+S6JH8wdUQLarwQCLGpn1Zbp+CMHcdbdZ9D0XTPfzfie5VZdltHjc++0AqGAmQTOdi/PiQg/++VPeXDyFDKpNJl0lmA4QLgmPKRzWpr5yqud15pVvUU6qA0V4lsaqc0/YQ7gRHZAgy91afXcBgkU7gjU+MPGs6DbREHarDBPvQGhTUsXfIkYUd0+lsI8dNUUbv79P/OOJuvHjeKQs/ZhzxN+1u+krepC6nU0Nc2UeMKTEKfYslF1cOq2f+T9l3OlqcO1YSa/cn6fapjuwlMg8USRRwsh454zdzu9MPODrzhhkzNzfl+hSJB7vrmBtuZ2Hv37U8z6aDZrbb4au/16p6J8Gwqh2e+9SfkV+qxlu62XQex2QDo18WX0DVUviDYY3JY/FJCKDiOjzlxcUhoCbLdPGYm1xXn5vteZP3sBq228MhvutG5Z/HmHkp8dtR1P/uN5vv9yrplAFCEYCXDs5Yez268G3soo4kBoSyRU+vUEQ0W+RVYAjkjeOaQcpBbTYVKElLEEjBKlb+deN5u49gocceFB3HLWPxHHwXEEN+vy+3+eTG1DDbUNNfzqiiP6Pl4faPYbtPkEr+vKAWcU1F+GFBjJavLfELuTzpXb3thSm38F4//dp4PWsMW/FhAFYt1fF8d0s1UhNvn3k5nTZ3HK1n8kk86Q6EgSqQ2z4poTuOzFc3NcvIYTkZowf3/zYp655UVef/QtGsY3sMfxO7Pahj/kP0+8zbeff8/EdVZg3W1WhditnlGGQmRPpOYXiOS3sBxKNPstpD8C33JIYI2B7UPjkHwdyEJwc8SpZbtDt+KL97/spq8DZlHVKuv3LYsg0f3Q+CMUcpzqEYHRPCqCfX+7K9vsvxlvPvUugaCfTXfboH9zMn1Foi664FBvIZt34XLjaPOxMO7JvAqsGn+A3LUZAOqVP7YqWXzVhER2Qzv+5oneLbrIB8G3MgTWL3o/6rYbHSvfUmUXwLNln35y1Nq/ZdZH3dtCg+EAB56xF4edU5w/7HCh6btmTt7ybFrmt5JJZfAHfFz20AxWXrsd6ewgDxvVzMa7K9bapppFW8+C+BPGJ9bz8JXGGxGnofj9JF9GF55EZx+4ZqD+EjLO9py2/XnMeG8WifYEgZAfx+fwxwd/x0Y7FTeJ6nbcBm2XmZE94o2IU3SXr3CM5PG4F6qiTVCTr6MLj/NsGLsSgJqjcOp+m/MZt/lESD6duzOpReov71VsTzUF7nxwxiAy/AZSmv0ebf0zJKea1uTwHkjd/xU136GaRFv+6JUHfeZ7Uvc7nOgB/Y7Dln3KwPxvmvjui1xtmlQizXN3vLzEJf/Jx1zHvK/nd2q/r7nBQiZMbEa6lS8SkPkUUq9DhUo7GrsT4k9htFq8ZJr5GG05Axl9XXH7cJtNeaPn6LzlNALjnuWKqefxxhPvMO259xizdAM7/Hwbxi8/tugYnZqfo5HdzOhXohDcDE28BK2/B9RcsHwTkNHXVkXiB4yPbV6V1rSnbpqLRCahyZfJGf1rBoIb5/2Mqhql145rO60TNXqokeGulnORB1XX3OnE7jQXyPBOSP35/RpwdO6r5RxIPEnnYEDj0Ppn1BmPhLctbeAeJUn+IrIzcBXgA25U1Yt7vB8Cbgc2AJqAA1T1y1Ice0gRKShYPJDulUw6w32XP2b6umMpNt1tA47800GdQlyVJJ1KM+2Z9zoTP8Dq63cQDOWpW2vM1KkrVdfPsdoDSEPyX6jbXpx7WOIZEMmT6xQSU/DVHMXme2zE5nsMfNJSnEYI/2zx88hOaPinxhZRahF/ccqaQ0Zg3U7hs+5EkGCBVa6hHcz3oHM1tLc4r/5PBX8PGr8f2q+m2+8wdifqhJHa6rVM1NazIT6Fzrg7bjfrOMY83q/uJnXbITGFXIe0ONpxXdmS/6AvqyLiA64GfgasCRwkIj2XYP4SaFbVlYHJwNAJs5SQscs2MmGVZXJkcYORIDsdsU2/93fhgZP554UPMver+bTMb+X5O17hNxueTkdrrO8Plxl1NceUu+n7AMlEvq9MxBheV4qcssQixFPjLGYf8QILe9Lmj7NMiASQwDoDTvyqLpp6C40/gWa+Lm1s/okQ3hnoaoEaNGsuIvmNX0QcqP8L1BxlVtMGNoLG23EivRgstV9D7sU7Dh235HwHqwXNfA3xx+kedwqyTd78Tj9wF2DGzXkosXBgV0pxT7Ux8LmqfqGqKeAeoOcyuD2A27zHDwDbyXBq9O7CWff8lrrGWiK1YRyfQ6Q2zKobrMS+p/TPPWzWx7N56+l3u7XqZTNZ2hd28OxtU0scdf8JhoOstcVqSBdVyX9NqSebEdyeg38JdBvRDjmhrcn7x+NbqqjJU9U0mpiK0X3pSRgJlWfk1Ref/3cmZ+9+MQdOOJZTt/0j7039sNv7mv0Onb8T2nw02vIHdP4uuC1nmfbaEiH1l0Dd700i960INUciYx4oOMGvmoAFB0HsJsh8YtY3NB+Bpt4qfBC3Kf/rGiP/76QKSE/3JEd6EofUv/u3L98yBfbl9GuyuL+UIvkvB3Qdcsz2Xsu7japmgBYg569SRI4RkWkiMm3evHklCK30rLjGBO6adR0nXnM0v7jgQM575DSufPn8TkelYvn8nZn4/LmnPxlL8eGrn5Qq3EFx6o2/pq6xlnCNmXxzfDVcdPzGqDMRCJl/vpWQxjvKbszeG1J7MjgNXkxgSg0RpP6iospx2nGDMYzJwQeRnaECvr8fv/E/Tt7qD7w55W2avl3A+y9/xFm7/pnXHnmzcxttPgGyX3tJsgNImknv+EMli0PEwak5AGfsYzjjnsOpO6VX/13tuAMyn3VZ0JYEjaHNJ+JmCywkLNQK6SxTva2hvvHknw8JGLvLfiASgNpT6X6H5YCEkbrylb2qasJXVW8AbgDT7VPhcAoSjobY/tCfDGofS08cn9dSLxAKMGH1wZuYl4LlVl6GO2ZczdR7XuOrT79hlR+vxFb7bkogFDBtlWhJDNcHi/iWhrFPobG7ja6KfyISPbybV3CvxO6hYBtm3bndLiCqLiSnoolnjMRvdJ9BewO3zG/lwclP8OaT/2X0Mg3sd8pu3HH+/TlyG8lYimt+e4uZd3DnmIn2nLUDcTR2JxLdd1AxDZjEo+Q9l9oE8zbDjR6K1J3WbSJXRp2BLvhlj8+FzR1HtRLYAJzx5uJL13kRPxI9uN+7c2oORn1Lox3XmlJPYH2k7qSyGs2XIvl/Ayzf5fkE77V828wWI6BRj5n4HbGsudmqLLPSUnz9yTdk0ou/PP6Aj12P2b6CkXUnWhdhl6Nz4xHfsiXZv2a/NR696engX92sGfCv0O/9iNPgLdcvvGS/cBCF5gUEIc2iEZmqiy483nQ2dWr0PITWnYRT88v+HxeT+I9d7/9obWozi8neg+mvfEw2nX/xWNM3C0jEkoRD5vj5f55Kzhn11puegtjdqNOA1P6q81UJbgSNd6DtfzGlIt8PkNoTi5ZONhfkZ9HYwyCCRPaG0A5llRAREWi83fgZpz8AfMbLuP6SAX1/ofS+031RirLPW8AqIjJRzD3agcBjPbZ5DFgkwr4v8KJW60zOECEiXPr8OWyw47r4Az78QT8rrjmBS58/h7HLFbfIZ7ij6f+h8yeZVrn02xC/F23aHU2/X7pjZL7GbT4Rd876uHO3xG2/Fu05sRvahrxzBv6JiNNFEiH5cpfED50aPW2TB+zl+9BfptDa1N5tFXEyliSTyddlY+ZiguEA+H4AeTtKglBCc5lFqCpN3zXTuqB3DSgiB9K9fNGTOHTclPOqBNfFabwFZ/y/ccbcXXTid90EuuAgdOGpkHoJki+iLacZ7+cyI76lccbcg4x7ERn7GDLuFSMSN0wY9MhfVTMicjzwDOYv6GZV/VBEzgemqepjwE3AHSLyObAAc4EY8TSMq+fCx88k3h4nncqMOHE5bbuwR6dOBjSDtpyLjB183VqzTWjTPqCtgAvabuz4Mp8hDZM7t5O6U9HUa+C2Y0oPQRA/Un9R9/0lny0wqvYbEbNIYbnfQrz51H87TXO6EgwFzKLYLu+FokH2OG5nfD7vQlV/Gdr8G4zqpHeH4huH1Bzd7zh646P/fMalP/87c7+aj6qy5marcuZdJzF22cacbSW6L5p61VwoC5XStAVVHfTIXNOfwYIDze+12xsxSDyFpg9HAmvl/3AJ6U2WvJopSc1fVZ8Enuzx2jldHieAJWsFVAmJ1EZ6HSstsaTezv965kNUM4PW7tfYPz0zmR6L0hLPo5nZiN9MzJk5g6fR2AOmO8X/QyR6UK64mtSQV6NHxBjUD4Axy47m8//OzH1DhN1+vQNT/vGC+VmyLrsctT1HXLB43CShLWDs42auIzsbglsgkd0Rp3R+vPO/XcAZO15AvH1xIv/g1U84dZs/cssnV+VoWon4kNF/M9aXzceauYme+FcdfOJXNSW4nom/kzQkX4NBJH/NzEDbbzBlncAqSM2vkMCS4/tRVRO+lhGG1JBr0A6ma6cEXrPp/9IpMNbtuEHTkeJf3JUhziik9kjgyIK7k8g+xs0rZ0QrEBpYA8C+p+zGuy992G1y1xfw8cN1V+BXVxzBkX86mPnfLGD00g1EanLbK8W/AjLq9AEdOx+u6/LF+7MQESb+aAWeuvEFMj3mH9ysS/Ochbz/8kest+3ana9rdi7adhEkXwR8ENgEUi2Y38GiKm8YqTtr8IFmv4Ls971sEDQidEXgxqdA+2Qjv+xbDmpPRfwT0AWHeDLNLmRnmBXZjf9ACqxUHm7Y5G+pHNGDoONmuifTEET2Lc1knX9lI6fQs1dc0+BbPu9HekMCa6B1v4O2S7v0ZQsy+voBC9utt+3aHHPZYfzjtDtwfEomleSHa7dx7g1TcJvbCdT/iWV/ODRGNh/9+1PO2+fyzlF+dFSEieuskFfVVF1l7leL5zlUE2jTvuDOo7P7JfWKaXv0rWBUQf0rI7UnIMF1SxBthl4tFQVvgVrvuLHHoPVsOr+D2VnQchrqLEN3C1IXiKOt5yFjpww87CrCCrtZKoZqGm05HRLPeYJsKQhtgTRcVRJhL818jTbt1qNOH4TAOjhj/jnw/boLjPKnRIxcdQliTbTN4ItXD6a+sYNlVlx0NxSAwNo4Y/LpxJeWtuZ2DvnBr4m3db+rCYaNaUxPRdNgJMjVb17MD9YyF1GNP4S2np87JyJRpOG6ghLQA0VV0Xlbg5tv9B80/gGhzfvcjzt3G3C/7ceRBVnqw4rZiRaDFXazVD0iAaThSjT7HWS+MEYh/sIjcs02oe1/Nc5YEoXowaafX/KXiMS/PIy+1Sh+Zr4AHAjviIw6v19xauIptO1vJtH4VzV96gXkDQZKUO9m9R+3YUa0i0hD+hM0/SkSWK2kx+vJ1Htfx83mDgQdn0MwHCSbcTu9C0LRIBvsuG5n4gfQ9Ee5iR+MZEbms5I7WYkINFyFNh/p6Q8lMIsOJ8CY+3pdiNYZmmo/Ez/e3E4JSpJVgE3+loojvmXMEvdeULcdbdrLSP4uSpBtk9H0dKThysL7Dq6HjJ1i9Hkk2O8Vo27sXmj9M50aLul30AVHQOOtSLCES+8zX9A98XuID7LfQI/kb8TAnjHSCMGNILDeoEplC+e25NhUglGs3efkXelojfGvh94gFA4w6dgd2fuk7oby4l8ZJUKORo8EwN+709lAkeCPYdwLaPwx48Ub3BhCPyk4GMj5vAjqLJV/UpooZp6i688ThshBw8qCtDds8rdUDapp070h9TlSvhp/CNwWuifIBCSeQzNfIv4f9LrvgchPqGah7QpyRccSaNsVyJi7+r3PggTXN6uTe05Qayo38affNxcgdTFKkAEIbQ4Nfy868fVkna3XJBQNkujofvxgOMCGO6/H2lusznFXFZ4MJ7wrtP1l8QQpAH6zCjZYvt53cRqRmiMGvoOak6DtLHKlGpIQnuSpvQbM7yH8M6TulEFEW11Ur1i2ZcSgmsFtvQSdsyE6d0t03pZmIq4rqTfJ6xAlfm+FZTkCaym8Wjbzad6XZ308m6n3vsZnb89As/PQ1Huo29rnoSR6sClldfuTDJuE00VCQ9VFm4/zWhxjmIuh5z42CE2fdX6yJj/aag1CXdzowtEQ6267Nmtt3nfJSZxaZMx9ENzE+xn8xrh9TOVMfopBAiuRfwwsxlRm/L+QxluR8a/gNFxSdnetocSO/C0VR9sugdi9dHZcuPOh9WzU1wDBTdHY/ZB6F9PC0XOEplAiqYkcpM6UXfL1RPQ4ZjqV5vx9r+C/L0zH53dws0lWXK2DP989l9pRCTR6CFJ3esGSgTiNMPZhtO1KSL5i2mCjh+aOajOfguZbZRtH4/cj0YEtpxERzn/0dJ655SWevuUlRISdj/wpOx2xTdFlDvGvgDTe5q2glgHfhfSGato4ZWW+hMCqENxycMdx53jNBj0X2mUg+7UxZhmAOctwwCZ/S0VRTXjCaj378RNmklVuMLo/eX1h/SYJB35clthEAmj0COi4lZ61X6k9sdu2d17wAO+8ML1b3XzGh2H+dkY9Z17TYjRtfBOQmkMLH8+3LNJweR9R9dadNzgpZ3/Az6RjdmDSMTsMaj/l6oTR7Fx0wQHG41aTJmn7loPGu7vLcPQH/48K+DhEINh3t9BwpnrvxywjA7eZgv3a2ZmQ+YCCiT+4CTL69vIKeNWeBDW/8Fb3Bow/wKhzkXB3sbsnb3g+Z8I0k3J4dUo9mTRAHGI3Dz4g/+peLD0DjUC4QkqeQ4S2/sEs7NIOjBRIDDJfom2XDXif4p/gyXJ0XaEdAF8jEtlrsCFXNXbkb6kszlhvQi2PDoyMAjefV2wAak/EqT227OGJOEjdyWjt8SbZSG3eGnYynAgI7wAAHDVJREFUT6cMgOsK2YzgD6gZsZYgHhr+ijYftbjFUaKm2ye6T7dt1W1GO26G5EvgNCLRX5TNErDcqGZMOYyegndpY4FYf8GA9y2jzkcD6yz24g3tiNQe2y8rxuGITf6WiiISQGtPytNVE4bQdhDPUxKS4JD7CIj4zcWoABvuvB6vPfQGbjePBuWHa8UJRRQQCPS57qYbqimjTxR/EFQhshdScxgS3ADGvQSJKWi2yUgiBzft7jvgtqDz9/AsAs2FSdPvoZnjcGqP6Vcc1c/gyl0iDhLdH6L7lyie4YEt+1gqjlNzOFL/Z/D9EKTWJLIxdyG1x0DeThEfhLcb8jh749jLDqeusZZgxKwjCIRcIrUuJ182G/CZla6jTit6f6qKNh8DbVeaSd7sZ9B+FbrgCFRd418QPQSnzuje9yx9aewOr6TW5Y5E49D+N9TtQ5a5ChHxQ3BTclOWH4Jbo+kPyuq1vCRiR/6WqkAik5DIpNw3Gq43hhmLxMGkARl9DTJAFc1ysdSK47j5k6t46sYX+Og/nzFxzQiTDv6EMePTpiRTc3T/TD7S0yD9Lt11jxKQ+ch4xPalG598hYKidumPILRJ8bFUCVJ/Idq0nym/acyUu1Qh+Tya+hdoGo0egdSdssQsxConNvlbqhoJbQrjX4PMx4Af/KuV7Q9bM1968sjfIqGtILJ7vwTbRjXWccBpexZ5rNlAwngg57u7Sb3jLZjq+cEYmnq7b9MQZ2nytsZqEnXG9CaJVrWIbzkY9wIknkYzM037b/odIL24VTN2u9dVdUBFYx0O2ORvqXpEfBBYu+8NB4Emp6LNJ2IWTWXQ5CtGcXTMAyU1p9fMV0aHPvOlKWlJDdRflitC5huHkbbuucgsXJR5iNQcgSankis/nYbW89DGm4bUHF01jsYeguRz3uTzIWbuotfPpI0aqNR23jWJRCCyF2gKnbM+3cpagOmq+gfY5N8ntuZvGRaoptB8I+GS7DuLLjwdkygX9XzHIfsN2nFLaY+z4FAjdEbClC7ceWjzr9FsD9vr0E5dZKO7kkR9E/K83h0Jrg+j/kjun7hC+l2044beY83MRmN3o/GHi1qh3Ou+NG7KNW2XGhvMxBR0wZG4HXcU/Iwbfwqduym64BB0/q648/c0AoCdO41RcM2D2zyoeEcKNvlbqhrNfo+74Eh0zrronPVwmw5FM1+V9iCZz8kdQQIkIfFU6Y6Tet1bnduzOyVjVjF3QZwaGH0zeZP3wuOL8gyW8HZ5Pg+QhNiDBT/ntl+Nzv8Z2noR2nIeOncrcyc0QDT2IGS+YnE3lyeY1nYxbvJ1esrKa/oTaDndnCvtwMx1fOJNdnvbSr1pE85BoI87CovBJn9L1aKaRpsOMBOcZM2/9DR0wQGoW0BzZyBIxOuZz0MJSz7G6CTfaDVtXKR6huXOzW8PqXF0/s64zceh6Y8LH0+zFP4Tz/UNBtDUe9B+PWayOIEpO8XRhSeibkfez/RJ4lny+/mmoflYtGkSmp23OIbYneRejF0jxZB+HzByFDLqXCDM4kWCXldVXfFdVSMZm/wt1UvyJYz5etfE7IIbh8TTJTuM+FfwZId7/jlEkGhhOYZ+E/hx/ouMRJHQZrmvu3MLSA+oOS/J59GmA03CzoP4xhSQUw4YFc58e44/TP67IIHUv/J+pk+c0RR23UpCZqbX0eWR/Y78vfuOJ+ntRRTeFmm8w6wH8a1s1kGMeRTxrzywOEcYNvlbqpfsV/k7Xoih2Tym54NAGq42OkFSA9Rg7CT3gvBupTuGfyKEd6G7lACmAyf9aW6femA9erUq9Mon2nZR4WPWX2YE6ljUtRQF3/JI7XEFPpEmb+JV8oifFYfRM+qtayoL6ffQbJN5Gto6//aagkB3C0gJrosz+hpk7CNIcAu04zbcjltRW/fvE9vtY6le/Kt5ios9R79RxL9GSQ8l/gkw9nmjqe/Og+CPy7KKWOovQgMbQduFLO7kyULsTjT1Kox5pFMYTQJroqEtIfkq+csmHl4pJO/xAqvDuBc9w5OvkMB6EN6hYKePhHdBE1PySFlnILRl0T9nt30GN0Lrfuut4k6Rv/TleMccg0T2QWO3ewbt3l2IRCByGOLLrfMbo5/9vdJZDAgbx7fGO5DAWgOKeSRgk7+leglu4Zl/z2BxjdoPvrHQQ1gtH5p6G40/AJpAwj+D0Pa9asuLOGVf/CTiQGAFNKcFPwXZ2ZB8EcI7Lt6+4a9o7B6jfJr9rMBes6hmC9tZOvVIzWHFBRjc3HQaJZ/29JZ85t+osxFndHH7yINTcwQa2cd4NidfIkejx6k3Fox4k91jHkI7boPksyB1SM3PIbRj7o4B7bjWGK93fkcSpjK28FRkXOnKg0sa1sDdUtWo22407hOPAy6Ed0bq/q/PROS2X91l4lKBKIQ2Qxqurri5iHbchLZdQV7bxujROKN+l/dz7vdr5v8MDjL+zYHLGveMT9VMrCeMV7JEdjclq1Ls212Azt/LE7mLAwHAj4y+tijD9dxYE+icTciv/BpCxj2P+JYaXNDDDGvgblkiEKcWqT8H6s8p+jOa/R7ar6O7vEHMdA2lXoXQT0oSm2ZmmpE6fgjvhPiWLu6DvmVBQnnKWZFeDezxrQbZD/O8UWs0kUqEiEBwIyMYV2KMac0UNP4gpP5j5h+ihyD+FQe0P205k/yJH8zchU1xhbBnxrLkkXw9vwOXxtDEc0gJkr/b/nfvzsIFHGi7HB11Hk50774/HNrOay+Ns3hyVYy0dTiPvtEi6k6ChceS84M5dfQ+MVx+NDPLlKfc75DglhDZtaA0hji1poxT8/PBHdNtgcRzhTcIrGk6nix5sd0+liUPJ0r+ZOjzEuXg0PQn0H4D5s4i7f2fhNY/Frf4SoJI4z0Q+BGm7BEE/6pI4z+RXuITXWi2zQmoGdJvD+hnGSyqitt+Ezp/F4jdCokn0bYL0Pl7lV9l020qsAoawEHqryzv8Yc5gxr5i0gjcC/wA+BLYH9VzemxEpEsMN17+pWq7j6Y41osvRLausAbASRSxMi8DzQxhfy98A4kX4Bo37oy4l8BGXM/6i4A1aJGqJqaTl6lTs1C+hMI9s8vYLCoG0MXHAGZd3u8EYfsbDR2O1L7m8UvaxoyX4AzCvEtM/gAfBPIf5EXCE3qvYRmGfTI/wzgBVVdBXjBe56PuKqu5/2zid9SVkQiyOgbPAP2Wq93P2Q6VkqyAKi3Jon+NVCI01h8acI/kZw1AmBGvxVIdNo+2bPZzEcSEk92PnPjT6JzN0MXHIjO2xG36cBuq3oHgkgQan9L93NixPKk7sRCH7N4DLbmvwewjff4NmAqcPog92mxDBoJbgTj/+3p6SQhuFnJumEkvAvacTu5vfeuqeeXCYnsjrZf5bVgLrrI+MBphODAevAHRfxh8ncfLSKEJl5C3XnQeiHdzlf6fbT5KGTso4MKwak5HPUth3ZcB9k5ENwQqT1xwBPII4lBtXqKyEJVbfAeC9C86HmP7TLAu5hvysWq+kiB/R0DHAOwwgorbDBr1qwBx2axlBO37S9G8pk05gbagVFn4xRR8hkMmplhOlzS3og7uBlSf1FRMs997lvV+CZoBwR+1KeXgTtnvTyLwRbhjSsl7F2s8l0kwsiY+5HAaoMJ29KDkrV6isjzQL4etrO6PlFVFZFCV5IVVfUbEVkJeFFEpqvqjJ4bqeoNwA1g+vz7is1iqRRO3cloZFfTbSJBCO1kVgl3Qd0FEH8Czc5BQhtBcKuCC7GKRfw/RMbcZ4TtxOmX2UxvaGYm2ny0p53jAC5adx5OdI/CHwpt55V28oniqXlde5v0TXtidzb5V4I+k7+qFlxKKSJzRGQZVf1ORJYB5hbYxzfe/1+IyFTgx0BO8rdYhhPiXxlq888haOodtPlIUBdIoPG7wL86NN6GSGjwx3aig97HIozPwM+NambXOYvWP6CB1YxERL4Y6k5HU2+C24aRVQgCPiOpnHqtiCNnUf+qw9JVrCfqtkPyeXMuQpsj/h9WOqQ+GeyE72PAombdnwM5BTwRGS3et11ExgJbAB8N8rgWS9Wi6qILT/JKIl6dW2OQ/gjtuKuiseUlNc3zGeh5s502tpYFEN94ZOwzUHcmRA6Aut8h418xd0JFTXwLUsLFaZVCU9PQeVuhLeeibZei8/fCbb0gx6eg2hjshO/FwH0i8ktgFrA/gIhsCPxKVY8C1gCuFxFvNQwXq+oSmfwz6Qz/fmwan771OcustBTbHLgFNaNKN0KzDBOyX3hS1D1JQOIRqD1yyEPqFV1Y4I2sV5YpjDhRzy+3y1xHeCc0+W8Kr7z18K1V0juYSqCaRpt/7ZnOdCH2AIS2gtA2FYmrGAaV/FW1Cchpb1DVacBR3uPXgR8N5jjDgY6WDk7c/Czmfd1EvD1BuCbETWfexeRXL2TFNfq23bMsSTi9DHz7V/PXzGxzIfGvXD7P3cAG+eWaJYIMpHspPAli/zR2lRpnsZG8HzPxGwYJIA0XDyrsqiA1jfxzHnE09gCypCZ/y2JuO/c+vp0xh0zKdDUkOpIkY0kuOfxvXPPWJRWOzjKk+CYaA/ZsT7vJCET273ymmS8h+yX4V8mRj9bsXHThcWbxlvgBB607p/cJ2AEivrFozdEQu9lL1gBh8K0IkfymL73uT4LQeJeZ7E48bRQ7I3saK8fMe+BbGYnubXR+hj29tboOzP9gqLDJv0RMvff1zsS/CFWY+f4s2prbqRs9/GubluIQEWj4O7rgMCBjTEjED8HNkeh+xtC8+TjjHSBB0BQa3g6pvwyRAIDpvMl8humY8Vb1tp6DBiYigXVKHrNTdxIaXM/MSWgbhH+GRPcb8OS0SBCieyNdtY5CWwAHlSbgaiG4EXnNbySKhEt/oS4lNvmXCMcp3LPQ23uWJRMJrA7j/wWJ540dY3DDzqTttpxrEj/JxYk98SLquwapOwlNfwaZL8ktJyTQjtuQhivKE3Noa6SgNIYlHyJhdNRl0HIq5veVBqIQ3AzCO1U4ut6xyb9E7HD41jz4lymkE4tv9RxHWH2TVaipr6lgZEOLatosQBI/+NequHZ+JREJ55RNVF2IP0KuNlACYncb5U53Xn5VUtTzt7VUE05kBzT4NBp/FNxWoxob3NTcAVYxNvmXiEPO3pf3pn7IzA++JpNMEwgHiNZFOP32Eyod2pChyZfRhadiboNdo60z+noksGalQ6siMhSsEy/qGAmsXcAvN2Q6SCxVh/iWRWp/Xekw+oVN/iUiHA1x1Wt/4r2pH/L5f2ey1Irj2HS3DQgEA5UObUjQ7Hdo8wl002/RmFk8NP7VkixsWhIQCaL+1SHTs9tZIGgsJMWpR2uPhfZ/sLhdMgjOaCR6yFCGa1mCscm/hIgI6227Nuttu3alQxlyNP4Q+VveMsazNbzzUIdUtUj9+eiCw73RfRoIgISRUWd2buPUHo/610A7bgG3GcLbITW/KJk43WAwDmYvG92e8I5LSNfOyMMmf0tpyDaRt7VNsyZ5WTqRwDow5nE0dhukP4Xgukj0sByvWQlvh4TLpxI6ENy2K6HjFsyEhA9a/wwNk6suTkvf2ORvKQkS2tIb/fdUeVQIblyJkKoa8S+PjDq70mH0C029Ax230dNQRheeAuNfQxzbzjycGLmtGJbSEtoaAmsZb9pOIhDZfViIXFn6RuOPkuthAIgDyVeGPB7L4LAjf0tJEPFB4y1o7CFIPAYSRKIHQMjW+pccshTWrciz0MlS1djkbykZIkGk5kCoObDSoVjKgIR3RROPd5GA8NCMbUEdhtiyj8ViKY7gJhDeHeOZ6wABjDfyhYhTX7bDanYu7sLf4c5ZH3fOprhtl6Kap/xk6Rd25G+xlBl1WyE7G3wTqqJVc6CICFJ/ARrdD028aFQ/w5NyHMxKibodaNM+4DbRuTiu4w409T4y5s6yHXckYJO/xVImVLNo258gdj9IwAi4RfZDRp09aDvHwcWlkHwJjd1pnKfCOyPRg4rW1pfAOmURl8uHxh8Ht5Xuq6KTkJ6Opt/PiUPdDqOm6lsacUYPSYzDFZv8LZYyoR3XGVOPrgJu8QdR31ik9rjKxdV2JcRup3P1cPunaOJhGPNg9a3EzrxHQVOY9KfgJX9VRdsnQ8etRldK02h4F6T+gvL5IAxzbM3fYikXHbeS2xqZ8F6vDJqdC7Fb6J5QE5D5GuKPVSqswvhWBvKY1IuAb/nOpxq7x1uDkPBM45OQeApts14ahbDJ32IpF9pW4PXWyvm7pt/xPHZ7EkeTU4c6mj6R6N6mZNbN5t0PzjKdWkgAxLrqIC0iAbH7Ue3NcGXkYpO/xVIu/GsUeH31ysn9ymjy9+o74Iwf6mj6RJzRSOM9XnnHB/ghtA0y5q7u57CghEgGbGdQXmzN32IpEzLqbHTBLzDa/S5m9BpGRv2hckEFNwIZBRqj+0UgiESr02VLAqsgY+5HNQ748tfwA+tC6vXc152lQEaOn0Z/sCN/i6VMSHADZMy9ENoRfD+A0I7ImLuR4IaVi0kcpPE2488rEZBakxzrL0ICq1Ysrr7QzEy09Ty0aR/chacat7MuSN3pIFEWp7RFF9pzqt5UpVJIxWqPfbDhhhvqtGnTKh2GxVJSVF1Iv2smJQM/Rpy6CsWhkPmfF8faVd0Ro+kP0QWHeOUbF3BAQsjoG5HgRou3y8xA26+B9HTwTURqf4ME161Y3JVCRN5W1T5HGLbsY7EMEZqZgS44ErQFcEw7Yt3pODWHDnksIgJVPNLvirb+yStTLcIFjaOt5yFjn+h8Vfw/LJu/8ZKILftYLEOAqmvq/+73JpEtakdsuxRN/bfS4VU36ffyv575n+3kGQQ2+VssQ0H6Ha/1s2eZNYnG/lm2w2p6Om7Tgbjfr4U7ZzPc9utQzee4VsVIAUkMCWM6gCwDwSZ/i2UocNvo3qu+CC2b05kpMx1qLjykQZug/Vq09YKyHK9s1Pyc3IVeYYgcZCdzB4FN/hbLUBBc3/Ps7UkECe9YlkNq+/WLZSU6iUP8AdRdWJZjlgOpORoiewIhkDogaLyD606pdGjDmkElfxHZT0Q+FBFXRArOLovIziLyqYh8LiJnDOaYFstwRJx6qDsVI4e8aLQaAf9KENmjPAdNf0hekxUJGvGzYYKID6f+fGT8K8jom5BxU3EaLq/qDqXhwGC7fT4A9gauL7SBGPnCq4EdgNnAWyLymKp+NMhjWyzDCqfmCDSwtqnxuwshtBMS3bN8YmqBVSA7g5wLgKbAVz4Z5nIhzmgIWqXOUjGo5K+qHwN91d02Bj5X1S+8be8B9gBs8reMOCS44ZAt8pKaX6GJl+iueROG8C6I0zgkMViql6Go+S8HfN3l+WzvtRxE5BgRmSYi0+bNmzcEoVksSy4SWB1pvBH8qwJiVsBGD0Pqh9mEr6Us9DnyF5HngaXzvHWWqj5aymBU9QbgBjArfEu5b4tlJCLBjZCxT3jtnY7tjrF00mfyV9XtB3mMb4Dluzyf4L1msViGiEo6h1mqk6Eo+7wFrCIiE8VMzx8IVKFrhMVisYwcBtvquZeIzAY2A6aIyDPe68uKyJMAatZfHw88A3wM3KeqHw4ubIvFYrEMhsF2+zwMPJzn9W+BXbo8fxJ4cjDHslgsFkvpsCt8LRaLZQRik7/FYrGMQKyev8ViKSuqCum30MSzIBEksgfiX7nSYY14bPK3WCxlQ1XRljMg+bTnxOWgHbehdadVxMTGshhb9rFYLOUj9W8v8ccxXgZZIAFtl6DZpgoHN7Kxyd9isZQNTTzjJf6e+CD1ypDHY1mMTf4Wi6V8SJC8aUYEsJLMlcQmf4vFUjYksif5k7wLoa2HOhxLF2zyt1gsZUMCa0HtCUAIY2QTBSJIw18Rp7aywY1wbLePxWIpK07t0WhkN0i+YkzXQz+1ib8KsMnfYrGUHfEtDdH9Kx2GpQu27GOxWCwjEJv8LRaLZQRik7/FYrGMQGzyt1gslhGITf4Wi8UyArHJ32KxWEYgoqqVjiEvIjIPmFXCXY4F5pdwf6XCxtU/bFz9w8bVP5aEuFZU1XF9bVS1yb/UiMg0Vd2w0nH0xMbVP2xc/cPG1T9GUly27GOxWCwjEJv8LRaLZQQykpL/DZUOoAA2rv5h4+ofNq7+MWLiGjE1f4vFYrEsZiSN/C0Wi8XiYZO/xWKxjECW2OQvIvuJyIci4opIwRYpEflSRKaLyLsiMq2K4tpZRD4Vkc9F5IwhiKtRRJ4Tkf95/48usF3WO1fvishjZYyn159fREIicq/3/hsi8oNyxdLPuI4QkXldztFRQxDTzSIyV0Q+KPC+iMhfvZjfF5H1yx1TkXFtIyItXc7VOUMU1/Ii8pKIfOT9LZ6UZ5shP2dFxlW6c6aqS+Q/YA1gNWAqsGEv230JjK2muAAfMANYCeOB9x6wZpnjuhQ4w3t8BnBJge3ah+Ac9fnzA78BrvMeHwjcWyVxHQH8fai+T94xfwKsD3xQ4P1dgKcAATYF3qiSuLYBnhjKc+Uddxlgfe9xHfBZnt/jkJ+zIuMq2TlbYkf+qvqxqn5a6Th6UmRcGwOfq+oXqpoC7gH2KHNoewC3eY9vA/Ys8/F6o5ifv2u8DwDbiYhUQVxDjqq+AizoZZM9gNvV8B+gQUSWqYK4KoKqfqeq73iP24CPgeV6bDbk56zIuErGEpv8+4ECz4rI2yJyTKWD8VgO+LrL89mU8UvgsZSqfuc9/h5YqsB2YRGZJiL/EZFyXSCK+fk7t1HVDNACjClTPP2JC2Afr1TwgIgsX+aYiqES36di2UxE3hORp0RkraE+uFcu/DHwRo+3KnrOeokLSnTOhrWNo4g8Dyyd562zVPXRInezpap+IyLjgedE5BNvxFLpuEpOb3F1faKqKiKFeoBX9M7XSsCLIjJdVWeUOtZhzOPA3aqaFJFjMXcnP61wTNXKO5jvU7uI7AI8AqwyVAcXkVrgQeBkVW0dquP2RR9xleycDevkr6rbl2Af33j/zxWRhzG39oNK/iWI6xug64hxgvfaoOgtLhGZIyLLqOp33u3t3AL7WHS+vhCRqZjRSamTfzE//6JtZouIH6gHmkocR7/jUtWuMdyImUupNGX5Pg2WrolNVZ8UkWtEZKyqll1YTUQCmAR7l6o+lGeTipyzvuIq5Tkb0WUfEakRkbpFj4EdgbydCUPMW8AqIjJRRIKYCc2yddZ4PAb83Hv8cyDnDkVERotIyHs8FtgC+KgMsRTz83eNd1/gRfVmxMpIn3H1qAvvjqnbVprHgMO9DpZNgZYuJb6KISJLL5qnEZGNMfmo3BdwvGPeBHysqlcW2GzIz1kxcZX0nJV7BrtS/4C9MHW6JDAHeMZ7fVngSe/xSpiOjfeADzFlmYrH5T3fBTPbP2OI4hoDvAD8D3geaPRe3xC40Xu8OTDdO1/TgV+WMZ6cnx84H9jdexwG7gc+B94EVhqi71VfcV3kfZfeA14CVh+CmO4GvgPS3nfrl8CvgF957wtwtRfzdHrpfhviuI7vcq7+A2w+RHFtiZnrex941/u3S6XPWZFxleycWXkHi8ViGYGM6LKPxWKxjFRs8rdYLJYRiE3+FovFMgKxyd9isVhGIDb5WywWywjEJn+LxWIZgdjkb7FYLCOQ/wdHtiEjFPvmVAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXWYlFUXwH93ensXlu5u6VYklJI2AAVBRFEQBQVRVBoMpEsQRAUJERBQQlK6O6S7WRY2pmfu98cs++0ws7AxGyzv73l4nt03zj3vsHPee889IaSUKCgoKCg8XagyWgEFBQUFhfRHMf4KCgoKTyGK8VdQUFB4ClGMv4KCgsJTiGL8FRQUFJ5CFOOvoKCg8BSiGH+FLIcQYqAQYqavr02CLCmEKO4LWQoKaY1Q4vwVMjNCiK7AJ0AxIApYCnwupbyXkXp5QwghgRJSyjNezm0CagE2QAKngUXAOCmlJbXyFRSSizLzV8i0CCE+Ab4F+gMhuIxnIWCtEEKXyD2a9NMw2XwgpQwC8uB6oXUAVgohRMaqpfA0ohh/hUyJECIYGAr0llKullLapJQXgNeAwkCnuOuGCCH+EELMFUJEAV3jjs1NIOtNIcRFIUSEEOIrIcQFIcQLCe6fG/dz4TjXTRchxCUhxB0hxBcJ5NQQQuwQQtwTQlwXQkxO7CX0KKSUsVLKTUAroDbw0uPkCyE2x91+SAgRI4RoL4QIE0L8JYS4LYSIjPs5f3L1UXg6UYy/QmalDmAAliQ8KKWMAVYCLyY43Br4AwgFfkt4vRCiLDAVeAPXjDsEyPeYsZ8FSgGNgEFCiDJxxx1AXyAcl9FuBPRM5nMlfJZLwF7gucfJl1LWi7umopQyUEq5ENf3dzau1VBBwARMTqk+Ck8XivFXyKyEA3eklHYv567HnX/ADinln1JKp5TS9NC1rwArpJRbpZRWYBAun/ujGCqlNEkpDwGHgIoAUsp9UsqdUkp73CpkOvB88h/NjWtAtpTIl1JGSCkXSymNUspoYKQP9FF4SsjM/lGFp5s7QLgQQuPlBZAn7vwDLj9CTt6E56WURiFExGPGvpHgZyMQCCCEKAmMBaoB/ri+P/seI+tx5AO2p0S+EMIfGAc0BcLiDgcJIdRSSkcq9VLI4igzf4XMyg7AArRLeFAIEQg0A9YnOPyomfx1IN4PLoTwA7KnUKdpwH+4Im6CgYFAijdrhRAFgKrAlhTK/wSXe6pm3PUPXEPKBrLCY1GMv0KmREp5H9eG7yQhRFMhhFYIURj4HbgCzEmiqD+AlkKIOnGbp0NIuXEMwhVuGiOEKA28nxIhQgh/IcTzwDJgN649jKTIvwkUfUgfE3BPCJENGJwSfRSeThTjr5BpkVJ+h2v2+z0uo7gLlwunUVJj46WUx4DewAJcq4AY4BauVUVy6Qe8DkQDPwILk3n/ZCFENC4jPh5YDDSVUjqTKH8I8EtcNNBrcTL8cLnAdgKrk/tACk8vSpKXwlNFnNvoHi7XyvmM1kdBIaNQZv4KWR4hRMs4V0sArlXEEeBCxmqloJCxKMZf4WmgNa6QymtACaCDVJa8Ck85ittHQUFB4SlEmfkrKCgoPIVk2iSv8PBwWbhw4YxWQ0FBQeGJYt++fXeklDked12mNf6FCxdm7969Ga2GgoKCwhOFEOJiUq5T3D4KCgoKTyGK8VdQUFB4ClGMv4KCgsJTiGL8FRQUFJ5CFOOvoKCg8BSSaaN9FLIODruDk3vPIoSgZLWiqNXqjFZJQeGpRzH+CmnKoX+PMeyVMditrn4sWoOWIYv7Uf7ZMo+5U0FBIS1R3D4KaUZURDRftvyGqIhojNEmjNEm7t+OYmDzUcTci81o9RQUnmoU46+QZmxauB3pcHocl1KyedGODNBIQUHhAYrxV0gzoiKisZptHsetZhv370RngEYKCgoP8InxF0L8JIS4JYQ4msj5+kKI+0KIg3H/BvliXIXMTaUG5dD76zyO6wxaKjUsnwEaKSgoPMBXM/+fgaaPuWaLlLJS3L9hPhpXIRNTrm5pKjeqgCFAH3/MEKCnetPKlK5RPAM1gxO7TvNJg8G0ydaFd575mC1LdmWoPgoK6Y1Pon2klJvjmmsrKMQjhGDw4n5smLeVNbM3goCmbzWkQce6CJHSHuqp58Su0/RvNBSL0dXGN/aekW/fnEj03bdo3v2FDNNLQSE98Vkzlzjj/5eU0mM9L4Soj6tZ9RVc3ZT6xTXWfvi6d4F3AQoWLFj14sUkFadTUEgW/RoN4dBGjz8/grMH8vuNmUoegsITjRBin5Sy2uOuS68N3/1AISllRWAS8Ke3i6SUM6SU1aSU1XLkeGw5aoUMxm6zc2rfWS6fvJpm8vetPcT2ZXt8Ghp69uAFr8fNsRai78b4bBwFhcxMuiR5SSmjEvy8UggxVQgRLqW8kx7jK/ie7cv3MPqtKTjtThwOB7kL52TYsgHkLZbbJ/JP7jnDwOYjsdscANitDt4f35UW776Yatm5CoYTE+n5MhEqFQEh/qmWr6DwJJAuM38hRG4R5+QVQtSIGzciPcZW8D2X/rvKqNfHExMZizHahMVo5dJ/V+nfaChOp2dcf3KxWmx83nQEURExGKNMGKNMWM1Wfuj7M2cPXUi1/DeHtPeIQtL762n9QVO0Om2q5SsoPAn4KtRzPrADKCWEuCKEeFsI8Z4Q4r24S14BjgohDgETgQ5S6Rz/xPL3jLXx5RoeIJ2S6MgYjmw+kWr5+9cexmH3fInYrHZWz9qQavl1Wlfng0lvExIejFavwRCgp23vZnQb2THVshUUnhR8Fe3zyG+NlHIyMNkXY2VWTDEmDm48hlqjplKDcugMnvHtWYXblyO8GmeAyJv3Ui3fGG3C29zA6XASHekbn3zTtxrSuEt9YiJj8Q/2Q6NVylwpPF0of/E+4N/ftzO621TUmv8vpIYs6U/lhhUyUKu0o0azyuxZfQBzrMXtuMPmoGydUqmWX6lBOex2h8dxQ6CBZ9vVTLX8B6hUKoKzB/lMnoLCk4RS3iGV3Lx4m9FvTcFitMT7p41RJga1/pbYKGNGq5cmNOhYl1yFc6Iz/N8/bgjQ89K7L5KzQHiq5WfLHUbnQa+i99fH5wMYAvSUqVWC2q0eG8GmoKCQBJSZfypZ99tmHF6KlyFg29LdNO5SP911Smv0fnom7RjJssmr+XfRdvwC/Wjdqyn1Xq3tszE6ftaWCs+VYdXM9RijjdR7pQ71XqmlxOArKPgIxfinkth7Rhw2u8dxp92JMcqUARqlD36BfnT4rC0dPmubZmOUr1ua8nVLp5l8BYWnGcXtk0pqvlQFvb/e84QQVGtaKf0VUlBQUEgCivFPJc/UK0vNl6pgCDDEHzME6Gn5fmPyl8iTgZq5I6Xk5J4zbFq4jSunrmW0OgpJwGqxEXE9EoeXzW8FhdSiuH1SiRCCgfP6sHPFPtb/thmNTkuTrvWp3CjzRPpERUQzoPFwrpy6hkqlwm53ULN5ZQbO66OEOGZCHA4HPw2cx7Ipa5BSotNr6Tq8Pa17Ncto1RSyED4r7OZrqlWrJvfu3ZvRamQJBrX5lj2rDsSXSgDQ++l448uX6fh5uwzULPNx5fR11vy0gfsR0dRqUZWaL1VJ903mn76Yx5IJK+OrjoIrA/mTme/ToEPddNVF4ckjqYXdFOOfxTEbLbQN64rdy6Z0jgLZmXfxhwzQKnOyceE2xnSbit3uwGFzYAg0UKZGcUat+iLdVkgOu4M22bpijjF7nCtQOh8/HR+fLnooPLlktqqeChmEzWIDvL/gLUZr+iqTiTEbLYztPg2LyYojboVkjjFzYtdpNi7Ylm56GKNNHqUzHnDn6t1000Mh66MY/yxOUFgg+bxsPKs1Kmq+VCUDNMqcHNv2Hyq159fBHGth4/yt6aZHYGgAQWGBXs8Vr1Q43fRQyPooxv8p4JNZPfELNKDVuVwXen8dwdmDlEJmCdAZdIktkLyH8qYRQgh6jHnTs+qon47u37yRbnooZH2UUI+ngDI1SzDz2Dj++uEfLp24Srm6pWj2diMCQwMyWrVMQ9k6JdEZtBij3RPzDAF6mr/z/9aOV05dY9mU1Vw/f4tKDcrR7O1GBAT7tgdAo9efIzA0gF+H/M7NC7coVqkwb43oSOkaJXw6jsLTjbLhq5Du3L4SwZ+TVnF6/zmKVy5C2w+bkyN/9oxWi5N7zvBZkxE4HU6cTicOh5O2vZvR/ZtOCCHY+88hhrT7DrvVgcPuiF9BTd37LaE5QjJafQUFQIn2UciknD96iT7PfonVbMNutaPRadDptYzfOpwiFQpltHpYzVZ2rzpATGQslRtVIFchVztRp9PJ6wXfI+JapNv1Gp2GVj2b8P7YrhmgrYKCJ0q0j0KmZNIHMzFG/T+ixW61Y4w2MemDWRmsmQudQUfNl6pw9cwN3qvSn2aGjnz64jD2rz3stY+w3Wpn25+7M0BTBYXUofj8FdKM21ciWDpxJaf2nqXoM4Vo1+cljm076fXaY9u9H08uTqeTHcv3sun37Rj8dDTp1jDZxeG+7jSR3X/vx2JyhcIe3HCE/3afTrTMgn+wX6r1VlBIbxTjr5AmXDh2mY/qfoHVbMVudXBs23+s/mkDWr3Ga36B3i/1nc+cTidD2o3mwPojmGMtCCHYuHA7HQa0ptNXryZJxo0Lt9j11z6sZlv8MSnBZrETmjOUyBuRbl3M9P562nzQPNW6KyikN4rbRyFNmNpnNqZoE3ara7ZstzkwxZjxD/b3aHGpM2hp+nbDVI+5d82heMMPrmJ2FqOF+V8v5faViCTJuHTiKlq9ZxN3u9VOzoLZKVA6H4ZAA/7Bfmj1Whp1eo6m3RqkWncFhfRGmfkrpAlHNp/AWyzBvZv3qdG8Mgc2HEWr02Cz2qncsDzdv059DPv2Zbs9WksCqNRq9q09TNO3Hm+k85XIHZcV7Y5Gq6Z09RK8N7YLJ/ec4c7Vu5SsWpScBXOkWm8FhYxAMf4KaYIhUE9MpGeZAp1By/Dln3Ht7A0u/3eNAqXzkq+4b0pfBwT7o9aoPJrLq1QC/yBDIne5k694Hio1LM/BDUfdXD9avZa2HzVHCKHE2ytkCRS3j0Ka0KJHY3QP+fG1ei1NuzVECEG+4nmo1aKqzww/QOOu9VF7KcAmgRrNk17K4rM5vanfvg46g9Zl7GuW4PuNQ8hdOKfPdFVQyGgU46+QKBaThbs3InE6vfQofgxvDnmVmi9VQavTIFSuJux2m53DW49z+eRVX6sKQKGyBfhgYjd0Bh3+QX74B/sREOLPyL8+x5CEEg0Ou4NpfWfTMf97bPp9Bzo/Hb2ndmfSjlGUrFrM4/qUfC7GaBNHtpxIs89AQSGpKEleGYyUkkObjnH24AXyFMtFzeZVUGsytkm51WJjyoc/sW7OvwD4BfnRc3xXGnZ8LllyTDEmOhZ4j9j7xvhjQgiCsgfy24VpSTLIKSHmXiwHNhxFZ9BSuVEFdF42cL0xre9s/v5xnVs0kt5fz2dzevNs25rxx/5dtIMfP53DzYu3CckRTKcvX6b1B80QQjxS/h9jV/DzVwvQ6NTYbQ4KlS3A8OUDyJY7LGUPqqDgBSXDN53ZvnwPi75fzr3bUdRoVpkOA9oQliv0kfeYYs30bzSUi8ev4LDa0eg1BIUFMn7riAwtdzD6rSls+n07VpO7ERy2bABVktGhbPXsjUz5cJbHJqxfoIEPp77DC53q+Uzn1GK12GibravbMz+gWKXC/LB/NAA7VuxlZMdxbi8IIQR1Wlfnq98/TvTF7SoNMdqtQYtao6JElaJM2vm1j59G4WlGyfBNR+Z/s5RRr0/g6Nb/uHLyGsunrKZHpX7cu33/kff9Mngh5w5dxBxjxma1Y4o2c+fqXUa/NcXjWrvNzrxRi+mQvwdtwrowosM4bl687fNnibkXy8YF2zyMoMVoYd7IxcmSdfvSHa/RNxaTlduXkxZ6mV7ERMbgNTwJuH35TvzPs7+c75GnIKVk25+7GfLy6ETlLx63ws3wAzjsTs4ducS1szdSobmCQspQjH8qiY0yMnfYH25fbLvNQcw9I0snrHzkvevnbvEIK3Q6nBz+9zjmhwzFN50nMm/kEiKu3SX2vpEtf+ygZ/UB3L8TlSrdZ34+l05FetKlZG8Wfvcnt6/cQaP1Pnu9fv5msuSXrF4Mv0DPKBu9n45S1T196BlJSI5gDAHe3VAJ/f3Xz99KVMb+dUc4ufes13ORN71PBDRaNVER0cnQVEHBN/jE+AshfhJC3BJCHE3kvBBCTBRCnBFCHBZCZJkuIucPX0Sr9zSWNouNvf8ceuS9TkfiG4YywWbitbM32LF8b3y5AQCnU2KOtfD3j+tSoDXYrDY+qvMFS8av5ObF21w7c4M5Qxfxw8e/ei1rr1IJytYqmawxqjWpSP5SedEZ/u9z1xm0FC5fgEoNy6dI75RybPtJBrf9jh6V+jG1z2zuXHVfeajVarp/28mzjr6/nrcS9D3I76UxzgOcDicndpzyeq5Wi6po9Z6RSE6npEiFgsTej2XpxL8Z9fp4fhv5B5E37yXn8RQUko2vZv4/A00fcb4ZUCLu37vANB+Nm+GE5Q6Nz2JNiBCQs2D4I+997uVaaHTuBkEIQclqxfAL/H+9mHOHL3pcB2A1WTmeSK2cx7Ft6W5uXbrjtvKwmKwc33GSpt0aujUwEQJ0/no6DUpaiYQHqNVqxmwayqv9WpGrUA5yFc5B+wFtGL1+MCpV+i06Ny3cxoDGw9i+bA/nDl9kxbQ1vFuxn4fbrFm3Rgyc14fiVYoQEh5EtSaVGLd5mNvM/+2v30CdyMpIq9eSLY/3fZ52H71ESI5gtAlehHp/He+NeZPouzG8VfojZg2cz8YF25g3cgldS33I2UMXUv/wCgqJ4JMkLynlZiFE4Udc0hr4Vbp2l3cKIUKFEHmklNd9MX5Gkq94HopXLsLJPWew2/7/EtD56Xjl45aPvLfbyI4c2HCEyBv3MMWYMQTo0Rm09J/d0+26PEVzeSQugauccMGy+VOk99GtJzB5aRLudDjJXyIP/Wa9z7xRS7h7PZIytUvRbWRHCpVJ/lh+AQa6DutA12EdUqRnanE4HEz6YJabn95ucxB738icYYvoN8v9s67Tqjp1WlVPVF61xhX59OdefNNpEgmDJYQAvUFLrZbe99mCswcx/eD3/DlpFbtXHiA8Xxjt+rTgmXplGfXGeO7fiY5fCVrNNqxmG0NeHs13/wwiT9FcqfkIFBS8kl4ZvvmAywl+vxJ3zM34CyHexbUyoGDBgumkWuoZ+uenDH9tLCd2nkKtVaNSqeg1sRvl6pR65H3B2YOYeXQsW5fs5vT+c+QrnpsGHZ/FP8i9SmSxioUp+kwhzuw/hy1Bc2+NVk3rXo9acCVO7qK50Pvp3FxJAGqthhwFslOnVXXqt6+bItmZiZsXbnuN4HE6nOxfezhFMht2fI7chXMysuN4ou5EI6Ukd9FcDFr0ySPDSoOzBfHm4Nd4c/Brbsd3/X3AqwvwxrlbvF2+L/VerkX/n3uhVmdsCLBC1iJTlXeQUs4AZoAr1DOD1UkyIeHBfL9hCHeuRhB9N4b8pfKi1Xk3AuePXOTK6RsUqVCQ/CXyoNVpadChLg06PNrQfr1qION6TGfbn3uQTkmB0nn5+Mf345uNJJcXOz/PnCGL3I49KINQo1nlFMnMjASGBeBweC/FHJor5d23ytYuxdzzU7l6+jpqrZo8RVI+O9cZtBgT2be3mW1sXbqLElWL8nKfFikeQ0HhYdLL+F8FCiT4PX/csSxFeL7shOfzHp9vjDbxxUujOL3/HGqNGrvVTvVmlflifp9EXxQJCQgJ4MsFH2O12LBZbEnuG+uwOzi9/xwanYZiFQvHJyJZjBa6DG/PkvEribwRiZSSohUL88X8Pmi8lEh4UgnOFkSNZlXYveqA2/6GwV/Pa/1aeb3HYrKwfu4Wdv69j2y5w2j5fmOKVSzscZ0Qgvwl86Zax2bdG7J47F9utYTc9DFaWT5ltWL8FXxKen3LlwMfCCEWADWB+1nB358cJn0wk5N7zmCz/N9ts2f1QX4bsThZ/nCdXpvkjNW9/xxi1OvjcdgcSCkJDAtg8OJ+LBn/N1uX7EKr12Kz2ilZrRif/vJBqmav3nA6nem6sZsY/X/uxYj2Yzn873E0Og0Om4P2A1rz/Gt1PK41xZr5sPZAbpy7hdloQaVWsW7uv/Sd8R6NXk9ehnNS6fTVq5zed47Dm49jNXl/ARi97M8oKKQGn2T4CiHmA/WBcOAmMBjQAkgpfxCu6eZkXBFBRuAtKeUj03eftAzfR+GwO2gR2Cm+dWFCQnMGs+iG71sYXj93g7fL9XV72QDxxcoS+vq1ei31O9Th09kfpHpcp9PJvFFL+GPsCmLvGSlQOh8fTOxGlReeSbXs1HJi1ykuHrtCtaaVCM+bzes1i8Ys55dBCz32QvyCDPxxc5ZHLwJfcvbQBT5rMpx7t9x9QGqNmsZd6/PxjPfSbGwA6YwBnAhVcJqOo5C2KOUdMhFWs5WWQZ29buoZAvSsiJ7r0/EunrhCrxoDsMR6bnQiwFsgv1avYUX03FTXFfrhk1/4a/pat6Q3vb+O79YNTnaeQEKObT/J9H6/cO7wRbLlDuX1L16mSdcGj62nAxB7P5Zhr43l6JYT8TP/N756hY6ftfW49sM6Azmx87THcUOAnpfefZEytUpSu2XVNHsJHNlygoHNR2K3OrDb7Oj9dASEBjBt37dpVgNIOm4g7/UH2z7XAU1pRMi3CK1SuvpJRCnvkInQGXQUfaaQx3GhEj6fEUspGdJ2tHfDD14NP7hKDdi8rEySgynGxIpp/3iUMbAYrcwdtiiRux7PyT1nGNB4GCd2nsZitHL93C0m9/6JRWNWJOn+bzpP4si/x7GabRijTFhMVuaNXMyWJbs8rg0IDfAqwxxrYdnU1YzpPpUO+XukWQx+hefKMOPwGNp82IxaLary5tD2zDo2Dr2/nj/GruCzpiMY12M6549c9Ml4UtqREe3Bthewu/7ZjyHvdkQ6lczjrIxi/NOJvjN64BdoiE/W0hm0BIYG8N6YLj4d5+rp69y+cifR80IlvM6WC5XNn+oqmxHXIlFrvP9JXTx+JcVyZ3+1wKOejsVo4bfhf2CzeveRP+D+nSj2rT3k8WIzx1r4ffQyj+vb9GqaaJkHu8VVfyn6bgyD2nxHWq2a8xTJRY/RbzJ8+We81q8VTqeTHhX78fNXC9j3zyFW/7SB3rUHsnWp58sr2Vg2g4wCEkZESZA2pMnz81HIOijGP50oWbUYM4+N4+U+L1GjeWU6ft6Wn06M93kCj81qT3ST9UH1yYAQ//g+tWqtGkOAnj7TexAVEc2BDUdSXGs+PH92r64tIaCIl5XPA0yx5kTDMQHOHrzg9bjD4STyxqPLIETfjUnUleWthELNl6rSrm8LtAYt/sF+qNTeP8uoO1GcP3LpkWP7it9HL+Pujcj4fQinw4nFaGXcuz/gsCf+uSUJxxWQ3l6gJnCkz/MpZAxZJ6bvCSBngXC6f9MpTccoVDY/foEGj+xdoRLUb1+Hz+d+ROTNe/w5aRXHd5yiSIWCtOndjJUz17N0wkp0Bi12q53ilYswbPkAgrMFJXlsg7+edn1eYsmElW6uH52fjjcHe5aG2Lf2EBN7zeTmhVtodBqavd2Id0d39gh9zVciN/dueS+MFpLj0ZuTeYrmcq22Hqouqtaoqda4otd73hrWgTa9mnJs+0lmfzmfSyc8X4ZCJbDbUucme5iI65Gs/XUTd65GUqVRBWq2qIJarWb7sr0eG/cANoudS/9dpUj5VCREasuC0IB8yE0o/BHajN+kV0g7lJn/E4h03sMZ+yvOqBFI01/IBF9clUrFwHl9MATo42f3hkADxSsX4ZOZ7yOEIFvuMLqNfJ3vNwyh14RunNh5muVTVmOz2Ii9b8RisnJyzxm+6TQp2bq9NaIjXYe1J1vuUNQaNSWqFuXrVV96dMI6te8sg9t+x7UzN3DYXTPZVTPXM7b7Dx4y3xzS3mvBtda9mqD3e7SrSq1R88Gkt93u12gl/kFOOvYvk+h9YblCebZtTVq+38RjbHCF3BarVPiRYyeHAxuO0KVEb+YMXcSyyav4pvNEPq43CKvZSmCo95wOh91BQEjS8j0SRVsVNKWBhJ+jFlQ5wNA4dbKfcKS04IyZhfNOC5x32uCMnYeUvn3hZyRKtM8ThrT9h7z7RtxS3Qz4gzoXIvsitxC9O9fusvaXTdy+EkHlhhWo07p6ou6P96r09+pa0eo1zL88nZBw34f+DXl5NNv/3OPhN9fqtcy7NI3QHO7Zt1sW72Taxz8TcS0Svb+Odh+9ROfBr6JWq5FScmz7Sc4fuUT+knmoWL+ch+vryL/b+P3rUdy6oqJi3Wheff822XOrIeQbVH7NE9XTarHx6QtDORvXd0Fn0CJUqmQ3tnkUDoeDDvne9Qjx1Pvp6DbqdcJyhTL2nWluvRFUahWlqhdj4vZRqR5fSjMyZiqYloC0g6EZIugjhOrRzYiyMlI6kHdfB9sJXN8zAD/Q10YV5jlByUwkNdpHcfs8Ycj7/UEmjMIwguMqMmYyInhg/NHwvNno+Hm7JMmMvhvj9bhaoyb2vjFNjP/l/6553TDV6jXcunTHw/g/93Itnm1XE4vJis6gjTfuphgTAxoP5/yRS0inRKVWkbNgOGM2DXXTu1ylfxj683lcES0PsEHUEKShMUJ4/yro9FrGbBrK7pUH2L/+CNnzhPJC5+cTzRNIKk6nkxXT1rBkwkqiIqIxRZk8rrGYrKybu5kpu7/h1L6zLJu8Gq1eg9PhJFfhHAz6o1+qdHiAEAZE0McQ9LFP5GUJLJvBdpL/G34AE1h3IK2HEDrvLsMnCcX4pyO3Lt1m7ojFHNp4lOz5stH+0zbUbJ701gbSeRfs59yPSdixxsCKX3Zgsgzk+dfq8NK7LyYrcqd608qs/mmDx+ahIcBA7iI5kywnOZSqXowrp655bBDbrXbyFc/t9R4hhMdzzRo4jzMHLriVbrh6+joT3p/BoEUJjKNlCwkN//G9/iz9MZyIGwZqtPyFVh90IDCRME+1Wk22K7lDAAAgAElEQVTtltWonUjFzpQwqddM1s7Z7BEW+zAarQYhBD1Gv8mrn7Tk5J6zZMsTRsmqRZOU46CQMqR1L6581IdP2MG2HxTjr5BUbl26TY/K/TFFm3DYnVw7e5NTe8/xzrdv0LpXsyRK8dyimTUyDyt+zo7ZqAZOc+7QRf75ZROTdn7ttQzEzYu3uXTiCvlK5CFvMZeR7TToFbYt3UVslAmbxYZQCXQGLX2n90iz8gyvD2zHliW7MCfYmNb762n5fmMCQrwbYW9464ZmtznYvnwvDofj/5UwVaHgdIWbrlkQxpQv8mM1C6QUnD6ynr9n7eWH/aMJCgtM/cM9hojrkaz5eZOH3g9jCNDToseL8b9nyx3m0xeQQuIIdS4kBtxn/oCI2w/JAigbvunEvFFLMEaZ3OryW4wWZn0+D6s5kYSshxCqUNBW4MF/2+1rWv6cFR5n+ONkmqxcO3ODTQu2ud1rs9oY3n4s3cp8xMiO43mnwsd82fJrLCYL4Xmz8ePRsbzWvxXl6pSiYcdnGb9lBHVaJ17XPrXkL5mX8VuGU7lRBfT+enIUyM7bX7/Ou991TpacxCJupEMinQnq7Qe8DcIPq1kw7at8WEwqpHTNnK1mG5E37rNkwt8pf6BkcO7wRbfuZglRqVXoDDr0fjrqtK7OC50zT5P7pwq/FiC87ZFpwfBCuquTFigz/3TAYXewbu4W720bheDq6esUqZB4HLzb5aFjkBEdQUZzbI8BjVZie8hzYI61sGvlfhp3qR9/bM6wRez8a198oxCAA+uPMKP/HHpP7k5ojhBXgblhKX3K5FOsYmG+WzsoVTJqtajK5j92un22QgjKPVsKjVbDnasRXD93i/wl6xLi341z++fizVtis9jYsXwvXYa0T5U+SSFXoRxe6zyp1Coq1i9H3TY1eKZemST/TYArs3vd3M0sn7oGU4yJ+q/VoV2fFh69IRSShlBlg7CfkPc+Annf5V9V50KETkYIz77UTyKK8U8HNszfmujs3m61E5rTtbkZcy+WuzfukatQeKIhjEKdD3KsB8tmQvMfRIj9gLtsoRLs+msfzf1ep2ztkrw3tgt//bDWo6mJ1WxjzeyNfDDp7SfWf9xjTBeObDlB7H0j5lgLen8dOoOO3pO7M+y1Mez6ax9avRar2cYLnevxat+5OBxDcN/4dRH6mJwBX1GwdD5KVivGf7tOu2Uea/Vaek3slqKOaePfn8GG37bERwT9NnIJG+Zt5YcDo9O0GN2TgnTcRMZMAssmEIHg/ybCvwNCJO78ELrKkONfcJwFNKAu9MR+T7yhGP90YN2czW4uiISUqFKEwLAARnebwsb529Do1EinpNNXr9D+0zZe7xFCC4ZGVGxaH7/gnphi7pIwcEY6ZXw26KFNx/i43qBE/ctWsw2n0/nEdokKz5uN2ScnsnHeVk7tO0uhcgV4sfPz/DxoAbv+dl/pbJi3hdxFclKoXCHOHDjvtlowBOhpl4718ocvH8CY7tPYuWIfCMieJxt9f3wvRYb/+rmbrPv1X7d+AHarncsnrzG1z8/0+eFdX6r+xCGd95ARbcF5D9dL/xZEf4u0n0CEDH/kvUII0BRPFz3TGyXOPx0Y2Hwke1Yf9DiuUqsYteoLti7ZxdpfNrmVEdb76+k7vQeN3nh0Dfkrp67xRYuvuXs9EqESmKI9676rNSpCc4Zw93okD/93l6pRnMk7v07Zg2VSnE4nrYI6e5RlBgjLFcLUfd/xxUujuHr6BhqtGpvFRufBr9JhgGeVz7TGFGPCHGshNGdIimeV63/bwoT3Z3jtyaxSC2b/NzF+cx9cCWWLx/1FxPVIVzmLj5onK5P7ScMZMxVipgEPR1bpEDnWIdTeo8ueVJQ4/0xEs7cbcWTLCbckHYCgbIGUrV2CQa2+8ejiZDFamP/1ksca//wl8/LzyYmcP3KJEztPMePTORgfihl32J34B/lhijFjNduwW+1otGo0ei0fTunum4fMRDjsDqyJrHRi75sIz5uN6Qe+5/zRS9y7dZ8SVYomGuaZ1vgF+uEXmDq/fFju0ERr/EinZO2vm+gy1NUwaNmUVfw44Lf4ENOLxy6zZvYGph/8Puu+AKy78TT8gNC5kriymPFPKkq0TzrwbLuaPP9aHfR+OrR6DX6BBvyD/Rj256dYjNZEq0PefUzRsgcIISj6TCFqt6rmtSyzSq2iZPXizDw6jja9m/HM82Vp+X4TZhz63qPsQlZAq9NSqKx390m5uqXify5SviCVG1bIMMPvKyrWL4vez7tfX0qIjowFXAX0Ehp+cNUHun87iiUTVqaLrhmCuhDgxa0pHaDOk+7qZBaUmX86IISg36yevNznJQ5sOEpQtkCebVsDv0A/nE4ngWGBHtUphYAytZLXTCNb7jCebVuT7X/u9ujU1f7T1uTIn50eo9/0yTOlBad2rcF0+wdCs99FbahJ3gr9UGlSlmT20dR3+KzpSGwWG06HE7VGjc5Py/tjfVtCOzOgVqsZsqQ/nzQc4tGvwRBooFYLlwfg3KGLXktu2yx2dv+9n65D0z7SKSMQAW8iTX8CCVfEGtCUQGhLZ5RaGY4y809HilQoRLuPXuLFzs/HL/VVKhW9xr/lVjxMpRLoAwx0//qNZI/Rf3ZPXurxInp/PUIICpcvwNervkhd5cd0YNUPw8mf8yPKVDxGgSLXCQ9bhuliI5z2yymSV/7ZMkzZ/TUvdKpHyapFaf5OI6Yf+D5Z4ZO+4saFW3zV6huaGTrSMqgTY9/9gdgoL9mjqeCZ58vx6iet0CVYARgC9FR8vixVXnDVIArJEYzD5t09lC1P1q3jIzTFEGFTQZUHVwE7HejqIrL9mNGqZSjKhm8m4eDGo/w2cjHXz92kdI0SdB78aooiPx4gpcRhd6DRZv7F3bWz1xF3XyRXAfcNWocDomPrka3kzAzSLPXE3o+la8kPiYqIxhkX8aXVayhasTCTdozyeejg/nWHWTlrPVaTlUavP8ezL9d0i+T6oOZnnDlwwW2PQO+vZ8SKz6jUoLxPdclsSCnBedNVrvqhPsVSOsC6AxyXQVMGtBWf2LBOZcP3CaNSg/I+/fIJIdLN8D+YQKT0y3Jk0zaef8Fzg1atBr0m808AYqOMLPhmKZsWbker09D8nRdo07sZGq2GtXM2Y4q1xBt+cLlZLh67wvEdpyhXp9QjJCefKi8888jWoMOXf8ZXrb7hwtHLqLVqHHYn73z7RpY3/BD39+llc1c6brsqeDrvuPYBhABNecg2K8skdHlDMf4pRErJX9P/4beRS4i8cY8CpfLSY0wXqjeplNGqpRvSGYuMHgWm5YANqauOCB6C0CRvE1ljCCax14bNlrm/fDarjY/qfMG1szfjcyl+HrSAgxuPMmLF55zefy6R4m2Si8ev+Nz4P46wXKFM3vUNV05fJ+pOFEWeKYRfQOb+jNMaef9zcFwlPvFPArbDyJgpiKBPMlK1NEXx+aeQRWNWML3fHCKu3sXpcHLx+BWGthvNwY1HM1q1dENGdgfTMlxhdE6w7kZGtHdVH00GtVrUZdf6UKxm91eA2ahCGjL3Bu2Wxbu4eemOWxKdxWjl4MajnN5/juKVCnttBoMQFCyTLx01dSd/iTyUrV1KMfzSDNbteGZ8W8C0OCNUSjcU458CHHYHv434w2NGZzFZmf3l/AzSKn2RtmNgP457aQkJ0oI0LkyWrICQAIILT+DkwUAsJhWxUWqsFsGdiOcILdjD6z2mGBM/fTGPTkV60rlYL+YOX5TkAnm+5OjWE26VSeOR8N/uM7z4Zn30fnqE6v8vNq1OQ/6SedJ91q/gBenAI0Qq/tyjq64+6WQ5t4/T6WT3ygNsWbwTvyADTbo2oESVoj4dI+pujNd4eoBL/6Ws+fkTh/0c3ucOFrAdT7a4Sg1rYTFt59iWNWhUtyhW7UUKFvIemeOwO+hbbxCX/7sanxw3/5s/2b/uCGM2DU3XjbpchXOgM2g9kvRUGhU58mcnMDSASTtHMbHXTA6sP4Jao6Z+hzr0Gv9Wpt5QvHL6Oksn/M2FY5cpW7skbXo3J3uesIxWy+cIVQBSUxbsR3F/CWjA8GJit2UJspTxdzqdDGk3mgMbjmKOMaNSq1j90wa6jexIu498V7clKCwArVaDzew5M8hX4ilJGtEUA+mlSikG0KZs81Dvp6dK41aPvW7X3/u5duaGm8G1mqycPnCeI1tO8Ey9sska12Ky8POghayZvRGbxUb1ZpV5b0wXchYIR0orMnoimOaDNIK2EiL4K4TWNUbjLg34bfhi4P+6qFSCgGB/qjd17f/kLZabb1Z/iZQyUxv8BxzbfpLPmgzHZrHjsDs4sfMUf/2wlsm7vyZf8az39y1CvkHe7RjXxD6uNaoqFBHkm05pmZUs5fbZvfIAB9YfiV+GOx2uxuCzPp9H5K37qZYfez+WZVNXM+3jn6ny4jPoH+oqpffT8dbwDqke50lAaMuC9hkgoT9bBUKP8H81Tcc+sfu01zo2NouNk7vPJFvely2/YfmU1UTfjcEca2Hb0t30qv4Zsfdjkfc/BeOvca0zHWDbh7z7OjIu/yAsZwjfrh1EnmK50Pnp0Oq1FK9SlLGbh3n0TH4SDD/AuB7TMcda4sNBbRY7sVFGfvx0bgZrljYIbQlEjnWuNpZ+HV0v9xyrXWWd45CWrTjvtMV5swrOO+2Qlq0ZqLFvyFIz/y2Ld3rUzwFXL9oD6w7T8PVH18l5FFdOXePDOl9gM9swGy3oA/RodWr0fkFERUSTt3hu3hvThSIVCjJr4G8c3fofBcvko12fFqmK18/MiGwzkFHfgflPkBbQ1UYED3L70qQFuQrmQO+vw2J09/HrDFpyFMieLFlnDpznxM7TbqsIp8OJKcbMmtkraNNhPR51YaQVGfszIuQrAMrULMEvpyZx+/IdNDoN2XI/ue4RU4yJKyc9XZfSKdm/7nAGaOQbpJRgXoU0/goyBvRNEAFdESpXPSOhCkUEdPV+r3kD8l4f4rt62Y8iI3tC6ASEoUH6PEAa4JOZvxCiqRDipBDijBDiMy/nuwohbgshDsb9S5NqYn5BBlQqz9mVUAmPWXpyGfP2NGIiYzHHbfJaYi2YYizUbF6FNfaF/HJqEoXLF6B7+Y9ZPO4vjm79jzWzN9Kr+mcZHgEkpWTVrPV0KtKT5n4d6VltAIc2HUu1XCH8UIUMRpXrAKrcx1Flm4XQpH0GbYMOddDq3DthCSHiu18lh/NHLrltxj7AYrTw366jruJfHtjjfMTu4+csmCPdDP/Ov/bxXpX+tM3Wlb71vuLotv98Ilej06BKpLy3f/CT2xhGRn/jCum07Qf7KYidgYx4Gel8fKa1jP4aj3aOmJHR36SJrulFqo2/EEINTAGaAWWBjkIIb07XhVLKSnH/0iRls0nXBmi99K0FqNYk5Q2XrWYrx3ee8ijA5rA72LZsd3yf21mfzyP2Xiw2iz3uvBOL0cK4d6cnWrwtIdGRMZw/eglTrJfokSRy8fhl+r8wlKa69rQOeZNpH//Mwu/+ZOpHs7l58TY2i53T+8/xRYtRPjMY6U1ASABj/x1K4XIF0Oq1aPUailcpwrgtI5LduCRv8dx41LkGdH46ilQoEecHfhgNaJK3r+BLNszfwogOYzl78AIx92I5uvU/Brw4jMObk7/R/jBanZbn29fx+B7p/XW06tU01fIzAum4AcbfcK/tYwHHzbiaP4/BcSmR4xd9oV6G4Qu3Tw3gjJTyHIAQYgHQGkj9X2IyKVGlKN1GdWTW5/NQa9TxM7rhyz9LtDNWUhAq4ZLlpSxKQr/u/nWH3TI5H3Dr8h2i78YQnN17yVyb1caE939kw7ytaHUaHHYHr/ZvxZuDX0uWn/jOtbt8VPdLjFFGpARjtIkV0/7B6XC49Q4GVyz67C/mM2bT0CTLT28cDgen9p7DYXdQukZxt4zlIhUK8eORsURcj0SlEoTlSlltmrK1S5KvRB4uHr8S31pRCFc4ZrN32oBmL1j+xW3mJ3SIgLdS82gpRkrJ9H5zPFxeVrONUa+PZ8GVGake48PJbxNx9S7Htp9Eq9Ngs9h47uVatO/fOtWyMwTbIdcKzuNFbgLrZgh4/dH3q8LBedvL8eS5GDMbvjD++YCE1beuADW9XPeyEKIecAroK6X0qNglhHgXeBegYMGUFSJr91ELGnR8jgPrDqP311OtScVUGX5wzYaqN63MntUH3ApjafVaXnzz+fjfA4L9ib4b43G/EHhP9IljRv85bFqwDZvFFp8stOj7FeTIn53m3ZPeLHr5lNVYzVa3iWxiHbwALhxLWdG09ODErtMMbvMtZqMFIQQqlYqB8/t4ZFCnNvxQCMHo9YOZ2PNHti7ZhdPhpFSNEnz843uE5ghByjHI6LFgWhgX7fMMIngwQpMxhfJMMWbu3/YevBBxLZL96w4/srxDUvAL9OO7tYO4cuoa18/dpFC5AuQsEJ4qmRmKKhzwFpmmBlXex98f8D5Ej8Z95eAHAb18o18GkerCbkKIV4CmUsrucb93BmpKKT9IcE12IEZKaRFC9ADaSykbPkpuZivsFnnzHn3rDeLujUgcdicqlaBw+YJ8t25QfJbkkgl/89MX892Sv7R6DXXb1uSLeX28yrXb7LQJ7eK161Seorn49czkJOv4ebMR7F1zKMnXl6lZgok7RiX5+vTCFGOiQ/4eHk1p9P56fjk9Kc3izR12B06n02M/4QG+DtW8fyeKs4cukj1vWJKDApxOJ62CO3vM/B/w/Ku1+XLhxz7TMSsgpUTeeREcV3B/CRgQ4UsQj2nTKKVEGn+CmKkgzSAMENgL4Z85czXSs7DbVaBAgt/zxx2LR0oZkeDXmcB3Phg3XQnLFcqs4+PYv+4I187coOgzhSj/bGm3//w2vZtx6cQV1v76L1q9FrvVTpnaJek73XuWKrg2Fu2JdGG6dzsqWToWr1yEQxuPeSSgqTUq1FqNWwN3vb+OLsO812+3mq2c3HMWvb+OElWKpvsf+LY/93jteex0OFn/22Ze65c27ge1Ro3aW9OPOHz1OUgpmTVwHkvG/41W73LzFalQiJF/fZ6oa/ABKpWKZ9vVZP3cLV7Pm7xEuz3tCCEg2y+uCB37eRBqQIMIGfVYw//gfhHwNtK/qyvkVwTh2up8svGF8d8DlBBCFMFl9DsAbk40IUQeKeX1uF9bASd8MG66o1arXW6HJt7Pq1Qq+vzQg86DX+PC0UvkKpyT/I9J+vIP9id7njBuXbrjca5MzeQ1c2ndqynLp65xM/46g5YK9cpQ8flyLBy9DON9E7kKhdNjTBeqvui5Cb75jx18//ZUhBBIpyQoWyAj/vo8XfsBREVEY7d5ZlDbLDbu3UreCzEzsnHBNpZNXuXm5juz/xwjOozju7WDHnt/78lvs2nBdo/WjYYAPQ07PpsmOj/pCHU+RPgypP2SK9RTUxIhkmf+hFCDyDp9D1Id7SOltAMfAGtwGfXfpZTHhBDDhBAP0jU/FEIcE0IcAj4EuqZ23MxM9jxhVH2x4mMNP7hmFR9MetutDZ9KJTAEGHjnu07JGjc8X3bGbx1BhefKIFQCQ4CeZt0bMXTpp3T8vB1LI37mb9NvzDk3lfLPlubGhVtuUUiXT17luy6TMUWbMUaZMMWYuXXpDp++MNSrMU4rKjcsHx9BlRBDoIFqjVMetZVZ+GPsCo98FLvNwdGt/yUpGTEgOIB+s3uiM2hRqV2fkyHQQJnaJanfvk6a6JxVEJqCCG3ZZBv+rIhPPgEp5Upg5UPHBiX4+XPgc1+MlRWp3bIa364dxG8jF3P11DVKVitGp69eoVDZAo+/+SGKlC/I2H+HefVPCyGIvhvDqNcncHzHKVQqQXB4EP1n96JywwqsmrUeu5dOT1azjf3rjlCjWeUUP2OynqFCId74LD9Fim4kKMzCzn9CWLMgL8Uql6JyowpJliPtl5DG+a4GHbraCL82CFXG9+uNjvAMCgCXey72XixhOUMeK+OFN+pRqloxVv+0kai70dRuWY2aL1Vxa9yioPAolE5eWYA7VyOY3u9Xdq88gFavoclbDeky9DWPmHcpJd0rfMzVU9fcQj/1/npmHPqeOUMXsW7uZg/5hkADH019hxc61UvzZwFwxv4M0eN4EF1hs6iwOcLwy78KtS5py25p2Y6MfB9XqV4b4Afq7IjsSxCqjF26T+o9i79nrPVoqRgSHsTC6z8qBlwhVSidvDIIY7SJNbM3sG/dEfIUyUmrnk0oUCrt6rbHRhnpWf0z7t+OwulwQjT8OWklp/ef8/Afn9h1mtuX7njE/DtsdpZPW0ON5lXYunSXh0vCaXfwTL0yXsd3OBzsXX2Q80cukb9UXmq1qJqqDmLSGQPRY0kYV6/VO9ESA9aFoEt88zxehpTI+wNwD80zuZJ6Yn5ABHskoSdK7P1Ydv61H6vZSvWmlQjPl/rY7je+aMeWP3YQe9+I1WxDpRJo9Vo++qEHSFdEjze3l6+Jiojm7xlrOb7jFIXK5adVz6ZPdkinQrJQjL8PiYqIpme1Ady7fR+L0Ypao2LVrA0M/uMTqjdNG5fJP79swhhldBn+OKxmG8d3nOLMgfMUr1wk/vidKxFeSxnYbQ6un71J96/fYMn4vzh/9FJ8KKEhQE+L9xqTs2AOj/ui7kbT97mvuH0lAqvJis5PR3C2ICZsH5nycEz7cRAaLyXWLWDZAIGPN/44LoPTm+/cBuZ/IInGf/eqAwx7dQwqlUBKidPhpOvwDrz6yeMrjz6KbLnD+PHIWJZPXcP+dYfJXSQndVvXYPGEvxjx2lhUahXPvVyT3lO6ExQWmKqxEuPmxdv0rD4Ac4wZq9nG3n8OsXzKGkZvGEKpasnrxJaeSCnBtsfVeUtTHqFNXlBEysd1IkSWqoOZ9Yy/3WZn98oD3L4SQemaJdL1D3nBt0u5ez0yPtrGYXfisFsY3W0qC65MT5PZ3MndZ7zGfAsBZw9dcDP+JaoWjc9iTYjeX0elBuXQaDWM2TSU1T9tZOOCrfgFGWj5XhNqtajqdewZ/edw7ezNeJmmaDNWk5UJ781g2LIBKXsgERrXYMMLKs8XkHcZfnhP6gGS6POPjTIy7NUxHg17fhm0kCovPEOxioWTpksihIQH03nQq3Qe9CpREdF0Kdmb2HuxyLiZ/5Ylu7h88hpT936bJqG2Mz6dQ8zdmPiMdLvVjt1qZ+w705h+4Hufj+cLXL12O4PzRtwBJ1JfFxE6ESG852akajzpRMZOg9jZIKOQ6mKI4C8R+ro+HysjyFLG/9rZG/StNwhzjBm7zY5QqXimXlmG/tk/0cQdX7Jt6R6vTV5M0SaunblB/pJJyCZMJoXLFfDaTAQhPHoL5CmSi/od6vLv7zvijZpGpyEkPJgmb7ly7nQGHa16NqFVz0TiWROwedEOj5eJw+5k96r9OByOlPmuNSVAUxDsZ3Cvp2FABCStpaNQ50Bqy4PtIO4vAT/wS1oE1a6/96NSexpdm8XG2jn/ptr4J2T1Txuwmm1umdl2q50rp6+nusm7lJK/f1zHou+XExURTYXnyvDOt53Yu+ag11IkF49dxhRjwi/QN0XcpLS6VmyOK6ApB7paKX6ZyfufxtXZSfA3Z9mGjP0J8YgVobSfBfsF0BRDaAonfbzo78A4n3j3oeOsax8p268I3ZPfqztLGf8RHcYRefOeW4LQ4X+PsXTiKl7rl7qlelLwD/beD9Vhd+IXlDYVEZt0a8iCb/90M/4arZq8xXJ5NRqfzHyf0jVKsGzyKozRZp5tV4M3vngZ/yTot3/dYWYNnMeVU9fIUzSXR5z5A1ITQyCEgLAfkZHvgv2iKyFHOiBoAEKXtIqdUjpcLxHbgQRH1eDXPMm9BmwWm9difFJKt2Q5X3D+yCXvMqXk8slrqTL+swbO489Jq+Jf9jtX7OPQpmNo9d6/+kKlQqPzjVmQ9svIux1cZTGkxVVfR1MSsv2CEMn7PkhnDFh349lr1wzGBV7dgVKaXIld1n1xrkRbgpXCowsASmdsXDG4h5PmzMiYyYhsaVKbMl3JMk6siOuRXDh62SMz1GKysmrmunTRoU3v5hgeKh2tUqsoUbVompUkCMsZwrgtwylVozgqtQqNVk2tltUYvW6w1xmWSqWi5XuNmXl0HPMuTqPnuLcICQ9+7Dh7Vh9gUOtvObX3LMYoE2cPXsBus8fHmcfLV6uo+mLFVEWsCHVuVOHLEeGLEWEzEDl3oHpc8a0EyOgxcY3l3dvyCX39JPttazSrjNPu6TrS++up90rtJOuSFEpWL5ZoyfEiFVKeXBdzL5alE/52c11JKbEYreQsmMMttwRcxeyebVsjSatkaTuJtGxGOrwUPHtwzf3+4IwAGQvYXS8B2wlkzNQUPM2jXrjeq+DKqK/Butd1Xsbg2jfahoye8PjhnLfiMoG9YD/9+PufALKM8XfYHSS2mvQWu54WNO5SnxfefB6dQYt/sB9+gQbyl8zDV7+nba2VIuULMnnn1yyP+pUVMXMZ/Ee/x5YJSC7T+//qUX/I6ZAIAX6BrhWPX6CB0Jwh9J3eHmmcj4yZgUxBP98HCE1xhK4aQuWf5HuktMbN2B42CBZkzKQkywnLFUr3bzuh89OhUqsQwrX5/dzLtahYv1yS5SSFxm8+j1+gey8KnUFLiapFU7RnZbPaMMWYuHzymtcS5w67w9Wusmnl+L9Vvb+e4lWK0ueHdx8pWzrv4rzzMjLiNeS9vsjbDXBGjfRYJUlnFNiO4Ln3YoGklFF+CKHKBmpveS8a0Hv22pVSgmkpnjN3i6tI3+NQ5UqkTakATcpXYpmJLOP2yZE/OzkKZOfq6Rtux7V6LQ06pM8GjRCCj6a+Q8fP23Jyz1nC82WjdI3i6VYbJynVSx0OB1dOXsM/2J8c+ZMetnjl5HWvxx12J31/fI+Lxy5ToFQ+6rVyoDa2Q3e/JlIAACAASURBVEZJwA4xk5CGJoiQ0enzOcgYvNbeBnB4f4bEaNu7OZUalGf93M2YjVaee7kmz9Qr6/PnCAgJYMrur5nW9xf2rDmAVueqFtttVNJXO+AqiDex10z+Xbgdp9NJnmK5sZg8a/0IIchfMi9f/f4x187e5Pzhi+QplovilYp4keqOvPcJ2E/gmsnHHTT+Dtoy4Ncu4ZWPkJLIZvxjECHfIiO7gLTjWgn4xfXa9VY00UmiqwVp8n484Vgqf6T/m2Ccg3vIsB4R1DvZumdGslSS18m9Z/m00VDsdgdWkxW/QAO5CudgwraRSfJpZ3W2L9/DmO7TsJptOOwOSlQpyqBFnyTJJfV6ofe5fdmz/lBIeDB/3JoFuGbd8latOAP8EJrKiGyzEKq0CV18gJRO5K06IO96ntTVQpXt1zQdPyP59MWhHN160q2Mt0qtQq1WuQUiqNQCIVQ4nU6eeb4sfX7okaRSJNJ5F3mrHl6NqqY0qvDlboecd9qB/RjuLwIt+L+BKnhgMp8uTgfHTaTxd3BcAG01hF+rRLO2nRGvxW36J0SAri6qbD89fiwpkcbZEDsTnJGgKYUI/iLJe08ZRVKTvLKU8QdXmdy1c/7l5oXblK9bmrpta6Qq6SircP7oJXrX+twtLFSlVlGwdD5mHB7z2Nnsqp/WM+XD2W7+Y72/nm4jO9Luo5cAkJZtyHu9vRt/BGhroMo+x+OMlFaXH1UVilCnPiHOaVwCUUNwd/0YENnnIrSpq3WfUdhtdk7tO4dGq6Z45SIeYcOXT17l/Sqferjm1Fo1+Yrn5vq5WzidcTNuKeMT/YQQBIYF8MvpSY/NKZD2S8g7LfDqY1flQZXz34euP4OM6AjSBhhBBIAqDyL7wvjeuWmJtB1H3n0jromLDdCB0COy/47QZN5chtTy1Gb4hoQH80rflhmtRqbDVUXSPVLC6XBy48ItTu0791jfctO3GmKOtfDrkN8xx1rQ++noOLAdbT9snuCqR00kJNgOIu0X3fr8Oo2LIXoEIFzRGNpyiNApCHXKM2lV/u2QqlCXj99xDbRlEEGfILRJrwuU6FPY40IN1UXSzZ23Z/UBRr0xAafDiXRKAkL8Gb78M7ccjmtnb6L5X3vnHR5HdfXh98z2lWTJcqEZiAkdAoReA4QaTO89hFCSUANfKIEQWkLHIQk19BJ6x/RiCJAAhgCmB2MMprjIstr2nfP9cceypN2VVtKudmXd93n8eMvszNFodebOuef+fkF/TvLPprM0Lj2aa9++lLeff58/H3wVifbFyVtVSSVSPHvbVPY5edfeA/FNAKcW3J7J3w+hXHsO8a8M416CxJNo9msksDaEflqWnvx8SGBNGPskGrsT0h9D4EdI9BDEN35Ijl/tLHHJ35KfObPmdVsFvAjH52PBd819fl5E2OuEXdjjuJ3paIkRHRXJ7egJbkSvFwAJoql30I5/QPpDY4OXeoNuk3Lp99HmY5CxD5pJu+TTaMet4C6E8HZIzVFm8q+veMM/RcK9+gX1C818gTYf7xmCCDj10DAZCeZfAFcq5n49n/P2vbzbHVu8PcFp25/HPd/c0KnfNPFHK5DK49oWCPlZc7NVCYaDLJzTktcnIRlLMfP9vv1oRRwY9Sd04cmY35kLhMCpQ2p/k/8zTi1E96dSlifiWwap+12Fjl7dLDHdPpbeWX/7dXJa+8D0s6/aj44Sx3GoG12bt5VTJIQ0/IWCYwpNQNu5EH/Q1IJTr5DbjZGBzP9Msm2fjLacYfr1szOh4zZ0/p6mk2QIUU2Z8kF2BqbkEQf3e7T5l2g2dx6klDx3+8t5L9qZTJZ/P/525/Pxy4/lJ/ts2s0uVBwhFAmxx/HGeH3FtZbP2xEXioZYZYOViopHwtsiY+6HyD4Q2ARqf42MfRLxFbn6ukpQTaGJZ9DYP9H0ktG62V9G7Mg/GU+STmaobai8xO9QsMvR2/PI356iec7CzvJPuCbEpGO2L+kaBAltjY55GJr2xyRKb6QpEZBR4M4pYid+NDMTOm6m++RiGtxmNHZ3rys6S07yJXPh6nlXo1k0/ghSe1RJDzfro6+599JHmTn9K9KpTE65DsDNuLTO734R/N0tx7HCmhN47OpniLXFWX/7H3HMpYfRuLT5/a6xySpMXGdFPn9nZueksOMIkdow2x+2dc4xCiGBVZH6Pw3iJ6wsmv7MyESQ6pQSMR1pl3RbB6LZOZB4ynQHhbY2ZaQliBGX/Nua27nyqOv4z5S3UVWWW3lpTr3pN6y56aqVDq2s1IyKcu3bl3Lf5Y/y2sNvUtNQw94n7sK2ZXB+cgKroeOeRNv+Asl/Gc/TwI8gWeRiO00DWZCQN1nXlSQkXy1O4K1UZOd57YU9Sfa7fbQvPnjtE87Y6ULSyTRu1u3W+9+TdXqsN/D5fRx85t4cfKZpuZw5fRZffvA14gjLTFwKEeGSZ87mxjPu4vk7XyGTyrDRz37MbyYfQc2o4tdSDGdUFV34a9Aepc7ks5DYAiJ7AuDGn4aWReWiDLRfi0b2RkblXzw5HFniun16Q1U5fpMz+eL9Wd00acK1YW6cfiVLrTi8bl3LyVtP/5frTr2d2Z99y+il6jnk7H3Y9dgd+/XFV00bLZT0W15CL8YNLGLMsUM/QZsOoHuPNYADkT1w6i/px08zODT9Edp0IDldLhI1o8Vw3zpIxXLMev+Xt/4ujnTW68M1IbY5YAtOvfHXeffR0dLBWZMu4vN3Z+L3+0inMmyx58acfvsJ+Pwj2yvAjPr3y9/rH1gfZ8w9qNtu2oVzft8RpOE6JFTaFd6lZsR2+/TG5/+dyVcfz84RI8uk0jx2zTMcfUn/bBOXRNqa25ly/XPcft79naWBpm+buf7/7iDRkeyXnLHG7vUSf2+LakJG70UTxmwl+gskvK2Z7PX/wFtK3/X3FUSixQm8lQoJrImGtjJ3HJ0XoxD4JkJou5IdJ5vJ8uX0r/LHIMJaW6xGIORn0jE78JP9NkNV+fD1T3n1oTcIhPz89OCtmLj2Ckw+9gY+e3sG6WSmc0bl9Uff4r7LHuWgM/fOu/+RQ5qCU52L7jJTr+WXFdc4mni06pN/sYyo5P/9zLk5WjQAmVSWrz6ZXYGIqov7Ln+M2865h0wqk6P4mIwluevCB9n7pEnFjx7jD/SS+GuANIS392qt3SejjcDbjejCEyH9gfljxA+jzq9I7VUarjKLi+L3mLuYyO5IzREl9YJ1fA7BSDBHRhpg1JhaJv/rgs7nqspVv/kHL9z5CslYCnGEh656ksPP3Z/XHnkzZ4CTjKd47JpnbPL3rw4EgY4eb4Qh0tfARrx/vaOaBaTq9f9HVPJfad0V8+rZByNB1tp89QpEVD28+9IH3H7ufbnS0F1IJdK0NbfTMK5vj1lDoWX8Yag/Fwlu1mvPtfjGIWPuRrPfg9sK/pUqZrwt4uerr37C+y+PpWHcKDaZtD7BPpQhu6KaheTzaOJpkDokum/OgjMRYdIx2zPl+ue69euHokH2PGGXbtt++PqnvHDHKyS8C4Vmjdrobefcm7c7CCDekV8AbSQh4oOGyV7dPwukQKLgXxWJHmQ2Cm5RYI4njIT3KLhvzcxCW8+G1FuAg4a2R+rPQ5zyiDoOlhGV/JdbeRk23W1D3pjydmfftONziNaG2eXo0t2+D0ce+ftTeUecXQkE/f1zlors5Xnx9kg6zmgkvHvR8wfiWxp8Sxd/3BKjqlxx1LW8dM9riIDP58MX8HH5i+ey0jorFvH5LNp8NKTfMcqWOGj8EbT2OEAh8TRILVJzGL+86BAWfNfMa4+8ZXwakmm2O3grDjxjz277/NeD/8lZ0AXGBL6usTZn7YbjCBvuOPw16EuBhDaHsc+g8YchO8eYs4S27RxYiFOL1l8BLadgRvoZwA/R/SC4Sd59qtuGNu0H2oKpF7mQfAFdMAPGPFGVk8QjKvkD/P6uk7jvskd5/LpnSbQn2HjSBvzyzwczqrH8y82rmdb5bb2+H64JcdDv9+rXhKFED0ETzxlrRo0BYRCfp6defX8MhZh67+u8fN/rOZr7f9j9Yu6ceU3fP0vy+S6JH8wdUQLarwQCLGpn1Zbp+CMHcdbdZ9D0XTPfzfie5VZdltHjc++0AqGAmQTOdi/PiQg/++VPeXDyFDKpNJl0lmA4QLgmPKRzWpr5yqud15pVvUU6qA0V4lsaqc0/YQ7gRHZAgy91afXcBgkU7gjU+MPGs6DbREHarDBPvQGhTUsXfIkYUd0+lsI8dNUUbv79P/OOJuvHjeKQs/ZhzxN+1u+krepC6nU0Nc2UeMKTEKfYslF1cOq2f+T9l3OlqcO1YSa/cn6fapjuwlMg8USRRwsh454zdzu9MPODrzhhkzNzfl+hSJB7vrmBtuZ2Hv37U8z6aDZrbb4au/16p6J8Gwqh2e+9SfkV+qxlu62XQex2QDo18WX0DVUviDYY3JY/FJCKDiOjzlxcUhoCbLdPGYm1xXn5vteZP3sBq228MhvutG5Z/HmHkp8dtR1P/uN5vv9yrplAFCEYCXDs5Yez268G3soo4kBoSyRU+vUEQ0W+RVYAjkjeOaQcpBbTYVKElLEEjBKlb+deN5u49gocceFB3HLWPxHHwXEEN+vy+3+eTG1DDbUNNfzqiiP6Pl4faPYbtPkEr+vKAWcU1F+GFBjJavLfELuTzpXb3thSm38F4//dp4PWsMW/FhAFYt1fF8d0s1UhNvn3k5nTZ3HK1n8kk86Q6EgSqQ2z4poTuOzFc3NcvIYTkZowf3/zYp655UVef/QtGsY3sMfxO7Pahj/kP0+8zbeff8/EdVZg3W1WhditnlGGQmRPpOYXiOS3sBxKNPstpD8C33JIYI2B7UPjkHwdyEJwc8SpZbtDt+KL97/spq8DZlHVKuv3LYsg0f3Q+CMUcpzqEYHRPCqCfX+7K9vsvxlvPvUugaCfTXfboH9zMn1Foi664FBvIZt34XLjaPOxMO7JvAqsGn+A3LUZAOqVP7YqWXzVhER2Qzv+5oneLbrIB8G3MgTWL3o/6rYbHSvfUmUXwLNln35y1Nq/ZdZH3dtCg+EAB56xF4edU5w/7HCh6btmTt7ybFrmt5JJZfAHfFz20AxWXrsd6ewgDxvVzMa7K9bapppFW8+C+BPGJ9bz8JXGGxGnofj9JF9GF55EZx+4ZqD+EjLO9py2/XnMeG8WifYEgZAfx+fwxwd/x0Y7FTeJ6nbcBm2XmZE94o2IU3SXr3CM5PG4F6qiTVCTr6MLj/NsGLsSgJqjcOp+m/MZt/lESD6duzOpReov71VsTzUF7nxwxiAy/AZSmv0ebf0zJKea1uTwHkjd/xU136GaRFv+6JUHfeZ7Uvc7nOgB/Y7Dln3KwPxvmvjui1xtmlQizXN3vLzEJf/Jx1zHvK/nd2q/r7nBQiZMbEa6lS8SkPkUUq9DhUo7GrsT4k9htFq8ZJr5GG05Axl9XXH7cJtNeaPn6LzlNALjnuWKqefxxhPvMO259xizdAM7/Hwbxi8/tugYnZqfo5HdzOhXohDcDE28BK2/B9RcsHwTkNHXVkXiB4yPbV6V1rSnbpqLRCahyZfJGf1rBoIb5/2Mqhql145rO60TNXqokeGulnORB1XX3OnE7jQXyPBOSP35/RpwdO6r5RxIPEnnYEDj0Ppn1BmPhLctbeAeJUn+IrIzcBXgA25U1Yt7vB8Cbgc2AJqAA1T1y1Ice0gRKShYPJDulUw6w32XP2b6umMpNt1tA47800GdQlyVJJ1KM+2Z9zoTP8Dq63cQDOWpW2vM1KkrVdfPsdoDSEPyX6jbXpx7WOIZEMmT6xQSU/DVHMXme2zE5nsMfNJSnEYI/2zx88hOaPinxhZRahF/ccqaQ0Zg3U7hs+5EkGCBVa6hHcz3oHM1tLc4r/5PBX8PGr8f2q+m2+8wdifqhJHa6rVM1NazIT6Fzrg7bjfrOMY83q/uJnXbITGFXIe0ONpxXdmS/6AvqyLiA64GfgasCRwkIj2XYP4SaFbVlYHJwNAJs5SQscs2MmGVZXJkcYORIDsdsU2/93fhgZP554UPMver+bTMb+X5O17hNxueTkdrrO8Plxl1NceUu+n7AMlEvq9MxBheV4qcssQixFPjLGYf8QILe9Lmj7NMiASQwDoDTvyqLpp6C40/gWa+Lm1s/okQ3hnoaoEaNGsuIvmNX0QcqP8L1BxlVtMGNoLG23EivRgstV9D7sU7Dh235HwHqwXNfA3xx+kedwqyTd78Tj9wF2DGzXkosXBgV0pxT7Ux8LmqfqGqKeAeoOcyuD2A27zHDwDbyXBq9O7CWff8lrrGWiK1YRyfQ6Q2zKobrMS+p/TPPWzWx7N56+l3u7XqZTNZ2hd28OxtU0scdf8JhoOstcVqSBdVyX9NqSebEdyeg38JdBvRDjmhrcn7x+NbqqjJU9U0mpiK0X3pSRgJlWfk1Ref/3cmZ+9+MQdOOJZTt/0j7039sNv7mv0Onb8T2nw02vIHdP4uuC1nmfbaEiH1l0Dd700i960INUciYx4oOMGvmoAFB0HsJsh8YtY3NB+Bpt4qfBC3Kf/rGiP/76QKSE/3JEd6EofUv/u3L98yBfbl9GuyuL+UIvkvB3Qdcsz2Xsu7japmgBYg569SRI4RkWkiMm3evHklCK30rLjGBO6adR0nXnM0v7jgQM575DSufPn8TkelYvn8nZn4/LmnPxlL8eGrn5Qq3EFx6o2/pq6xlnCNmXxzfDVcdPzGqDMRCJl/vpWQxjvKbszeG1J7MjgNXkxgSg0RpP6iospx2nGDMYzJwQeRnaECvr8fv/E/Tt7qD7w55W2avl3A+y9/xFm7/pnXHnmzcxttPgGyX3tJsgNImknv+EMli0PEwak5AGfsYzjjnsOpO6VX/13tuAMyn3VZ0JYEjaHNJ+JmCywkLNQK6SxTva2hvvHknw8JGLvLfiASgNpT6X6H5YCEkbrylb2qasJXVW8AbgDT7VPhcAoSjobY/tCfDGofS08cn9dSLxAKMGH1wZuYl4LlVl6GO2ZczdR7XuOrT79hlR+vxFb7bkogFDBtlWhJDNcHi/iWhrFPobG7ja6KfyISPbybV3CvxO6hYBtm3bndLiCqLiSnoolnjMRvdJ9BewO3zG/lwclP8OaT/2X0Mg3sd8pu3HH+/TlyG8lYimt+e4uZd3DnmIn2nLUDcTR2JxLdd1AxDZjEo+Q9l9oE8zbDjR6K1J3WbSJXRp2BLvhlj8+FzR1HtRLYAJzx5uJL13kRPxI9uN+7c2oORn1Lox3XmlJPYH2k7qSyGs2XIvl/Ayzf5fkE77V828wWI6BRj5n4HbGsudmqLLPSUnz9yTdk0ou/PP6Aj12P2b6CkXUnWhdhl6Nz4xHfsiXZv2a/NR696engX92sGfCv0O/9iNPgLdcvvGS/cBCF5gUEIc2iEZmqiy483nQ2dWr0PITWnYRT88v+HxeT+I9d7/9obWozi8neg+mvfEw2nX/xWNM3C0jEkoRD5vj5f55Kzhn11puegtjdqNOA1P6q81UJbgSNd6DtfzGlIt8PkNoTi5ZONhfkZ9HYwyCCRPaG0A5llRAREWi83fgZpz8AfMbLuP6SAX1/ofS+031RirLPW8AqIjJRzD3agcBjPbZ5DFgkwr4v8KJW60zOECEiXPr8OWyw47r4Az78QT8rrjmBS58/h7HLFbfIZ7ij6f+h8yeZVrn02xC/F23aHU2/X7pjZL7GbT4Rd876uHO3xG2/Fu05sRvahrxzBv6JiNNFEiH5cpfED50aPW2TB+zl+9BfptDa1N5tFXEyliSTyddlY+ZiguEA+H4AeTtKglBCc5lFqCpN3zXTuqB3DSgiB9K9fNGTOHTclPOqBNfFabwFZ/y/ccbcXXTid90EuuAgdOGpkHoJki+iLacZ7+cyI76lccbcg4x7ERn7GDLuFSMSN0wY9MhfVTMicjzwDOYv6GZV/VBEzgemqepjwE3AHSLyObAAc4EY8TSMq+fCx88k3h4nncqMOHE5bbuwR6dOBjSDtpyLjB183VqzTWjTPqCtgAvabuz4Mp8hDZM7t5O6U9HUa+C2Y0oPQRA/Un9R9/0lny0wqvYbEbNIYbnfQrz51H87TXO6EgwFzKLYLu+FokH2OG5nfD7vQlV/Gdr8G4zqpHeH4huH1Bzd7zh646P/fMalP/87c7+aj6qy5marcuZdJzF22cacbSW6L5p61VwoC5XStAVVHfTIXNOfwYIDze+12xsxSDyFpg9HAmvl/3AJ6U2WvJopSc1fVZ8Enuzx2jldHieAJWsFVAmJ1EZ6HSstsaTezv965kNUM4PW7tfYPz0zmR6L0hLPo5nZiN9MzJk5g6fR2AOmO8X/QyR6UK64mtSQV6NHxBjUD4Axy47m8//OzH1DhN1+vQNT/vGC+VmyLrsctT1HXLB43CShLWDs42auIzsbglsgkd0Rp3R+vPO/XcAZO15AvH1xIv/g1U84dZs/cssnV+VoWon4kNF/M9aXzceauYme+FcdfOJXNSW4nom/kzQkX4NBJH/NzEDbbzBlncAqSM2vkMCS4/tRVRO+lhGG1JBr0A6ma6cEXrPp/9IpMNbtuEHTkeJf3JUhziik9kjgyIK7k8g+xs0rZ0QrEBpYA8C+p+zGuy992G1y1xfw8cN1V+BXVxzBkX86mPnfLGD00g1EanLbK8W/AjLq9AEdOx+u6/LF+7MQESb+aAWeuvEFMj3mH9ysS/Ochbz/8kest+3ana9rdi7adhEkXwR8ENgEUi2Y38GiKm8YqTtr8IFmv4Ls971sEDQidEXgxqdA+2Qjv+xbDmpPRfwT0AWHeDLNLmRnmBXZjf9ACqxUHm7Y5G+pHNGDoONmuifTEET2Lc1knX9lI6fQs1dc0+BbPu9HekMCa6B1v4O2S7v0ZQsy+voBC9utt+3aHHPZYfzjtDtwfEomleSHa7dx7g1TcJvbCdT/iWV/ODRGNh/9+1PO2+fyzlF+dFSEieuskFfVVF1l7leL5zlUE2jTvuDOo7P7JfWKaXv0rWBUQf0rI7UnIMF1SxBthl4tFQVvgVrvuLHHoPVsOr+D2VnQchrqLEN3C1IXiKOt5yFjpww87CrCCrtZKoZqGm05HRLPeYJsKQhtgTRcVRJhL818jTbt1qNOH4TAOjhj/jnw/boLjPKnRIxcdQliTbTN4ItXD6a+sYNlVlx0NxSAwNo4Y/LpxJeWtuZ2DvnBr4m3db+rCYaNaUxPRdNgJMjVb17MD9YyF1GNP4S2np87JyJRpOG6ghLQA0VV0Xlbg5tv9B80/gGhzfvcjzt3G3C/7ceRBVnqw4rZiRaDFXazVD0iAaThSjT7HWS+MEYh/sIjcs02oe1/Nc5YEoXowaafX/KXiMS/PIy+1Sh+Zr4AHAjviIw6v19xauIptO1vJtH4VzV96gXkDQZKUO9m9R+3YUa0i0hD+hM0/SkSWK2kx+vJ1Htfx83mDgQdn0MwHCSbcTu9C0LRIBvsuG5n4gfQ9Ee5iR+MZEbms5I7WYkINFyFNh/p6Q8lMIsOJ8CY+3pdiNYZmmo/Ez/e3E4JSpJVgE3+loojvmXMEvdeULcdbdrLSP4uSpBtk9H0dKThysL7Dq6HjJ1i9Hkk2O8Vo27sXmj9M50aLul30AVHQOOtSLCES+8zX9A98XuID7LfQI/kb8TAnjHSCMGNILDeoEplC+e25NhUglGs3efkXelojfGvh94gFA4w6dgd2fuk7oby4l8ZJUKORo8EwN+709lAkeCPYdwLaPwx48Ub3BhCPyk4GMj5vAjqLJV/UpooZp6i688ThshBw8qCtDds8rdUDapp070h9TlSvhp/CNwWuifIBCSeQzNfIv4f9LrvgchPqGah7QpyRccSaNsVyJi7+r3PggTXN6uTe05Qayo38affNxcgdTFKkAEIbQ4Nfy868fVkna3XJBQNkujofvxgOMCGO6/H2lusznFXFZ4MJ7wrtP1l8QQpAH6zCjZYvt53cRqRmiMGvoOak6DtLHKlGpIQnuSpvQbM7yH8M6TulEFEW11Ur1i2ZcSgmsFtvQSdsyE6d0t03pZmIq4rqTfJ6xAlfm+FZTkCaym8Wjbzad6XZ308m6n3vsZnb89As/PQ1Huo29rnoSR6sClldfuTDJuE00VCQ9VFm4/zWhxjmIuh5z42CE2fdX6yJj/aag1CXdzowtEQ6267Nmtt3nfJSZxaZMx9ENzE+xn8xrh9TOVMfopBAiuRfwwsxlRm/L+QxluR8a/gNFxSdnetocSO/C0VR9sugdi9dHZcuPOh9WzU1wDBTdHY/ZB6F9PC0XOEplAiqYkcpM6UXfL1RPQ4ZjqV5vx9r+C/L0zH53dws0lWXK2DP989l9pRCTR6CFJ3esGSgTiNMPZhtO1KSL5i2mCjh+aOajOfguZbZRtH4/cj0YEtpxERzn/0dJ655SWevuUlRISdj/wpOx2xTdFlDvGvgDTe5q2glgHfhfSGato4ZWW+hMCqENxycMdx53jNBj0X2mUg+7UxZhmAOctwwCZ/S0VRTXjCaj378RNmklVuMLo/eX1h/SYJB35clthEAmj0COi4lZ61X6k9sdu2d17wAO+8ML1b3XzGh2H+dkY9Z17TYjRtfBOQmkMLH8+3LNJweR9R9dadNzgpZ3/Az6RjdmDSMTsMaj/l6oTR7Fx0wQHG41aTJmn7loPGu7vLcPQH/48K+DhEINh3t9BwpnrvxywjA7eZgv3a2ZmQ+YCCiT+4CTL69vIKeNWeBDW/8Fb3Bow/wKhzkXB3sbsnb3g+Z8I0k3J4dUo9mTRAHGI3Dz4g/+peLD0DjUC4QkqeQ4S2/sEs7NIOjBRIDDJfom2XDXif4p/gyXJ0XaEdAF8jEtlrsCFXNXbkb6kszlhvQi2PDoyMAjefV2wAak/EqT227OGJOEjdyWjt8SbZSG3eGnYynAgI7wAAHDVJREFUT6cMgOsK2YzgD6gZsZYgHhr+ijYftbjFUaKm2ye6T7dt1W1GO26G5EvgNCLRX5TNErDcqGZMOYyegndpY4FYf8GA9y2jzkcD6yz24g3tiNQe2y8rxuGITf6WiiISQGtPytNVE4bQdhDPUxKS4JD7CIj4zcWoABvuvB6vPfQGbjePBuWHa8UJRRQQCPS57qYbqimjTxR/EFQhshdScxgS3ADGvQSJKWi2yUgiBzft7jvgtqDz9/AsAs2FSdPvoZnjcGqP6Vcc1c/gyl0iDhLdH6L7lyie4YEt+1gqjlNzOFL/Z/D9EKTWJLIxdyG1x0DeThEfhLcb8jh749jLDqeusZZgxKwjCIRcIrUuJ182G/CZla6jTit6f6qKNh8DbVeaSd7sZ9B+FbrgCFRd418QPQSnzuje9yx9aewOr6TW5Y5E49D+N9TtQ5a5ChHxQ3BTclOWH4Jbo+kPyuq1vCRiR/6WqkAik5DIpNw3Gq43hhmLxMGkARl9DTJAFc1ysdSK47j5k6t46sYX+Og/nzFxzQiTDv6EMePTpiRTc3T/TD7S0yD9Lt11jxKQ+ch4xPalG598hYKidumPILRJ8bFUCVJ/Idq0nym/acyUu1Qh+Tya+hdoGo0egdSdssQsxConNvlbqhoJbQrjX4PMx4Af/KuV7Q9bM1968sjfIqGtILJ7vwTbRjXWccBpexZ5rNlAwngg57u7Sb3jLZjq+cEYmnq7b9MQZ2nytsZqEnXG9CaJVrWIbzkY9wIknkYzM037b/odIL24VTN2u9dVdUBFYx0O2ORvqXpEfBBYu+8NB4Emp6LNJ2IWTWXQ5CtGcXTMAyU1p9fMV0aHPvOlKWlJDdRflitC5huHkbbuucgsXJR5iNQcgSankis/nYbW89DGm4bUHF01jsYeguRz3uTzIWbuotfPpI0aqNR23jWJRCCyF2gKnbM+3cpagOmq+gfY5N8ntuZvGRaoptB8I+GS7DuLLjwdkygX9XzHIfsN2nFLaY+z4FAjdEbClC7ceWjzr9FsD9vr0E5dZKO7kkR9E/K83h0Jrg+j/kjun7hC+l2044beY83MRmN3o/GHi1qh3Ou+NG7KNW2XGhvMxBR0wZG4HXcU/Iwbfwqduym64BB0/q648/c0AoCdO41RcM2D2zyoeEcKNvlbqhrNfo+74Eh0zrronPVwmw5FM1+V9iCZz8kdQQIkIfFU6Y6Tet1bnduzOyVjVjF3QZwaGH0zeZP3wuOL8gyW8HZ5Pg+QhNiDBT/ntl+Nzv8Z2noR2nIeOncrcyc0QDT2IGS+YnE3lyeY1nYxbvJ1esrKa/oTaDndnCvtwMx1fOJNdnvbSr1pE85BoI87CovBJn9L1aKaRpsOMBOcZM2/9DR0wQGoW0BzZyBIxOuZz0MJSz7G6CTfaDVtXKR6huXOzW8PqXF0/s64zceh6Y8LH0+zFP4Tz/UNBtDUe9B+PWayOIEpO8XRhSeibkfez/RJ4lny+/mmoflYtGkSmp23OIbYneRejF0jxZB+HzByFDLqXCDM4kWCXldVXfFdVSMZm/wt1UvyJYz5etfE7IIbh8TTJTuM+FfwZId7/jlEkGhhOYZ+E/hx/ouMRJHQZrmvu3MLSA+oOS/J59GmA03CzoP4xhSQUw4YFc58e44/TP67IIHUv/J+pk+c0RR23UpCZqbX0eWR/Y78vfuOJ+ntRRTeFmm8w6wH8a1s1kGMeRTxrzywOEcYNvlbqpfsV/k7Xoih2Tym54NAGq42OkFSA9Rg7CT3gvBupTuGfyKEd6G7lACmAyf9aW6femA9erUq9Mon2nZR4WPWX2YE6ljUtRQF3/JI7XEFPpEmb+JV8oifFYfRM+qtayoL6ffQbJN5Gto6//aagkB3C0gJrosz+hpk7CNIcAu04zbcjltRW/fvE9vtY6le/Kt5ios9R79RxL9GSQ8l/gkw9nmjqe/Og+CPy7KKWOovQgMbQduFLO7kyULsTjT1Kox5pFMYTQJroqEtIfkq+csmHl4pJO/xAqvDuBc9w5OvkMB6EN6hYKePhHdBE1PySFlnILRl0T9nt30GN0Lrfuut4k6Rv/TleMccg0T2QWO3ewbt3l2IRCByGOLLrfMbo5/9vdJZDAgbx7fGO5DAWgOKeSRgk7+leglu4Zl/z2BxjdoPvrHQQ1gtH5p6G40/AJpAwj+D0Pa9asuLOGVf/CTiQGAFNKcFPwXZ2ZB8EcI7Lt6+4a9o7B6jfJr9rMBes6hmC9tZOvVIzWHFBRjc3HQaJZ/29JZ85t+osxFndHH7yINTcwQa2cd4NidfIkejx6k3Fox4k91jHkI7boPksyB1SM3PIbRj7o4B7bjWGK93fkcSpjK28FRkXOnKg0sa1sDdUtWo22407hOPAy6Ed0bq/q/PROS2X91l4lKBKIQ2Qxqurri5iHbchLZdQV7bxujROKN+l/dz7vdr5v8MDjL+zYHLGveMT9VMrCeMV7JEdjclq1Ls212Azt/LE7mLAwHAj4y+tijD9dxYE+icTciv/BpCxj2P+JYaXNDDDGvgblkiEKcWqT8H6s8p+jOa/R7ar6O7vEHMdA2lXoXQT0oSm2ZmmpE6fgjvhPiWLu6DvmVBQnnKWZFeDezxrQbZD/O8UWs0kUqEiEBwIyMYV2KMac0UNP4gpP5j5h+ihyD+FQe0P205k/yJH8zchU1xhbBnxrLkkXw9vwOXxtDEc0gJkr/b/nfvzsIFHGi7HB11Hk50774/HNrOay+Ns3hyVYy0dTiPvtEi6k6ChceS84M5dfQ+MVx+NDPLlKfc75DglhDZtaA0hji1poxT8/PBHdNtgcRzhTcIrGk6nix5sd0+liUPJ0r+ZOjzEuXg0PQn0H4D5s4i7f2fhNY/Frf4SoJI4z0Q+BGm7BEE/6pI4z+RXuITXWi2zQmoGdJvD+hnGSyqitt+Ezp/F4jdCokn0bYL0Pl7lV9l020qsAoawEHqryzv8Yc5gxr5i0gjcC/wA+BLYH9VzemxEpEsMN17+pWq7j6Y41osvRLausAbASRSxMi8DzQxhfy98A4kX4Bo37oy4l8BGXM/6i4A1aJGqJqaTl6lTs1C+hMI9s8vYLCoG0MXHAGZd3u8EYfsbDR2O1L7m8UvaxoyX4AzCvEtM/gAfBPIf5EXCE3qvYRmGfTI/wzgBVVdBXjBe56PuKqu5/2zid9SVkQiyOgbPAP2Wq93P2Q6VkqyAKi3Jon+NVCI01h8acI/kZw1AmBGvxVIdNo+2bPZzEcSEk92PnPjT6JzN0MXHIjO2xG36cBuq3oHgkgQan9L93NixPKk7sRCH7N4DLbmvwewjff4NmAqcPog92mxDBoJbgTj/+3p6SQhuFnJumEkvAvacTu5vfeuqeeXCYnsjrZf5bVgLrrI+MBphODAevAHRfxh8ncfLSKEJl5C3XnQeiHdzlf6fbT5KGTso4MKwak5HPUth3ZcB9k5ENwQqT1xwBPII4lBtXqKyEJVbfAeC9C86HmP7TLAu5hvysWq+kiB/R0DHAOwwgorbDBr1qwBx2axlBO37S9G8pk05gbagVFn4xRR8hkMmplhOlzS3og7uBlSf1FRMs997lvV+CZoBwR+1KeXgTtnvTyLwRbhjSsl7F2s8l0kwsiY+5HAaoMJ29KDkrV6isjzQL4etrO6PlFVFZFCV5IVVfUbEVkJeFFEpqvqjJ4bqeoNwA1g+vz7is1iqRRO3cloZFfTbSJBCO1kVgl3Qd0FEH8Czc5BQhtBcKuCC7GKRfw/RMbcZ4TtxOmX2UxvaGYm2ny0p53jAC5adx5OdI/CHwpt55V28oniqXlde5v0TXtidzb5V4I+k7+qFlxKKSJzRGQZVf1ORJYB5hbYxzfe/1+IyFTgx0BO8rdYhhPiXxlq888haOodtPlIUBdIoPG7wL86NN6GSGjwx3aig97HIozPwM+NambXOYvWP6CB1YxERL4Y6k5HU2+C24aRVQgCPiOpnHqtiCNnUf+qw9JVrCfqtkPyeXMuQpsj/h9WOqQ+GeyE72PAombdnwM5BTwRGS3et11ExgJbAB8N8rgWS9Wi6qILT/JKIl6dW2OQ/gjtuKuiseUlNc3zGeh5s502tpYFEN94ZOwzUHcmRA6Aut8h418xd0JFTXwLUsLFaZVCU9PQeVuhLeeibZei8/fCbb0gx6eg2hjshO/FwH0i8ktgFrA/gIhsCPxKVY8C1gCuFxFvNQwXq+oSmfwz6Qz/fmwan771OcustBTbHLgFNaNKN0KzDBOyX3hS1D1JQOIRqD1yyEPqFV1Y4I2sV5YpjDhRzy+3y1xHeCc0+W8Kr7z18K1V0juYSqCaRpt/7ZnOdCH2AIS2gtA2FYmrGAaV/FW1Cchpb1DVacBR3uPXgR8N5jjDgY6WDk7c/Czmfd1EvD1BuCbETWfexeRXL2TFNfq23bMsSTi9DHz7V/PXzGxzIfGvXD7P3cAG+eWaJYIMpHspPAli/zR2lRpnsZG8HzPxGwYJIA0XDyrsqiA1jfxzHnE09gCypCZ/y2JuO/c+vp0xh0zKdDUkOpIkY0kuOfxvXPPWJRWOzjKk+CYaA/ZsT7vJCET273ymmS8h+yX4V8mRj9bsXHThcWbxlvgBB607p/cJ2AEivrFozdEQu9lL1gBh8K0IkfymL73uT4LQeJeZ7E48bRQ7I3saK8fMe+BbGYnubXR+hj29tboOzP9gqLDJv0RMvff1zsS/CFWY+f4s2prbqRs9/GubluIQEWj4O7rgMCBjTEjED8HNkeh+xtC8+TjjHSBB0BQa3g6pvwyRAIDpvMl8humY8Vb1tp6DBiYigXVKHrNTdxIaXM/MSWgbhH+GRPcb8OS0SBCieyNdtY5CWwAHlSbgaiG4EXnNbySKhEt/oS4lNvmXCMcp3LPQ23uWJRMJrA7j/wWJ540dY3DDzqTttpxrEj/JxYk98SLquwapOwlNfwaZL8ktJyTQjtuQhivKE3Noa6SgNIYlHyJhdNRl0HIq5veVBqIQ3AzCO1U4ut6xyb9E7HD41jz4lymkE4tv9RxHWH2TVaipr6lgZEOLatosQBI/+NequHZ+JREJ55RNVF2IP0KuNlACYncb5U53Xn5VUtTzt7VUE05kBzT4NBp/FNxWoxob3NTcAVYxNvmXiEPO3pf3pn7IzA++JpNMEwgHiNZFOP32Eyod2pChyZfRhadiboNdo60z+noksGalQ6siMhSsEy/qGAmsXcAvN2Q6SCxVh/iWRWp/Xekw+oVN/iUiHA1x1Wt/4r2pH/L5f2ey1Irj2HS3DQgEA5UObUjQ7Hdo8wl002/RmFk8NP7VkixsWhIQCaL+1SHTs9tZIGgsJMWpR2uPhfZ/sLhdMgjOaCR6yFCGa1mCscm/hIgI6227Nuttu3alQxlyNP4Q+VveMsazNbzzUIdUtUj9+eiCw73RfRoIgISRUWd2buPUHo/610A7bgG3GcLbITW/KJk43WAwDmYvG92e8I5LSNfOyMMmf0tpyDaRt7VNsyZ5WTqRwDow5nE0dhukP4Xgukj0sByvWQlvh4TLpxI6ENy2K6HjFsyEhA9a/wwNk6suTkvf2ORvKQkS2tIb/fdUeVQIblyJkKoa8S+PjDq70mH0C029Ax230dNQRheeAuNfQxzbzjycGLmtGJbSEtoaAmsZb9pOIhDZfViIXFn6RuOPkuthAIgDyVeGPB7L4LAjf0tJEPFB4y1o7CFIPAYSRKIHQMjW+pccshTWrciz0MlS1djkbykZIkGk5kCoObDSoVjKgIR3RROPd5GA8NCMbUEdhtiyj8ViKY7gJhDeHeOZ6wABjDfyhYhTX7bDanYu7sLf4c5ZH3fOprhtl6Kap/xk6Rd25G+xlBl1WyE7G3wTqqJVc6CICFJ/ARrdD028aFQ/w5NyHMxKibodaNM+4DbRuTiu4w409T4y5s6yHXckYJO/xVImVLNo258gdj9IwAi4RfZDRp09aDvHwcWlkHwJjd1pnKfCOyPRg4rW1pfAOmURl8uHxh8Ht5Xuq6KTkJ6Opt/PiUPdDqOm6lsacUYPSYzDFZv8LZYyoR3XGVOPrgJu8QdR31ik9rjKxdV2JcRup3P1cPunaOJhGPNg9a3EzrxHQVOY9KfgJX9VRdsnQ8etRldK02h4F6T+gvL5IAxzbM3fYikXHbeS2xqZ8F6vDJqdC7Fb6J5QE5D5GuKPVSqswvhWBvKY1IuAb/nOpxq7x1uDkPBM45OQeApts14ahbDJ32IpF9pW4PXWyvm7pt/xPHZ7EkeTU4c6mj6R6N6mZNbN5t0PzjKdWkgAxLrqIC0iAbH7Ue3NcGXkYpO/xVIu/GsUeH31ysn9ymjy9+o74Iwf6mj6RJzRSOM9XnnHB/ghtA0y5q7u57CghEgGbGdQXmzN32IpEzLqbHTBLzDa/S5m9BpGRv2hckEFNwIZBRqj+0UgiESr02VLAqsgY+5HNQ748tfwA+tC6vXc152lQEaOn0Z/sCN/i6VMSHADZMy9ENoRfD+A0I7ImLuR4IaVi0kcpPE2488rEZBakxzrL0ICq1Ysrr7QzEy09Ty0aR/chacat7MuSN3pIFEWp7RFF9pzqt5UpVJIxWqPfbDhhhvqtGnTKh2GxVJSVF1Iv2smJQM/Rpy6CsWhkPmfF8faVd0Ro+kP0QWHeOUbF3BAQsjoG5HgRou3y8xA26+B9HTwTURqf4ME161Y3JVCRN5W1T5HGLbsY7EMEZqZgS44ErQFcEw7Yt3pODWHDnksIgJVPNLvirb+yStTLcIFjaOt5yFjn+h8Vfw/LJu/8ZKILftYLEOAqmvq/+73JpEtakdsuxRN/bfS4VU36ffyv575n+3kGQQ2+VssQ0H6Ha/1s2eZNYnG/lm2w2p6Om7Tgbjfr4U7ZzPc9utQzee4VsVIAUkMCWM6gCwDwSZ/i2UocNvo3qu+CC2b05kpMx1qLjykQZug/Vq09YKyHK9s1Pyc3IVeYYgcZCdzB4FN/hbLUBBc3/Ps7UkECe9YlkNq+/WLZSU6iUP8AdRdWJZjlgOpORoiewIhkDogaLyD606pdGjDmkElfxHZT0Q+FBFXRArOLovIziLyqYh8LiJnDOaYFstwRJx6qDsVI4e8aLQaAf9KENmjPAdNf0hekxUJGvGzYYKID6f+fGT8K8jom5BxU3EaLq/qDqXhwGC7fT4A9gauL7SBGPnCq4EdgNnAWyLymKp+NMhjWyzDCqfmCDSwtqnxuwshtBMS3bN8YmqBVSA7g5wLgKbAVz4Z5nIhzmgIWqXOUjGo5K+qHwN91d02Bj5X1S+8be8B9gBs8reMOCS44ZAt8pKaX6GJl+iueROG8C6I0zgkMViql6Go+S8HfN3l+WzvtRxE5BgRmSYi0+bNmzcEoVksSy4SWB1pvBH8qwJiVsBGD0Pqh9mEr6Us9DnyF5HngaXzvHWWqj5aymBU9QbgBjArfEu5b4tlJCLBjZCxT3jtnY7tjrF00mfyV9XtB3mMb4Dluzyf4L1msViGiEo6h1mqk6Eo+7wFrCIiE8VMzx8IVKFrhMVisYwcBtvquZeIzAY2A6aIyDPe68uKyJMAatZfHw88A3wM3KeqHw4ubIvFYrEMhsF2+zwMPJzn9W+BXbo8fxJ4cjDHslgsFkvpsCt8LRaLZQRik7/FYrGMQKyev8ViKSuqCum30MSzIBEksgfiX7nSYY14bPK3WCxlQ1XRljMg+bTnxOWgHbehdadVxMTGshhb9rFYLOUj9W8v8ccxXgZZIAFtl6DZpgoHN7Kxyd9isZQNTTzjJf6e+CD1ypDHY1mMTf4Wi6V8SJC8aUYEsJLMlcQmf4vFUjYksif5k7wLoa2HOhxLF2zyt1gsZUMCa0HtCUAIY2QTBSJIw18Rp7aywY1wbLePxWIpK07t0WhkN0i+YkzXQz+1ib8KsMnfYrGUHfEtDdH9Kx2GpQu27GOxWCwjEJv8LRaLZQRik7/FYrGMQGzyt1gslhGITf4Wi8UyArHJ32KxWEYgoqqVjiEvIjIPmFXCXY4F5pdwf6XCxtU/bFz9w8bVP5aEuFZU1XF9bVS1yb/UiMg0Vd2w0nH0xMbVP2xc/cPG1T9GUly27GOxWCwjEJv8LRaLZQQykpL/DZUOoAA2rv5h4+ofNq7+MWLiGjE1f4vFYrEsZiSN/C0Wi8XiYZO/xWKxjECW2OQvIvuJyIci4opIwRYpEflSRKaLyLsiMq2K4tpZRD4Vkc9F5IwhiKtRRJ4Tkf95/48usF3WO1fvishjZYyn159fREIicq/3/hsi8oNyxdLPuI4QkXldztFRQxDTzSIyV0Q+KPC+iMhfvZjfF5H1yx1TkXFtIyItXc7VOUMU1/Ii8pKIfOT9LZ6UZ5shP2dFxlW6c6aqS+Q/YA1gNWAqsGEv230JjK2muAAfMANYCeOB9x6wZpnjuhQ4w3t8BnBJge3ah+Ac9fnzA78BrvMeHwjcWyVxHQH8fai+T94xfwKsD3xQ4P1dgKcAATYF3qiSuLYBnhjKc+Uddxlgfe9xHfBZnt/jkJ+zIuMq2TlbYkf+qvqxqn5a6Th6UmRcGwOfq+oXqpoC7gH2KHNoewC3eY9vA/Ys8/F6o5ifv2u8DwDbiYhUQVxDjqq+AizoZZM9gNvV8B+gQUSWqYK4KoKqfqeq73iP24CPgeV6bDbk56zIuErGEpv8+4ECz4rI2yJyTKWD8VgO+LrL89mU8UvgsZSqfuc9/h5YqsB2YRGZJiL/EZFyXSCK+fk7t1HVDNACjClTPP2JC2Afr1TwgIgsX+aYiqES36di2UxE3hORp0RkraE+uFcu/DHwRo+3KnrOeokLSnTOhrWNo4g8Dyyd562zVPXRInezpap+IyLjgedE5BNvxFLpuEpOb3F1faKqKiKFeoBX9M7XSsCLIjJdVWeUOtZhzOPA3aqaFJFjMXcnP61wTNXKO5jvU7uI7AI8AqwyVAcXkVrgQeBkVW0dquP2RR9xleycDevkr6rbl2Af33j/zxWRhzG39oNK/iWI6xug64hxgvfaoOgtLhGZIyLLqOp33u3t3AL7WHS+vhCRqZjRSamTfzE//6JtZouIH6gHmkocR7/jUtWuMdyImUupNGX5Pg2WrolNVZ8UkWtEZKyqll1YTUQCmAR7l6o+lGeTipyzvuIq5Tkb0WUfEakRkbpFj4EdgbydCUPMW8AqIjJRRIKYCc2yddZ4PAb83Hv8cyDnDkVERotIyHs8FtgC+KgMsRTz83eNd1/gRfVmxMpIn3H1qAvvjqnbVprHgMO9DpZNgZYuJb6KISJLL5qnEZGNMfmo3BdwvGPeBHysqlcW2GzIz1kxcZX0nJV7BrtS/4C9MHW6JDAHeMZ7fVngSe/xSpiOjfeADzFlmYrH5T3fBTPbP2OI4hoDvAD8D3geaPRe3xC40Xu8OTDdO1/TgV+WMZ6cnx84H9jdexwG7gc+B94EVhqi71VfcV3kfZfeA14CVh+CmO4GvgPS3nfrl8CvgF957wtwtRfzdHrpfhviuI7vcq7+A2w+RHFtiZnrex941/u3S6XPWZFxleycWXkHi8ViGYGM6LKPxWKxjFRs8rdYLJYRiE3+FovFMgKxyd9isVhGIDb5WywWywjEJn+LxWIZgdjkb7FYLCOQ/wdHtiEjFPvmVAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -230,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -258,7 +259,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -302,17 +303,19 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmQa9d93/k5d8GOBtD78vrtpChSpBZLoijJMmVJsSjFoqI4sa3J4mSmNLHsSjxx1YzHVZOk8leScU2VU87EVjkqR1MpW3aUUWRb3rXZI1MkRS2USHF7a/frfcGOu50zfxw0GmhcoNHr6359P1Wsx0Zf3HuBBn6/c37L9yeUUkREREREnD2Mu30DERERERF3h8gBRERERJxRIgcQERERcUaJHEBERETEGSVyABERERFnlMgBRERERJxRIgcQERERcUaJHEBERETEGeXADkAIMSuE+LIQ4gUhxPeFEP8s5BghhPj3QohXhRDfFUK85aDXjYiIiIg4GNYhnMMHflEp9ZwQIgt8UwjxZ0qpF9qOeQK4r/nfo8B/bP7bl7wVU5N26hBuMSIiIuJs8FKjuKqUGhvk2AM7AKXUArDQ/P+yEOJFYAZodwBPAp9RWnfiKSFEXggx1XxuTybtFJ+++u6D3mJERETEmeFd3/vDm4Mee6g5ACHEReDNwDd2/GoGuN3281zzsYiIiIiIu8ShOQAhRAb4HPALSqnSAc7zCSHEs0KIZzcD97BuLyIiIiJiB4fiAIQQNtr4/xel1H8LOWQemG37+VzzsS6UUp9SSr1VKfXWvBk7jNuLiIiIiAjhMKqABPCfgBeVUv9Xj8O+APyDZjXQO4DibvH/iIiIiIij5TCqgN4F/H3geSHEt5uP/TJwHkAp9evAF4EPAa8CNeAfHcJ1IyIiIiIOwGFUAf0VIHY5RgE/d9BrRUREREQcHlEncERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZ5TBGQkZE7AulFE5DIaUikTQwjL6D5SIiIg6ZyAFE3BWchmTulkMQ6HmiCpicthnKRR/JiIjjIgoBRRw7Silu33DwPVASpNT/Ls57OI6827cXEXFmiBxAxLFTq0ik6n5cKShu+Md/QxERZ5RDcQBCiE8LIZaFEN/r8fvHhRBFIcS3m//9i8O4bsTpJAiUjvmE4HvHey8REWeZwwq4/hbwa8Bn+hzzl0qpv3lI14s4xSTT4esOISCTPd5NaXHTZ33Fx/d1InpswiaRjDbGEWeDQ/mkK6W+Bqwfxrki7n1s26AwbCLain6EgHhckB0yj+0+1lc9lu54uK5CSqhVJbeuOzTqUR4i4mxwnEudx4QQ3xFC/JEQ4qFeBwkhPiGEeFYI8exm4B7j7UUcJ6MTNtOzMdIZg2TKYGzCYvZSHDFAKahSPeJHe0BJxdqKz85TKQWry1EcKuJscFw1d88BF5RSFSHEh4DPA/eFHaiU+hTwKYAHkvmDf9Mjjh2lFOurPpvrPlJCOmMyNmFhx7bXG0IIMlmTTHbwFX+lHLC86OG5CtOE4VGLwoiFEHvvH/B91WX8t2g0oh1AxNngWHYASqmSUqrS/P8vArYQYvQ4rh1x/CzMeayt+Pi+LvEslwJuXnPw/f3781o14M5tF8/V5wgCWF32WVvZX9WQafV2GrYdNaRFnA2OxQEIISZFc5kmhHh787prx3HtiOPFdSWVctC1upbyYCWeq8vh4Zr1NR8VVlO6C4YhyBU68xCgcxGj4/a+7zMi4jRxKCEgIcRvA48Do0KIOeBfAjaAUurXgZ8AflYI4QN14KfUYQRy7wHqNcn6mg5rpNIGwyM21ilegToNhRCEGut6bf+hFbdXg5gCPwB7H0uZ8UkbIWBzPUABpgnjEzbpzPEloiMi7iaH4gCUUj+9y+9/DV0mGtFGqeizOO+1jKXTCChuBly8Esfej0U7Adgx0TO2Hovv37HF4ka4AxFg7dNeCyEYn4wxNqGQARgm+8onREScVk6nlbkHUEqxvOB1h0oCWFs+vd2wiYRBPNFtRIWA/PD+1xuj41ZouGZ41BqocqgfQghMS0TGP+LMETmAu4Tn6drzMKrV012Fcu5CnMyQ0TLYsZhg9mKMWGz/H7dU2mTmfKy1izAtGJuwGBmNxOMiIvZL9O25S5h9Vq3mKQ9Bm6ZgZjaOlLrU0jQPZ2WdzphcunrK35yIiBNE5ADuEqYlSKUNvdpvCwNthTXuBlv1+8WNAKkU2SGT0TG7b8lkPyJ9/73h+4qNNZ9GXRJPCArDnb0TERGHTeQA7iJT52Lcue1Sr8lW5czwqHWscgjtzN9yqVVlKy+xuR5QLUsuXo2fKWMupaJSDgh8SKaMY9EGch3JzWsOSunPQa0KmxsBsxfjJCNtoogjInIAdxHTFMxejOO6Et9XxOPGoYVL9kqjITuM/xa+rygXA3KFs/FRcRqSWze2DbEAUhmDmdnYkSaJlxe9rpyQkrB0x+XilcSRXTfibBMtLU4AsZhBKmXeNeMP9BRAUwpqB6jfP00opZi/7SIDbXzZWo1XJJvrR1uZVeuR+N8amRkRcRREDiACaMofhPgfIXQVz1nA8xS+121s9aCa4EivbfT4JgpBV/lrRMRhETmACABSaQMrbAciODPhn15Datp/pZSiWgnYWPOpVoJDUSYF3SMR1ueQHTKj/oSII+OMfLMjdkMIweylOAtzLvW6RKB3BZPnYlj7rALaK/WapLihFUSzOZNM1jhW42fHBKbVPZVMCBjKmQSB4tZ1B89rTjQT+j06fyl+4PDdyJiF40iq5e2CgETSYGIq0iWKODoiBxDRYsuYBYGu3z8uww+wtuJ16PNXygGptMHM+aNNvrYjhGD6XIzbN91W/F8becgPmywveLhO24pfgesolhY8ps/FDnztmVldEOA2FHZcEI9HG/SIoyVyABFdHEcyWimF01AYJhhCdA1n0aWQkmpF7mlmQNh1PFdhmGIgh5ZMmVy+L8H6isfmZqDF5ny49oqD7JEGqJQOLz8QixnEDuZLIiIGJnIAEcdOqeizdMfTcXWlZR3CIulK6VkC+3UAlVLA4h23VV6ZTBlMDRDSMgwoFgNdCUS3smnYfSqlolh9xKkj2mNGHCtOQ7I4r2veldTG0/fomYDdryxGoyG5M+cSBLQ1V0nmbjq7PrdakX0TwjtJZ443VxERcVhEDiDiWNlY7x7s0gshIJff3yZ1Yy38Oq6jcHYZ+Rj0GRdJW1mmENpBRYnaiNNKFAKKOFbC6uyh06iCXrGPTVrEE/tbo2yNjgy7ju8r4n2em0yHX1MYMDltI6XeycQTBkM580zJZETcW0QOIOJYSWeMUMkJpeDi1Rieq0NDqbSxbxE6gHTaoFEPv85uTsU0BHZMdFT8CAHxuIjq8iPuKSIHcApRStFoKAJfkUgax1quuYXjSNaWPeo1hWXDyJg9ULI2l7fYWA9CV+hLd3xmLx5O2Wd+2GJjwydoU3DQQ2nMvu+X05Dcuu6wU32hMGIyMmYjhMB1JeurPvWaJBYXjIzafQXjpFSsLHmUNvWs5HTGYHzKPrVT3yLuHSIHcJfpMCYxwfCoTTLV2zB4nmTuhovnbc/eLYxYjE10x6GVUiipQxeHuWp1tpQrm6F034c7t13Gpyzyhf7xcMMUzMzGuPFadzK2UZdUyvJQ1FBNS3DxSoK1FY9qWWKY+n0ayvU/91Jb1VDHvTUUhiFwHMmta07rGNdRVEoOw6NWc2pZ5/uslGLupkOjrtp6HCT1msOl+xJ3Vf8p4t4j8eWPwdgfDnx85ADuIlsSwO3GpFpxmDpnkx0K/9PM33Jxm6vnLYOyseaTSBodhrNU9FlZ9PB9vfItDJuMTtj7cgRbtfSgu2VXl72W8d8+BlYWfXL5biO4E6ex3e268xzlUnBoctiWJZiYisHUYMcrpajXw3MHW2JtKyGqnQDrqz5KKcYnO4v4Gw3VYfy3kBJKmz6FkSiBHHEwHvv0I7z3c+/WP/zK3p57KA5ACPFp4G8Cy0qpN4T8XgC/CnwIqAE/o5R67jCufZpZWQqRAFawtOCRyXbHml1Hdnaitj1nY81vGc5qJegYNq8UbKwHKOgyULtRr0vu3HYJfH0yyxI91Sl1SafC3kU8zjCbwnMhpzmOaWieJ3EaCtsWXfmAMMcEsJXnDR1M32RjLWB4VHWEmNweFUdKQaPpbDxXIiXE4tFc4ojB6DD6n9v/eQ5rB/BbwK8Bn+nx+yeA+5r/PQr8x+a/Z5peMssygMAHa8fiUMreBkoG2w+uLncPm1dKD3gZHVcDV60EgWLuhtPhpLweVTxbDBLSSKf1vOCdZxIC8kcoPKeUYvGOR7kYtN7HeEJw7oLW8hFCMJQzKRWDjvdPl6Nqz2RaAtmnwqhR7+xc7uUMhdB/3xuvNVpO3TBgciZ2oM7niHuTNz3h84P/9e/yz39lUj9wAKPfzqF825RSXxNCXOxzyJPAZ5SWTnxKCJEXQkwppRYO4/qnFcsUuEG4MTFCbEA83tuYZNrCJv2MdOArjAHlncs7DGHnRekaZZnNmXp1vwvCEMxeiDN30+nYpYxP7b/scxA21vzWa9q6bqOuWJx3mTmvC0PHp2xcV9Gob4epUmmD0WaOpTBisrzQezbAzgRzMmUQiwucRucbKQSUNgP8tlMFgQ7xTZ+zyUTVRmeedz7/izz+S/XtB/YY3hmE48oBzAC3236eaz52ph1AYdRiecHrWm1mh8Jry4UhmJiyWbyz/Ry9khQURrb/lPGEQa3SvbsQYm8Cb36fhqh0WlCvbf8+O2TuqSEqkTS48roE9ZoOf6RSxkDO4yBsroc7tEpFIqXeGRmGFsRzGhLXVcR2iLLlCxaNmqRU7H5/7Zggnuh8DULoqW9LdzzKTc2gZMoglzdZWvS6zgFwZ84jHvc5dzF+Vyq8Iu4eiS9/bHuV3278j4gTlwQWQnwC+ATAhJ28y3dztOTyJr6nB7FvrTbTGYOJ6W1DKgPF5oZPtSIxLW3oz1+Ks7nu43mKdMYgX7A6jOfYuM2tqtPlWIbHLMQempaSKSM05KQH19skkwaerzBNsa9qFiEEqfTxhTuCPpO1pOwcyhJPGMTiOvkdBKr1+oQQTJ2Lk0x7LC/4W6rQxBNazTNs1W6agunZWGt2gBCCUrH/hDHHUSzMucxe7NeyFnEv8Nnf+DgA3/lC/khW+f04LgcwD8y2/Xyu+VgXSqlPAZ8CeCCZv6dn4QkhGB23KYxYeK5OHlr2tgEJAsXNaw6+11ZCWAqYmLKZnOmdzE0kDWYvxllZdGk4+rwjo1bPwS4yUKyv+ZSKAYaAXMEkmzOplLtVLoXQjkE7B3GqpoWlMyblYvdrsi3RlXze3PBYWdyWk8hkTSZn7NbOLF+wyeUtHEdhGmDHdg9dtTuHZNLYVW+oXpMdzifi3uCdz/8iwHZ45wt3716OywF8Afh5IcTvoJO/xbMe/2/HNAVmsvtLvrnudxh/aFYJLXo63t5nNZ9MGZy/vPswcSUVN645HY1Zy4s+K0vdWjqGAaPjVnN61d6NkgwUa6s+5VLT0Qyb5Av7O9d+GJuwqFUCgjYfIARMznSWx1YrgV7dt73+SjlgYU61cgX6uYJEYn/3bscMhvJmqzmsF1IefmWUL0xAYe2s5Y04Et70hN7tfcj4p/qBYwjtDMphlYH+NvA4MCqEmAP+JWADKKV+HfgiugT0VXQZ6D86jOve65RL4cZBoIeFJ1MHM5wy6Db+W4RdVydE95eclFJx87q+1ta5VxZ96jW1r2EqjYZkZdGjXpOYps6nFHZxTJYlGMqbbKxte4B0xtCr8TZ2ziYA/dorZcnSgkN2yGrtgA7CxJRu+ltZ9Dqc0hamJbAOcYlWtNJ8dfztLCZGAZiuL/P48tNkgpNjkO4lfvnDn7zbt7Arh1UF9NO7/F4BP3cY1zpL6K1/uHE+jFXh0qLXUzStF42mCNpeKZeCDuMPTaNaCnAcuafpV66j5RraO5FXl/RuqV+fQ2kzYHO909JWK5LlRY+J6e3n+X7v92RzXVLccElnDKZnDyZbIYQgl7dIZ0xuvtZoSVdvkR0yuP6q05L8GJvoLznRD0+YfH7m/ThmDCX0Oe4kxvn8uffz0zf/AHMv+tcRPUl8+WP855cTOp5/CjhxSeCIbQojFvWa27UajcUEsQOOC1RKhcbD+7LHKqJ2wgTgtmjU9uYA1lb80E7kzfWAkbHeMfO11fCVfXEzYHxStRLkyZSB5/Z+b5TSjqNcChjKHfwrZFmCi1cTFDd8alUtCaLorFqqVbXTu3A5vi8HfC0zi2+YLeMPoAwDF5ub6WkuV0NTchG78NinH+Fbl65uV+4ccxL3oEQO4ASTyZoMj1rbVULohOXMhcOZGTioLv8WhoCFeRcZ6K7V8Ul74Coe2+7R/dssY92+J6VX6hvaWA/lTPLDVke+o9Gju1YILQMdlk8BWt3MO1E0Y+1N2zgyZlEpBaGSD9v3qXcUh+EAPFdSq0licYPCiIVS8OoPGqHOam3FY3p275VBRSuLb3SX6frCoGRn9nvrZ5LD6sI9CUQO4IQzOm5TGLZo1HUZaDyxN7mAAINrmVmW48PkvDL3VW4Sl55OYCZFS46gHWHA5JTN6rLfCoeYVnNyVxOnoZi76XLuYoxUagAV0IKp9XJ2PG4autFqi4U5j0p5e+W76uik8flL2yWWsR1SzVso1elMdpJI9eiPsMyOxrtYzODClThryz7VHUnjw0QprRK6uR7oQTNoJzYxbfeUyuilVbQbo+4GtvTwdjgBS0lGnM19nfO00DBiPJ+7j1upaVJBnYeLL3Ouvjzw89/0hM///tF/sB3WOeVGv53IAZwCTEuQ3oc8QMOI8d/OvZ+6mcA3bCzp8+zwwzw5/xcUvBITUzFu75B6EAIuXo4Tixtkc6YWk0Nx/dVu9U6ldOz9/KXd7822Dc5diLHQHNMIehfRHkdvNGSH8d+6huOoDpXQkTGbaqW7zyE7ZGKauoO5XAowTcgNWySaIZOxCZtbNYdAbo/CC0yTlx9+J35sgwfLr7XOF4vp+cFKKV79QaNrNyAEPctqB8Fz9WttJaTVtr1fWvB6lojut+z2QnWelN+gbBnIprczZMCQV+FcfWlf5zwNNIwY/3X2x2gYMQJD/73uJCd4+9p3eLj0as/nPfbpR/gF7w3bRv8ulmoeJZEDOAVIqahVZasGf1Atn6eHH6ZqplpfeN+wCHyPb9hX+JHiN0kkdex5c93DaehEY37YasX5hRDYtl759woXOc7gpYSptMnl+xN4rkIYdOnh16s9hNMk1KrbKqGJpMHM+RhLCzqJLZq9C2PjFrdvuB2DYHR83yI/bJNIGNQfeYDSUp1scY16OsvN+x4hsGJ8L0hxlevE6LwHIQQz52PM3XK1kVbbsheZ7N5j8Z6nmL/l4Dq9u6ylhFRG71Z2OrmRsf19ZU0UH53/c54efpjXMucRKK6Wb/L29ee5l7sMns/dR92It74DoL8HT4+8kQfK17HV9vbuTU/426Wa99Aqvx+RAzjhlIo+i/Me7VGf6dkY6czuq+7rmdmOD/7Iwi1e/62/BOC29DAMOHc+zthEd05BStWsNupukmpnrytSIQSxHppGlhWeJwiTsEhnTC7fZyKldgBCCIqbftcUMKV0X0M2Z2GagutjV1g6PwZAprjGG77xF1ieCwKuK8m5c1bXe5tKm1y5P0GlFBAEilTGbO0q9oJSWlzP3aXySqDlu21bUNzQOyLLYk85lzAS0uU9q9/kPavf3Pc5Thu3UtMd34EthJKsxfJ89d//2Kmp2DkKIgdwgvFc2ZJ1bjdq87dcrrxu92Eioq1UJlEt8+BzX8Vsxl8UEEi4fdPhyv2J1q7C9xQL825L/z6eEEzOxCiMWF2D1oXQOYrDIp0NVwmF3sPh23dDvcTrhNBdtZmsSTJwQCkMGfDGr/8Jtud2HDt/y+XSfQmdtG7DNMWBQj6ghed2U1MF/fqTKZN0xmJ8UrVkKiJxuL2TCurb27Y2HCvG//2en8D/wtlWXo1m0p1gVkJknbeolHbPTL6ufANT6uMmb7+CCNHC0eWTPkGgUEpx64bTMv6gk723rzvkh02Gx6yWXo5lCyZn7IF2IoNiGILzF+PYttCrekP3O5y7EOub3G09v49DVEpR3PC5OP8DLBUwsjTX4SBbx6EHtRwFga922qEuhNCD57ccmxCiJVXdjudJFuZcXn2pzvVXGmyuey2tobOCY9jUzXjfDoZHii8Ti3UeoQAvbuLHzrbxh2gHcGKRUlEOUZwEbbSDQFGvBVTKgdaxz5vEdujRvGXj+ywmRlmN54k3ahhhBk/C6rLP6rJPMmWENkEppVfXo2M2I6O6THHQPMReiScMLt0Xx202jcX3MCQlXzCp9OievnNbh9HEwhwX/OdoJDOhDhHVvxHsICSSRk+HHo8LUk1hv916PHxfcfM1p5VMD1AsLfjUapLpc/e+eFzNjPOl8XewkNShvKxX5b3LTzPhrHUct9WJm9moU1iutYZpeHGT5XNDx37fJ5HIAZxQtpK+vQxGvSZZXd4Oyayv+kxM2R1hClsFfOTOl1hKjLKWFLqQv8cuYOuaYShFq+xSCLHrKvagCCF6zj7oRyqtdynrK36rrBJoVfBsvc7Z114gsCzMEIcoBIe6q2nHsgX5YbOjwWsrv3H+UnxgOeyNtXDpiHJRUh7yO8aJuo7UchmWIJ05uHzF3UYBvz/9Xop2ttXUVowN8YfTP0Ly5+IYWdEV068UklRzCWzHR5pGtPJvI3IAJ5U+i1DT0p2oXSJxzVGSZlvCVACTjVUmTMXtBDTqe28AEwZ9B9WfJEbHbPIFi1o1wDAEnic7VD23MH2feFzgunQY40TSIJ05ute6JeewseYj5Xaz315mIdSrvf+AS3e81kSxpTsepWa3t06Uw+yl+J66rk8ai4lRqlaqo6MZdDho5XfjFMdSoc9ThsBNRvOXdxI5gBNKe3NUB0JX3tRr4Spx1Wp4d6oQegpXsRhQ2gz6zrbdufMwTV32eFqwLNF6DzbWexvLVEYwnLRaK/KhvEF+gKH2B0GPnbQO1EFsxwX1HvptQXOcaK0WdIy23Pp3/pbLpavhcwtOA5M/+wDO79sYO5VqAbuPfEdEOJEDOKEYpmBqxmZhXrffturPh0yEAfVaiFY/IPpUdQtDkC9Y5AsWt647oU7AsmAob1Ha9JFKX2903D6ymH8/Aql4zrjAi5MP4cYSjFTXeHfxO4z5xYHPkckYrIQ8rmv59VCbw5Bz6Eev6WL7ZXjEorQZbuy2kue9pp/5nsJ1VNfkspNMu8Ca9bzPFN1/fymgkYzM2V6J3rETTDZnkUiZlIs6XJDOmiSTBvVaEKojvzVRbBDGJ22tqLmjrHNyRvcYjE3c3e2yUoqvGK/j2oU3IC19L8u5Sf57ZpSPzf8Zw355oPPYMYORMatD4nmrcWynDPRhI6Vi/pZLvbadz0mmDWZmYwdyqPGEQa5gUNzoduCptIFpCmSP6Wf98konhcc+/QjibR/YHpjSJrDmxy3qaZtk1WvtAhQgTYNqvm3+hVTb2hoRPYkcwAnHtgXDo53GOJkyW3X57UzPxgaOJSeSBhcux1lb8Wk0tALlyJh9YmL9pbrg2usfRrYL4gtBYJg8PfQgH1z/xsDnGhmzSWfNVnnnlp7/YRH4iuKmr1fWSS3xbBiC5ea8gvY+jnpVsrrkMT51MEG/iakYMnApl2TLxsXigqnmpLihnMmq0537QHAiV/9dXbif6z2jYHUmS3a9TnbTQUhFPRtjczSFMgR2w2dksUKsoXdI1aEY6xNplHkyPtcnjcgB3AWU1HOANzcDlFJksiZj43ZH8nY3xiZscgWTalliGHQlfwchntCa9keBAl7KXuLb+QeomwkmGys8uvZdhr3SQM9fU6nQOn0Mg9XEyJ7vJ5EwSPSZFbBfHEdy65rTMvKiCOsrPhcuJ3ru0oqbAeNTB7uuEILp2TieK2k0FLYtOmYF5IctSsWgQ3JCCJiaOdgMg8Pks7/x8f114QpBeSRFeaQz4Wt6kslbRYTcrgBLlVxsN2Dx4tnt9u1H5ADuAvO33Q59/OJGQLUiuXQ1vqfQQCxmEBs5mSubZwsP8d38A/hNAa5bqSkWkuP87bk/JedVdn3+kGqEtvCjFFknPPwjpcL39AzkvVTVHITFebdDKE4pPaBmabF7jsP2fR7e9e2YgR3i1wxDcOFynHJJf7YsS5AvmAPNLj5KEl/+2LZ2/iELrGU2G9Bm/KGZHHYCYg0fNxGZu51E70gflNKt+1oP53AMSqMuQ4ejBL4e0HJQuYGTgCcsvpN/oKW+CIAw8BU8l3+Q9648ves5hlMBk3deY2nqUisHAGAEAW8tvdBxrFKKtRWf9VW/pSWUK5iMT9pHutqVUoXKaQPUKpJkyghNtPes8DpktiuOeh+jlMJpKAyDAw8ZCuOxTz8CsK2ff4QDU2KO31PawHKDyAGEEL0jPdhc9zoGo2eHTCamD14N02uYiVK6uStXONDpTwQlO4OhFDvrVJRhsDRg+MYwBB8of4uvSJ+5c/ejhCDu1HnnynPMeJ0dn5sb2vgrRat/orih+wD2kszeiuVrZVTBUF4LyAUYvJY5z83UFOmgzutLr1Hw+iehhdAzf29dd3TvndquxR+fOhn16OVSwOK81kJSSpcXz5yPHcouoTUP9xhVNZ2kRaItOdyOGz89ZczHSeQAQqiUA5Z3NA+Vm9o7U/sYYA56pVWrytDyTdCGwd6n1vtJI+XXkCLEiChFbhfD2U4yDk/4z+O+8jyeYZEy/dAi1/XV8Fj7xrrP6Phgdf2uI7nZnDOsFJRLevTkzJUUf3jp/RTtDL5hI5TkxaErPL78Da5U50hnDKo7h8wIGMqbWtbiaoKNdR+nOUu5MGwNpGt01DgNrSXU/r45juL2DZdL9+29T+Czv/FxgLuqrFnJJxjJz4YAAAAgAElEQVRab6ACtd0FLqCRsvHjFihFZrNBuqSdXiUXp5qLn+lKoUNxAEKIDwK/CpjAbyql/s2O3/8M8H8CW4NHf00p9ZuHce2jYG2lW4RNG4WA8aD3zNleyECLrLmu6ppl247rSq6/2sCyBCNj1oGkfw+C52lhOC3KtvcvR1K6XKre5nr6XEcYyFIBb954cc/ni9kQo7dAW89RjzJUCDKUxTsess03a70luL5qsXl/tvU6lDDwhcFXx97GxeodJmdi3L7u4PnbE10SSdFSSbXsve1C+qGUwvd1Y95Bd6Kb6yEVQoAfKOp1OdCUt6OM5+9GvOaRW61huxI3YbI5msJLWCxcyFFYrpKseihDUMnF2RxNgVKMzZVJ1LZ3CLGGT6risjKTPbNO4MAOQAhhAv8B+AAwBzwjhPiCUuqFHYd+Vin18we93nHQPvpwJ4G/dwewuuL1HgAidKmn7ytKm9o7uI6iXnMZn7LIF44uXCClolaRSKlIpU2kUty57bZ0f0xLMH3OJjmAMdjJ48vPYI/6vJy9hBKQDBzevfJNJncIdh0G8UT4aEvbFgMZSqVUz85osVnpzGW0sRIvMMkaF6/GqVUlnquIJwwSyf05zn5sbngdkhZDeZOJSbs1yH6veD2cpkB3EofRNRrxLg1AT5YcRhcqLUNuViSJapGl8zncpMVqiNBbvOZ1GH8AQ0Gi6hGv+zipkxGWO24OYwfwduBVpdQ1ACHE7wBPAjsdwKkhmTJaIZ92RNNY75VSD516gEtX4qyv+RQ3Oq+nFKws+uRyVuiXXEnVknUwDMgXrKae/mD3V69J5m46etGqQCkPYdCxQ/E9xe2bLpevJvYctjCRvGf1m7xr9Vt4hkVcukc2eWp8Uo+23NnUdhix9p2aM9uPC2zlN68ljkxADpohyYXOFXtxQw+nmdnHgHiAdLp74hjoz117OWnHKh/u/mhEpRhernUYcgEIBYXlKksXwjPeiZqHCFNPUUQO4IDMALfbfp4DHg057m8LId4DvAz8L0qp2yHHnAhGxy0qlaDDGAoBoxPhxnhX+gq7id4qnIDrdrftK6UNc/v0q1rVJVcwmRigwUgpxdwtp6scMTQ8paC46TMytr8viInElO7uBw5ApRywsujhugrLFoyOWeQKuqnr/KU4q8t6tGUsvrcQmhCC7JDZ5fSFAHskjSU9/PZh6kqS8hsMu4NLUhyEsJAkQKUkadQDEsm9O59cwWJjPcD3OvsEXv9Tk9i/+r5to3+XVvm9EApMP/z7Emv0CROaBkrQ5QSUAHlMJcMnkeNKAv8+8NtKKUcI8T8D/xn40bADhRCfAD4BMGEnj+n2OonFDS5ejrO67FOvBVi2YGTUJjO0v1VeNmeyuRF0OYJEUpeXWpbACxsTqAht7qqUZejow+JGQGFEds0F2ElYGWovlGKgKVZHTaUccOf2dtLS9xRLC3oISn5YK2yeu7B/LfyJaRvX1Zo9W3+neEJwbsRhtfga38/dh4EEBbbyeGLxL/e9o/FcSb2ua/OTqd13baGfjSZrqz4zs3v/XG71CWyu+QRDNj9whnnxLW/mt87dD79ycg2iEoQacoDA6v25rw3FKCxXu38hoJo9mmbI08BhOIB5YLbt53NsJ3sBUEq1B35/E/h3vU6mlPoU8CmAB5L5u2Z5YvHD65IdHbd1jNjTSWAh9Ii/rbb94VGrw7gBILRuzM5ZuADVcu+QUq26uwOQMnT0bihCdNetB4GiVAzwXUkipYejH3V36cpSeGJ+ddknVzi4gqdpaoNYr+lYfiy+Hct/bP07PFx8mcXkKInAZbq+jDHQu7fzfrXTKm0GrW4l0xScv9i/9DIWD+8nAHDq++8q+z8+8nP7fu5dQwjKhQTZjUZHGEgKKI70XjBK02B5doix+XJrEJA0BSsz2TMtE3EYDuAZ4D4hxCW04f8p4OPtBwghppRSC80fPwLsvRTkFGOagotX4s2Ve0AsZpDNma0EZSZrMjpusbrsb4uGpQyme5Scmj3+akIwUII6le49mWrn+eyYIJvdXmE2GpLb19ukD9YDYnE9yvEou297rYKDYPBKn90QQuiwUbr7d5mgztXKwaKWpWKbiN/WTkYq5m+7XLyS6Pm8kXGLuRvhYbS9NG+1q2qeZjbHUgipyBSd1mPFkaQu6eyDk7KZu1og5gStsZBntfpniwM7AKWUL4T4eeBP0GWgn1ZKfV8I8a+BZ5VSXwD+qRDiI4APrAM/c9Drnja24szZHmGk4VGb/LCF6yhMS/RNNucKFhtrIbsAMZgaqGkKxietjl4HYUAiIchkTYqbgd4lCKUVLW+7jI7rMMvCXLf0geso1lb9I1UQtW3BeiLP+tg0lu8xducmtudgDvgdrhtxbqcmMZCcry4QU0cz97cfvUovXUfhur13bum0SSptdOWKhICRsd5f4Xc+/4sAoaqapxoh2JjMsDmWxgwkvmXoaXcDPjfqCN5GnORB0g8k8+rTV999t2/jRFIu+ize2a5XNQyYOR/vqOAIw2lIVlc8GnWFZYFtCYQhyAxth3LqNRlaVTM5Y7M4H56QtGzBlft7r2IPggL+IvcWrucvoQyBkBIQPPzsl3idsUxhpL/jeSF7ma+PvgWBRChdwfO+pb/mYu3OkdxvL66/2miV2LYjDLhwKU480ftvJ6UOH5WbE74MEyYmbbI7Zhl0qGpGnEm++m8//E2l1FsHOTZyhScE31esr3pUKxLTFAyPWq3RfmFkcxbprEmjLhFCDFR73qjLjhkAvgeOUEydszt2JsshQmZb8fZehF1ZBlpaoVaV2DFBftjaNT8Rxq3UFDeHLyK3mrGaInHff+vj/NDNz9Mvm7FpZ/j66JsJDBO9QdX8+cRj/L2bv09ilwolpRSVsqRaCbBMQe4AgmqZrMmG270LEIDn6b97r3Jbw9BSzxNTCilp7nz0sY99+hF+wXtDz9BOvF7nwaefZfa112gkU7zwth9i7uqVfb2GiHuLyAGcAAJfceO1RlsDjm7IGhmz+pZfGobYU7dwr0Tq8qJPJmu2DEovgTOdHAXX6Xx8a8BK12u65hD422WGm+sB5y7E9tzh/HL2YmcZZtt1F5MTzNYXez731cwFZIhjFChupGd4oHy953OlVNy+4eA0tl/D+prP9Gysr3PuxfCoRbnUWXoJenbJwpyHUh7ZnMnkdG8RO8MQGIYO77RCO330dmKNBj/+W58hXqtjBQGwxujiIs8/+naef+c79vwajgK74TO0Xsd2AxpJm/JwksA+3MSs4UtSFRcU1DM2gR1pA0HkAEJRUrG64rG5HiAVpFIG41P2kQ3TXl/zO2QIQBvmtRWfwvDeBob3o96jYsT3tleVoP8NQiSLDAOmz8W4fcNFKloVTYmkQWGk86O0tuLh7ygfVQoW5lwu35/YU9WO6lNwqXY5jS9MVIhGpEIQiP5GoLjhdxh/2H4NVx/Y22uA7WKAUjGgWg5wXYnXHEq/NcCrXNRJ9ZEdQ4C6unB/KXxgSrJc4fILLxKv17lz6QJjc/Ntxl9jex6PPPUUP3jLm/ASBwzbKYXtBgSmgexThtmLZMVldL6MUHonFGsEZIoOixdz+LEefx+pPxFqwLj/VufwFoVl2BxJUh4NHyB/logcQAh35lyqlfYmKz3049I+OmIHoVYJL+sUQlfdHJYmkGUKvJBRgVtlqVsMj+qKpJ05gPywRTxhcvn+BJWyXskmkkarlr1aCdhY8wkCFRrrBu1YfE/tSfju/vINbqcmu3cBQjBdD5v4u8356h2+m7sfFWLsz++SA+jXwd2oK5KpvX8WjOZc5lze5JUXG6E7ss01n5FRu3OVD7t24c5cu87jn/8CKIUZBDzwrW8TGEaH8d9CmiYjS8ssXji/59ewRXqzwfByDVAIpUXXVqYzg5dVKsXwYrWrq9eQitxqjbXpbMfhhi8ZWaiQrOrcl5O0WJvM4PdR+jQC2SEbsUV+rU4jE8M74wnhs1sA2wPXlR3GfwupYGO9j0jQAejlVJQitA9gvwyPml0VM9qwmx2r2cKI1XxMOwbRVLccHddfFsPQOvPDozaptH7u+qrH/C3tOBt11XfoyV67qS/U7nCxOo8lfVASU/qY0ud9S3+NpcLVVbf4bv51nWVCzfrVRzZeIuvX+j631wpfcfDqwS2hujBqRoxf/vAnO43/Lhi+z3u+8AdYvo8VBAj0Sj/muoT9KUQgaaR7r4ANX5LebJAuOhhB9xkSVY/hpSqGVBiyKalQ9Rib333YzxZmoELPLaBl5FsoxeTNIsmqp6Uf0BIOkzeLiJBzbJGshH9nhYJ0yQn93VnibLu/EFxHhQ/OVr1j4welMGJRrXQnXuMJcahDOnIFC9+nY3DKUK57ALwQgvHJGCNjzQlbdv+BOEGgunYMYXh2jMXXPcTzM7MkfYeHiy8xW1/a9b4F8KPL32A5/gpzqUls6XO1cotU0Oj7vPVYjrnUZKeejxCY0ictdzeu+WGzq+MadCjnoHN1DVMQiwndedyGBBbPz4Y/KYTc6hoTc3PEa7VQj2Io1eUApBCUhofZHB0NPWdmo05hudM5rk5lqA9t19kPrde7VtUGEK97mF4wUIxdGqJncG+nPEOi6mH6suN4rQGkSBcdKsM9msD6fCjDuonPGpED2EEsJnp+Zo5qmHYqbTI+ZbOyqFcrWpBLz3w9TITQMsXDoxZec3RimGF3GpKNNR/XVaQzBvldppTpSqTe3zUhwIvF+OZ7PoIbT+pRj3GYS01wtXyLH1l5GnOXzloBTDjrTDjrg75cVmMFDLoH0wSGxWJilIdKr/V9fnbIpFaRlJqll6K59Jw5f/C5ur/84U8yfnuO9//e5zCDQA/QMU0Cy+Kbj79n9xMoxbu++MdcfOll/SNg+eFVWk4ige26SNPEUJL18XG+/NEnQ4+13IDCDrE1gNGFCvMpuxXnN70eOy+hV/bBAC0hyhDUMjGSFberq7dU6DTodo/rGQpsr/cOoJ6JwVK3BIQSUDvDEhBbRA5gB7G40Rrl1xEDN6AwfHRvV75gMZQzdSOYyZHObjUMQTwebsB2au406pKNdZ+Ll3vnP0yrt9NMZQS5vMUL0w/hxRMdc36VMHgle4GSnebH73y5ywk4zZh/XO4v9Jb1w8MRpgzIu7sPphFCMDkTY3hUUqvpMs1MxtiXIGDYwJTl2XP8wT/8+zz4zLPk19ZYmZ7mxbe+hVpWx76FlCQrFdxEEj/WaVEvv/AiF15+ucPoh/0JFJBsNPAtCwR86aNPsnDpUs/7TBednivjVMWlktdJ40bKxnad7hW8Aq9X8jaEtckMY/Nl4nUPJQRCKcr5BJV85+LHjYd/96Sgb2OXtAw2xlMUlmut16UEVHPxM6sA2k7kAEKYOR9jedFrte0nkoKJqcMZldcPw9D1/HcLpRSL852hKKW0PvzqisfkdPiKKR4X2DHRlfgVAkaaeYKF/Ey4rr4QrMYLXMvMcl/lFgBFK8OXJh5lNT4MwFhjnR9dfoohP0TMqw+TjVXSfo2ine0IAxlIHihfG/g8sbjRCsWVrDQVK8WwW9y1h6AjidsjgVsaGeapD/6NrsevfPd53vaVr2L6Wuvi2oOv5xsfeB/S0u/h/d/+DrbXueLf0nfyLQvT91uxctC7AwW85Wt/xR/2cQCiXxyv7VelkRTpkoshO6dvbY6lBq7OAVCmYPn8EKYbYPkSL24iQ5LITtLCi5vYTtDaLSi0xs9uYm6VQpJGKka65CCUopaN4SYj4w+RAwjFMAST07rpBnonA+81PK938rZr7GEbQgjOXYgxf9PFdbdzKGOT25LMKb/RU7QnMCy+lXuAZ4YfpmHECISpa/ebRns5McznZ97Hx2/9AYuJMZ4aeSObdpa0X+etG99rOY6u+wI+cufLfHnsUeZT4wDk3AqPrzxNepf8wU5cYfGnk+9iMTGKqSSBMHmo+ArvWP9OywC+6Qmf1L/737aN/h6SuO3MXLvOO/78Sx2r+8sv/gCB4utPfBAAs0e4x7dtnn/723j46Wewvc6dkwAKK6vYjoMXDw8v1rIxshuN0F1APbNtNAPbYOFSjqG1OsmqR2AZlEaSOuSyD4KYSdBv5yAES+dz5FZqZEqOrufPxtgYSw0kA+HHTYpjUdnnTiIH0IezYvi36Dc9a7fKPts2uHg1gdOQBIEuD20/3yPFl7idmgqvvVeKzXhue5W+w1EoYeAbFs8VHuS7ude1dhKlWJavjb0NT1g82GNFnwwcPrT4NVxhIYWx66q9F18ZfzuLiTECw2zlFF7IXeWH/t4Q/+q1h7cP3KfRB920NbK4xJu/9pdd8XzL97n0wg945kffixePc+3B15NfW+86LrAsvvfYozzw7e90OYAtVJ/PtZu0qeTiZNpCQUrouvmdid3ANtmYzLCxj9e6H5Qh2JxIsznRptbXTAJn1+sYUlHLxCiNJLt6ErYUQPeyOzkLRA5gHyilKG0GFDe1KcgXTLI589Q7jC19+jDRscLoYB+VXno2U41VHlt9jr8ae2voLmBnpc5OPGHyUuZSVxjJNyyeGXmY15ev9dXnjyl/MP3rEFxhcTM9jdzhvHzD4jf+bBYu7++87Tzy//01Dz/1DaRpYrvhTkoZBolaHS8e56U3v4lLP3iJ/OoatufhN1Xx/uqJH0MZBq++4SEefPabHT0AUgiWZs/hx/qv0jcmM9SG4qTKro6XD8VPbL18YblKZtNphYWGNhqkyw53LuVRpoHpBYzcqZCoa0fpJC3WpjK9m8zOGCfzr3qCUUoxf8vtGKrSqEsqZXlo8wPuJlPnYszfdHDaymFzBZOhXLfUw9qqR7kkmyMpTfLD/XX5HypfY9Td5IuT78EzDJQY/ONnqwDHDH9/XSOGa9j7Thbvxv3vF8hbJmFz6c0+NeiDMvvKK7zh6ae1sW4abEW3vpISguqQThBLy+KP/oefZvbV17j/W99mfP4OQine+99/n2sPPsAzjz/O+PwdRpaWEEohDQMnmeSvPvTEQPfkpOwTnyQ1fUl2szNpLQAjUGQ2G5QLSSZvFDGD7TzFVu/A/JVCtBsgcgB7pl6TXRO1lNLVM4263FWN86RjWYILV3Qox/cU8WTnUBopFaWiz8qi35EvWFnyqddVzxkGW0w46zx55y/43Lkf6xuKaA8DmTJgyCsTYLAZ7xY8s6SPLQ9f3vmXP/zJ1r3MsIm1o6JeAfX0wY3kg88+1zOhu/UOeZbFcz/8Ls6//AqXX3gRaRi88sjDOIkEE/N3OkJBl174AaYf8Cc//XcZu7PA8PIylVyOOxcvoIzT/flsJ9bwQ6eDGUo3kgW22ZGkhmbvgFSkyu6u8wPOApED2CPVHrINSkGtGpx6B7BFPGEQ3yET47paEiNMJ0gpqJQCXEfu2rz2UvZyf+OPFmuLBS6GktxXvslbN77PXHKCL028A78tDGRJnzdtvrivCV076TkwRQjWJtN6mlRTs0bSjEkPmFgUUmEEisASXSGueC08byCFwEvEqQzleP4db+fK919g6uatVmx/+sZNnHi8KyFsBQHnX36FeKPBysw0KzPTA93jaSOwjNCwngL8mInlyZ6D4C23Rx+DVKQqLmYgcZL2PT874N5+dUeAZRkI0e0EBp3GdZpZmHNDjX8LocNhuzmAqpXsjPlvoRQCRcav8cMrz3Z1CV+qzfOelWd4auSN1M0EtvR588YLvLH40j5ejZZRFm/7wEADU7y4YGTpFQzfwkllEdLl+oMXd+94lYrhpWpLdkAZgvXxFG7CJlH3CEyDuSuXyW5udmn2BDGb3/vkP0GaJpM3b3UYf9BSD5bnhUtxmybJSgUneXfmah8HbtzEj+nS0Pb3QAkoFxKYnuw5CD7MsFtOwOStoi6F3Qrvpm1WZrL37OSwyAHskWzOZGWpO9YsBPseGn8aCHxFo7H7KnsQsbzztUVupqe7xN1MJfno3J8x4hV7JnTvq9ziauUWgTAwleyb+A2jY2DK54DPDVC1oxTv/73PMbqw2DLSUghe/+0U/+//9I/7JlVHFqukyttJSgLF6ILuZ1ACEIL10as4yRehrlU7JTrG/9QH3o9sSrTOXL+OFVLVo4RAqW69U0NKyvmjG/1oOz6Wq+v271pCVQiWmnN+4w3d56AMwdpUBi9u4cWU3gm4270DEvBts6OkdYux+RJG0BkySlQ9MhuN3lITp5zIAewRy9I173dua0nk5neYmfOxe3oHMEiAZauKaDeuVG7x3fz9bNrZVlWPJT0eKF1j1Cvu+nwBWGpvydfP/sbH9z0Ld3RxkZGl5Y4VuqEUdsPh8vdf5OU3vzH8PgNJutzdWbv1KREKUAppxXn6vU8ytHGDc9dvUB3K8sJbf4i1qcnWc5xEAmmamDt3CaapV6xB0HICnm3z3Xc8SmDvIT+hFLFGgBFInKTVU9FTSMXYXIl4fTv+Xk/brN6lVbK0DJYu5DB8iSEVvm1s34cQLJ4fIr9ab+3AqtmYDtvtuFfLDXTIaMf5DQXZflpDp5zIAeyDVNrkyusSLXG4QaZxbVGrBqyv+vi+1tkpjNiHqvh5VFiWlo9weuwCtrSLhBA4hk3JypD1q6F19yaSJ+f/gheGrvJaZhZb+jxUepVL1blDu993Pv+L/LOvL2wb/V2klPtRWF4JFTqyfZ/RxUVeJtwBmIEKrebZiQCkYfPSW97K93oMabn24Ot549ef6v6FIfijn/xJHnnqG4zPzdNIp3j+HY9y/cHX73LVbSw3YPx2CdOXLTmGzbEU5RCjN7xYJV739Yq6+ZYkqx651fpdbbSSlhGqeqpMg42JNBvtvQN75R4WjYscwD4RQuxZD35z3esYxO44upfg4pXEqXACUzMxbt1wtqWMhR4eY5nguor52w433/gor4xexVASKUyuVm7ywyvPdun82CrgjcWX9h2/30l7F67hS4b+8SrJCkxYRUqFJPVBhb+UIl1ytxuLsjFK+UJo0tqzLDZHRnqeyt/LgJSQWHU7taEhvvbjH+aH/+CLrXtRhuBLf+ujrE9N8pW/FS7utitKMX67tL36bX448ys13ITVWQqqVOiOxlCQ3Wyc6k5b3zaQpoHhd7oRKaA6tMtnRymSVY9Uc5dRySVwDqE67Dg4FAcghPgg8Kvooau/qZT6Nzt+Hwc+A/wQsAb8pFLqxmFc+7QgpWJ5aYdkst65s77qMT558nsI4gmDK/clKJUCPFcPZt9Y83GaRSivTD/IjeErSMNqdcu+mjlPPHB4bP27h34/XQPQf6mOEUimbmxi+M24uAuxepniSJLSABOghpeqWgO/+XfKrjcIrAylfIHC2ipms/ZVohOtrz38UO+TGYLN0RT51VqHfg2E1PgjcBP9Y+m377vKZ3/+Zxmfn0cJg6VzMyjzYPH3mBN0ySyDdkbZ9Xp3L0AvxdeQQUOgVUNzq3USNS0XURxJ0tinXMRREat7pEsujaSlx0ainZoUWtgubCfUQilGFiqkylrRVAGpsks5n+jsWD6hHNgBCCFM4D8AHwDmgGeEEF9QSr3Qdtj/CGwopa4KIX4K+LfATx702qcJ11Gt2u4OVH+dnZ0EgWJ91adcCloNWLlC/wasw8QwRUse+vornROt5q48hLQ6DUZgWLyQu8o71r+754RtGF1TsnaQ2WhgBJ1JUUNBbq1OuZDoO63K9IIO4w/NiUmB5OtPfIQ3PvUVZl+9BkqxOjXJ15/4sV2rbMojer5tbq2O6UuchInlq1ZiUqGTwavTmYFi6IFts3Dx4q7HDYoRSMI+mAIdwup8UODGTeJOZx5CoatldmJ6AVPXi61afNuTxObLbIynqBRORkw9v1Qlu7mtfaRoCs8lLBopS2sb9fm7xOt+y/jD1owCvSOqFBInvuP4MHYAbwdeVUpdAxBC/A7wJNDuAJ4E/lXz//8r8GtCCKHUbiNE7h1Ms7de/qDhHykVN685HUPFlxd96jXF1C4NWEfBzmEmnh3eWOMLC4mBGRql7c+bnvBJ/p238N7PvVs/sIvWTrLidWnZAyD0vFkn3dsBxOvhzWSGAssXfOWjTyKCQHfWWoN/dWpDcWptw1RQuhEp0RRRq+TjHeWkhu+TLpeppzNdMtCGL8kUG5i+GshA7YaTsENX9bKHXv76VIaJm8VWP8RW5c3GePdqN7da72rEMhQUVmpUcomBRNyOErvhk91sdI2kjDd81geUi0hW3J6hu2TF7b97OAEchgOYAW63/TwHPNrrGKWUL4QoAiPA6iFc/1RgxwwSSUG91i2ZPDygzk65GHQYf9BOpVwKGBmgAeuwMS0tFb3F0OYKxZHJruPyXmnPxr/VhQu6XHNAAttANUISrwrdhNULpUhvhqtgaollbQyUudvomgEQotspNO/h4ae+wcNPPa0PU4qX3/gwz773cZRhEK95jN8uAdqQZjbBi5ssnc/tW9ZAmaJDL1+gjb9vmy3t/3ZMN+hwGDoXrEKvn6iF9yig9IAXr4fG/3GR6mW81eDGW/Z53/v97qRw4pLAQohPAJ8AmLBPtvfcK9OzceZvOTiNbZ2d0XGLdGawbWK12j2eEAAB9QEasA6bkVGLlba8xtXvPcO33vVBlGFqyQElsZTk3avP7XqusIEp+6E0nOhalSm0ofT7GJxEzSNR80MN1lZj0RZCKhI1XZPfSNn7Nr4iCDh37RrZzSLr4+NkNjZ4+KlvdMhC3Ped5/Etm2+9592M3il3hqcU2E5AdqNOaWT/CdhKIYkXt/Rq2JfUMjGq+UT361KKkaVqZ3gNPd948vom65Ppjh1JYBmh07oEEAw6OP4I6dmN3j5IYRdqQ3Fya/VQR3IaJo4dhgOYB9qHmJ5rPhZ2zJwQwgJy6GRwF0qpTwGfAnggmb+nQkSWJbhwOYHrSgJfEU8YfSWYd9KvrPtuVBHlhy2k1DOGlYJceY33f++PuHblEVbjBQpuibdsvMCouxn6/J4DU5QiWWXlqCsAACAASURBVHFJVjwCU1DNDx5LdZM26xNphpdrgA6yuwlLd3P2IVVyw40/UM4n8OP6+smyy+idMgihSzyVYmUmu+fEZqpU4on/8jvEHAczCJCGgSFlV52/7fu8/rlv8b1HH8PYGZNHO4F00T2QA4DBxN8sT4YmewVgBYrROxVKw8lWNVBxJElsvtw17rGRtrvkmndi+JLMZgPLlzRStjamh5znqmZj5FZrPYz3YDpBfsxkbTLNyGJzWJHQgbGVmWzffNNJ4TAcwDPAfUKIS2hD/1PAx3cc8wXgHwJ/DfwE8KWzFP/fSSxmwD4WB/mCxcZatwyFaUKqT2z7qBBCMDKmZwwHgb4PIepcWv5G6PFvekKvbFuVO2HxfKWYuFUi1vBbSdKhjQZrU5nukEkPqvkE1Vwc2wmQptDxdaUYWq0xtNFASIWTtNgYT7dkjlUP26IAN6mPMX25vQpv+yOMzZeZv1LY1ai18+4v/jGpSgWjeR4zCHqGlkzfxwh6i931uve9Yrke4/PzBJbF8sx0l3BcvyHuoJ3R0LpOtkvLoJGJ6fDSSg2a4aVG2mZ1uo8zVorsRoPCcg2F3mGkiw65VZPFCznUITZbBjFTLxZ2zAxem0xrnaEBqeUS1DMxvSsU4kC7wuPmwA6gGdP/eeBP0GWgn1ZKfV8I8a+BZ5VSXwD+E/D/CCFeBdbRTiJij9gxg5nzMRbmXWRzoRiLC2ZmDz6k/CAIIeiXE+2I5+9Cuui0jD9sV1WMLFSoZ2KDf7GE6NCw31nemahpWeCFS3n8mEl1xxCU7fPQmnK1VecdRqrsUil0x8zDsFyPibn5lvFvu1QotWwWJxkjsOsIt7NkUwq65ufuh0svvMhjf/ynLaMfWBZ//hMfY31yYvtalkEjafeO7TdfRLzht96zSiFJJZfA9gIC0+jvJJVibL5MsuJ1RGEMBZYXMLS+/2Yzw5d65GTM7PgMVfPaeCeb5Z/1bCx0JOVuKNOgPuCu4SRxKDkApdQXgS/ueOxftP1/A/g7h3Gts046Y3Ll/gSeqxCGnsR10uipqjkA6ZLTs4onXvdDyw13Q1fOdOvG06x135jM4CZtSiNJhtY6dyUrM9mWwTCk6qkuafSogw+lz+Z3q8F266/qWxZPv++9YBgsz2SZvFXqECurp2Ohydq9MLS2xjv/+E87p4u5Ln/jd3+P3/3kP9mueFKKciGO7fitEtHQZPtOA2qIgRK+yYqujApzLobSn43dHIDd8Ek1m9VqQ3G8mMnInTLJqtcqWyqOJCmNJFshJWkZVA/4Hp5WTlwSOGJ3hBDE4idri9kRz++jqrkbPRNzCuQ+fZ3tBkghMENW3O2ln8XRFJWhOMmqhzKglol1xHHr6RhDIQk/JfY2F8CPx1ibGGdkYbEjoSqFwdylq/i2wcT8HKXhAt9552MsnZ9tPs9i7kqBZNXF9FWrXn2vjCws8rYvfYWRpSWcZIJioYARMmNYSMXM9Rvcvu+qXp3PlfXqX/UYWIPuqN2toa0X6ZIb7vy3zr/LLndotdaRkM1uNPBtA8uTHdIVubU6fswcOKR4LxM5gIh9k/jyx/jnv9Is+zzALNx2yoUEiVp3Lb80RG9t9i3D3sNA+Lbx/7d37j+yZdV9/67zqvej3/f9GsYDEwwzBmGPbQwxKGZIwssC2YqcRMEZJQpSIllysPgHRomUn2IpHiko+QEZkOwJ2IM9hhhEIASDPRgYZoYZZube6Xu7bz+q612nzmvlh32quh6nurse3VXVtT7SqLset87uM9177b32Wt9vX7oFOKwO6sS3dFQHHDi7MR31tIVk9XCiCgio5Ya3TPzWBx/H45/7YxieB8Pz4OkGnHgSt3/uHXAScXz7H+ej0yUajZVqyO/u4jc+/4V2pZFRqSJRrfWpiQLqgNtqqrRXqtzs+v/SutOqD0B941o6dq+MLgrHFB1YANV5XTki1WU4PnL7je6afgZMJ1rgLbffkAAACQDCEPQJrI2x0h+EnTJRyceRKdrqibDaZudqtm9isRoelu9XYdm+8q7NxXCwnuo7J/BNHfW02dckxgSVCjgGs+lhZUtdBwCacV2lOXRCNRsbKS1VXlnGn/7rT+IXvvkcktUSKvlV7F28BtZ0kM/IFhooRjRXjcvbv/0d6F53pZHG0aJ1FATYCncfvR3SLZiAwnoKzaQ5dtdrNRdHstJfm88AGinjyDOWVg7/pPRq/iwqEgCEgXQKrAEIV/mnpzEPACBCcSPV3gkEuqbSKz2TuuH42LhTOlyRspqkDDdQwaKHvYsZLO0qA3EKV6uFC6ljc9OaH2DjdrmrozVm+/Asxr0r+bFKEzXWce/mQ33nBxqUDn0n8ZqD/G4DhuPDtXQU15IjCY4t39+J3g0RwdN1mJ4XpnJMvPCOR1HPhvfyiJr5SXkCNFMmKktxZA7szo/H/kbq2Bz9cemhrvdC9W8IEgCEHqIE1qaBb+lwAkZuv4H8Xh12wkB5OQE/nGgyB/1duxoDsboLw/H7JySNcLCRVpIFjBPLEKSKTRD3+8rqboB4vedQmhmZYgmeYaCRToGCMD0yYHJSlobRqSnPOkzKtHoPWsFOtz2sb5ZH6j8orSwjU+o33Ak0Dd/79ffi2suvwLMs/PTtb8PWjevt16u5GGIRqTmmI1JzI1BcT6GajyNecxFohEbmZJVfjYzVV87ZHmP4tVO6Yp6VSyeJBAABwHiGKadBvOp0efCaTR/psoOt6zloASNZbkaXIhJFB4CO14dRpTM73KR6MVwfgAoAG3fewLuf+QvEGg0QM6qZJTz/zveinsngYD2Jeq5/BetZOpoJA7G615WDZwLKHTIESzu1vjFoDCzt1LE1ZAD44S//Ei7eeaOr4sc1DLz6Dx7Gy4+8HS8/Eu1tUM9YiNdibWMVAAABO2Pk/NuEcsqGo+Qh7OTR6Z4ofENDQIDec59ak76dNJQYX9JEqWMhsehIAFhQfvlHv4e/23vt8BB3DMOUicPKR7dXpAsBY/VeBabjD9bOZ4Y7wT9uJ2EgGFCa6oQHyKlyGe/7k6e7/HozpX08+u2/xHff/5tY2a6BNS3Sk2D3cgar96pI1N326rSwkYKTMNs/T5ScAqCC07DsXbqEr3/kQ/jFr/010qUSfMPAi48+gud+7VeP/odEKFxMd6Xm6idcnR+F5gW4cLsE3QvaJ8CuFeobDdn0xToBXvQvxt6lzFCNeouCBIAFIVpVs1+4bRbQAoYxQEPG6jEA7yQIm7YmubqrZWNKLsA7TAMFpOQlWqmPB//+h9CC7vFqzDAdG/m9LRTXLiG3V48MAKxr2L2aheYH0PweS0MAIIKvU780M9DfrRowYraHQCNV3TRgZX7v1k08/cQnoXme8hweYgXvxkcrPR3Eyla124qRVWDL79ZwcCE91GfVMrE+dc9WpZdM/tFIADjnjKqqOU2CVppmmN4qqLRJaXWyAoKsEbZu5LG0U0OiqpqJqrkYSquHvrLpUqlPw6dFzK4DwMBVfItA1xCEcUt3fCSrDphUDry0kkB+t45eTZ3SymGaJFFuYrWlR8MMX9ewezVz5CH3MJLWp0KY+okq00yVHRwMuT4prSZUKsn124YuTKS8FoRIJACcMx553MOLv/+Jw9TOPKKp8sreruAgDApRDUiNlHlqB3uBoWH/CP2a7WvXcO3ln3WlgABVR19eWgNwmC46jkx46N1iaaeGwnoSpZUEcoVGmCYhFFcS7Q5gw/GxulXtTpl5ATbulLH5pqWpmLWfiCMCPDFDd/0un4RjP07XsHUzh2TFgWV78Ewdtaw1F6Js00ICwDngsc++7TC1A5xKff5Zc7CRguYHYQu/0s6u5GOqTtzrrsphAirL02vlf+0tb8Zbv/s3SJcr7Z2Ar+vYu3ANjXQOAQHFEwQno+l32Ue2WN6p4+4DSyivJKD5jECnrkk9HeFjoDSUGPGaO3MWjG00UofgjW4ZbqWyClx6tQjP0rF7OXPyMtNBXgtCJBIA5pSuLtw5Se0MA2uEvStZ6G4A3VNVPYGuobrkY/2Nsjo0JAIxK5/Z1GQmuVjdRX63DtPx4Zo6SmvJYxu9fNPEM7/zz/DW734PN156CYGmY+v6Q9i6+iDcuIGD9SSaSRPkB0iVHeiej2bCVJ/bMZGnyhFidCEtsbkgQvY7ytMXABC0KpXOAGboPqu0yxAr7v2LaVy4XQIF3FZ/bf0sFPodXLhdmu2dzBwjAWBOOIsu3FnENzX4HYJ3nqXj3q08LFsJkjUTxkjqjVHEaw7WNjvq7X0P1mYZe5czbXXLQbjxOJ57z7vx3HveHfm6ZXvYuFMGWAnKMdlwYjp2uty8Bsz+x5yFNNJWly9tCwKQ26ujnokNPgRljtxVDEOs7mJlq9oORHbSxN7FdOQ1DUepepq2ByduoLySwN0HlpAqN5EsNft2AwSlSZSoOnOptjnrSACYYboE1s6iC3dOiNddZPdt6J4PO2WpBrEJqKIu3e9Pv2gMLN2vHRsAjoQZq3crXR2/xKqiKVNooLyq0kP1TAzZfbtfkgFKjmIQ9YyFbEGHZft9k6fmI1pWghlLO2FnNJTWUmFAv8JRGI7akXXet3jNxcadUqjff/j/xWq42LhTbvd2xGwf6XIT29dzqObjMJs+EgN8mQ2RbjgVJADMECcyTFlw0gcNLO0cTtSmYyNVbmLrRn7sIDCort5wA9WxO+IK2XADlbLqoSVx3AoAblyZvCerTt9Enimq1XFlOYFatscdiwj76yklFd17DSjv294A0OuPoPuMle2a0vwfIp2WjujIJigRtisvH6C0mmj/fCvbUb0dKvDuXMuq3VwRkT0XzYRIN5wGEgBmgGEMUxaagLsmf6C1ymVk9xs4uDCeeJqvE4yIevtx0iPAMRmcXmkFPdp1iwDEmj7M7SpijRgKPTXygakNLJ3t1eengCPF3TQGcnuNoQKA6UT3ZbQMXdrSyxkLZrM/wCpJblU9Vc9YyO3rMDq6r1sWkpOUmxAOkbs6BeJf/xgAzHep5hQwHb9dEdQJAUjUHBxgvABQWk30BRhVbz9eb4Fv6fBMrU+amKFW3lbDbXf++joNlEQG1CSdLjZRXk50Vcb4pg4n3l9RExBQ7qmQitqNtBj20NhOGpHy3Z3jze43VNcwIfKQu30GQoTt6zlkCw2kijY0n6FBeTbk79dQWkvOjdXivCAB4IzoKtVckAPcSRPo0eJpgNL8PwrD8RFrePB16qu+aVHNx0E+I9+qt4eSi64MqUsTxd7lDDZe71AvDf/TA8bGG2XlKaxrqObikUJ3vcRrDqpWd2DavZzB+mZZrbTD3UB5JdF3eOoN2C0wMPRKu5qPI1uwQT4PDFq6ryq2qqHtZm+ALXcofbJGKC8nkA47egkqSGaKNmK2h/vX+mXBhdGRAHCKdB3insNSzbPGNzU0E6ZSpex4PugRT+si1BVKlQ5FzAKNcP9aDl5vcxYRKqtJVFYS0H2GP2bqpxM3ZuAgNCDvWy0zkCyrMk8vpmP/Qgor27V2EIgaQVQ6JTA0bN/Iw2h60D2GG9ejK6SIUFxJdvUcMFQ/RXF1uGY61jVs38wjt1tDuuT0jbVTevlgPQXDC5TUdRiA6hkL5Z7u7exeHXpPr4fGqpLKsr1DnSRhbCQATJBHHvfwBx/554elmnKIO3F2L6exdreq8sbhJHKwlhzY7JSsOH35bvIZ65tl3Ls1QM+fCH5EvX0XzEhWHCSqjlq552PHegvo/mBP4U6TlnoujkYmhpV7FSSrbv8/QIQOUAdezIB3TMVkZUVVTuX2GtC9AE7YrzCKzo9vaChczMBO2u3A1SW93AoqGmH3Sha668N0lEF778G94fjIFforoVpYTV8CwASRADAmXat8YLZUNc8hrGvYuaYmEd1Xyp9H5YUzB3ZkfbzuBarZ6wRm5f2DYGzcKcOyvXbzUrpoo3CMcUkzYUTmwZn6q1xYI5RXEgMDgDuERMIgTtwxy4x00Ua2YCtJ5YSBg/VUX7Co5+LwTR3Z/QYM1x8oveyb+kCJh+z+0YumSfzcwiFjBQAiWgbwBQA3ALwO4BPMfBDxPh/Aj8KHd5j5Q+Ncd5r0ae3IKn8qqEnk+PdRMCCZTgCNWFqeKjXbk3/4USBWpZX1bGxgQGomDNhJs+vQtKUsGtVt7B5xrpGqNNHInX5jlNH0sbZZhtmh2Bmve7hwu4TtG7m+ANpMmtgdw23Lsr3I1T9DVTM1k7JmnSTj3s1PA/jfzPwkEX06fPwfI97XYOZHxrzWVOkyTJFD3LmhlrVg7jX6dgEMghMfbTXZK1LXhlRJ48AySiLsXskgfWAjE55JVLMxdcgckYoyPI7cMbRksU8b3fVx8fViO6XTeX2EJaN7lzMwHB9LOzXEay5YI1TycaXKOsL5iRs3Bkp+716dgPmM0MW4AeDDAN4bfv8/AXwD0QFg7phpwxThxFSXEkiVnbazV+uwc/9SeuTJJNAGl2oe601LhOpyAtVBh9YdDKpsYpxcXXQcWtVIA/sS6q5SL92vg4LwfaGhvdn0sHel35v5OErLCeX21lkpBKCetUZL1wlHMu4d3WDmrfD7bQAbA94XJ6LvA/AAPMnM/2vQBxLREwCeAIANc7La7kcxT4YpwslhjbB9I4dU2UG85sA3NFTz8bFMzKtLcaVj37MyD0ipW04K1jXUcrG+Q2wmtLtrR8FquEiWHbCmzgEGTay9PQVdY4M61M7v1tslrS00BpK1Ad7Mx+DFdNy/lsXydg1W01dKr/k4iuvi4XsaHPvbSkRfQ/RM+JnOB8zMRAOrl68z810iugXgr4noR8z8s6g3MvNTAJ4CgDcn8kNYgozGPBqmCENChFouhtqEcuYt/aFsITz/CY1Hdq5m241q+d060sUmNGbYCROFjVR/2ekJKGyk4Osasgc2KFCH3oWN1MidsUv3q0r/J/zLyhZsFMPS117cmH5kEOid+LtgpV80SqB1Eia2b+YPez7OKu3DDApY7eIWpOHs2N8iZn7/oNeI6D4RXWTmLSK6CGBnwGfcDb++SkTfAPAogMgAcBZ0SSkLwgiU1pKo5uOI1V0EPc1la3criNcOD3rjdRcXb5dw71b+yPLNSIhQWksqs5sx9IgAwGp4YVDq+HgG8nt11LNWX2VOeTmBVKk7HdP69iSjCLQxBfrOMN/fUjQ1XJXLqmUsFC6kz33n8bj71S8D+BcAngy/fqn3DUS0BKDOzE0iWgXwKwD+05jXHYrHPvs2PHfzTYeT/qwd4jJj/e5dXHztNtx4HK+95SE00mJjN+v4poZ6z67CcPyuyR8Ia+IDRrrQQKlXlXMYxpwQk5XBfgOJqovqUncA8CwdO1dVOqYllFdLm0hGpL+icM/gnGISGM0eRVNW/SO6V8HOteHPMeaJcQPAkwC+SESfBHAbwCcAgIjeCeDfMPPvAngLgD8iogBKnPBJZv7JmNc9li7phVlO7TDjPV/+c1x+9TUYrgtf1/Ho//kWvvHhf4q7D9ya9uiEITHDvHWvzIIGIGYPlnRu0dK+170AdtKcqAE7HxU/BrzWTJrYupUPUyPqufjPitCO0BNiAK6lzY0Re/ag0RfQNFYVXaOcY8wTY/12MfM+gPdFPP99AL8bfv9/Afz8ONc5CX1duLM86Xdw/acv4/Krr7X9ZI3QUvDX/uwZfOFT/3b6xt3CULiWHi14BlXvr7s+MgWla+PEDZSX4u1GKcv2sH6nDAK3A0g9Y2H/4ugVS53UsjGl2xMxvvoxfgedqZDdy2llbgO0K6va7wvfu3d5sIfyrGEOKDtlIhiuBICZpc8Ldw5LNW/9+Pk+M/EWG5ub2Lpx42wHJIyFF9OVXlHD7dbZ0ZQmzqXXiu2SyVjDQ7poY/t6Dm5Mx9pmBXpP41qy4sBOORM5wPZiBg7WkljarXc9vz/AvWsQTsLE3QeWkC7Z0F3VGcwawbJ9eKaGeiYG1ucnd95MGLAaHnrvADHDteZ6ijyWufrp+gxT5mSVfxRH1Y0zzccW+qSQr+QXfEMbKAVwHti9ksHSTq19gOrEDexfSGHpfu2wXh4dHcTbNRQupKD50aYx6aI9sQqm6nICjYyFRM0FA2hkrJEsNQNDQ3mluzSzMT+L/i4qywmki01wcChAF5DaMU3CaW6WmYsA0NWFe8742c+/FZdu3+nbBTARdq5cntKoJgwzcvsNpfMSlkk2EyZ2L6eHMhCfF1gjFC6kUdgID3zDIB8fUFIZsz0lWTHA0OU4T+Bh8U0d1fz5DcDD4hsatm/kkN+pIVH3EGiE8lIcleXxZcBnnZkOAHfza6pOfw5TOyfljTc9gNfe/BBuvfAiiLldOveNj3wIgX4+/kiTFQfZ/VCOIaztjjVU2d0o3aJzQ8/uLtCoL8UDqMNZJ66Hu8Hu1wMCarkx/IiFE+FZ+vn+XRzATAeAhYAI33n8N/DiO34BF1+/DScew+2fexBu/PysPtqTfwetblHND0ZKQcwj1XysT500IPU8NA17lzJY2zw8XG0JxVWPUBg9DeJVB0s7dZiuD8/QUFxNDG0WL8wHEgBmhIP1NRysr017GKeCHuGzC6i1ruYzgvOx0TmW4loShuOr/DsRiBl2ysTBmkoV2Sl1uJoq2dA99dog97LTIl51sHa30g5Sphu0Nf6PkroW5hMJAMKpY6dMdSDa8zxrdKyV47mCCHtXstAdH2ZYX95bYhgYGior09O96fVEBtRuJL9bVwfRosZ5rligvz5hWhRXE20FTUCt/ANSOjeLOKH4lg47bc1kfbk5wBRe93nih9HC9JEdgHDq+KaOrZs5ZAs24nUXrqmhvJIQa78ZxDM0mG5/OWqg08kEgIaA/ADJqgPNV+kukXs+e+SOC2eCb+o42BhDB2de4XDlPCeiYsW1JFa2qn0H1cWV0QxeBhGru1h/Qx14t8wVarnYwu4Kp4UEAEE4DQLG0k4N6bAZzLV0FC6k0BzDLnEUdC9A+sCGZXtwYzoqS/Ejm/Dq2RgoUHLWus8IdEJxJYHq0gQPgJmxtlnpPmtgZbXZSFtodMhSUMAwmx58XevzFhbGRwKAIJwCq1sVJKqHchCWoxQno3x0Twuj6ePi7RIQMDQAXHORKdrYvpY7UmSulo+rA9+W7dmEV+TxugeKOFDQGEgV7XYASB80sLRTbzfIOXEDu5czcyMyNw/InRSECaO7AZJVt6+ahlj1RJwVy/droHDyB8K5PFDSE8fSMkU5lXTM4NPkllBdvOa2K5K0oKXO6WHtbuUUxrO4SAAQhAljuD6CiImToJQnz4p4w+07tyWEstQ8vZKeZsKMjAFBeA4AAJlCf/MgQSmmGs7Z3cPzjgQAQZgwrqVDi5hgGZioZ/BxRAUh4BhfgDOANcLepQwCUobvrbLgRspCPaPSP8YgvwFCpGieMBoSAARhwgSGhmouhqBjom1JQleW+713T4tqvnsMQMcqe8qVNo2Mhe1rWThxHYFG8EwdtazVHlcjZSJymmdIuegEkQAgCKdAYSOF0moCnk4ICLATOiq5GPK7dWT262eyii2uJmGnTAQE+Jqa/JsJAwfj2FJOCM0LsLFZQcz2oQcMy/GxulVFZl95FZSXEwh06goCAQEH68lz79N7lkgoFYTTgAjllSTKK0r/58LrJcRsZcieqAK5fRvbN3Kn2w2sEXavZGE4PsymD9fS4M3I6jlbaIB87jqj0BjI7zVQzScQGBq2buaRLTSQqLnwDQ3l5TjslCijTpLZ+G0QhHPM8nYNWofZiMYAM2N5uzZR03HyA2QO7K4J00mYkZpD0yZec6PTD0QwHQ9OwkRgaCiup1A868EtEBIABOGUidejq3HidVdV40wgH6/5AS6+VoLmB22f3kTVQWEjNZMqnr6pgaO8eJkXRh58FhjrThPRx4noeSIKiOidR7zvA0T0EhG9QkSfHueagjBvDKq64Qk2WWUKdnvyB1SA0RhY3qkBESY006a8nOi7LwzV7DVru5XzzLih9scAPgbgm4PeQEQ6gD8E8DiAhwH8NhE9POZ1BWFuqOUGVONkJ+PzC0CJqg2Y560z7D04Kc2kicJGCoGmDsmZADtpYvfKnBoLzyljpYCY+QUAoKNXMe8C8Aozvxq+9/MAPgzgJ+NcWxDmhYP1FMymD8v22s85sclW4/j6oG1GqOQ5g7QkJ0zHR6Br8EXi4cw5izOAywDe6Hi8CeAXz+C6gjATsEa4fz0Hq+HBdHy4lg4nrk+0Fr+ynECs0S2wxgDc2OwdAHdBJHX9U+TYO09EXwNwIeKlzzDzlyY9ICJ6AsATABDLnk+LRGExcRIGnFPqBG6kLZRWEsjtN9riaa6lY3cBjc6Fk3PsbyMzv3/Ma9wFcLXj8ZXwuUHXewrAUwCQufjg7J1eCcKMUl5NorIUR8z24RuyshaO5yySbt8D8CAR3SQiC8BvAfjyGVxXEBYO1jVx1xJOzLhloB8lok0AjwF4hoieDZ+/RERfAQBm9gB8CsCzAF4A8EVmfn68YQuCIAjjMm4V0NMAno54/h6AD3Y8/gqAr4xzLUEQBGGySN2VIAjjwzxVjwFhNCRRKAjCyGhegKX7NaSqDsBAI60avI7yHRZmB9kBCIIwGszYuFNCquKAWFWfJqouLrxeAs2g/ITQjwQAQRBGIl5zYbhBl6AbAdACRrLSnNawhCGQACAIwkiYjt82ce9E47P1PhZGRwKAIAgj4Vo6OGIGCUhsG+cFCQCCIIyEnTLhGTo6NwEMJT7XMncXZhsJAIIgjAYR7l/Popa1lKQzgHraxPb1nPj2zgmyTxMEYWQCXcP+pQz2pz0QYSRkByAIgrCgSAAQBEFYUCQACIIgLCgSAARBEBYUCQCCIAgLigQAQRCEBUUCgCAIwoIiAUAQBGFBkQAgCIKwoEgAEARBWFAkAAiCICwoYwUAIvo4ET1PRAERvfOI971ORD8ioh8Q0ffHuaYgCIIwGcYVg/sxgI8Bez7jGgAAA7tJREFU+KMTvPcfMvPemNcTBEEQJsRYAYCZXwAAIpF+FQRBmDfO6gyAAfwVEf0tET1xRtcUBEEQjuDYHQARfQ3AhYiXPsPMXzrhdX6Vme8S0TqArxLRi8z8zQHXewLAEwAQy66d8OMFQRCEYTk2ADDz+8e9CDPfDb/uENHTAN4FIDIAMPNTAJ4CgMzFByMspwVBEIRJcOopICJKEVGm9T2AfwR1eCwIgiBMkXHLQD9KRJsAHgPwDBE9Gz5/iYi+Er5tA8C3iOjvAfwNgGeY+S/Hua4gCIIwPuNWAT0N4OmI5+8B+GD4/asA3j7OdQRBEITJI53AgiAIC4oEAEEQhAVFAoAgCMKCIgFAEARhQZEAIAiCsKAQ8+z2WhHRLoDb4cNVACImp5B7cYjci0PkXhyyyPfiOjOfSEZhpgNAJ0T0fWYeKDm9SMi9OETuxSFyLw6Re3EyJAUkCIKwoEgAEARBWFDmKQA8Ne0BzBByLw6Re3GI3ItD5F6cgLk5AxAEQRAmyzztAARBEIQJMjcBgIj+MxG9SEQ/JKKniSg/7TFNEyL6OBE9T0QBES1ktQMRfYCIXiKiV4jo09Mez7Qgos8S0Q4RLbzMOhFdJaKvE9FPwr+Pfz/tMc0ycxMAAHwVwFuZ+W0AfgrgD6Y8nmnzYwAfwwBjnfMOEekA/hDA4wAeBvDbRPTwdEc1Nf4HgA9MexAzggfg95j5YQC/BODfLfDvxbHMTQBg5r9iZi98+P8AXJnmeKYNM7/AzC9NexxT5F0AXmHmV5nZAfB5AB+e8pimQmivWpj2OGYBZt5i5r8Lv68AeAHA5emOanaZmwDQw78C8BfTHoQwVS4DeKPj8SbkD13ogIhuAHgUwHenO5LZZSxDmElzEgN6IvoM1Dbvc2c5tmlwkvshCEI/RJQG8CcA/gMzl6c9nlllpgLAcQb0RPQvAfwTAO/jBahfPe5+LDh3AVzteHwlfE5YcIjIhJr8P8fMfzrt8cwyc5MCIqIPAPh9AB9i5vq0xyNMne8BeJCIbhKRBeC3AHx5ymMSpgwREYD/DuAFZv4v0x7PrDM3AQDAfwWQAfBVIvoBEf23aQ9omhDRR4loE8BjAJ4homenPaazJCwI+BSAZ6EO+r7IzM9Pd1TTgYj+GMB3ADxERJtE9Mlpj2mK/AqA3wHw6+E88QMi+uC0BzWrSCewIAjCgjJPOwBBEARhgkgAEARBWFAkAAiCICwoEgAEQRAWFAkAgiAIC4oEAEEQhAVFAoAgCMKCIgFAEARhQfn/q1g87tnNp1oAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsvXmQa9d93/k5d8GOBtD78vrtpChSpBZLoijJMmVJsSjFoqI4sa3J4mSmNLHsSjxx1YzHVZOk8leScU2VU87EVjkqR1MpW3aUUWRb3rXZI1MkRS2USHF7a/frfcGOu50zfxw0GmhcoNHr6359P1Wsx0Zf3HuBBn6/c37L9yeUUkREREREnD2Mu30DERERERF3h8gBRERERJxRIgcQERERcUaJHEBERETEGSVyABERERFnlMgBRERERJxRIgcQERERcUaJHEBERETEGeXADkAIMSuE+LIQ4gUhxPeFEP8s5BghhPj3QohXhRDfFUK85aDXjYiIiIg4GNYhnMMHflEp9ZwQIgt8UwjxZ0qpF9qOeQK4r/nfo8B/bP7bl7wVU5N26hBuMSIiIuJs8FKjuKqUGhvk2AM7AKXUArDQ/P+yEOJFYAZodwBPAp9RWnfiKSFEXggx1XxuTybtFJ+++u6D3mJERETEmeFd3/vDm4Mee6g5ACHEReDNwDd2/GoGuN3281zzsYiIiIiIu8ShOQAhRAb4HPALSqnSAc7zCSHEs0KIZzcD97BuLyIiIiJiB4fiAIQQNtr4/xel1H8LOWQemG37+VzzsS6UUp9SSr1VKfXWvBk7jNuLiIiIiAjhMKqABPCfgBeVUv9Xj8O+APyDZjXQO4DibvH/iIiIiIij5TCqgN4F/H3geSHEt5uP/TJwHkAp9evAF4EPAa8CNeAfHcJ1IyIiIiIOwGFUAf0VIHY5RgE/d9BrRUREREQcHlEncERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZJXIAEREREWeUyAFEREREnFEiBxARERFxRokcQERERMQZ5TBGQkZE7AulFE5DIaUikTQwjL6D5SIiIg6ZyAFE3BWchmTulkMQ6HmiCpicthnKRR/JiIjjIgoBRRw7Silu33DwPVASpNT/Ls57OI6827cXEXFmiBxAxLFTq0ik6n5cKShu+Md/QxERZ5RDcQBCiE8LIZaFEN/r8fvHhRBFIcS3m//9i8O4bsTpJAiUjvmE4HvHey8REWeZwwq4/hbwa8Bn+hzzl0qpv3lI14s4xSTT4esOISCTPd5NaXHTZ33Fx/d1InpswiaRjDbGEWeDQ/mkK6W+Bqwfxrki7n1s26AwbCLain6EgHhckB0yj+0+1lc9lu54uK5CSqhVJbeuOzTqUR4i4mxwnEudx4QQ3xFC/JEQ4qFeBwkhPiGEeFYI8exm4B7j7UUcJ6MTNtOzMdIZg2TKYGzCYvZSHDFAKahSPeJHe0BJxdqKz85TKQWry1EcKuJscFw1d88BF5RSFSHEh4DPA/eFHaiU+hTwKYAHkvmDf9Mjjh2lFOurPpvrPlJCOmMyNmFhx7bXG0IIMlmTTHbwFX+lHLC86OG5CtOE4VGLwoiFEHvvH/B91WX8t2g0oh1AxNngWHYASqmSUqrS/P8vArYQYvQ4rh1x/CzMeayt+Pi+LvEslwJuXnPw/f3781o14M5tF8/V5wgCWF32WVvZX9WQafV2GrYdNaRFnA2OxQEIISZFc5kmhHh787prx3HtiOPFdSWVctC1upbyYCWeq8vh4Zr1NR8VVlO6C4YhyBU68xCgcxGj4/a+7zMi4jRxKCEgIcRvA48Do0KIOeBfAjaAUurXgZ8AflYI4QN14KfUYQRy7wHqNcn6mg5rpNIGwyM21ilegToNhRCEGut6bf+hFbdXg5gCPwB7H0uZ8UkbIWBzPUABpgnjEzbpzPEloiMi7iaH4gCUUj+9y+9/DV0mGtFGqeizOO+1jKXTCChuBly8Esfej0U7Adgx0TO2Hovv37HF4ka4AxFg7dNeCyEYn4wxNqGQARgm+8onREScVk6nlbkHUEqxvOB1h0oCWFs+vd2wiYRBPNFtRIWA/PD+1xuj41ZouGZ41BqocqgfQghMS0TGP+LMETmAu4Tn6drzMKrV012Fcu5CnMyQ0TLYsZhg9mKMWGz/H7dU2mTmfKy1izAtGJuwGBmNxOMiIvZL9O25S5h9Vq3mKQ9Bm6ZgZjaOlLrU0jQPZ2WdzphcunrK35yIiBNE5ADuEqYlSKUNvdpvCwNthTXuBlv1+8WNAKkU2SGT0TG7b8lkPyJ9/73h+4qNNZ9GXRJPCArDnb0TERGHTeQA7iJT52Lcue1Sr8lW5czwqHWscgjtzN9yqVVlKy+xuR5QLUsuXo2fKWMupaJSDgh8SKaMY9EGch3JzWsOSunPQa0KmxsBsxfjJCNtoogjInIAdxHTFMxejOO6Et9XxOPGoYVL9kqjITuM/xa+rygXA3KFs/FRcRqSWze2DbEAUhmDmdnYkSaJlxe9rpyQkrB0x+XilcSRXTfibBMtLU4AsZhBKmXeNeMP9BRAUwpqB6jfP00opZi/7SIDbXzZWo1XJJvrR1uZVeuR+N8amRkRcRREDiACaMofhPgfIXQVz1nA8xS+121s9aCa4EivbfT4JgpBV/lrRMRhETmACABSaQMrbAciODPhn15Datp/pZSiWgnYWPOpVoJDUSYF3SMR1ueQHTKj/oSII+OMfLMjdkMIweylOAtzLvW6RKB3BZPnYlj7rALaK/WapLihFUSzOZNM1jhW42fHBKbVPZVMCBjKmQSB4tZ1B89rTjQT+j06fyl+4PDdyJiF40iq5e2CgETSYGIq0iWKODoiBxDRYsuYBYGu3z8uww+wtuJ16PNXygGptMHM+aNNvrYjhGD6XIzbN91W/F8becgPmywveLhO24pfgesolhY8ps/FDnztmVldEOA2FHZcEI9HG/SIoyVyABFdHEcyWimF01AYJhhCdA1n0aWQkmpF7mlmQNh1PFdhmGIgh5ZMmVy+L8H6isfmZqDF5ny49oqD7JEGqJQOLz8QixnEDuZLIiIGJnIAEcdOqeizdMfTcXWlZR3CIulK6VkC+3UAlVLA4h23VV6ZTBlMDRDSMgwoFgNdCUS3smnYfSqlolh9xKkj2mNGHCtOQ7I4r2veldTG0/fomYDdryxGoyG5M+cSBLQ1V0nmbjq7PrdakX0TwjtJZ443VxERcVhEDiDiWNlY7x7s0gshIJff3yZ1Yy38Oq6jcHYZ+Rj0GRdJW1mmENpBRYnaiNNKFAKKOFbC6uyh06iCXrGPTVrEE/tbo2yNjgy7ju8r4n2em0yHX1MYMDltI6XeycQTBkM580zJZETcW0QOIOJYSWeMUMkJpeDi1Rieq0NDqbSxbxE6gHTaoFEPv85uTsU0BHZMdFT8CAHxuIjq8iPuKSIHcApRStFoKAJfkUgax1quuYXjSNaWPeo1hWXDyJg9ULI2l7fYWA9CV+hLd3xmLx5O2Wd+2GJjwydoU3DQQ2nMvu+X05Dcuu6wU32hMGIyMmYjhMB1JeurPvWaJBYXjIzafQXjpFSsLHmUNvWs5HTGYHzKPrVT3yLuHSIHcJfpMCYxwfCoTTLV2zB4nmTuhovnbc/eLYxYjE10x6GVUiipQxeHuWp1tpQrm6F034c7t13Gpyzyhf7xcMMUzMzGuPFadzK2UZdUyvJQ1FBNS3DxSoK1FY9qWWKY+n0ayvU/91Jb1VDHvTUUhiFwHMmta07rGNdRVEoOw6NWc2pZ5/uslGLupkOjrtp6HCT1msOl+xJ3Vf8p4t4j8eWPwdgfDnx85ADuIlsSwO3GpFpxmDpnkx0K/9PM33Jxm6vnLYOyseaTSBodhrNU9FlZ9PB9vfItDJuMTtj7cgRbtfSgu2VXl72W8d8+BlYWfXL5biO4E6ex3e268xzlUnBoctiWJZiYisHUYMcrpajXw3MHW2JtKyGqnQDrqz5KKcYnO4v4Gw3VYfy3kBJKmz6FkSiBHHEwHvv0I7z3c+/WP/zK3p57KA5ACPFp4G8Cy0qpN4T8XgC/CnwIqAE/o5R67jCufZpZWQqRAFawtOCRyXbHml1Hdnaitj1nY81vGc5qJegYNq8UbKwHKOgyULtRr0vu3HYJfH0yyxI91Sl1SafC3kU8zjCbwnMhpzmOaWieJ3EaCtsWXfmAMMcEsJXnDR1M32RjLWB4VHWEmNweFUdKQaPpbDxXIiXE4tFc4ojB6DD6n9v/eQ5rB/BbwK8Bn+nx+yeA+5r/PQr8x+a/Z5peMssygMAHa8fiUMreBkoG2w+uLncPm1dKD3gZHVcDV60EgWLuhtPhpLweVTxbDBLSSKf1vOCdZxIC8kcoPKeUYvGOR7kYtN7HeEJw7oLW8hFCMJQzKRWDjvdPl6Nqz2RaAtmnwqhR7+xc7uUMhdB/3xuvNVpO3TBgciZ2oM7niHuTNz3h84P/9e/yz39lUj9wAKPfzqF825RSXxNCXOxzyJPAZ5SWTnxKCJEXQkwppRYO4/qnFcsUuEG4MTFCbEA83tuYZNrCJv2MdOArjAHlncs7DGHnRekaZZnNmXp1vwvCEMxeiDN30+nYpYxP7b/scxA21vzWa9q6bqOuWJx3mTmvC0PHp2xcV9Gob4epUmmD0WaOpTBisrzQezbAzgRzMmUQiwucRucbKQSUNgP8tlMFgQ7xTZ+zyUTVRmeedz7/izz+S/XtB/YY3hmE48oBzAC3236eaz52ph1AYdRiecHrWm1mh8Jry4UhmJiyWbyz/Ry9khQURrb/lPGEQa3SvbsQYm8Cb36fhqh0WlCvbf8+O2TuqSEqkTS48roE9ZoOf6RSxkDO4yBsroc7tEpFIqXeGRmGFsRzGhLXVcR2iLLlCxaNmqRU7H5/7Zggnuh8DULoqW9LdzzKTc2gZMoglzdZWvS6zgFwZ84jHvc5dzF+Vyq8Iu4eiS9/bHuV3278j4gTlwQWQnwC+ATAhJ28y3dztOTyJr6nB7FvrTbTGYOJ6W1DKgPF5oZPtSIxLW3oz1+Ks7nu43mKdMYgX7A6jOfYuM2tqtPlWIbHLMQempaSKSM05KQH19skkwaerzBNsa9qFiEEqfTxhTuCPpO1pOwcyhJPGMTiOvkdBKr1+oQQTJ2Lk0x7LC/4W6rQxBNazTNs1W6agunZWGt2gBCCUrH/hDHHUSzMucxe7NeyFnEv8Nnf+DgA3/lC/khW+f04LgcwD8y2/Xyu+VgXSqlPAZ8CeCCZv6dn4QkhGB23KYxYeK5OHlr2tgEJAsXNaw6+11ZCWAqYmLKZnOmdzE0kDWYvxllZdGk4+rwjo1bPwS4yUKyv+ZSKAYaAXMEkmzOplLtVLoXQjkE7B3GqpoWlMyblYvdrsi3RlXze3PBYWdyWk8hkTSZn7NbOLF+wyeUtHEdhGmDHdg9dtTuHZNLYVW+oXpMdzifi3uCdz/8iwHZ45wt3716OywF8Afh5IcTvoJO/xbMe/2/HNAVmsvtLvrnudxh/aFYJLXo63t5nNZ9MGZy/vPswcSUVN645HY1Zy4s+K0vdWjqGAaPjVnN61d6NkgwUa6s+5VLT0Qyb5Av7O9d+GJuwqFUCgjYfIARMznSWx1YrgV7dt73+SjlgYU61cgX6uYJEYn/3bscMhvJmqzmsF1IefmWUL0xAYe2s5Y04Et70hN7tfcj4p/qBYwjtDMphlYH+NvA4MCqEmAP+JWADKKV+HfgiugT0VXQZ6D86jOve65RL4cZBoIeFJ1MHM5wy6Db+W4RdVydE95eclFJx87q+1ta5VxZ96jW1r2EqjYZkZdGjXpOYps6nFHZxTJYlGMqbbKxte4B0xtCr8TZ2ziYA/dorZcnSgkN2yGrtgA7CxJRu+ltZ9Dqc0hamJbAOcYlWtNJ8dfztLCZGAZiuL/P48tNkgpNjkO4lfvnDn7zbt7Arh1UF9NO7/F4BP3cY1zpL6K1/uHE+jFXh0qLXUzStF42mCNpeKZeCDuMPTaNaCnAcuafpV66j5RraO5FXl/RuqV+fQ2kzYHO909JWK5LlRY+J6e3n+X7v92RzXVLccElnDKZnDyZbIYQgl7dIZ0xuvtZoSVdvkR0yuP6q05L8GJvoLznRD0+YfH7m/ThmDCX0Oe4kxvn8uffz0zf/AHMv+tcRPUl8+WP855cTOp5/CjhxSeCIbQojFvWa27UajcUEsQOOC1RKhcbD+7LHKqJ2wgTgtmjU9uYA1lb80E7kzfWAkbHeMfO11fCVfXEzYHxStRLkyZSB5/Z+b5TSjqNcChjKHfwrZFmCi1cTFDd8alUtCaLorFqqVbXTu3A5vi8HfC0zi2+YLeMPoAwDF5ub6WkuV0NTchG78NinH+Fbl65uV+4ccxL3oEQO4ASTyZoMj1rbVULohOXMhcOZGTioLv8WhoCFeRcZ6K7V8Ul74Coe2+7R/dssY92+J6VX6hvaWA/lTPLDVke+o9Gju1YILQMdlk8BWt3MO1E0Y+1N2zgyZlEpBaGSD9v3qXcUh+EAPFdSq0licYPCiIVS8OoPGqHOam3FY3p275VBRSuLb3SX6frCoGRn9nvrZ5LD6sI9CUQO4IQzOm5TGLZo1HUZaDyxN7mAAINrmVmW48PkvDL3VW4Sl55OYCZFS46gHWHA5JTN6rLfCoeYVnNyVxOnoZi76XLuYoxUagAV0IKp9XJ2PG4autFqi4U5j0p5e+W76uik8flL2yWWsR1SzVso1elMdpJI9eiPsMyOxrtYzODClThryz7VHUnjw0QprRK6uR7oQTNoJzYxbfeUyuilVbQbo+4GtvTwdjgBS0lGnM19nfO00DBiPJ+7j1upaVJBnYeLL3Ouvjzw89/0hM///tF/sB3WOeVGv53IAZwCTEuQ3oc8QMOI8d/OvZ+6mcA3bCzp8+zwwzw5/xcUvBITUzFu75B6EAIuXo4Tixtkc6YWk0Nx/dVu9U6ldOz9/KXd7822Dc5diLHQHNMIehfRHkdvNGSH8d+6huOoDpXQkTGbaqW7zyE7ZGKauoO5XAowTcgNWySaIZOxCZtbNYdAbo/CC0yTlx9+J35sgwfLr7XOF4vp+cFKKV79QaNrNyAEPctqB8Fz9WttJaTVtr1fWvB6lojut+z2QnWelN+gbBnIprczZMCQV+FcfWlf5zwNNIwY/3X2x2gYMQJD/73uJCd4+9p3eLj0as/nPfbpR/gF7w3bRv8ulmoeJZEDOAVIqahVZasGf1Atn6eHH6ZqplpfeN+wCHyPb9hX+JHiN0kkdex5c93DaehEY37YasX5hRDYtl759woXOc7gpYSptMnl+xN4rkIYdOnh16s9hNMk1KrbKqGJpMHM+RhLCzqJLZq9C2PjFrdvuB2DYHR83yI/bJNIGNQfeYDSUp1scY16OsvN+x4hsGJ8L0hxlevE6LwHIQQz52PM3XK1kVbbsheZ7N5j8Z6nmL/l4Dq9u6ylhFRG71Z2OrmRsf19ZU0UH53/c54efpjXMucRKK6Wb/L29ee5l7sMns/dR92It74DoL8HT4+8kQfK17HV9vbuTU/426Wa99Aqvx+RAzjhlIo+i/Me7VGf6dkY6czuq+7rmdmOD/7Iwi1e/62/BOC29DAMOHc+zthEd05BStWsNupukmpnrytSIQSxHppGlhWeJwiTsEhnTC7fZyKldgBCCIqbftcUMKV0X0M2Z2GagutjV1g6PwZAprjGG77xF1ieCwKuK8m5c1bXe5tKm1y5P0GlFBAEilTGbO0q9oJSWlzP3aXySqDlu21bUNzQOyLLYk85lzAS0uU9q9/kPavf3Pc5Thu3UtMd34EthJKsxfJ89d//2Kmp2DkKIgdwgvFc2ZJ1bjdq87dcrrxu92Eioq1UJlEt8+BzX8Vsxl8UEEi4fdPhyv2J1q7C9xQL825L/z6eEEzOxCiMWF2D1oXQOYrDIp0NVwmF3sPh23dDvcTrhNBdtZmsSTJwQCkMGfDGr/8Jtud2HDt/y+XSfQmdtG7DNMWBQj6ghed2U1MF/fqTKZN0xmJ8UrVkKiJxuL2TCurb27Y2HCvG//2en8D/wtlWXo1m0p1gVkJknbeolHbPTL6ufANT6uMmb7+CCNHC0eWTPkGgUEpx64bTMv6gk723rzvkh02Gx6yWXo5lCyZn7IF2IoNiGILzF+PYttCrekP3O5y7EOub3G09v49DVEpR3PC5OP8DLBUwsjTX4SBbx6EHtRwFga922qEuhNCD57ccmxCiJVXdjudJFuZcXn2pzvVXGmyuey2tobOCY9jUzXjfDoZHii8Ti3UeoQAvbuLHzrbxh2gHcGKRUlEOUZwEbbSDQFGvBVTKgdaxz5vEdujRvGXj+ywmRlmN54k3ahhhBk/C6rLP6rJPMmWENkEppVfXo2M2I6O6THHQPMReiScMLt0Xx202jcX3MCQlXzCp9OievnNbh9HEwhwX/OdoJDOhDhHVvxHsICSSRk+HHo8LUk1hv916PHxfcfM1p5VMD1AsLfjUapLpc/e+eFzNjPOl8XewkNShvKxX5b3LTzPhrHUct9WJm9moU1iutYZpeHGT5XNDx37fJ5HIAZxQtpK+vQxGvSZZXd4Oyayv+kxM2R1hClsFfOTOl1hKjLKWFLqQv8cuYOuaYShFq+xSCLHrKvagCCF6zj7oRyqtdynrK36rrBJoVfBsvc7Z114gsCzMEIcoBIe6q2nHsgX5YbOjwWsrv3H+UnxgOeyNtXDpiHJRUh7yO8aJuo7UchmWIJ05uHzF3UYBvz/9Xop2ttXUVowN8YfTP0Ly5+IYWdEV068UklRzCWzHR5pGtPJvI3IAJ5U+i1DT0p2oXSJxzVGSZlvCVACTjVUmTMXtBDTqe28AEwZ9B9WfJEbHbPIFi1o1wDAEnic7VD23MH2feFzgunQY40TSIJ05ute6JeewseYj5Xaz315mIdSrvf+AS3e81kSxpTsepWa3t06Uw+yl+J66rk8ai4lRqlaqo6MZdDho5XfjFMdSoc9ThsBNRvOXdxI5gBNKe3NUB0JX3tRr4Spx1Wp4d6oQegpXsRhQ2gz6zrbdufMwTV32eFqwLNF6DzbWexvLVEYwnLRaK/KhvEF+gKH2B0GPnbQO1EFsxwX1HvptQXOcaK0WdIy23Pp3/pbLpavhcwtOA5M/+wDO79sYO5VqAbuPfEdEOJEDOKEYpmBqxmZhXrffturPh0yEAfVaiFY/IPpUdQtDkC9Y5AsWt647oU7AsmAob1Ha9JFKX2903D6ymH8/Aql4zrjAi5MP4cYSjFTXeHfxO4z5xYHPkckYrIQ8rmv59VCbw5Bz6Eev6WL7ZXjEorQZbuy2kue9pp/5nsJ1VNfkspNMu8Ca9bzPFN1/fymgkYzM2V6J3rETTDZnkUiZlIs6XJDOmiSTBvVaEKojvzVRbBDGJ22tqLmjrHNyRvcYjE3c3e2yUoqvGK/j2oU3IC19L8u5Sf57ZpSPzf8Zw355oPPYMYORMatD4nmrcWynDPRhI6Vi/pZLvbadz0mmDWZmYwdyqPGEQa5gUNzoduCptIFpCmSP6Wf98konhcc+/QjibR/YHpjSJrDmxy3qaZtk1WvtAhQgTYNqvm3+hVTb2hoRPYkcwAnHtgXDo53GOJkyW3X57UzPxgaOJSeSBhcux1lb8Wk0tALlyJh9YmL9pbrg2usfRrYL4gtBYJg8PfQgH1z/xsDnGhmzSWfNVnnnlp7/YRH4iuKmr1fWSS3xbBiC5ea8gvY+jnpVsrrkMT51MEG/iakYMnApl2TLxsXigqnmpLihnMmq0537QHAiV/9dXbif6z2jYHUmS3a9TnbTQUhFPRtjczSFMgR2w2dksUKsoXdI1aEY6xNplHkyPtcnjcgB3AWU1HOANzcDlFJksiZj43ZH8nY3xiZscgWTalliGHQlfwchntCa9keBAl7KXuLb+QeomwkmGys8uvZdhr3SQM9fU6nQOn0Mg9XEyJ7vJ5EwSPSZFbBfHEdy65rTMvKiCOsrPhcuJ3ru0oqbAeNTB7uuEILp2TieK2k0FLYtOmYF5IctSsWgQ3JCCJiaOdgMg8Pks7/x8f114QpBeSRFeaQz4Wt6kslbRYTcrgBLlVxsN2Dx4tnt9u1H5ADuAvO33Q59/OJGQLUiuXQ1vqfQQCxmEBs5mSubZwsP8d38A/hNAa5bqSkWkuP87bk/JedVdn3+kGqEtvCjFFknPPwjpcL39AzkvVTVHITFebdDKE4pPaBmabF7jsP2fR7e9e2YgR3i1wxDcOFynHJJf7YsS5AvmAPNLj5KEl/+2LZ2/iELrGU2G9Bm/KGZHHYCYg0fNxGZu51E70gflNKt+1oP53AMSqMuQ4ejBL4e0HJQuYGTgCcsvpN/oKW+CIAw8BU8l3+Q9648ves5hlMBk3deY2nqUisHAGAEAW8tvdBxrFKKtRWf9VW/pSWUK5iMT9pHutqVUoXKaQPUKpJkyghNtPes8DpktiuOeh+jlMJpKAyDAw8ZCuOxTz8CsK2ff4QDU2KO31PawHKDyAGEEL0jPdhc9zoGo2eHTCamD14N02uYiVK6uStXONDpTwQlO4OhFDvrVJRhsDRg+MYwBB8of4uvSJ+5c/ejhCDu1HnnynPMeJ0dn5sb2vgrRat/orih+wD2kszeiuVrZVTBUF4LyAUYvJY5z83UFOmgzutLr1Hw+iehhdAzf29dd3TvndquxR+fOhn16OVSwOK81kJSSpcXz5yPHcouoTUP9xhVNZ2kRaItOdyOGz89ZczHSeQAQqiUA5Z3NA+Vm9o7U/sYYA56pVWrytDyTdCGwd6n1vtJI+XXkCLEiChFbhfD2U4yDk/4z+O+8jyeYZEy/dAi1/XV8Fj7xrrP6Phgdf2uI7nZnDOsFJRLevTkzJUUf3jp/RTtDL5hI5TkxaErPL78Da5U50hnDKo7h8wIGMqbWtbiaoKNdR+nOUu5MGwNpGt01DgNrSXU/r45juL2DZdL9+29T+Czv/FxgLuqrFnJJxjJz4YAAAAgAElEQVRab6ACtd0FLqCRsvHjFihFZrNBuqSdXiUXp5qLn+lKoUNxAEKIDwK/CpjAbyql/s2O3/8M8H8CW4NHf00p9ZuHce2jYG2lW4RNG4WA8aD3zNleyECLrLmu6ppl247rSq6/2sCyBCNj1oGkfw+C52lhOC3KtvcvR1K6XKre5nr6XEcYyFIBb954cc/ni9kQo7dAW89RjzJUCDKUxTsess03a70luL5qsXl/tvU6lDDwhcFXx97GxeodJmdi3L7u4PnbE10SSdFSSbXsve1C+qGUwvd1Y95Bd6Kb6yEVQoAfKOp1OdCUt6OM5+9GvOaRW61huxI3YbI5msJLWCxcyFFYrpKseihDUMnF2RxNgVKMzZVJ1LZ3CLGGT6risjKTPbNO4MAOQAhhAv8B+AAwBzwjhPiCUuqFHYd+Vin18we93nHQPvpwJ4G/dwewuuL1HgAidKmn7ytKm9o7uI6iXnMZn7LIF44uXCClolaRSKlIpU2kUty57bZ0f0xLMH3OJjmAMdjJ48vPYI/6vJy9hBKQDBzevfJNJncIdh0G8UT4aEvbFgMZSqVUz85osVnpzGW0sRIvMMkaF6/GqVUlnquIJwwSyf05zn5sbngdkhZDeZOJSbs1yH6veD2cpkB3EofRNRrxLg1AT5YcRhcqLUNuViSJapGl8zncpMVqiNBbvOZ1GH8AQ0Gi6hGv+zipkxGWO24OYwfwduBVpdQ1ACHE7wBPAjsdwKkhmTJaIZ92RNNY75VSD516gEtX4qyv+RQ3Oq+nFKws+uRyVuiXXEnVknUwDMgXrKae/mD3V69J5m46etGqQCkPYdCxQ/E9xe2bLpevJvYctjCRvGf1m7xr9Vt4hkVcukc2eWp8Uo+23NnUdhix9p2aM9uPC2zlN68ljkxADpohyYXOFXtxQw+nmdnHgHiAdLp74hjoz117OWnHKh/u/mhEpRhernUYcgEIBYXlKksXwjPeiZqHCFNPUUQO4IDMALfbfp4DHg057m8LId4DvAz8L0qp2yHHnAhGxy0qlaDDGAoBoxPhxnhX+gq7id4qnIDrdrftK6UNc/v0q1rVJVcwmRigwUgpxdwtp6scMTQ8paC46TMytr8viInElO7uBw5ApRywsujhugrLFoyOWeQKuqnr/KU4q8t6tGUsvrcQmhCC7JDZ5fSFAHskjSU9/PZh6kqS8hsMu4NLUhyEsJAkQKUkadQDEsm9O59cwWJjPcD3OvsEXv9Tk9i/+r5to3+XVvm9EApMP/z7Emv0CROaBkrQ5QSUAHlMJcMnkeNKAv8+8NtKKUcI8T8D/xn40bADhRCfAD4BMGEnj+n2OonFDS5ejrO67FOvBVi2YGTUJjO0v1VeNmeyuRF0OYJEUpeXWpbACxsTqAht7qqUZejow+JGQGFEds0F2ElYGWovlGKgKVZHTaUccOf2dtLS9xRLC3oISn5YK2yeu7B/LfyJaRvX1Zo9W3+neEJwbsRhtfga38/dh4EEBbbyeGLxL/e9o/FcSb2ua/OTqd13baGfjSZrqz4zs3v/XG71CWyu+QRDNj9whnnxLW/mt87dD79ycg2iEoQacoDA6v25rw3FKCxXu38hoJo9mmbI08BhOIB5YLbt53NsJ3sBUEq1B35/E/h3vU6mlPoU8CmAB5L5u2Z5YvHD65IdHbd1jNjTSWAh9Ii/rbb94VGrw7gBILRuzM5ZuADVcu+QUq26uwOQMnT0bihCdNetB4GiVAzwXUkipYejH3V36cpSeGJ+ddknVzi4gqdpaoNYr+lYfiy+Hct/bP07PFx8mcXkKInAZbq+jDHQu7fzfrXTKm0GrW4l0xScv9i/9DIWD+8nAHDq++8q+z8+8nP7fu5dQwjKhQTZjUZHGEgKKI70XjBK02B5doix+XJrEJA0BSsz2TMtE3EYDuAZ4D4hxCW04f8p4OPtBwghppRSC80fPwLsvRTkFGOagotX4s2Ve0AsZpDNma0EZSZrMjpusbrsb4uGpQyme5Scmj3+akIwUII6le49mWrn+eyYIJvdXmE2GpLb19ukD9YDYnE9yvEou297rYKDYPBKn90QQuiwUbr7d5mgztXKwaKWpWKbiN/WTkYq5m+7XLyS6Pm8kXGLuRvhYbS9NG+1q2qeZjbHUgipyBSd1mPFkaQu6eyDk7KZu1og5gStsZBntfpniwM7AKWUL4T4eeBP0GWgn1ZKfV8I8a+BZ5VSXwD+qRDiI4APrAM/c9Drnja24szZHmGk4VGb/LCF6yhMS/RNNucKFhtrIbsAMZgaqGkKxietjl4HYUAiIchkTYqbgd4lCKUVLW+7jI7rMMvCXLf0geso1lb9I1UQtW3BeiLP+tg0lu8xducmtudgDvgdrhtxbqcmMZCcry4QU0cz97cfvUovXUfhur13bum0SSptdOWKhICRsd5f4Xc+/4sAoaqapxoh2JjMsDmWxgwkvmXoaXcDPjfqCN5GnORB0g8k8+rTV999t2/jRFIu+ize2a5XNQyYOR/vqOAIw2lIVlc8GnWFZYFtCYQhyAxth3LqNRlaVTM5Y7M4H56QtGzBlft7r2IPggL+IvcWrucvoQyBkBIQPPzsl3idsUxhpL/jeSF7ma+PvgWBRChdwfO+pb/mYu3OkdxvL66/2miV2LYjDLhwKU480ftvJ6UOH5WbE74MEyYmbbI7Zhl0qGpGnEm++m8//E2l1FsHOTZyhScE31esr3pUKxLTFAyPWq3RfmFkcxbprEmjLhFCDFR73qjLjhkAvgeOUEydszt2JsshQmZb8fZehF1ZBlpaoVaV2DFBftjaNT8Rxq3UFDeHLyK3mrGaInHff+vj/NDNz9Mvm7FpZ/j66JsJDBO9QdX8+cRj/L2bv09ilwolpRSVsqRaCbBMQe4AgmqZrMmG270LEIDn6b97r3Jbw9BSzxNTCilp7nz0sY99+hF+wXtDz9BOvF7nwaefZfa112gkU7zwth9i7uqVfb2GiHuLyAGcAAJfceO1RlsDjm7IGhmz+pZfGobYU7dwr0Tq8qJPJmu2DEovgTOdHAXX6Xx8a8BK12u65hD422WGm+sB5y7E9tzh/HL2YmcZZtt1F5MTzNYXez731cwFZIhjFChupGd4oHy953OlVNy+4eA0tl/D+prP9Gysr3PuxfCoRbnUWXoJenbJwpyHUh7ZnMnkdG8RO8MQGIYO77RCO330dmKNBj/+W58hXqtjBQGwxujiIs8/+naef+c79vwajgK74TO0Xsd2AxpJm/JwksA+3MSs4UtSFRcU1DM2gR1pA0HkAEJRUrG64rG5HiAVpFIG41P2kQ3TXl/zO2QIQBvmtRWfwvDeBob3o96jYsT3tleVoP8NQiSLDAOmz8W4fcNFKloVTYmkQWGk86O0tuLh7ygfVQoW5lwu35/YU9WO6lNwqXY5jS9MVIhGpEIQiP5GoLjhdxh/2H4NVx/Y22uA7WKAUjGgWg5wXYnXHEq/NcCrXNRJ9ZEdQ4C6unB/KXxgSrJc4fILLxKv17lz6QJjc/Ntxl9jex6PPPUUP3jLm/ASBwzbKYXtBgSmgexThtmLZMVldL6MUHonFGsEZIoOixdz+LEefx+pPxFqwLj/VufwFoVl2BxJUh4NHyB/logcQAh35lyqlfYmKz3049I+OmIHoVYJL+sUQlfdHJYmkGUKvJBRgVtlqVsMj+qKpJ05gPywRTxhcvn+BJWyXskmkkarlr1aCdhY8wkCFRrrBu1YfE/tSfju/vINbqcmu3cBQjBdD5v4u8356h2+m7sfFWLsz++SA+jXwd2oK5KpvX8WjOZc5lze5JUXG6E7ss01n5FRu3OVD7t24c5cu87jn/8CKIUZBDzwrW8TGEaH8d9CmiYjS8ssXji/59ewRXqzwfByDVAIpUXXVqYzg5dVKsXwYrWrq9eQitxqjbXpbMfhhi8ZWaiQrOrcl5O0WJvM4PdR+jQC2SEbsUV+rU4jE8M74wnhs1sA2wPXlR3GfwupYGO9j0jQAejlVJQitA9gvwyPml0VM9qwmx2r2cKI1XxMOwbRVLccHddfFsPQOvPDozaptH7u+qrH/C3tOBt11XfoyV67qS/U7nCxOo8lfVASU/qY0ud9S3+NpcLVVbf4bv51nWVCzfrVRzZeIuvX+j631wpfcfDqwS2hujBqRoxf/vAnO43/Lhi+z3u+8AdYvo8VBAj0Sj/muoT9KUQgaaR7r4ANX5LebJAuOhhB9xkSVY/hpSqGVBiyKalQ9Rib333YzxZmoELPLaBl5FsoxeTNIsmqp6Uf0BIOkzeLiJBzbJGshH9nhYJ0yQn93VnibLu/EFxHhQ/OVr1j4welMGJRrXQnXuMJcahDOnIFC9+nY3DKUK57ALwQgvHJGCNjzQlbdv+BOEGgunYMYXh2jMXXPcTzM7MkfYeHiy8xW1/a9b4F8KPL32A5/gpzqUls6XO1cotU0Oj7vPVYjrnUZKeejxCY0ictdzeu+WGzq+MadCjnoHN1DVMQiwndedyGBBbPz4Y/KYTc6hoTc3PEa7VQj2Io1eUApBCUhofZHB0NPWdmo05hudM5rk5lqA9t19kPrde7VtUGEK97mF4wUIxdGqJncG+nPEOi6mH6suN4rQGkSBcdKsM9msD6fCjDuonPGpED2EEsJnp+Zo5qmHYqbTI+ZbOyqFcrWpBLz3w9TITQMsXDoxZec3RimGF3GpKNNR/XVaQzBvldppTpSqTe3zUhwIvF+OZ7PoIbT+pRj3GYS01wtXyLH1l5GnOXzloBTDjrTDjrg75cVmMFDLoH0wSGxWJilIdKr/V9fnbIpFaRlJqll6K59Jw5f/C5ur/84U8yfnuO9//e5zCDQA/QMU0Cy+Kbj79n9xMoxbu++MdcfOll/SNg+eFVWk4ige26SNPEUJL18XG+/NEnQ4+13IDCDrE1gNGFCvMpuxXnN70eOy+hV/bBAC0hyhDUMjGSFberq7dU6DTodo/rGQpsr/cOoJ6JwVK3BIQSUDvDEhBbRA5gB7G40Rrl1xEDN6AwfHRvV75gMZQzdSOYyZHObjUMQTwebsB2au406pKNdZ+Ll3vnP0yrt9NMZQS5vMUL0w/hxRMdc36VMHgle4GSnebH73y5ywk4zZh/XO4v9Jb1w8MRpgzIu7sPphFCMDkTY3hUUqvpMs1MxtiXIGDYwJTl2XP8wT/8+zz4zLPk19ZYmZ7mxbe+hVpWx76FlCQrFdxEEj/WaVEvv/AiF15+ucPoh/0JFJBsNPAtCwR86aNPsnDpUs/7TBednivjVMWlktdJ40bKxnad7hW8Aq9X8jaEtckMY/Nl4nUPJQRCKcr5BJV85+LHjYd/96Sgb2OXtAw2xlMUlmut16UEVHPxM6sA2k7kAEKYOR9jedFrte0nkoKJqcMZldcPw9D1/HcLpRSL852hKKW0PvzqisfkdPiKKR4X2DHRlfgVAkaaeYKF/Ey4rr4QrMYLXMvMcl/lFgBFK8OXJh5lNT4MwFhjnR9dfoohP0TMqw+TjVXSfo2ine0IAxlIHihfG/g8sbjRCsWVrDQVK8WwW9y1h6AjidsjgVsaGeapD/6NrsevfPd53vaVr2L6Wuvi2oOv5xsfeB/S0u/h/d/+DrbXueLf0nfyLQvT91uxctC7AwW85Wt/xR/2cQCiXxyv7VelkRTpkoshO6dvbY6lBq7OAVCmYPn8EKYbYPkSL24iQ5LITtLCi5vYTtDaLSi0xs9uYm6VQpJGKka65CCUopaN4SYj4w+RAwjFMAST07rpBnonA+81PK938rZr7GEbQgjOXYgxf9PFdbdzKGOT25LMKb/RU7QnMCy+lXuAZ4YfpmHECISpa/ebRns5McznZ97Hx2/9AYuJMZ4aeSObdpa0X+etG99rOY6u+wI+cufLfHnsUeZT4wDk3AqPrzxNepf8wU5cYfGnk+9iMTGKqSSBMHmo+ArvWP9OywC+6Qmf1L/737aN/h6SuO3MXLvOO/78Sx2r+8sv/gCB4utPfBAAs0e4x7dtnn/723j46Wewvc6dkwAKK6vYjoMXDw8v1rIxshuN0F1APbNtNAPbYOFSjqG1OsmqR2AZlEaSOuSyD4KYSdBv5yAES+dz5FZqZEqOrufPxtgYSw0kA+HHTYpjUdnnTiIH0IezYvi36Dc9a7fKPts2uHg1gdOQBIEuD20/3yPFl7idmgqvvVeKzXhue5W+w1EoYeAbFs8VHuS7ude1dhKlWJavjb0NT1g82GNFnwwcPrT4NVxhIYWx66q9F18ZfzuLiTECw2zlFF7IXeWH/t4Q/+q1h7cP3KfRB920NbK4xJu/9pdd8XzL97n0wg945kffixePc+3B15NfW+86LrAsvvfYozzw7e90OYAtVJ/PtZu0qeTiZNpCQUrouvmdid3ANtmYzLCxj9e6H5Qh2JxIsznRptbXTAJn1+sYUlHLxCiNJLt6ErYUQPeyOzkLRA5gHyilKG0GFDe1KcgXTLI589Q7jC19+jDRscLoYB+VXno2U41VHlt9jr8ae2voLmBnpc5OPGHyUuZSVxjJNyyeGXmY15ev9dXnjyl/MP3rEFxhcTM9jdzhvHzD4jf+bBYu7++87Tzy//01Dz/1DaRpYrvhTkoZBolaHS8e56U3v4lLP3iJ/OoatufhN1Xx/uqJH0MZBq++4SEefPabHT0AUgiWZs/hx/qv0jcmM9SG4qTKro6XD8VPbL18YblKZtNphYWGNhqkyw53LuVRpoHpBYzcqZCoa0fpJC3WpjK9m8zOGCfzr3qCUUoxf8vtGKrSqEsqZXlo8wPuJlPnYszfdHDaymFzBZOhXLfUw9qqR7kkmyMpTfLD/XX5HypfY9Td5IuT78EzDJQY/ONnqwDHDH9/XSOGa9j7Thbvxv3vF8hbJmFz6c0+NeiDMvvKK7zh6ae1sW4abEW3vpISguqQThBLy+KP/oefZvbV17j/W99mfP4OQine+99/n2sPPsAzjz/O+PwdRpaWEEohDQMnmeSvPvTEQPfkpOwTnyQ1fUl2szNpLQAjUGQ2G5QLSSZvFDGD7TzFVu/A/JVCtBsgcgB7pl6TXRO1lNLVM4263FWN86RjWYILV3Qox/cU8WTnUBopFaWiz8qi35EvWFnyqddVzxkGW0w46zx55y/43Lkf6xuKaA8DmTJgyCsTYLAZ7xY8s6SPLQ9f3vmXP/zJ1r3MsIm1o6JeAfX0wY3kg88+1zOhu/UOeZbFcz/8Ls6//AqXX3gRaRi88sjDOIkEE/N3OkJBl174AaYf8Cc//XcZu7PA8PIylVyOOxcvoIzT/flsJ9bwQ6eDGUo3kgW22ZGkhmbvgFSkyu6u8wPOApED2CPVHrINSkGtGpx6B7BFPGEQ3yET47paEiNMJ0gpqJQCXEfu2rz2UvZyf+OPFmuLBS6GktxXvslbN77PXHKCL028A78tDGRJnzdtvrivCV076TkwRQjWJtN6mlRTs0bSjEkPmFgUUmEEisASXSGueC08byCFwEvEqQzleP4db+fK919g6uatVmx/+sZNnHi8KyFsBQHnX36FeKPBysw0KzPTA93jaSOwjNCwngL8mInlyZ6D4C23Rx+DVKQqLmYgcZL2PT874N5+dUeAZRkI0e0EBp3GdZpZmHNDjX8LocNhuzmAqpXsjPlvoRQCRcav8cMrz3Z1CV+qzfOelWd4auSN1M0EtvR588YLvLH40j5ejZZRFm/7wEADU7y4YGTpFQzfwkllEdLl+oMXd+94lYrhpWpLdkAZgvXxFG7CJlH3CEyDuSuXyW5udmn2BDGb3/vkP0GaJpM3b3UYf9BSD5bnhUtxmybJSgUneXfmah8HbtzEj+nS0Pb3QAkoFxKYnuw5CD7MsFtOwOStoi6F3Qrvpm1WZrL37OSwyAHskWzOZGWpO9YsBPseGn8aCHxFo7H7KnsQsbzztUVupqe7xN1MJfno3J8x4hV7JnTvq9ziauUWgTAwleyb+A2jY2DK54DPDVC1oxTv/73PMbqw2DLSUghe/+0U/+//9I/7JlVHFqukyttJSgLF6ILuZ1ACEIL10as4yRehrlU7JTrG/9QH3o9sSrTOXL+OFVLVo4RAqW69U0NKyvmjG/1oOz6Wq+v271pCVQiWmnN+4w3d56AMwdpUBi9u4cWU3gm4270DEvBts6OkdYux+RJG0BkySlQ9MhuN3lITp5zIAewRy9I173dua0nk5neYmfOxe3oHMEiAZauKaDeuVG7x3fz9bNrZVlWPJT0eKF1j1Cvu+nwBWGpvydfP/sbH9z0Ld3RxkZGl5Y4VuqEUdsPh8vdf5OU3vzH8PgNJutzdWbv1KREKUAppxXn6vU8ytHGDc9dvUB3K8sJbf4i1qcnWc5xEAmmamDt3CaapV6xB0HICnm3z3Xc8SmDvIT+hFLFGgBFInKTVU9FTSMXYXIl4fTv+Xk/brN6lVbK0DJYu5DB8iSEVvm1s34cQLJ4fIr9ab+3AqtmYDtvtuFfLDXTIaMf5DQXZflpDp5zIAeyDVNrkyusSLXG4QaZxbVGrBqyv+vi+1tkpjNiHqvh5VFiWlo9weuwCtrSLhBA4hk3JypD1q6F19yaSJ+f/gheGrvJaZhZb+jxUepVL1blDu993Pv+L/LOvL2wb/V2klPtRWF4JFTqyfZ/RxUVeJtwBmIEKrebZiQCkYfPSW97K93oMabn24Ot549ef6v6FIfijn/xJHnnqG4zPzdNIp3j+HY9y/cHX73LVbSw3YPx2CdOXLTmGzbEU5RCjN7xYJV739Yq6+ZYkqx651fpdbbSSlhGqeqpMg42JNBvtvQN75R4WjYscwD4RQuxZD35z3esYxO44upfg4pXEqXACUzMxbt1wtqWMhR4eY5nguor52w433/gor4xexVASKUyuVm7ywyvPdun82CrgjcWX9h2/30l7F67hS4b+8SrJCkxYRUqFJPVBhb+UIl1ytxuLsjFK+UJo0tqzLDZHRnqeyt/LgJSQWHU7taEhvvbjH+aH/+CLrXtRhuBLf+ujrE9N8pW/FS7utitKMX67tL36bX448ys13ITVWQqqVOiOxlCQ3Wyc6k5b3zaQpoHhd7oRKaA6tMtnRymSVY9Uc5dRySVwDqE67Dg4FAcghPgg8Kvooau/qZT6Nzt+Hwc+A/wQsAb8pFLqxmFc+7QgpWJ5aYdkst65s77qMT558nsI4gmDK/clKJUCPFcPZt9Y83GaRSivTD/IjeErSMNqdcu+mjlPPHB4bP27h34/XQPQf6mOEUimbmxi+M24uAuxepniSJLSABOghpeqWgO/+XfKrjcIrAylfIHC2ipms/ZVohOtrz38UO+TGYLN0RT51VqHfg2E1PgjcBP9Y+m377vKZ3/+Zxmfn0cJg6VzMyjzYPH3mBN0ySyDdkbZ9Xp3L0AvxdeQQUOgVUNzq3USNS0XURxJ0tinXMRREat7pEsujaSlx0ainZoUWtgubCfUQilGFiqkylrRVAGpsks5n+jsWD6hHNgBCCFM4D8AHwDmgGeEEF9QSr3Qdtj/CGwopa4KIX4K+LfATx702qcJ11Gt2u4OVH+dnZ0EgWJ91adcCloNWLlC/wasw8QwRUse+vornROt5q48hLQ6DUZgWLyQu8o71r+754RtGF1TsnaQ2WhgBJ1JUUNBbq1OuZDoO63K9IIO4w/NiUmB5OtPfIQ3PvUVZl+9BkqxOjXJ15/4sV2rbMojer5tbq2O6UuchInlq1ZiUqGTwavTmYFi6IFts3Dx4q7HDYoRSMI+mAIdwup8UODGTeJOZx5CoatldmJ6AVPXi61afNuTxObLbIynqBRORkw9v1Qlu7mtfaRoCs8lLBopS2sb9fm7xOt+y/jD1owCvSOqFBInvuP4MHYAbwdeVUpdAxBC/A7wJNDuAJ4E/lXz//8r8GtCCKHUbiNE7h1Ms7de/qDhHykVN685HUPFlxd96jXF1C4NWEfBzmEmnh3eWOMLC4mBGRql7c+bnvBJ/p238N7PvVs/sIvWTrLidWnZAyD0vFkn3dsBxOvhzWSGAssXfOWjTyKCQHfWWoN/dWpDcWptw1RQuhEp0RRRq+TjHeWkhu+TLpeppzNdMtCGL8kUG5i+GshA7YaTsENX9bKHXv76VIaJm8VWP8RW5c3GePdqN7da72rEMhQUVmpUcomBRNyOErvhk91sdI2kjDd81geUi0hW3J6hu2TF7b97OAEchgOYAW63/TwHPNrrGKWUL4QoAiPA6iFc/1RgxwwSSUG91i2ZPDygzk65GHQYf9BOpVwKGBmgAeuwMS0tFb3F0OYKxZHJruPyXmnPxr/VhQu6XHNAAttANUISrwrdhNULpUhvhqtgaollbQyUudvomgEQotspNO/h4ae+wcNPPa0PU4qX3/gwz773cZRhEK95jN8uAdqQZjbBi5ssnc/tW9ZAmaJDL1+gjb9vmy3t/3ZMN+hwGDoXrEKvn6iF9yig9IAXr4fG/3GR6mW81eDGW/Z53/v97qRw4pLAQohPAJ8AmLBPtvfcK9OzceZvOTiNbZ2d0XGLdGawbWK12j2eEAAB9QEasA6bkVGLlba8xtXvPcO33vVBlGFqyQElsZTk3avP7XqusIEp+6E0nOhalSm0ofT7GJxEzSNR80MN1lZj0RZCKhI1XZPfSNn7Nr4iCDh37RrZzSLr4+NkNjZ4+KlvdMhC3Ped5/Etm2+9592M3il3hqcU2E5AdqNOaWT/CdhKIYkXt/Rq2JfUMjGq+UT361KKkaVqZ3gNPd948vom65Ppjh1JYBmh07oEEAw6OP4I6dmN3j5IYRdqQ3Fya/VQR3IaJo4dhgOYB9qHmJ5rPhZ2zJwQwgJy6GRwF0qpTwGfAnggmb+nQkSWJbhwOYHrSgJfEU8YfSWYd9KvrPtuVBHlhy2k1DOGlYJceY33f++PuHblEVbjBQpuibdsvMCouxn6/J4DU5QiWWXlqCsAACAASURBVHFJVjwCU1DNDx5LdZM26xNphpdrgA6yuwlLd3P2IVVyw40/UM4n8OP6+smyy+idMgihSzyVYmUmu+fEZqpU4on/8jvEHAczCJCGgSFlV52/7fu8/rlv8b1HH8PYGZNHO4F00T2QA4DBxN8sT4YmewVgBYrROxVKw8lWNVBxJElsvtw17rGRtrvkmndi+JLMZgPLlzRStjamh5znqmZj5FZrPYz3YDpBfsxkbTLNyGJzWJHQgbGVmWzffNNJ4TAcwDPAfUKIS2hD/1PAx3cc8wXgHwJ/DfwE8KWzFP/fSSxmwD4WB/mCxcZatwyFaUKqT2z7qBBCMDKmZwwHgb4PIepcWv5G6PFvekKvbFuVO2HxfKWYuFUi1vBbSdKhjQZrU5nukEkPqvkE1Vwc2wmQptDxdaUYWq0xtNFASIWTtNgYT7dkjlUP26IAN6mPMX25vQpv+yOMzZeZv1LY1ai18+4v/jGpSgWjeR4zCHqGlkzfxwh6i931uve9Yrke4/PzBJbF8sx0l3BcvyHuoJ3R0LpOtkvLoJGJ6fDSSg2a4aVG2mZ1uo8zVorsRoPCcg2F3mGkiw65VZPFCznUITZbBjFTLxZ2zAxem0xrnaEBqeUS1DMxvSsU4kC7wuPmwA6gGdP/eeBP0GWgn1ZKfV8I8a+BZ5VSXwD+E/D/CCFeBdbRTiJij9gxg5nzMRbmXWRzoRiLC2ZmDz6k/CAIIeiXE+2I5+9Cuui0jD9sV1WMLFSoZ2KDf7GE6NCw31nemahpWeCFS3n8mEl1xxCU7fPQmnK1VecdRqrsUil0x8zDsFyPibn5lvFvu1QotWwWJxkjsOsIt7NkUwq65ufuh0svvMhjf/ynLaMfWBZ//hMfY31yYvtalkEjafeO7TdfRLzht96zSiFJJZfA9gIC0+jvJJVibL5MsuJ1RGEMBZYXMLS+/2Yzw5d65GTM7PgMVfPaeCeb5Z/1bCx0JOVuKNOgPuCu4SRxKDkApdQXgS/ueOxftP1/A/g7h3Gts046Y3Ll/gSeqxCGnsR10uipqjkA6ZLTs4onXvdDyw13Q1fOdOvG06x135jM4CZtSiNJhtY6dyUrM9mWwTCk6qkuafSogw+lz+Z3q8F266/qWxZPv++9YBgsz2SZvFXqECurp2Ohydq9MLS2xjv/+E87p4u5Ln/jd3+P3/3kP9mueFKKciGO7fitEtHQZPtOA2qIgRK+yYqujApzLobSn43dHIDd8Ek1m9VqQ3G8mMnInTLJqtcqWyqOJCmNJFshJWkZVA/4Hp5WTlwSOGJ3hBDE4idri9kRz++jqrkbPRNzCuQ+fZ3tBkghMENW3O2ln8XRFJWhOMmqhzKglol1xHHr6RhDIQk/JfY2F8CPx1ibGGdkYbEjoSqFwdylq/i2wcT8HKXhAt9552MsnZ9tPs9i7kqBZNXF9FWrXn2vjCws8rYvfYWRpSWcZIJioYARMmNYSMXM9Rvcvu+qXp3PlfXqX/UYWIPuqN2toa0X6ZIb7vy3zr/LLndotdaRkM1uNPBtA8uTHdIVubU6fswcOKR4LxM5gIh9k/jyx/jnv9Is+zzALNx2yoUEiVp3Lb80RG9t9i3D3sNA+Lbx/7d37j+yZdV9/67zqvej3/f9GsYDEwwzBmGPbQwxKGZIwssC2YqcRMEZJQpSIllysPgHRomUn2IpHiko+QEZkOwJ2IM9hhhEIASDPRgYZoYZZube6Xu7bz+q612nzmvlh32quh6nurse3VXVtT7SqLset87uM9177b32Wt9vX7oFOKwO6sS3dFQHHDi7MR31tIVk9XCiCgio5Ya3TPzWBx/H45/7YxieB8Pz4OkGnHgSt3/uHXAScXz7H+ej0yUajZVqyO/u4jc+/4V2pZFRqSJRrfWpiQLqgNtqqrRXqtzs+v/SutOqD0B941o6dq+MLgrHFB1YANV5XTki1WU4PnL7je6afgZMJ1rgLbffkAAACQDCEPQJrI2x0h+EnTJRyceRKdrqibDaZudqtm9isRoelu9XYdm+8q7NxXCwnuo7J/BNHfW02dckxgSVCjgGs+lhZUtdBwCacV2lOXRCNRsbKS1VXlnGn/7rT+IXvvkcktUSKvlV7F28BtZ0kM/IFhooRjRXjcvbv/0d6F53pZHG0aJ1FATYCncfvR3SLZiAwnoKzaQ5dtdrNRdHstJfm88AGinjyDOWVg7/pPRq/iwqEgCEgXQKrAEIV/mnpzEPACBCcSPV3gkEuqbSKz2TuuH42LhTOlyRspqkDDdQwaKHvYsZLO0qA3EKV6uFC6ljc9OaH2DjdrmrozVm+/Asxr0r+bFKEzXWce/mQ33nBxqUDn0n8ZqD/G4DhuPDtXQU15IjCY4t39+J3g0RwdN1mJ4XpnJMvPCOR1HPhvfyiJr5SXkCNFMmKktxZA7szo/H/kbq2Bz9cemhrvdC9W8IEgCEHqIE1qaBb+lwAkZuv4H8Xh12wkB5OQE/nGgyB/1duxoDsboLw/H7JySNcLCRVpIFjBPLEKSKTRD3+8rqboB4vedQmhmZYgmeYaCRToGCMD0yYHJSlobRqSnPOkzKtHoPWsFOtz2sb5ZH6j8orSwjU+o33Ak0Dd/79ffi2suvwLMs/PTtb8PWjevt16u5GGIRqTmmI1JzI1BcT6GajyNecxFohEbmZJVfjYzVV87ZHmP4tVO6Yp6VSyeJBAABwHiGKadBvOp0efCaTR/psoOt6zloASNZbkaXIhJFB4CO14dRpTM73KR6MVwfgAoAG3fewLuf+QvEGg0QM6qZJTz/zveinsngYD2Jeq5/BetZOpoJA7G615WDZwLKHTIESzu1vjFoDCzt1LE1ZAD44S//Ei7eeaOr4sc1DLz6Dx7Gy4+8HS8/Eu1tUM9YiNdibWMVAAABO2Pk/NuEcsqGo+Qh7OTR6Z4ofENDQIDec59ak76dNJQYX9JEqWMhsehIAFhQfvlHv4e/23vt8BB3DMOUicPKR7dXpAsBY/VeBabjD9bOZ4Y7wT9uJ2EgGFCa6oQHyKlyGe/7k6e7/HozpX08+u2/xHff/5tY2a6BNS3Sk2D3cgar96pI1N326rSwkYKTMNs/T5ScAqCC07DsXbqEr3/kQ/jFr/010qUSfMPAi48+gud+7VeP/odEKFxMd6Xm6idcnR+F5gW4cLsE3QvaJ8CuFeobDdn0xToBXvQvxt6lzFCNeouCBIAFIVpVs1+4bRbQAoYxQEPG6jEA7yQIm7YmubqrZWNKLsA7TAMFpOQlWqmPB//+h9CC7vFqzDAdG/m9LRTXLiG3V48MAKxr2L2aheYH0PweS0MAIIKvU780M9DfrRowYraHQCNV3TRgZX7v1k08/cQnoXme8hweYgXvxkcrPR3Eyla124qRVWDL79ZwcCE91GfVMrE+dc9WpZdM/tFIADjnjKqqOU2CVppmmN4qqLRJaXWyAoKsEbZu5LG0U0OiqpqJqrkYSquHvrLpUqlPw6dFzK4DwMBVfItA1xCEcUt3fCSrDphUDry0kkB+t45eTZ3SymGaJFFuYrWlR8MMX9ewezVz5CH3MJLWp0KY+okq00yVHRwMuT4prSZUKsn124YuTKS8FoRIJACcMx553MOLv/+Jw9TOPKKp8sreruAgDApRDUiNlHlqB3uBoWH/CP2a7WvXcO3ln3WlgABVR19eWgNwmC46jkx46N1iaaeGwnoSpZUEcoVGmCYhFFcS7Q5gw/GxulXtTpl5ATbulLH5pqWpmLWfiCMCPDFDd/0un4RjP07XsHUzh2TFgWV78Ewdtaw1F6Js00ICwDngsc++7TC1A5xKff5Zc7CRguYHYQu/0s6u5GOqTtzrrsphAirL02vlf+0tb8Zbv/s3SJcr7Z2Ar+vYu3ANjXQOAQHFEwQno+l32Ue2WN6p4+4DSyivJKD5jECnrkk9HeFjoDSUGPGaO3MWjG00UofgjW4ZbqWyClx6tQjP0rF7OXPyMtNBXgtCJBIA5pSuLtw5Se0MA2uEvStZ6G4A3VNVPYGuobrkY/2Nsjo0JAIxK5/Z1GQmuVjdRX63DtPx4Zo6SmvJYxu9fNPEM7/zz/DW734PN156CYGmY+v6Q9i6+iDcuIGD9SSaSRPkB0iVHeiej2bCVJ/bMZGnyhFidCEtsbkgQvY7ytMXABC0KpXOAGboPqu0yxAr7v2LaVy4XQIF3FZ/bf0sFPodXLhdmu2dzBwjAWBOOIsu3FnENzX4HYJ3nqXj3q08LFsJkjUTxkjqjVHEaw7WNjvq7X0P1mYZe5czbXXLQbjxOJ57z7vx3HveHfm6ZXvYuFMGWAnKMdlwYjp2uty8Bsz+x5yFNNJWly9tCwKQ26ujnokNPgRljtxVDEOs7mJlq9oORHbSxN7FdOQ1DUepepq2ByduoLySwN0HlpAqN5EsNft2AwSlSZSoOnOptjnrSACYYboE1s6iC3dOiNddZPdt6J4PO2WpBrEJqKIu3e9Pv2gMLN2vHRsAjoQZq3crXR2/xKqiKVNooLyq0kP1TAzZfbtfkgFKjmIQ9YyFbEGHZft9k6fmI1pWghlLO2FnNJTWUmFAv8JRGI7akXXet3jNxcadUqjff/j/xWq42LhTbvd2xGwf6XIT29dzqObjMJs+EgN8mQ2RbjgVJADMECcyTFlw0gcNLO0cTtSmYyNVbmLrRn7sIDCort5wA9WxO+IK2XADlbLqoSVx3AoAblyZvCerTt9Enimq1XFlOYFatscdiwj76yklFd17DSjv294A0OuPoPuMle2a0vwfIp2WjujIJigRtisvH6C0mmj/fCvbUb0dKvDuXMuq3VwRkT0XzYRIN5wGEgBmgGEMUxaagLsmf6C1ymVk9xs4uDCeeJqvE4yIevtx0iPAMRmcXmkFPdp1iwDEmj7M7SpijRgKPTXygakNLJ3t1eengCPF3TQGcnuNoQKA6UT3ZbQMXdrSyxkLZrM/wCpJblU9Vc9YyO3rMDq6r1sWkpOUmxAOkbs6BeJf/xgAzHep5hQwHb9dEdQJAUjUHBxgvABQWk30BRhVbz9eb4Fv6fBMrU+amKFW3lbDbXf++joNlEQG1CSdLjZRXk50Vcb4pg4n3l9RExBQ7qmQitqNtBj20NhOGpHy3Z3jze43VNcwIfKQu30GQoTt6zlkCw2kijY0n6FBeTbk79dQWkvOjdXivCAB4IzoKtVckAPcSRPo0eJpgNL8PwrD8RFrePB16qu+aVHNx0E+I9+qt4eSi64MqUsTxd7lDDZe71AvDf/TA8bGG2XlKaxrqObikUJ3vcRrDqpWd2DavZzB+mZZrbTD3UB5JdF3eOoN2C0wMPRKu5qPI1uwQT4PDFq6ryq2qqHtZm+ALXcofbJGKC8nkA47egkqSGaKNmK2h/vX+mXBhdGRAHCKdB3insNSzbPGNzU0E6ZSpex4PugRT+si1BVKlQ5FzAKNcP9aDl5vcxYRKqtJVFYS0H2GP2bqpxM3ZuAgNCDvWy0zkCyrMk8vpmP/Qgor27V2EIgaQVQ6JTA0bN/Iw2h60D2GG9ejK6SIUFxJdvUcMFQ/RXF1uGY61jVs38wjt1tDuuT0jbVTevlgPQXDC5TUdRiA6hkL5Z7u7exeHXpPr4fGqpLKsr1DnSRhbCQATJBHHvfwBx/554elmnKIO3F2L6exdreq8sbhJHKwlhzY7JSsOH35bvIZ65tl3Ls1QM+fCH5EvX0XzEhWHCSqjlq552PHegvo/mBP4U6TlnoujkYmhpV7FSSrbv8/QIQOUAdezIB3TMVkZUVVTuX2GtC9AE7YrzCKzo9vaChczMBO2u3A1SW93AoqGmH3Sha668N0lEF778G94fjIFforoVpYTV8CwASRADAmXat8YLZUNc8hrGvYuaYmEd1Xyp9H5YUzB3ZkfbzuBarZ6wRm5f2DYGzcKcOyvXbzUrpoo3CMcUkzYUTmwZn6q1xYI5RXEgMDgDuERMIgTtwxy4x00Ua2YCtJ5YSBg/VUX7Co5+LwTR3Z/QYM1x8oveyb+kCJh+z+0YumSfzcwiFjBQAiWgbwBQA3ALwO4BPMfBDxPh/Aj8KHd5j5Q+Ncd5r0ae3IKn8qqEnk+PdRMCCZTgCNWFqeKjXbk3/4USBWpZX1bGxgQGomDNhJs+vQtKUsGtVt7B5xrpGqNNHInX5jlNH0sbZZhtmh2Bmve7hwu4TtG7m+ANpMmtgdw23Lsr3I1T9DVTM1k7JmnSTj3s1PA/jfzPwkEX06fPwfI97XYOZHxrzWVOkyTJFD3LmhlrVg7jX6dgEMghMfbTXZK1LXhlRJ48AySiLsXskgfWAjE55JVLMxdcgckYoyPI7cMbRksU8b3fVx8fViO6XTeX2EJaN7lzMwHB9LOzXEay5YI1TycaXKOsL5iRs3Bkp+716dgPmM0MW4AeDDAN4bfv8/AXwD0QFg7phpwxThxFSXEkiVnbazV+uwc/9SeuTJJNAGl2oe601LhOpyAtVBh9YdDKpsYpxcXXQcWtVIA/sS6q5SL92vg4LwfaGhvdn0sHel35v5OErLCeX21lkpBKCetUZL1wlHMu4d3WDmrfD7bQAbA94XJ6LvA/AAPMnM/2vQBxLREwCeAIANc7La7kcxT4YpwslhjbB9I4dU2UG85sA3NFTz8bFMzKtLcaVj37MyD0ipW04K1jXUcrG+Q2wmtLtrR8FquEiWHbCmzgEGTay9PQVdY4M61M7v1tslrS00BpK1Ad7Mx+DFdNy/lsXydg1W01dKr/k4iuvi4XsaHPvbSkRfQ/RM+JnOB8zMRAOrl68z810iugXgr4noR8z8s6g3MvNTAJ4CgDcn8kNYgozGPBqmCENChFouhtqEcuYt/aFsITz/CY1Hdq5m241q+d060sUmNGbYCROFjVR/2ekJKGyk4Osasgc2KFCH3oWN1MidsUv3q0r/J/zLyhZsFMPS117cmH5kEOid+LtgpV80SqB1Eia2b+YPez7OKu3DDApY7eIWpOHs2N8iZn7/oNeI6D4RXWTmLSK6CGBnwGfcDb++SkTfAPAogMgAcBZ0SSkLwgiU1pKo5uOI1V0EPc1la3criNcOD3rjdRcXb5dw71b+yPLNSIhQWksqs5sx9IgAwGp4YVDq+HgG8nt11LNWX2VOeTmBVKk7HdP69iSjCLQxBfrOMN/fUjQ1XJXLqmUsFC6kz33n8bj71S8D+BcAngy/fqn3DUS0BKDOzE0iWgXwKwD+05jXHYrHPvs2PHfzTYeT/qwd4jJj/e5dXHztNtx4HK+95SE00mJjN+v4poZ6z67CcPyuyR8Ia+IDRrrQQKlXlXMYxpwQk5XBfgOJqovqUncA8CwdO1dVOqYllFdLm0hGpL+icM/gnGISGM0eRVNW/SO6V8HOteHPMeaJcQPAkwC+SESfBHAbwCcAgIjeCeDfMPPvAngLgD8iogBKnPBJZv7JmNc9li7phVlO7TDjPV/+c1x+9TUYrgtf1/Ho//kWvvHhf4q7D9ya9uiEITHDvHWvzIIGIGYPlnRu0dK+170AdtKcqAE7HxU/BrzWTJrYupUPUyPqufjPitCO0BNiAK6lzY0Re/ag0RfQNFYVXaOcY8wTY/12MfM+gPdFPP99AL8bfv9/Afz8ONc5CX1duLM86Xdw/acv4/Krr7X9ZI3QUvDX/uwZfOFT/3b6xt3CULiWHi14BlXvr7s+MgWla+PEDZSX4u1GKcv2sH6nDAK3A0g9Y2H/4ugVS53UsjGl2xMxvvoxfgedqZDdy2llbgO0K6va7wvfu3d5sIfyrGEOKDtlIhiuBICZpc8Ldw5LNW/9+Pk+M/EWG5ub2Lpx42wHJIyFF9OVXlHD7dbZ0ZQmzqXXiu2SyVjDQ7poY/t6Dm5Mx9pmBXpP41qy4sBOORM5wPZiBg7WkljarXc9vz/AvWsQTsLE3QeWkC7Z0F3VGcwawbJ9eKaGeiYG1ucnd95MGLAaHnrvADHDteZ6ijyWufrp+gxT5mSVfxRH1Y0zzccW+qSQr+QXfEMbKAVwHti9ksHSTq19gOrEDexfSGHpfu2wXh4dHcTbNRQupKD50aYx6aI9sQqm6nICjYyFRM0FA2hkrJEsNQNDQ3mluzSzMT+L/i4qywmki01wcChAF5DaMU3CaW6WmYsA0NWFe8742c+/FZdu3+nbBTARdq5cntKoJgwzcvsNpfMSlkk2EyZ2L6eHMhCfF1gjFC6kUdgID3zDIB8fUFIZsz0lWTHA0OU4T+Bh8U0d1fz5DcDD4hsatm/kkN+pIVH3EGiE8lIcleXxZcBnnZkOAHfza6pOfw5TOyfljTc9gNfe/BBuvfAiiLldOveNj3wIgX4+/kiTFQfZ/VCOIaztjjVU2d0o3aJzQ8/uLtCoL8UDqMNZJ66Hu8Hu1wMCarkx/IiFE+FZ+vn+XRzATAeAhYAI33n8N/DiO34BF1+/DScew+2fexBu/PysPtqTfwetblHND0ZKQcwj1XysT500IPU8NA17lzJY2zw8XG0JxVWPUBg9DeJVB0s7dZiuD8/QUFxNDG0WL8wHEgBmhIP1NRysr017GKeCHuGzC6i1ruYzgvOx0TmW4loShuOr/DsRiBl2ysTBmkoV2Sl1uJoq2dA99dog97LTIl51sHa30g5Sphu0Nf6PkroW5hMJAMKpY6dMdSDa8zxrdKyV47mCCHtXstAdH2ZYX95bYhgYGior09O96fVEBtRuJL9bVwfRosZ5rligvz5hWhRXE20FTUCt/ANSOjeLOKH4lg47bc1kfbk5wBRe93nih9HC9JEdgHDq+KaOrZs5ZAs24nUXrqmhvJIQa78ZxDM0mG5/OWqg08kEgIaA/ADJqgPNV+kukXs+e+SOC2eCb+o42BhDB2de4XDlPCeiYsW1JFa2qn0H1cWV0QxeBhGru1h/Qx14t8wVarnYwu4Kp4UEAEE4DQLG0k4N6bAZzLV0FC6k0BzDLnEUdC9A+sCGZXtwYzoqS/Ejm/Dq2RgoUHLWus8IdEJxJYHq0gQPgJmxtlnpPmtgZbXZSFtodMhSUMAwmx58XevzFhbGRwKAIJwCq1sVJKqHchCWoxQno3x0Twuj6ePi7RIQMDQAXHORKdrYvpY7UmSulo+rA9+W7dmEV+TxugeKOFDQGEgV7XYASB80sLRTbzfIOXEDu5czcyMyNw/InRSECaO7AZJVt6+ahlj1RJwVy/droHDyB8K5PFDSE8fSMkU5lXTM4NPkllBdvOa2K5K0oKXO6WHtbuUUxrO4SAAQhAljuD6CiImToJQnz4p4w+07tyWEstQ8vZKeZsKMjAFBeA4AAJlCf/MgQSmmGs7Z3cPzjgQAQZgwrqVDi5hgGZioZ/BxRAUh4BhfgDOANcLepQwCUobvrbLgRspCPaPSP8YgvwFCpGieMBoSAARhwgSGhmouhqBjom1JQleW+713T4tqvnsMQMcqe8qVNo2Mhe1rWThxHYFG8EwdtazVHlcjZSJymmdIuegEkQAgCKdAYSOF0moCnk4ICLATOiq5GPK7dWT262eyii2uJmGnTAQE+Jqa/JsJAwfj2FJOCM0LsLFZQcz2oQcMy/GxulVFZl95FZSXEwh06goCAQEH68lz79N7lkgoFYTTgAjllSTKK0r/58LrJcRsZcieqAK5fRvbN3Kn2w2sEXavZGE4PsymD9fS4M3I6jlbaIB87jqj0BjI7zVQzScQGBq2buaRLTSQqLnwDQ3l5TjslCijTpLZ+G0QhHPM8nYNWofZiMYAM2N5uzZR03HyA2QO7K4J00mYkZpD0yZec6PTD0QwHQ9OwkRgaCiup1A868EtEBIABOGUidejq3HidVdV40wgH6/5AS6+VoLmB22f3kTVQWEjNZMqnr6pgaO8eJkXRh58FhjrThPRx4noeSIKiOidR7zvA0T0EhG9QkSfHueagjBvDKq64Qk2WWUKdnvyB1SA0RhY3qkBESY006a8nOi7LwzV7DVru5XzzLih9scAPgbgm4PeQEQ6gD8E8DiAhwH8NhE9POZ1BWFuqOUGVONkJ+PzC0CJqg2Y560z7D04Kc2kicJGCoGmDsmZADtpYvfKnBoLzyljpYCY+QUAoKNXMe8C8Aozvxq+9/MAPgzgJ+NcWxDmhYP1FMymD8v22s85sclW4/j6oG1GqOQ5g7QkJ0zHR6Br8EXi4cw5izOAywDe6Hi8CeAXz+C6gjATsEa4fz0Hq+HBdHy4lg4nrk+0Fr+ynECs0S2wxgDc2OwdAHdBJHX9U+TYO09EXwNwIeKlzzDzlyY9ICJ6AsATABDLnk+LRGExcRIGnFPqBG6kLZRWEsjtN9riaa6lY3cBjc6Fk3PsbyMzv3/Ma9wFcLXj8ZXwuUHXewrAUwCQufjg7J1eCcKMUl5NorIUR8z24RuyshaO5yySbt8D8CAR3SQiC8BvAfjyGVxXEBYO1jVx1xJOzLhloB8lok0AjwF4hoieDZ+/RERfAQBm9gB8CsCzAF4A8EVmfn68YQuCIAjjMm4V0NMAno54/h6AD3Y8/gqAr4xzLUEQBGGySN2VIAjjwzxVjwFhNCRRKAjCyGhegKX7NaSqDsBAI60avI7yHRZmB9kBCIIwGszYuFNCquKAWFWfJqouLrxeAs2g/ITQjwQAQRBGIl5zYbhBl6AbAdACRrLSnNawhCGQACAIwkiYjt82ce9E47P1PhZGRwKAIAgj4Vo6OGIGCUhsG+cFCQCCIIyEnTLhGTo6NwEMJT7XMncXZhsJAIIgjAYR7l/Popa1lKQzgHraxPb1nPj2zgmyTxMEYWQCXcP+pQz2pz0QYSRkByAIgrCgSAAQBEFYUCQACIIgLCgSAARBEBYUCQCCIAgLigQAQRCEBUUCgCAIwoIiAUAQBGFBkQAgCIKwoEgAEARBWFAkAAiCICwoYwUAIvo4ET1PRAERvfOI971ORD8ioh8Q0ffHuaYgCIIwGcYVg/sxgI8Bez7jGgAAA7tJREFU+KMTvPcfMvPemNcTBEEQJsRYAYCZXwAAIpF+FQRBmDfO6gyAAfwVEf0tET1xRtcUBEEQjuDYHQARfQ3AhYiXPsPMXzrhdX6Vme8S0TqArxLRi8z8zQHXewLAEwAQy66d8OMFQRCEYTk2ADDz+8e9CDPfDb/uENHTAN4FIDIAMPNTAJ4CgMzFByMspwVBEIRJcOopICJKEVGm9T2AfwR1eCwIgiBMkXHLQD9KRJsAHgPwDBE9Gz5/iYi+Er5tA8C3iOjvAfwNgGeY+S/Hua4gCIIwPuNWAT0N4OmI5+8B+GD4/asA3j7OdQRBEITJI53AgiAIC4oEAEEQhAVFAoAgCMKCIgFAEARhQZEAIAiCsKAQ8+z2WhHRLoDb4cNVACImp5B7cYjci0PkXhyyyPfiOjOfSEZhpgNAJ0T0fWYeKDm9SMi9OETuxSFyLw6Re3EyJAUkCIKwoEgAEARBWFDmKQA8Ne0BzBByLw6Re3GI3ItD5F6cgLk5AxAEQRAmyzztAARBEIQJMjcBgIj+MxG9SEQ/JKKniSg/7TFNEyL6OBE9T0QBES1ktQMRfYCIXiKiV4jo09Mez7Qgos8S0Q4RLbzMOhFdJaKvE9FPwr+Pfz/tMc0ycxMAAHwVwFuZ+W0AfgrgD6Y8nmnzYwAfwwBjnfMOEekA/hDA4wAeBvDbRPTwdEc1Nf4HgA9MexAzggfg95j5YQC/BODfLfDvxbHMTQBg5r9iZi98+P8AXJnmeKYNM7/AzC9NexxT5F0AXmHmV5nZAfB5AB+e8pimQmivWpj2OGYBZt5i5r8Lv68AeAHA5emOanaZmwDQw78C8BfTHoQwVS4DeKPj8SbkD13ogIhuAHgUwHenO5LZZSxDmElzEgN6IvoM1Dbvc2c5tmlwkvshCEI/RJQG8CcA/gMzl6c9nlllpgLAcQb0RPQvAfwTAO/jBahfPe5+LDh3AVzteHwlfE5YcIjIhJr8P8fMfzrt8cwyc5MCIqIPAPh9AB9i5vq0xyNMne8BeJCIbhKRBeC3AHx5ymMSpgwREYD/DuAFZv4v0x7PrDM3AQDAfwWQAfBVIvoBEf23aQ9omhDRR4loE8BjAJ4homenPaazJCwI+BSAZ6EO+r7IzM9Pd1TTgYj+GMB3ADxERJtE9Mlpj2mK/AqA3wHw6+E88QMi+uC0BzWrSCewIAjCgjJPOwBBEARhgkgAEARBWFAkAAiCICwoEgAEQRAWFAkAgiAIC4oEAEEQhAVFAoAgCMKCIgFAEARhQfn/q1g87tnNp1oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], diff --git a/1_logistic_regression/Logistic_regression.py b/1_logistic_regression/Logistic_regression.py index 50ab97f..9c60c39 100644 --- a/1_logistic_regression/Logistic_regression.py +++ b/1_logistic_regression/Logistic_regression.py @@ -34,6 +34,7 @@ # # 逻辑回归就是一种减小预测范围,将预测值限定为$[0,1]$间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在$z=0$时,十分敏感,在$z>>0$或$z<<0$处,都不敏感,将预测值限定为$(0,1)$。 # +# FIXME: this figure is wrong # ![LogisticFunction](images/fig2.gif) # # diff --git a/1_nn/mlp_bp.ipynb b/1_nn/mlp_bp.ipynb index d5776a4..3c70b7e 100644 --- a/1_nn/mlp_bp.ipynb +++ b/1_nn/mlp_bp.ipynb @@ -4750,7 +4750,7 @@ "1. 我们希望得到的每个类别的概率\n", "2. 如何做多分类问题?\n", "3. 如何能让神经网络更快的训练好?\n", - "4. 如何抽象,让神经网络的类支持更多的类型的层" + "4. 如何更好的构建网络的类定义,从而让神经网络的类支持更多的类型的处理层?" ] }, { diff --git a/1_nn/mlp_bp.py b/1_nn/mlp_bp.py index 957fdc9..6dede82 100644 --- a/1_nn/mlp_bp.py +++ b/1_nn/mlp_bp.py @@ -546,7 +546,7 @@ print(y_res[1:10, :]) # 1. 我们希望得到的每个类别的概率 # 2. 如何做多分类问题? # 3. 如何能让神经网络更快的训练好? -# 4. 如何抽象,让神经网络的类支持更多的类型的层 +# 4. 如何更好的构建网络的类定义,从而让神经网络的类支持更多的类型的处理层? # ## References # * 反向传播算法 diff --git a/1_nn/softmax_ce.ipynb b/1_nn/softmax_ce.ipynb index cdbd162..fc635f1 100644 --- a/1_nn/softmax_ce.ipynb +++ b/1_nn/softmax_ce.ipynb @@ -135,7 +135,7 @@ "metadata": {}, "source": [ "## 问题\n", - "如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的方法中?" + "如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的BP方法中?" ] }, { @@ -168,8 +168,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" - }, - "main_language": "python" + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/1_nn/softmax_ce.py b/1_nn/softmax_ce.py index 4baf0d2..5a49d45 100644 --- a/1_nn/softmax_ce.py +++ b/1_nn/softmax_ce.py @@ -136,7 +136,7 @@ # \end{eqnarray} # ## 问题 -# 如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的方法中? +# 如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的BP方法中? # ## References # diff --git a/2_pytorch/1_NN/logistic-regression/data.txt b/2_pytorch/1_NN/data.txt similarity index 100% rename from 2_pytorch/1_NN/logistic-regression/data.txt rename to 2_pytorch/1_NN/data.txt diff --git a/2_pytorch/1_NN/logistic-regression/logistic-regression.ipynb b/2_pytorch/1_NN/logistic-regression.ipynb similarity index 100% rename from 2_pytorch/1_NN/logistic-regression/logistic-regression.ipynb rename to 2_pytorch/1_NN/logistic-regression.ipynb diff --git a/2_pytorch/1_NN/logistic-regression/logistic-regression.py b/2_pytorch/1_NN/logistic-regression.py similarity index 100% rename from 2_pytorch/1_NN/logistic-regression/logistic-regression.py rename to 2_pytorch/1_NN/logistic-regression.py diff --git a/2_pytorch/1_NN/nn_intro.ipynb b/2_pytorch/1_NN/nn_summary.ipynb similarity index 100% rename from 2_pytorch/1_NN/nn_intro.ipynb rename to 2_pytorch/1_NN/nn_summary.ipynb diff --git a/2_pytorch/2_CNN/googlenet.ipynb b/2_pytorch/2_CNN/googlenet.ipynb index a203563..54f3b0f 100644 --- a/2_pytorch/2_CNN/googlenet.ipynb +++ b/2_pytorch/2_CNN/googlenet.ipynb @@ -377,7 +377,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.5.2" } }, "nbformat": 4, diff --git a/2_pytorch/2_CNN/googlenet.py b/2_pytorch/2_CNN/googlenet.py new file mode 100644 index 0000000..5885233 --- /dev/null +++ b/2_pytorch/2_CNN/googlenet.py @@ -0,0 +1,206 @@ +# -*- coding: utf-8 -*- +# --- +# jupyter: +# jupytext_format_version: '1.2' +# kernelspec: +# display_name: Python 3 +# language: python +# name: python3 +# language_info: +# codemirror_mode: +# name: ipython +# version: 3 +# file_extension: .py +# mimetype: text/x-python +# name: python +# nbconvert_exporter: python +# pygments_lexer: ipython3 +# version: 3.5.2 +# --- + +# # GoogLeNet +# 前面我们讲的 VGG 是 2014 年 ImageNet 比赛的亚军,那么冠军是谁呢?就是我们马上要讲的 GoogLeNet,这是 Google 的研究人员提出的网络结构,在当时取得了非常大的影响,因为网络的结构变得前所未有,它颠覆了大家对卷积网络的串联的印象和固定做法,采用了一种非常有效的 inception 模块,得到了比 VGG 更深的网络结构,但是却比 VGG 的参数更少,因为其去掉了后面的全连接层,所以参数大大减少,同时有了很高的计算效率。 +# +# ![](https://ws2.sinaimg.cn/large/006tNc79ly1fmprhdocouj30qb08vac3.jpg) +# +# 这是 googlenet 的网络示意图,下面我们介绍一下其作为创新的 inception 模块。 + +# ## Inception 模块 +# 在上面的网络中,我们看到了多个四个并行卷积的层,这些四个卷积并行的层就是 inception 模块,可视化如下 +# +# ![](https://ws4.sinaimg.cn/large/006tNc79gy1fmprivb2hxj30dn09dwef.jpg) +# + +# 一个 inception 模块的四个并行线路如下: +# 1.一个 1 x 1 的卷积,一个小的感受野进行卷积提取特征 +# 2.一个 1 x 1 的卷积加上一个 3 x 3 的卷积,1 x 1 的卷积降低输入的特征通道,减少参数计算量,然后接一个 3 x 3 的卷积做一个较大感受野的卷积 +# 3.一个 1 x 1 的卷积加上一个 5 x 5 的卷积,作用和第二个一样 +# 4.一个 3 x 3 的最大池化加上 1 x 1 的卷积,最大池化改变输入的特征排列,1 x 1 的卷积进行特征提取 +# +# 最后将四个并行线路得到的特征在通道这个维度上拼接在一起,下面我们可以实现一下 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:05.427292Z", "start_time": "2017-12-22T12:51:04.924747Z"}} +import sys +sys.path.append('..') + +import numpy as np +import torch +from torch import nn +from torch.autograd import Variable +from torchvision.datasets import CIFAR10 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:08.890890Z", "start_time": "2017-12-22T12:51:08.876313Z"}} +# 定义一个卷积加一个 relu 激活函数和一个 batchnorm 作为一个基本的层结构 +def conv_relu(in_channel, out_channel, kernel, stride=1, padding=0): + layer = nn.Sequential( + nn.Conv2d(in_channel, out_channel, kernel, stride, padding), + nn.BatchNorm2d(out_channel, eps=1e-3), + nn.ReLU(True) + ) + return layer + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:09.671474Z", "start_time": "2017-12-22T12:51:09.587337Z"}} +class inception(nn.Module): + def __init__(self, in_channel, out1_1, out2_1, out2_3, out3_1, out3_5, out4_1): + super(inception, self).__init__() + # 第一条线路 + self.branch1x1 = conv_relu(in_channel, out1_1, 1) + + # 第二条线路 + self.branch3x3 = nn.Sequential( + conv_relu(in_channel, out2_1, 1), + conv_relu(out2_1, out2_3, 3, padding=1) + ) + + # 第三条线路 + self.branch5x5 = nn.Sequential( + conv_relu(in_channel, out3_1, 1), + conv_relu(out3_1, out3_5, 5, padding=2) + ) + + # 第四条线路 + self.branch_pool = nn.Sequential( + nn.MaxPool2d(3, stride=1, padding=1), + conv_relu(in_channel, out4_1, 1) + ) + + def forward(self, x): + f1 = self.branch1x1(x) + f2 = self.branch3x3(x) + f3 = self.branch5x5(x) + f4 = self.branch_pool(x) + output = torch.cat((f1, f2, f3, f4), dim=1) + return output + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:10.948630Z", "start_time": "2017-12-22T12:51:10.757903Z"}} +test_net = inception(3, 64, 48, 64, 64, 96, 32) +test_x = Variable(torch.zeros(1, 3, 96, 96)) +print('input shape: {} x {} x {}'.format(test_x.shape[1], test_x.shape[2], test_x.shape[3])) +test_y = test_net(test_x) +print('output shape: {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3])) +# - + +# 可以看到输入经过了 inception 模块之后,大小没有变化,通道的维度变多了 + +# 下面我们定义 GoogLeNet,GoogLeNet 可以看作是很多个 inception 模块的串联,注意,原论文中使用了多个输出来解决梯度消失的问题,这里我们只定义一个简单版本的 GoogLeNet,简化为一个输出 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:13.149380Z", "start_time": "2017-12-22T12:51:12.934110Z"}} +class googlenet(nn.Module): + def __init__(self, in_channel, num_classes, verbose=False): + super(googlenet, self).__init__() + self.verbose = verbose + + self.block1 = nn.Sequential( + conv_relu(in_channel, out_channel=64, kernel=7, stride=2, padding=3), + nn.MaxPool2d(3, 2) + ) + + self.block2 = nn.Sequential( + conv_relu(64, 64, kernel=1), + conv_relu(64, 192, kernel=3, padding=1), + nn.MaxPool2d(3, 2) + ) + + self.block3 = nn.Sequential( + inception(192, 64, 96, 128, 16, 32, 32), + inception(256, 128, 128, 192, 32, 96, 64), + nn.MaxPool2d(3, 2) + ) + + self.block4 = nn.Sequential( + inception(480, 192, 96, 208, 16, 48, 64), + inception(512, 160, 112, 224, 24, 64, 64), + inception(512, 128, 128, 256, 24, 64, 64), + inception(512, 112, 144, 288, 32, 64, 64), + inception(528, 256, 160, 320, 32, 128, 128), + nn.MaxPool2d(3, 2) + ) + + self.block5 = nn.Sequential( + inception(832, 256, 160, 320, 32, 128, 128), + inception(832, 384, 182, 384, 48, 128, 128), + nn.AvgPool2d(2) + ) + + self.classifier = nn.Linear(1024, num_classes) + + def forward(self, x): + x = self.block1(x) + if self.verbose: + print('block 1 output: {}'.format(x.shape)) + x = self.block2(x) + if self.verbose: + print('block 2 output: {}'.format(x.shape)) + x = self.block3(x) + if self.verbose: + print('block 3 output: {}'.format(x.shape)) + x = self.block4(x) + if self.verbose: + print('block 4 output: {}'.format(x.shape)) + x = self.block5(x) + if self.verbose: + print('block 5 output: {}'.format(x.shape)) + x = x.view(x.shape[0], -1) + x = self.classifier(x) + return x + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:13.614936Z", "start_time": "2017-12-22T12:51:13.428383Z"}} +test_net = googlenet(3, 10, True) +test_x = Variable(torch.zeros(1, 3, 96, 96)) +test_y = test_net(test_x) +print('output: {}'.format(test_y.shape)) +# - + +# 可以看到输入的尺寸不断减小,通道的维度不断增加 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:51:16.387778Z", "start_time": "2017-12-22T12:51:15.121350Z"}} +from utils import train + +def data_tf(x): + x = x.resize((96, 96), 2) # 将图片放大到 96 x 96 + x = np.array(x, dtype='float32') / 255 + x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到 + x = x.transpose((2, 0, 1)) # 将 channel 放到第一维,只是 pytorch 要求的输入方式 + x = torch.from_numpy(x) + return x + +train_set = CIFAR10('./data', train=True, transform=data_tf) +train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True) +test_set = CIFAR10('./data', train=False, transform=data_tf) +test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False) + +net = googlenet(3, 10) +optimizer = torch.optim.SGD(net.parameters(), lr=0.01) +criterion = nn.CrossEntropyLoss() + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:17:25.310685Z", "start_time": "2017-12-22T12:51:16.389607Z"}} +train(net, train_data, test_data, 20, optimizer, criterion) +# - + +# GoogLeNet 加入了更加结构化的 Inception 块使得我们能够使用更大的通道,更多的层,同时也控制了计算量。 +# +# **小练习:GoogLeNet 有很多后续的版本,尝试看看论文,看看有什么不同,实现一下: +# v1:最早的版本 +# v2:加入 batch normalization 加快训练 +# v3:对 inception 模块做了调整 +# v4:基于 ResNet 加入了 残差连接 ** diff --git a/2_pytorch/2_CNN/resnet.ipynb b/2_pytorch/2_CNN/resnet.ipynb index a954f56..60bf725 100644 --- a/2_pytorch/2_CNN/resnet.ipynb +++ b/2_pytorch/2_CNN/resnet.ipynb @@ -377,7 +377,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.5.2" } }, "nbformat": 4, diff --git a/2_pytorch/2_CNN/resnet.py b/2_pytorch/2_CNN/resnet.py new file mode 100644 index 0000000..ac24ae4 --- /dev/null +++ b/2_pytorch/2_CNN/resnet.py @@ -0,0 +1,191 @@ +# -*- coding: utf-8 -*- +# --- +# jupyter: +# jupytext_format_version: '1.2' +# kernelspec: +# display_name: Python 3 +# language: python +# name: python3 +# language_info: +# codemirror_mode: +# name: ipython +# version: 3 +# file_extension: .py +# mimetype: text/x-python +# name: python +# nbconvert_exporter: python +# pygments_lexer: ipython3 +# version: 3.5.2 +# --- + +# # ResNet +# 当大家还在惊叹 GoogLeNet 的 inception 结构的时候,微软亚洲研究院的研究员已经在设计更深但结构更加简单的网络 ResNet,并且凭借这个网络子在 2015 年 ImageNet 比赛上大获全胜。 +# +# ResNet 有效地解决了深度神经网络难以训练的问题,可以训练高达 1000 层的卷积网络。网络之所以难以训练,是因为存在着梯度消失的问题,离 loss 函数越远的层,在反向传播的时候,梯度越小,就越难以更新,随着层数的增加,这个现象越严重。之前有两种常见的方案来解决这个问题: +# +# 1.按层训练,先训练比较浅的层,然后在不断增加层数,但是这种方法效果不是特别好,而且比较麻烦 +# +# 2.使用更宽的层,或者增加输出通道,而不加深网络的层数,这种结构往往得到的效果又不好 +# +# ResNet 通过引入了跨层链接解决了梯度回传消失的问题。 +# +# ![](https://ws1.sinaimg.cn/large/006tNc79ly1fmptq2snv9j30j808t74a.jpg) + +# 这就普通的网络连接跟跨层残差连接的对比图,使用普通的连接,上层的梯度必须要一层一层传回来,而是用残差连接,相当于中间有了一条更短的路,梯度能够从这条更短的路传回来,避免了梯度过小的情况。 +# +# 假设某层的输入是 x,期望输出是 H(x), 如果我们直接把输入 x 传到输出作为初始结果,这就是一个更浅层的网络,更容易训练,而这个网络没有学会的部分,我们可以使用更深的网络 F(x) 去训练它,使得训练更加容易,最后希望拟合的结果就是 F(x) = H(x) - x,这就是一个残差的结构 +# +# 残差网络的结构就是上面这种残差块的堆叠,下面让我们来实现一个 residual block + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:56:06.772059Z", "start_time": "2017-12-22T12:56:06.766027Z"}} +import sys +sys.path.append('..') + +import numpy as np +import torch +from torch import nn +import torch.nn.functional as F +from torch.autograd import Variable +from torchvision.datasets import CIFAR10 + +# + {"ExecuteTime": {"end_time": "2017-12-22T12:47:49.222432Z", "start_time": "2017-12-22T12:47:49.217940Z"}} +def conv3x3(in_channel, out_channel, stride=1): + return nn.Conv2d(in_channel, out_channel, 3, stride=stride, padding=1, bias=False) + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:14:02.429145Z", "start_time": "2017-12-22T13:14:02.383322Z"}} +class residual_block(nn.Module): + def __init__(self, in_channel, out_channel, same_shape=True): + super(residual_block, self).__init__() + self.same_shape = same_shape + stride=1 if self.same_shape else 2 + + self.conv1 = conv3x3(in_channel, out_channel, stride=stride) + self.bn1 = nn.BatchNorm2d(out_channel) + + self.conv2 = conv3x3(out_channel, out_channel) + self.bn2 = nn.BatchNorm2d(out_channel) + if not self.same_shape: + self.conv3 = nn.Conv2d(in_channel, out_channel, 1, stride=stride) + + def forward(self, x): + out = self.conv1(x) + out = F.relu(self.bn1(out), True) + out = self.conv2(out) + out = F.relu(self.bn2(out), True) + + if not self.same_shape: + x = self.conv3(x) + return F.relu(x+out, True) +# - + +# 我们测试一下一个 residual block 的输入和输出 + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:14:05.793185Z", "start_time": "2017-12-22T13:14:05.763382Z"}} +# 输入输出形状相同 +test_net = residual_block(32, 32) +test_x = Variable(torch.zeros(1, 32, 96, 96)) +print('input: {}'.format(test_x.shape)) +test_y = test_net(test_x) +print('output: {}'.format(test_y.shape)) + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:14:11.929120Z", "start_time": "2017-12-22T13:14:11.914604Z"}} +# 输入输出形状不同 +test_net = residual_block(3, 32, False) +test_x = Variable(torch.zeros(1, 3, 96, 96)) +print('input: {}'.format(test_x.shape)) +test_y = test_net(test_x) +print('output: {}'.format(test_y.shape)) +# - + +# 下面我们尝试实现一个 ResNet,它就是 residual block 模块的堆叠 + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:27:46.099404Z", "start_time": "2017-12-22T13:27:45.986235Z"}} +class resnet(nn.Module): + def __init__(self, in_channel, num_classes, verbose=False): + super(resnet, self).__init__() + self.verbose = verbose + + self.block1 = nn.Conv2d(in_channel, 64, 7, 2) + + self.block2 = nn.Sequential( + nn.MaxPool2d(3, 2), + residual_block(64, 64), + residual_block(64, 64) + ) + + self.block3 = nn.Sequential( + residual_block(64, 128, False), + residual_block(128, 128) + ) + + self.block4 = nn.Sequential( + residual_block(128, 256, False), + residual_block(256, 256) + ) + + self.block5 = nn.Sequential( + residual_block(256, 512, False), + residual_block(512, 512), + nn.AvgPool2d(3) + ) + + self.classifier = nn.Linear(512, num_classes) + + def forward(self, x): + x = self.block1(x) + if self.verbose: + print('block 1 output: {}'.format(x.shape)) + x = self.block2(x) + if self.verbose: + print('block 2 output: {}'.format(x.shape)) + x = self.block3(x) + if self.verbose: + print('block 3 output: {}'.format(x.shape)) + x = self.block4(x) + if self.verbose: + print('block 4 output: {}'.format(x.shape)) + x = self.block5(x) + if self.verbose: + print('block 5 output: {}'.format(x.shape)) + x = x.view(x.shape[0], -1) + x = self.classifier(x) + return x +# - + +# 输出一下每个 block 之后的大小 + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:28:00.597030Z", "start_time": "2017-12-22T13:28:00.417746Z"}} +test_net = resnet(3, 10, True) +test_x = Variable(torch.zeros(1, 3, 96, 96)) +test_y = test_net(test_x) +print('output: {}'.format(test_y.shape)) + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:29:01.484172Z", "start_time": "2017-12-22T13:29:00.095952Z"}} +from utils import train + +def data_tf(x): + x = x.resize((96, 96), 2) # 将图片放大到 96 x 96 + x = np.array(x, dtype='float32') / 255 + x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到 + x = x.transpose((2, 0, 1)) # 将 channel 放到第一维,只是 pytorch 要求的输入方式 + x = torch.from_numpy(x) + return x + +train_set = CIFAR10('./data', train=True, transform=data_tf) +train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True) +test_set = CIFAR10('./data', train=False, transform=data_tf) +test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False) + +net = resnet(3, 10) +optimizer = torch.optim.SGD(net.parameters(), lr=0.01) +criterion = nn.CrossEntropyLoss() + +# + {"ExecuteTime": {"end_time": "2017-12-22T13:45:00.783186Z", "start_time": "2017-12-22T13:29:09.214453Z"}} +train(net, train_data, test_data, 20, optimizer, criterion) +# - + +# ResNet 使用跨层通道使得训练非常深的卷积神经网络成为可能。同样它使用很简单的卷积层配置,使得其拓展更加简单。 +# +# **小练习: +# 1.尝试一下论文中提出的 bottleneck 的结构 +# 2.尝试改变 conv -> bn -> relu 的顺序为 bn -> relu -> conv,看看精度会不会提高** diff --git a/2_pytorch/imgs/Ipython-auto.png b/2_pytorch/imgs/Ipython-auto.png new file mode 100644 index 0000000000000000000000000000000000000000..c6740d1ea688e58415048596243370687df46798 GIT binary patch literal 1669 zcmb7Fdr;De7A8|c2^FeqPt0oFHD6o4Q(;rf#k-QPT}xNk()A` zz-+hKf9gtpoJX0Xf+#l%C*20&6TfI!y4nD9gK`PWqw={Zur z9ltE0_x4x)zE`Ubx#u?Gn4Zz%Us}rnV_J8~_%rHMm#tnW&_1QkknNc4bxXzrb%H;w zNk+saNNflSp8RW~?%WjFr1wDPIw&|*p1 zm&e+>18hSoriPo=mJR;q;%dJ(#_k>;w}%~9i%lbFqfa|ztS$t?#+$Tr8<$aRAKxH? z;|Al(MCS!W0gqDAF7<|g@>k*eaYI9w4LZ$Zahs$1Rhy7w<2l3@jg&Ex+vjA$Rd$O^ z)dDY)jtv0@7(=7;9U#+Q8DppjQ+OrQ#iaJPm9H!!A)xvUypVuV{8@T%$iL0 zqbxMxHnw7n#^KLHA9TL_(d6wLh zB`PLgt^OdAh{6~tqX4^{f|tBmzS#RMYE#hb!Y5HGB=(1ss}fRdwpDW!cbtOlIyP0) zWM3k;ef5Xp;tRlj%Jp4uP3xZ5Tk2W{&xnV9(a&!_@tYOJmPd2JQ+X<$0XXb9&!BVl z@-V9Anle?GK%8(530W5R)E9d`HgjeWEv`|IhJT!A;oW`kuyOO+6d6XjsEe3UL9+pA z9vpgK=pQR1m!o_>-;&hdU3+dM`1|rVBt-W8jnKH+RD^+iL-m!4ez}VcP|su-&qpMbA-9NUZ+vKF;!S%0 z3g;iw{3bQ5E{1sZfTm~(}}QrN%e$;QGEFp z-9nkvpXY8!ZJ^#3m9XO103D+Dx9P3Z2TnQha!&`JTmzmT0_V8Biwpuym~|0>)M~YH zj_X3c#o@5YKdmSHhlCF9-I28Rv%DVJ;?dFlvh6LwDLdMajHscLP-cnU2&D&Y)Qt`f ze*IjSmK$GeqEOp#QW4nSqGUbcmHY+}Kj*_IZ1 z6lFdfXSZe?7aVLhXkf$@!Pb3oj2QhNyoH=w8)Ewe={4epoiwj6>Ic13a2_3&$q|2s zDK_Qn)zFAx>G9q?m9r(1>F)a0&sufS zP@Q+Uj6x$+*~>`X&NDAWJH;u`Xg;7DUOIW>gMxKZ`Ao1s-0?fCIK>87S80#u1X|Uh tjJ=T)Fb35tRUWLqRJ!!J8K2_Xje(bbiOcu%Jm|<`_R<*C9o}ZRRPf4CP*AjI#!)k;%6k;Dc9N~70E-1X)6ovn~3uL91Fjm&{ zmsM3OR#`-rIKz9bc!^{}hZyJW0MGlzh$=af{ur$Q01{bgMoLDi)?^amfiM57P#z+0a^Q>pW@xpiZ}n5LVoYpuPGn)A(0Hm1iv?rB0uOns~U zX5JX9^Cnb$w`Z*ut7!7D+Dk^A=Y}a77Nck`4;)>$T=B(e%A^FaOt>sFEa}!ghp)`1 zcJVu&XgCOAdro8t5d)pM977>yWR?HKY-M$+a*dKMCly8EF3+VvV~<-8>717bI%+9+ z_M7D7_wQ@*!!_7+lB?^jD{D`k`h|6AUtJo{o*5%C7`iQwH6yt{-|EJi1AsgB9nM5B zgLPHs$8W4?jzufK6@3{D$9nMlpDh<2wIAm*1K&Oi6PDITpGtPfTs)OJ&lX_OzG=dj z&##P_<8b=D%<0>1Lz{y^ zU9a%_YvHg@uLW=`EBI-X7Cf&yd)colgJrrE)2HPvwVd!~k0mZ#`|L&i?0w+*BR=9$ zeT{CifP5q-11$)2usiEc8>d-&uX?;Lf5aw2cBtQ~2SBcCTB$bcAaqrzPEk1)(wjrpo?!Fht8$>a2$ zxwbz$qfxeKN~^(bIlf4fz{kL`EqxN&--eTVE7{zYal>K=c*BJZy zNkQM}BL-`Dxu(ou_IrJGj8UAQyOF_ZpHQKVozxAS z9j|n#htklNUi^X#zoL^Gq}l%X8o#?GZx1sJ-#AD#sU<|6_+AlOZ{i+-3?kWZD`t)F zrlA%w`xR(_>^?X&bbruq&??3O;yo|kc3_t^gYg^~ z8oDfvq2+nOV4oTqZh3imHIIa!koSX0dY6aRc9^NeoQ}!nVq1#(dW*hgNKw=+xD+kh zAd~VB*1SLr)N9s~{Rm}s{UKzhx>}~P&PE{muH)Qo~v z_)Xl$#dMYhmf(x8(l!iwD22XdM4Kvuo(To<0}6%*ZV_e}u(rmTnKuK2gDyf4U`%n4 zQz*G#XR}t*`^uqIx3Yy+*2R3)5#(_S(r#dOxqXPl3YLOc>*X9Pub{n=+ zOM|Oc$dBpHQwz=*H_cjYKbuebP0<9wZ=R&sS@w}7WU(KaG0HF^Kd9oKMAsIUvJ33J z7!$_hmi(&uaQbYuLdsw?LSnF#2&hj6mODpF$u4NvcKZc#cGkiK9=L>?cE zEMIAtPxav}ZpW_Yid2Qt;f#^+--L4;&p39JmY9I0H|^>q2AkKMN9Jv|?DD#K^s)_M z%_6EG6OwV6$g@~g@jE?ivV+6jUESvD&_Kn7ZE#B7cC1!13NsogtyK^CZgCuBIpi9Q zN(h0@aHjQ)Y+k{Mz0pw9E<#8V{?lG>=VhnUgB=sc??CGK5AXG28Y`if+A0wTEqLLecm~h^?W2YfN4lwEYK50}x_&!FDrBrB=5vUgMc0gmq|a*DG|~`e%CSwP zmvV3K_Haf^NGS5B)1IKF*FC^{Ouq59pwV5uEpV}c;p^0(}yGjrk zEmlfmHSb&>6hpi|K`mAYP=P+g7rx=EEITzTEDc|}J=HIt27y30BO?UrCQ461Px{*& zf}ML|4cxPwNbRjY|C1f#^ER zzUDS!Xisu-_D{5=rl$5JXiG(5B%p>1M8@rL)&%Eda$#p;UQ0B#ApeEtQh7SkqQbK+ z#NiL&pUgUrxPKAdmvoW1f|LK21tB?A^1tCL2D3fNsvfozcn4CEI)9P2@y?c2!Fr#F ze`*D>eSwlZ)n!$$=7JsWkL@~NV*p$DeecM-G=zi3VvS8)2vvm)zh?T5nG%wp7nZ&v zPD!&|Eo!Z7YH>m|xj57;UTo>}qkA>QUT87dhE=f{Ow#7y^3<{mCv2&y?POA%Ggm(& z>9uBYKD*GT$qM_lBVtw~z@A8UUJChfBjfd2dmGEo?D)rKpYj_r*SNz!V@Z}zpE{~L-&X-?>Q!8%6!6w)^|} zAf)ww%D}%1O^|w2Z#X*gi|&1J{PO1$Xvm$Frx>RbDPo{*TC?((>KGUvW>CY1uTa?! zybf;C1z*=r&`OtA1s$Ab)o$c0%|#NJ$!f&Z_w=~zO*6`|GZcLPZj;II; zDlz%k;aN=3Stt} z%r=2P88&!Iup?_EJgq0lWy@%12kT0em^jFKot`jV0VllJgrHA~e6>WYGK)f>KPDJdyag08Og(#y5`x`|Fq;!Tg5M@)hf zlkkO&CJWU$>K{V!xWd47L=04T6#_9HTb!XVK-#2~U$gP^94=7EiPgwAFmuO5$K}(a` zI)3rMmAqFrPJ51-=K8V_?C7~S&cm6=r!`c_rMNdu{#R?MS__U%k72{mdE86)n#dXM zyd36%Zb)*8;xEb7$5{;zAdO(cf=U_op_7dg0SU1Sa&QeDV; z)yPD(?&RPvG7G;qG9|P~boewnr<6s;sq=O-81~fQJj$SCm4rNQwVB~Unpoc=T8)!Q zJCn4%g_r(2b-+ zi;D_+jA;7`?Ut2$UhE`V(HySjCmVxx%_g#lvA(mu7e$Lmxv=@lz!F(kMRg0d4)fj# zLj(d__~UL318xG^%-M-!ks9hpmJo5+xHeR5 z@mAzMLuF}Pd<5F__!lx`B^UiBIA0sxwtlMdxj}Bumr!v%e;tfOa^T}iI{b8N&FvO> z2HR!GQPH^s-(7JX8rmOfnf?QfC$iJ3hf(UJz=`t=v|SBp?P8v%rAWiRmv@YF&DlaxL+0Y z?a|r$@7rorqL=8@wD}E`bbn1%sD8qNUW-t=dYOKoT;1n1X+`9%T)L`kTl5*awQg~) z>ycabl0))z6b`vX2mJz9@o=#B_tgFSZpRq~x95ANXiO~qjI-!EB)9bFFu3sGzBaeq z{(Xo?wr`MhLEE7+39Rce&}_$RI26lB`8oUSN;?-BN$AbPU;Ht?Cwqch*xu)7IyP&7 zdKsmSPzBFJ$q566hQ5&+G&p+}%P{!Fcy?K=^*Cpa{_th7ixR7l5~dFp|3TK~>Xp3= zLXt)Z1>@YEW#uv4Aju0=wL0&9aK*ud&!RTB#(MqXQ~$|-h@id%aPyqHK-(8#z1;0B znyIYbycvP#DJ(`Ff!;yu>Ej$6;@G&rGP%_fSb;*RO?LT_trQ#mt%)ZS ziuccaR4zaJv?_BBW`sdY8C8u>w?M9AS@5AarKyUgCu%R@{gZkv#)n!Jd{~_#Ulod? z*L+&^ifa$-8r*zvdGT-*#eE3gCQHU5E??}leNw%VEjHs;O<25oKs4)?yO*Vj5o}ZS zn^f<@?@$WR*_&RKgo_i8cp;qf3csv~e-TUQNbZk=h7$pr4(@G&`t>c>-2~Ve4ePPK z{I#_W-stGnEjcvdeoQOu%dA`t3O;&EX254pR{ovjW(Mt4R8%}fRkd~oGapo|L~)$Z z+!OxMSVU54+jgDM?w#R^G7zfg1kP1blJ39OC&!Qdcx0cok&)5zjA-~!Vy)$R@LMUV zN36TIl9OZIwa-|MwJy)P=wO}qw8Qb!-mCseN4k1Z51jEftw+eAZ2_8h=XcV>R&ysS z*|OOz9>24S`!>!J-%DrZblYBq=b!=Z$cZBE6SM@MH|Ivz7M%|89kX*X-uamqxb%Ky z#d%k!I`z|a`m)_l^@Vc8tMO5d;G8uJwk(5WGPo-!q!NcXRGcyuXey84HBu9` z_oE;yA3A&1qk?r`nXulGn5mhUU4o#oEInEQmloQ8Mk(-kPXPVhxJU;fNM!?y)v~s# zfx`?}4panZP{Mw5ofLH6w(hUCR$v?T9o<-dfaAeX4;~araHP+(nFR_?qBQ+~rn>r3S#BBP% zdR+fae*e22wvPs|`uPtc;d6y@Wd{NH`NcwL1l)vsHjg)un1ORK(ZS@u>u z(N*=aTG|*2U?|Ht4!3wpN%0Tn+cS%|`U5a7R3J4Q6ZGWd>2=C}%>_LRi%odIJ# zaNb)hE55i1e766~-6G5)0SIT7BwYKf!}6n%ABqSS%pKjs`*5q?K%sF+>T|tD0K7rJOT-9z3VgPI}o-PLuE60DY9r==)S01{rTag>D{%P$IEQ(LBtC!NmnuPUOqu5J{!ld zf-;+E5_wXmlur5l)ux9qwczuW+L9HIXf4W{rOPIGeP32 zseAt}Q&O6p`4Um7DUMRAVCV+#v}A!+5eg-4K*A+6EbeG=BXIRO!ML1tiqU5}O2!|- zuawiKHgOg}ovB{S70lvGViH&CO(7<|>*Y690Le+|!kk ztFP6Wt`T9IE89pT=Q{Uq z9$Yz3_V*_)%&#Znx_6_o|KK7apm?vAENex11%C<6T@)WH319V%@8zwkkACg1ugUgU zN07UGdU?BVWoLh*72n9x5+|Mg5r^Y9Mbx|P?*m3ACZpO`RyX1BGe3SrUb-s%WZ~AW zTcfqkH~5{G1EZraT8&rY_V@R@9qr%h>FK#hM)ss?$^(a$mDM)0CGlFQEABW>Bn#jTcZ$eXr1Koxamm4p~&}FC-Y+ z&AdaKX!50b`0!z_dJbMoYpZIBflz?Gv9a;R%a=n(3_Nio$+=sWhYIY!^<2I{BTQM+ zu=_%_H|Fmc=ksO~ioM_*zc0LRDckTuXhbxI{1f}iq2ZEks^4x8USc_wg+?6?DXVD7 zNM?HayY%{NH5o$|;T0b`JKtp~B!tB+e)~2DhleohczN5=ZgWn`&C@gU;l~%%Eb}M1#l9h4|Pw#;aG+J@?jv3JMDNVsm9v_?`P; zEMMp3e1-2ByZ4`nefaQ!jN5`}tilpgK|x_tlK1b@$@r}C1Mh=o+ow->cV2K^*DBUv zZeP&xHPj^`C&y0TkabH@Vv45`@u5UrBp^`B-t0{gz%0@VhZ~1W7Q2WMP?CW$w6ikO z&Lb5{3r8-unXFa(`Zpo>|2+H}C9?4?*)~HW1kY`~VXw{m@#B`gH5e*MJ3IEq<6XUS ziy>@$8et4n?vRDo!S|e{i5kw9mXOZ$U_wG)$*XsEorJmb4C1~cEkhr%4rtbQpopQ^u& zjg4)0u>B}8De2XninCYQB|UxO=e%gVyzYHDj8NG|@ld{qWyNj$%< z&hEOVk6h-o&moKO@wR%QPU#tc+WQ?5mzTz?*kFa08n`qH6fx*Fayu73^qLNU{;M%Svbl-B@xL;`4WMJh9XNaH@AQ>JWep6W~z4$4`9@38* zp&0S^I7JLOdV5cM1-u_CRn zux?R)kPhN+`{?QEq5R~tTB5H=bWNoGU9HSAy1FmKo{GLw5v6-Z%gs#;)AFXQj8J=x zXoy%&S((>-WoE_?=10R|gTc*o4+|y$ePe{9ph-bi*6raqCO$PSCuf;XjaGq_qT&S< z(Ky4z*cf?{UKL3~V9IUBb4p4|=A&;Jp(Bo}1hF05!` zFF6zi3E#rCoJImG;=RszBD#b$olNiOHuze zG(F=%SMj~N3)J#nUV^)8lQ=Ua>MbXE>FKBf?Gn~qcHg5-nb)shznh$-f{e^OTx>qD zbSIhT3KJ9Nl`B`2CoMZWI?joHkjp#RS;^EY(v_8!Wgop3_AgIAmCh9N@oC)88u*SZ zRwU=kJf(cBRnQLKhw7}ZbN6m@cQ;a0kiz4{PsL+B_Mp!Y>I%f?FMcd`T5Bq z>d;YcZf-M3N-G$;cJ10bBuBMpYB0mviF9a?$xI0TZu8PlaVTH^+|VQ+Uea>AQX@7F zPV45^_x2}8?uu!`RA^{uP^(+ulS`D85yyvn6c2_^l=3v_7#YtIGAT(y?lF4!FnAzG z8OiWaof6rN{P{8$*U7oe{UCbh;GEI&S-pZRg+9jzD8Ix+GOx{cQadLn$z&eunXg~b z^EATbVi}Ew3-6BByK{a@6+*H|3yjg1FJG#?4|yQjF)F>>7w`Q$LQf)ijoYvS)^ik- z{5Ll2deTH_483=Vg-`ZP1`D+D)4aCM`?VBV3ZEW1dL3=P*Qu}|K6il(1;FiA4mGJK8My^mctiNGmDEMP`)ov@?A7AFaY?VW;uvL+M^T0ucdNKT_oz9NGb&Y{Qre0=wp2lMuq3rgPDf0Zts7#ShWl#V2b zvSpL&j%T?9WgV((bASJ4-pEj%I%Y}J3BSwg=;Nz0Pf@6eiHWw4ue`my-q_8Gdz~Kd z@%f(AH>+-vkdPP$NB>)EQ+et+sk$TCcan2b$<`JZnTmH+3x;&+Tv%3r{6Is+$Hymf zntf6~Oo15UG|AViVy(29)Rmt%HF2VooqEkXm{Uc!7hcT%V}o`6@i9tW;Vb!~nS`T< z05)F9dwCY)EGTF64=&r&JQ)e zD4Ldv<*i2PRHZCI;Y-=~O(NeeY@Jk0@f?8f1%hPTtzl}f_wzMjPN z!}6KMzFYI5d=<-&21=L*QiVJLrHZ_3Yr|Nt|Ect!7@h4gthHB$O+K1b!Tnu=+H(2Z z{_UQ6s&6bWaphE@`=2C@D7;qdOb%%+9}kI69DhF6q?FUjJM9&KtYZKx+?KS!`ZSo|V1JievS-AM-x; zwNpKg_Sh@=I?6!M`P?9S=n+0Z@M!*F9)8*+MI>KHK>ELV^8zfgoA$oxi?A}#l$DjC zB_o^c0LZ3YVi45OAjGJc=m+5&uW<8U`i{Fp_vA~mS@;ww%i5Q(v$KzFChIO6L?@i} zcA33prbfYV|Kah3n5mgrYggBDQnHYCHY`K2EVYKgWTAfm#1MhaWMn!+MjA;ulTH0e zk%562o2L+*K}tCRij0RVXB;VHBXtf;FIcWDD${8O);h0fIb;312DY9hliZWWmt6q% z+0Xy`RFX|7(+tD;{15-|Qqor=EB)z40bvpUVCoZQzkW}QzgKXnf%(7bLvIuQ>((TP z0{_dG`wJpN|HckohK2wC@Lt>?#kG&|@6_Zgxml3?J(((ZbC%J+iyXrEFDLo``}@F& z#Bc`(hiE9}k<#k@oAn%uii%Lu@0*%x4!!yd*e+de&y`fs)g{-zckfC9g|mA_bV5SN z`zRXDOaBI?Xek6B92vU;j-fOK~ki{{QMu{&~j#Z{CL{uwLS_9^<0C z?a-FK`t4&fnSjep=?JpN*VVH%R38jU*gVGj_;9VGmC0R`Nn{{SiORvWRo{{;*yh8-tE|Q^g^bUUeq6b||Q<$UUq5K69+GypGV|8}_{NTQ~H!vmO)* zxe=a^DpPH3!4OKWHJPyV*>EkB8hnno|KkYVYX8_JD57Wx2kS)x<}(_M%=iG)poqWG zyUi6Bk97tmA|iqm;B%(g+1cl&p(fOFNO*jY@GZhSSGCguH@EMkcT@NaNqF2_7dV^>;pP$!LAk=S2JKsP%Q^t#~QuPoQCF&qe{mm+> zJ+6&u!@g4NjweoHawmJ8VL+Fgm9(Ds%sCHUN7D82G5x2yc+}DrEFQt0Ij#iVFFsC0 zek2?dU$DYOje1`>U$FcBs!$z@tNU*N2{xqQ{lt5)3%n|C%BsGIvg-m?HaF zPh7oAONiss=pXq0OSBvVR$BcKpnM=w}6DY3(8XEa{Bo?xSd^&u?*N9@>URu2*!>@TzV0p9+Nc z1sAi&k=hVf98AV{vh-cqAMj?__5P;C%%g0M;~K;e|D)ll?OxmLxY0*6R9TgQUvdk9 zA-;9+{`}2|lQnt+OO2mrQ$>Guv-Hh+sF6&4&&`iM`N_rK17TV+g)JFfLZCcIKH>A6 zW%zV@RLi)A67C+w2m5Z8Hyg*CaXAkMd8=8swuQVl)3VJ4 z-%;QG1znUS8Vbj^#{Ziz-oB59|bQa0Xgnmw3hvm&%T!CI-5mc{L|oyR#^+f+A7KH&Gms(?qqQ31`;A zTIL}$1dO^`xS)Mvcx@tyNt5^?%Y4QreAwryX;>Y{{5&zE;%cFMYTRxH23oW{gRI-j z0L6-Pl_ZSjtB-6o##aSdcH0eQi8aS+GdIYiY_DV1mnu z^3$MeZe_9%^oqgctRWI>?Aofk{ik{zXy*=I7OSuv>6rfz+rIv>r>84x`uTGr{RR(W zXgY|xx3;!a>Re`HUIHUz+?Osk`qmT&7?E_fJa&h9*}=kJ4j*;U{KTy5`VSeq4qkg&ZNST(0O5t7Ck{jQb7hfAxM9NDRH7v$oU*JaFAIo-(mc{nv z@euPP zpcSWLWF?%5^|?HQzrR1+NM}wZG;ud-U4DcCYgVXVLqNe}^=>dvJxw4!%-EDMP)JbmAXNvmp znqa?XjP{!rIsbux$PPbY5|M}4H7%QmbU|8s+U_m}oAmdhyU@g#F_*T_@T64-C|7pO z&8&Xf=d214Ic*m4bS*7IsZN8(2t&b02I60KQihB1;;5%8vF45SqJ<*>1 zKOi!gWyID6%`n0}$cN2dR|X0O=_l=XSMLI=Ktx0|Gg0FxE6=R26&oGxS6$5qpLQ-d z0O_Ek+ju17+C;n>*&V8EcjPg9>~ULnwk5?0C90K55>g_Z-?br$H=J!gXBxGRKN%>^ zG&2^UNLhE{klM!0+(!B=XMMKnCw_EFN&B%AcV$|wncW?0CQJJ4Z*;d??Y`)Lp?mW!olQ#YxBYuxW|PE?r5a!W{j@gnR? znHf5YgM;IZ&#{NqRQ+XWu7Q1f?v@e~f(hgn(h-JJ zd2^@Oa(`~5Aor^-x*7luocAes%eySw`DiwY#+H`W$hI@!^>x)R}iu64vM0|3qrW@@ke2xpYb6`=nnw8$V5Rah%?i zvNwB{{CZ`?QkRbx{uc+H1c%Zxlm1xd&$u^rDeEYm5rt|**|pJ4n#ZYjaX2)G{pX+4bu2f%@y(Yl5$_%r~8Le z|L?z#)^&QT1J-Ty;tBAG?+4^j*|8yg!RKYs?4zqniTj*o^5FZ0+;AdQ;Bh)L@57enX0*!6 zO7qEDZaf-cD~)j=T7aBGQ;5Imz9y=mzRkD=tXc2mdl?${AHx2&mnkc=t^AjX9G@La;|rvlQ6TTCrCOuaRCEe zz<=R)q@7_0Hh+7mAN}JC?t(sh;5ULo@M*M`$WC4OQ}BT1eG(DT1{Vok&9442S;JkY z-c%ukeS_2pd65!WcYj*Jk#x2K=-A8hC30P;MSLQF_~Wt|%*~g`a{>wrM3{g2+7fY< zxiLmP+8ee&T-azwHoy&nna|eA%K>@rnpWuFZE}lp-eg= z#AIc$4))d!+xz3vx)az;fS{{(T~F0vOz6HuP5o3llH3T$Kb=zJAXV?n+*hvwm7Bn3 z*b#W1FkOS$$jmHcZL%&C`29I2snrP z#&U!;;9zB>Boq36I~SMWfB^UXDvHuzCXQ#lXW_IOPRb@dQhaZ7^F573 zmRfUr`&m$}c$aGu9wJBH+VYQ##9baKi2{g3KDe^u;dQ(-vaz=p0v`i3EOlKsKxH*O z1cm__83@<-YA(f`fmvvZKyJVUfB}p++!*zf9qaMRcH~BYxr5<#`u_Rs_wV10kD*fa z*E(B*!V8OUE|PbOeK|E;aHXdA1vie6=WbiyD~bMeG4%bz!>>@hrFST3eow+Hi4eNm zx9@tfp6cUO+fEC^AqR6+4ZR;F{PO~!!}xOMdJa#A!UDSr{14FeiMJgYp>vy^oAU== zDB=6bZ^~q8h%WZSMPlN!DN5QyuQZ<2xvm?--6L$Y9~%0b`^{$*lQ_--)wl0^x_)W| zOsediJKT*D%~&1{1{*(r5&~tzxH?&<-PzT}k*i%WWjif46)9h9wNwafsY2V z&jUFv?&4CpalAK8vHhyw90Mip&_ zfyLmgy1Kg2bfdSwbmk>QBNKb2f(4;0y>mDlLW2$5`yA&nh-!hbG|$5rz;Vg=?9%)4 z)R|`cGiAiJwBq}!Yz>X(JD;8NhNzXWv$MPCb9(G5b`je*es6u6bY*?AjtO;b_XP*z zE~t~|flO{8HT1dyl?O1{EC>+NLVKTK0gG1Ke+^C_SqTz3*_U7kVQC#SKcmgLcK?Kg zgo}iPSCOxG#ocImjE;HXz-`PjyOXWyh;Dy>pXi2RqgTz$!UDrYy}Nqn$B)G4@TqSG z1_qLCkH3~9ydof=*Jn{7ZfEyq_gK?iy^1?Un4Ob@18_{-!Qm|} zmVaM`rMA&jy?YC+fFRx}x6Dz`z>F1zw}9wg$wX0$gLoDM@;Tp6fzau3wictn=8(XTSdr_3B=oOACxqPz2q}ep{Al@!8msg8}6iq!nWSXDNXt#R*Wn?pVvM+AV_wXRUJM) zzH}I`x#zE8h0lD5WkR}iurVNdscNP)glbFfgF(n9$QW#|Pt$NDUHCCxB?BTLk}6T} zfC0Y%+%DXHOIH`RmX;RqD~X$5im^3xR}qN?)6mcmpbW_3L?BzjLOz26jSi8cA+kV+ zNBY}<0EwEmO7BA#L`MLNM6f>Vdm!?SEG)th@o7>9bguThHvk9AfD@zGu<0q2a_aqo z>^n$)pM?rzX=w>Fnc0@+4pp-ssy50GvZ4i4FPqZ3>gt&Qd|{Nz{!MRh@Ag_Vh-RZo`6?IJ;8JO%`x;nk z;Dl%>r=`B;`>R_U&6qUrKxc<$0Ex;&w(j*8`mCg8l$Q@VnGnEmz}wx`)dJaUV`s$h z>(5>h8F_j6JZqTN$B`7g#=o`}5WoNngx8XKaxqWUz&#`Ueb7gjYx99 zOWcCEx}sb0;6%xdfnJ@1vc zMz5U71QG!izB_kV6C_v@!lx}ObWuU)L*SQ)Ob49O(qtX4R-q1>rR56gQZ}(+u^G$e^*x*itZV(ICO$qu2NkRBT0v*vfs^`(EThW#rmS}U4v-T$m6>u zrAQnU8Z?kw4i}2a%VPsim?;z0SER>VdIBJ(*V(XRf3cyiwl-`5JLnARzNO`j;pD_b zQ7}AABdqKGy6@=?);bE#hZi7ZcJxgWwkOiKUED$BBs#UVv0>dcjGyLCQe^b8UG05| zWSFJt!lmN~0Ivv!>%+G*^-V3bPgNS?hqpIB!j2tZS zO!V|K&^x<*jpU^T1^+>3G`7gAI_H&Pooc%)F|o0@UA`y3%z9FVD0X*uQGS5)sK6K^ z4p0u-&gi71(9TZTw)XZ}h@$tPOy2U^-!OYxVKKy9c(*LOt=4tg8<8NH(~`w!Ju?6s z#DPO)vUYKKU`euXx~8tq1d7KT{^Y;_AvHC17WJW(g@x|i3n3_QNJ0RU8gpq%P7V{m zY}^Ke)4>NSsvP3E>9~biYL7y_MQ-ex{g6=~On?PR!m9ry2#0hI!W0X94oINgWo08s zhA}}(Qoya)*x2?q|6344?WZ|eS&;l&zkIn2Kn~>xpfYaEP?awGW<+E|p*O|P10;*V zN(}}~Lq|)C5}m!7*i^Lx4fMxkUfkUe2RS*%`to0wmo45fsi+ckjHV@nE#dTd`V9gRvo(j3FPvKVR;(|BE2P+vg2>}6t&Epqpd0rL~3sR6p%z9J7 zSdycowf*Yk=-1D7{BUk^TrV%Lwm2$)y@;Iw%nr|BmdeYy28-_)BF8*lXVo+N7DPX`cYCf*{?Z4mj6E z0CnkhkDh_|0Ky|WHWs}?*P5LQ_uA3?bbEXIQlw>f7uYA;8WqADxB#9>gCPP#%r7YD zEImPJa|DiwNu9$2*lVyabRF)jgun<+lO?>?r6Oay1J`psQ{_)+gt&dIDZElcW7j7<$B0 z=L1P_6w<|{EA*Xj+%}Cz$H%|!Z+-=yINZ$^(){DPIsq7hP*~0B5ERf3TvK0FR;Ml% zfggBW;o>5K(kg9kehqOpfjNRqpYzdYdL$a5Zw-X}VT@*_r^$KbZjic_w+=k(&}z#PHfz3j#N(w zcm#nVUKFIESuN|0c=|)iXC#cCiRmi{guR6P2)ER)kO#uPtfFEY06tic0g%nB>*^@1 zzLc7FlR)!82Ob<4Gs3DE6t;+{7IR#?a3>xf9&%>8y|sG}%*?LR(Van@K`PaY(Q0{t z@P`%)f~{`!6XbNLZh&FWqK*z$N{HPL=|G;@KRB41YY#WR3uvm;>I(;0GsQ|quENTK zWOi0%pBmN>mHFq_=Yg_*^JsvP%WAZ5X)`QFj5rSCfC+lx&4wiK7Jzpp>?{t+yP+ZC zd$mrtYH32>ITLOZA*M)q`7Xy20eWO<(Pg}ax-NGA{{5tJ;*X!?W&%Q++q}v5)CUQA==ecnN=@9j3)2sI0xsta1}5fLh%En_n%f{4 zuzT)WA#N(r{SY^2qEL-Gq?=tj3u zRdEGjku>4k%KMMc^_8YZh=Itxy2dYJF|wyg4pODz{7ik*-x2Jf$0K1i87QmUA07=2Jeet=x zY0`mL@yCpR283MWyLx)z-9zAGy|OlRM3;z_k)vDhX0I9Y&vm}=Ya)YJ&L$nQwK|7TN|WD{jgK-|gE-QhXj^#0KGIU`G8baYfh z7AbYVUmA^2aAE$6j2EO?a0e_Z7O4N31}QU9kS<9{+s1gho)$1z^Ne%_*@ zRJAhD`e8(*JJa&hzdF z+I$^%a-p@?-^6oBY2##PX78gZsNdBLk^1|k5;8`A1Bc}^R2^2;frsDSjgvl)VcZDe z@h@sGIR1LLn&3wHRG~Gjid=l*!QG+RzoT%xqIs9`6^P}~)=F4dFgx+z3mpMr26!Qa zM+0F$j&inp_S;we0Q!rl*AFb;e2+R*xvh8k`N*5-%%lXW*D+g{JwL=S*xB1Rzk7_{ zozu#^(LZd-=el^Fr+%D_wesP@@OqGEl8!6ar4gEM>7oVi2iJs`R!eSH{b7Ngbn-!4 zBC)qN+1~)l(<-#xVD3a8F21K{oP68y+swvnEBFh+RM#Xn31_%vKPOpk^<}GO4oL)n z-a~-O645>k(=zqMND=ZRL0u#w3WSXQe4m(z2qRQdt%&#T@NytQch!4(lV)39+{TAC zQLSA8u3e@Ru>2<)JV_xtGbfy!SQ8BVjE>8ZVhM8B3=v1hRpW>E{%nZ(cqI#j5gKZ- zH%-Re+?-fOQx*~g_<*tS@nzK1)Z#imXGr1b*EnQN918iK2paev?{HLHzU@FiR{rQ} zs;JNQk}8t=LEXESkm%*@4bI#df)!&E6MOJ91BF$kLx6>Xe(W3@TZuzx=1m@}Q9rmf z#A{2;uN3zYOI}V+45FA8i-CzhELS5R+ZXGUadBPvdV}q zoITeqRApq%`uro%jrH3@qPbov8)x5vZ6$e539v03sfcGe1P}^Zx zFA)&<3ws~T%rpl`zyH|_%}1gi*=>ghalIFqKOi>b0&O-Zt|l8Z&9F%#LPuLg#Sf~^ z6?%FM7#=rpqqf(=?-6$^fECy*K?ao@G1+H!TsVJT4CD}SEzHf$&8)Ap4Kpw@8Uq`N zY?b;`{zA#UL}Z`fgz zh)m%rkmZ+1NP>Y*14q#3^de|m5KAMqkjG5Lh(RkbGVP%(ps*PF{9+In7vJchu%*3q zt3UUUZEFwduj)mPHd?WhiPTL)X(Oc(2W)1)hGycB8eA{jNdO2np!wIa2}wWJigFzr zY6)bmxb?OHQ>$Szchvc6fTfY5jI!Ico@X&dVvn`(QTuN!trgdnBm2%hT_Rob*Tu%s zSN_y7&Gf8dqf(+tlr#c=)4wK^h{@Izh4M-%>ic4NKFE1?O3m7f7!qJ$n!;?OeA7!` zEL0+y?&xWvh}rocHQUuXUOx{;q^3nlw{e`rdOO&7B>q^(nS;~PXdZA}hTTK@g~k65 z5-1Y#p-^L$mkByq~ToML=7TPDnvcE}f3e zk|P&zw@$6obv!EmKm^_bb#{@-^avIVLc$}E4v0dsn>AywS%T!I4ho< zX7Kh7b>=vvWdbe~ae&gnVPRJQ(F!Imc_4I4&>z?7jDr9&2NvzoYI`J2*g+zdl#xM4 z0mB{y6pk@)b^CMSY{(Xh%r%;8sTj;^&pxCxD_}H)fwLwE;6dCzupjyPcqRJu3=Fe? zbeBG7b>r;qT;rrc&8%#VWDjomS)46o%@Z;tBQ=%g>)Z+svraw>jAT zfde`!kgZP3gXf`Y&-IXi?H+U~q`Yw?73zHcCI!h){^cEYdKMO3QZ@rb;ekCO{iP-{ zQ0$R@8npr2)J$gHJ!a?R1O|o*XyLmyn}Qz^-!sf-Gh8P?Yd27$+5>wL4v~c99400v z>_8xE7_pI*3{1q>0!=JVbJo)g_#!aGKlzXjvR1-ML;cudl=fRV2pS4z-bCeOt!_Qc zxug~t-&W`mnd6p&4jsVCl0M;<7;w&p2Zc&8@auVE@=diYF z?izw>Z@Kpmm#aK|Q*+}}N+djr&+WzsTMC-`;_dVjJ3i&fc6+Jmce+!A?iky&^(sD_ zBVdJIAN@C)+U~lh`*r~Cxm58Y2I8tmApW2QH|(+~*Dcavi~Rtmi7Rm=jckB9`o254 z?Z2@jZif9WZI(k8&Ux!`PW&l+5?L@jK-+U6+YV4mU&@$ZI)WJ#;%NaR;!_LyrKH^Z zHF1Q)@3ujUtVS?4p+p}(%-(;Ad=FGP1UkqSNa7fM4Qv?>YX$LyChq)!#kX*v;f z_Pn-=t?aq;Aj@!@2-p`s=%-4ZpZDGBMf()Zh`7)?tDgfkmu-X{t@TpieK~S`y=JSApvKXYjiU` zuQKVoM@QaaTF*>LJEPm+w?9w0U#k<^{XTVJqeA0lU2>>i6b^6Ll;ihXtPBrd!IvHz zRA!a`wmxTs-3L}4TCCNn2ECgCu$>Y}xk%z0TB0yeh^sCb*Ylx>KkYkU2VnaHvU?y& zm^S{y0}!&$BAac|(9aQ#vps~;hRDzw%-o}dIm}tv*~Yu8Uy$(v*%cp!XaUujPr-d7 z9Yq}p!G0CY1BfOeEBl0RT#oM9bB~LI1E7B1)T``CSA@Mz1w(T{AsKUAgW?5i9NauW z(1J2aP}1Ae<5gT5$pF;#{CpsAqAk6>B{~h_uiT2=5CsB~Lnidv=R)aGNT01$Vi4)L z`00wE;8DBH3{5rH>g@<}Zfr>DHd#FwTaK0D6ozLb5+%_sIWM0p_d1ze#HZv#A&ofc zsg(P*n{Q?!Jpj-d_h!9+QoDgwaWYX~!^Ltsak!|IPo6nq*w(-D$gY(8hReMi4|#gi z`Pq(4eT-kDMmhqm-jN3QPLHEv8FmePBHHV0XJ;xjQ12{pDQ{gb=NTjy8m3Wb1K75~ zSAY_J8ZX`Mdiy#>Q-^TN&})&XociQYLlc_NP>_+}l}~)IL~1S;Zo0}ZXuoQuzW>$NHc+Tp>0F}O;jyA@JB5!pR60Y9$FcWtBqBy_C; zNLB3(_5k?IqDNsTj3Bb7TI}L|W8*XMU!%PI$`!5mM^lM6Bt>LAlu%*59e$etFn!P)Fe?b z1Plo#csF?Rm4WI7{9dR-kShxrnBBaO)}BPoJrAIy@?p?5IrnKN_uRs)`(P_`^f=Vo z=SxaTf*YehhexSXe9Yre)vO&LuXOX{^7rt&LZ=5lzkJEb2BW?&UALJ#;^MwJ-~Kf7 zRDdmuL921-OX9McvHkSvs^PB-@hrRFnT}%4AGl8!MdFfJui}Q~$VjyQ) zfyVwhofr9YujbT08W>_CP%R>QW zKMgS#UT2@2?ydq^!I5R0(Ox$T!^;-4)lz$IVq0!yNmp0bydB^6e5`WU$cT2+;p95k zgU*Y064}MTpfL=}GnCWou*G-<^!Ip;x&~_?N67_T3W0o@_!M-&z;RnhrztKrHnXp< zPodIvWw^+Iutcv)DTcMKi361Gn0g1d&8$^OCR4q342~eoa4%76FGHOj0a`Z)3d6|M zsNq`{Or_-ydrbpRY*aBg;2{fsX!;+fQ<^Xq78YLcJLiKMxV=4~>{(8=YH{LnRB`f> z_G6leA$Z7!fbyI)u=Kr^aOmnV*A~h@PGK#jVr-lN_$Uk1ojia7pM*)mr2w@re{TQD zX=-PxTV>;YM@bhG&V#zTxwkh0YH|Ol>5TUMZ#_vP4^pLZ{H=JBL28;*vMdR2H&(rW ze}+3ByNN_-PNLk#W3Pi19r>xBVH|uD@X5l;%DB$J@6S+VpV&^>p(Y|PH`wd?`;DKN zo2jLasHh+8ZJUjJMXo6!A^~QYfT#G#KaUi^*saX1D=F(Q7fq&4SUyjS?Z5ZEiLeAi z%%yIUqV@MNRC3^31=z9?{%M4)Aw@>NKSaUyPK@90?t_m0_oLa(%VJDQFU>po|9sH* zP7u!@S`qTMcz-@{lLKx!W#kJv@>B~H>c9N-zd73f?xPE4V7u`Ey_cdc!t&GD=vn<6 z6udTrh9_I3aR~_uF#wLafqUQiK9KY5#-93n9p# z(qjF-K(b(?%3%0;oj9$W#h15P;t~?vK1cg$-mq_54i0bCW`Tx$aewDFxJsb!%L7^E zixtlf7(gI(xm3`A&%kxkIRWfeLty!7*l59V;7=*uotrbhlftiAT3U*Yhc|3pHJJ^Y z-%{=|>&9RUTMHtKwfhrmT1odO0X25z4$kGDn3~P6W z^_*8nZ&i%}cMHur8(aV^!WGb~cJ^z+!@`_K?zvtEFU+e~uYd_n(6dHjo6kN2LJbme zTzq^sY|zs7bat*t^;o_RRM@qfHx;4aYJ-pF{m+pQBQ1;}Q_wk_4a_S3gw@X8X9c$J z(99md;+$VuDS&wYFgEw9b_lB^r zfwJIcAXrxNl!bpu#%$A^Zqh9Gy$S%v3b};q3=C303p)=9!v>(8^=U(d*kxvB-Uhde z=g|amYRJIbVB=wiRD?Xk0sJwAAbN9Kk7@k;_Hh8r1?AxHlKTt^Zeq>w?SoM0WU^rY z@|PbjcV69xpgrSv)}i#TvcK;prv~}30t%|!XBh5s*t!pP6a^n2pJkx5 zz(BcGHsnfF;Ht2ZCe+lJ}um&htLpwU};ffED&SCWb(}?!yB$*q^*iSqIO;_|Zuk z`{6b8oWK}X7pLf5rk4Z%3iFK{u^JQ@auqltpF*ELb)oPDCkCvX%Bc5f7;)dIztSl$^&*sBV*5OGx0a?(#cs&)>gol#d5IJjf{YA@ZJp%$kQx219_l$58tkY!wB%c|L(Nh`Rr#?khdPZge9Ry$IElW6@MnB~CK6aP{v2R2PT;7HOhZ~`Fpx~oebl7OK(A&SGK~fXqk^ra3T`vdLj%Vf8^vwmqb6c%6qw3vO}*9{Zr7 ztGir#`lD)E3p#YjfULV84AM>tA1b12q(|k~bOb>=#)ihym*Z_0`=xX^J+Qr-E zYX=;+*}Rm;rQmT#*H~GL#jvZjfKhv$lj_lBEi%(Szqq&pGWZa%9&F=#%?x_P6jK^y zGEOIV$DhS6yr{P-SX(D7nf*{yoNMztK<&Kmf_ZPsV}-?fqPn#CTeVKSN#e+Rc#Ml~ zuh8C08C&$902lyN3X<<_gsPoA7&$g6EG$-?+T@6Pt~p$w_2($Zkh}+hzaAr(;pERxnj*f)s0%rAhTM-F-~L;w*PSuW5|=FR?R!8Bm`<~D8<-JjZ*ehb(h zkZ~=uEEE`^&~n1U!ZhyPyJtod-cAQG1^gDE&OLJNKlf^P zY(7YPjgwRTPu{M6&;<0&kI_;I;Na?|<9^q8l)f)HHn56KLHy4>7DmOp?0&hIDSxg98N7Et0M?}g2BEngNx)^l#|#!^9H zVb2Xm;OGpvFk*NKntuKRA2tT$fFiC16ZuR@U7ELErsW8mFHh zc|E-+^7EO&`ULy2J-t^~q%w=K@(T+!q@;r0dp8)ZPc`Hh7Z0;kO=N^ndvq4DFfqx% z5-CKM5eU1JcCEMxRJOBY-ptnvKF3}a@XQjnO-wn7Y&@BZo!%%?qovb z79!xWDB5KYKdOPk%KBdWoh?-uhreow%WLk}$Ny$Q!CAepm(eK7|w1CpL)_KNS8NrTH$ zTTLwn9zyY24RV2Ll%uh}yD z0TiF&Sc7L3{dd3>TF~V($N|@`A};O^yN+jS`Tur@K}tLvDxeUt3l6nS-Mva@$d9hp>df zA{h-F(bbUFSGP<$%z;4S2W^D@5txO?Dy@^j;#2@0Xf;Sz&UL;ZiNZ|BLG^u}oLm5w z@ha5EWO8TA(TZI#c`C#JX4nC~efW!6+mlO3a)3>M9v@1D4=Ytlyy}&i6mD>*t3Mwf zev?n0<01Gfl$z?ZQra5pV88l8ZIMLa!-+5bLuQ62*BdsPsj2u~bVsQ%)e}y-KJZC*wJM`5PWYLAi#T-bQz!K=X_2lJ^ZCl`v84;mWZ_TDRU;8@db@Th1!Ik1G*Lm}p5rRhWg z&?{IVO6fmX@!Wt!07VC)6?QfR2vSc&J_FgO7X zSOj4^0gHZh-;juq&^ExblTEx=z4mWxc|6R!z`OtAdU( z2zx5rKKL99NLhUR>doq|^%4K68cW)Q#Hr8@Nzr6d3CzUjq20Lc&p&%w&q(>!bL~&9n2Wss>)XKQxD9%&)809ejf%xK_uaWNEfNfH`p3H9eA% zb8@oYEu36+Gimf*0nK;seis?JpxVmPN5AH&JyYm=X8lJVgu2nF^Trjj;tEH*A(0>e_fTQ>BX5KN) z$&{P>ATTj(dAn8_z~B|Y)RA*Oj40G9P)ZYKk<$gp0gw{`JV3-*0AQz%GE`N41&kcD zl&a95hDAmFpZ2ahD9Ur)lQAY<6-WkFQhE=9`H%l&=eJ#){T+`0G6+<)$!IF92W?85iH z@ALlJ^Js2h5bC5%08NX${Q;R(f$@BDLF)jG-`rB8o=%bdvh@_5j# zTg1jWp4uRLyVaUYK9X>Er)F@-Y7=Zino4eY(#v;>*yoisWHUU@=npu4`bPa2l|nQ*U z=yv)cfqOBe`Gq{A!?J3p6hp*)rifIJvp|j5bI4#$POOy~s@ZDo6&kmic!0Ekg~>9l zeb`x9)=V?xp=>rb^tssxzJY<~9KhiSRFv+QoAmf1ZWERS-iOQK1WI}Xs5W3Pz>+jc z|NHN2VRyP?hGTMSDj(F+9R7kHgOG*5YK(MsZ^6?`LKUmLpu*%mZ5?oaQhj2X1d}`H zv9q>l{L1yas>SVb<$8@!aVDWG4X50o^*oo{zaVwv{y=Y~YOA?Lfu|2&o zrg7U}m_s0_Hi9DpstOnPFf*T5qiXokDt&R4f^Hg{er;5&T9h^D5AN_mI^_KTmvG6 z{8@s^Nv4Bcm@9KSOM?`eC4g$-HFznncoyE~|E>K!aWOm6L<)ZnSd&b&FOeA4-ObIoskkg{d-Yxc~62QMtbKFJbVMQm|&mC4p>{3 z`I7<938qV^vSs3)g){~9s$^L(2w=qqV-uE8KLyv&l|cxg*wqk~%*bRa2=|Ba^Yo)p z=zzK-p+SXu-G@szQWAPcBU=-VIa0fJWgv@2Kw4-9+jFO8JF@TZG^hv7XiPn^1@^5z z0&uQAXQNe>d1vZCyFig5xv~z~r>q>?A_$ZLdCITcj##(Az(61j7PUxycvy8gFRs?= ziGd&cw}Np_EkYffufOi65BdL1gk*I2baIRC@^Tz^Dmit&SP-Pv^K;0G#_>nn1w-HL zzF*GTlb23E96jkUbA5ZVr0!gQ`;J|e%2%7sxE;IZ!+N%|ld+czRJt7wcX(Z#9!x9t zd{mb;@X~r<_wADwA8Rzc=Nc|>n;BhFy3|%I62ICxYh6pD`NG_*ZNkUK=8X;zd;Hr3 zpcJcN7KAPi0Fx96Zuv9*bl}13@~dt9WgsPCG~8w8c!SOw7;<>}SNyc>D#GJKl@KNk z6+bv`&-v-bjXX>UD>xFZK!{2@@AWbUGbUF1_4pVJdzhJ<`UTBog#K!4EQk8%$E4eeE}2S(?Mk3g?grtZAjSr7-sd`qT14BF12d|<}3;{XBHY& zs8J7240e*0qLP|-sPSK|ndpu3^mH_#e50XQ7@NV$d8T`{tkT4&+n-iH&DA5Xv7a9< zdG)1Dhg@!R((SpmZW9#y?K;b6_{Vf2rfW{qyS4qJCt4*7R70j_PVM`)j;7o?ns>=c zmEv!+L9F(GK84mMk7MJVCwwJi6R|AUY@=VkJUjq{5qR6!(J>vJWP|w@eHPIB_h;|k zwX009Qt7SHJY(pg&E!YRIi;*2sTo#w=QWSb>NL*$Xo{2Zk_a9u3Csbr*wn@*4&Bkp zm`=9`&2>=7B1@)LTFX^BHi~M0oANG4pEbi?V#54VA85J+RL4>l$?HCBpd4=YLn> z|7RaMr7`gE{{4o#?u#!Z^!WPK&7T8VDW4Nx`oPDqkUhO;oR)sRfBAiGmeDCLD+m!3 zQEF2YlO!IGr#5p+ZatU<>@3sb;$m}k4uTG*hK85w#-W9hM?REeWFhn2;(-wo@-GJi zuBfUChkyrNLcUo+R`w{y>>47!O!uN8Oa!`-P@Rt^8a~cL)AOsNh~CM)+`9PfU$Q1Q zW}QKu0Dpm$7deZY)bQlVlRq^n!qF2JS0g0Y`=y-@wMC1ce~pQ9FDoNM&8{pQ#EnU4 zOu@k`DaE)9#Gc2YzW1V-aWFZs{q2>-Cw_?)h2BEv!p<*vynIB9q`5x z5fKFCE_6AP-8vwqJTM}XwoM2H|E893;>t3THVHRGjxC28&O+Rb-(LU_bY}&L*#LLfj z@zum$I?-7vNNY($en&kwgNlT{#T4(*VF>8EA+rNtTOhk=+1fEbu1Y{IG_di|gs9@u z-cLrTC*Oajwc}ZF&Fj~b%^P1p6>mVd$XHCrtS%DK&=WaGE=scF&bIxd?qArQkg%QW z≈*$~;eEiVx ztU&uKH&NVcG6$-=1(#i(sy6h09UJl0#$G}8;=?XnkAPT)OYxL0p}Cb!?B6T`r-T6d zghL2#!1~~A!~?R>dccb?x4}Z+L+T+F;z&9)9vk;PxWdp{*Z{?qkRuQ_Ivz$0?jm%1 zxRGdnVIzXc7i6M?y&l99n&UngIK)+l#@&08ge*!R05mxXFvFP)l;S+0a5{&W=1qVw z@JCU=0L(UE^NUbuEld5g{+Z%MYPMv|O{I<>j{L-iT zGHbF^LiCZG@xt+Y6>3Ha*{oKFUP?xYt{`o|p3$h4N^GKHS?PPw9oE`cS8&Kp{r6%; zH#M1r?K?BPUh4Oo4guP?M^1!ObsW~d*%F&{{xeMp_M)10Z5N_fDL7|5bSaKaN`$;h zh*GkzATtQ1h%jiD2o{~_Lc#FH3|Q%sq%~TzPhl1&!VEA$f5({D9l{$zrs;ts0`I$l zyu;3^#6b7YKua#+yr5M=g5p@vs_f1);Y=8(9IHcYA2N{~@|wHBtT45!5P3!^68Z(2 zUIwnRo@;1mP{tGm90U^8n%nr~$d}?;{#Gh6o*N!N-QK%$Y-n9NA-8<|VCJ6RdSiC1 zeaNNZfm{%tpF?}EBrA8yhh#*$8j(^Gn_kDVa4NmOo7YBF2_H_OuMy{roe|F)>5LP5 z_)T(DM#+PQtHpk;*SE9O^E2B0`c+KLIK5oDEB*9E;{06Wcl@$ZDLg7F9WxVOlLfxQ z`q;}E=+7yUEV7Y6oqD`}Pql*4w^7HS%osu7XOTlF6#D2inzOpx)Yuqz%|KhzmF}ux zuPW3I?D=#UL_jH~XecL>$yOOr{uVR;Kxhp8=J%eGd+o3EOn9T3$pO6+wz(~fm4Q>RQR%z`&NHlrSm@I%71}@g43b;7z8KIk-q5P( zkuA4<+cs^e&W!-K5pi)eLTW_DL4vIUPYHE^1nms<>Mr8Q3c1a4J(LW^{+nN1`&CG2 zoiFi!1b8ql(?%Pv^`zE#(B|55uNo(Qp$#*zqPn{HLP>xB1-e2Y`TO&^q%eG+c6(#a zsYIDr8_!gFhMP#sz3yOh&V{|aG5cIC;L=)Kj(xzEklD=hq7jb*4q855n7UL(-kXt- zGabFOrwjcJ;x(-y7d2qKjx?+%)C8Y_J#Vp98%yQ|3R#$m3|nG)G=3oy3qlLy(ybK7l_-z5pu66EDeF@>PKtg#1IwlY|PF+fLboAo=2L~YyU?d0- zlC>2~;vFn7xPv&`z?KBOo`%}A4igAS&)|RxCQ25p(V5#MtlIV%#Y=X_j?(wToGi=K zG6|n!knd2kYca5`t-arUx6=74bcnrgM7u1|wIg&da!X!%h9A;om{M(yu^8uao890K z^s*+}uP{!)tboVJYe=O4u)0_7DVXgKb!@K(%6xO)7)|zYisYMXe#|bcFSKRGsovyM zoQm069v}LuX<2#aeQ3uYJWEZCU>|4CKHO}|*>8H%bVo+BWFNQ%(;@ZxnVhprMW+>32S!K{18=mF2tjU zJ!sb!8K8eutFmb*D4+At@<(gG%~GNjvNBm$?r09|$Rjss8!QaPk~fJaO(nWCE-$q; zT`X5ZkNt6jGJGbS0bEX?))49ne7ZZj>90PFZKYL~mtSVRT-~nP|7x|y{T7|_%jP8$ zgaEI0HN~hVX{YxS#i6F9o8jxO?rt(t+t7ZEG1wkT@)LA;y{@5mR(G*ZJ!nXiz3~hA z=z}8z7W<4HjBV}uHK-#MWOs)?*8N8M?+QgrP}Dy(Au$mbEA4mrBY)F2Oq}!_B)vJl zpc{5>jd1PJvrKAweDb{vs^BPXaZd|biRa&1Tt6Wzd-(@l4>vtoPpqbp&_2vwU;NAe zL60Z6CmNs-;U@W(b_5a);?z$g;BKzI7{U>Hp>P_-5XBTKKCdpZOlk%v&=HO@C~=Qy z4ROW5ENyI7@t^hLVv9zj4-QVd&NoXOfOa(WnQ~RP7pbTHMcB&#S2Dbnzo^x zU2+-mr`=ENGq}o;LGkV=xHO=N{oPl7FLu*onWg0!dY5%3th*+jj&HiKSe*_3=9VPm zBY6*VG+4mwYHbXtPUX$Cc^mjRF-0T}zGp8XdxsT-&O(GsASMtcmQeVuR~N0*-?~sOy)O5pD2-NF!%X0 z#QMI4b$e^Cj3h(E)b-JujI$C4PNx)$Z)fh7ksFl z?Y^T1gu4==P+UuBr#MZ8g7S)r`bb;bLXt@~(eIvDyvj_eFkN#_rrXX`ovS z`4Cfe#%$3}1c!|wZxL!Aq(c0}*5h#)^*{#VYRR>yY!(SZ);JOPmR}Xs5-9$k0w#V_ zU6B?{kF3_Yb}Dx*wopHZm+P`hP*FDHmXl|+OiicgqOeb2BC91nKwoQJ1oevB&x9UQ zS`Zkm_%zFiS@wNce$Qr3$dD$i^pwS$XpNlQA4{Y4!*NY7%MI& zOu_ntftIsW%`ffVAi*TMthhcyEJACujQ>)?>rmLb_3Kj*?{EbBlPHmD`!U-Az?2BF zAf*SMk%qa7gk$wzs`sNhn?V4Kf!8HT5W*z5XA4@nW~v5JiaHd{>9m}jobd2)BAcQy zKlvWMT(~50c#+U|6HJ&5#QmUCE85$!+sH{`C=ot7??S=ysXkUmM+z<`_d6nW&+ACu z_M;PFXp@sM2smh*=)-7&f7w`MdQtky-i~fj+2>L5FK@`lABr0lJb53jnfa5MW}ES{ zwTb(#2sqBN!TI9S^_6FtJZ_n@v7LKp`<%=~FnQ68etVe6mO-2oMLY(1N!Cb(tk%Iz z81nLmpt-Cp)kYx*+c<)4!AyD8QR0#PThYv_l`9()UQOw&MzGGErHSAbpKTk4S`m)? z6_Ab$)IiJ>rlzM~)|ffr#Qd16>NN2kYEzH@)wrjpn;7`+S-EP&^n#bM zj;hOcJ<@T$#GUWM*%wB<=AAEI z2zGA&F3io-Rn~6H?z#z`o|=tff4rhW3z9p3pP+g@y?x%C#T)2FAR)OTkjV{Lm;+F3 zLM__|262F1cX}6ogaNDAE88lH45b!fstLG)`yJ!>%y*A4aNY^4TJicdnjC`i!0e*l zoaf}W4tNw8_N0DR(?y<0(G|V{dov<7*00$gvz}~hSF-O`Y28v;pL-fc$@%*vwlbrH zP*Y#tsCF4vj56sV$G0UI8CVw^P}cAt+o;}TJI%k{Sxl>esx@``jf~8J_!nPH$FK3s zT%Ri=lfgG#l#+zBOf4*^BO|U{w*~{nm^T>k{}53Zzc<|{3=G&gc9r2skLKhkzKK%O zgV=PX>)#;vbBLKtBsJusVFm|yT^#(RRRfjXl|-w}_o#Ik^q;8PhvZ5`Y3JS2&RP@* zo+%Rw>3<6^H(a~5e5(AU(Vz$SHPk=el2waIeL6Wi`3f>$8ujGp zi^?z6;u;qhtteD%DZ}`aK5nHa_+2N++cr;K0JBexxT4n$Dqyj zV;^(qW3|`v^+~@N>6l(T)a|sl((Tv5r-4orjz>N2wMThW)^tyH2d!-h>oRn;y0WKc z|KrKmhZrJG)4BeFtVJ+#?P!#uU2w{=C?oqAHhHdDB^x!CQg)m~szctbjb^<+j!kC6 zj911m4z(c)?j|@`@(0S0KGUG}9L7@BA_B#wX^j7I78_-Lo=|l#0ZwMo^lHtgSF#5U zLd8Cxnw}=2AS2?e7tRIDSR4PM;z&g>chNW*bJFQ#@}v5uWg^R`PYYlXC>->-TVkpZ zIzZi^IcXL!?LeP)53Ywl6%}yos%G20RM@`zdgi#%qw~%jzsg+`hCjOf%=f`g9tqax zKT13?vm&d-&9Gs?Clvy?<9zQX?%^car5{+R(H1@dp_rgqJ{?PmxquvT&$c>g#=}Pv zk6N%<-+KpceD3l`$VTs-49K@M|DleTj2X9)W65zOgR#SQ?Vnz02O*x|_# z(_#sf)UNmx7ZgHzXen^>0@J>h{_)Q~^fGbl>#{OE$UKg{pI+lq1iZ-|8EgytnDRb1 zH3ii}fJ6XwCNMk&@0MQbtp<{VU}IqvN=;3R`pQr5@R47(QG4k#{w%couf>f2HzUh` sz1CmP{;!R>cryPw3jgnp!tlapuWUV5Bo2NhNh~o*=lFND!#~{kcd+9LPXGV_ literal 0 HcmV?d00001 diff --git a/2_pytorch/imgs/Notebook主界面.png b/2_pytorch/imgs/Notebook主界面.png new file mode 100644 index 0000000000000000000000000000000000000000..321af1ff28328c6f4e38e083302501d11a7629a3 GIT binary patch literal 47591 zcmbrmc{G;$`vpt`Wrzl4C{hWJ%A91%kRoL!GL=wdo~I~LiBw2Z#>{hNo|2FuLdaZ6 z$UI~W@4nADo%8+Y_pW!X*IK8OJnrYdKcCNaUHjU5U(a2YbEjyjn5oFf$Y>Q#%c+r( zZSW-{Be&Z`fq${+H&4a?HrUH3Xl%ll$EM47$jJ7RDac7{xI7!}ady#YZF}>zPsxq< z#kSMyHY@Cnp_JK7KfF#&PTKz_SL_|V#SJ^^PL{;#W!W&K?LDdS!kJuF{kWWY(hV{N z?-Opk!Qm4@$Es-*-fvJl(Y7q^x;Jsmv*FpZ@DkIB9L?j;&)ue%*~EV9uRmOpk}QhW z{rfF_><+Q|Bd~CH2XiVq?fsK`@vO9?Gyk0G?v71;DAkkRbXd^eEQVn z)VE{i2e@{yu{Bl&M%XwyUi|Xr#*-&cKFMYO`xf~@90`Nj%h&dCW+Xfad3Z)wOY&+* z!TF~t*?B@0ZOymHlqr{Tu6mc#wgg#UAu$_;c-dodDl@vC+{FUZ?53);-M0 z+jn{F26geO3s+FC)%mX0)l>I@ZfW57=K@_py@c8yxg4e;klTg$HHW1 z#{EC1#(D+?!7!Z><>;2H3a3BFB(}u1uJp(b&Am~PKWAX6z04N>Hu~dsAIg?= z3+-pmpEvE+lkY8@Kar~0mU``(s+j8yUs}?MuqfZ7!sPl+B(lN)x#^wvD}PVX@mWYD zb)Nfv-EO#>eSbEc#+iyGc`lO%q-sd}e45f6RpWD3iZi?nbmD5p_ zNkjEprrS#>&DE7;3okM^Q@8k8zR3;Hll49_v-4!wmKf2T(AXBS_lCcAn!AfAF*~MB z2j}m?Imyx0Pj&n_?2x39qMKf^g15bXt@HKf9z%(?@spP?ACPdHdJ4GpJgc6!Z{OZ*OTREvFWC6y>(`jknU(pz?FgZ;Bl<(VCGN>f zdnDXKT2rr++-PSePF%~y%-=xu=Y{ps1&U?#E zyLAF}7P#W(#IFB7rknow=FN3J14}3F$;WZ$DC_DnC!Tvw$`R+}ye(+f@Ga+V$rlaq^ztgAH+&~LP;rL zgYQ45GL|`A>ggMiu121g4*yj1SI%-r z<|l=%<98*!1E{FNb6sdcOO_>eCCpg_)#iMaU>md=G9$ki5b&){bT}y zg5jd}2eC5WUNuS@H#`$f(jXN&48MKrOMN#ei1Xk<3NJ6O0hf&%H|`d-+YqXFvOPne z{7P5uVau*uldo@m)AWlTUtd`Y4Zq?x^{w)mq~}w1SwFr@?>3n%7T6CyIcmu~^W#H* zmvvcXcXxO6xR}%EULKx%HNl)Mg^m^`D;3cS!3T5nH~y(lp$>xkgBHbjLpnwh-X&*JH-M7z@Y%EaC;Y}XwzlO}Rem?tQ<6$v%y#Bj+*XWNYcOj`I9oeG z3iaP*=+R`feDdB-rZisO2{i+Q$d{`RPqC64)rN3WEFZp*I~v*WDl6*&wrKmdZ8t+h z85$ZIXm%gVsyDcL{Q3PLsZ~ZPDXBw;4_|FfVR-oP;k-uaKanJU$LZNQIdzT8PlT3o z_kQdv-`itZ=ipaSMaFsI43{FMCHv6oQj_`K!A+Bs0SU>ZoQR7BJC7Yd-u%*}POVN~ zPcMZ10td^Ig!|kE|HN=!5=rgxL{}c2w^dJ}X3FolQ$ev!S2j^oSG;?-;rThU$v8T# z=Tcq<9jDl6vU7725Er4O%mf-%@h8EY$^s5UDp)!qdKx8{)5?!d6whp--gQJ{dQr%_ zS8vf1XD5K!|4%Cjrpz8zoc_V@R98O^SK za@>(*Wo4!GgzrW*o7c1FV$RK_p37=CV)A<3?s2Op7+t#b_8xEPow72imF0QPBS*$F zMke>-xTk4+dHs?I^`&1U+LqOn?`vyi;?=gYu^FZhbO#|h)z36a8FsZUoMPrPB9mH~ zRkzfR>%8UX_tIgwnIzhVv-?3^SwfSeI)(N^?zI^E!G;`tS{&F|t#`fkTzfXCt&{Ux z`{`gZzq|R>D}ltTo`PITq%Bleg}o?m3o%72WIVP%X7hzi){lmL-@cn+hSzm!_R~~a z&Layp71*2oXn1~Rd2UQWNom7g5s@$=i;VXawPYGf`7}@=$(X*qwYhep?DsS^PLTR) zAAWG3O{!tEr2C-swnvU1~cth0&^g7tjv zH74_%r*GfN=;mIld3^Z7X$6Jyjt(YoEIX-7YI*e4r&Mj_nlbgA$Pgy)duu~^M6dsL z3GWJj@`S6pBgbOb+RB92W?I^k{%juO@$Q0aJ%ypxrHg*M3|ypjR)0iTHy69w_qz1c za$Izhk+~@#G=(_)+|{*yvYe7_vO#QuYjX<^&%uL!@`22@KkAuo-n==!@}icWiK%9& zDQ8?9>?(~?d+;vP;RMV}`y&%KcZs;R> z@AYL%U{Ed+Db{m&&SPmfF@9TXU#heZMQH7amgd`v3MSwLStf_hY~$P0)0kGRc4pRllnEY z@vwu`Qvnkyb4S~1L3}OEjh%6D5ZZM_FF(=X_`HvG*~;TW$C2hTFE5`vSvfhv7cXAC z)>pa*U|cud6d4^@qU!#h)D5@Ds)E=WmnX^$Sz0rlm;?O)M*4?_-s6neI6Ir+bk&xu zDjS)an$lO6vFVk#g(58qIFIY4rKLR)cNOqln*G`we`bK9bVA-_ec#(-_CM+`B8h4) z>E2!LvTu~AHjDB+_*efz_uL{`wDv*v%XP9^rsldw9TH=T)*m!y7;^CX#oWv=xMkh5 zu|rq;J_oubl*zQkl=+;L zGtW_JdU|@J$)fAEOE2BTB~IJf+l$)&pusX#w6whX)HpZRRZ~~DUqWJ!_bao;b(Jl> zVc$nbl>kFh(<6Z4pBF{+~bn(c6r5=Im!@C-+9C z{W3Apn4}t)Z`<$JENk(jK3qPuB~n9ORs4Jy?FgvNQ1m{ob(q4N88=h0Y;mIt%iLwDSTfF!qqBf^Vs)eVJ)8Y6Y z>*6U2$C0+mnwq=O(R*_(yG&wm98p8!| zpZ}SYITV?E+REz4g*+=wKhCfntgH>~hFCSx#k_Kv!~bl2OPZ1k4WF2r@%Z-cF1pG7 zA3v%9+s>GpCcIoh%*xx?@Hsg-6;HmUrjX4Dd>9$oaBK7S$zQ)JvG(Wz?SK8$H1U*{ zCdXxM0Y_jwqELW zFE?dWp6%Mi^=is~ae6>(+#TstKtQpN3ppt%i7R?mNjo<;7yB>Gbkqr*4c7Py@?^Nl zkbC_Vp{Hsivl8B0*d+A^B%Y_-e$l*9%UXfY0syiN( zo_?6Dqoae&WQ$-kU0muGY zeKv1D$R%;Nba`A%a%pJ)V_w5^C<`U-^QNF?6n&(T@ zFE39~;`S>R)$NeZ%XdaeCZ?tbaZ{A;^W!D}>uEZ#D7YHfj@o@cExGpF{!wtSD{g$K zJu_VoWJ3T#po1QCH;O^bKUke5!d7Rgfld`P)Bv*gWC_g@;Z|-389e8ao zo}OrIzusmewO4g^GAAuW-U$e}Tz->iIBtFVq=C-qR#;eA(;$+9M6Pw;IXqUM*P6uk zgGxroUhmRh~ppzDL8a*H1FfyDNbr4SmBpM8mGCSNt z>vv>zX(W@V1P2i1ARv6o;{79UsQk_=bQ;selAV&4zOl{Y44Mz1f!`yBYx{(SLy<6j z3J1}fl(;(sPNO9o1R610{k^Do&f7nu2toJD22sDsbTbes-FoFyscI#+9CQ!gZ!`4} zdbyFc)0*94`*(Ti-t2Et-Ej}>8SS=6H%Px1qdnPSLV5GGuNS5Nr#S}gq(>llXeCn< zU%ZHJ8Mbk9O2C$5rMNBEumwIxvx0+z%S%x;6(77u=zKXN>5JfsOTf#7cu07)%92&%ZooUifki?^9o=Zr}L`0=fiB@5Dr1(WizuD5QBE> zxsbC?bdaZf`C|05J+pD3E^NY8KJBMX;??nA?e%Zp#wMhwkIc%xp`xN1>M3$AkXnlI zT>7F?V;%iVO-(H&J#y>TtvLT=EG#U56^vp|Y2`FdfUdanhA62Z5EEb{;@#f$q|eSe z#G9RWRZ>!N=?@gidinCw_xBGko0^iOdkE}>0Q#7wBM3MU4s3$hdnWF>jf=H(9yy!O zWzq;gK;AQX|A3vMTKVkRcpML)im6s@L+%?o5}rmCNVA-gE;j)d$+FB_Nyi<3%FU1W z@Cyr@{9c%P5)tvrbJ;1bu?#Ilt;$CrhI3Jpmb0ZQ-4-f|E!=@4MFh-EP>yQ&y*R@Y z>U;<#57@T}R7L%V4^uNU{irhX6Pd~fC%%1?!M4XYmWVU-Y{#Si{_O#x2iT#au`yGP z{Bg2+BB`VdtP%P(^;H8RV<2e*j8`@{t0@>{YBS6$nVbKV_^?-}*Rg%r0sOAb+^CM4 zy1K2Cla}enTi=Qu5MXaAD>rW6zTLoWnB(QESD^;y_n*3d8T+XCW)4l*<%P+wNv-D1 zEiH?SgHemKEy_eyXlr{c(&rIucztmr*Eq*zYwJez#C(E+{f28x+VPS6n>TO1_BrbY zXcO+m8Gy`$@1g65KE|v^+xf1!`4LhIbGJ2v#QGSQYo&pKvi5i^Phz`Y_*_L}xe?9D(~%T0lv6)?HW;10XneHDjFK^fX}bl6eCGY*724-c>eqYPVn7; zfEUO>WT?_uKv{qR#Dn6*=p%qEB>jR!`;N zbapZNxMimh$J$BPo;I}Rcl`ao;hdRN`ZJ^%mPI=Ey581I)dDOp2bpn3n2TISMkWa) z7BHb~x>lcU8^34&0TRhyS#t3f$C<}}(@p$>SDO!{rKjtlwNp<}x;Ri9N;GA-(9~2l z8&c;p_Yyhhvuo_7X%`K{!^3f6!+tV2hr6fuX$G3+1&Tc7UxtM2@QI<(978Wi!zTF*hxhBqNF6dOt=*E+^W&kYgZ$S%^P!Bp zqW4O@b|oq-Oxw3a@7c3wArx7qx7DnyGSudQE1v*wq2IgG{9?0~mR2qOJs$0hZvM5M zI~plIM@z2<6&HHZmZPWFL_Lb-Cl-#PVhLD~m6bJ=Dj-CO)e4B{nf6)Ko*3;+gL>dI z^d;KnhS&{R^~1c2f&Ad z7W+N$F-EqwuWoGq-B^WW>bFQ+JG*_HoP!xrHwN^bk$KuO4I5F&u6~RrXJ==}9vO6K z^+hCr-db2%`ZhRtTPszwLE_LM8W9l@lr%Xfr=uh7nP$j8C#Edc@m+pTKj6qD>2WL} zA>p!#2`VYAPp__dPNABtX{KHQ!LFi?4_K)Ss2HQ2v?2CYRrflO=17G#VREb`o*7anu{P`)_ zq#<7d`|mW-dlpRVVtd)Dqw=5@Yg}oqD*Y|p8Fgq}%Dd*67_tL4;_1s0L` z!t4G{T+fXPu$06_51r5Q#!p+f;+UFn&b%_qOkI^DQ&gW##aMbDr|Szk$O=2_9!*chbq%5(}Gg8k@c zexKpN^t7~)_ZKY*wv!A@dpziEMe8KgbRwehhN%bmQ&LlT0Lf(&TQsl6YOajfEk6jF z9x@CDAsEup!}bMvaWJRdz_|H^0&bm`qHnyqvNGF!-YWjdA)d;0*-Q3f81Q3nSF1#Qzftc<4We5r@1aaF)YWbV<= z*%i@wMjjr;kLF2|k_O3%iHV$mhqqro2P=Wt4rRWn`S9oHv@2RaV(SB#1Vh{>4Kz>c zpH)&qLKn;*tYbFN?9E9YiX?l&cX1sG20`u)MtMb|l7@8A^Ik>uBgpO1?gDk!{;}?Y zS88-%xqZkQ$I2s9^39O6aH0Ljj~9N5C<_hM^lcwI=QcYejRpi9%{LHpgMiZP!om!p zij@dsaH4eRKi_`%5D0P~nT*!JXX}3X$rfd)hrz)%q)t)<@t z%R||*pWVQtXl%#Hya9%nLW1P_22=9K$NKKZIiAe>Kyq3>WW3a89pPFZ!N?-!Tqj|5l3NUEEkt!oYh_aOgR6Dq-&qZ$ z8#qh&gBb5!9jPww?#$md{fbMx*#Blv-^Fjen_5h(JWtov*K0^7{hUz>`4o4G4yfW? z{FyM7)YgTC1unrG>3Rjz_iy;2m;CV|q8ewq=KcFOA3mhNtx7wWsBT9?aK~?#q@W#% zFAc>VIC$`qg~bIDr6R(H2xT1|9lata+CX_9AD{I&Iq`lw2=dczpjN=0PcsL6O*7Ey z^~Hf*2rJq1=NT0g6t49aGa(38XQI|L6hw(e1pNfjf*`@8CP~}aWNo9b`|v@t@JB`8 zV%*Ndx-Slmps*$HH8^pCjFwsGOJdaZw?GPje4osP!MSn0ifPKTHWZhTa2-j{%Xb*w zcI3#BV`5^0w%_DTBEaImbR5yr$}~6&unX$0^3$gfWz)!Gc@47DtdaJLkU|?M@OfdW3Ksi6~WRk zwYEriHsUD6^jjg57ALR#@dAYGz-6j&J_CVTaL4h$el*NNcUD)HgVCOYSz#1+$+Dwa z>8pn@AU)Fd*GZurZzU9(gtIJoK^5rvCnDCYD$hg)k#i3S2s}cKDqZ}+0+=$~nUmTy zX!y`SV+1>o?|ATAMaHXr<2e9J=dxM;?-e&TP^cGg}qz&|b zG)!;3$=4sl-l5>dKYFTNDPe44auQkQbFSru92LbVOp4<8N$k;3%Lc|)b~ zC$F^?XSZKJeZeb&rA6K1o|naz;8@_;(s~0KhW^wPLtFavsHNhiOR>_?O(3BVUDLHZ znS7{j=s@y476oq8v6%vk6FnR_Yaz;(@BsPBnr~4wv#Ol|GRQ4NwXERgmP;9niB3NOIuIh>kNzeEPI+ zyS{Q1U)g2e1L(EBUHoEhU1{ILJTvg4pQ55VB)M`{dQbX~+&3S`%KCOPHe35_sn;w2 zHLNRIhJ9B>^9txk@KWe`N=JmqbIS9drf8fO|HWNkxP{%i$IEEukP?fpadXyT^LhEC zXFp?KX03O45EXb-n04%z{f#cgSli^$EVIsEF$p7kT{nar`40 zA6xajR1Fd^a6m>QqT+5~U_91RelP+nH)*N!0z$iz1Ma`$E!L@N*dc&L-K*O0ZtIWS2$ z6eanb-?+-i((=O#h2UE8$7odQ9v_YaWhW;m$2D&OZE$ja{#3l$RPz~L?pLD1P<_!p z%-{e&c<|tak7>TGVvVr>3IH2Tv64nlyeH zdfB_`YC+Ho1o3{TugpsdWN+%H?AmRttmiyD#6gK+yMT~H zntDGn3}Ia850YZeu|C=OM$Fd1;WDvRIDkNoQ{c#3pf?Q&=e>OSEwAso@$~l^AoE9I zVW*6YqMI#?V@EPXyjFkPMd`ze^iHZL>)efn{LZQ6WEZP=GoN$!;sOWyD$1=Uw!U~t zk?P0cMt}82*{bmQgmu(xNrD?b<>uH~ff%|36_-rt+UE!8&=R$N+U98#Dh4ooJg9%r zx{3NqaE3+-eNF`1EF}=Q|u@>~slNEHL?sJEHDCv#}`@HWt=CQ!X<}pc*ByDnz z!JQK%!$4|g>04Ah5Gk+g!-H*rlh&%t zKn#j6eh&^{vP}J=+}a@S@dohjS2|vDWMpKdUC6uN-L1#5 z`LgE6Mh$KPqjhoB#96cKeC)+Ay)#7OS$$m-a24Nu)hN4r{{HzktLu{dw+mblUnMu) zb4uOi3e(BK>!-pzeoe@Qk{AviDSfiRsa$B3`%}h1;{iJ{KpJqs0qC{h9-?76npW>2 z<6Kc&OU1?(r5HGn2WA%_6rut@P)Xd(aZn2`HlAxM^8tIrc7nN+k(FHp#cy7u82far zugtI}=6ipC#n0B%&<<{2u;QwLG^PwihizY94>#F+?APrVZ0x)g=AvFdqykkds`q)_ z)3Eyu!eHh~)G1n#_jPg+n$KoVSPrh+=`8h_mxqU%g(X5)IV8myOwI3=6}BWf)&E>` z6P*_xcnvpfP8cbnbb8M2D4`dzu{7$&*$67S!xhyjHVdD@N`$T%LV^Ra;WHeW{aV)Y z-6Ws!=gzisc1hD3M^zJWi>Pe)BfzL-%XCA}#oEPvr*+Ab_BzT=9WvIcI{W)Tfbpjg zEsooI1%-vo6u16*@n3(C>SB05&##DOKFFQSjFj=B<(8!sJ@xgc&_`3B`9mt&XZ@K} z>ysj7B;4k{e7_rvOeOQwPs927zgL(FN~8!gD~}PmJbJU3`hoLis&6MODNL;@C45FZ zeJm+e6m-KY!1dp^Q}mCbAN+f@ce1B%%KW)BxK#F*+oCLa|NXck!N>1JMZ{2RGFa3V_DDe&&;x;fvPPO+tba#QV0 z(M-*E`$b}6VxnOZxP{`>?i4!SQ8C?1Y}p;JQdAl=x77p$88hiAb`1u1rIL7Vk9+{* zje-K#oG_ixorlh!fLeA1IM-4;zE?to&4H^Qlv( z;)3Aj(y)5rgl->fIKRu}m!fpjP~F#8wnCM|f}hfHTAVgPfAbF15tJVaf9r3Oo=c3y zb968Nq1}8;Ag&QP?XmggAr!2C&{BGC>ZQHMk3WT!@f<1sB9Jo>#4tdr?=nj3)}1@6 z;LDgW_q1Fbebu;$j!wHbdfWExI>j#h`h^bchYqD_jU;&aAs;1bjo21-W$J)Y!n%C( z-DLn1@5udS$)t%r#Cc9~Lt~DuS|9)Tg0AjMKwR^~?obfAvAo#$SGsk{RB+3Eh!6=5 z4_AOj1g^sbyp$$0V!q;mLw-X$4#XO2ZcmbL%#h8!mscf66D zoE-K+>N98RiX?xa6%}=v+}qaHMihAk_QgF0N1}CHH=ZvG@x9-*xEq?xi=+EEyuh&pC5)>q4PVpZ}%Yx4FFgRm9D@q zDME0YL9CVfJ-HqPAXa*Pj;_3EZ%w$M83DHmtOEDMcZl{>X)D3Q>t!GppufpQ)g&^* zRM1i2B)E*oV3RcJEp`P0j8jWCFEE`CLRf+hkOx;))6hUXlU{+HFLWfWGhJipdA%~} zTF^(|pg%+D;@r0{wze)=0c^Cx&rh3qd3mAk>*Sa-l&voDfI}=y?I%o{DD&Ik5d2c^ zLwl3pDf-a~UjnNO_{1tER#cSX9Jqz8NMh5Ac^HqjLU2O!v7Um4k5SSz;PdD6*O$jc zpwt25C1N8{@RLX>9?BXd&4NL_^XK2Ar8|ZdMq4Fh(N=G?GTf5bk!#5UTnnxDv(dum zss8GY0((w$!aEokxckQG(6mE0*XY}Hqpw8j=DKLGsDkVVByE|Kj?H`$Zq$F5b^PJ8v z!tLfc#jrLJy&A~72M-@g0|TRx*UTk6m4vC3lamr1Cm~tjthZ@9cuk;1g(X7`ofCYr z(ibnX1MtQnVt)fM!GQAe<;#%e7f6X%?&Lz=x;^;uJ*{-zrr49z(F+%t&CJY9Jk8BX z#QHnOV`rWkKp&U{SHR3J3w%=blNp?+lce1uz|INu?WTgc%ZjH=F0|R+Zm6zai=G z=jPr_Nl9toJ|=wJdAuIm7!Lm%s2XC|B*L^a^zO#Tb3l_IWGe{s(M?wfM+le*AS+d9 z5)kI42<7zEEBpAa>d??9Pu|l>{r1kx!beF&Jg8~Higfjr#tTCGTHCXGH)@UOsr$PNQb*!ihCi3Mi`>6| zUwrD__9x-tOlg@=G7vJC(Ae#k^mu~g-m58U6ZL(^&!#v^uti@YtV@$;OGT`EFAq1z zi?1&9<9I)TMnEuu{BWUh@Yzar;-a|IL3D^Qz@vXTF0CObpr2H=qYC|mZs4hi_4Phl zHhcJ4AmnKiZWSgoY*@!PMX1 zFN?k&YzJDf-rnBU>sIq54h~;}1RWi{MhNR*G5quLM35qh)c)(@>1Qfj22eDU5L4LKl;)D@ISYF7?nPP^Al*d5MtiRYoG+%AEUtK zO(5MN?IU5`Rx59z{D9~sg4?q5HFvA*6?ETF68NpUkAcP^G9k)Lyw}<)Mb{pzX=0=s z6;2q;GBlE3LY$){k{WCL8QnjOAAoBXz3qdruxglA0wW?WQ+{I#cp{DyC5fM3b@5vU;uHOScK26f>YazaAcTk=f~okR(i3lVc*N%6 zvL>Lf4;hv|!xABo)W^*R-Q(#tZKR;E1NAP%Op8NmI{BsC#l@vtoor+b>LBMDPU2$9=_aB$(7a zCTvC)?HSqVsS%Jn(OCME{02RaF%D)klvWd4JoKrJMc(01dvZOO}?FHj-7n zeSceD$hpR|H5fKmr<{Sa#Jl{#+eeo!U3%Zxm_Qs`C)63#suVx<45m zgK!Hc&LwLfvs1%*xJ=ff=XP?2@N99_Ji1 zaFw#_p0HWaO0I=JeM&NvTV7gHQ&BkqCry0g1UMCNK|PLFBj5)9y956`h=N%h_}s zSIb*pK;_)B`xudNzg6C=m2G9jMia~|at}91|N8e04OLxT5ukF_&YwSxhrr20Og{__ zb!=~Hf2tu+@C5OYl|@g6(&C~+0;ADh`o6KtC2JLXi zjvZY34&*>QtV#BVlp$Y1_uNh}ZE)wS^d9)jKUeBe@G@P}=)8)G(d5DNc29c7YKt1j z2L~^oL@2}-^TU%eg|f9Sw8+#MCpqqSUu~`8W=U%7?zgY@B4hppg$f&MmQne-;*t^w z4Q{?S*x@Qfj>5!2!Xy7!+%}Bt(fRXv_wL<$Spp?Z#Hu^Vp=bQXYi;FR>=Atl%!@cx1 zP^4Go190CeWQQhlV9zLmovGHGj&`i z_PC)HQ*0~@2%x!UX_*?^Nx&Buve4EHAX<^3ujv!zG3~Ffs)P6Nk&n9w1*rbHSi8}! zJG$vdel5Zc`xO>Mlr`8%xik}A!T(M}o1YpChz1lCqZ}E!zkgjoueZM2gk`pr}LRGGN2u_U;XWhF+tQ@y?mP+!2P-@!+pT6 z%z;&3PI=8xP*U2%|AkkaJb4nsKE=(|d01JZmpT)ReeOID`sCr$rzr<6&dkij0jm&AA$oM& zBRT{gVXd~-*3kU?V*_VLofy(H&!Vbe=r9t34{TXJm=HnHf+QD?1d8Vb_I!5SF-5Uf za842}2xQN>Qfive%Fh;Bz3#VrVH8Ks=j7(Ti<}qAltfT~?<(q$W}ZA@#Ot}axQvh! zC`N#;lmJuAbC|)4`52H?c3**{aJbdfofyY}Ace6g@Hp^{zrhjTykkD3x73sH$zVI7 z@axA9?m+v3iUJSHi)O)ugX?7&K-jPY9U-BShPNsfcFmmyNOF}G1uYE~QjC@;JdGaoKcRIwZV1N>smqU&U?3kxN4&@0$4YA1OCI)e}Nx$S; zkUl*?$C1I(g{EvLr1Kk5QBmc2ozOMm{k#FF!W<}H5v(k!fc69bNVx9zh&d5vEp#f- zj3{1>e|miD)&@e_WIW^!_y?E}kCnnO;a%d_!9MHh>(j=T1K#Z2zuyOZB-R{x8D2v^ zAWxGBIA-DN`oJ0GaTA0DU@R&0P66SyeFBJq7R3Bx1UDLg)K2cQ#waPa9Nn{WavM;_ z4+shEK!%(is3R0y4CwjMvXDCFJUu+_1O*`isNLP&A#m6jZt%VSd+LJi3Nm z@GjOuUi*v@4Ad+FT_W@OOq4F)fA(xQ2Jg3x;W#+4CsO-ScAeS9pIgow`EmW_JTrfB>ss8||9LqpVUtI5hvL~6K%`%#r= ziv4|St9j+CaQB%&mnGC~)bK3R56l1@#60B!hD==GX?_3xeKhcy;)P7Ofq=&zBeh&Y z6dpFz9qTP&L8C}`djW7JBE0E$TAqdX5kQ^r7Qw5aLF!Y}(I})U z-Bt>3iqyU^Vvsu~F>0eNs*JNl+XaGHoDai^BS?2lWe0-D-gn@@yP+{8#tQI5H@>ki z?w1cpYWDsJMCCeBGCw}dhv9-B|NqX!ntC+MI-0Np$t2#(&-p!&5&` z|IduNri`1h)cODD%sZ5kfCDh(6Kv<;&!4(on)Gyh|1rBRUkZwf`p3tK$>MJ}_El8> z^$>sk!7B6Do&5b+w_G-9G7|9eN>1m~qmc0`2BZ@ zaeL%E(D`w>n!^sq^@ZF2m+Un=kofRi6zGR!Pc)iV0`Gw)7pNO zzjtrS=Am56zdK1!7vnXn-H*b8QGhQn`jnJ-T52a&!Mghhw2A#l+hMF~(-onB-J*}+ z7twOnK{NdwQCs=;?KKs!1ctLR&%0EotHvzH54oy!M}px z;#oY7bdvr0^#L)l2pC4`F+u{a zz2L6y&!NP+CA|E~&QVjH2QtP{`LHBm#7h5x(1_*BHTVnt~t(06nwM@Sn%$ zQw!bTON<%A=Z36BW(0zkklzVi7Bqtm3@F4v9OhI~Vvogv-cnUjAv=Nl3Ji50sAT{< z0N}|EP68x5AC^U6d&I#52OfZ_hQA~_tBZq}pgfebid0oAR1Zru{sI~| zR8)v}7#`Lc(K9wv z+6pm$kO;eY?L<;a?Rt22zoOqcC@RWiVPOGRgaRBZSV|KhV+hkrYaK-sSxNU-Ex*hk zse7yTc;8ui>2j)@CGS3Ca^_IB{9TTN{z?3I_zyM>^&8V^Qfh(%n zMwhftWN#$jPda_UsaMKFRBG4G^G4*M%l7*2zR$x21qYvX2z!Kw`=GXe#d$GSxfAdW zn2Wn@L6Z~;xBig|R*>3Tw=x-qr&-jnTp_q2aB=}qK3GAB9J+VVkP%J($v|e|tZN+t zkTTdYNfr|mv#`265ibBB2XhuB>h%MVznC+NBMkHAz`aGAHgA>&8f6#~SHFa+z|OCFw@!g^L>Gco#@Lp5$vZd(832DF73FgFZ63<4ja z(qx;rrd*PUKZI?7fm!QNvB62R*r#=ret+akX-CsT$}LG5(soG z&+XT*$1rV*&rUdjjCrPK9Hkhdh&R9@!NDoUZv*oK&|ePjJ-MH zi4?%ETjc91$u}!NjPL_M6QgeMq3Cl?;DloxrNdt@&kn0&Ab%$cCvHR_Sf(T|rc0 zibxL0DEo5FBacN04DZm4#o#vJ?+tS|I-T13_>8;BSL`TRw6mcAI4nq*6mMQJ`NK3K zs9OXvP8Q+;p!G#7tNUQ%n9{8T^pGz2apxXa2c+ZG${`Ou4L7}db#sBJj&tCz&|UK*|IefYvw*$|W!)>~XX>XNYJ~ z2%VTvoDdkR#xc&eA3TSm{|$9)@#xJXbf9%UV?6aftAsy#EU=8m=$?+3%NR$X-`hc- zf;qwzjpUm+?d!3PE2BPMKdS6g)u+j=svZqoyfuwp267JIEp;xjVt0_0;7bSv3MoDyy+jF^Iiti&1q zIy7_#XgU^yNNQfY4(r|m36DuJip9BjQ5abO68&&VOr_8v7nKUdJ(`}Gnv%wC$9Kqp zFPgBfsQh73+;YGSmLu%5xx=K+_G$G&P;xNR!(;@D;Eb9)|+$KaOBo97}kK`8=T!gl` z02?|#KL5u~G&8Jq=9O=)#bbIhrDw;sG6zy%yyASJ12=qMlTmBGDUrs|4f?{Y3RFP_ z|09Z9VfWHWBE?=lgsA5@crX^qjvL!bFQ$Hp{~ns zUg@kW@LFWUM=GGH&%)p_dKF5%AAlN$jBnq&M~&(BdqB0J9l^y&zPW!Au7xe1wFi2pKQVw}4pg95L2lS8t0J|SuYa15I zyj6gF0-Gaah(SqWC=92Mx7{f)8Cv54KGlYpyTmBGK%Y_>2o)5p;pYk(YA9tJuOERp zaf_(1pa*Wq#GFXgN+<4{Fh>KU6S69X;;7=)?!xPM)~sb-YVG%SVnP_!4>B@{-wQDK zGwmSBj9-iCj;gCeR_2E?4TeEuV!rKybqU9ZOKPOhfi{dk1`nb#V_suY~-a)Jy0X{B3v}=L}q}J$dV{cypV=JOz6Zhf$``07j zkBo7bIP9R>h|g09l&K4;yvC2w0o0`fhDN6k246&a9bl!$$iHGiLkbrUxQCO_3Tma4JU* z9cl;b7knLnO&;nC*gdXzoC&7*#>_&0#yWyxGWC*Jo4l!qv#P?i<4R8<@v#OM##iUPG1(2PJ`qrwXOA4L$Mi-f6@j)+sN(U=mUu^+Pr;@SaqPb3{ z0O_3YZV}i3jR`o;Q()s~@43N!7Es8mjL|j%!Xry~oOzG@{Gueru1iTl;Ra~m?{=an zO(4g=;DemVj+b*lJ;P_0$(VWV6Hsz(pr4+bBbd-Ek3~D5peFO21^C-)v$To8k*hKb ziGC0f!2;_hHQCUoLL~dT^b(-;UvH72`Cv#mcI?<*Obelc z)oC|?`vF)Q=#?^Nfy&D)Z2n@#Ar-Jl(qb{KG;G14e~X)$!h-h$ z$Y46d2bwX(mfcroIXesT^P^$h#V3P=zurAdNW;+AXkhLjX3?SQokV%G{rQO-a$T&` zSSOh`vUfkA)8ypj34GWa;3Q{jSE;8vl)v3@dwXL=AX(uxPx1ndMGx596j!NbW$)v@LbsfHs z+H(;Dv;&<9p#Fg%RWmHtoq$)U2?xOgg;cp3i72oc_Td+*Ke>~si*ugn9cb>w zpkkKWFLRICrc-cACBZB{8@bmwhHyO@K8C{|hp->2upcHTUVG6` z9y-whd8!_i9v!Q=HzuHaqxt`W<*KeOCSgHa`7ruKxC*EYh}s}$ zZ2*HVHO*3Tt2yT6a^AQ>IKPMD$sBj@uLC3(zb|uW3;kbL+qzYC5goukUrF08{mm!5aJ5R8}AW-+3E;L*%`BqVp7&67ofac?oMhlgrRD~G>i+fI)BxX&F4{Cl| zIr`e`uO}Nwejokkxwe+L4F|S=m**Kj z*WW8BC#SKQ`@5YL&%fVx*d+Y>dmJww)Ldrhp(K(L@kKJzla&AGl^UCE|L2AO=UvhI z{&`ap`$^S}x9A6&=>ERgzI_7QWVQT;X{iQiH}LcQxq(?byyx-kXE)c$9hZ(7r2DvQ z(pUQZL+;XiAz zHT0bH@`iyGQER@_N5alXjnwa`W%*P?yXk6HmNH{XuN3*a=?3Q2wr}Y9B01u|@w}c(xgM1znk+ zT5{ThIi?-4m+sxYdjn)LR9K$EKXJsH4j6!sai9R4&wMaf;1S?|7*l}c|7=OD+RNNr zdDI)AS2TU--Q5p;TD{V%mS#r&d;1rZJ~F)dw}S+ll2(|7%*!a&_pRi7 zuI?*bK7aiBLVl0QN7|;=Vi{%eL+IR*_Hq=_;WnF%RmR#fOQh0G#k9ul$Fsd~O|?{B|*zu#~FvHjk+pT~4x z_jR4;aURDy)>=nSrhx&H*@CvV*HN!zf89(m4jM0&b`!a0EH=*bnaAG7OWK|v?>G5= zLRT#O`HKgFcej6|v|b$GCx89byw7_lBgY+oMXg>{-eC*X(mrV8 zE8RME&LQsOW%o-bwZ9cm$_3&`&{E)}5^zHiDy~{7Nw=fttUApr!`9RP% zJDIP7o&v6~6Z6wOgp8DW@u z^z0mK{_aUG!<5r2A2>_J<)=!|EB{<>IzOx$SEPH_&3+%{SX1N)tw+I+ws1N`fVd0k zoj#bgkg!B*#Xr`H7l+qRJm@=xXq|vVO9d7K5tBk3cw2oh`qub)BL7EjyA++V7q4Dz zl9bdE%5WMs0W)tE@>cLlX@Gl=OVA3Gfyp&{!mF3}a9r;* zO$)n~YAw5&IPNpVzne;Et}%C{Z>-9`K9HT`_5FzF>jj>)eDqjQCwMM(bD zR9UD0iEkslDc8)b;!BEHt%Y8yQvc{2=<2Iqu#S0R75Xw+;!s(8p3*R@;g|kv38_*U zWlxvOcqL>CYh`Gq^-b`GOC~HBuH>iZ&mEeVR$n;3&f-GQtueW2Z{AL|W$)D9Rewz4 z3vAmP7$GxV^7HxZOw*5v_NS@hnFYI7w#w=zJbP2|RxbG2A@L`p?Az^6ETh-xQn*9sL%gLx!3(V*f-h`XA`T)9XsGZafwENFY@g|W zfHE2?Rpezsu-hnx=NskRP|Ge-z=2v;h=gbqjUV}hy8iW-dOvVMAJT#3uQWtZTil|I z!6^Uor^n+Ich$FH=eBe(G+laL-nhj=Q&E??@`Gq`_S1Z7N=a-O;p z7aywzh<+bzxAsx@QK~ZB%TzD?ejWR9oym_h40zj;WFZA zX`69tV*84uXPHHhzg;`m{)I~I#9!2Dt1TjHPHMD8?tAk5{*ugl>z2q_Z~1-D;<}enCa_m zwxbaZ$R;S{%itgb+NLFCU)osU6ZXYrAP0>KbWyc!jxN^cbFW8_gOviQXG43w$(3^) zDJhq@R?)B5ID29*L(@K5%E;NW4C(u?q^>{6JGV9YJVe_N~fyfn*-_!YEqtnLL(R}Z?}_dLAnvd8+Sn6-M7)=WrYBGB|kU z{*7%5dzypdU%r&?*NI=6qZSxEt&W9kz0F{%rS}$m*n@F#aT3z_HdfvWAEE+ ztL+b|);>@2mCs%!d-{pex!`v5OwG#twUlGd6ZV_;9`cY&F1V4k?bwNv1|_!^2%7;Y zdNF#GB(i(S@w{*0K&J%a4tKB~2$v7SR8k;n$k~i+2||R^n_DS7Pql)@86NQuxsIpl-1WWa?fg4Q}myY ziO>Z6SlN8RM7Z-!`uWbG6(Z7kv`p5#6v{5%<^JkoMNxnI$9&r7y{_&YOYXPaTXWkv z4kbvHrtb(-cBX$Rvj1H0u^8KrcKF5T4z|8rOD`0B`k14CdLpTr?dQPcf#d31?nD^- zDL!T6*}FSW-w_5C>;$I)N_))OnpiogID-OJ4rS#Cx;D`${|~CGmw^pocJk!Ob3Xxa zmY_pIc$>uQ5%>bYc)J}JTdQrCVxN_J1k;O87U<;aPHzprY^`ej+}_q}>F9Fth3?C9 z;oo=sXc!1G_y&1eQc?1+tc59*+dxa}Hly5rMEYEiazRHT>cW>np-sgH?)5d=GE1cl zQ4g=Xz?W?Owg3E1yDuB+MTA;Uak&CPxDE*N&dUgoce^E4|Gnx^F?QA1UgaCVc6FaF z>;+gMldSHWEGsLM6AhD()YuO^C)ZMv1OKz8%j>hGblY>ZUU6IQ9r(#$uxq&GlE)Y0 zdb2w3*N?>|P8D1HPK#V7?KTCmJxmJV_%OFCv84RS`AntSR;L?{i}(_L$c0s0Ktb$b z>K!v$TMoUN&%f&kmsq9Py8ZI)pT6oYr&L6ixUKLkr(4~) zHCsT2%lloX?w=_e7AsUtIm6!%L(7tPTRdMnPgtPxSE7( zoQM9VFU5Z0SATf36%LGR(E;8Mz=}fA1==5%99p41qi$ItS)<#m%WoWA_c-7vr<%=n zs*|zn4h(aZddlz@d}vwaYRf7Xcjx>&Q0$R@a<#! zbw^$PLRrkA3q=DMQE1J0zIk)-gm)DhB`c*{TUyqm%k@!pOK@Rbovw>1ntqi1AS>+q z-o6wGSTX#f0JJK?R7B@6NKH^Ff-Y|Q7|L9Lz6UN|e4&06*hm48drkZ*Fs{eIcAd2nGEx7FMAxW?WsDD z9O%lWc1DULe6Mu0bKMu((`)?7J_OkHec-v4+%R4?#O^Lkmz(4PMo&jncaf1NG zkm3#|-!j~bVzeg+Mj4)tH*#}I<7D-Irx`sO$(ue3FMK?#N1o5dbE)$^^f1~|KGIM2$MTPBBzhgpO@ngn32T)>G^DF~pc)SM& zld7^jK!yca7Iu^XPa8!KNoDu|w1DVWc0s;w0}E_W(EL_$Ngtd62M?P2hWNII1~znb zW}4og)_&v=vy}4A%;ea;y3cxDB+2X^VtVI$f2rF6x93i0O^?kO8Ag`A*}F+1b4Eue zJK4n2d7Bvx<;_hiO4OUqU)lZy9ndxt6`@c%0_&-55l+2f6yfF=!??h{muVAWs4+p{G9wJc}ly;?}{3DUj<5X zI7nTHv;uxQg03(2-oVOsmJ+;ma3Db+VL+eN@Yxk~YFGhugKF=Ay8XgXiy*ZZV)!}q z$HT{9_q!iZihrFqgXH%WGDdfdMPG_Xyq`x+*Q2y^}nfAl_w>@f*w^pNA^&;!Q`hT8bz>|12bkI70+!LiI4r&J}_YbV=*7@N; z=tS*M`s@`tYkkexV#G3*7^#5vT>zGtxJ~tA^E$XRi6|&3bpm|$2@E6-lMZ+M1J>_a zgI<3TSn}92*B~xf0(ig7hiQ{vohjwwrrwq7gSjiiHrR`c1?cZ+0nEc+!z;(RaCWMjFRYSSsTH@i zaU){M;zz-8VGw+c6d8A@0M}1k=I5X#(uXs8f9+fDQ-T#f51Dpuk@0@@A|ZI_WRD+L z+HP^n21bXrCN56V(*E2SsJL5)nv=No7`(k_(88%=3i)x2bRvG^8!MidNZFW!2{H0-S%KL1YS7_WXa9u%R z;-tAo+_LBKLFX>@?-w}5rQuqba_(a9rp;&X28D3hR^)8jfX)|}HtCD@$6ig$zwKx{mlqZ` zu}?H^SMr4ma>rW~H*b9;xOG%zZ&q{rl{fFUc8qmgZggipkeujZ#NWb|*GCn#I$FG!!*a&q^6+U`A9 z^kwsYzZ|dR`fGAZ{0V)lLVO0Sg~=VWUh(@8=&oS^#^!s7wR=xZI8(^@cb<*Gg$k$X zDK~pot~!x(Wc8m%wG)quYP@OXEl2)UP0!1<49h|@#K#l)zwvL*PQNO(_fSQZdTw;K z=)L$ga?yg#t2j6E^KpDykxfa;`UhTB=y8{gT%(aq@7eNk-NI!Kj~l|)qc#mLdzxNx zWKk8zNPcl#*Et&5MmZ#9KYyqsx@|{)lImBzrH8B5@BdJ&;FEa6e7RNn857y#@2GA5 z{`=n$1A_F>52YeC^A;?EPHO4^g%Vc2K7S`#!5xa z>c{u&adE$!-CuaVl;>_;+>uU~+YMK|o?5St{*k>qpmFz~6~R>czb^_#EG74g9++zs z^;!MZaIiRIA;;JDb3#X9*;xuRbJujxuULS?8sX;8#rSoo{nH)z=r8-{^C%UcfBm`8 zk;4&t3X!mB!r%)e0pftu2xsoJe*JXI6{y!~Kmr6;wmsabRTi@g)G_mbeHjf61mSSs zj0Rf>K$=#5N=nM}G`%5P90Ssh?;h+}4S@kb%Q)j#Qb??I#+Vy60XN6_9H*DG4h#%< zZwG;w_%$R4{%2%R5cnIi=-z`)uJldbgm4AW(FRS$&k?p4U1P>oNLs&!e1gyw$2}d$ ztc36Zf+LdHurdFaDTKG*;GL3k_N)2}#_Y3g-sodPt?KZxav*}`FYf@&a%6}dU0q8< zRj46Y7de_GV#-Aqlp^QNKY@XueGMN>{8yu(G@z+tMEEPi3WC%_OVa513RK% z2S7;rpdosz#CpJJ25z$^gDyBTz3|tIQ8JLy6fNr5T+r6OaCYUSv{cEVB|G^AEp*jM zmPvzcS)l8@v6K`seyO8U3Go9?cA~|5(_;@3*t2&{5ZCiY-PYD|SRQ8&x1VC93#m|Y zy?FW392Y{%z@PwHGt%>w&n$4W``}xIcMwP#6X>Dicmth(2?cHa#~?Nm^Hwyb%}`Vm z1F3{wv~bIaJ;L-~Cu?tBX?=cz8AK01xLHvVE*wS~jKI`|KoVdYh}7>YFDvWBL5>%# zRhDrc+YB8#v9T%!PY6$_0J44JhY2fn3I%?;niO9Mypz@q8Er6|Hm@f_q%U_Y-xA1$~Hl8I>< z$ncrLn3Dz5*pu-)v~@Ak3>?MYEdDB9;WJ29eZhQP5;QtG$^^dy5%Gmh4gFC3kYNS4AYn^MM)3z8s`4c_~nttVLBX_?#Om zF5aCx^-&@dUpDNX)!6F+=HU=AAd(ygJJlDwGFofv-X)cxb$cZ&8N#vxA-X&WQQ_AZ zm<{`alBYZjU5F?EHNC_OlK~yXy&m!&dDPT|&^w9;|7G_OK%*t@h!|q2Lr@U*-SEv- z+2*Yp1->pWps{@nL|Z0gD@`q&So3$t!g;B4+DGPhU5#f8moRUdH`F& zg+kR3$XGN|b)RQCMgTNDme$r*vR{hcy;DO>?jw@6S4&;{EMrd{wfjt4>T8ln>Pe1loIY_Z~3-hj!iIMynb*(&Zh^mn_h}fXFfSW@B zOKK@W+)-GpK&qc^yw-MQb|tCY;qj(&c>`qx33xb%RF4(>^4`3AR|2Y{s!=)UBawOu9bdot z!pssO=Abk5=rF6<1^b0%Jj<}q0zkpuxN+m-f*)h8N7_G4!eZMS4jV|6$!vgd3t|vq zlzWj0NS_?&$q3Ml?Cko9R!1PbCrl)Ft*N*Ot zi#RA|F}83Q9iC>vSmykG}R4D*HTTp>Mi2MTV-#Tm9S~`X54KZW!HBOUUPIY8~r1coRo-UHHGHf@pzOKx$(z=uuv4{S$YKrwVY3SRG7Bo}un z+53=G0>~1?N`$5(1YYipVC6uF`Fdeqm_m!in+8HBv4bam**L2BH|)9iIQx*RMI+RZ zi%k3;*aPwB&yA^uKmYiSMY4=tN(Yh1Q*8_L7FfK($EH*|3uGvBj0!OaClYR}dXR;x z5YrCGlQqxIVBhO`|3+tccB*Z!x5>vtp?8%AAO}3Z`61Q zSO!j!Cv3GR?nA?^KJV1#%8w$F4=vkLU`wSKYs3$8LHaqq3~{jLqd@2lh+qHjiOGHq3&?{J&z$<6TCCIcpX1L>nnI7sGrci zSo^1Tudo{QuSfN-_t(j)r?+U_cmMZL)Sp#>bg~;xGb+tL9{R zY2V{V(XiQn9{jf`EPm+|imvs3FZpxmW<_6Lnob4+xW?`0WLQYqA`zp;zx?K7#vS*! zM1!GG27-6YG=xhZtMK3mAru)`jFmo02ZZ}_;vIuzfU^ZW&s9)Kc_3io4RcFZ9)m#s z7{sI6`PdYs+P*r8G>VoONIs7_j^2D;*aj>B3411XWYsFbr_FdesdaPUNn3CL^g z_D~fs3=}%y9Jmh~yp|&x>m}^UJo?T z<0_Kgs#@hxCx`>SYI*I(4fo=^f7z~uRG5l_Cx@^_B9%@nv>a#y&iv4`OU^bZEn;TRz@oX^`A!|Xs83iJ8xT7(mje78b0E@vjcL)c<*~K z7RHk%Si5=?qRnz-+UTMW%t;zI?tLpf&DPq&|1vfvrklPNudosBO>(qvEYo?1ZB0nu z0YM^GigeyF2!!D9xO>7QJK;L8q`VJ+qhnd8AFFWcna|RgJrh$ss=Wrw-Q^n9{?W1# z1Z^`|98sV5J9=F%l5{3PT2Hm>Qi2lSMCB~r32ZQ8(?Lsl;kJ;ke$*?#44M+4`CS-) z;IfnvUI{;px@p|)xf{;Jb>1+u`1@q0^kL*~At9b*l2wX{aqnz0*zS$bPXtfw+r66; z8~-~*0*--ID2T9}B|yGd(mapj$_&;q$nL(zuuU2W_eXRK4Zg}Hq7p)kxeo|#-%K|% zasDijCV6rnbxDtfPK06hnXMq$Zi3;+MnKjgq-BH7;j;_|Sy~?Q1&Yt=ecv~la-pOk z9Q#frQ@qmBhAy#Bp3uS53XEVc#3PLKyiaaFL<8|i6gn}ifk?H1#WAg0CxoJp4+Cbm zkZ}PJ+bE*rQ(FdyGa*#BB`_x|!3j`;^A&9On|I>&xc<;Vlfeh9er@PAwO|6H2#-(o z;WfS) zvDKsvU(z4b!(t~JlDFb;Q#^Glu`%ybHY~z|E<&;Bo9va}W6@)G*l%5N)%gn->R)ZH zxhahR$cICfpOD}Y_%untnRAw_b;_f#5oiGjw6j*Fs= zjZOX@`F*zDt-+nu*_Q{Ady?1Qe&VA7$UppTjih%Pm0r5ntIz8^OnW6DzQP=B5xh}F z)bpjln#V(hMFcEQoQQXlxq-CzpcUfJ7EJXKLm8_8)14BG28qpu-oXd^jUJ3HGlU@W z{d`Q@_47Iiz;9ReZ2!JCj`d%_|ET3#|6#2m?lBS#bbDdpIL$Pt(0aU<3oLs=v} z0}0<%096EX>+bfXT1wLnfWYb_Tl=TX;J21=($h!_gr>|W-*y*FsKO;tMJr)}n?a)l zTO4B5h%TGf6-^6*HqA5vQQG=>1zRUJKM)#HOsKnPc2%+Czpta%Eh;Re0vnMW?l1;1 zPLxK}kU5#O@P`Y4HU&-}PLyxpJrW5!>{nH1002;5Q70Zc@qrLMkR~nUtR#&=9940n z8iOjQ6lV*HPxzAu0UhAkz58f|SpT-Or>Fx0qSz(9;o#s$6jOu>sTE5{GAY#Bg0JJ! zFgi7HI)aa%KWr$59)X+gp4yY~pSmV(k&8Kiw4dJ)MOPH?A@O)5E#p1V4WQFSkT&F< zg^onxf#*gVWQda~+3!-#iZ$SvgQbE{wd8F6%ofrYMfi!v5=JMlUXXjkhCpPc%CEaI zKy!b*4lkfNg15}9V3Uikd5kiU=;rW{y~*HMjPVjd45+~vbc#FFNc%9D7udy8;8{h$ zEdqf6b|OA04Ijp-jM>i1Fi~<1R~rWE!lCGh%Wz+xz|YGtA;J&QVu%(o zh@D{TT;P_T+A$9`OW0 zmQ2_>RzMLPvFK}TOt+#(!Wc7+WU6#1foC4`_Q)t1Bq02Gd-CNMp)=b53v?D5i-(yA?^uu+J5p`$Gb9DXvaYbww)mqcioX3wtzZohw3+E&un8tWPg#$}BCi42| zC=1l*pmM}xR=^z5yW6Y-iA+BAArH1C-n&Yjo~*^r6s%yNHtkEsFHQFIf$~b1R9s%p zZ+a9NbtcHe-hdRMfYx@x#&COLmz)o@ohty0q#;8TJPrQ?5|v@+G_dzcT-D_h?9x&b zf+raOWNJ_tF|gS`Bnw_NBx~HhE}+$7EHI#D8jz0IbFtVQ{;KJQ=H{coUNmvu;F-|o z^)PTPcI_;U5D<7pMb%qgI;s*-q2-m+VTj{=P;-&I9rmx(VL_T+D$u1tX9Fj$;2(c~ z{Fr*KLk_zS;=zHf8NkMowp#!YqiJ|>>(*6-Q_PB3iV0tZpwAK9i-^x@8i-m8iPG11 zmV`=yzI<%<9FXcXTsP*QM?w5elWpOHc(e(rG|qDoJ1*2=UWQ5DFh0Xghgy!e=dTkV zm!U91;>zsF_`-Eoir~-g?(Rzl{@x*lk*cAU02k&lm@zKI7*yeOf$i#=tFdx`h$3C9$Z#F@U%|Bw#Bg5pd9n3sznlhZ9 z=P;m;*KOk+B{ek$%qL9Fj8Id~1Sts9(wV1*+k&90vjD7PIIyM;K?!@h9AbMcd=IqB zq7FaW2ew@LhaV25N@%DM0}7Z#EhWFZX3ZMXO6WO&VGY|!E#4phn#U5#Ohy$*)Y9_pHe?HDC~ery}8e zx_LjK=umq;JVYgf67PI=8h7NL85kH~a}oUmj=RjYRqt_)oTS7CpvDhg=f1fS`D@IFe-Ot|Ku4(X*5PbZF+PmY zOFU*UCc_*Vn124{T{xN&5_4{&X2l&o23t;|q$fu!A;Fo77MlK@wx8<=2K$Ac;nGw-fVTXF5W5FUsT<}N_;-2^tcjz-=Eki|2pJ9$o z)&A*4d3iYrgogebxc6OdY?pZJKMAo@ZL%>ZkQiwhe(x(^R1-wZ?Flh&T-J3~>-725Q*nJ$RdMIDYR$&$$#Fm;GM{|HPjpuv;?rD%~Sdr%U}WnV>eqYxBP^p`Q! zSP&U58N&5@&xbE?z0Awdk@5 zupA{F5I8FVV2sKL#6yTiQmCI}&qwTcZOGx6_9(5htOQ0B1sP9IQZHY=l!A&abBfB_ z4bO0odGs-c>({SaK)_C#i??Hp;g%09%nr63C~XAG*RA6OjStNZL5GCcdPyUs()es9>hy%GIlbc&B@@N3iT)IFD~Z@LrBW zG`t5LnR7TNdYEdfgm>&9CIZRf}PYx$dhYTXhSX42tATQ2n6odXyL2X z;^^SP(agIfRK@DtsqPt|G^9xuyAthuM1n5V?W8&x+X-8KUJD15D`?~#X~o>3HH3c; z>yC;&g4#x>D2p!k053_d3T?JPdJDiZGfT^5Y;0k@L&3>aD@IPOT!)Yr9&}6ws|nOz zSgWidigMdWF!TiW$hdZ`-l-)~FC?&hltP7ciMLa%8hXqm>_jA6_2q=CgCzmSkh&IRv4WxKW>bhZfCR4)ZL9pb15m#Mq0 z^Q3;Qsl2Al;}QvEIS|m787g$cY@ynuqepBHJ;EK`Zc|MGPg>x4oGq559&Z=034+{a zo~$D!AF%9V5X1lq5ImVUQGmdKuDEtW1X{bqB?N&`de#MK4e@8;ko zT69sC0hUligp`2M4G#Kt5Ttj)@dS)ZtLjW(w3~1Q_=Ek|jxKyDUXLI(gH4(Alo1fs zh}R6xI60h2Xm`4!swhHteBnpKYlf5Z+@O>9T{mqt+(Mnr_7^Otb^#4q4co!92%TJD z>JoS!v{yPOCnrkPaow#(FBp;0l_ON0Ll5;blH}#bRlB#W3wToPjG1c4UQh77@$;7f{>AH} zJaTJdf)|Jhl}4WS%F-CtxE_)zG9m>isib3 zmX;AoJiZl*bXR5nes|&m&~Mo1GWa6@yD&W%<22bF-QAnf>z5u76!iuTLx`;A5)?>4 z{z?F=5r7ZpU(GWMjL3o~Ow{CJc#&g?JdOQH5tg z^Z^uB`uE@31dByO5$QP}3Ye|6<-J_N9u9kNo3uFzklZ>{On!rMii(QL8YWo`A+8t3 z83y=qj%_b_LMZ=W8Qcg60OXQs;=Fo&$KU0oJ4!x;c((i}Iro46^FA*_xbWbt zf)Oh5VGO|(5#G(-DD7;&Jwh^tmAVWVHI@t+ zeud*x@80yLDnw1Z>PYLQ;n2PpDCy)HBtdFPct;F>xw*Naga8GLS6rMCcv!_1S5lRK zkvom#WnbG0wk{Zc5IhV9G4&S^KlF&Y3)4#rKnX*Oz8E!$iqQd-6d(vu;f=t$BpN#e zIyt>5*O9{I1P&q)-M4Q6=+nk(aKW&SjEx|d4kr$D9`tQr=d+8_6DK;%0md#P?n9)` zM9M2&c}EH~mbk|1@|)}!E}?`s4se#3=o0!9AOel4f!Q-IBkfl|3}=D7yr)f>jab{F z=r^=@grXS~s!04FgI3vh*<0phLeZk25NmBz!}Yj=7|s$7`)`_AJ7NleE7bAoN-BQ)Sh?-Y$>LaQV2KN&!VqpgUL&nR$5DuEbRWZ^FhfiJdBAPA+IrG-3xRU0u2yhHJR%J z!bV|jEerS=lw0y)a7O>gc_|HjCK@6hio75j85m0I)}`NXaui| z7|I#j`zp?2 zZvjy$hDb5*OJJd)i`IqLA-4K}%*ZeSzEO)lr@w*zYT{Jy$qNrR_MJWHgQ^0#-x9Rr z4V%xyn+laIRvQ^3)bmklF&14_d^m$ytUqtBAhPM5zZAai060mVO#pH^%tB;tdjH=ftUMe)g>CDH(uj-Gq&UdciLsAOO%&C5mrV z2T@*LJn)-n2kwWkX%m1xSOjgJSFtGaT!FR0oOBv%jhH#J8{+<%NBlV0vz(#2nxrWxx=nu*$~CxMlgO_2MrM<0#OA{hC4cneg<}pnDKM z=DwB)e(#l5HmCZc#Ju6gwV7gxbfF>(3*84q0fMycdD8Br-8zeWn58+amm_%Yr=yco z7!X-s z17O7x*pJ!A%i#FKa~7A9@`f$^2T35-iY_kF0J(9)t}g7D<%8iCY8UjgISEG$Y=L$p z+28x3gBXUIq0(&c@At#o6lx}`AH<=rB9D;a;VnEyY6vdH4m>nMU?a=~!1t=g(eQPdq^L4}yVGGx&g%ipZe} zm_`05MBE@S<~LdZnFwXCdjDP#c^tyU4cu6gr6MOc%ogHUQ;Z{)(9@V$SV(X($4qg= znFod0vJoq?VMD)>ab$KPkKeqz?z~YkK1a6qUT-XjZ(g7c1ym>!- zQlHg{+))L5w9NodP|R!=5IBffEr{74hCN6}V;}lsJphueeEef2*{xvl>Gf}YFX9hG z;4K134+?-Wq}#qY?i_|%3=-ZE$}=9SIr0WdH^F_<_Zg=V#ML0jJ{CvG8=S5f-+2U$ zpC0@yFRwl5fEX@d4-#b0T`(`OdT#+4zP3mt!xO;zKE=copL$P@mlu^Bs7A~ZsGV_a ze?p7KH}EVHI~<~w2e@4~qjC;K%DKXw*V+@9gg+)>5G+|iVZ*-50u+?cnplo}0M~Bu z$b0*Qhldm16|cEI1M;Uzgt5$~lg(L40HGQlkE5mFFIkz0M$Sjn3xrKaxe1(wN$>%C z{nMDVNdJ8HwM--of>P%PItcN?Y|ajY3l;Bx$oJ0^fY0B68?#wNM2+;u31)*IK|P`y z=-ev7#54n7rH72aIBxsPX{o02`Zn~KRk6~M(v1-}}97|vt zcF4fdJz0to8*-pdM%tr5LSs-P&HpiqWp3hEi^~deOA7MyE5g!8k{{}2^mA^Gh(6&@ z+S5o_vjZ;O{Jd`}Dm;{;Wl{YgQAjvH+5$+j9e0iRoC8fA>A21D)OLMY&emPQB0*AbUUy3m!N)1$dH zf`las6-LD8!h6koKw3T;F3UmT<5dBkAF)M548znSn@DPv zN)IrUBl`cw2rp9oBRYwN#2BWTQ<1?d8_!$Hb2o z%jaWG6_6z&@>Gh}T&s-^e|{x3ZI1o}!|qxZ~`O23bcR7lN8KbaN1n03sVEJwSK`=>-b^U*Wa# zNq~lsFnA!n`AD)qw2aKacnAGYxFb}+&@K(!pzRJ{KT_j~g9_&CY=&k4@zQC%Jbvg} ze+sGq6hN6-WbiVfC)H>D&){0rsqD10tH@3f7N4HVNKJJIq^fm2Qer)b0^QaO0$0>< zGEnWg^h^(2f67MC=06=VkucJ5E>S9EU$uI5IRc;^INW@NnK0M{BtXs`%wyFG+&c71 zPzK~WfTb)i>$KYLvP>Ia!TKcL!YCFhvcRc8Hkg`SOK#>()cIN3p;Nl7ln2f6sAn{|Et( zbSE(1(B|9t*q9uEJ@hbPR;+3H3Kc;`P?N`h6NCF9VSHNxGqLti9^*`)L?m6(64$h_ zwDiQg@Sz3oqcH7OFI389s9!^gu`>xWz-EdurTI-4o`L_38ch1wxOcCy^K0;Zz;;@7 z!0pvAD}};guB;%d6S!V*>blbj7Ba#qx2HUXdm9OQ>Sl&0zzhIZsz5c!^Buo6f0|RyQ~g{jcL@nh$sdq z!zMI$VSW}3D_)o-hLMaEd>x|f5X=CuN41gk_wjlvAO#bN1?e4y)Ua{FrqWk383lU? zj$0g&{`D>*C<#Ns#dwQ^j!#NTk2L6=L44V~Ygdj=gIvQ)i65OQB5L;}$uRbAkXLUZ zHF}GkSqfYe@z^jf5xWzXn`})RFbEjWOcJ9DasU^@SJMb<5d2m@pEt;PK^RrSWcx(N zym7Z-F=(sEA4Ci64q{^^2nSHvDb2j=^EYF<1&V|$BAq4T8!2Fb7Xr>&7R&98!a9z0 zY=Ba2MwP>g@|g^z#cM?z=C0Ikxi5#M&PFjz6O5AaMnX~wo;m7y9`r-QzgVko&oP+t3D_AFTUfokJf*E z&^*pPj_o!#3F8a!TWMjTEK0ECY0bZ@5@M7i|63T_z=4eX#zpERSc#}q2r>tD&StRd z5&}TtI0#4$Em(hii(uFQD=~RAgRF+tZUlKH3MuGtZsGp<;t+rgyb|^Yj-uu!I$8%6 zECJb69wl*f=4s1Y2|7z$NXVQGs-&0u4_-Fs#fmMil|5)-Y8+<~#d`3`FaA zu*Y=bwG^>IW84xGA}Zo2&AKe@HUkVArez`5n$`#dxUm94PwJy2oN zqFzO76A&C3&mCLR1gvn>he|IeOObB}8f1;l%@{@0A+s<8Yx0_OD^=2oHR``&fJh@? z*NTARH?(T;)k7(0;EF=}#=}cgB=p}d0o#CU3SoIs?G@fV6TEN66d`6Q1=JUL1yqKH zL#`N@vjRYvhRr2hgX5GYeB?iW&TE;SOqT}Ro$%p+1Ggh>>$$@+Ha&ekEbK^5Z4yD^ zYJQR5iqH=tK5R(8RE^tEbr4(-uER;+VCK)r1fuIt=T}5(rJx{o*G|#Ny-ydSzMZIo zv}_+>cscdtlT_phV2g1UWaJy_>mLJ?g$REB_8T2fZ#s zs{}Q18DJ~ISOAlj8Zl5rb1$m-{cw7Ll}JVW)5RCnVS;GH)t0MKH3m z#tx!ma$O~s%r_W)%l}BA;XKkc3I$M9tSM4b(1$czci2?#kLSlIE)fh+O02n!B{TB1TPT_5)mS3+?>4;{OLs3kEf zM$X3nbHE>4K*Fiu3sZq*pNO-!9z@&Own=~+$hRKO6yDLfF#XyRD(k?=VEsuSk z2Koe<-vM}vk_s>%tF;TbPlZJB_0{EQ@Ax7vSv4cQBP?U6W$4hSRd6MpOx~z4&S1HT zBGN?S^+5GSMFDU_&2-hL00lYa=AAp2C>^m2(#4o5St zMd{NHq+>W{NTUdOX%R3rm~tmL&H-jvWFlg^2q-SZ5xsJ_+flsR2viSo{0`wU;E0z; zeGjp7%DZ_m%JKTh8xXFJBwHgUG7OPXtTm(tfo7GM*)PlwFPH;}BL3~qD{vp^36BYV zDl{CuQPBy_66y%7(ak|!N8~64R!1A4q#bqsy>`osegcl5h+7VfybL-0ITYZ4R!u%} zGcr<`WRcGTS`Qug3&N0V&DBoH7y)6(>j4E(Um^iQNxRepn%URHtRHP~iuh$UhEQM@ z;AFCMa*{401z0urV_;AOgjQHI$U)bEu)Wbb69lb%_gY+-JpQj*w}>7x<&^;R+l+y^ z5J(^@tK+`&qo%zD&ME4d8;qekpugeCvgIrw5G>h`=cH@XhR|O6@uL=S#L&}(kqiJn z$sV+Tdsti*c;fVRq|r@9jBFLB3JC-<{%Ap97)~joC^lTudUbCiaiCPYOoFeYvFpf@ zBbdr6`uubC`S)Ug!zgdCEi$ukz>~AZ|JzwSD90&`7i$ehkM6|j2m4%K=Kh>&<{eu| z?nOg0^e3>BJBUKU!}v*I1PA~|(HY;;*^jt_W3-7v>ith^kuf1f!Gz63T`34!akEuh zynW`+zfS=?A&DnxUI}W5GIC=O@r5g-TrJGwLPA(1FyWR0m{N==mg?ubyDj4(pdrXI zX2I)z0wK759$g3n7~ZdZTTubdG7fGG@V)mT3k)SuocYIne*o^lM-OyWN{ACY-LvPIg@v}wEco^yH+ZAY zVQbbyM>X{Iw{PDd04!cJ?bPzZ4r2=+j(yB*Jg>>Hs{wf$G0OyQirztm8t5`1Yo;>= zAm{*@A-4XsnyKp~E0mb=x}pox+YxvS8wLm`4qZzPOgjg5w+^E)_TwAAAO1S5+4byj zt6J(D{cb#(P5k^%t8@0OcI`D>1GZ&3SSq84NQAfk=}h0asrA& zud)FMjLuYPX{i~gG_}z9 zX~U(!kcQj#O%Bd=!lOXm0u!Pv`vGHcS$$^>A0p)x%GT=1OE$@SrmK`xKmYQLTONQ4 zOfS_ZsxLsA;8&Eq8qQD9%@Qfg-0A#NaMqD2OL|oo zSAZDz7QjiBm-<7KKe6JJ#5AXxA9gPDbIz!G%G-bB{VLRu_Uv;qeYD5f1E}wb$)_=- zXkKgeA$r&dugJv8>P5N$c(Zt{L~Qdx3VEUG-lN2w4RC6#w3JMM5>e)uVGOH2CT^4I zTvmmhWJkccjB39v&k*7qEF!`L46J=RKh$Y}4oj%n2sb)5rUn7ZvcMt@EzUvs2}App zSgc;*;ar$u@^}!VL5tC?Blc&xIBgfFb-*;&s&xm6?Yu6dcUhv?KA^RREUz)^G$$rv zaa&qi3e37p53NK6y=>XCb`%ltEiD8*EsoRS+Q9V0M9J>q+-raUH{!$t*47Ahe0|Xy z?=i6{@n@fT!V1oLgMCe5-q~$pu_`ll7MFe3ZKyO z_`XT#xA!X$`XxyGhny8&^7Q^dqs|O1L^wy0`Fo=ne|glJbl~M7hrxX(4-6#9;`aH! z&a|)-SRY1ML<5LbO@&pV8=+-Ii>5fKV{PgaIRImf0A(fY!;1Ozbw^y$5(>c6Cgl6? zj}~UQ33i3HhEQ*k7mg}wp6`!==P-I;58=_;%+en~GJQFXpNy!(;N5`k)i~qUdzHsyXJvp5(_!15p z=!U!x!;>QFmApbv9{_8@>WA2&_-V+m2Wb9Fx=gO4?=^$$~ExL!CJrXUtGh#x;A`W=LtIe!Y}E6zims(f2LD(L7BojtZBccX?l*D zqLC8Fb>-;i42ANxoQ2gct6J!Q>N=F%=QFO%4f=E2`pvZBSUNkk+ZS5D$TiFKHP8l^ z|G1<2fTwV8he>mCNqL<^W?7EBeA=F!YnZG%D-L|mE6)vfyOy+E z_H3~IWd5NxD{jbqGU}D>&2BfzTet2lEq}IFBVOp`j^8h+)B2*?VOLY8*xEL=)Ba1F z+pfo!Et3_l(s2m$n|SY3K6;_;&_QKa!y4n?Hbzlw?#hw&wF$O+U+86c#``k04ry?P zCGU&t6J6W|_=oD4R-BRU`Huo_NADgflsRnDYOr(sNp>;bu$k2ft^egu#R#SD4D!*@ zIQ;ub`aG8)2FP%ZXJmWi(PFeE`S&-3mTvJ<;Sm;QtC3jE#5K-Hxp_0hukY^lgDy95 zXN2=|{5Ro#ABPRPuEUW(%YwRn(^plVufyAOci3MayE5r5kl4!Twfe_jMcrxntc}|i zPcr;dEH0=+C;H*ePA40iG^W`4!JRaSlj^Mnss@7%vu4xVoj{|F}!(tibL0{qcYNobNa| z1W1^49CrM^873#7EWGOLtL&9|)(DPu!j+#tbKyV)K7Zvu9P2`@(3o~|nuh(XGLMi1 zHYeF~|BNnBsJfc{&%}v;Cz|CceBf6qd|Q;(((K$pe<*0)w#EOdn(); zJwBB-_iLaQ$$>K2Z?|>G{r%@x7OWUdYz%u@cr))S|Kt00^}YRnrQj{M7O z?69!8)~`QF{%EjFws!4S%QEBxyjpRo$*2BNL*~r^i?V0a*9>;o0bwxPhnBJteKp>w zxwEZpGi|+jW5VAfw*3joJ{5W<^NJ18U&de4ZSfqN|L}kklKuI`F+OVHDj5rb9XpOB zFjEK1QV;xdVdZ5|ggCv`-U+^V?4bE}(_^3J@-c4xT3#hZNAEwcSrL)E zOhdEBPbk50R)0QxhWikh+#zlc^2`2tDy1JopVsWwj%)ug_ck(jT2WX1&(jcFEpN@j zG0>zh&QoIf&*dc)-!uyR5Tl_i{LhUz;&152^yiv>oGt$M5We3_=U*d&6AM(fZ|1gq UOm>EKGKHe7sIHJKcg*8|0B20<<^TWy literal 0 HcmV?d00001 diff --git a/2_pytorch/imgs/autograd_Variable.png b/2_pytorch/imgs/autograd_Variable.png new file mode 100644 index 0000000000000000000000000000000000000000..6576cc8704ec2be6429c3a844a3740b4bb0b9c60 GIT binary patch literal 4477 zcmV-@5rXcCP)vKu|!)!T5QlD*&1xIpXeewY29XD>5vW@l%2X5OBg zob0}t^X|Lv-2a~Y-*e}^bHSY1pH8Mty`-pg|MKP}IrT)4)i++9se52=d#bx+QB$Vw z@t3<&-KII0X6i~0$M0q)}B0C#c85Z|gFMd7y_y)SkqXa4#4dEfCF-&OkkP~_y_wuX96z4EKF z&q0@SI5$i0#9to{dZ+*KXnpNu+8?kqifn)A2g%k4ZfuzL;zZa}+xO&83WA^SkS#yE z{=Dz`jPJ(3_uaz=&+_ZO7V28xdTrU~pvyU&o256mX=c!?qkd`3t@_rMMMLhSdImT$ zZ|>*9_xvsP-O_J;b=d9DFBXU5)EX7wH>|kwtx*R!9!S$|rQWEN7ZM%Fs$bJ-IoFHp zI(u?QdJn~>ZP5ySUkc#z(&NUxYfzp1&u4tM>+v5KyoXZvfgVz6zr+B?zV_$1r2sBl zlxo9>Eiy-oqTqR%W;GqtaVx)bMF31OPXQpLZ^3Ovx_i2BO=f)RW9jEyYt@Qxr1h(_ z)e#8#nh|teU6bEG%X{`4D||=iO}yyBLDxsef^z30t*H+8*!=Bz;ruLs11j0Z(i8!I z(#0Q4?}K~bH~h8@lP{SVt{cx7x;La}=lX)q0k5t>Wcwus`24S5Ht4#uKKt?H$e-@Z z1bF8?D+k#tJ|{O(6n^ibj>70I-&>Fx6=0SN@b-1fLT7SJyD_TtR3D!)oy)LxYF8(4 z?%LJYBnz&Xoz@=%T!UoxWuFWkju+w@2<_*5wMBqA{M^R09n_7Ez?KDYWbxHsOxqvR z69%e2Q=1upTvs}@B?dS``#Hvw#sJ^8xg|Z9w%UGCTh%Z2n$th=k#Njk4ZIlOtdlsN zaN+nci0B77i{UPo>ki<6gB!LTjIpdi$^m#WiX!9Ma}PcH)AU^a$8+cyAja(|1aQ2b zXbD~#FBw0DW6zbx1XR*Fdhq_T08ZV~g92E3vj4ZYr+WOq>FyP2B*fMq16+e!AdGFt zxpBYH_CozaovMfSX~vO*iUF>A@ZzeQSzxqy`l!dj0r`g8mIqHI&sQyg3kU+Fgeg%* z7J#g$D|FpL*R&xsXalsv(jlEI?+VZ(W0wRtUX2+JJ!qro30^YR^Sk0lT*G3(*0lbFP60)^%gBv5@3k`yLXz$W;CMZHU@u z+dS_GzZt;;Qa_G^`newZ8tk;a(D_`C&+X=r?H8^c_lw%9 z->{&EH;y-MbdT}p)IXN#F53WgoA(<)-xiLdWRqf6mJ~rX92=`PWm!f1So7cjn(t z|K6KFfQK8)dwJ)D;oIr{b@{i`fBv37fCn#<^V0X~GsCyjix21DPOl%%AqQug%6aK% zzqLBH%DbKJy3GMTRw>F@0C=q^$}2BDc-%R-bMV{(Jl)AG^z^uMaOdES&cR1^tKK=d zQFMe5 zIQU3#@C_R_Boil2EL;EV*|SM=b91tB<3{J;RVuS)%}QEYT09Ou5)@_e;>F3ldGpHF zKXmBOxi`r^|GabXDimhI@XqmV+dK|l4S+Kh;rO`DdiUAs2@9;&iy*RG_! zy**HuR2y|A|1vSmx4e{nf=>Qn$Tb~n;K!N>r9%9JTVXXebA$@uZ()9+WVTp5lL^wi1ds@^$s=7c(_yAe6K zY=A6SuppT*VL||GNZB#~c0OOee0efs#*AP`=mntHv1~VP+_*4MQ~)#Iqu12bluVj5 zDcE!<6wx_&k%A!st~@f{17n9*B@cWyd-m+mId;K0fByVI6b8OXUAA7pKz%BJ8(>sY zj=j9QW*nURo<4ngvT)(Tu+|XZHK_F&z{Gaeb8B$h#W(c;WO;7v&%jVU%#b0Y+z=>Y zYNx+E=M+T+0OL)VHf>qDbZIcUji}HOw!;B9qT{$8>bBsf^H#539RN^C>FT_zW)ub5 z0FdqdPynfb%Ke6{8vR~9jz(F^hOO}Q0x$XudTU>772fUL+B$SQJ$P^aw(2VdIDiD0 zacGYPCSJyNFdd0U#!E4E+74i0X{TxmoRf|ewE-Y>qy|MJad6sz+cESdl? z9f()59YAQ%QV+l#GDh?-JP#Z=kWw862G^_=z&q}^rJ_p%P$)#ac45#e%E9aeO|wO| z!$Dv>W&i}+h=XJ6*d|(F+J$_>0DL4W4^N3yP}Bk9e%2F-N3!sVW3hCI^;S?CP1O{@ zfOoS+peM>wD-PcG%A*xso0%xSAK8FKBn8T`YSpSiI;>r=O}xKg!ONo4u3dCJX3C1} zRBH}iPh0hPS4B1eIi3SL5t=!`3GrTZ6vybW0K#+G4#0CkX%zkv*H$MIO4Gu%P>8JF zIr#SN+t20N=?677V`hS8*eC~%B3{d2696pRQ4e|{2hu=cP*4vZ9%@2gP`9OsjljWE zfRkyfp5owi8U_tXr24%S;3Q(80>2jM=^XeX9c-fqbW+HsHUN4&JA)!*aqHJ(kT8|U zJiU?P;CNo_02r|m_oRg)@%@m|Ig0ZWX~CAV9cvqf78Q{K{0gDc57f<|s5qRO$1q`~ z9Nca)Wbr+K97j^(0;uD~Ds{$-u3B#NRLa4b*=&dudjRxuL0HOmvQ;UaF$?fYId~(L zT5@o_D;`|nX4Ye7s+4YxsGU3x-k7D99Gq|{^g&@hytmzntSdX!nu9yQ8}qj)P%ReA zFL~M=DJ_ipjN|UdA5M=C{_*L|c;^F{zadCjVIKW+8@*?TWHyz+EIh9@q zxJ&*4?uKy5qonUeabvjTdXeeIaPcULi;Dxic5?5AA0-E$eIPv!DY7$;d8=!9@nxCE zJb4oyPAKzu%`M*_)V}yQJjr7oddNDa9pNpsWgc^%+;6$ZJx|^f#2!EKXuAWvuEa}q z%YWZ-fIGk);12LnlD@t^2W1t@!55x$fY+0BbaXf>t5~{sJmy>VPEnkqG{jD3E}rP| z;sDR{R=soZ>Xx3pPc=Lyp4r{@T5bUD9NYn3bdfnC??rKn;uOWBC=T#Kg%l*bblw5( z0M8`{Clf`SV9F_q$H7OWqj{lx)=TAiZE>85f~;knV-sl=t2fr+m>1cT1uZV+)JuD+ z@e+Ioc+M#bnb(xd1|hSXvX}9f&q&~;TtVddLC9^RWKg`EKF%viQYi8Usb2mki55j! z-z3T;N0KR$YN_7%W%r~RQ5rzChj)fMMR9-^EC32Hkro7xi032;lM==PB)lwX3K~$_~BUr7~oR@*m!wMACwphPfsBmgS@qhz^Osd+}s>E zxC*KJ;(VCYi|1F49uiMc2ifPGga2O^UUm7~xdC`rS65X!mb4&%B?e+V0Bp`kJTYDu zFAvbI;C)pW9vO;4ibK95xvJ6tsz61QycK;0QlYlkY{axh=>r|$zEz)D@Un&SOWI;V zs|6$H09rs7i_(qb;Sp#FK!>t0SO7W&3Id>&id#u>W6vx-EkyC=q%QX`VV<9=uQI@G zBm(*X2(^%m2Y>(`rv!)Az_%&T2?mDE+lhzfGv&5aK6uq#4B!k7wUG!;wdqM-0G_L@ z`f71-z-+xEd>0A;C4hKa6}x7u0Oaup^#u(#bgxG9QKkmed*4S1FA8-84f?*dW)346+uxb5gmI?Xo$|!KvUs5#oFUxLI=1P2l&{FgL}!xBWt+=cr`h= z7k}v3DT-4R2e<>=0bWbFVa1hiIS2QWTMnM?WG-3M{0(=(-xQmMe+{MKK?&9JAcX4rmySR+`t$G)i zqC1(ZZ@k)#;gVl~yCGciDDCT(y*U8z-^~5Wmp*gf`^LZLL@~Mcn_s>aJ!IykQ@3a7 zw%)Ypdg)G`GU<0&x;uVx^EJ}_@P{V6l%*>@BukHaq(}W(y0lNav^z_e`<5>D$kN50 z(ygX#t!^pX+I}cyTiXv=dbS@*+1B<$Dcjn9C}msQ4_UUo=mYOR48H#dx6WrH#4#A^ P00000NkvXXu0mjfU-P +
data
[Not supported by viewer]
grad
[Not supported by viewer]
grad_fn
[Not supported by viewer]
autograd.Variable
[Not supported by viewer]
\ No newline at end of file diff --git a/2_pytorch/imgs/del/img1.png b/2_pytorch/imgs/del/img1.png new file mode 100644 index 0000000000000000000000000000000000000000..693502389aae6c94221550d17fc6054b28f5da83 GIT binary patch literal 55712 zcmd?RhdY<;{|BtSq(R6k4J|u+q+}#g8upfvne448gi7`bNwPxr&PuYfvSsg)O?X~c z-M{bg9M8Y-IF7pS>ci*yT<80IzhCRT+;7NA?%hqZn}md9uhbQ>nq{F${BBMP7j<8W-=-)# z$z9sPUGZ6_dO_E4bT(1%n_*kpj4w-rjDV9KP1yT5CfX{>2Ck};+-JBh-jKT_r?mCJ z%e7BzZWbHsJvNgMFFv&(qbq9Z%gJLE>R4QL?i}hEs$R?K4v~j9BGKpZ!6(Z9??p+5uc`O^_x)KP|9|rh)){0Mi8~f0 zsFrpAA-$mW%a<=N+S&2@`T4zh^X8`jbA5%KgG1lsq<267m7JU$v*IULS631hx2B|L z&$eH^diBGH4@H{nA2yy0U$wTj9u?WQZ(m-1zWM$8!x?=>6ykC@69#{8F;A-1n0$tD z>z7L3QzrBt`$=9f2nXv{`J4B7@wN$2ka&1{o;iCq>izrj=E$9!T;t=<6%-WMIyl%Y zr<~xR#E%e*$Z*+kZcbFG$hH_FVeecq;0m_hV0)6Dp4ZuIz;)W=$Ef|Dy?b?+e-Frn z@KjU&l2cc&dAf({Lwx*}V3oiS@Mi+Z$1p>yX0$H&DN_4Jr<<4CfyvwuxZ`Q+w0WYTFoKNt7m!%;RipV3i65+Na> zoqP9|)zqvUe{}M{k7Y48EEn!D$^Y%!H)Grwg+|Ux3o|pn5;MEBzXx)t*?<4|@hm4N zCp$GMpP(Q)HT82hH^~5oTRSaA=ItL?Sj5H0mvnW7fBM9(s-~7`Pb&4|DeAjE*0?J# zh_~C3{H5uSD4TmhN0U{vUyFNET2-3kR#(>4Y%i*+@?^aH?5mB~oUKIktMA`s=In(@ z7#SJm=^dE=ZIYE2YPr@kzpL1`{IF7+dEu z{${}S`}_IYD>s=}wl;ik!dHT7_7B4Wy}NfcxoBplr(eEPoHN8v%F4~v;i9Sh`t{S* zpntnNs--={gjUjrA>E2vR8h^)@N9dgS!PyfRMas;BO`MxJTvq6-LH0Osc30w@d*gr zR8f&OH%}=W_}37gt0$(UyxMnRiR7huS=1DJI?a{@l}uSRou72LgL!#EZ|$n@Cd%I= zsb3wj6cD|9dDGXbsuBY(<=f$o=ZK51k9V4HQWzCueof(7Q2K_Bii&FXm)ntGHKJ0n z!noqT-d^ppolifpC@3g&baWUP8{a;%9w`0ay);zGFy6GD%jLV@$$dnt_WiYx@2n+_ z)r~DJEoV7))%yk}8A<2flK$K8o~y@y`0zX-fmy|kQ7nK%cslOm$73f?#x$%d+_|I0 zMN@CUWovJ*EGWciTvJuG$4lb!ty|={n|cAq|1H0LVqhTk#d1o|g7^W&z9&zf$WCd< z$!&6Vb8~yaLh1BcKEAA^WXsajyeXNW(Y6!#fX};J`9$Za@jsW7TjE=C`TsSAt#zRkE^G5Gq}1%L{1$^fgM$*{ z;@hykx?|0W%u1jasFH~Pknv;pS3BM zAuPfmQMJxC3*$-|ChdCld*2V!oIH6ltSdGp<-kRz&eTU}53gUp{#sib8yUF?D~I(B z;xms@-Z)IUy|=HA-)52ywT#WrVL5z*NhYu;NiFyE*|WV1?Pe9|I|l0o6WxUoSm=ZM z_iI))jA18aj@a|MVF*3v`S|gpVw&Dw5}QsdsuH(-ndV}m&nMB0U44A^%?{NnXv|Je zA3b{1wK{~?qW|lGsOadpxVXrVA3cnc^W{y%Gn#&i->d&zfYn~d&T11NttUgx2nuFT zWQyUoYq+d&dwYAUT2yo60_ASsE=|#?$g-U|=1IvS8sGF_Xls`r+U3J}4NV)clewMp)r|jdMc*S(X zL;5wLDOP-<&rPunD=RCt=7#G{oMY<^sJRW_2vqu|rJYYoO1i73XKfQ`5_nMOu!ga) zO_$v%DJdyj)28aatRwcrjLk`ERX!r?Ul%6Yvq#>CG){CoObK`4*ZhX5sp*N6C(Vb# zYA=JXYM<4Bw|uHQpV0?g>&c5_0>gQ?jIbysjPfeN9Q;`0k+&h8k)0H@z^caP0h{P?9>=chKq~g z;o-OM+==s5#S;5CtuDL@50@1a+j{vKX-Z}31q@d%Ztlu{6}55R!sWeedDENY5JIG2qJM){yN}lcQt2pA)|K;f(Qd*uDZ{HpzqvI>871{XyGeyVT%E~0o zNkU@#>cT|y`}faK!QU?LIhT63wZK&RMPFZEYpU*^ZpYcZvDYIe>n`BydoZ^rw&SO} zl?S(zQrDHqEy$v;82|kA&}D5*}6KZQ!Eb!49SYpU<$+B z?{Hq7xT~*kG1_>Bj9#F$BikZ(&CF_JeXX*#cB)xN-HVJt=<9WnwXH>%M-_W{J1*Y1 zQFn-3$Mww{iVG{l#~JMU4`4(6OgEx(SQsA}eYtwV%xp?_3X3U;RoMO*V|@>LW~M`J zLX)AnrRBS%Br;b_n$OBClHPQT+}wVcr|)Hgei;7#GCd7I@L+m+x~RLmu)QXd?YvcF zMnB`_0Fky%3=?z^F-gfZ`*}m|GZ~qg`d?o%sya-he-GvN{qW(mgg2cOuDi*})6=u{ z^F4AOq2D_nK782mpo*n`V8F`iYyLNHdO>Oq?X5l+R!*aFiOW%7jt8-8ZMGPy(Jg+o zO%)x1lwRO=A}O0{R?(>l$1lXXV(PYLn1p!M65uM4Ur;c*VWe(seqvocxutJ#u=(sI zU?S8z?k?~C0|z2m!y3bsyLg``-BMKiub%gZ|FgCAS6?62pEif-YrHFe zXYI8J-;+9Q+c5ny1R2BX4c=iv?(_<3m+qX*>Lb&u4i+~xW$kv^$X^j`=vUpeX%ni} z9Gl0~y)Zeg{N+PdBaWKN%3rS}8MKCK!bXjN8awRA5{a7N&?#4aaM1P9qs=#O-u#(q zb|lw&;ut@F5KtJJi+#WCo4Gm53(NiF>UINuroxk>P4RY<*+T>(>y30{=v`l((#JbZ zSnJ0pCl8gnlaF`i280RP9Hga{M&AsI0CYz&B)CoyOeN#mWK^ zynFYK-FCW%r%=T1_ld~J$bgRS?(T@=lHQiO&nI4=G{|wQH^}RsBHeyDelltz-BozG z-}kn>Jg)Xj!*!ABl6@k^asd_beka|{O-vF6OjRwz3kyYpf`ag(j8Rz=Wzn$!U;TUO z%FoE?uj=Zaba!{B_L9JRqrq_T@Nnwa(BWrYxq9^&AK%jJ5=F6!KnCTxtWw+V0w-bG#X_R?c&E`$B3gn??_?h`C5Uc~+(JmIhei?Xt0Ze;YMH>k)|LUpdEn05*P za1v8=&JHW&h#^Yc%&%XsbaZwCvG#m@b)1Wf>wYzN3rTfa8s(uwzsANqqoa@CxpRk3 z!18%dPmigOUFq`!bbR;Uw)?azyrAL!*pz<$h*(XbRsWL?VD@7@U`W$rna& z=xpchv?M1wS9W%Gf<_@gZ?>eecQw0q>2ujB;GRe7$&x7Fv9b1Ta%%LLpck#Jc>vH9 zD#)k~9YT$nqnlh*RHP;mS(_tYTV1RuDS3?Ak&U?Eg)s@RNL1FXTS44Ll(Mq2FOGU8S+EkGB=4CbIF@;cF4$i#!(b^E0)i8`snt@kxk0sohIck4m(a4?;zpa z6mZy|O`~gcBeUDtA+~C1INAreSg*|E&}{{UH0L$@`GQg)^+V_6Kbdu3SeWeGQ{=Kf zdxXJhP7ZtK%Ju7+e@?7q`Lm3j*RL6$TUS?C?;jevrKEJP>_gH8%oH@&Kmam)9I%|C zrY1kMIn>05h33W)OSIx!3JPwIA8)}v784iOVyAxY?#{^0e#7KDhCGOrms#POe}Dho za-Sn+Rky|o%yN=til)qCO;KA%CrHqSb?@H21pMmEwK;Fv!Dn=+TSr_>?EYwDoaxxX z&)Q|X*Ow|pHdp%wi;Ig}Epz0q(m8m1`69ZVjPC1;!{?1Tt!w0W@7_Hc*RA+*5`KDa zn^u+5)~|v$VOGm|18#~k27s)+^NIpM+Q!!3#E2MEBs%3UM*QFXq#XKri|&Hs&t^tq z>^xF2%`U_L)(=ePjIpLIa$7|f*v>?ye>o6U!LHWgpX8yLUb++)8-BATTBXog7(XOM zzFxTP)p1EyLB^-)hrJ}y+v`CE+gU2cCoRUMlA2ljQ$ru`kK)ZDL+qL)nO*krt-7RieES6j1u?n-%~Q24MSsfUGuh`eI5;?XlIz63;PCeG8A9jT z*5fTWsX6i^rulS+G#1Tb@cUuhwGWAjx;;e?(GZ@Tx%FQ4f&aKPfkFvxm2>*Xf?q&D ze8Vf73YkzfJ8zIM+`jvOx5V2eCYCickc)_jV90$zn@Mo~jxKY6ib@jA9V<$}nV})c zyLV5ZIo{5^Me#IR(&slOkCO0q@&=hPetv$y__s}lhtZ#2y?RAywdLM*&l5|qZKz(O@NLE(X^q9s*aN*j7*$+SEIjN1QjkQAA?%0fX z^#;?6i>FSVas!AxcI;R`W7hCI>Gmy3N=hV4%gait8!9I`)bs7R>m1Lo4ThL0M_-Bm zF*cvKJQ(7LLDt{j|2fwyGm{sPfEUmxXZ-C1rU?Njfy3J@*$O(`IJCZOjsJWhBb1@5 zQPj)?cje5PGmgMUqbIfmkkivwfAc#RB;w-irqi8cbxzu!S?k-IGju|>H=Nec4uxjF zpC9ioEbLrku7<#;Rg#gD9up8 zsXSi-4ZeP@J$B>Cr;p%Mlx*t8=KL7TSOQ`{*xL&Ld&)nT-Pz9Xu)yr)<;BOxr>I+Q zDxW)0R$4lpS-6%ccs=qEN^|q(%~|(mLGxarLx3}uMN+}xaidO{n2X8(*_cNuM*QLf3$GVhZh?j;Qk zjq9M*piG*1fWQCiSFa*jFZ~81`oV=!0@{9xD5*ii;iRl;$40PXmqOEMQ zGuLi3F4lG|G4t;r6adI3+CKqT0vv}=i<5ybZ^mc=`D9x;o`*9D3Wfv+({RyvHOc#=*vgMujWy5w)bZI=ZPdxC_^IgZL!}Z-gJjmDX3DHR zErsh=A*Xg9I&{bp_n*M+-@aW{RaIRALu|k1ZDeSuoSv7DNo4rcYW>f$ba^ip+q}@m z7d_;<+UnHOOrQLeb^DzmKKnTXV$N~hJ4g^H6l!+=<2Or7wwNTc+S7PU`k+O>_v>E|b{y!Dl_4$FpX5Tr8O7XB>HCaC8JryI3I zo!$+B>?9M@`&*SWSexADl$TI|sgDoE{c+noiLA1@P{3LQTR9PM=qe zZGa%5D{sgsmiz!!NC5a364Bppve<|Dw67AP|hmpXtkP-t#CL zzu0j5-L9BsvjYJdy%Q5oWotl@gkFLxCki%isn-*9hLC-RtujnI+dleTJ9xLA_Rntt zr{#fw#2-&{gx{;{)a5xZzhu08_j}6l41~_FU%%dPc(#4V4h;^4F;Y+c7#^=P^dioV zK2jc@9v-%H^^y=sf0ek+;!3Rzj>Se^b|bD`3nU8CT;ayrR4!v%ji7iFqp|smDLFaeFGJJE)gA>laq7H*A?h-rr-DaO;y$J0Qc2bJrW1- z@0y)CRu^Zfv*yQIYz!X6hnN)v0S(c*0^-e1xooU@tcHrXgp2(7wU2~QFpS$X5-&?} zaAgi}OqcBA%6PrKT+o($u{fdH$3he4 z-|J4(zwWjeA0OYBR(nAQLxsnw2nF9X`3I!r&uqlTc;nu-Dd$B&E8+VMCu{;{+l-PS ztUN{GYiz7gK{g2UumLzFuqZX@cBS89kP?A)QnX68|5;mWYI&zlE_|)Z=w@{NeroEk zU~`aiMt|!#*xIr`=)XcoM+Y78#JO{xw_;_}gJZ>asz4g-!5$A4wDHCcgu?3n{Q2;0 z=N382ljZM6QXVp#w=I14?ui#I@8i@_aBJ9AU*%kaHULiT-o^&yIZlk#n;J;{WVX1PW zJbg)ozkfMcyk(_{k&)3dWM<%V;~=G$3q`*Ns_G3BGfK1fi~f|ka%HE6+}5ibJnpK`|yzU>60`SDKb1QS!L!=kBtlIp$c{fXr@HQpE#VYyQUA%5o+ zQgy2+N5{sN=NhgPzYcTW-HE==w%B2@4;?byDoc-++mNEJ<8rY9mo?u#TIgy5lUVZhURA+f4p2l+ZrV=weOwPk5vE*CVGcbyqvR2%H!;!ysi1dYT{}icN0m*Et0jut7)%LRJb0kJFy1P(zSJkLWLi$AoJi^7 z;^OG!1g0F5mq!N!11&CqW$#%rNl;igCOb(<$Lns0Nh`jg&Kx)V)!*MZvUZ-6vr)-S z(6GpLli?n12S6VOl9k1&>z0<5u{xaD(BhrH0jBW6u*JRWh0bfPgQpTOP9WucUdMQ{R!s5{Ny zA$}b^cyI~TA$9E_jS`zTDlSS>l;5V2l7@2RgXX2xx z9s$IXZhyRT{dp4fsMvK2D=SFe(b73G8o!sC&whCS{(Zyhcx##@eQmqkdA;vhceN8v z?*<6otU35Sh|+2Yw^vY7V&X~cJb;iOHF=v|`}P4|b!p+F7Cx;PFus1$(!u#lDC1h6)w z18}7DYf3e;H4BNU1(O03ddi}b@iHKwqI-RTmperSgo4<5x8BPz9zR}E{>oZizx-iP zxP6<)8M$p^YCZwEl-I+Bc5&6Rn#6T=%&QZ2qUiIQ)DLA@y1y0W<(o&=j$oW)q`x9F z5w!b#7wf^A>viv$v4Q$%1=q+cen@qV5e}k1%#zmER@1P@7#zkqh=GmXatYuT;t3(C zjsHw3VY*%oC!rO>9*}#efRzVS{hN30hy#>eyLL^U|5-ZaDvv_dm|S$dqNQ+fmv2sv z0QO7*J97^XFG$!egGPR2y{N`A*+p z#KMwX0n1A%v7@c6jmO=N;0qb(@$1(IaTkhL=Erj9vPMQmn3X?2M-$&votT}bSFH`EK(Idu zwireCt*y(8izAx~92O@B&`KtLEaiyWsQa+^3_yl4w;Pmsf9kJ=CT6B9r=0*M%4PjoAs?x#S%ur$$?u<_^_y)$nXE8_`!ei2l+8s%iqLd92 zC~J(nb%uon`{6Nhp>7QJA4)0%Sd!032PVOGsqpV?>iNGc0FU%zMU|>%b0fN{(8{^L z*YIRGkvZJo7Te_F?7J%>8-LPb%9Kh!C+s^~#j5&HKK@RH4RFvoYSWhOA4G72qdsLNeE!VkS@o|h zqcT77acsB!U3u!^;7Q%}xmXdU=qqXBl9F32m0EfV-syg6<&?@`YEZ63Z{>0jjm1b& zI{(g;971nKuXV*dA9OzwU>p_({m|fGL$8mo_=Fp!KpbDC(% zf(PD*m~IX}<>=w#GxfVKsN70)R`EyIyMe%I&`W7k{Yw5|<*4egi}7$j|Ege4iN%(a zgN_++gy9Bko+gIx@)P-n*y}rjPj#<=&#;^|!fb8cDfO=%s287gPXSDTPgpo-1Jz>kcVBwwuH4U`KUewavw)otMCsz}2|1K}et(94X!O0! zA5qKaql_6cO{=(5uML?_>Jwx6t=;!YFfFt6thO}G;?3y;8xU)`azk-z;#k)HR)VPN zUVQ$`v*V4)dB1npbzG$e<44CyyyNHw1$~wPH=n?jAwc`G3U`5DG)4Fv5$TGlNPQom z;T!~qoWvRWtB#qOOQi`5e+5)0tHK)D;Wr^6RZtED(|yu|YJ|_9Z%7D=NzPwT)~gNQ zTO`evUkV){fks1mVPQdNspm1tcw2haxO^X#x@~c=)~>(hRNtq>!m(WuJc$rS9u87| zLHn2~r!})&zR6uU*Xzl4@X(=cMfgnLVd^*NR^$u@8#Vg>hF4_MYMxLAmJIxajzB~5 z=g%Lg!cDr1DgAWU()?*jpUI~8pxV<6>W}T-v#059Eu~DK_1^7UV1=KLCwSOSm|%v6 zhJ;a+!^Q7B5)-g<*RD-H#XF9S&nf;QHaCFyd8oAVRS{~H0RCo4h3oc&YB|vjje;mz z=J%ElThtw{!3o>_mc%17Gm~KLr-_|qsf6ME4Q|~bpp9)e^u7nyN3Ma9`V~Lkan3cW zVdPEs#`@w_h|q364)E&+g7m}X4w926XH7s!I&?85GgARuUciymg5Wye&esY>pEz;i zG-M9?u37`Gv#@yNn63rCb7qA-d<#OSz~{p3Apj(egELukdjJ%{QCmER+_RJa@8oGVuUJ4zt@7{?m zPnfyHlX%3&#=Z^?{wNc~DZc5=M0=)&b@%wVv3Pvb$Eno_5D2ocfPcGR_$i`HG3O3W zKHjnKcW(EZw@!t3y1f&8CBlc@Mb6YSF>wu^(nw445$r$655TcdB<|k5`!X=_D+rrP z^(O~3yi~|WWM#x82OVythSHr4-i}%%BYM=*k|v0pi3tl#Zo+HBo!8dZZnSb*9B(bb zjc0QRCAcrVQpkEB(n8o3NdJ%=IdTN360x77!opz(j!S$<(+e5HlKo99EVdD7Z z$*w1EZsZgcVi1iT=I+7P zZc1u|PT8N7JE@IM(xpv+rbLH^eTs?u2h0)gQY+&m0Scr3qXXCXz_ zo$TxQr`&A{ZqXwHd~IB94{wTBm<2=Jw4Z{a6#Prt(vl0;1$q6Jvhuf)hFGQ4ySvuc z*8`YO@$mSA{l)kBt^N5EDB^Mf4XpxH!pzJJd>LwM%-grF&`D=zYemRuY2#(Jn}7cN zX~_9mdKq$67IZ%7xSKT*+aXkUB%RJ{7Lh=9YBF-3>dHs6J(RERgOm$lmJ;D1@MaxY zZvcY%P4)wYpKYepiJdjSvDocWSlz+}RDbRsvPmFfAgzCasA51^SlCJ}au>KL@H%69 z`CL{QgMcGfu3RBfO#cUP+0@Tn#d=sS7Vbl{Gx7~9f^(jja&aJAV9x)-Pzgs&!kOZAAr=v+*7?u z{`WC4<`widpY3k^2#3u|uphLC$O1|%)bi|*$!ls_F9`;hKj!N*J}#=(xuvCI>0|RT zkUgh?hGzhg8*u-BQ4@mXRKY5|1Kvi{35D0;;Wb#HT7MQ5fzNAE;+~4wumVXdehTVZ zARP)aFK*qu*_hH_C-ml*kINq&H}5k~_ID;`Wd%k>MX_p}xu_caFMl?AH!dUN|D9X= zcEx<`x{r;F9(YAob`ZN5s;-=( z;uUOj;3NEWphTn%j^U?E`7+@RNC#^px+5tolK3RW<$gknMl~>9xDXB_?PGjA_8cQ0 zUm#wZVmqTv$*THXHr6P83ck$}7S{MRbqL%)R}^amdezMvH!fm3qT04@-Masun0}b= zzNXu^Z?(1h72fpYUHKuX`kS|Ji`~0-Mj(s~;>`BFG^LQF0-{$gdvF@nf`ilZtgB*N5YPRXXu9O{@iAUjne__fYsbY$c2P$3@la*xhHX@08vhE zKw67mU$&)F1&4*v784pohF^B`4&Kv6LvJgS>2NEbs z2avNv$G+CvUg#nMJ*f}((lF1}e(#^(8(##J-!lNjh|4MGSHMJO)+h)CiETY56nD<} z-Kj>ZPXB*VQcK?dWdbi+_^`XUY{*L=@R++-Nzvk0WWsOTbsg~s&$ zOB?^6OyDQk#pbaD!n(mGw6fnNRqv$C^c4vWLaQ;cPge?QJS41P(@6DSJg)W(D=Rc@ zS`r|FXQYRZB|Z{G^p-+D>&MqKP^C z*6z+zWRv3k!hC&8;JmO%nX~DxbU1IUcE_{iHs4TCIAtZyHea<8HSnXr|7EEnfk&Ml zMV-dDe0zE~6uqt6wzUeJsNeO!z+lspvYQ@J(_i+mec-KmO|f|4eQg3_F9GWIm1lL& zdWa(BDG`0Z#>U1f?rOaQDT5F-FE4MpLpt}Bf3dp@j7WRJfeZ}|g;bPg#rK8u|C1&( zfzS)PR*{jjo}AD{00&f5z3){j-cn=SCu4uaOQHmQBvD!8zn`d{4A~xA@~s{HZHpFX zs*IS15#&g>1s}1*=u4}@R@DJBZQgxtZa<1O?ZX(z-3d0feFjPAECs^SMaes5VjB(| zJh)j=UBmTX=y`aH40+0bdBZ+~Cno_92rinEB6m&m`wUt!^0VIG&$rv0_7FuY1MH7% z)m6>9zv*%DQ7iEyzXk{O{8l#qm(691J-r)pB+2L#<|v!&5R~)1t-ZaS@1WMT_wKJ~XlVuW&7`E<(@RF`0i=_1?$(CZ{=}O#N@bosdzR3~ z&YV7dQH}z3?O`YaMB>cKKsfy5{8RV8wPH^J)6Y_X9*!fC;=!=LAt(0`%?klI!piym z`vH&$D05G+QIgzZ;>VA@@Ryi)d8v>oy>VkdI{Q6~7eJF99v+HW_ZbDkCOrnAlfMAx zC9ovn(w$mW1PVin7A{u$JmN8daI_IJsheDeyADBH0+BqhK$H0u7$Juto`PE_Xdp^_ zoR!rZ&K8&|k(C5uQy?FPg2fJx48f3Vs4t*ogdWPh>Er$D{f06j&Aying9x}A3K-F3 zVbfUkM`r}Tf6wG9T`&}7!rf9ATp9A%1dKn zgArtq#VdTmYK;Ub5W-He%PD0JuQSjIbywy_Ko%m<*b9~iX}9lVNT|7ztzXN4yR4L9 zd{{X#qm%Uxp<=<>fa9UGcG*7rL2ZOcEx>^yTnyma($dnp#>RI{9f(NYzJ2?XaVsa5 z0hd);UY-&1^0LKdItGRsSS5h8pJ^^b=Ej(VN0rgm1t||>0eCtkEseNCxUCrV$)*;= zb&RGtBTTr8xP*kevxC(@a2%RNuBQBj5zZ^_gjb4;WJpJ8(80cN=PmcxsjtY$5Y_<% zb4(dx{lEqQ!HAOrnB%xizK_c@GFpPA_IgMjE+Y>-oE!sMa7Opc~68EwrnST`}s44>z_Z4xFrPb z0K&&u;l9UCBszeebdUv1eEp%yFC-*H+Q8s6?mG!?Jo0=yxlU!Hj_{s`fT%Ea0s#n- zNu%~EmktlXo|v4RysN7lmyDPJ2Ut9h?=~W#wwLx9%o5`6)AGo8Ro{iZH0sblIaz~l z)->Rm)At9mel3yzL_d>?Pdu}n-Qmzhj!ditoKozjDk6A^geuAb5kUCzWS}~TPh0?D z9Y9_JVp?X~24ra>3kh9$TXg-0jDs{@5`<>}%RdWj6s}Xx+(<*>f|a$kUgHNjBD{lM zYmRpScF3LRsMcB$st&qXHMce??Q7Nv6_AjGIzSsxf}h|BRMiyTU!BOD{UOaZ0}2A* z_VrwH-VdkZg&Xg4zJ$85bP^C2od$YX`)5a{6DRKDhZ6}XrlfA?)x@@{*yBjT5wWLZ z#~$ImBTw%}EHMh43!u&%DT4DrEN_>mbWy$s4jdq2dH{$iMlDGUt6fTcxn1Xv1OQZI z89G6*8$HtX>C-29mT0ubcQG+?Dk^)puInA5q1nxKT@}S|Rq5{vDn~RX7$zYhl~sO5 z?9^?a#ez+fWU970A-!kft#Ip>MQcbi7!fkr)B={L;mi}{8P}32B~KKQ{oH9PHuX{i zE{G0o9f5&*eO%b*Mpn0)nudm^rd%p#$I0*oPq+bkMoq$F7An|=a9zTA}@BD|41kwiWWO)A!3K=0Vhc6<9KthOpM_m4JVEe!B&!68Qdi=qKTn0C97#az1GKowe z`$I@&*euT@A|ejeVt&T4$=G)t0vPQ5n1P%!9MJX?My;)_i2J;xHO;y-!L$O==VPG) z#XxE&6O0t3*eTrh9WiYZwU2qQW%Fh}%i;Y%*5!x+pt_LsYt-4?;j*z7R!~U;qZy_J zTxC#ESw%&~TwNp%d?7oTqq%6AnO#RGgGg_ZUOk{kKj}T2HvdimZN*T#lQb*g$E4?Z~&l965Ofh3I+%b{a3? zf~RT+`^1(f{!C}iB`AQFWPtQFdZ;j2(z2oDgT&K9vmJ%5jR7Z<_Mzk(g(Kh?{ zjbXZ8hqck7WVW*6JK*tOf5b>*pWoWJG`m*_{2Grm@1@xzwz#ROX=!M+Z*d+75&8H6Gc`Ns&a%ebxA`Ht;U}1xU%&uIu*3_8 z`~c%e#RQQ=AHactyO7{OqkW+~z;+b8odod;XE>0Yq~5V(2YNW4)##fQhlU}O6=>{!_xSI}z z9S&$$!x=0revV1q^KB91L0z5D$-g3Wg@Q+uho5;ic78jTF^eW3xaX zO)Ws-#6-iiR8UdCn-Ph0&{FPDxB0F-Tt9vEcs_lmp|afBl&n@k`jF!#uqNp9fh)ok{J*}J?x1QA)U&;uo9pz zTxm)sBpKqw1H2TOP(Hb^&~s3E;A8{xe*y;NP9yY4jhtL}|uWO)B*dN8nRXp6XW8rIQmadbQ^0zuVniyUoP6~Jq#zk;F zniMpMR42}2H671>Botm&u=;WGUvM&Y6}ZED(8D$DT*yj1EM<>t7=hw z{VTwNb^$sqC|*~jq@Y+uHW`l&uE21z0~bx82pis|?l>dvsr({xc~cLBTb!u53oz%D zYPDtvkp%|l+mw|0v-3~?lOE1vG=E4+DzB(;!(ywr9TzwQf`PCoB@f3~6Z*iGdxDzot4B@>t9LmvPj!r9=(90txPrK%O}rRiUkB0cPa9IR|?Xf^H- zgeb(3tmz#alLl{cV{3*!$qDq}ndV@w3p?u1QlHOhk4LhxI@o}t%BH=A;GuwkT8Ld{ zkd+N0L-(z>%+rJ(K>^FFmoINQbv>MjPGW)|z~Q~Imts4@(8ZBsAD@^28NHo5_9`SA zkda91;=^6wIMC8mJ{PpSv@~5trO`7oa?kGp%p!gqJHhFrQ4jSGx=t8Dk*wzpcBNe< za@-JzzlRH}bl$NLX@$q(SF+ zvY*o8{(VjOxrB}ci3q~TpNTPGvTPC}Xrz3T6m}62M_!89SUv(5;{^ZYNtp;=iRer5 zO}`N?#75ZZb+Xkh|d!Yhi$LB3`K{r!kk*2z=Fj!1d4sO8z#zpt38#GJ1d zi3pcS3edx}{d-27l<~hcP}LR4rMls z&7;rU($MgMv~~1oPio>#IDo`o;Y25bTR7PO;@pd|VA{~wD0cJaLA0`;?d>=L3_41R z{1*@;vLlbtztJL1yaA5HaWb;6!pCgh9;ZfeR_A-r`5mrcrKzc@bt9Izd=7+B-q2N!2@4bT$ZCflXotkyNWWl9Q9~ z+P%9MD+jQ_-J%-p90W&M778NdZ>W54&fFUAE)>C~&kpAls37tHcnIi@>4?Ei+l$5xEXV0D?|K0lWg>?SV``U9*31G?k`ukhA zK2XkSbWq3PXF$1-vhms9zfp^iXjbv>hk0t1obUaR=B@l7)|!d zKh=@PMAJdLH~@)-K+Z1l3A&Z9Ph!?0eqVb-Mde&#dA=)V4U_<;vu8h6c{5sxPu0=S zKUH$aV+Ys;t;aQ|dx`_{3=k0q#?}Qu8f|O^90%IvG;I7}y@-`&JaIxSf4LUt)WCKP zzwG`5>kSZI+36DQB{HHAJ8;g2wUwI(!JpwLhm40bFPyfV$d$7P5S zg->riO>fwYG(IX17GYUspS;%9>c;Om6dOPr{|NfUW<%l@?sR-+Wy&nD-aKObLZI(d@AYVTPg0hnc@+p@rJdKpwHY&Qpc9fZi zFK^jcQ2oBCr0D)$(xbcfi*9Dz#lF*$u`-oe#oMu}(w}!x-mvfXN%INQlj(jRvtGAV zo5jCwQ=5{fIAv7f-S^Y|u5`wY6SPtiqP?8F+FQ45Hb0_GJ*ZvNedM+cwVtaM+4j2G zxSM{|?;&YSWQI7e*s7 zEl#R&@$yC|C+|c0o;{@clX9X~%}9BlrGQqtvKCJWhp@00b_xuDU21A-s-B5gW4_=( zg2KtudM0h3ce$)IL`-{`Ic_QHRf~^{w;Ik;W%c>3Tl@IRi7z-9eT_&p#UG?d8&*G{ zZuHCf*WwjjYjcw@*&T2g01FTyd!VK$DIr08u7dLqNrV{ok-3%V+M_kp$D=CRJsqDvHPP=~3lYUnb zgjb-T-t$y6LSJfjLD*facR~J}N>y6DL1};giS?D1!W^f``+Q(upN7{R&rFpqjErR% z+l-Vk+gxypyNqh2rll>R(s115S@sC&Cs+L-^>Mm1GajdZca2S$)W6rHaQ%-t)y}O| z+cVDP*X&|E5&A@waWPdXxdjiDz#}@om}XjRT)Dq%>*mP_8K%dotougzdi}0qF|WI< z-1>tIo;aRF0i&(HtBVYekO>Mp9309i_U7tIs2o_SmmwjZ`3{TEEa_&h*5@A+`r=f$ zv!8d?P2;3*ML zo@@=2VN%Vt-YXx^{ccbCs>w~7xd(GIK6 zOz#|xD$z>|GU}C;kx@-OHzi7(SU!AM>9-&>IEKVGvn=C-*@1~FnNhj9w3jbmHXZXr zOac9(m>3OFWfG70qw6VX(99FLKRjE${Gq!m|CphAe-zjIL=r@`ES z(X5t__2;%b!|}od=v^TKNC>Y1QH|x8d%Q zxT-vph`iBLc`Bk``9;i4;;{!$fI$?QDNRKgP!xc3$s@4LNU?#SuRXePdTR;$%d0Vb z_j^cM{N|w2cRXM}_G+hWEID8=P6bQiL*vO5NY!mhQG`SHTigdHk`6gJIWegD*-W%O zZElu_5XInl;fQrEJ>p}g=TAw;+{D@8XdpXuMfCZzeuNVKJC<(~Aq5j}Tde6?^2=51 zSTRtrQ(MM|4?9^{SomDlg%oOVukdh#udg3BIuW&*%N|x%GxWg9z}lJ;Z0){4SkLS- zekaaHGd&It4OLB*p1(R;CA#i!M?7r86;Uvfz>w_gtO3yp3Exfp4O|XUQucy`y}WYb zCmwZBn|5)<0xgd4?^B!EliVy>SN#1cpOCVh98UMjFOi){w>5^{(ZWd9qsL&2orru43m_vFsz}u zM!b>ePNl*}8LAETbqx(AUb@0KVwRP5`QN`V-rZ|!P(l6gif~y)m)rb;|3&yjcWTLL z%KZ1T{z!?3|Gm+Zmu@uM%Kw%+eq%7C_}_QieOS&{ZNQoI9YHeNNzk-4skg&I_*z}P zt%P0LR0W4qA|n|mhtM33BBZv;fBg6sEcCiw^(i>>jEG~WN1322n|5S9tYC0p7R&zK z`R5OEGn#sO+d&evYMNGv&V^dQ*M0qeA@uzR^_+K$W+m-g05Poi?VvU1&z}zr4JEb7 z;Gv7T>5hc-X^P!ALe&R05A|S|O-5d-aw1;wL_OK9({yP4RS)^jtsNrRvoSY!0d`Cp z+lkL>&p*jkU!tdGqd0KjA;^0#PQ+;Nu&XC;-F&G|g&KhRp2OZ{I{EC3ipzwH0F6x_Q%8 zY3XbyzA#xl$3;_HdoyWC(Xaa`2+GyPDM<^9^ISB0S5{XUDLo@^pT$Fdwz`!(!~qBy z85!5wA@q4IG}BGn296&;j%NY5cAD;psCBz|^uC}7sQmE6#5Vk~sniPCCcx) z5V7w0y$mT_ zZ@|AzB&w`bB=>8N?{Q&zs8dA|cupapYTGldy5{C*85ul8d}*m`vA_*8!tJCBst%sj zCq-tG!El{JySL$5#Eu`17x;j6}IcnV3XmyjhRvL;#GZ`D|-P>aZyc>`^eTvSn^4GsxW zXzWFodI}}`I1|(MqK@_$DELA+U`OJLuJ(1{0TF&{FUNz7NPwwYt0x{`{c+q(%7y)uj+W z<>VFu(E=KhxZ-I7kVrD8EUm1x5RSSK!z&=L8+{P-!XiRkLIO_jRwzlP-FMFVnO@=` zfiJ6xXuRqT(xQodk)5WJ@am{;Y$^f?>15hAD=shZ-|i*E%1Xu>;JHUAQ9iyRWUs~} z6~C)xYY`J)sxz{ZZaX;%W2E&gyna*>A~-*O?Ja2cIogL8U2y>VZA?rVOBgPSb?-AR zG*q;_e#%BO9K?twg5sJ?WZS=hl#9n1Lm3CuH*kQ~RQWgP@+C-qBZA zUi$ex1rpuu+)R?K>Wv^8Bf@>!Db#rA1U)@H1bD`7-X_mKQJT=C zSvOJat?R`9{~L~DKlXjwwtd@s_UctVal#(mfbXY!Kg#KmS5#zq{q^UWFIV?S8ZiES z)i%2kL2=)}OOFc<)c7SyNfKB)I9@z!+7cQJ0w8Uky>i!x1 z`RCd5=Z^j(=1m{i)w$Jgol8f`vtnLtaf~`A^W3qFKgQoSB_@~!SnCj(MU@~EekhbWKXC?dh|&6^huR0xDAK!4|&rY3gvp& z%V%ap8*GRF^Ppyv>@o~qk!dg+;M#1p``Lo|&O`bi-M>Df!??fY%;cI^iviISF{!%! z;cPiw(7id!;3tG$LG<)tg!U`KUd#V$*5?QMqQWVmhMz^(_fi_PEMAnjUd zEgsL*=IW_Vq5pL69u#~Us=tA9V zs zbnTG0x3lYl^-H_zJV~;S%&DT$%TayC5LGktH`O+HQC?C0t*W{<+EfhyCZTLof7T3? zl=j?HAs4_rff*i_ZMuBz+F;eS2C+uXI*ZhG6nnIsrlZq>3u!C|IREiBY}$RC&?ybPoy)G|8j*AIK{Kb7R9(}TRjfOXK(Z7#KH>=rVL zLv#knhE_wxXo-`;BHjVUQD3u`HdEG-ru>|^iW2(CyK%r%!d6uh(LH>1b$Xu2S7^F^ zRc<;ej`Ai~SB}%DV@mF*fs@HUG&j6!1@J`b4(;hO@BQatHxzo!)+m>jXoPi+H#~p( zv`7ai_PVF!iPGUiKhd&&Zi16%lAL|#3g^am*>Rpb89Ep2W@>GmMw0YhJK;C1W8MZBT&AN5}{tQDMA&102_cF~Pn`y#}_@sw-?6ADwhZ zZ<^G%wRVcPwQiO=T3PM>EM3&fMBS)gheNAZt&(3c`=q#tfjv0Xs|piaDlU(a!rSt0 zWMufZNmnx4lCgPOat8O=eeS4(zH0Z}7oquv;l>?bdwCDZa7k=G*COO)*|(}>WpVa$ zxt$)Xi5lqrK5}zMy%V5@C1}XjUdBss)#IEy-L|EaeBYJS`&fhr02N8` zuAG6PahF|gjg%Ib=I5&Sw=kBS`GWg;GToYrW@lruvQ*=S`dG-C?s9VVchBX6mRsI= zdlT)M{_3$IB-@Y9OLx@)LL8RwxnbDpd(DcUq~W9jogo3?DR z0#a<@F5&cN2YKkL{)kSis~f+}hu4h)1RUx?%7jkd(>_akwXo)GuJrEK-h=H%bu$~f z3xazC`IBjsqqGPk9C@`X;BnBSK#yFGj8xz>Ly$WgEh(QSdFGuXxYCh-QzlSx00O7A zhYlZpPoD+A;x52liUoar{e;bnwSf77^T9JTMvrdkX?b%;!ub~|JZuP0=(K~9{XaaD|)oOSU-!KUsX-~pVu-}&>?FVYex7AF# z5(fN`wrV=N6a+J0H7^K1SiSwFP2I@xT@rGh6bn2ox zesh$msKQ_@mRsaf^WZl`IV)BnuRv)<5Vg4oLwKxF2NfS*sO7F30F~5&s*xb2Z)z%R z%kap)$fn@E5ry8rfbe~cN}>z-EG2bgiTci>7e*TZ#3h zVRBsX%Q8`BRF;1FvQ z7Ix`zHf@yzizpYPuw;GfmVI}AuA6m3LH1E0n30`7vP-pzN%vUsfIZ~pXiR`5eZ7VopK$8ru*x0oshdwUpLeERgs zXv+h7E!qLrfrEFj`Dxf;yVmcuQdWCD*V{yO0qlNEX;Qy{j~0OVNeNIy`@=SjxF$#IRoA=PzP;_yFoEbmN1s~j)~z*XSUlU}TQgYl zZhy^XY)W7h1OiMhBOZIS(Vfui09+x0+J#Uq?b&OSWvaj|QAkGk5O z&0DdRDYngl zF}n|t*cGID4wUTtNXzwNJz*eLZg8TrRpdp(&JPe{?ULl3aXb!-H;wsT_e>WmR`%31; z_;_U!1OW-n8Q8x1Xsg*A&k-Zdy8H>mx2Twr@?5-mGviA&Xt+4Q?BnWH1X8uRosS14 zzXN&V7bD`U|d+4}RE}?)7xio>av(BCeunSDv;YIC z)9a;dmbZM&VRZH^y{{4~eEKXzfw%r%aPiOC zYvQhj+{!NS)4nt$FB%#eH!GF5Jnj8+@{J`!frJvn$B_QOrUHk1qp;{(dSvgTXU}9S z^J8VWcaiwNxae}Ls?`-U$*Vt*wQ()Eb{A#k=8V>lB@Q&MIIMQxn;=$td?e1QZ6qA{ zt%pq-`0R~S&nLg0{hM&^`kP=*^Y*gE+2LC`071>evAOcehPR1=<-hlfCIS9-s{1VT zoAIt}5nuOMy+y}^?okQ@gkk?94dUZ{q&=M-=NK;DxpOK|xx z;WfAYd~ER&^{jCH*D`;eVdvYIh^zaSw>-UJ=0%C~29x_SS)g#mM?ykxz*n9;*;>NE zG#vu0cgNWowbOS$Dsm{K{O4b`l#mqdTbZ@vF9sm(JyJ!)QO_ld7w=hSzC&)+oe8=b_G{OFfu)Q;q6g~u0-rgTh$USjsx|Bqw}2F zxiwZ_mV3Ks|D{GWL%@8Cwih%gp-GZ#yQhEbb>z3+*I%z|EZx~OINMQS9mOHJJn>E< z30l%V!o-_~xTSBWRxJq6wzja?wf(3ZCl@gSRc}a2Q;=E6{9t2sRgJ&by-M?J70R3U zcvz08efzNRP>YWlM(egX@Ipn_Z~pu9GBERHW6hz@$T@o`DSgx;0&{fpPv-+ONT2!7 z;4|U-++UXM1uTLD0~$jHfB-hz!_Tq@ph7>WN!4yQL&w-JQGaMX;?=)z;k!OIBY$9R z8uN{YpLAGVdTEfn*GAg3WAMlzE$_7644jFR4q<-briqWvoZ8pNCwY&~rClbWp8Be? z>&>p4h4lIF+nG+b*BVZ3jlKOonwiiC~bRHoy6kp;1|{|}1l|B2H&Q{Y~;+&HyOUCKkZ=;T8fHImKYRyAq|V7Wv+!her_)brRjIuy z9cv_-iI0S|+*b2>scgrNtp|-D(?XST@#@S!x0Q8@*aguBKScpaNmGmpjMo&fS(1Gb zao~|_3y19tjnntfwji6`muS(}C7N`!_G>{W6Bl9_Ovn>0Y$Soa2254YGOKs2-U{dL^U=Ru&eL*w|QNn*LB@9xYQFiO>vyp_7i^cdk}p z3op1Z`2a=>WSNjm7q4Aw13yfR1o>UQNvZ-XFbRO_r>|dylfI-dr=Ur*c00pc;F);T zI(<8Hozirgk!xz5KMt#V@yeB!67kX{2^2@-fk(Ou!9LHCLk=1rem!Gdgpl=0EVw7y zfM5q(`KOB^4Ah{Ya8Vobw-tAw5rNIQr{USkQAOBLCDQHf&2bxUlL_Mhoz0?>@RpF( z3zV8hycW1H|_fH2*Gen!0|BBCx1 zLEXjH1-U+Eb31p+JhGxYce;tn7R@2CW?Y7b4x*g7zQ;0k2? zWTp9?w8aYVI#0WU=nIg5Qm2%E9U(8nwf)IWaB+bPyME(_DC_b})&*X>b`uc7nSu;&fPX-o}Y@rjl0Rldu;q_|m6KChd zZUc-d0!u`kAoSgEOI0km-RY%QA|m7{prEh!lJwFv3DjIWEv73-hyZ&pOxfO9PR;{F zRg%CT0dfm3Vq*D4XsCa&m{=_he=rrnMZrCzky7$05QA*U`N^YpzqS4N{3$~99TNwW zgR}EQ*u^47N@CVB7{N!brHFG-tO*F#1By`uudLTR161fb-*ZMazn+PVeQ|< z_+7Z*X%adMu3Az^XGdMdo%CVGn1&1fSJf~TArSyEFAf122^8pT7!uK zyNjMk1mvGL?^HS7PI<=<+7G&Z!xY#(y>$AO%tB^tY@^bOa%w-^JW{^>kCgXiFsm)F|5| zE=stC3YAABD)Z@Jih#PF5C<2(_0%lOiR- z=Q%}sJjy==S<-lu)34i3BIGHN-cT#RN#hRVPbW_Ti)Jv_?PKKix3-!>2}n=Ub_WQ! z$AyJ`2~xQ)ey;B2t6P$Fc`3k{@O&k?oP`jTl?n`z95H5C_x3PLzTF3}rYhlF2w7g< zz@8;@_=ZB*A$f;5T4@9(Dcrbz?CN$NIvTPqm3-P<(*IP|z&`Ac6GekF6#M-h4fk@k zo}4%sSO#!P_R+Ta{?suZg1w{|!S1ewhC*-92863p61qHYk$QpsIOP!U3p?$sYsvXT z1$=AGuQ;POFP6~`%zhvRjf|<@HrZ!a5Sx1K+O>bO{AIJ*zH#{U&TLr>flbONI_J0d z6rD<_jxZo8%$%)U68FF~&qOt&`g3{B{c|NLCpzqX>+;YfZ1SlGS#Pb85b0%2%Hq}D zH{PXNTbpKgI3vQrWGNhFL}+g(+)5mHdCXAkwwvCkH67xN`*&Yw83m(F;C z>@Jx@tdpaDeotfTfEQ-cOD3RV_3bf#Uh_X&rD~ENfE3^|xd-EB89Kv=29*I)q^%8;`}MQTyp=xe z?JBq0WfIfKB_z`z^JN?&K=}wI<)^5aqu<@WX|6IKKTpL;rZY#@2gj%a>jw&3oL8mh z6gdo!PHS{}4-32(Ux^|T)!fxY6r%n9!-s`Hfs7d8?c{rU3lZs@lgVgiOc7_w^4Fjv| z4KAdvC?6JabNdcm-IUwODH?~8^$s9AVMXwg{cFE`ak1=?bmeT!lA)U?6_Do6nLmGX z!vb5|5c4Vee-e!+?^~=JnSW<>Cm=k?clJco%4M@G!pc9=r;y!l&zpU8VH~8%hbo$G zCU!k|RpiE_(DTz*uO5sFTc4C0E*CbvGms0|homs`^7~B_^In{`ACz-5Z=HhG;0v6R z4{=-)<+#vvu{6m3!p-mGrK}v~lRjKthSbEZ_CZ0^4!g)4g+AG_=RA_{ew+Nuae-?D zOd4H^K9(BB@HgI+w`_uPDG4bUcYPHAd_SKZZ(+>rR>h-DX0OfxRZ8lwuK+f&0N@V?Sx4gDoCy-vDpK%1Xlg zy0U7LdGzsLk4`zg59amH2{8Ea^QUP2z^`^_y zM`mvBAtCVii;hC>kH@O+cKxcr#=FB+g&Z}bY_B;3TlgebKZ%U|Gn=q&KX>ETLGzamm7|}k z3sDya@TX6Q1^YZb1prSkz{XBj^fq@{pr`kUT{Cjjs1_Ds4+i?DC&Sz)YssJO{>*=a zYrms&Zc?Cf;pl#1R>k^kYx{!s2?>oQ9BAy93i6~>U*%^+46)a)1DnWbPys$Vxp`psV zoQfizA6{QuQ}_0Z5vi})1KsrGE%j#i&zq{5Z|Z;FH~-PehtD@__%FC7bAS0?mE}f- zSH?l7j-NUu1mJq7)cO(pdo3I{YSeBNFOZ6W)675Xk2F~#G=3w-wR{$l1>-dUI~C4E zPVlW?^Gl+Kdd=vMAVY@Zeb>{KIzXAEh(z>%tZpTrp0zX5cpfS(6ml1r3{5Pq$|xxC zfsMCwy`mei8^!|Gkz+#YY?>!q9mgJjlL9D8Dt!l(6%^@hsNpGXsWoP=Tle{Lr+VFh zuG}ApH9}9*OLOYv^d%J>(jo_72(44U!807D1Vj_gJr6*Pc?AJ2i1UHWK`- zJUg5|x>iUqK9!f#^kM9nWoI6yU|xbS6#|9Ymeqqyg|l08MD~n1ow-Y)_p4UC`5*Z< zjJ`pT>7D9<)FVPbiZ&h2jXL>Ifx70?7yl*M{+F5={vc%C{ft-?hYfDGZn)n<-O6o= zxJ$uqmn()uX5V%sgwSm(7zrphi2K%}GuAZLMJ~ZqkAAc6($)<-mAVmUMBbL*9wEU=kwjs! z#?RzgRdKR-pL_}eZ?-2cKwZF;j5nQy@ub7Ki17y`j=5(N<}1wh z^|&dLRM0x=>C_ET0JI-1s7KqKtl^kNItEBlUWd1+Iy4b@q zgZI|0A}#0E-4@!;FhkBsDjSR(!_uSv5`Hyh450~|SCmj7` zcIy|aehbs4=M~fENW?R_WmJ)Ev`EL$>R(E_istd~H46mg51}fW8T&o!({E)2hyZKR z@sS@2PPB=C<%y9$&Q5jm>im_OANYrQE5uOrQ^Qc)zcdzI#kvTWrxT2H%6OGxp2xc*X`M;b~_&Vt%3XvnW6csDt$^r@7yye(g;5d6++UR#aY)}LUn z$78vD|BjAQ|E8FhS8F}@hU}!Er-$pbpP!UQ_UJ)qzb{UhvEROjXHm4a?!d0pl0srg zHOf0;r+uod^fXmVMvVGf(eb?x%Ctr%I?cjTP~zbJ_TjXBE&MZ#Le9Od{y(&Q_b#7$ z=YDbf%x$3_4WOGVU*B9GpC9AgjpLx#9??53glQ;>N<0se&da4eo~EKLY7^LINaoNXaHXd-X7bqn8TYrzqmv1SapAFv(@uS;$6#;Q!5sK^r#IV6Fa(q_)! z2ftVoRsXFVdo^s0_Zj8B3*jx$6Hi1xqI~;zW~|i?BkzX)f<{N73xO+<2;-Ai>o%Wu znsIWphDO4CooGz&FK#st4GK!!8sD%&t#6>=`x+0+9*tj{o78FR-g735v1g#LlIUe2 zgD*v!>wEoCi)+e~BqODjfDm45lebwX)X+(9`IfC)tvPSktgWT6!>YWW^yBjG+wQD0MLGF+a|SuFEap<>2b_sa>V1&r2fcWMb%0?0jgo2mh;nB2cJ!>}(W9Q-0| zm1#m()l;b+JL^yFEK)j$dTHkyrΞzWu*YFa1%wAL#&3w10W+WR8{GxBc8m)OEFpg5t)U()6T)5jcn_EWT1dfuJqG&w8j8U+=qMuU=1V5%(r)+Ydj=Hxo;@ohiM?C}@&H_qm^Eh2N! z)eAN9`957+ank)!cT*OGZEGL~o^e>;(keaRkC?OJVB|POZ=S%W@HZA83)JVS94{#Q z_trM23DGe5?Hb#v)+8f+Po+vd3myBwfWCLhw7l!%`u;q3yL8*2H_-!6rIwl9a&P4l zZ_%#t?HYoZK+7(;{aTA@g2>#civ_5S%w$G?DG4b9G+iO^&ZeBW|3(lsvd`ZKq@o)E z=m;&H7#c=9W=phm=K?`VA@iEghPSs$Xq^)w?-LeN-mWPxbm-O+sZ3T5oaU-54 zVv5R<(@PLlwF3G;`|r}b*s<(3V}f^)J<+{DnD5K31*6EF=3odMHF4rZI&qPM;gIS< zm#5EfmH-^BkPzTKAQYHum5FC08h}DIMh#!FoH~+PLdr#MpuKQmC$uwQO2RB;=|I#M zLYcaC>!X#Uz<8!3AEY-Q{9kWrJ6^Np7!3^}(MIg?$Sx9Fjjph%!gm8U$D!=SAlI5; z^O`r6lnqHNRN;yxfHjDh0kxCR{&P#P6d-;s8#b>8O=II@2Gu9!(Q^5m%RPX)vRsc8 zqE<>IIX53MZA`bCBsv5l-fwsl-JS4NQE@~==7U?}_hA~XKjvqdqRQnkeZ$RGOo>Sn%pv76Lt081WG^mxY)Z3Pm~F)a`nOpSBy0nm|k zh<-p4KoIzYB+Eru1I|VUi;QhA`p?J&2J2cN01*wKAJ;~0a*yiS3HDPonv?kOPy{i& z4gc`_QoliU>D$t#@0lKOdbI8*xLx83c&J4T(tE$^>2f<|+hFbR%m2{=XoMOBee(@> zmF9S&6TsuKRU!|OjulynK*dNy_@3RQjbJ4-jkgd(cE~lMI$>{xrOK0)qrwiUs;cZg z5)m95+lS>&4kaw=_$^M=M!O-~8HSWtS`EA?04#x6cj!^+T=MZ*A|%*-x4< zp=U+K-aL%8HsWOso?*RmWvgaX1p83&yeZ$>Nm=U_#gh)D$|G3f*dvE6X7^U%$rnjkIIDh4ia^761fu^z;Oe zuw+Sha6gCUrXBGw94DR^yNm>QT3<1JS|Xu#6To8IR_JmGt%1phtl88;3Zfgpk`@mL z+JJmrO2RURqSPWBDsNvRb%sA&!M2$rJ=!@M}BuzMS46BZLChF7F|!=}~{d!b>4wC)xJ7pchA7 zKn^TUb^0>|CywNR(>U^L2U*!^eLIWEl9WFSIv-BjNlcJv{^OM^hUqqwS$&K?^sC5CVgMR?2Gb|3;MFENQfko2$K##Y}^%Wh16-8 zL)7G_&KdKM>ml$U}g@0|2A%;b*h~rT{x4upog z_wMP0XAj`iK$cp1q1KyDx%`*|=rO3q(4=($m@yug-MQEHcVD)|zifNmuvK-Zi*p8k zH~E$yJ#$2b(#J0ysv0F{EPDtOcPOAIsi}M59C_wcD0giyoYYk~z1=#Wa!<7Hj<$Mk zzUkcWW`o4A*Xw3N-H_nZESfyuE@}sOjP_99%kUcP9>}{jc6J|4s^7W-3kY*`C%qg{ zA9ZCR0|3ny4oVoE&SsOsB6?9p4oW>h$Hz8G3ZM&5*Qr1UrWd82dA}?NO@*^y_#(S0 z{kM0A!Pj0!6{);h`$ur?r6r3HP-t(w$K~%LZU}M>MCj+S{-@uRPT^PIZ;);wMfd^Y zi*~+go+2tSYQ)CR%iI z?vUt(f{mesy}zlfD-{x?WIISkYy+nwonbo%yM(y6U->ZhW{jGj@+)bScQthogHcP* z!1aK9>s)(z2{kKTsi|7?hM%fLA0hZG@IHtdC;JZZ@lNu%3aAuQT?TS(g1KSpF2k3-r+4a-^vSs#i%{ z8msqMuP!>*ocxXX+jiEr9~>u)lS+iEc0F^#Dr(cdefvm71iM{X>k^wE+HNW~ z1rRStj=kc($bq+VNC89OG_mpbug#U6&Zsv?K1RRfxDqxkX0?|Lf--V*Wj!rj&qOR{ z9gvsZ-}+Sv0s&QeTHYM_xPbnUpGuBVxz-h5b!=1p#(^halh2|T7?XfJD zD2yhF&G6VmAKN7LDl3YIq~7vi$5Vxl)%)ha9~N=SKuQN6jXh%RzgbnIwE!age^;!o z%ij5W8P*|1q7-DNV?m*EQ<3sy6Yu#d$CEcB)|>3vKWuAtd0aS4nQd>YnG@a1MWCxV z%$TATXXcY>`8bVit7oOvc`gTOkc0w=j<^U^U)k)c<-a{DMa`K8?Xh;lM?ZL&=+foM z@7;1Q66j)~O_X#&4ucz^f`)xRG|QTHMNdnigBBBu{tP9C57t=_k z&k3jr%@NY;BXB_QO+ZZ#Vqbgj-!BG72wgEfrNA`_wwjM@H3v+Zl(S(cd4lj?W9#1^ z*($E0<>~Efjy_!})IpClIBcrvYVSj6o+hghhnONG+|yY#1T?<*CA! zqEBEqAQ?!8Y#nzp1{{ymKle}o2>-)jU=8Go{M3BYp|!jdLJ-+nZqv_qwwlBU=Vy*F zN2n_3jlvgENnz(HdaF>C@8S}=jN_eWKx5CQ?Wb#O9(ZfC z>-jA*U~{8$#tQF#t%J*OqY;ENBl;u~I*gk4(A8Vazf^L+1;atYc^Ebe;1lf;U{fy8 zlq|By=JfpY`;s>``84lb@N>ot&ABuBX9e!xVSeLhsOma<-5pET`hE_)Cm;Iaedx)1 zOUhS_n0Zv~dc?iRz5~~p@9w*@TRY>ysRKvHPyL=&Z!@Z!pY7flrRr)eZ7-c z8uL6>Zk&eaIkmP67iXMG&CWhWqTH=VkL!`YvFD{l1y82HB^HB#OBq6!{qEXDJL#x~ z%W%*xExS#fzhbejf!T+lFB9G*Cc2Y|bnDtx2P34DCr`c#Ugje|!sJuU(xE|EfMJgH zgmt|r_%%IJndpP|e2k|n^dmuLNw8ts)wA;~%R`Ots9+a1Kvk83SoYlc^J@#@rht0B zUcL|_?bf|}VyXlWCnPkqs=9jgnLwPFNF6@X-7P-j!VBH~p?Pr|R-e%y9Wx5%j7n26fC9tzEKWpibMW;Z9q& z1X@1w6n3nJp(etpXkG-O7*8g1h&u~6_otaMBW%SaoVmz0U}Rg-n7*gWp|Oe`NM(i9 zW0x+84HVPuqZ&P#rt4gca@i4r9bl9U3j+^2ggM$z#(;la;P;bNlor~KGS z*l~)t*SWLs_LdS>Tl^c*b0fLCKKrncHsN54)hLt5njTR`T=<}JBAV4bRJ~#z8e$OB zOsp>*r)n&(oSal&sxpTtSW@^}>$&x;rPV(fVZYf4Q)@zs}QP=vO(QoT&&hHAt?z`MJ< z$Nc&n>|uCk>U{Sq#%}2HyB&Vb=O`7!#{-TCBg_j+F-jeXBLoJ&*KQxUnsMsfxo2$b zo40Qd{dv(2YbsM74S$WC#T+h`mE)Fy6^DAqhkN+xeV+PMtlAGxuYCAzRIF=3B!B3B3CmqF*&(L zBa#tRH{E`_01xROjOw=V7#2!tX`wUJry$i8$pL&nGL<=@Rg2XoOfVjzuB+H%YR&wh zKL!|mS08*ty%!P^vL@rA`?HJRx+BSZ&+u8$Nu1&qy_Y(M`6-t7mP1MwoM=NE+p59@ z_dzDfKmweL9SKCtoGSD?(;U-3bIq8PyITSlnN6<#`{|2Det15S%F6gtN0pS8l)H?x)_-4valaKCW!9CEr^}a37IH7x#=azu{E^lC z0$=}DNxba6+g7~_ThWUrMd3>Q^ZfYp!>YUS3P*9vgPll-O__*}9H)>ppY zz2wG{KY`!CaPo$f8!<-`{>)uT7lS15$rUXvC2T>Cwy8y??W}Ppj@t4?kz`#`S68PW zpzCX}u#|pw3#8~0-Lzw^o|G(W8gdV}_nA!8(4Eo;3klwj)EwigF{%o*UX$&J0W9E;YJZTtMw*T1E z4u>##Gh*}tMq@)>{V+N?C&dC_~tVv0Jv<`oG*OBL&fWa9?%oPD5s_b@txJM`(k zczR@;3RIeyDMtX%iwS!%ezsmJ>ai%-`tQe|dv?Cu0-sJ1>Qeen5)BH3I&tEZg)Ch| z+Y~sSpHLlTuDN;dULY~dMyY#CLX9T_L5j=Df?QQL&nTImUyQ1d@lC=Wk6+kxLayX( z@o;tB$(qi@X+uN9y`G*1!G@tPp1d3lHyk#@>AMi9Kis6LsX4~>4N{{XWMmxwLh~sj zBg0n1sr8?fl=iG9Ho=8WTl|OMf(Jm!8+rQd*#~hhGHP%BQWg!Pa&Wagk+MrS@CHdj z{O_N=h(%)VjLZDsYR!VQ=1A2k&JCSPQ+~($`pR)^e5}bfPfkkuc&lV?%E7_GlTRoN zYJVugWCY9lA`68OgQ{thX5D+xD|?DNRUETs8cz>Q=NjF{E~#SN#Fj7b_})Y!zrd3o zKlVV$T%IhQ#kM#9H1 z61y|-R#eo4vFl!4CP1L_{8F7gUtwv1w`EV78y6 zbEh`d4OkJqDf4V4je&P8AGK!S*46Igk>y?`OUaGj=}%B&T3H$<*|P0Ja*K1KoK|;K z))JEJHE(YZntx`@qMv_6W`C2$dmEPTac(K5lpxb&;Ux%{`Vx&7X zeymNyyeZ-AVSc#e<640DYaFDllgE!9eViTZNa+gj%3zVJwCcE|&6+o5cD3$;1*;fk zBC9xNKh2f^XI>s2(nPsH+!b89<(_r4!wq8J&gS2zhy)}A4x2Xz*cZgjvfqY%op4$q zZ64NgMfa1lDsM5NdGOe=OYL`@pSamz*0nJujj6!{OCLc*h#9!REu@xA(vcCJ;9UFA3_(*an|~r+0&L^YZFZo(lCT4DLX*+NHR^i@iWM z@zA_;d;8&{OY(4tW#;DQMgmiLYmA?!?+LkuNypX10!IKev|5_ZuT#A0o~@E3#Lml0 zgAHYswR+=L0x=*)$pO12=jQf)((We%zt`m48zCX*5M$jKekqxtoyXGONGi@p7#SOP z>D5cGB*oYL+`eQ^j+gg0T2I_0SlZUt7W%IuD-azGE}a?!KdeTxPq&v#ZKXG{fYz}O zoE)ulPNH^X-~=Z41V1r~hDO;nOh264@QoTwLXOmimCsrJ?TOd?P{V5G>N0j|7DuJV zxN(E=GsnPIgR|PILw5&qPLPOgMIH(w&-vD2EdzZ>BLdmHW7cQQo3Lo1zg8L$jwoQb z>p{5ObIqe|-)PwQ6&6~MC@-W13n$Xq7{&EDK4tq)fatPULET7U;rNcx<8|cx`OtA= zn%VQ$&EvJ0i=-W3AjD+QTYETAfj~uYpkNgLg2IGcWmuK{{I^;fUt%Wm(s0TanoXH+Tmvn9ptrZLym@V}?M?MA#zyK7IZiH`vFY>brsY@zEGT@9En8?6D+~%=`GPCegsu zOsMa<-*nnweHXQzKSirvuGST0Cc)X0GtJW4T3}rh5bJW&ueP^ardVP|l0{EW0I8y= zB3Y|ER}U&6f}-K~JJ4D;3`2F9)efO9E|1?6QtzSlLq7eIyL@@5z0{d)-DiHj7+CPnD` zl9HMH2K)i1qWqAlL}H*<1mc}ISvIo&;pJVl4a2ZbtD=S|`t)f(b9g9Gz*tYmD8sb{ zExOX0g@cpt0bU2j?#m0mi>WKQx#!TUzb`90Kxx;tkgWdQhfUSYPQHc)gGj#EUgKaR z_^ntoBTVjIBt9+)Gi8d^BjURVs(gtEfh-m>YvGN1WO0Kto#WwZdu@-q)B+%ZZNNkwEyWJg}oFMyj z)tevJhYra(6@0ULDDe~g^d%vjr|(5QMshK3n;(+>nUF|%(VHKorh4(@UT|I#n4+Ak z18=7jUA@=7x!Lc+g$ueP?1>KZwh7%L!n}x| z^gNg25wNl0=LW@bcJoN<*u^54yGU(Ybac*MFTdc{1nuRf=)a!CohJ1T3n| zi`}juGQ}M`d;@2QSMvDrkhBBfw{554;3vk^@l5&FqeP{$J`1ght0FUgvZx}Vj>Xe)0^fl`) z_q|pfhmnf*t|dlpOipkBNI9)gzDV0T-?jAP+wL6{$MgjnA%4W}d$XIRg1h>LjItQ+ zwRO(g8yx$eU*~J-HXV5VwIF^WR#BtOSE}KS9#D_3aBs2(m-+Ln4+s=FI)vu}RtW$~n9 zVt#~KaxYhsM>p3D`=icv?EYX#4d*PoOxQ%Y_zxa9FoOklrPI0kk{$OS0N&#(KTt)5 znZ2@}&(ohgQFX8gr|M-YVdhr|oSJoO<~{W>3Du0A*W~tyl3sY9!11#F76mOqcQ3bA za+@@oNk#v#d#H|wi(BAWr^0yp={woPtm;)2iMdOp1AP5aerZe2pZ&-f~2W&zi(9Y1p>1v4`9 z*z`NMZ=blB_R8sQ-}+M|qmK}aKDD+i{dpxUD&{ZJFsNU@M2k%e7l-+iwg@Jj;b=E+ z-6{eeWBsY_2=a1t{XVQRicOpd>EUbFX{c|CMS{HQdB^meoU^PTftZjzlSLJQkx@ua zGgbi{A?o%#KT6%cvt7k6IkBuePdHd}qC1{PuC9}J{Q8l(y)Kn1mElSsfj*_PIw~?> zuP6WSY+4$``~UdyBO9iQY3RdJIkS82sM~w4jh3&j&8FKwX+LhEyi3LkgP$=^o;AOv zydzsKMbp8bNc-vr$Z9O@o}Zu3bcJdhU|O_n`SzCez8C75M)`*}tafpU&flWgutB>a zeBc$ekFAZ^GvnT*JMYU&pI>0)U`r$082c!Hxtcm(mBshcmpGeu|B%@eD;+}ny#o3KKfzY^-`f>i?zr>?#{ zW-B1yjy?H#uHjR`wJyP4?&XZQJgfH5*txXKG!?7+QcxlU?id?Z@O(@Y~`6aK>orf&^%tjSict0GygHSq4(_shB1t5eBgYsg-EG_I2Gn|y zYmj(?-MG_cv=eM%#oD9|DK!ka_Tpoyb26$8?We4H(BZE2}Z%oIhFV@b+gyF4)_wOjAr%(>ePzE39Hs#mYG z{cD4(fBsBjNC|84C2%lxY}-zqXzrTi(&<7}J+5AoLW&Y3yYfL%?}0C<9R2|)hbAN? z@`;Vz!DO)Cjg9xIO(2J_0j8cldsg(a!DjRr?{M+9K@Zie~CkYobKgK%jtBgUYe)wd-9~1TFC)M;jDjURtKA%e2yRaA|b>& zV|eq%(bPJ=+tpf2OA{vDnM^^8X(=tVE~&_=unSM*=o0&YDOW&sj)*)suSmx=>wAxQ zLhBD`K@y`Cs5=~CRC#vSTD=WCmqTmcYC3)d2*X0a24FrtDVcHqq)(~sE#&NwX(Cex zK|6C|7Ey%?l1abP0$b zZw@J_{gk=q$dS&7n=U`=kOMY5`*6nZ`=@X32wayP)(1?D-FFOu2K5E?%WAH`CAFq9 zPn;m+t^pP5@G1OehtqC{<*#yIbO2qT2>z62eXh3Q;qxzW5HHAj1=}JRa1W2i17<&V zqilM^AZKc}EBuX0z|l$Xez9|X)4}n`B@F{#siqY#J}v$@#CSBA!-*GwPKQw!Mg z0{#d$I}dkO{yU4!1Zz^nEJ5xUQsx7iZ)h9+vTI+yd|9EA_VjNYm^pMsQ>NM8&gmfl zxu6sOQ1sNC2|YENURV`IJBZKt{P~9Lb2|COB#a9OH>kEdzaZIvXA_C`BpTNQQgwcT zXbUF45$Xr3s;OnR?L`2e-0iCO`Ob0~FTZJ3Q1WtqEhdr%e0<5t?RV^k>dVVhydj&S zP&f%pWcI; zR}?Ye;0^kKz%K-Jci+LCv|8{GQ_6<_y_V4{4fOiWh@!E4wxOXsVip)>=_l>v*T1^1 zP5yqNUONC3O9Z~gsKo&D|SxA?bjXm4k^Gk-B< z@w1_0+8z4yrucv*YyST)`1d*f?~lmqSQvsVKS5yOc->V|F$MfYZ-BYZWKEKcg%f4| zydRzY{o%+830(}=C}O-Hr_6z@WtS7`pjury0*SW1s{iF2zBlME65C1`2(!tGOG}qk z)X0%qQ^gCTo%=AqDcoG~yT%bF1rrT}R46KjSJF8NL5nL+||x zD=W=H3gq}zNQtziG!wriJ|nOQY=^jn^0b&6A7gVu<-N9=Bi7Cy?LQNhMCA`(Pq5;u_<@hcmJpcjkKf*`J+jLX%;`pw{ zdSf(>7G^tYmYO-2$breFOwNmM`sD>jE2gF~DmaM)T_BZl%2Qm%KtGJGDGP*PGqyT`Jhi&nKGO)v~Ga>v=9TFIIoEEwXr zhRO${^a$;{;rH*Xdp#6Kv&*&T7hD_mZ7ZgH!X4b^qWfCN)p3(pgyc(>TD4h$_l#f0=8C+wZWBX)nuhy^SBp%s9wb^(nGx` z7(^Mir+BZUx)*cqGRNsmKAy6{d*p}Q{o)L#a24};LB%(fy_i|w#9=*hn>AnAG2rPP zq#^zK^%K)cAq&v6JmI`{u1*{09au_g%c=tRS;;zQ4}OZZ(WMT>s_Y}lsStetNG^up zh`sBWy}{Blk)6#Tg6-qCRM4PN)kX}XbkCW{;uPr_!t?pw3upjl=^1!KTb2_=Mr({Aes4oB z;zw3a7DUG#U9#ZD<)f5%|7;UJL#_*Ff?NFiDfoX-bsfy%!Esu1unGt^DF0}FKIut zdUB*+N&(fC0LsWvT281fAz>_g{cr~pv;|z#x;$ljsBf*4SfT651VvlorZ4Z%zueV% z$qilQnNe-M{`8#^Ml8CN0(e!ihE=jJ`$}6UhXS$d>dO{VMsn{_oF;xHk9Yx0(Jq^^ zP;5hwtQKJ=5eM6KQ#oNArxf|ZrM2pM9FX}Vafq>We+<1Scx0BW@rR4sxJ9tsy{r?3 z=nA9~)5)^YfDAQIeE)W7*!n}&DSz|F+`2NAJJM#EqCH8ZIcJ~>}k0^E94S?5%c4P9=&eWtU1N26IMRyjAG%j_)aJ} z(OW=nH>*0El$U5e0P)gW>;tL62h;Jf3zx+si~+b!fJH9SQ^P_+>&419H!X8PE}yhh z;lZWdwn;@nC}yAA$NxSFQpwXb*GIe~ELdq(+8nFUPFN^n2xObdQ(wR&|jYY!l-BXDi8*e&qLDQTHRLX0pDi7z6ckG4tauGQS= zWad&f=wBQfYbG(~*W9h%1L(AD%1S8#Nq6ex(_gvtdj-T2u8Y#-)<#A>fDZxaRy{vA zmyqmhLo%I=yicmf1jm7#T*ZW_BwA@91bAKnF=Ivsa{h_dXbJYXj8%U^6$*3*`9rCS z2;oxKA3|pYy<)Lp!+hl9R5X0X1%`Axe10_~$w#?Uf>3?~z6%nGv;xeEj*iT-O^gt} zYm^PCZ`sI#_{gE@nF)Ql6>==g9P7 zyBBdQZdpn5HpO_&xl>_wcxDiIzO&ta@{n)x4v_=!s+cC;0$?fji_z_s?X(}Q~n;WkTZ;o&N?L%<7V_%?Eaz|Q5J_E*7?Dzd$27G#XtrJTav`~yR zA(YL+ou z5&;$s?%&_8_Rj>EpaI-((pELmN0F4&8cKp^wKn6T6qupyo15;Oi)Zgnm11_z(}h!i z@AdZXz)8pC4>3}gisgjsytA6#yg76TKqGyLnIC|pcnfEAeTRy83w4)pq~CPWu>tFDS1l2zb;xV+-Md$Fb*4YhL=N{MHG+b%(f)5{^ z$q}Sade{3!uW*hfPNg(gYnF|eldsSmIJ^_m*Q?8vN^ErBwiTW1AJhGP41;IV(f0oR zL(l_YmDY~yD#gHR>R5WAgr0+tCPW{F8&lOMOo++|bMTqC>T#4Z0#z$JJF~)CSS3>Y zMG%y;Kc=1-6?JpRebNymiQ`@CG@wbCV5w>&U@_ks0c-K*n3K?px4;-pqoXDoay2~@ z-i(ds&=w2{wS7IUB7lD@Ie=1XsmuidC*Ar2uYuQn2cc7d4lS!^z_D&4s^^_xXDYh7 z;9n%*GyJ#3-#3$jGJ@VHWVP3>T@n#mKRFVg1u{49!sPm+)@|i#l+4a;Kdd@6WwS*H zPE}4$kFv5(LNSV{d}Y36dndN0VYpd`58d|)VkkX5eT{`HA1lFJLzqtfh|4b9#E1E@ z&OrHLu<)iP3d(#j{P+8`cHq5vddQHJBa%`5zp5Jq>*J~1%1!S^7kej~dpT}mhs-U?^ z;YpBmGv`1Mxn6TqgZi#xop#A6sAXJRsLV6CUYoUz%!mU|Ic1{b`pfC(CR};d(Y3B< zpRUE%%E|?t5|G*M90x+FRoLWWf^*!~MuaPO?F*E4VMrzBf`e9}=^JaL1;;OxjXR!@ z^7UYiuJ| z*~83j(zZWOs`!ENMf!GT1n$)=6me}c^ObRkRq5Mz7de(>!nh>y?kT{~$2{ zxZ|7xw^u&xia0hPGK>+4IBf1k-Pw@Fex*vN8!&YeQ@dg8-qU@iuXIzK2(b#Q3U<`? zp~Pv`s+DBI{9jCF)T{aY8cL`G!Kai*o>EgQP_fmkMb8Pd-lr{i`6xFqj6_Zls}#O+ z)7mAOZ!40%GT%o=Pq`2W)vO#JW@EP#dX2c96kEcNiX^k01g^J;pRZyBt7n_aX5*U{ zQtW&~Gb`yfZK^9De7(K#fAx0d(NwSDnu<=M;iQlTO)_N`C8Z1&tpBpHheA(=Lg*}l)`+#n=*y7!O!$633>#{T_&-}ipc`@GNd zzTL|16aD3=LQMK31MiCC7$!oVQu<;Io_0ooT+;a}9J;Ccxk*R6`hb06@u)}<_lD;! zUtjctvY{;=LQx2U7R&C+0C#n9%#&h$T6+bmx217mr`* z7Dzj<{rofVR4BSBsjSi@Bb|ZmLao!W&G%sDJ%VEBr{_(6u*4^diep7Er@CLkS|`3rVRmp zn&Z62k@*nv9?aHJ2FuCf+3XqeCWcW>%(|8n&%OqgDag3VY%X~4k2hDgqfCMbBypi# z5>n;mWpLrXL(&w&VF0a!1rj-uKg!6+kS3(XVLmt|UtH)21K)fZgI_@kOW8Lsg|2+| z-JnST5-@(8v^oqLU$$?gCJxa8Uns-b^7Qv}A9h5cCPX1qs*9E#!Xn~=lDs?v@wVW3 zN*c%-M&Ol?UcdEXg3N*ukXERlTJk5@n@qoTq(Rzr17t}qVkaK#RP`|!E^lM!_cK*6 zplDErGW~d8y%(9(TELL_ry^Z9(-4I5*^VJ9AmmdP{@bV$bHS}Zf;qHY_J{k--Q zk_4iy=k42@Nn*^}>7enQDNyTD4`{Lb4s~GlaTaj`Xlw_R^6asJ>dPEWN8Iz)AP_2{ z4B_qAk*_`?qi<-K>pEs$f^ERl_XJCCLB5Vn{LrB-fM+<@SM_{}L)|sBogG3O| z18=l=@T?%UWs%|u&Fg~_R|JEI=3N1f~lpEpPTk??(nq)YG53oZ8OC=x>0C;xqHAKfZgekCH3`$3&@40{IIknad&k%Sz zw^h9t3QjUBfEbyvFiBfTq>}<&umN&@*}#*0Maog%;`eM#=F6)1tjo(T*ACj|GfBa#FlLHP0&2$5)-Z>miB)LVsQor!ho-WUEHc&dkS%Q|rfbn=R zh<;{>yJ<#+!2qdQ05Zi%^Pn8ev9Fn@lr8QVoaC5{*+mV%w3QRLO%&mO>GgUXGPcu~;EKI_3kB!b7#Qv7IIL|%a5)?Wi z4P1X1c*P1}LoGt|Ng3sU@6gD+<4?5<;(xyY8IxabgA?KzXH8Abw=JWSlf8KE zyvdQ?mRcazd-vSID0(K{WSf>$ki~^9@P(vj7)9flRvqSh(1G0{oEbcC!^lSnm`SO%Iuz~ zuV=wlBE1YpoFLFI=~Qgp^jLRj_~Sx#`EleeTFXvYv_y$j$Zhg{ykWFI$BAUXKxojV zO4v6GJuDb>!s)e%G?Aji;IOUG=&V&YZb|@iGm_+99R2bqkJKVGhXCIRq*tls!KjDp zS;F%5{zIl(85UY27?C2+Af?kH);I-HS&LAYkZ_AnJ%^mEXGVa_`YW^1e6BI;^T zM8of}$!KoXGfn=&u`5Y9c8*(XV{=amm@Ht?7{r5dBylK_QGJ+J`wKsM@Sq&2DLP7u zgm9~(`9${I2llW6vKPL-bV@i{65yrN@Yh74NRZk&8YB#-fG41qA$OPDbL7A%+md#; zSZ?lK>-}=Dj zsM}g1&O5S*^cI>ikvW#0g?m*Oh0L`iFrd+*81BCxQwJxcfpDx9~3fpaR;!3J?d}Z#x`xHugM)33o&!gX49;f!5JG(CjB6#d&_3LwljOR^! zsOvPGTS@H(G}kP4cR^lgMawlsH4?o`0+bV+Klwxps~$dl*uC5mh-?O66@)gAocjb( z0J=+66HyCHb&|7Ndwv6}a&wZ zG)h7SH+L7|3#9EB_zkUX)yUKo@gzuPgY%H9=!q~Pey6S`SXoG3g2Wt_pE$sR3WGq% zkRd6I2PHsNiYb`6Xo62qBm)}-bwp8DK%;D9oNy%L#J-vs>If&)7Noyf<`pbu(=V1= z?L%^jKnC5oBGjH(amo+uJy5c}ubOE7FAWRx!!gI9ebdPdJNKz6XPKM*)j*r>4di~+g{0&{CgG~j`N^1ANHdS78*DzZMSMR zHnv1yBIct;`j5FQ8=q??vfylI3hOAmG1?nCC4&RD|ARwN4b;NG4Lr%K22kgpC^>cF z#4hw@E@Q|NnSXymY`FHV*6o{?m~QmaCg{rX4I4uw zkMdoq?RFr%BKt@kQNT^$?!1);xIf|p2S;%hD3$sx%Qy1CWnM6cJs+gIn(QfPAN#cB z>7j5xKR?YKjksxO`D>R|3suhQ$0jvUe-s|)o+Enk8JKD&76Skq5Y7X!HOu?mG<14j z@Oj5Xl}#g;^#nZx?E@(kF@SHW1Hs9;|2!v|Y=Kp10iu78D!MrPB0K5+{ks;4Cu`@L zM*j<>Bhu zFZUGPivhl(c1}tO60W9r@mJ8NBXzCL>VWpxlBguJl%d=<5oNP+f~yQ2t>|Lji=M?i z4mj&T)#}f9jD9Pp{`Dj1a`fTFX$z}iwd!-r@~;dT6sJlOo;TmID?_qIIO9!YrcQcP z&QMUUBds}vkm*Z^r3!n5YDNi?U_QEdI|Pqxa8edMXP=^crCJ7L=LdBOlq&@$+mDM< z&a1ZtRyL&@a-gCneau#)rz;;Ruoyr@@g_kK-95Om!p_F1DfD6Wc|sb4EcwI;D}Q&4a`;bZ^gqdF?p92Z5+YX)%&UVYMJ1-bh#xkjb`f4)j%P;3w;uqv>E?h|G=r?(NMSVba^?|%r(tDg> zr>v|jGoY~|@J&qlNz^=#DF-7XBU{LIkfZa$JaX>-7wiw6A)ODv{0Pp0UEdv zeJf!ZrHbQcGsXEv5(q@YHaX>1g8J$Y5YmFtnMekPKbw5c{^vEZ}(JH?@52&_G^=mH8WW`6lN zDKj$t9MTtqy_vX`0ULT1avHc;pvI`-&St-EQ9A+6|s{G3>vbfCper~xx`n%$OTt9*!@@KMn4jvZWAVj z1DLYDgJLOi8&82d2B)+I78lrYahtj=aid(Xp77|sPo2;5PmJa63+ub59M$huW32)7AivMdS<6aOyd`{ z^=6UV+Q48nJvRra1XVuCzfciW)UP6CPb7DZr_fpAEZ1j7#Q z7mB?f5NS1>v3z%Dy+5~fomtFh;9*jo+3(m{yIQ2^T4`yi%3L-NQoen}Tnal8VFrL- zaX-~w>ChYvk>(Tjn_LRY5h(Ei0I1tl>YM;)FsBy*|VRmnN-8bodu2n zl?)l2gk2L~qQ0dAg9J(da8AKBLVR-62zIhtGp2&K_ytG*$K8tRY!${B89F}8Ga?>A zJbavyAqerrR}eRv^AS)NX@`W@tTPBB_&H#YvFf4Y#*?E8WHNpNY_V1;#mnmA4vVS_ zD62s~IofWYInX->Uv)P&iO|KlZ7#JeueXyFo-jes!-BPmE9k`Z1x2pHg8~BgU?nvV zpcw_d`TI#KoD**_qND;({1&Pt(B2_VlR$cdf>G|sObG3Y`Z<|&3oR_phX=F;l5?WO zpYcKlu82**;Z`%W-lc-*K`0jLu?RwSm>57Z*}!%qY1i}zEEhM71hJ*jQJRshZ%?Oa8%E5Na+pcPM7S80RON*dMsLRhbyQHY3u z@!3o-e?Fls_8;ehrC*8&LfH5NSkW3dikF@Qb&9))&rPR_wt{#|fDd1|8p`Ki&d7OA z2LWA#*=m1Iu0X0_+m!O4QvnUHcLFh*<7{mlQ9E>{UbBsFN@0hh#zq^ncb5z;gx=*Q zrHsUFlgf-~(Dk44h`*_J;0Ve@&!jgG?BD!^}*z{(j-SbW% zAvG>f)=So#(D=pecfzLCI~4Uj=nGS^f4u_t12jXs`*dH7*OC^E?+gxX%u2rnu6kqZ z?M3}uAXKa7n_n~va3qnuRlA2jcu6BQt+L%hO{#P! zhv)wwh|@Spw3Yb#p|)FL$`MHX!hQ;bLhX z;||3&U`0?GGKzPB!!JXdhG+&Y6Mv`+*9O25{Lz~83yG=lGV$)y-CT8QNdtC>3wLac z6WyBbLN$r0LNJx0Q!pwV?{T`F>ntkFsRb24oX*7X^%N_K#CgbP5&qu6_0K70u6TWb zWCM`SGJYEwsR#9p~`811oPfQUk(4-Xu7>}?D(hJ4Oc{0`vqma(B${Oxs#7&XAV!+8}TXiTb9~- zK}u(DZr*lp_xr}vyMyoDTeDg5>JHzpA)#@WE)OEEH*Zq^@QET4|755$=89breTI?| z9oZF?XFc)LDLoPixsID#;qKJT%u}2El%P5{$TqLIvw%K%7^p=$A4MH>dA6HhMC262 z(`VqhMsL6~8X8ZaoaVZK9`C(yqhky#+We)weAzl24fa*b$tin%8oV9PptVKG_k7dT z4oOLE3@Ak_<404Ojp>aPU&k9W)%3PUx;yCU<^wT78E>zKg+UemDt}> zl9GH!j+nwB3oF3o{&Aps_t9_Hv7mOTJj=+?K|5f413h204Gio!{IU0*rd|^+~$m2p+i80vziw39@W&jFscYx(PNSS}BptrRSMaiKz z#!%Iplz8$Fv^1JN|BMeP-2E~+xi6~^HTS6X_x79vT6vb5$~EbF>oQ!+L!HGPe^fMP zCVmIVav%R0U>xgx%UlJ`)z4U4Cw)3Cq=I}_^jP+8OoD=v;8ZZhcj4A8=E;c(&MH*V zGcc6t_BfDsjqTKx`cF>4M6EkhI9f2Uo$A>z}9{bYH-u|-tR$N>J z=L!q6V2HjN&YJ4!MW8zP?FD6VerC-RLB!zgM<`odVs9*eifp{Sqaz>|gJ?sM%m6q_ z?caajwFC+eepy*V`1vGpv*XX`U#(v-i!g0F5AgU3)B>ubPYG3khp5nu z%hAG;Ml#im=%H<7l;-2J42?N80&Qdz_Ni>EZIi+(XYH_l8aWCM^%sh|!B5fT;&uH= zwqe=5dyiw96MEG(f}uQPXgGL!s_*ysMdjHA+&;5Q>-?{){5YRfke{yuBkCms`pmcu z22~wsg30>+Tr1itU|P-Y=b!DQ6K0Y@8VI5jq64pUO55-Qq?58Y+hF>@kwJZupOmDG zK=C%l5s~XzX6Ds%Lc#3o*73j^BPA_Obb{^R+OsAB_y~}{ckf=v4H^4`%?mj*G1oE?=FFL^>p*4_HzK6Rz2Eim^aH$hlAiDe*vYgLtYie$` zK9oF&m3;sHn(k@TnI`cxEMQ(qpFday2{gE3X zQBlueQe2oGv#7P0*|%fIQS4XjLoFm8pQ6z9_4N??1a>PKc(bsvoxz-B@UYgu=V-lt z*kHVV6+dX4_~4>qu7XmcD#%k3J-Uy!a4(;M4Gj z&kA?_{hLsa#`@<0)^T%n}-@oT_ zd4y^X7LeMv6ukQyJ*Mj+r$xD@omsH|r1$Av#iv>D<+5pP2)r_=1(>mtS5c`Lv0DS` zl@gWY|9Dp-el2}jc?Gz0{F>DD{E_kC%R%s7488;g_atxQ`Pe$-jT`)$7+w@4WBl_Yh&^#8zx! ze8f)lW@i8M&mWqGct6^LLHT0*YaRL4wXx==rl(lzubP^B3p5enOfbe5kHvYCoqV5R zJ`}5poCsv;Uw(;cQ5{{Z@x{f)Xdi-pVk6q7rXw`NvTNRn&z}78>7QTBvF?9+WB$iG_y6#Qb~=M{h>xZ>RpC9k3>Br5 KiW$eueEtP=ZM>!c literal 0 HcmV?d00001 diff --git a/2_pytorch/imgs/del/img2.png b/2_pytorch/imgs/del/img2.png new file mode 100644 index 0000000000000000000000000000000000000000..f80f2ef7d9cdde51865716972341ff37d1ddd859 GIT binary patch literal 56557 zcmeFZ_dnPD9|ro-REdV{kp?9qTV|A!NV3Vu%pTdZh)Sr0Bnc@(WRI+}XR=3>kz|t{ zo$Gzy_xC)`IX|3#;GFwW_uZY(c)wq-=eVxxdA;8El$Fl!-pR0&L?Z2$zi?KCMA|$| zB9R4>Z^Pe+#y@Sqf3`Tv$g7g$A5U`QyCl*{hI7+onE8SRsCikW?nX8^Fl50sI=QGJ(gZjV~ zvPaC6YYq_ute(yM4}Gly9m~eo-B;X?OE$0TQjG>Uz8fu>9#^NQ*tS`QoXvj^@h|f$ z7LMBw{`==WGJU~E*l7Rvvj*vX4*$Js&qs>?{|8u?|Bo$6Y9q5R5hZ7Jl=bwKoSlVM zR#wb&v`0esyf(JBPWxkTZ(siPE3=M{j$@!&LbR}LrpJ=a_3PJb>gy9;zVw}#uyPDM z+9TrP;_^Hu#@^BKu(1Vl$O=H}*VYH1l78TnmIn`2+LYG`O=Rk-~8%+~SlTK&R!XSgfbh}mG?Uz+#=HAN>i&I8;0;7y`~tkA*{fU8vmpxv9Xse zEI7}dJ4edT&)>6Wk8h4seX4q6W1~s!p($BW!{nrX_o^m`ZBXH^B#hqhgW2E0dTN1h>HP4nSCdGgxz>JVo3 z(ii`Igdi^+#jDq^H-#S#Qdd_u4Y_dlbyjBPp@RoWzHM!)zumnOdO5kdO&XsGHXeAk zho(GVU$m?z$1=Q|_4T3uwq-XTA74^ZQdvg_4Fb|J@bK9zd*lOR>i+$mBXL)aJb$;G zA08R0Ewpd>K^Hccn#v`)GQ2-bPvPH!eU}0Iy6M}r=2#L|IT*uD=+)e z7#+=jgpKP9{-9WRME1Ye58&HgrlwNhw#CK8iQ8^$s;t}^e({ddn*{u;WfoMG(qc|}W*uuvrjf39l#}y*Ad5TsKZWP8FUmtgi}|sWCv9d5B6;+M z&YYFee0@UW-P2TS`hVM*`~hm}nXfJbSJc(3^6iIQf5rvU30hDW6ckt?ym1vHU0;h_ zTHjq0dwn^!sUeD=Uc~NTNJt1bi=({!j)ObgWRG%i%+FS{c4{6=l?|l)J<+|Nk&%)A zEW5=Qyy>OGJvmtuGc#cq5tp>GGUkCbIN9fV@JWt^4eOK_qzMeojW!2Y?zU- zTeffK_gJ)AU7V~ByDWK6J!K^M&5P@+zsElO-B{}@bPDqIC5@DSANafBQnJ3NLvvEM zW^SY&yZ#+FX*S-GR#8>;Y=yFS8xbAWGKPk1^%2~giA;a|aF;#p=kbLjM~|NJ{ zaXC??B}IcrDdzOKvuC$ZQc{YXKK=OV(+lS2N%ZmSJVX5r_&d|!1a486DW)q|u3%TT zW5YYr^)JUtdgVKf)6mn?qbQuR`zCGT_A!K6jP#VxWG4v`l&W9);_h8?85x{3mRwzXe#V@(a|;lhyO@3yO#4J|F}uU?i& zY~T|0T;@G~{P>5B)$vQuMII6Hk)|X3?pje*r@l`blhKp#@XBB9DO$N!^hM5-*Xy1f ze-aTfx3M-IJrvP%M80NRKB2{K^C;1RsD5wa!Sm|P(Dr}Xg_$? zdv%Os-@bk1yLTVu<=vB0IHJ)-AGGrG=IPY5-nQzaK@M}n^6ZzM`UVDWKXvNVSvk4E z(NT@GchZWfX=(KQrW6A{euC2K)POsS0M~sC7LoV5-1@%gokJqjs{4zqNV0 z1NOc*!foPfQ6y3MU1toOr~4I+jgO>%nA;gd!#z0PETxfaBG6OpAv{zaYBo|Ao?lcn z-@xB2@K(q-DayX%$?@z}m#05}n&(>gR#8d)DZ}Udatgs^8C5+n?8~=rczVhYyZ20_ zt|K`q>F#bup&4YFBfeN{BXeQ43CbUpyJQ7 z`FdaJ%}^~ztZ_%G7L$mbZ+nVHSY+gz=UI-UN^&7g@(vDsC~dayJ@Of`4AH5R>N;(c zYtyA1hYsCFM5?E0CmtCR5)#_7Z5y9)%^tZ>7DZQA5jHlqn?FCF5fwghBB(K1nBQee zxA5lJM@0MxZJq5ze{uA;Zw4sY)yY@ipuHeb_z?6}p{&iXtCI);~c zu8c&Aul`K9`K#?7T2+683n2W*K2+I^%uJQH5q~4(63T09leMqEQ%Rm#S{f}`n>s8Y zkloYP5OMvIvT>|Q>s#%NW|95zxsQ$w@!ful0*tQ&E^E!R)o9YFu)t*{Uqtzu+s ztp3o_m!2L5TG~j99ZRUfQ9{-Xf7eR?D!97lt3+-u>+gSoiwnWtfB5jh6-`U$$VSnf zz`(%T9vi2_!}9X-4KZSo5*~}k^mkEFjUq3NvDd!=QaX}NZrr%>T*~J~toQ1@Vvi-n z;SEks&b#;T^Nk4?yhq?K&(-s|tuJ)y{4PvUPrE)lSSdY1wS=lw`&`uV=Rm1XaO<}E zx;hb5kL{F92F))dkOL~(+S=(KxqlR%SFrn5My8^o@|52!q(FAB40+g{l!g=6B8430_J=Cw(TAqiPUEYoduV6^vaU zA}Z?Mn>QRNy3{l@4ijCcOfEVqSaiN)#w+<``Y!5`l{1O{gMWxG0{+prb~t$U@OOR5aqP>{Y;ErK)rFy@(!Ubv z#fuCK!2y>gSNwPEXP;RePoIAywVqtneKg+iwx6G3hjWU2P3g)HMi!5WQwTj!l3}3M zZ||#FELEb*%gaBkO%*j#8_rvf<**WsV&>y6((kFS(SF;hge;2a_4V~Vy}ZVqCcb_s z8Noeeb|{kDYoPiYRz09+lJb7e>htFjfI9(zmX^#Wy56_v(iFMQ9y%Y&axSHvz!jS| zZNkKv~}y&p9}6;)Df1AU|Db1Jy3;q+a&0hdIJsarKi7_mPXv(RhEZD zE2`%y1=Wx?FnHQt5$VBUmmKMFwpCQ&810@o;1hjaf%^8`QRewoTxOeZKA>v5d#M(Ff zgvQ+WKvq5g2y|)NDlx0#w;jz467Jcx?-KX~UZ-B)74+bN@t@_{Cy|k@?~Tr*WSlSc zUT8^80lWJ)G;~<(-d&+L;Glr&MwXTenwpvkJx@vekug)V0v4!xr?YB~~p9EbhfG(0EA!6!c#Xby|&iWFK)ESM@SF z=M7b6HwxyH$>#g_@Bf3wUjsb^%lQQdD~9cx`@0hRm!RF@7o9pAovE#3FDAw#W!ZgZ zj9V;g5)u+tex;=Q*0C<*mdYCTwojp;>Xvv$WoHXqym*mdY2bPkj6$g$Z>Mt#yw^`7 zf$rQpl%}Pp_aaj+5orlFbA0*=;LB8>=sVp489hCgqeqYC7ZwgqPBvy3e!9drIfMH- zd+yw$$B$*)+(ZFhT|GSZ)6mFWxNz6udAY&2w&bf5Jvk}eM!bAeOb?$tIg9YM$YJ2& z;Xy-TkT{wqbUG#kS8b1^|I*reoRjlodwclHmj?qVnca2tEiN6Zq_)V;LVR?bBtkzAL5{q`u zmvez$z$B(2Kb(>5M1(GM>W4jfqB?YHYHEt;lw3NwsZF=(ckI}as+ARhR?{yOT=Y)g z3N_9uqD9@z%xq-3ihf69sEQ(B zH)B;x!ujy@SQN%{K{WP1KgTgNd;FQLUisa6S@h=5J+WSk^imtk34G@$zKzEEyqoXW zcm00H!sAlM2+%Z_e#vuI@8!6Tb#K4hx1UP+NH$BZS%pceva_?#RWaIT7*$g`I5=2{ z%cZIF0|*jLV&?lNGA;+<&20Wj3cxnCjg5(bQWX^yVpHOW{1X)}TzDBDze!9?Ok6@D zy00G*LGb2$w|REoBO~!@DLp=7E>jKIG(~U4AjO)nu(0kDFEJ98_zY=dW8=r}pTa`6 z{SALs=EH|Crm172142WofX~5n37nakmF0#C+ns%5f3%SGbu@9oT$kk;!;O_@pWI@u^e5Iz-OZ)YMq$Pa`M|4Gmr0-3PyYlU7oqe4`XI2uO+u zvmfwUngwr~4fXkxaHcb*aQiR(zzwSzE}`P(>G|Z>oT#X%Zn3*scikwu{}odY0pVi3 zW^~~u9oyo>3gQz7O1x(0=44XZp>|ZDwdK1naPFc#ISlY>hUHpbUKUt(N2xGdnH#C= z|6q~xZ0c*#(8$OgKfldrSl}#=qM~a1i#@vYY+2EQ#BEF03H{@)`gyPz(1O9i!J6h~ zg3>~qc`C-m#&8sk6#7D&MUF~LNpfmxs%C-1(aRDG)Fvh-d`{Q0cc4RlSYPbr&ioWm zsjj78O@yY?>Y) zRXBF+*h>`liN1oYs#hN%F7;d(I?w7=fiSvN7q~y?eNK+`m!83Pc zO1##dio5Y4Z$bZ-K7h>ro*pRe5ycIGbs#C!_13irgT9p~awHFa^C z=z4^@@sEzgE-I>ZT)7JiDrar26IoMp;f2qJo3vc*x$&zx&2LpXHwON$`P5NdzM9qL z@A>7GJo-qW^JLGXu&}Gvp(>6&nI^laB!2JN=6B0`ef7Or^9!+e@=6yj7!21u0x8~g z`SRtHy7@0vZPFUS2;F8YY00!Fp@b|F@PLJ=i(oQ)mWY#9v&W3 z1*0$Ane}yb3BVJ+rXVk0Ftia}<=+QRpPw({zVPcD6j$uO&vI+*M%%Zifb-tCsPMZ7&BMplNXF=0Akw1uoT|Wc;CkN!;}z6c6IgJzUEkN=*u zV9-)9{qt$+VbE-Kb#>F61pG6$ba!_Hs$Nl6e#v!;UyYBF*Rq2PxHzTZOPH~4Hah@Q z>b0WWb7A%wpZ!r`V<1}kn#Kx!rRFLAy-!O^3*q_Ren<|V_sh%X@5VZ@ILZZ!B1ex_ zsu~K_0*BR1doMvp>TyS@avMvGyr7`K?`Yh3;>eM+TBkF7{%*L(YG`ZML3$t>aKoy> zx%AEx_3S{HE4XjQ->;Vp2XEWuEGIdrLxV|ArQSku2}?=g-@`oUK!5 zX6%Hlx}+f)gs0bflx7I1t-S*BP>4Kf)s=B;W@d&awDQn?haq(eUzH>EeP{{Y`SyoN z;3&r5%5Lqp8A7~o=6plhZl?MLn3t)mz>z~Cf~&l$D&XO5S3a?B*y+q> zcUS=rOAjq>(a*66*NR=8>Mz#m7Ty3sv6*2^)lO5l5U8lGo(IHjbGL#-N5r@C%5c#s zFIGaD=T@PUC1<lXSq=z^Z}jl$xy75mG4&e!=wKUIi7seQZL zAU`dge(e>2H;BX$1RkGG|BXj#9rN?^;ia7}+NsHD`lWiwoW-~-xg01B72nGJ?ga;% zV4u0J6=sXdS_vT|h@OwS{RChl)4ErvuC8twAddJ=PC+pY$}vRcv%L9hp%cGLesBk5 zvzHEX0eb1_E}0-j@u@k&k)e{S>*OA~| z%6Z;Mjg5PX;3a^8W#_vQ+zhCOx|rPS?4Stct5R8cc?6Sbh?OeU%KdA(Gw4!HiqcwU zUY_mD3WQs=x8|K1Xt?2fTc7<|9ttHv_PBNT?%i$G#sZK-t{WMNVsxRM)-lZ3D17e1 z1#--ket={kyCQ-ag&)VnC|1*8^g{knq??ORF*3tbp>Yypq-Ru(;RKp;=<-0->~C zCB`V^>}LsFi@jWW3O+*cFQe-`(Rme*8O{DnZg)taF~=x(U{m<-TCyJkeFIq3=}* zjB@^^=ZW%G{rt4k&LmIi*0wPlR0GA+`s8d}QHe)oWHg^4JBH(h>utkN z0rm^O)cDW$*zMN(WX!bV6s^&1ipEaX@n1nGG9=EFL}4{cy}^HH&}SX9YWB{(mAAC9 zvGHq;6>~X>Fiz`y56%53JNxSwKSQt)`9E)^8%D63ph7AJ0|zAawt9TvYL!|@}w`~VPr%Er`ql4!%^=F zFG>G1zQ0=(bB=wO$XtwuK&!UVn(^Oxo6r+)ik|joT>mdYsh|u!jEQLkR@5x@E|yP^ ze)zBqIKKcwgR-c*glPj^02Ql}fx*F&k`fV7(eK~B`KF~==QvU^iIf?IN|=6Gz7%(K z&8XcH9pYW>q~Pld3IC34t;6x4&t6zb+YA(5w+HC6`E(o1^cD@6fYGp<+eeBn7)>(1fzW8$i!;Y29lah^5n zm%g`6+ss2O|8HMQrQ(2}ca@;#~h*>_4{?M&~|{QRd#hcMmqDeZGL zheI))lwDh##OQ3W+bq`lGr5)Q&H}A{Mm}68PGGiG^QzO~=1tYytdv4#L!(-&{r@^1 zHtMhMp97@QUs*#?nO0rkTskHUa2i2>_y+S^^&xarp;|$pu}bs{GS|@<7wGWTc8mkck;8J>WWR#VfN|s4>FXVyAp$$ME50e{mMmtv*+XhQvV>A|2L|I%H#JtV7dm0FYsdGrf(Pq zaImqJbG;|nI#l(|GaWj%QGeXkP85v}4?q3m-k6x0`T(qqDTzx`2whD()VfZBVOKPW ziQu8Sy233#`iA;lr-Qw$X}L5>s_$y`@@%eURjP%-i*THu8MD(cxjaWgsxa9OA@k?3^gi*R*tP3wlcjlF2AXTc$!k3?9iK(d_V3@npHc0&7Yft^W-%IH z)bnrA?f1?mQ<;I;1yav8}{011zu@@;hwu~?QArSk*uXaK} z$$}<)y7>myDrLqpr)OKECNWjJ`bO#K;lr}>e2wM#Cv}iSuvrMd4F)--5Ed4`9~4vo zXnpC~lhV~+DVQH_CazV$m3tXiAp&g!!f1Q$-Vb4rWu8D+%>eG9`Rn$tsp#V{MOsa? zZOIMHBKSz#%Dzoa*|QkF>7es;4R{&Hr z_t-a`E z8$kB)GX$*-$jr=ikI}hu#jq>OEYxsuqI+AKx<~a86{}>bZhdQOYli($mDr20m>6r< zA5mr$zUA%h?R#ix&A^AAlJNpgB{VtO_T?KYr?l5Ct*7PnzwPwe@o!1dPJ*W*?p!QM zpaqiCO1=KZM1#C~u~AQh|n z;z)m~j}+z_>GP*CqXi_}6r*$=P*XGCjt$f7k07(?rNC117cLwW5z$QEG@wb04P#vT z$vEGPqRTu4vKbs74}v~~s)_-Mfr-f-T;t)xeh5W-s7R2fpEwi4T<{6V+bNw+(GH;i zq$qJRQJIqFpAWLQ4e!OwItY{o0`;rJ#JvX&R060V7c1)O?z{B61rmcOj0GnqCy@mN zY3Jcd*BK-di02xNos{oK^84u>aWK@Vs>${3fe3d0jvZgECL4U`>cnfB_)dJ!2y(W z$RkG-v=j4}1UOB6CB0U8y;g5R_PhvSY;R|$y!r=o*DhQbL+~~z3upq{@zXkJ65Sbw zn^C=$O;5KCm)+Wo{W-I;1VBM(Aya>X56F=77edl2a+!uy81UhPI0pMQO-({Bn${uz zCl=ky!qNnVX=Zlzl#8YyCu~q+V$py8cw*)|cV0m1AE1kMgjxV<_)IL7LB7;nG@_qJ z`Xg!o~4qP7tG($6;ZOj~|XNxD(O{ zu5bEuXi#vl+UxvIc5d!qf(|>4cOXKqOw)OKdOnr#5IUirsvJSpCyyBs!P0wkty4N@ z5pjeyr><}X&?3g9KH}>sHYuNt4=N`}oRJUytWW!-cM9Iw6Q5`e--vZ@uKo9qTO9)( zI)8mF63#Mhd^=y9coc01YT=E!ugYh?LiCya{af`ue{}TkUG)a?>+x#r!)l3d-eiH7 zVP*|UfJxYSY_bAvq&4iEdo8%9P(hO+teN`jm{p>$jN zw^J{f^U`&_H`)#z>FDXx&oEoSH<)A02cd{~EnpG9+nh0U&$lsR7H!9faLGC{EO$PH z$q+P_Ny7aJ-b0Ml934MZR|g`?&>Js8_x;t5BAeF*KLMKT(8oKwQ1G$4e&OK3)?WEG4FQYqt?DMKZ^3T9dq7qVE1*=K`ALGAmf--+}-=|CLu}r|eNSW&>U%|n_zweov^3tIl zNxx~m0{0}aG3-VVN=Ya|V_y^xV$HfhOw^QUq@)Q4>c_FL~vQ&#{5MwOEuNv#1C)ad=8mi+f_+SS3>6R^9 z1a2HmW_zWt$?mum^!9%SNnZr_d)L{)ZMH?nwdL9?2%#|#!bxtoc4Jyb#zS<3_;w3a zpqHp}z~oPVKZ`dMVAze>COAI0xva9XvY%O+&=Z8RS%~+n4m>@?MYpxWol%YcPl^h$ z8GFnA1MfHa)t1a&pafSZ!kbhElL>rLWBX|?rgw%teR@|efvjv`V8Gb&ZlZoR3wJk< z#sAE25=^2F{!q7B{K^krZPTF#YTVB1X;*zHd3QK;Z%lA}>#mopjK6XsJTnp!%)XEq z1=fDskI|-uC9j>cX3%K-2S^T{+{en=tiV%zq}KI>v1g;6>-ViD6`7*A7Y7hh5_Gzw zV;1LNw789VwQ_;SrS`Ok(HB?GjhobYU!nca-uCNdyMY1mMH;n9}5`a4MMk-shhYvU<_!47kC z@75aWbf?!Z!V+PNL)i1o`mT3Erb4c}U1;5ztjYc;r8ZLq*(I?D5sg7($-_ z2)wc@Snd;)IWl^B+s3yg&R}KMUsP2gW5HpnTrgS?9So&bT9O!EEdC);He$Up_|~B9loyjbk9&C4%JzyVqR5^ph-cIm~?hLAr^$dc^Nt zapo4KNj(2EdfNSJJC6C4@y!prIk~uwfOwRT9yo9S`u&w;RSX%Q9pp2lL@q&pgEbfE zYPY2R>bc&wHt#F?|6Y7BH8XP~@J=Ih0PiCRjK_Q;7ly21@l|2Tz|2cv`494e1bIU_ zWyI*FPTaq~#EmruVgKJjxyi}v@g=E>9hq27Lo&3;Wx)JfbyPzTn-f4sP`>CmI5_yv zcZxq)>WY)y4zICO@88jpk=e<-fiKBdIbJJ9n+A~Uyupj3#I^+C3YcDaEox!FBIo8- zQ1I!-V+(gale1j~W>RK~O5;$jJ)2ZY4;@87RX{ssMmp_>1yahisT%Hsmr zJ?u|nV!nQJL`5Y{J&V5vBW}UulDv+Ir($rry)0@B=2N3+YHGQ*H(?`#X8<0gXJP_D zolpL^uK6dry1EGTg?u2qS!mPnJ%JK_#0)^x@dpJ89tzw(28KFcvdvE%ckSA>f@vyj zJOIw$$H(hot+XkU1M|ns?9vNy`V%Ko#Bx1;G|=N}k8^W_rcoqu9U^9=zuhI^RIWSr zA~u#4U-PM>Be!a;b$kJ8R}8!>kRvdA`h*^+qNhig#}1zl zQQfzM7EEYs7`mN>s}yR)=g-Ojf+^XCb!+J8jGqFjMltaqnqi!5;1`s*)emir7^lC4 ze$J4cxbRz1z9ubgIwbTn8rKiXxJtUb13~`gWRF^MMxoDNZ{2IxqM*iFiB)v{Uv0;+*q=Q^}WR)<-A^^0qOp(Or;I#wL z6qF?Qt*a;kPsXe-4Bhf*0Gw~%;Brq$Fv=OSwzejE3i_d@j?VrA2hL%Vhv`qcLj$S| zVT(k!p{AxL=oK{WF?8;rz5$q_WtOJC(u=!hXi17&2r!h*b%yr#_VU~Ii&up(D`0wZ z0d`5qCP#r!F#h8MZYXq_RQcI?`97-}6X7Vu`!V?+eOYnuV&bKDOxhamFe<&d1x4$^RJ4|%AdP-?{{pNgNvI1>EFS-DC3q0pAL_DBmK20K~>m)+r zkj7YGyfd9}?qy`~qSIEx22XrHcu!SRQwWCF(ryo9A|e9RQxZ`L>elM9m!ckvT*y;b zS65!oWxEmgh}XwaZC?GtIf}bQ7h%eUyQlKgC)wnHag3J{$1p|Ul*4J~2`n`w3FulT zp@r9B_yVezor8nQK9vMqgd=i@UGbSJw|#2LSI7u324&>sZRgw{3$*rU&&NM1&L}#reVRyNqem^IBs3jLfJ8R09(ISYICm z;Pf~$vKkvqu$0T=ba>W=q3 zCR_)36zxNNvCD{1`_c0=dSsauj6Efy=RN~N32KO#x-3p;5!PfFHLx~=7$~P^NtOZp z5m*p}>M*hf%aEs=!QS>H)^SLdMPZT_d5uxgep*_W-V3&n>LEH4e&o95DeP&umg2%A zSa30O#-PV!=36;1@#5511&m$~%RMmo=)VI;7&a$)mOgm!;D~_06R_*+wzkbslDQW> zI`@_S<(@wkf=1HPK;X%d-BQPnC24=L1Hd3^-tprgxty4vlft*QV2E$Qyh4;=FwL`P z&-MvjRMjZbPFu{qqCXT^c>DGyxYIB}Dx7pj({l=uTbSq$Looy(kOSs`xr3+DEwFNEkxjfu|6gc3M+i#NZi%AsAp1e9>AH=H{|6?ct!$<}$Pjg3JPkRB7{1v97a8lB0YG`@aH_H@jyc5pjhVnAOl6?$$)X*>QnY33*7mL{ zC>%3$bA&}44c2bFgE$woeo$|JHfAH4S2UOitH$T|Z$lKe`UW<9C<6a6??GQYjV3kOa^Kc1b425ck zKt$cBdtbFZ9Mfk$;u9GD$|*c0RR6Sv$_^Mx_#?b=no-s3Ew02y$uH|?k!jdgXzKthcW;*wi$;Q zC>R7V$&AXyrGdJmwF~@|#I4|z$Pg0e$dMzw#QA}czy2(T7HQLu>}_9DWDjLLpYVFy|t`grPMTwyL%S5>?jPR1NMd6M#_cI6~GDnSr7 zU^B|V02Wb)h_lZ1;LoW#GF%lK*--6g?jw#SsjF#_qn<6a;tOSOVRCj%+bC!Sz>X*S!?0U^Y>EdS$(+`^{CU~7ZX2d zFwnD3X)^o^jQ2Y_I2-~vz{xJKW)YC*94c0bAb{S)d}SLY(_QT}b{?MT+%4wtoj|)i zr58uLJ9+>b=8=kgU z$W`BxQw$Xhp%gauN=t<8&)$32_S^6T$2qRx%EqkKUHVxM_SY|MKVisC83_-H!WU)RQqHrDE zDDFv1O8Rz(R_|N8hW-c?OCq6&!(?1qnOl6(IUV7N-&pM|g-yN=ae)bk{w22*MfDu% zR!ANUo+b7>-^nGs|0&tB2lC1&0(DcTiHYqimy%CDyrHn(@*-xpIA| zBXqZ6?fOS(uuy^H6B2O1gYc{U{?)Fq!YmG51J(mb^pHhxt8kZPX8w8m|FknFWM^kL zSpv086))*|uP-kAl4iVV6SE$z#9bOwhKliGi&|0T=g{yHE_B>}V)U+Gmt6Kv$k?C0mV0_!wm zJ0Z;ho?^r?G&R-Vus1gq2SQr`XCXUJxu)9pW})=tKKtmk5RQ{T$PjcS^PAVZB3ADt zwK1*7OKLZNI7Bf2;2O9wF`)v*H@TmVCW$)D{&hS%F*|Y111Hf)^#eh=ZK1PHP;yNZ zdU-n(F@}k#w7sXnYW6vrs266M(AAK zcbcBt_N$)TNH}}&L)nqduZM??ahBj`drIW*d+K!tyo7rgboA{cLyP7Yo}PdoQ?xGs zQ+b%d>Z2|_&f z?tIvO^D$a$S%_O=@ALh|af}zB~u-Zm>adgrfho&k$?thcUt|F+h%u<=NV=O+Pd~ z^8I@`lw`k@6w9n^%yY``?4pHL29hLzPAk{s{fI};pI?%b+lE0DN-AeBpHTSkppHh> z_4t!CIg?tL2!K*u$3Ul!N5QY0u!(3b<=|`wJ7@UYCJFj!bq5K6t-tRM=Vjar82tNZ@mB4?#-cF# zcl7#cs71>wD`es0f$6#hx0T*lE{@;*5!X7F@41rs_~y#mTJ$UP1T0Hp;_5kTE(?F% z^v;CN@oCrRnE60S#+VP{0E(eg$VW9*)je=c0@iVc@5FH!$O0iTF)>}jx!|jE7o=Op;8+ca5f9v+dQX7dwM{`NeWm2F8p!>0#QI6`93(f zNmVH^BsjPdvm%rp=xB5pxXvjIV_0*9ot=<^FD72^$}l8+PNWiCp}f@Xi{!xYktJ2k{6DB z>EQIuKIySA96G70uTSal-ev~}(CM{$NH*|z#DB4omL>rPxA!DXdf0dt$H&M2?8!MX zJ3H%?dsWSPU>;)!!Uufn`q`YJt5>fUxXr)bw}u=W>n|1qRl;Fj)*S8NoE)c|64h|v zHUQsO7+>HND+$9r0%R)}MBYF*g@i{!8|Q-?(BkqT##Kj@5^h77Ly1YVdCMWfaQCF| zqv+|=bBn#U`*E-%(-LWF0P_&8wHEH_lP5#4g~z79e&jPYGjp8(p@{NL{L`aA;h`uy+ zf+G?w1{05kKa^@1oQ)y|AFxWXczCRx4wd*9aH;Q$10@H(FU!8s3Us}RQ!KvRz@R7l zM!TdY&a<%u%O!Xc!AO{-fmWfjHb6QeeC1Fu-qM`+Dj9%3=@q^uFYV~N<^qU8X3I0* zFFGJxtH3RyV8O;gGwI26j=ln_u?2VRDA73Q4!#5n(@QuA8(dmW=^vlPDe5-=!i5>;hb9|uTjOk zXYBO+x;N{}iuk}#)br>5D#;ZHYR4f&Uj+h^fy;eePot+85f7}B< zewYdf2pq)0b6>MgQ8xe7aOBp9l^@ZrFjc=)K1LE*s(G9vTuLdzL^OCJlaPau? z+Rm`vbYd?(Xiqr%&%J&B>dqx*JxsySBDHbb55b9~T*ynYl04b8g4#+FH!*m*`qX@FP-A`_(r#Rw4^^Uqiz; z%<5*+%OW1FkkCSoXDJxi+&%S)7hJ@ytMjYdxb8_>D0Rx5;gqpBL?LrB@{^TNLQxST zK=XtTHN__blq{CCuD6}zs6OwlcqtnieKNKyllJW2zd7nsz{ZC6VpeUfeBcK%M~MbV ze;7_*m!b`-?E2uwUszN`EAc{X#QL%nKYwe27tRB{$4RcmCBP44fuW}-Q`y`?fi7dF zcA5cQ)%V-fK3K#-R zd<;5aC=?BE{E+esc$+5_xijX*pYM_B=z%UigEMqHeAYXCb{ovHO$faDDr_YbeYLx1 zT>9XiZ@mK>LU3k$72HuZ=`X{E1Hs#(E^RZg`QD3tei;`>=H=z}^u-GpTLW9nb+g31 zqBPUg>4N3Z;4WRhoRF7CyRfkE^XE^4^I0{xL##~T&d>)B4)X9c8?pu%mW? z5Yw11!r7KMRnG30LVSE*#+G5{Ag7{o;cNy=p`fDTaTj-~V#@2;B3Bm0mKJ23|%j%td-QwOR9gT@&(weVKj_m$UgwV0o^v&;B2x>!&J z^h_Ds+|-nLCav5+bK#>gN^uefoq-BYH*aQ0WS@>{Ip@A}SzL(fP4G$k-q~5l5D|e4a za_d;%PF@KUeE~~J7k7abPf0jgpVO>qhlq_#26>I@yp#NDEsHgRyY-gRn@#;(*|CNeh^sqp z3y!}lP)6w;!+D>>hYu^*Km!_WJ0Ujk@q2a<4A#3&i;2Z4A7knlraN%p&g`uH8-a;= z`U%NuC6jk#tv+zV`Zg^Q3?zRp$xR1nBGMlR5{@>7IBCs2ouDX_V$qs zUi!%Tb2x8^9qux$qzT%JM?z4hzlC*8*2N|7lU+F8dPz}{+hd~g_u}GpclT%OUdF~- zi2G@Z8l7KxSU-}KoNQ0G)B3%p?qXqY!PWkfE|-##UycPrui7nQZnyRK>n*Y&aVl_f zBmd{@S8JYKZrVRm3}ZLHQ%~t`hWq9-G?ri4ZsIJL*u&1d>Ho7CxZfIgYGv7uz<_|y z{r!}riSg%1E`Y+y#fL#>58))s9$3F{+dz+GSMPHvv65S$j zGrACznJignJVK(bL|y*io-&J^>j*6j5Qsy<$bV&R?VWMTcj22l*UW~e`Jk*S$$oU1 z>bv*)HM{Ny*S+E_RHj+ns9v*&~olT9lBow_HUyR|-@BB;ib92i0R!KX>zK5OrMgcgLsx{;ZYzo! z9^H}BoATA&A!a`z)b7dbx3l^!Ntte8W#zAYtO7>wKQRa3-(m#sP0`B;5dk6tX%+jB zyLy^%C6KcX*B^fwkZQZ7xVV^dx@J+>y?>CA`oX`SCZis-$${tB*w`6k<5vR%Cg(jZ zxi!vk{PRA4D_t_dK+ob|Q&Xm+oUG!mp9i}C{X|>^iMLZf z{O_~L*}SF6P;iKg_<#KY*-}pyyc4u2?IcoGHw9&&A083}@ay;KJ6D0NlanCz&aG=} zs1Jt@AMPFiK7a4E<~(5h=dW(Q9T^U@XthY9Bw=bq7)CswoLFjX_Hl6$HZ?Vc?|Eoc zH;t8>n|sgBJFxXFxTq6XgG(Yi`E8TKEoomo3o5G=8M zdHq773i*~zK4$etE%sZQN#q2@#jz1Ps-~u~%@TVYFR<@IDScL-s8% zi`+aNQ<^oG$Sal9ZZ4pFj2eLS3}&BT!m*CRfjt#HI#iQ`7)ps?LZ+>wvmO)96MXO9 zjzz=sUS1LqFAiX_hf?&{Igy1UqkU<9zD!SdX_65#0-nYIi)enU5NJ@DM#)^bNnp-q z$IF~}J__nD*~!RVETMsj*FZcyY_bY8rfOgupPrMo0 zX~a>pitDF*3ofQ7C*P_y-b8{`7YfT=iO@R`B_#j;aa{ahGf)zYL1%VuF8CoD@@+#p z>H`PfSL6LjZ{OZlN!}9p=~m@+#Ox7#CCbRQ?7X~$(o$A*d6i^pj9fA_xlp@q;gzA) zeznFQfw9yVcnwhAoSd9^qZ_}?x&rmZdH)(8Z)t7ajQm7$)$k~|&Y-ng`h(tn{gs768lM|PcvI`XjzfkPS zckS9t%Bv&l2`(ooE$vz+C3f!0wQIXk4@gAQyKrPKp9`CqDus`dm6b)oBmJ1tLMg;A zte&el%d%&Q&Jst31nLoc*bbC%xrDuVF%kfR3x3hj)8EoPc^=Oh(VshS{ZH@3lVmnS zKasVy<%!lOS&3;bi_KDc6l`)dvCQf&`)>ESukQhf!-v@_MuH|}z<^geVt;MRFrd|@ zTO?E*5-CP$bk8!n8IJihO>WbLq69KGF;L1{rt9l9*&`^9*}m1cZ6uV^GZ=zH(CltT zu_Fw2C}4-#*|+%`o%=tT%9b-{&X9cnB`c{(fu$fe1oOw!j(iK=q@pQ7+k8H@ft3*mhbjHBQ&NjLo(M>s z-+yoYIz62V3MiiWr(>_RPljAezrmEhsADGypc+`S|GVVv#mD`enDE!+szR#KPVSi%ve>_IAZhZtg~d+d;4=|3BrEBBUYj`SK4F>@W*!p1 zfB*h=UTSqO4(`mt?EE;mxI?8ZJri9QkM;^6TtCv#R|*RYnR3T|{wzb2=(}ip^CmU& z1J)5!sa?BwpTlB;M~`Nt0n(FKk-f~xIRLh8;%85yqz&)3l7rmDSVJZa=hCO^j#K~e zo;_%18QoS^WtIXAF)wBc_N&$#^DPc6#?39V{0M)WmR5;w#>^68SKz2vw-Kv?;h&Ds zzdX*|%If9?4j32|QPU5?0JiB?*>}T_xU%PUyh1`9hN_?NXI??UJMcAR#-b|H1y>yi zztw2^31iKO)K6fThdDT^ze{yPU@g_HKnd@_LwwFCDC|O+-^0Z802Ra7*jV}7h#BGt zw?bea&?}T8RJ^!$3omagi~YCiVKDpgfgx=MqQwZ{Jk zduJZk^V+@pZ$;)|8$u!3BuXX8kW$*F%u|R4LrO{%MWr$%WXO;xDPw3-sYDY=6f%~C zXb>t1O{C8IW5_@8oBP(??9uTr|wTAulo2n+zvvO@HZicYib`y^PZAxC4}c zjCAUtZr^KbV{Ts8rrh8^ z5(phdI{2s7Dy=?vN3_!qNwW#$EP`czsIK;TuzCkolu7ue<4>#9;|h{XFZ!JnPrZLP^R3xX}Isefio1&Jj)8bJb1E~x5verRGqnexqZu5jTY&*xkhKFSq525 zNkeS?m!e|Y>ZfyLqI_NnGdL=3i3G7&poO^n^)EOy3zU}2k9v& zLG~^D+i;30861MmLS`?*xysO?H)%guPfrc^tJ_Aq{s+q+<)i?wJ~~r&?&-%SxofWB z9l?vuPPN=JcPE`t*fA??W!U{mQ>M&+8$auAnWOWM<<{2ahwIfMi~Mt$fD+fgujc9r`Bg;4dy<_Ww!!u=*+8Cf>cXGOmDxzje?9UUT2MbAvps z_e2F4;joNuu7A|U9VkPo3EabRq#;1 zvPgdrnZ@3!_{7C(2r{xrEA;f=+inT(NanB$j&s~TX`q7Js9H0eF)TITDnFZ|t!ikG z_B@fc-nSN}3_IE&w5PhR4)64i4moN(7@)dPS>=nVXJvu z+;qWsOTU%0dezs_1tEON*@OBk7Fk&ALC_Zpv^I0*%(v^ukfs3LIIdkjhH^*zg#9YJ zLyBseV?#u=c1Dw!OeAzsHebO@i5*~F`jWgjoP;`OZD)neT7xO$EU9dVywM?Yz zdeVjsF03XNOkO;#!w@5r5BIy3`KzRpd@w1glpo`a&alG43zfQ)d=U9SVf$*DgTFS^Qvh(YY-p3cFL((;6Q*6yu(kntLE_o#HqB&0o@^^&&-a zQ1HS|M}bZYsr1NAtEaw=%Rd{Iail7Ga$tzul9u<09cKR+X0N00#OIN9W1Jbqand>Z9a4(X{ODd~#DyzwiaaL>_{S<3*xFNLn1+(@wt@ zr{<%^{stRcS`t!srd!LE z{7WeZwk|gt{z>`JRG~liv=*IyOY*rvztAuFS9*xW%07yU2gx83&8IiMy(zV*46dMD5()PY42#*o@#82fk8Ur zs4p52}5WA>VDg0F_MGLmLBA1cOiGj5zbe!;sltm(%9!*yKSYEo!i+6B8&QjNEK zdRIVaQHV_>StDDbAlg8N@BXX8!o~H2rKbUcMs=*tq+g6FlSD+B*`4!xWg9O-01XWW zBwr8UYuM9JfBlEYjBkhq;)Lt@)x61~L5 zT3NZV?cEzUZX5~>+zWNV(HSsyY{8nluJh-2hbN=?&j+~89g`!!d#eP}XC6HTUu$64 z^~JZ_L3JXs+qS&7kOI#MFkrNkU;CiHA6l!(#+a1-8Smb**quAf z0)oAU`U^B*#*9^-Xxn=C>o;lLy3f0gkGAhJu&VY(H-+H?0&>908evZwK>XBT^eu074SB>N0Or1Ja zaxlw?tD0=-=gTW1{{^5VpX=JT)$V=!{y_`LV)c6>_Q?&`O^X-zh6OIrZpyTc|54lU zMr*=iO`r*uTlI>qt*x|A#)i!Xai=b8XW7;L zdIMVUqo@)6Wt)K=9^n9*x1@ILY~bDrp#?U+*V}ndq&{keq*FaChHOwM+MJz>(Z6S* z{rG~9j_7{yxEtxP<*OvuOrfNvzd&0|D(Tl;;h;r#&W5Ij4HC;0YQ%xo1z&f3yIJ>piqGH2Zf_s+HZf z+)^iq=A6+p4ytJO(spldEa&Ou%xa@~VusC{HOm#x*|n;xD@8|8S7)OWRM7u5&`%UKS{@C3C&uxXC zhU#b+r224$Rf!1+x9oHTe7^RmQBho%X?26X#73iFf6JD(G#qT%O;up`Cb`dqhMQeT z2zLRdzge#EbN8VMbd9N~s>(=&Lsx@mOLYtM<+_VWwK;lz=AGnY#d&t0=Dl;Ln*0Ls z0^kxLTZR@EAw~ud->o+pzlthiTqiyL$+Ac(RFZ|t99MXg^4DTDId^QI!LYM{lzN8! z)hQ~$!Ol+D<53jlsRX22TMT{q)T?j9w=Y%uy>iR{9yY8!`3f>jK%n08@}|xce!8Sj z-l7>3=!_=#V^w9t>-2O38lgSWd(d9gbPF+8Vi>&?)wz#DFZ3BR+!HPfgY5I{`!9EmM7x zclP;J-~F+v(h?!lTUzu(PIzo^O?M&y3eUZQT7B-BFAsIAElHk$yRL2g*bQHaX(w?x zajXBFY0;Ev5qjamF0&o0&I*7z_sIpN3X!sG7|OQfQvqW*HP9^3hU_p454i)}j@K*4 zE>RgYs1>aAZIZvnpnQlDmIWUyr@^Ox3#+maYP%gdvob9+_^i0E5dJ_-Di z_mibxOp$5pJrTA$G%Bid$BY47X?%>1FaANrZqpderC zQ(I(77Px)b!xjW*Zr9M^H5xe$9_R*!t~l1$KA7f7gciyYcRQm*@pR zz1NnhFBtZG*YWAiRu@ddN9gHwqB5m<>flo#EU64l$~f*Z^ZQCQK4hf{W)aE*JUM}! zooOj03T=Hd@bB4|tC%q7&n?{s;{+xBrY}awzmjUN$L-&jQx@A{SwSy@zbg(>6aX(u zu6#SIM}#K`=W`!+%-uGQ284ZV-XaASH{9c?u=Hz}D zC+f?*ygLcL2<#T-pUzxyleUV_d236izNK$I3msZ|*^h)SL9QY}>pJlmww%&HyNH$0 z3V2%kL>O3DC~}{S>3bl5vO8%xI$E!ccLrx4TUuJCtA0Ej|Fo#6`jL8aje&Po$vcad zT8jdgxcO=2KUPM^0mh3>qTl6?)b9k4*B{)qttg-+gt0J*U2yN-y}dx3B?z)yYkQi( zX3(1{WnjM|rN-(8orSm3eif!k9d}!AWZ3w_GI|Is7Rg+Ix$C{K>i!`IrT-8rqXl3H z)+7;uABrw;e*aK4xeoouZx)4&#K6%pcJ>=Nk?D$&6)$hQUNNa!fn*o!%wCeFM!mcq z$J<1CM_>MlBi;ctO`~-6A1M81be2dVVInC-P4K1B9dH3B=pVXEOIrwCmJl1gy@T?@2E|=sb7fLT}NB>YDN_4gg-S&*r z0o6*k(Uz9{Gw?66LJIt*lW`gvyeIgJPQxEH$vEAR{QQeETPb@c`a&O$$KH?(OLEd} zvU*GI8fQoC`uTnBROSuxm0|v6ms5}rip1F3dHYz`zl<<=`^;a8=`Ya{s^|c#$NBj_Q1dfp z&APQBM%;)HY1raPG)E8m$*#&Aoz^&0oQb%&?ku@o%J=$uwvH^{1DsNHSK-X``Rih5 z(20u?5x~*nNwU-wj4vu$uaCALUb^3PQ@QK1hx4pnK7PCnE=2lx_(%!LbPB+zrDaJk z;?@0)MFvUMDC$m$1fdxOv2IzedDua{y58uFcMyg(JCw}?qgOiUEj z0bd$chmQjhO7p1hF|{LQsTq{+kMr_&A>TgD=jA*@v%#oL!3_azUQiz3+2co#gts-R zIK7)Yays3$zWRHgE96~odzX<*68ux|mlbuAl>s>1$>S2a91$D-jA}B$DEAo&0ZpKP zb??4|BPwXXKfe9WV*D`@Tc zd)@PCkW|p1lc!ACfW5M0eV<2Gt5#k4c|X^B(V|{IHLciXB&(u^0xlY%tLqDW$IOU! zM4H=sr6(=A5EiBskTVy+MIt<%L{{z2)n%0!Q()JC3pGZRJ82J^sM3Rda1gmwD>NVf zAW#Rs6G;rzv3f6KcO5o{bBvPk9xh7_}@y;@O%oT+`vbyBwrGuVzd z%fJ0bQA!kwByfJYR!Lu%eKHN0I!Mq?H9ixX#N;2J8Oly=SM(y|Byh28GBg=*czUp+ z5C=;(rm@eoM~^N+>W|cHlBeec!H%N>Mo_i#p4O5|*BAvw#VLSao%@gHn6zbKPs2BJ zm5^*mYt~;m3)L!`)$yYSCnOM{UV9y-C?M0Wv9416{7^ltfEGlv4BTMprqIiF-8xx` zAV51s(EjPmo+y3)exSB?4+-Y09?pu8-B7{Kr+{umY(XMlP;$T8P@8g_>>k5Zw~W4k zP>3A}Rl4V@?&)itxPQ8h2J&fogLGIA;m`l^zFInBT>|{t-ugEZz*?7nzhZ8XpD*oXt9fB)P8X@;NJY$D>*5t59fgn zIV;79U}Q+B# zqc2}Hp#Y3Dtcj3zI)#VBbx=~oh9{zgf^`==DKav$bNF=`C#h3p{N$Y(aIsT?$54f37VaR^|PXyCxtXx12|3ell2wm{Z;1uGg|b-G+}F z|GFm$HySTz!?4E6(Mg~Tz*e*Zwjm8dEdS`mi@WObviDz4wYIWSg3ld^fH$xWH zc|p);aV5XLs_y));-3C=NC*RBHYvv3rAvKjnRQrj1nFit>%E&5d`*@02Ol6+1Ww%v!R%82R=kaRFgjni3ZuM!pYALyxHc@Kkpn11 zMkxQ#Rkb7f1Mi@uYKm=42(Vwi{Pg^TgWvW|7xLX36c&Rq%^h+s=aZqHtE7Nj^h*KpYKAR)4ob#KTuk-WE*Xy4$otbjoNl!g1SS!BEo{%E_@k4XH^RI7xE$xz9 zlp10-d-lN`rH|hVeDXA2%@(ha{?<4xlTS>?IxSuD_J3z?h zg!dFzfcw2ehyKEJcpI{Af}ok18O^UU5^)5g?WNzlhQX#$E$;+p7A=;Wzj*cQhKBtL z)2f689@#niY;Z*|5{Q>sP9}P8h^BhQlUSO*N*1^_j z6KPVBXCp)D%GnhfKj`AgXaTq%VGs`;KYq<-y^_B%IVwE&5Cd{+` zvl%K1K-KNJF;3C33Sfbb_^xKxa%P#(~2kANN3?cN`N#-q2EXeEeMWcFtt<5Hyl<5L`j6BhM~ z0^B39gPR3b*~K$NHg%_JrN-(}wVxi=UhC_Uy3Q*rZm~@q{5&8KMnZ=gE3v*9CHVPwuD} zTl~Sp>}Ee9jtJeY=tTmh;^~TO8=J>Y5+}X2q;S_fTl85$C^1~u`k9nHq(-1`985~+ zv34!z+rM+P`D|Oa!8^CSgl%A_;mo3onTAnM0F#9v4KPzI9k0*hpvc(tY0uL8SUb#} zKYs_cB70F}bFez3Bfg*GVA{wngfQ7%KV)lpqVBQq?w0Eg#ZoVebRN=-1lh@S!F_d> z9El4N!X?S?4ee8N%*^&vIFTBOiuByM+smhVz~|97_Jv7AvEPKjWP0k6m;SUX8{uk2 zR~Xy9@@FQ~@3tmplQBvO=_zRr8T<<;+yRztR3t)2yO*ho5{LSM5|zH29RyyDA09RS zi~oC^J9X}S2SL@`MT>mcyQGUNfP-_6h3V%1Ag@KZVeuCIsu4*?&ZWN2bhrqfg)*w- zOaHIuxu}TMZIFA5v$y9TO5|mZ-kV&adbymxaDkp*Aq(WEB*4PRa@oV5Lv~)9a%sT| zclTE%t+D^R-^CWToYI3_W10H03gDQ$H?B6lgjkjCZ@s`X)5eb+G2*6vrMOX5qmxBT zgQx*Ad2CH5b-h-8+h{dpqVyx$t58bl1$LNm*H|1tVO>k9a^uV>4XQVRf`Jd^`6T_l zGomMnIvK9>%ibB9Xp{I0cB4|Yhu#w1UDsB}6~IpOv@EsdPqRHojmn(0yjy#3)b!J% zVoIhzQ*QeEQQ_}KX&QqO-p4k!Zcg@ie5+`W%l$5!#*&4|>r2Y@~qx~AalCB0LjI`1sDy;Mj0^##N7zC3D4y6nyl zG7jx;Z(SMVn2;}2k{;jBDxSurQ;4G$J-b&tyocYBO}WjV-!q-pNcl*Nlbyg@Ex?y4 z3|EAe-YxsuGcw-LJtNhtoT`+20KDt*%a?n(@dKjWYnA`E4zGbZd2Ymvn2@<|`}LNS zeGlZ+@G?Jj7qIA_t((4@p6=;>_j>)uu#jRDGTRLXq|<-+E4Ux|gu?N8m;QkwL1zgl zh+WUnFYPt41rx1pu)qXoHnaQn#d7g`YL`bAW&#g?39fc;!{J86s69^I;6a!B{>Fn- zYa<~=jf5)B#19aX{2ok+{Yr{242{<+h3c5Yf zg_8&^&2F8RY-?GjJ;Zee;v%qK=+Ek)-uL4vVWLWyeZ8#lKb)P5X*1sxsPO$D7q z`SYQjq8_yj`<)s1UeRd6;zO1MzWkNnb0L5ydtwtP%yC-*phdsZ%iFS$37`C(YoMuV zj(cqTNn!Wavfs`P`g)yPmntk^J7F<7^Iu&|;=dvwFEh#B2!}e??;AJA{*vA5VY=#9 zP?7rhb{GFI4Nw=;e=*h#%U7?K|7&FMMqKKn<@Q&$$uVw+^G77a{rK= zW1&~&rb~})9zA(d99Qx$7gM}_@>wYfR!NUu)pXhp`m81=bKK3R!MLFQFW*dvBERPe zzQDzj(08AZ56!CDRM}x)?!3D6`}aEv2WUY$qlUjpMTWKpqgOmi5zKa!5E7^GjZe9L z8tU`wf53@O83~0TIrLZvIxf;gq!=VMyT}BAg3!aJYj)JJf4P&vPMY_Z9TK!V&s&Q0 zVChoC*D@SOf%gUE2uKF2fbMh`&r*%@KmkXvr1jYA=~(rEsMj=fh}4?IgPMg5;cqMq z%r@VOBIc8Q5l%$Q24%dV;kKt6(DN`uw!LrW{OeO0PFL6vF(~Nt*|Ql+1M+ROg%(D@ z5L-;u%`DfQpUm0k)r?enh({t+f2nox(J>te2+zdT47vm+&wT8aiYjUwX;l~bHU9LK zwxK!wGWy>}AI|u!k%EHWP$J9L5Ej*3`jT|M8fcX8wI&BT4XX>{G6vT;c+9}SKxCxe z^s)~aG-&7WzuVtwr!;6i?oUGgh%p|LNa=u_Of;%ldIn-z7!V=WFGOS#D;e*J+ko`O zwJIaLk#0)fo9G=lc(6XZaq}(xR{l^n!@IoELKR4*9N-BP9TH8728iO+5OMBYD-t#R zoD$QRqA4e4T8-qnqD9XZyp|)O&bSzH5qL&V<^VCy15mkrJ$0s>@6##6~6**N=kFab-o*;0~91s za*iiD9#P$J(;s|7Z!+I?`(ibEXI?NTNJ68m5+N9H9t|E1NwZW{wL0!#Tkrm7AoPI1 z>d;Aa>eNZ%1x&~PC}rb*LRTn3lxUr>dpv%4fVw0hU@R66U~jyVe0{enB z=Z@WIaM$NAaiwc%;o{JT7ShvkaZi`u;08u$qsqZGQh|xl8Nb3r&yr(u7w-dz?Zm+Zf zJHB)V!o!kaD7qe@+GeMUBR~1<<1S{J!($G09t6TH=*2))Ye(%eldzjbt zKa5Zt1H1t^fxezhuYj6dTqhUW?_qPMAo@j;ee6Cn5WBWieEv)vbPhaRHj|5A_@69V z6p&F4%{~RGGP6S;6&6-}t4~wU^e6%gFHIc3*>{c#K0pJ1cE^VbU|;CL%a+;D3PogN zOVkY+H0U-DL*Gra>fYA#fNxV*ro>rTP{9z|0W3GLc5YL0u*pQ;y_-|9!r3|Rw96*F zxHhGA{!7SJzdCq$f&kG4Kd_;WN=~hrxjLOFl;J z3K`yaSNW$s4Nd968SgB`Gol{`b+;g37Yy5gaKq}`)dknnmvu1&p;I0*q@bsHx#!rI zEh!89?6u`ZKsj=+6&3zf`45g+%w66-b&$}TLMf5sGZZZSfccejQBxuLOEG#$nz8i* z{dqnj($c2SG_iqfrYku7bQ*bkPuGb$@>CDl;D;y*OU;x+t>3>duY<=Ty=I9xI;&d_ z)(#1Oe*K-?mp{5a!_})V7ln&k+WSEj^E-{9_7{Xu3lMH*oUZH zZ;7qW8^&6$d+~!ULs|a_w1g;Y<*?$|bQhH5;x2;>LKXT#Bel^mTJIvlO8^#rE| zVNgTST9ez-luP|gQ(Av!@pvXy;~PodvLdL|)OX?zLrYz&ZifuOIz_Nc+fv!M-Y zjnK1aW#E1=$-8@QB^R}i{jSjzQJ=eI5_Xl!AydEL1Cr@Q%P zk}pv{AOMP9>Km*U@R_Ue)od1NqTBKGo&yJDfy^u{iq6bVY%MK?xRj0;FDhov z_mN)*p9Qa!IAt7xJBoo*3J}^}$Rml*x0Zq%)n8OD*S#w#dTn=jW?LmaCGRGiFDq*VH4OjcZ02cnwI|8EC+a>vQX}*XdL%ZW)sizA}_D`%RE&YcELQb+6^0*+}WM*TA$@fV<6lsMU z=rpb4_-q?6S;4X) z?|j0j$T(BS={FP45BO!iX-HYIc_+d5@*0ef3*n{X=$kmwD;5J+(#oKHL%S*}M&DNQ z-s?Q=c}1=9zWIxHVJLVLr?U<{l3M|MhCgy&xbsZ??XS+WWlMoIrbOpEA(xgPWxLZn zx*T4WcGhES4H$ech*JvM+xR$fPaeTKl;I6C@>C-R&z?U0EN)UR$riZsLVhAa&%zjp zGLY4r@n!|2$CHb5|E{YpItc5LmF2^&jAhFG$#qAdK!W;yxX-7=AJz z9$3{Iz|bnf3l3dSt5&Vdx!@9d_U(J0R0BA0Z|2R3r$du$SsX5N?Z(3J{0iaXRB-Wi zCaI;EP$6;zQPE@7yMn1S%AOs#2(oZ}wd>~B%S7@@V~2_1&78x+L=8SftF~QkPRB&Kqo&~YAb^?7joCwJ`)3!A}9hsYlGY0j#u*4dEe_;M`5; zJO$AhyvI78nR68Hb4nX49C#K)o4@|Fl79x{`ZIL?BLl++ZoHfSwh6+6n1?U=a1M87 z_(&Nxux`!2>Mc0h{)Tlz{a7aZxw3L!T->*<`4ecE`n-^Z)wX@Mn^k;#VWt9M?dZ@P zIyBAA&2fEv8fqv*N;!@8;PoypL$IFYJL4SwU~*|*MJ;&BAtoQfR$@JUfq8MyE-&oh zg+Ov%n#b0-UKNxvR^-teD__(^wb{u82oY`w+qh(Y{uHB{O|`?yYpqdg(|SkdXGYs{ z7E9QF{2!)`cM1wl2e+q1Na6<#~8{uxqC6AS`7~(-itSCgeLhdyAY*N*UUc-WPhxY0uul<&>tLoK* zUM~~^OZ@TAVYWr-DoD_}aXP z69tO$%t=6|?|Wy9Cg{Ed8GNlk4=yKBI(3~UKylgNFW7j2%h^i&X6>d}T^5n08! zbq+ZE!sIPuoHlHjd*PGXvU0wl=vHHmE-$z=5v&rbQ(NJM4Ib_WH>aE7)A*8cG)=+T z4<9O%>w^3RozEyL3bB2DS)6Bi9lOPcmgvlHNYofLsy3>B;u!>hXl^cCwN%9g1G}S+ z=cmQqw4C#PsCx3}^LkxgtFkkt)`hRm$BP%ThF?`DNhPbT$&2X2sbCpYGoz%PEt+2aK6*aty8k@ zrUjpFr6@XgXyXy?s`K(w*1wYmIoKyZ>hiPI>Q)8Ok-yL*D~~Rlh_0}yu{mP*5!CfbdBAv@A``MZR4U5$% zzvPzo7vyez(5=HIkgO%dlYIMO+D(|LGqqP5YPHc+M|4o#pqRSD!P+*O;$z>06v{ z_D8%#Ff?ExvaL35)X>o2-vD()l6tA=dOfNyC-yWD3G?L3v?8B}8t!1Ak&4f=J=x5N z36YYKUC^*$(170~HIl)he}0_x!v|7tLM%9d(xJUx8X9g;9WLs+}O&m*Qol?TWjBQ1E6=T&c1rT+n;eZM{nJ{ zxee2G>DCYY2TN{@rV#eWOI^Z58>gjCGXlMnMYsd?AboMC^hxOwO+3x9Uq^c-b)$He^b%;yl%%AnP-Mw4jQ*<80OX2*JcG6 zzW$8@XJaj}pP0EqTRtW+afqg7SAxjWA=8^YDVdPyuy8~>f^?fji}Ks+T{yZYJ6Eo( z80A57ZQfEs>cS5jZU+zTco%q3OsD2C-w4l&zB;OuE$?3c+J#=sg1l*$)^qDy-#a|m z5#A|c;cp>9m|w1#=Gb-E(u>nTt{%1 z?94QCx*>p98Ocj_y9>W@#*8v@?!~yI`krSW@4jh?PuxLTyC83;85{3?vS1mLP0GuC zLPCnn`uJV)JKC=Bazxn~u9qfEEU``A$$ag{=i0eFUi~C!{K-aWBR`u9ed1{146;dVib*LRuj+pj=7#%RG^bJ=VCN~OM38a$Z=xs`ewt)OV)OzR1#^LCGv`2p zqF9M4Ux+m-D=*GHD~rZvbe}_yUw$VCk0n1NydoEU7O~{%iU)OMU;-`xN};up)QC%S z{vL+~9P)Nux>#d}Eg{8&&f}4AH_Sh8+>^6tL>H6s_-Y7jt}iDtV@PXkW3R5we>mt- z3+(Ua(nC{bT5Zi^RK8uGwV*7@YL+_H6kTz*6u-(#`J``MJfNMq$;>nmlEcxRqt_lLK=%+Y?9O zzqJc2M3OsqROC?4Nw24E5ffl2ohWq}P&qT+_PNdL>!TPfw;*q5?oS~nCuc2&$AZYP zN{Wjc36^7UGX;spFX5?+M}@QA^q;@l*Mu^#WRdANDiVw-L~Fh54#UPF*#VQ!&TU?J zX(v2sr3QXrI+ntRK=)l((P3GcnVWtYICbZY=5X@%-rjIsS{*Y02j1DYjHaQmd zjNaKXGw?#dIrcYAj@j-Z)L~`B_0>{i)1g|JxYJ4aO>-|mEwkS`3+{)#>9u{pNCps4 z3dn$(-XRu?5ifJP&RF;2iWDJ~aopPo6GZJ$*4E&r5h%jaH7~CY6|)0aa5w@|hsg|R zwC!fI_{b@q=}K*RY7q^B5{leC5Q2ea!%=-xbi=F|A;cuNQRZ-vu$gY^+|vBhK_Z52 zusVd=#NHgH{QO?Qv#cFw3ZI8rVQ0xQ z7F?R=jgY>XPsGWXaY0K=`6P3<#K4&Al@s!SKfHe9#&fjNVWThRhw>YYwm3s6=aL*b zs!^sQ`#EAZbY&vFr`i(diQe~>&QUIvF97tEIb*jUKRzU$8^efjbdJ(4icQ!j7r<~g z24zlS^C593@_92;-Pg0Z(Pv8kE&nWuz8c%Fd-n|9&gR7xB~sPFfAU=4vLOsJ1yFiK zOd8xf@%`^So!>ItAxo3MSX_C9gD$}_+a^5EJfwJC;&{-6v(IgrsW=4VV2*Sga;V7% z`mXuIcoda7h@ORomfBUos`KPMhbK1th||Nw6sMHjR8Alhyz4F=LJsW1dDV8CiBy zhrLAA`;=LbTpR5=b}Z#jFqjF!@sbPQQEr1rPbFQgsjtssEDVn@u$7DVb?2&Vp|WCb zA;k8xXp0as`0(77z~iKU>4k*~lzbx0GI4eKvKA&czbGiEVdQ2p<6xtsqq{Bcr|@Q|vUA1|<`ct4Q=xA(K1*9g@742#LRYRyDo5zf0c z1eE>g;c~<3(v|q_0A}3h+_8tq0^{5)w!Eq*V@1&40W*a~fnT4qC?uZe#}?tFEQPUt zFTNoIHy$N9S+hN@9rcF)^7x%y?%XuY%)q0$X$x#16*AQz7f%fXQ$z%;kgFbP_9Ay# z*i-*&p1peY3LUUp3bgER6_u&&(tWk$_X`l_S+b#FIbYQ?EXHhr946s| zG1*eCSE(!#h)v>7-0>H>BAu*4m!_a7iaB}xx+>jzpim3^*bUzbnTO~ zPd}v3E`OD6@_%Op zyB;C~F6t+X zO$$<=J49W?kq6$7%3_3q|FgiN+56>32`@Xg9)t)Vmyu`-e`No=)raz}jtrSS?Dce> zX@Qr<9R2zf))PqYHp(PXtx>wtLU@4riNh)g&Q9DJzVm0xb!z?}`}_I)1;9VNr4V%} zcL`=)9|VndBK_&M)@b~z0&ZgL+dVq-2L2}an(c% zWA`uWd+3kOe4Ee^JE5iN2--L?cN6e$n7?tKYY}Q>p@?9`JRW)u8E<#-yKekZo#~CJ z*LCiNowuJp&eKK9bk%apdV=5a;PNw1d-UjEG;at`;%Zme49{ZZx8jGpZ&0U0_hifcmV ziD!qGe)}or`YGtxS@KOm3QNk$GU@$|>YFw``rs&!L|~3v`NGz;E6~Nn-9KlZZ-19Wo3VYP*1C3R zeUm<;RVSps^6cP6S3N0B-t0MpWK7*WdG}+Rt1ouOan)m>9<(nzGQVPvuWwvKsH-Za z0`1ZyUZ=H{TBFvuzT`U1DRxh;Hq4rA_ML#s%SD*Rwgmie_h|X=>3VIz(^XaOMc#_#*pR{Ct-Hm&JO-sV5 zm-&N0+cUG*)Hp6oaor?#pYi!&F(J|MR#yj+N+_3=QHu(AU{3mz>;y0tl3>0;(bwdL zhK9GFK8c~j4Mi=@Qy32OWZ9d*qFkzRij(obzCV>)>yq>B$71{-h27c_j~23n#8K^| zN7d`8*zA8sH_Q>O`3r!hF-o|VnOPR~F#oqIt7gC@ZK*BqUX=`l8RQr7I1wC7>v423gn&Vl>{GfPsU;S^n9GqkezF;wZqtwtDrwPMN2mc zmp1BYDoWBC$`l`F$IlySekwmpo^p?JQ`m@bK~r9$KU@5IVW`U5&u&1O0$T@W#_DC5}vv{LOCc|OoT6Qp>K6bsY+{><&|JZz?c2M+4oKKGjPCOyA6SB5p? zZ5(t0oTdrLnd}%CKLgPWRUTig@mGD3|0V`OGE_u@n2xlxpUUPj>Jet#tEWjp1#}3o z$#_zF%!`QtF_%3z%q7lIE{P&r2niS_OMOERZ!7`9Dur68J9Q5EA}|pfe;iZn3ReX` zA!TTW$fxfXL@*sZV#WNji7dC6o(FX-vKk-(Zb32pOL^3O0nP9cBbFx4`sns5a_ML^ zVaqN!E#D6$^scm2%zmIO4((o?Z9vNu{#s4e-?>muBXnA-}c)&PR+ zpF|?{**)j4@@l!YU#%m#8eqczB^SgfL-Q2Z7$!I!sr?_!i({($)~%PgJuJ8O89ogi z(^v`{K>E=qe3C!ZpZBj~TR!1E1TQn|)c8HH5oIdX%*B023$Pet#^}q}msj?9*#FA% z3|Xra#^*(@mfd4e*_N%w^Z&~lUDI;e!lrVlunHJepF*NWRx1q2?j;Cz>f_TkT+r0< zy|rz+V)QN?L5wFfVQJicO@f9%=4uAaE9<3LHKnamwhAtwJylJ_V9+CQN%l3vBX+*`@Dh0gA?X{Bq?RuA$s!9r%qSjF}>31$lrJ%gMXfLu4YG2TTnz zQu-$;sn?rovsCvJT&xrU{(6%1xQ<&RDq zi8-GfCH{AGLmQ%u{eNC(*LS7gXs^h%?A|si_@X|J5UT^kSUU;AyjGi*eFr6o%jvjwm3P4w<%Fi)p=ao4Wm8tDRk~kkj3wmLbtU z1HZyd`2`mzFsLSXQ&krlc%TwkI^?%&gZR1TX_G}WKB!40{rjieZs>pty=QEZ zaZf*n)4k4{_Maap&7f*rbk~E|_|He1I9}ynu0s4FI|FIQ|9rn&vj1;>kQf8B@QqRB z#~M-?qex4|YTyr-5ew^mXu;`@WHTrzDDudk@e4bm&+Wmb#8@_tLQQ;4qO@<1o{+1C>1zG z=DBG{?2aA#I=nxmOgt_3azZIzri!clCQL%5!}@! zADJyc)Ubf9X3#Z6*`qnB!){Uj+6V9Kwy@4=(K9gENYiMCqExb_(<{0=g$#2&P<=jD ztj?>P{&&4zS!!Nck=fp(sb-3~N23)f+7ZtrtL9AY1^A^k6uk?WEXd?D?> zVtG@V6dUku?HiJO10gdmZ+%$YL6$ z_?WP7ea5U86T8Y#O|GKS6BC}rS41Bs`rPIBkI~hQV_l+_B~4_-`tUMHBIfpQ&*otj z_4y)nb8pKxciWG^(2G|&$#>wqrt4NGX8`>!xxR5I<;hAQT;=k!K-kRY^KTrt$Qd~D z9r-2B4$3| z1R&js8`eo=OgFc;Hf{!WJE7;M1F`--$RX7*(nRzG0@ys{SZAL+wNwn}MrPnnH@^h3 z@-bxM8@Fmb_{PoO9*q7yr!+yJ+=5Ib?FMxJiug}jbL)?dRPqtm)u|~5>*@x9Lm(8* zAjx4@;?@zvG6A;$vQtGIB%hIK9ceF=C~#oQisRL;!W8(HcNYEnYUatkkuCw1LoIN` zCrzthhv#6T@L*q`krV^WE#6IiBmIR<77MmbR>%U1X|15{((7r96tRVO;~|lzaRO%& z*4>f00Fy-CY z)P)5?@c|7v7>9f2;T7sH5;v*J7X#T+^tWKLJPkp}UF6cHQGNI~54=0>(jp^c0EYxA zaE=5)PUb7sos^IZ(xo~xH8(fcnhES;3dOujHbto^UoFj-K|x8b{Sk&V;l4Tef&-rv zdTOLc(`IOkqh&EpVixTYKasDQultH1P3vUy*?mc)g zyvF^tFITEK(iR?#gZWxoKRr+i?o${&>rx}|ygX>uYIXvGnVu>ioNl0oWZ$+CMYo`` zfD77K5{fI|qy(`esbSls^QkSr&b!CJSK+6^xt36;s>v=MJal*`AeU8O^aKq$jaMMvo3acfFloEg73N=ZgYu8D-pFi7&RV$lTjgAd>L( zlGZC-1vrLc1s%HxQdFeMjWN$IpFj6?&Plp)7%46eDnNE<==*yAMdr(&UtXB)3d*q@ z%E0)+57;Sj33rfFyK>E9x^a%%X?PE@K?rXb)Sel1C&N9T!}NT5h*&84whK zyA%cVEnctp1ds7>(20u`%mRtsDlHm)Bkn#ia$NI=d~MZ!`!}rlx~;9u=Y^>cIg3JV zA*Na0{zW^f(6b(4dc)-X@&sXFfn~LXAi_dEi(Hz&>NT&e+M*G$=iuJGT1!mEM?$1P z%!Upaqp@a!cbBJtHH$2^`m^7>xsZo;$u^D5Ta`8`*9F$c%dwKEB$nE;?^}ve<-#x^ zz2M*nze+{H{3z5=ZbuED`7IFKla9{;@p@Uf9}?@eBoFTGNSm#s@1pi}N@m*U>W3#U zwJMPi-Tn!CdZKT%jph5QDtnX9>&{=*X3w!Lk5;2in74H4Vclu7H-L7I`Y0`iIp;;0 zbx7yx^?%#0efDb3@}9^M5h?1dvmmZl6>jukx&u z7stOPf(87zvTmq>`VWImL)!1yu$EY`gUeLY>HQ3X=kbx&2kvDo#ZQ5evaw?IE)Chz$>!8L7C&*;Ib?nBp4(1pweF;8rGjcyAD z`%=MIZX72%2g;l{p%3ydnZ{rKswL1rhJD3V`{u2Z?dedB27Rs2ziC7JOx zN5t?hWc=|jUfvBXGMFYj2S`+pdJ0wguxf9hGQzwp5(F`GfHzPnLT^BFxV+9$X}|z4 z$h7dMZM*jFZS%F@&6_usgBfBu|3tRz(W+&lkNeEVE~^aIY0GoMOV~>PtGO!;r+R(Y zOR}4!NfV+uQ&BA{5e;N$m3eH?F0v32LZ)grk;ptog-i>X=d_iwGDKKp%v9z~mHFJS z{Xf_L!#UUaaL$+0brpMCli%-spZ9t0`+n}H3-!lknBVSXgEi-Vx=SyJ&xC}&O`Foh z+r+$XB_e0SrQV88J&@U>ga%-c5xy{=L#-)!GdmB5)E{@=bRMlOE@nqS3azn8H*fI4 z>G#UIOBoy9GC|fAk48bUQ{uoo_Vvh9)AWDc46iZ~eWg(GrF%l&Omw#peVyBLF})W1 zj^*I=^wLdM!MZ?(*cSxzH=)G^<9%^>?I&(gQ1M=V`(V|M$Kk5{Jwiz)eQw9@erpEV zjuaM()P>w*0z<8@T^~-R{>t`Hv4?)!d(br`pcO+ASN}==d z6#s=hyXAM@6oIED&?ng80>%uQ+xA&B9R&R#k8)|r;>F_hm~%DQ#o)ESk@E__I?^|1czL)K5r*c{Z;ADK-)_d@>`% zIWkFBdCuzhYqh#SQ9bpFxGV-3Z9m=P@DtN`%y;O|%xN?b7|+aFzQak2av@YyMMY&B z+Rz0T*CR{+NWxdED(cj``Ay*CFPA*ph~!X_-hzfD+Jahl#WNRE&IuwDyYnV;VJ~p= zb{wr8i1ARm8F0odYc91V_&)&UtS9Ur-6IYQnk>IIJMG|W1OS@I5%JK#>||u~Fj=ub zxmyEoP)u?U#29)@e$Kn~TjceGSIA31NqW|WJvyg3KMO@6M#4V^Pl!L5s|UQh?^J4dx3k3Inaqrp`AYQQpO zPh|`yS`5X#!@|th>9+JKJlgOE<)7&JEF@xpG0W#>f5{r@q38oq%YLck(W}V~l`_Bh zAn@83Cln#;TDb3b5G0$)tWcW*L8mtw{MOdikYb4I1$cW$a$ZAgq2<0pIr*q7D9?6g zFwhDdTxzI8C^yKWPzQfW49?JJNGi>RpAAGl>kH&NFfQ~XgIo57s(4!yiYZ!&!EY$g zQ0f`RP4OPGj?&W;^1w1AJSQ$ibd#5d2t%4%!n|HQKPE@G&Z{hEo{=?XqxF6A{x-`S0J8=0Mw}06ER9n2#EBbl{ByYY(sNy7- zod7ao5ggDyMbXVL^)LNUsw#d}U5TD2fHsU*ND!c_zXyeS%q@M~e9R>xuaBx@7%9C7 z%~TeKg*$>W6_DRzNX~Y&;Uk%aG8u)PCsBOh^N0ebGKa2!Gs6(=Db9+huNkWWg_O^+h(Jg+q+ zP$w8%)Q8bEGoNFUjhPpvIc@(ZUWFG!ab~w_wAr6?mvep0zt=;l+@Vb zq`H%q)=f8gQrq(?Aj3fx>>zZed!Zr#c?BI_IS5hzBdw%VL?UbBzVjo6!gp5b#8FM6 z)dDN^{BzF+8OQWeLuY`T-Nb9Os%jNR<$8Ioz^@|An${KOoiET_i(%hBD{7OO!adna;Leuo- zfB3-Q3BltBAy4@ReK$(hdMP3DCM( ziUM$wd+?vIfBWnf=YM3=)rmRA2jX4;t&d>UPSo-$FRPD zzHgnKq$2#Bd_ndPE5sgDsCQYWEQYyZxp$f{^nuksPrR*oII_jopA# zjj2 zVEybszOd!^J#idm5Uf(Xj!c?7Y$VMP(8H@uoP|zB!Hb{aR||ki{N_({03*9CEU7$n zR?;RM%SOth$V|#7$NN5}(;UFru7WfGf{H%YP(a@q;Evb~qu^aa!^Etn+*>^eO9PmT z3_L_xcI(|$h#!Iu-`InUWfzs|N774^Pn!WwE(r?!_MD(xD8lyzNkxz8`e#cGG4zWM@{@Djp50s-9 zVBC=pX@$vt`o^%WbXUY>7&yRxN3UTI@HXt$ee~+>MpHzcN_PJal>pQhi{*eZfn}$Z zg-Cd)y-;`s`!n`s_A(qKYO zb(*jyIRQ>R5Z-(BFgP(B>1Zm5IGidM$F0CVs`v|QF~bUdbgw5_un_8@F5dY~zA2~u z*YiWyy9w%tqiJ_i1Rw-zd| z*Hd)TE62S9ZOu?BI1V5Lviw*DxmyP(5FI>fyq8%C5UCx`Qs$KxRrVk6yS2JZc_J?BO;mm|-iBjMe;k@2|gp;0WsI?k)lJ`5W6F6Cq&i z$pdW)#9qJ;V<5|*zWy25Vw0qr})MclY1 zeiW}Lt*kuB&_;vhxtLSIxAhr2aY$|4Z;UwzplY`On?$lhCRgZ|ok6mq5p(M3%g+}r zExod`4nTt|?vO*;O3`?57v?UQPTSK{ibfWQ8C9zX1_zPT-9*v?qdVB3RPKs!x{arS zy>0t1Xlhw?s(HgcByac7ZUIjb2xHcXoqwe8;v$-&c9#3IA?q(AOvic=)KQNFWS@cx zS}JHF-1sld6{2a%hC|ld$r*-LI>>LJkp+&vH%{m@jb?;Zh{E-FP92cEXy{uhuxoZF z{Y^NvuwTF)UBrGQbpjDG1438@hQxzrABZy=E@jW7UT(d6?_M>;tiF-buxHEArvYF= zwFb$~8a_Vr+Szrx^-rMcVgG|OB|g6uMY51a3^9MHGTDyCN$d$U{Jw=J`<3Cd}NKL`96U{tth{Y00}`xejObEXjyYZ$4i5RL7v@iVSi@)$N=s^G|u zjppkecO)=5QOWrFt^s~d)KbQDp#et{@IgR!^!B<}nUH!E&j}p(YuOh5gJ`g_TG0q? z4^hCQ=LeZ2ctVT~2s>zX8*2sOetFuFYsi3r@qg{@)o*t(NH=+dlj1uzF!5I>z$cDD z>8buSCi^KXKya&25xhhtWMsh%f#L@lxJEns0q(I^&G`=dp;BSr3@JIG)R3{Wb4ZL6 zlN01oa!0RGt=dnx%#7>!QfG1O6CG>&UI4Pe=&eHdU{o(4)C6gL${%5hfSx0rzND|z z`~|B|<<#i!;f`PcAb?KT+faof6Hs;dQPX2XDjN_l9YaGaxNGcQljrJZC^u9BBCRiU z&QmwALxTri=iP0NWn{uG8A}L3SN&xf-M3@cJplR|_~+ zWDpSaOFEr73kK&4^zwRL;21q~=F(7{P;~8u|+h2F4`#)Wz-2X5D4Mc(;=6mUjux z0}Y>Ep;L~!1sc#Qaokn7&W;KsjE0AXenb#?gK9Og=@Nx_n4wSN6cB>)%n7(*K?9&O zcob2GSiGAzWmjDmcn7=MQRIOHOC=z-M;}5|Z&KYsQX^wW2}WGEwkC~_xTcGiGOs8o z+|ygnrNVR+@O_`@Jv$`;~ojRlNq zX|$gqg9`yzPWUoN%bC2E`D*Qxc!>J#HI#qgTG}7CMJB!b1_l_^JTV9wf33b_<%T1U zOz{$4VXG=`(u~rB%?;96Fn>E6{WPbDlQ}y0m5Ma6Uy&0fIGxY2-hpgbIb{JZ!6MQt z>oT34YEIx&nhxO8_dxqq%1&D000+DcFK8{(TuUQ@tz}FB`ZdBnWnKa6JddT;nNX)8 zMbo;uf2dw`Izykh8fP$mBgpHNd)vK>&lx3g8hn46_;9a*)0eu*5x6Qag zEU)GZkf(PwV;({xr=K0oV|K9CR03O7Br9ehASpPb>n1V)<;^eE;~)lLcb*(mbE!lT zio=`qS9`q2q+Ftk?_{JH+n`W!0xz_)>nC=_frM3JG_YZ05=E&DVS*7YJ>DEF0^Vfb z9el;F5`-M-kw&E&&{H1(KW~(N8HZcEGJsCvh*mvf2|XuR2;qqP%Xv$H>MU4*<`07q>FXm3ex*>{sG(R z)yJ-Y`}l5?YY?$=%Ukv{rXTKRuORLbI1MR8HQ;;H!977e+Fi-eSP8wvN;E%x1`&pk zEeKm4vU8p~bZ;abIf1tG(~K7@~Ryj4s5yp`^TZM;;;FY4zF9UASw8gcOx0aVG>rsk^WylEPK1h9mjFY zMRx5v2`qj2WT&L==J2qvMA*MYM@7L@iw;gFJ}F7^b|hMdYSUeGc<6!<>wU(Gy(oQm zZ0?8;3G!I)%D_Z4?CdfT-#v|*!%=3NnD!z;_jF~!Ddy_5e{gUdESEZ#=w^p5t^$|o zQ~VVGULndQDmv27*J@4$$}1Kw>q0{CVZcsAQc@eNHrx6-DB-Ef{L@*b7qB;TSJaVFr` z9%wip2F1Sy{ja619iNt_!S991%p)ptGgg)yjaRDpTbrlOp*4n%$~>mB-!4yR^B7jW z)LL$C6GYAsnVXr&-L8lxz;gJY#Z}2ri`<@_;YXbH4>VmnZo?}`N4XI*hk+%67_9R> z7h|avm^rUYN)%r7wfQO#8kS7^I1-gT3VD{M9b6w!S`=G_1f^&d*^YBH={?F>qKSsHSxKbR8nY zaSL9G;=;}%S#2}31QeTFyxzaS1vEj1;u8h>LIFbr+&w*O(I0L5e$$Ph!V2RwA;cAP z$FHd6j-8M7;ya`c-<}X@htyTx2dGp`cvVI&p{=bQ0AH$OG5UXCQkGwMI0L4To22c< zO>X>z=q%-usD8R4^bwJyov@=v_t#{-;w5uq16hV_5p(k9v2H15;mC_(yL;!T zX}f^KzQEZm@09B@F=FIU&=Tpq4n59WjlFF=tpI&=l+=P0At;%K8|%}jNN5wzb96p= zT#F=?p_irr^T+tu*iVS+NyLn9ycDV#4I0g}E>Z82`31|*J$II5Rwi}+9#lFxO=3Cn zpC=fUmjP;+JRLKbh*YcQ`u9EcEZbIvtj0~LI`X6?#+VJ;3%!65&NsRgp;2yZ2 zOLG%*at`%&Tf&=|YGH#@P&uo~+5_WiX??_5K?*_qNeTby^lxfC%*sZKECZxoC9NL@ zk@X1-pWReG+uwU(wFMt#@jXA=HUZ&7hxEYth8(_;1Rh@V>{;`u=`%@#`wK_3gh{45k&9s^iG1g`-reED|C7^bg-xjeoX+1A*!h8Okr{LtU)Zvz0H@`P!fee`7S@5kB*#(Z4& zQ4~H0zM(iW!~gW4)!*q)S$$dv8LwVHmzmAul`!>l0Vp2%5vm{?gvwaUW8*cLHk**1 zp8mj67tX(&ITc>AvnIlEOQJI}w8*AFxZ8fgP6Kssk>h^jGI9T>Csvm`PAe5P+~a8OkOBuETGcE{|)kiD7!Xkp8UKPNQXES88)lMShRzn~Ve#poLi z)mbEaJVH->k_WA^8{(6b4;+~S0Zgs}{|p~$&tr8g<-%PTXUE5|S}*}!;ob?v0~l03 z>VhkgDq7Zy4jN>d@0A%q`|w@~AB@kaLXh;FyJ2JVp~r^D)1RDqaMgE4u3sVr36Zvg zLk?26HFmsccjI~0;($zrN7f}Dl_z(m#dUCF`l**6o{l(j)v4P$M-%nw@VU}Gfhr*2 zY9PITlYZ$;&cf{;R&CFU&h#C~!Em9(Cfyq7M757PQk7($SC~bG-`oR%Y?8kAMCivOt&}aV(fb{dZ?i1hg!Opcfsj zzxan&tq04RpmW|qp74SnY;nqI>FI4;nS#K`>=-`b6fy%Kk|flQGvh2YY;MnLWT3wf zr@S*;AA;hH)U`IbB3jO%qcy*$Le%Kb@Ea|0kfVRjVY%jX_BFJ%j-?h9oWrsDiaw(_ z1!^XT+;;kefn~v3$xQ;3?do;6T=P*a@Wk1}q=-xJ^LI<&32?CqML3Z#Vsaxgl=h7a zqvZvoOk?(M`ob*qeE_DYG(Es2vR!YU%bkOi)38p zlA%vVf`fu$A?_KIIyZsY)0#M?hjW9`G?J1r_NIQo?kf8Jxb7c^|D6Ks8|ZafxRe%( zzBn=isbRow`37+ecu;`@=$7}5`3`B=deZz}*!n0N5`BDDOB^_$GE#dB?cYZM75HNp zUb*t}9_Pl@nZEYoV7qG&z$GkOq+u`9=Xsz-e0MT~QHw0jA8e6XQjP*vddLyyT(y&E zs;M*^Zhse_nCRCypbd%}I1Aq=CsW)8h2=&D2B83D`88-ps4uXqsaGoaurpxxY62lw z47GP;#Cq+zb*2yil@yAhq1nDF1iv`BQg{Jn8qL4>>tcIW_Vxm3bO_)EFEk=$+15M` zWn3*zZNbvOLG+T3SF4D{A(KEWRBwNO4LApOsoDsHnD1dNFAKxoP=~+Y3VH5z-o2I0jZj`72U!V4ww)w z4gR}veks3XFleA9#8b_hEV7_fiH0ahd1T-hN*f_r*$c3@t$~pk6$m(PW7&pnUpi!i z2pf!rAuJ-I0b6g}j$z?M04%ZT>6$PoQdUw@GdEAfnV1gY)&qKd72J_^W*FitD&vFQbm63}eH0)5qa?O>;klu=e=ZB^AX90UpI|1&HDIMD|?LGRAI zXLilDEINu01%=|k3odl(o_=H;J+~I|t7>Wa4^w3@I_BiIhc+z%PRm&+wsEdmzbGSq zcw}jG<~_^@TaNtsJB&6_R{ASS zG!;0%W4XRTTs4atWT#MUw%`YDE|S1w5?)d$l%!+QTNdFfrD#EoH~Y+AJl6QWt@Y0Q zR|;iz$KnrcoL- zq{(z#I{)86u!J1{n60BFcjV8vi|5~-LUAhv3N~fblpwqr;PpG_1Utu7}Y|-jO656ldD&2fo?oUVc7$aW~Q!| z>$@2I{k6}KUtewoMvL_UIt3Q&1FEHYXh*HiRXHy5l0~l@v;tHA`PP-~e{q%M{&^iY ij{nQ0{(tx)vx^GOKI$I1+rE)pCMEgPCz6gC-u@4=M^XX+ literal 0 HcmV?d00001 diff --git a/2_pytorch/imgs/install-1.png b/2_pytorch/imgs/install-1.png new file mode 100644 index 0000000000000000000000000000000000000000..7da368b25d799a1b113a5f3991379b7ac4dea580 GIT binary patch literal 87539 zcmeFZ_dl2a8$PV@E@dWJ85v0u5|OMBl9iMa$;d2QWL8#^m1Jdwgpg!rCM(IF*&~~* zvfan4KHvNC_}+iRef{$89bK>M^?aVs^E{5@JkHBkO+}t;Kf`_^A|kSj3bN`%M7uu_ z5$z-*-ig1Vf7d*T|Ln4rzNkS=O#EX|b%2QI2+>8^^BRt?rh6TvLOQlYwnENJQ_0ck z&86Q>di;1-4(~@T&9vP1T+MSIV^waJ78l=}xhI*YbuLH7Trw{wm;56yBbPn(1u4p) z;?FOc-^7r!bkylbu($IL3azf~Z0teN8FDhSI?$ED>0x24)YFtV> z$N70Lr)cc)(9_c^zs(=6^d=`KCp0v)>9-0tOzsCg;nSF}X=Z2_+@H~slk-;K5U|%N zld0?O7L|~YICaXpujs*>^oyE*FH6fzZC>Gf%4IUoGgVttQ&Ue5PpG1QkuHDmDLPVN zVd1@d_g2j8{NEiWhARCew^j^XU5h896qBAy$BSLxBXz|fMiNhRGxzR|_qQKePqI@I z&-Rz{1uJOufBf*_LtdV7c9$T7zg)tN>(}X$1qKEaG`MlwQ9K{-+|<-T;@z&UuBjx~ zwX_Ng3h3XCQvUDLl-Poc)@MHnTlCN^NPKxz7UwNq{IcjDy9NIKLb-bambQG*^;V?T;WC4iAz``0u~}&MOfseXp%OE+Rtb zz!Iv!;Ub}{d(-Gcg&TnW-EtE0Z!% z;UO>MdiU<#&Ye503X+q3>?S%6{QD|&H!Un?n-b)ebx4T3lh2s4+E=e$k&60=5OrJI+1c6Hd>&;DsW#jDFIb)pev3FQBqa1E<3A#UBMm%XzkXF$ zSO3_jA}{ZAokxxs!K|vPx~V}<&-}hBEGc$8=5ayLZ z1Tdbx@Z-mimgeS|o{?&M8=k(c zeT2-Lo}OMHLMg#MRPkuUi^p}NlLbaZbVO$_|bkY%9ti^Yp~ME|EkZr z&h!2I_jZ%Ym>A|F-l+PjS}`JiTN)agyJrrwCaQ7O$dH|ET-H2F2m+ILIJredMcLU` zI79Fc9UT6=efyTRp4#5t9^0v-qhnL>s$wv|px}b6Y-e{jL%h?`qetaBNr=`iFzZp% z(pFbjrhh-#0ZAOTrRdheyKWSGkv`^q@ab%+Uao&NSv~eYCYiqAxzyAIE zeuR>dsp-VzBm)yudStdd4^4lub6!S9MrLMUrT$q_QEyLAM`!2cq@?-P4f@kYo?c$T zUaHZeZGC-Pod$sg`T5~PCROw{h0hOOC;1n&Z-QfEb#LB0XWsrUD2Q^w2mxwlHrbY@ z+41g%!JRu^l-xW#cJ}r<9}M^1Fj`xhkW1qzNb^=n>>jid5oA!dAKHC;_lVum2BB8j z+0+TU{EO{U_wV0#bCd9rwzjs`%kC;JE^cdULx7L$3zLo)ahTQC)C|L4W@ct8aNuNG z+1V}q{vC75K+eFxKt)AGN{UD&^~SYp?R|aBjEtnG;v;J&_Uo}?XZgR^j4n9;nSJo! zK}wY;F)M@r%kc0OB#lEfG(*2sIYSBx3nSk~G6?5BWMy{Wu-@I651_T7GC`-h~zI=IqraR|YtV?rq^9LOCw6wamHv6s*cN};4 z%08BHI1{y5!yedEXn*3w3G?66UFs=<=g$3TZWiF>{ch+Z*ca4tHS9g5`gbD!l6&1B zeWl~oxLzRtMHTV_QGLwIyTtJvIdZS0e%5sh3kxzbvX!HO)#fH9lzx>}=>ywlrl#fp znQ*tNVA*rbJFFhyVa}dCd+OAw?alseSNz{pN9Ojg3W^cNa8Y|R6_xLj+pDS{W}A~P z+1l8|xNkl1Z2Ud*1AorF_rqJ##@@d8!J?6t76a*{!%QD(7|vh5d_dY{vNeT+QmfI zB4TlhvAz`&0=wAb)whM;IRCOtlh`FeJTX1Z!^2bLzU^j7xH6SEvymZi<>vnW{hOSe z+`H>`>*Xs~uBfRUp(HLWEc~K>YHOFMh{*0ed)C(1D{QHWi0G1ky`vb>Tct$KQB1P2 zvIlb$`Em_eWDk@@kRgj~_pN31)qEvNa4RH~nVb(1)-v zO>OO0v9T-`m+8H(^K6YL1pc1u-|lmsJBoi=S()_rqAw{KraG%Le_d!9;EIu+n|i-Z z8krm-ii2vOG;yHUHLw1OsVNy0g=Yn}V{ej@?%cU^h??5d+uPg6CvA%ePpuRqhI3BG zDroytX_%=@=8@R<#?iz!+v~_?5zn97{QMU2?c2AXKYupS{+xHb@kizG!G@jEs&(i#@Oz{TfQq=SlzA!$aoEm5>AX1+5K@jGo&d^Gx+Z61lWv$U!;-QOu8|_@|TcWhnX%0T*KJ0dm#j)kem~ z4i`NoW(_Z{C(`)jI%K@TE>7=m<@h6*U7k`}kYNTVwzs!;Pug(4{8nP>L5{Z`Jy(Z+ zyYO>zhdzxmv`&lT?(xvHPo+2$#l*r=il=gS-!3UBi4wMa9{BX>Q&Avd85w#~IXSsK z7LRtDvFXM08t5-KYT@BmzMjbJ$+wnSR=#=j2VmX6z-?V!U0`T(ANH_1R8}wP!OitQ zmlO#X0|SG?ho1hR61Li;3U@`RedN%aT=2X@w({@3adR zMruPw&JdBF7Y&wJ5oToCM`C}m_f!-1p|zcGk*~IWo)M?uRL}kR5e(&Bdiu=xc-h?2 z^781&$n~2yahAF|J9|o8&z(MPi)>w$vMnRUm+mF%<)xmoG>phtYEiv-^;L8<(0RU5 zePnoe_^EC8kGZ*T{$988t#(MxJ56U*f8*xt$+KjMs&|_$7<=}fFGZu!tS$A$3+fF4 zLBXY7hkl&`o6&LCp;Z?*q;5dZOzi@;usU70)zMQ9FP=Yt9ul&+wLT}gB>vOy=~Iy1}IzVB)U#q7aIB>vWwkPG?I}PQGI5n;e-BOi=rq2}>K024#f{AxO-kW`n z?#UbflTzkD-o)__9};ammrJOR5>~Z;lyoWV`>V5y3!`=Nfz0BLzXrhRVqJgV2w&5; zi}dzN%t|UPW$_++dt6WuU+s*ra7SBP=!QPl@Y>a@$R2TVM?BR4{yfT$ob*A-;tdOl z`ITqU`@Gf=usNa0BtAYKxn*>8^wFb7NUNM@Ut1^Rmb6L-X;9xKes>xG$E_rVgtP$f zd^Bz0Twd23rn4EY@&}znQ0ygVENdwH=BdQ#Je8iOudn~?APtUq3kT;$wdB@(p!EvJd3u*j&WKo-do{mQ4OG*^fG_%d+nkR8RB^afenH?oj`JUw?4lk6b+ zd0ar?LvisYGL(x%e@jb9`EBCA&|JZh6=L=8Z&{BYzbF(gd4HNtr6==ERaMp6nv0Ie{$%hXDoSap)wZ1N2 zhv)lT7VB|yap&LI6jZrmF^>8zZ>cq+1e*w`x9&>!r0^4*4s;V$~Us7 zw>RPS>xIQd)fh3rwXa6m&Q4CS zy?g0lgo{@CiDFV!b#-!LVq$V~=B;9_oK41Oo=YrEM-NB5)YDT|u77>OkDHtOSDkXy z8Q0}DO|3w(J6YF7Bw8)(cO5@|{FGMS&yZuP%#v=5VSi?OFBu(Gk4;OPO3N%s{r+6; zaDcuIP}G|Y(937uib===30NcSc2`%Ihld9bO{)| z3i-G0?rxFLSEr4?SF^Z3i#wRYAT1+v)gx$W$~EBPTf#x+R4#n5__Kd| z>(9uD;l>31;9zb(6@AWOX#VZ`@0lnpDQGcBCZN@_^AQR%?od$xME`4pHU;@p!)0X; zl{h^v&a?^M>lQRN9vd1OLdAahlIGH-OUR9H-*Po;O`(#Fj)MQQQWDdV?g^~+d-CMh z!U6*$W0Cz7O{ik@DT6&-2(GBoQg?g%<=#&YEDuHw9As+AXAP;X>A6t&Y)^8K-rdQm z>FHPv&ODt|HJ5)ce1re~xW{+({B{%`OkI?QU`LD*i0)C4h7y0JhaJ>H?~?h2@*q{9ROX55SRR!x2V zg~r>&Rr_pSBkbJPXYwL5Ze702O1=Mp^sQUB#F$mLmv>2JB4DPbrVdD-Idi7)+n=}A z!qUh=HlvD+2a)q%iC7QCKie04;74S0ON+IVLcE&9`t)g!S@R*mxP7~Kx)8*%#^5(I zCyBy?%shPVC-a)7S(=--s74dHC&jGr zK3)5286UuQFfcrDVPOGlsdF7t@rWqLH4*&>OdhK{|o6I=@>ty-tSeZ--THF^hq^B;DXSMI zYjN+MP?~Sf4k_ZCj~@qo`wvJnGcy-js(HNswb&q8?KM7bqQhJ^u5CUY6 zKXZ~RDLFaIz*2elew=asJ$?C1Ge9#)B~FZPq20b@w@B*xqDT39ErJ`>uNR=U0Q$xO+F5efLS*SBv<#g<~nkDJc*70c*L zr$dfG5&QB*R#&%wdo6Rj&}DT&;S?(Ye@*w7N{WbF_uHyUjoO?{%Vc9`2f7fwOGqx@ z2b9v5Me|h%MUc%UiSeX2Z;S>%d*KV6wHc{VsQ%H~x`a(riWHmxIto=x(wZJcsl_Jn z75$QyldF1>S}qusH=H7zYrApQ`{cqj$jf?A1s-! zUcCw?cvVAVAPjJkKwN|^V{n#2Law;GyPKPv<3S=$8(RrF4t?>3FbA%tcQ_M&ICHmC z>Q;M4M{;s9yQiaA-{b#ChjaL{D6wVYw9&UGAWi`RzkmH2uqhzjlK^SGVNAEwP5kWHg3L@v z+H;**3GwlI{UxrGno%1ITf;2dWi4Fno&XPkJl24Uw6tMZz1i7Wu+{J1RbH`JZf&gc z^70yzpu|HICXPpWO)1Gt!MVu1nHM1I0jNeo%d4cIV0Hg~Zg%$6mii1 z6;DafNhkxj4FYg?I*N-yH;y1kdv9YSQMAG%`i1%VCd&m96z1k;b?j6a09YL`&CJZq za=t5(U|Uz$#i~zQT3SQCRJaK{nSD z4^G^)EMD$1j@`tO6Zw%23JElGEkirS%{%G+`}adb`kq0&EnTtDVd^7=L^6IaFZY6n zdy^gZPM6Wt?0{PBJW#fyr!l$dPd;*-KvxDp7ZOAPm_u;;$>YbnvJ9&6FDRw4ses#} zE-SyB=Zbx9i#iiM%t9y@Eqpz};eUq6=yOAZCBC;4%WkevMZlwrVMkvTN|$~jl2V2g zZ`e$Yv=0z3{)SoO4`&od)G42{_tw|eUh>>{Z1DNv!-ojyKmG3RiRAr`FE$`SFfuV6 zkVa8xkXV0rW7#?D{rk==gT1^6_DtPUW>rajZ!YSu$a8Z*NSkZR{)dGFw#vTM)=uCq z$Fjrk_Lt~vQa7*#zeOc=&cJs#A4s(nzD@5YD3xVV9d7HE-;SBCeME*y>HpWxa zMJRA^^YU_@ipSWNK8-985J0Yd=5vpefzw#D10-5XX{7Hw%YO3x`x$IQ zfBpK^+N!aUhf>~+VrBeG%WMd&gza<&ClCM!2lb&t5xI)&5oc|U93Ar`Nv?3cKp7qK zF~dd}H^f}Ey%4XKkMED8iXg%98y7j3Ok*g}g=e>N*;*M6#5a7oAxT$>Kq=W;GuPf4 z2~h<(kk`c_n_BMBtsedIPo5cN{?iEj zRNF`*)U~{RwPZ<^C+@b9FPA-= zaU=UD4&Vi1`}_A(OKI@Mn+R|OWrg&CNZJO)LNoQ%T@=2oV+|g@0T7rdn8gU%2VJ}X z@CURi9vYI;>6w|6_|6RtV~eXu14u#oS#%9^WDoBHJSlM=^sB^Q;Rh}fNU^2p1?A<@ z@|Edl;dTI6WLXY5RWyWMLtF4XF%+IBmHO;|Mi1*F_quPb9+Mug7w+%LHV%}V!uf~h zJapbWStVL4OTSX#5`*nsR@PvJKF49QwwFrWp@nu6%^3E%O1FDPBP`1c&xYI}Vo;AX@sd|3wP_NE2lZW=Ao>Ac9y^w- zM|+r#&dS=lyknJC*X4X988Vsf+}M~rvsGEAG||J0T%lhPhA!Y095Mn#asxv{3&?1E zw~9JfPPRczz&WGbvC}}GpAH|jr`|E~TH>R*zys1^%nct;>0P)`3H|?oG!KnAFjQp5 z_dzS*X`i~%&EHWmCz4NdhO8n!?CPGx{~s?vU%oZFs3=2ef*RNN81YYz^ZLLRfBKvQ z6Lpw$H#Rq|{d7%DQ`Y=HLO#`!Rdkw%Xg_G{_VvZ_NC^4yD93yD?q&B(R5!J;Sy1qU zhDcTIsm<$vfYEAgsjD-8Ay_~}beoZS|Iy>eC#Jiy@mx2NeAbE`i5hnXR^!jh$kZya z62*qKR3S^Z?ps+A1FVvgj?6o*G4=dcMi6ernECkm`FVK0HQumlGviagmoI2|rz#i1 za8FUhix-K#Z-++f!dOJCh*<5`f8P_=R8a-2La|&2)1B@shMab|^oFkPb}gC(3$@3x zva$|CM0&615$VzRO;$>(49u2#{{>amz{s&Bf;3}heEK6~x8cvW4dThYG|bM^r+Pe= zpw_c{xgZyodmTD)%|yKR3w{@y^R~B;h$v3pPE;Hvo|o66I)KT`%L{TQw(D=N{vJ}@ z-)8+0y0Ff>xh?LFj*ed{D+#|;s7}l(8?Scv?}hFc&b^bf^HC~a4Q|M&>M3@Kt3EsE zm_ilr@Y7)_NcVWu8g_SfLbFJi(Mf+FMEbUE=;t!1smT55@U=SNrQv0XmGBT3k@ZtK?mHb}PH*!$XuBHK(kTZ$|y?Ukev%U_h>DRAL2)d3;-R+-I zmP6N$FUmje1X&QOkbdq_T>}LZmBO!1E7pkP^c5qcp9*#0N`s#v-sk)vfxc~k#$q-V zGjoQUjQ~*<#7l#3&JIMRvgyq6hLn*s#cxsJoCMDg#qQnb_4)a8D(x6xyEj7Rzjhtd zM&9eNV3#|1`0zSFNltDq^I02?--_Q_$cYT_oP^nS0Q@umc% z*FH3O949j3j1)yhqnW9w^vA!F`gwX4YDft=qZRwdgJeK3nV6M1F!_@14F><8!@~*7 z1pf`LBSPnbpEEz)`ADjTiBSTuVX$J7=Qp&>z!K7n`BZdtZ%u_XtP8ZY>G!iCAavOd#LTK*wXn#L zi^|E)KHWxreMInzvBbCFAX`$_*0#3g+dI9xyS20%U8`sTPOT&T{@HHA_vL(+hUY?i zd~R-TV&c@*4+p6#!9pjF8XZZotD;3B1j`_tu5&QgagH%M}=3&(w;qgW%Q3-xuvY{@e!}Di7Gr6iuOyRHOb#qx&8P`+QAgF zK;`DIdM-|uJ%{IPrzPgU90Z+%xOB$t0icXS--GJLb2GEETkhL)+mOBP^%bqc4&wb} zU+}eB|D{TiWcqz1I9m2S5);E@fA9P7eyiEZSAwQg$7yM3AhFv zSw}}leZBuOi_EoWPoHvgaq+9AFZsPPx{|D7Z*AS=>QRyF^89_{*RP7zGcsTQdT5B^ z*s-)Qogh5kyy5gzgGu3vs`#A&EwaE`!=caEU-z|%V4&2^dTGZs)_Oy_*{w_d&&>LoXzW3Dz7aUYkra2ykd)nD{T@_rl9JQ&|D1!Fiq9APXa><4&Pws74fy1H^qDCZ zFu!bU@d8_LUtTHbOi77^ry3U8#zr8jzTL$Bq*0OJq2X6XPNXEzQ0+3v|K2OSv6YPE z>X^Eu-FQ&>?*gUnnux@#}FTFPY1ncWeEy&Lpng6!qS zwzk;;QEW2e=vUxs3@H5b2i}52@yW7ByY_sQJXOhHlF~Dp#p&arihm!=Ci0H4@nH)-WQcqJy0-p16iV6*g6l;a z3w8O8t*v(81r@Evg1{(Z%oJgk{U!G{_J?N!{iwH#7mQNkAm;O<-FosG9}f?se6+&w z@UV3}`eNzn^-|6eqW0Y1MO*s&b#L5AS-y`nd~s6a?-wBYm~j4jzDW}s)uAG^tp3dP z3oC`n$yju`ug?g3%qj%>viW<+TG)vK+PHS!sX5O|7U<{F(XHHRHPbD0vb{ODy?+3y z@nU-f(3nm`+ZqMFc=OyJoK`K%y{bz8BH|&h;9-v6t7Eal)&vzQ>dZZ;V%{ljPtI8M zJRz{rJu~u(Z-{aFg?nx-jpK&-l=SqbdU~g(1yUDd%K54C0UFrzw%Oz* zpYH6~m=8gggOC$Ec;C>#z=OnlO75*Zh(EGPe$m~o55Y9URw5i_E#vtL{W@X}Npk8} zu8@f;SaKA)c)%6J?Y43G+BKv6@cU?YFz6QvROG%a?`9)8T zIqigEq5Jlhaja{5c(&=4lvd$B$6aCWP%Zpu`4~*(!MgJsdwTBvoKOes2igtXJ9jGL z+gPl-+Y2v9{nqhs-zseCc%rI4e$#s%alAEEx^*ex>XMg>2LsdbpJQWr&~>%@a_>bw zTDzngDQF5Nn~%`pGjF2$1kFy&{D1z&!bTAun8lJ+W64QLzwiN&j;*XX3cRl;CbUt` z+Ws6^04)fKiZXvvyt29)95G5t>oTdr7W@vq>eHtWmbwi43yX<~$=x8pul%^C^Cz#r zC!$5=Mi=w-Pc1+N6&Aj57l#a6HT@`}^FpJ*F2n%dfO^egx8Qhq-Vgg*HD2inN) zTZ^#_>CRX~0D4l^FN0RC+80tZVnnRSy)|DQ`qS=iI;T5IR{=|_xVcN zZvT`k@&H3RI??y1uxv=Jug*D;mqNSWghxVN_YQo8`Boz}2bK?)L%zEBA@=0W+_xO^#U%RX;?(iw4I!rW3fF1+YKxu z1cB<&W8(Pn@o~tEr#jFhJyLM}jcP0}C2{LJV<#ukuIS86ODCr_g-iQ)KcgSdE&Vy%{$G(excfrN&2yc=Eb~}YvIw=P^4mB!(5MO6&(YDUK%2(z zLP8Uq8GHBa*}d~T&>i9dX%)t(pw(S8JlCZ@BtOfDi@Obg3g^)XlcnXH7YVJmm)E?b z7z(MEbW?wS|BoLa+cyzL&;_-$6lpTvy(1+irgNo*Gl-T~yKEFx9<4R(jn>VZe{d}? zL!?KZxYzlfm6KC0dOyV!Fc^X5KDe0NvTNr~^ht2__Vje#J%b9IbzLCh9pn{gXwYed zg*EN-*}bG6;JlWu43V^nJfH?Vbb}sY)dlE-69j1kW)$@l4Gt=h-z8#0AJv=OMUxFj3r%ng*vf?693f1oP=@7w+!cU*lLijW} zs310}2ql{+C@26~0#f&Rsc}t@kHdtg0FmMA*Ut$Luujm^KY#u_VslnP#tnh6w^T^~ z_U(uDMj-^nvub*sj40d$f+f6Ea1KX+N#mjB1qMSNpm9#KT@LpdBRPzKT}|KQ-Q2eD zxL_yfOya_RAu^P7Qmg^S&w{k!o1Z=V08|N@_k|0fN;1JGbhtx@{FpNAbkzR8Cgwh4 zb{4M;U5s^ZJ7&*)FL>R#fYnn9+(kKv5o%;~)Q8+_>Z zY;Rh(qrf|O%g`qX4tA~(wV!N#dgw%J|2kzDpYE+3vqQe3f`^!xHVL(~@scvQ0kkGj zbSJp#iU7xS(aiOjV>xSMSoiYeWb1uo31H#`cu(E%FWk|fV4)Z0ktN<-@85PC^rE$r zh|xokA{7Rf1Y-@*Yt(6pc? zKjr>?`;PPRv54c2)&)JVS8A(Z<5X2OjdcM7OJFU;)z^1xSXED`2{vG00~{gVuryJ= zta*X~0&RF00krzR5eeOZ`=Yw~7$@iRV1YL~H4B>>O$71#*nyq{4RK49G*oC!p>S;> zWiBo(R4D~1B&in{6~Tfe0Q(_YHuxfDn~iCZ?_l+Yi6B2=K*0~2R}Y1t>GcH&#@Dj- z$XH=4LCbQAuXF=`z2$OMSjk|9kWn8nfg=))q~p*zp@PN5Nk#WOM-vcDfXyHMTXJg` z%_d>BB;=O&!9~!jB;llMel79^9K954@4mg>UqOBp9W9roCV7GmXEi9@_6I#!1Z;3q zg>+Fpbjoe$mlQFF|7sDwq~95JE?;gc_t*=Y$*=k=X%FBYp*g9Q*j=Z|go?M9 zf_Vdu8hmAM@et&yu#-1`qq#zE8g~oEbM&pk^#)O1{`N(E$eGmdz1c%V#AI)0CnzjD z+{acH{#GLuWURLIo}f*^24W63ylZNDY9ZrMRMZa=zM}UKT!!=LDnc!|N%vIL*VjW} zv-;F%d|d&CNytq&6zG_s7YK7+f%bQ!Z0kI1;$E~vSXfy0c*OT_-gj^q8yo9rZ_mxk zL+&CWAvqIu4{06R{a-?tvOFy4C4Kq&_3+r(e)QUd74o$+;15zzc*5H>t#HoF!lDEK z3F`7tm0ETpojEv09)6}^BS?vG({_QprEPtJ+ zef$Il4A48+*o#IbM1340d=a?N4KmEBc0M}7&Ypne^XXF*q>HXDnB2ZpRhe1a3keFM zO2eUG@8EDLNu4vKcF+nEAnF2KNVSZCqU~o83^4b=5zHO>q3bSlpzwo*5x57$Qq|7E zvb{9Xf;s^;$Iyb5K=GxH(A@2cXN9 zm!HS*Kv*5B+3ua?K|k3zLnfe*#J!a9_-D&@90$9Qi0$v~Rql&#nZQBD!a=g(eAg*^ zBv=6z&)7J5@}6j5H3CXt$*te@Pw(Diq70|KcN8A}9ViCssq^VRy;G@GQq)tZoy5Cw z8d48d+7@VI!;AmlnF=M|Fij1Or9Xd$!$1z;4yqnLfA_W__6M@|$jc@SYJjjxxe{0x zn)PoY%P7LX1XXoHErvb?PD5i~Z+h=RbBh^$0Zn7qD+$SY20l8%q47^)OcWScT5SKToWb z4y?U~-fb8%fNs^jMg){|4aq0Jr=>+k)Me77Ax0c!x9ZM*ubr;)^<=AZD6MCwi(0fE zp6Go=Kd$KWzafSLzOqOX`P0M0yBwYx)qMTBUzPe9rP;lESB(Wmnnr*AWEOYQ7<1ae ze%58h>iqdf0f!%*=-rsuRFwbUgDAu4o;gNiKjOZG_y|33XTDQwp%Df_~}5|wY#$B{1pHVK(_ zG=fC`nfc*U*Qg=F8}*e1JZy1M<`9QywIo-pk)(06hJa!PVjVIy40diVwDtlu26Sk_rC)~w`(88l7#LV zenx@WCoZlG1=hpfx6*b!d-Rdk^v`m6s08zbW75I@J*^;Sff7^4Yzp3_ld7?-en5c~ zn$bZH5fBg{RXcwBdSdx6h~Iw)7Vt%r?FyQ&{++xi8-St19i*O##c<~pNc81-446hp z7A6{g?B(@eRJ|PWakzIsWxm1eLr(;y+@XMTD=Sc$-)4>dYWP9MhrD)lK~M5O zq__OrI4#|gM9NV9HkM(0gDE++RR7{d-*WE%Nc{xqX#O|Pz=n+uYu7B~CRpf*Nbl(B z1&5=qaATMRJz|UglHR^P3AiY(bX?MW`SK-BF2x=ZGPN7&vG0F^# zcc>R^!7$Ux%FCzamio%RM)zM(P!OQy#ECS}16-_!fow&; zH^9eXS6ncHVI80uE(!qWnkXDCw5!m-OiR0zq9H0O3Pymbk0I5D=yPMJB6sc(TCqTJ zG=8HqGvcrx2{2Sk$wPa3giZsDkdUkVWM9K3*(!2UGckt0$E1f2$&G8;W!akGAb`4O1yAS$;8QJc4+w)Ud3vMbs)rh*K& z;xGwQZ}iVA3{xlCIGBk5J&<9!44W0SIL!O`R9Hi3o+W8}@gSG=ZE9v_1FFdM^k1M1 z_t2-pLN-s39*{5?=3$$u8MR?&V|)Dg@h@&@rlzK*H!$)5tOFa5M>(oyI69~?J4iE~ zp<}_r2rnGMgZ0=|Wa|eH3NUmPC<*iLG37|Z9*=7zt6v3`6}x(Ro{lrmpVaMZ#GiD9e-pnT1dawwlVq&TLK0!twg`D=^_TE^272 z5Iuyu`QD5E-{%c%-jmYwL=^m)t2L08U^tGC-{Ip0fgZ*hLW_-`;R^>1M-j9g2$nP!HS3-wG%DQ&tE~y7MTHTpnaXyTz=|=&Y{1x+M6|0(ONee z*%9-+I1PFsQ9#>pyF4$=C@DeEIV6Uw#j7R0d83}v`X33+v*#Tz>PF%GANU~4c6sKz zXWfda2~aHt9Q5_s3PQ88vke3yAfvH+c@eXsAB9AX6N1yq?um%Lz;+o;+VNd)e`SSK z$Pz;iYCBAgfeB#p6b+0vlR3#ke2@#+cR*T$`;g|vc(rgnX{}dY?zPX4=6eOz)YXM3 zCP6q9A%EuUd)8^m1jAVHnbc@fQc*p=B81^P2nNKGJI)gW`#qIqQ&nw%Gn3sD&28A| zQrGAtFe&%~xe$ATDGd{EJ=U{ff}2A?I0y`Bg%piQ)u6cJ1=?GGL9st!F1grANJViY z4y6g&;t|gPc;rD&P*vnETo}c~Nlw+8REa?IQaa~iQS;ch2!gDbn#wH^%R)^J(38V_#IF;AiU5Sc{ic>Y_ z8RgKtBV-F+9v%%>1v4!z-HFt{1CabL;3R_{VI5I^TUJ&!H`W5i;D7H0fXWi2ia9%& z)3L9K>M80eFBFrYCabOh$a-Xcr^?cKc{SM zX<3A-g;_idXa94wCN6TsL{C6$fUJC2eYGi&_sEerAW&Z30O@#49-$MCx{uyb+no`c z2hi}~q*voYx&LxL!E9V)BwlDsRf&eb=K#GV#^9PJ?0P;aafXl`{u8N&_`y_|zkhvD zI3=sy_Li$BrSIDtJT%PO-R+l(R=bQs1YZXGIAJF`E3VL<)G`6|lbWE4SVdLB z&lKL7#0*D&WIl-z7qoi}A2QHiy>sX2gGgJXdjbW#^@T#+pU4vaRxEQ|T--bz4OOC_ zPvo~n#k{O6h#$&$YE0ALxN!p|NMHXohQ&&LgDalJp$E>bL#wDjTSasukQYpAIeFKg zXt(z=B3q}d?d>ZY6o1WGIXi!n2vC(=65yr&3+H9vUE$Hr4^m75e1+KAmK=xySll0j zCzmf@zIz6P@Pxx#Uw_};esyI9XvF!!1N?kYc-}-*>>XzHBUO@NUB-_GRbf0p$>Y^6 zQA%jShGOsoJ=Ck!#T*^X7;SQ%)u4Tr@m!rSgFxC($G*x~FzueQ^y@u&Yj1b(^ z(n81Lm8iX<{iDm>s-#Y`ob-zZdU}s6X`n^aj~N}PIJNkGb;&yV>R}}-{y@uV{x;Ql zho=V4jKe7w*Ot!{#Ws}QpNT{=Mp+B1o0*tcg^;v-U%}~u1&xrnEmUUa$M4mIuF>xI zB96aY<&hFY=cpGV=GDZsYTx{E%g7nKw)Eu56W}&Tj{s6A`;HGD44S(u_;LAFQu$S) z`O(>9Kw(7p*`sh@QT^VI$~ic|(n?Y;+0YiZtSM^#2UjoA!*~cXP+s1%9HONiUJ4&! zYRlyz_wley_7*~ZJ$yI{?nLckC&CQrN?+2)kFB3SOXu922s%J;CBg;};Onc$PnWub zdmoR_?#l*4HU(nLnIAr=6XZ^6C)C z<6h@W(H=4z2&S?Qj#+zU%J+)XNu|b&p(Yc@V@?Lv7sI}aUv{P^zj)36@Sxu8H|?6g zgCU9dt* ziG6k=SzjSnVdphI8Kua{BZLg;n5FSL386D*pvT`pNYD%Dp|>$Gpr)abSV_E&g8{Yb z^=mei#=YwdgTL9@D&D1}G?}bdNwRscIY_4_oT&E<4L#&j0nT-KlYLn7$m|iV%a%;tZe~gfy{!b*t2DWsPa-9q)_JyB*QYZcCyEK}CFISx9DwGBd(e6V zdXIkf%4)414inWTmV@UWH>1)*Ii zyJluj0|J;&lSP-7Zo?%Hk3!Z4UO z={=@vps`R>FsTH8gtdcW8@U16q}UGZ8>%c4zLC%u6XNIgwu!Q8?EA>bDw&e2?Z48e zXsi)T#rf71=ohlGp68+_bQ2T3uw;Zr0Z1H(5e^CXRNp6uhVYy=+6C9(Epjsf>=u4m z)cz|Lrf#%(VhI`Z6$h!03raRxI{8+EkC9Wq%OX^hm7}~n(Cm1Zk)fihYH4Z;waP^z zw$?D9Z}BuY_tS>4F<59oY0thyLj`>^W+o<`D_0hwu0w9bTLaLIz|IE+1zq+|Wr+BH ziM7cQUS5@WHDpqlh!z}+z_c`$9~EMR1wDWd+1a+Xwn%mWDDz6BGN_bbPcYHiqf-T7 zi(Q2S`2G9FswyK?Vw_B2VOl<@fj|u4HVRP`(p+3z#0{2%)6+$;)8NToy<+_LN`Q%p z6qPC~P$bMEV?On6K0K*3yxNW^J^)^5DnSAT7QtMcO1)$-VT1FvEp&94q)l$$mf{SF zxY}{tvk_PZ;~&7e=3 zQk0C0(<38xu#0V&g4nBZjV!JL$V0qD7vq!7=+hm6Y7kML3HDM%MA#~UtE|Fc*(5S2 zyM`sj%L-sPgmgheO%0@I{NmOuq2~dq86_q~1Gu9b zI5xq(`deFNlhg^Q5B*+6Iv8cZF)`a+7{BOeoux?HB@1S&60Dfe^l@s2Fpn)qE;IJQ`jLw=9M>Y10dEEr zSsd(2oA=S(gmj=SW z2noOK)k%hMPwDt0+2kPF6txf1II$%FQwWm1$~8uL^G{rq(FIxv+PB%dTXSvYb=ZmM zhgpQdHzKu5dU~wihpR_zAd@NUF!8?zM}l+}YB8&mG*>A-SQLa!F zFftbv8{1$gP=EH)qb9uIMhC!MM5Gg9$|H}x6y#CUutF^PmEXp@G*~_Hh5?)}=wbH$ zW&D_kQ1~N>#5$wp&(9qSRpiynm)^Po)jg*VdQNH*W{B7EHlPne*!cg%Z%uU4MWc~= z2}XTd7M8i6Kjo6t?+Dxg=ajhoOcjKA)JCA7#WP8b3y(!0tjRCvZOy*>G<%BEb51|n zMfB|vm~U~hc#ICpHHMGMHeVMU*zc8iB?3@8;5ZkhG@8*jpmUBF&m@YGwu+7e~vp z$xeUASCQ|JRd|Y95j~9fwY+>({2^2<^mk3Cc4?sBa1}53`G80c3=F(=W*rn3xpClw zdWz?~yb&StVZ3OpLqG`|gC0|Au9+OTfZ=7oN`a93`;yf6>HNq7^zV)Gtew>5MP2#2v`2a9pTy-4}_i-Gw}sYrfLgM8H7=FOUprmaW<~LQ4A0mR*Fl3 zhdod9ilGJ1Fs{gwe(<;>G zdgAYYv_+WJ6JAO{>^paoK>fKxVL1twXGVt!TC^Oj4A`t_6?tOF7I$jw{2_8-!jmE( zR}2Cy3}$I*C!`g)sDDC_0fVL9FB&}yYX=jPzc4hjxj9MKwI#44pS!F`NpLgw_A;>& z=DP99kHd!vRvd^+cy$NFvAqUMpxmI25HW#{k*Sl^;Z;EIh2V@CzJ<56MAf6?*HBXf z+(A!A=lC-9M3ti=1eHS~a!tEM?&%l(5Sia||5^ET6vzD? zJ1-KSH0gJ9@6qjl!2YOl&(8JrRd#uWIk+5)=PKvcXMcYt;TwoWADl(p$xx7?_?9Jx z&Jl?P^lPf_Yb^xD?$akUr(dZY^OC-J=~7x|<{#fn_M$qN+xh%?XNeYGv5}?q-E2&n z8Xn*QYaQyC26x-9U+>$@mL0_~ zAco*S@tu!x>WB}j^n1b;nU!eR zI=3Wb#8wO#B+HhPp00Dx0|x`zDjcB+@85$aPA;zjPC}St<3wj)@#@t>^Ksj#KselR z69ZE^ip3y>CaFId`m)dEhI4TrumwIInH3&1&!8p~48Adv?`0)e$nXM$Hhq=!YlwgJxWXI-i||01k%a{?5pOuX-3H&D94)|Rh=xxD^1ALKwIB(Pkcj*` z^!8dBDvtl~B$4k*>+;hu*&x06j;YbbRrF&3Wp8CVn3<)*_<+83nh^ZZtks4Z1%WXel(xklNRWskaYDeTxT713`kq2PE%fE!v z6nJfq^f!t#0+xCBFn@tTY$+(4QrPO%iDl2r$|N?Sv0&NHo<7~+jeP4cU-2hRUs-yh zCw;T!r}_=sm-U9l58-pmi4MubsjY=@b4QWhuPF>}Ri;avF?dOmv>2~ANuy*MV%MSP3Msarr)f)8k z$;-|19>BKEwGrQ2dTx!4nqSAD&!@~+RMiBSY5#eM3fx&KDdO1``XVC(?(vD~o!i=6 zlFhdB6*a@3HXh%hEC(^YAZ{h42b|qf6B7$n>8?3PatljJN{Wjs59+u#%znG?d*$A? z_F=g{*W^cyJ{epPzHH==;ak!D{A|hgq{bRtDEhi_bY5-S%m|b4VtdW-bc<$AMDX9j zLf_IY`J-{^z&KRv9$%4hulF!>lmVoF+_i0NY3XT?>bd3gR#)eoql-&WL2aklG9yDn zwNU}x8gbjwUqPu2(^@F9Pe(S(I=d#}lKkShCs1Qj5x<^o+ihtn6Id``1WYo>uug6@ z%--@vkLfyXVs^S)%IQa+JUdfFp-xU}zm6>B#?@;4mCs{HE3hKA!OPZnf6MMT^!@pjDkYwOktW)IfR+1mQ# zu%w@zQvZI>o;?#ttKi2vTY9>kUJt(C@Lo+{!L`@1>G=EQx~t`e$m!k+su$h6-vI$N z=W&^ZZH!_rFzPst@VubOzEv*F?Gosq@%H!B@u=Jx)+z-6Y)B;lNSkxRg7 z(H=tWL71U+#9ARybYs%?J>dh~`w55r+3O1u`^>F!=)bc@NJxA@km1;&1D7fXTVE+} z`uf;0r5BC1^%YfR^%36s@Conn%HomY@aMYSk!*Ie?WJ4HSQQn4CzpRmxtFV#xo|j3 z?Kq(~eenVTK%~6cyT35hlw2pgbFW`pQq&#EH8e8P_ULju`E%NcHA}`G$#vF_ zNWAMb@6Innd|~u-XnhkC^WLVJCk^{Kw>I+7A*abYeH;?ZWR7i3HSb;Wi+dVRFon~R zKxzHte!U}1Q0|N~QyeG;C7ir--^qqM^{#Z#ob1B}-sQSQ#FpU^Y}xO2Z>_m*ETWS2Lu6jpL$4K0KYUFy5AdsIsIVnY5mXcqkQ1M?J8cw#L07)uN?1$LwQde0kHa z**i}`S>f0!Z#v?nG$dWRaP~so;;V2EBS)@ni$D3O-xaG|`!tHup~mJT9^S2*%I2|} zWNlJywZtyGCm--s0n9f$XqkqM#tVd2{GV;app@t;6VLNrU6EUXQ9L|k7dg7UoP*%J z?)J)ySF^MAa@O^|X!;7;^wkwr=}9?PM_F*{GZ~HbZ%(J)form2_S26jU7iILtb9=MECj z)Kqoz03G|M5G--IHd~yW zR3f{rrj(OhbkIir9}9Ub<=o4ZZg>S^dfm5CW7P@oq*^AcM36~!AwJ$k(J^CP+{%7C zr{v}35nSXZqIg>p*l4~%BlK--psq!8<~(cB?!VXsvE%jh~j?dWjtPQy}xZIFDgYLDZ@BhNizzHwu$vGPq0 z2aqIh{pivyWW|{09b6bY=jX>X(EHFSR(CWm|gDs5Zu zwF&8SVNW^3`H-;D`GY=H*SF|vuR3oCTF2@3n}?V)XH0`;>vcXpa(jYJ%bWMq%Er41 zk2;@3H@5a_gleIG?)s`pYRAqRzvDy7>A1C$5CFI-?Z29(ZEcOXK5EgakMHzcelN(B zdM^!=t?jdUeVnX{VNa*&Z%hACo#%tI)_=9IY#;8SiwOzl*^Qfj|Mx;d<{ukUj%lY` z6x&VPI6}%caMP`<4Y#aYsDrg9KOgYtKa&4TH17_~Hi{C zFI2s+%eJ1qL377*WkH#5?r$(wph2HC>p3=N!B3T6YloLN_&Z_Sl=OIk2i(&6V=?7_ zy;D1@9wqAUpM&yqj&2lawtoNg75gL9$hr}R%+ zE&tC!l~<#hej+vD{iux)^*UMJgcF#hKm~@hw)F(qDc&)a?p@b$Y7t3RrFY%(6ApqA zYagvCd-}9?&rOc`BX8p}GI%Z6NH<3OdsR6~C%dQnr)RsCr&QuY2M?CT9M?KSeSQ5T zjX(aEoLZaaO>Z$Tm=PDKw=Nk5^Udqm?$~ou&1Gz^@CeD&s41bML3=DnLpoczo67#; zvxFJvG4yidLS!fR{m<98`IR(A`V_@4^g5e|E+dMx$%xNa+mM^YoISVl;_<-1|HvqX zgi^+NNlV*;%CJtUaZJQEe=i6xZ(4oP6c#k~QDN=z_W?X*o1I(>eD%-=_3iEL7Rh@y zY?v3f@~-x(b>_4s5OV%^DM)#lf>fE+t5YAHo|;jyLu~|Fr96QP!6g1^wR1lI`H0^s zs$j%LcCIsJbfcEVmfA*4SiiinbXbLvn960832euD*E#MTCktxvoBecfrZvPc=x6Y+ z{YsPgw3|1PG29VsozoBjI2qt_90blv0x}+!lo0K`Hu*Uv`*3TwUOlwha9s2Vx2&gn z>vLC;xF^5I(%jtb%ljbfE8pF8WQN33hfkgAl@s){X9DEd}O2^+@}9(0S=1CJZ5;Xw!#|RUuYbu)Avkvya10bFM z3e12)>q>d}$&<_1t)r#CY&ubZQO#0E(M_QVi z%45eOWky#wE5bxM7~&f-%Hn(nz&SEAA#0lV@YPUNKYl#d(cst9sP0|pgrWxhefu_r zom2(D1{WoT$}VmA20BD2m!W@kv50+R@a1qNfLs86t3BVhFNr26*=$ni13;ZtEmi3z z4rx4!MznIqX-8>DOyV_01qhn8S^FMV&Gomul&N8XJf(B-1m(YK5pKFg<-K`kPcxr=*#O}32b76$mw~U*9rI4k2bfo)bZ$= z8D9L&O{e3*{~!-oU8_dy-n!NA1@0(Ti`Mk%BHsF51l8VjsTKCWYXmy*S%%Nd)q+D% zYWVPmulwUKT)_6{%CoQ>NBlA;Jez8nv9W>3%jR#5ja#J!MkX{TSl0xA4tR{~Vay*1 z2?8}USXk3nv;l%tRs0(B-uWc4f_YhJG-#hi6ljIgE!vg|AE`!1MD+?h6SwlBW;iP2 zTK*09o2rD-TGcbShIvKz?ja-6*37z!z%3S7@Dy1SCp*jGw51^K1+tZDnLLO!p9CBdBT50Iuq6_e}m)Hk#N%7 zvn;#?@lPuq_tL4M&RPaUC-WUqL44^JvT0Q&#>B;WX9`YY2T7Q_mRs$Q5TMvb1gUse zI`#lp5x57_eZlEK(>nFW3w0>7HgDdoU3pLLN0FT--@g6z>+?iV^W<;tR*+oYINCu; z@baDA+-9n%5W6{c+_>wNj#<{rBF~z_Fn>#(!B?v`%j}67rk$0P^sw6bb+%{ErKTqCZvOu3e)3ma zHxKmYDQIYEftyiW9u;3XQIPaF6CDhW@fpj)bSj5<>tDQlSr9<=-g%~ea^>B-3&M;A zfU0=zu<&B#H*ydfK=hP?l6r!?avnNd!OR8`g}{Pf+UlsNz#fF*lP6B3i76#y@|ec_ zxRr>2y73&*P$Q1e;-v`8a#NfKdec@;41F+T)L`}e)5Z2IR8Bkb4g9X!HaCMu8f4Y2 zTGjCGo$tYywQbPY;(casoo>O^1t~xk?szsLEKGe=K#5+Dj^m;HVH+|kcpOqIqq!x_ z^#sfaml7=EnhK%4!H2qgg5>Xue?NJr=dK>K7C%{7hX6}orgUXmPQg}YmU!ScqB@dk z=uW;L_TLx#{EU6tOXrFpx=TuKfA0=JbDC_TvV#mY9Snz?{t))v5$AI z@?W_TJ01Ypdh5?KUd=fvUgBbyDpk_o{hMO#hAe-*Y*#8L^ycTao=-=6U6uSjw%6$gnJ0;QVKnJ(nd3U{@_6{JrI`1)*QKO zTe>a1+Z!3?*Q(q;iukwC_6BQ-i}bZkJ$qgXCrv{;@SlV>TO}tR_(8r7Y$YjUwoXqbNsHTzuh)@$+luTr3gJ{#n^V zUT&LH&o`&ihy_jy?9b`f2C~!MY3j-r7)dT&VI%Nu5 zn>*|4BT>^I_jqhq#zAvCI5NU@ZpObl`ID9F8jP? z4qYzlBGhpt&DA*hE}V6EVJvmh(Vk;_jFmP1QAjzo3Rj^ZdWi;{m?L884qulefg4uw z;ltx)+wQh>fnDUi7rj`vjSak}ix-J8smEn6G*W!>+XkbU(k;|qx_=QW{<(NrzE5A! z+qBS{6Ihf9vYiy0@YaY}C3maI4zXa@Mrt!@DiOR8NJc z5`mm|k_pkh-vqze*g7Jqy>UJ`ws0(2}kT zQ9EACfqi@5+60fKRwQZGWH)G4Rd1oW53?u*TW%6GuV!Wx9SQrinHIesWba+|E7Qk_1vzU$WZldZq(W@UYKJ~F8y25YI$S$ zANj0aq5tq$h z4*Iir@qkig_1UvwWyHV6c9`x5{4(7yn!Gn|k%H>O;$jXhT4o3XNx!j$xyX$djFp@` zWy%ltmR;H;{`NUO+CXH0w|=tOXpa-I$BOL0k@5Nr89cb!sny*1vnDUNZo+19eImBE zOh4)}Gsy7jtLvD_V@nNpy;G2zJHg6T%y{SvUSmW2H7hrg4(ZR~^2ZcKa0*E0BC3Yc(f*V?PU zzsuHxkuEkH(OANry2kkoU!F9csSN)MbQtt+{|RR1<}c_K+Q&sso$l-q77-Cpes8eK z&88y{>LuGoSSKIqn&gwG@cd*BO3J+LpE=u*giX5k@4x1%eg^sm@m^G6CqImv2)DjW zfikPcd(}x-SJyh%>m{Le3W8`B%@mmW5XqiK`cd4=2nDxLTL$b^_W z>#Yn}DAhGkTqGK1KK|*xp6&zg(?BuNmTuXS0IJb?g8f0^v);Y!?w2pqPl&&E%rJ^O zRyS1t36*W>7H7+bJvR{yB1iTsTEQi@Y1+u^WhN6tFn-i-dDFZn@c8kBvJc0PA6FX^ zaqgVO^5qow!(v7jJ7#R3KB{XUbraVrH~mZ}iX?(R>Ror_+_KZ<5m06Lh8lB*p&bE9 zRv33GG;~qiN>rU~!$3|#jOq&uMfTl^e)HxH+iCne5Sg59U-thBce?EtHM@FnrSj%< zi<0xRr1mXgOtASMbXPU_R0(jc~B2$ZV=ah)?87C zv91tCpA$q=jy-ZqaN-p4dKL^nLBJB>)C~l1f}rY0{}UG%G1G zPoD&|oyo*Gb1JjTYqU2^3!~$uKWh5=q;XfOxqEBXyjz(%`i2ujXegHHcJezZpr{9` z%D&O6yxXPSxNHBsdAWaL35UNa#g2f$j033EP+$1S3Tx{Vp*vU{)N0_q%(+(PPIJ;{n@q6MeI^Tg@OrD(&1gWxlOA74MVBu>@m^^ZJSmE3x+zj(^OJ zTHd%$Wn;8Sb@f#34b_hy(_wOIub|L46{3UMIPUAfz#)4&;?kD>3nXB;g!PlQCop&A| zlOo^35*!q()O=mdb2k#4aCVS;oV`QhQNqZ?XWKmT}&H?cd;MAEik8adU7_4=7 z*ICiX1|X&)bjZVLf^H!xmRJ};Cf@Vwz9OkHlA@}wZ}8FeU%jzWs}k#dNa#&J2eQ7s z&#D|v$d{L>Xz%PAzj;uSM$8kxZ*SD*mMr6URP{LDtdw(a?bU4@y&RN;DgwofZ`91Ut%CALmm=LL8kl!)odl^g|&7A}0VuOR|GOwU}eJj zg(CwC@}A!F(r$XVad{&pHjN@wD5Y_+JrVV=I%AcUFJH^jj~)T)ZE3kno7*mo{q=C+ zJI!NvF7KN58=pEjOu*V~+C-0@Wvz!2mRJUq1VM&F-KN4!#;uei@yEqQ!t=$A2g4A* zCBE%^v=>J^7$|%`hE>n6iTG9|DS>H~8Mp3xs0D13(!yUlQNXfbNZ#}IL9zTtBb7gfXY)gbWA7Ig z@1(T*7-`2!BR%J;gXK-*EM_~s&OD?vzsB>O7uVQz%gC^>&X6na z_3CG5YJ4>6(epEypdr{28~uOhdcconR0x9MQ9yto)vSR#Vw48wE!3 z@~0!~MBm1AD8~#$r*b{8FGL!zrS!A1+L3O7la?t1L<8-!Ri2w}A;|YAfA);n$OmZ16d)6Yuq}FW9K>nR(c5+S;n(6S8yYhXfIzH!Uv@E?VFMO(Dqiy$D7Ru_;uIT@2+i^{$_v0OF#u)S8Hoc8~5Bq zLke&RaMNS`3ji_MjDH;B1Jwi7VdgnOd{10YltIjCf$Oy@73<}*Z8JQsjh`~*wtMF^ zkAHHqiCsWEOHP7jc)X$PAUvs-U|yggm@b!C#xq#Gb}eVQ$t@SC zP}H)oOG{G`OLkG$Z*y?SkNCU8-Gd|sc!aAKlT}rvBbf(yg|E6ls~hFmp$vCIemQK2 z*1D!Xvd;=MU_IYGdxm?OELk#}foN_29(`EbChx^~BR?mOvq+C0jf4Mc?;W!ROb|Oz z$4-_#Lmhj5sv@NMdF~ByM7wr9Yx?@{%Z~_AP`L~)X;JR|8xl{!HNy9Wc{GW~^o*<{ z(_0Nf0+G3LaCL%lV%aFsqZC>~iz$DDe!8=plyLE$KfpbQ+C1Qp?ds}6E_GCU zqSMaL`&Oqa<5H|JR9Y)M`5h_=7^w&KNX&S#1VBM-{O#FLP4gnKIE5~WUXDGF?Z-LI z@s8?bW4WBMzSO__%JPV78(gQONG3t{M-LGTD*?SphwH|jq ztVvmb=s+O!!W`7aj2d^$bUCAeqKJhDcE-QtVEpa*x)B=`x>I%+tp1VH;@JAi@lbWS z`nusOHbra7%<%}Jg~7Pku)eWlsm!Nuf!VoQg$uvk@x3hgR6mRb70aZm_D=FqRHc7T zbsL70AuMbb`cFMQivGBjTVE{7Em73X8p(wmT=ZI}%KD27G2WjZnC>>*yb*{C7m~>O#)2DF16!w|t*?L3{cWG2lR|7b1*yhOGJdu9A zbGaeFQVAlr4Xq!a7kou{s;;iA-rR8G3lwT!i=O?s;qmJRLM;;$&^qBGz4{*lVisYl zi`Ue~HR}(AOU5>FNiNEavdv>>rfXQSnh@#$@emI5Ah=jhjb8pEZXUk|)pn(Nv3M*k2eH?u_Ru5*Pkw z&B@zAXwxRTxxLt2Xaq3GBn*}_Rbo`h_mQjL6WYmQ%1BSYUipdoJ-qm6xei0DtO{QH z6gJ3Y2vRk?mNSbCOug_e+bhfZis{4%6O}g0-JtXYQ34|B3R^Y$8tOiqbd10VzT^TG zc_NSK+kn~}Gc>{;(qUpMejNh3ii%Y*Ud)WL_P0hEeveNL(sbj-{z;LDG3#9=ln%{r zo@IP_SLlQE`ZE`CP$5DfDhEO!b0XFt0f1h@(GgT+C(xq>jFT)P*3oY}79L!G;GKMDv6Dx8_}eb~ z0~%KqeD7n|i@v7Elv!JABh*bg#!d>jvJ;C(=Gmwbg*dLJ1lE?Hfcxb?o@`6+=yN1j zBvxv|ibjBxb(fz&^Dy>onUC{fbJcI1J#+DxknpLcxVcI7l#xnoRoG*`g^>6u^szA9 z%yTTzRvKNMobl#Io?N$hljT9R1GRj#=NY$$eXyqK<2i{a@OoYtEDg*eXX$3;332iV zzOKJ_V5vb|+RKk1fA1T_l8%T>iV#}$Nbt)Qo^DI0v{?3N<5Q}4gXxlY2GvhKl%PD& z8$za0ZKeD>%hZZyU5$MQi;EmIYg-YDys4TS^JItSXwx5O=3f3H(y;h<6oZfmey4Mw zHDku?*t(UNgTcG^6eLfY@jIBmquuPI!H>R*mm2APtG^1f3g|#QIi`-5_X-gH;W zDJJ_w>>wox*ElJS^uxu+EgL0<_`^d{>brlqDkRkeYP*>#MIoG`w_(*=V;7HjTA?E z{MeO^Bbt5mx;FeXOVAHSiZUPL-+x_+^@apn=Xmb601ETJ`=q?wr^ib(Z|RUVkFmwb z7X2I~d}Llyzl>YA&VxBGh~MV^k)$ss`&E~)gX>oB)URLFNTJrA6g{vo#=LRF)!!48 z<;Q#e%<%NTsibe5StKEK@^;(3(Gtom!G&LpN6X21ib^-T!3JEWIPSvHY&iCmh}76M zKVG~zThV+%ZJzjU-4NM*s}%k`Y@vDRIrM%tF3Who-*K5p%ul?dKLUF?0t+klwOXjo ze8d)$l9CFtmoOMDae3AF)0nGc()PaiqkuI1VZZS5u9$xn`~IQn53fdJ7c2K`Jko$f z#mFI^pM#^4u5DYNP*YnAQqi`VPE%8pNsTe5ruo7fBk$o<=qO8j zq&m;HX6c=#uR!`zA(41ds-5{G$0rl1Ei_l8HS<1oo%!azNgqf;+q0{@kr58KsX7)v zvriitu<+2_xv`}&ZX)6n_?Av0phCoHBkkkzGtfa zCmu-TDQrXr2?#*AHKTpSw2m)ZF{tlh)bcm~`Nu9RaC_QITJyYW`P&3BDF%&KP}qb8s9S%ax@T@mJM~wnQ0+M$95nqVwCYJpW+-(dixcbr|KU7?1Vfner zU4dg}e~V~wUnDQ?VC+HRL>-9VVBe>aqXLx0MI@!9Mv4kEV!U+AvRAJnOLt^F6BHluJ}oYV2am;d|qH%a@)F$c`q zc{%-K`YS?^LhR!{ZThbkz-U;L@s15FC^|1y=|6gLLfh`@jQY~h=JsWO)=LMz^AMjt zJzCGhUfn^$_a8llhOTa8NrTg!y9$3liJkO6-<{Q=Q>t0Hu0Q|q`)Blk|D}ytprGpD z=%`CFPhI0dLl#js;|M6!pO5UNur6>me2d^;fU%Y?l}>sOEYyUVFB+|$;D1*WWL$1 zU(<@OrA7!kZek9k69h5~G`jcabFN*U?9FC*dwu6--YRqv&_f<-AkXK72@p*w1-bx7kDYq3~haxeOj*F_us#=X>7tUwPXJNQj(Ib z4d~n+M7t@@8 zEq&c0`{!AXFHC9e`8YS8csOQ?V$t7_E|4c&kB!}EZ-37*W9M)803Vs)qOQd9CTc`d zIkY1l*{0H6QG1|Vp?B0m-HG^OTG&IoY3P@Uk&29D$lW}h^};5e3#NrRI6FHdS6CS9 zcee%+Ose^DPnc=O_Z*-l1VyLQIlfQ{;ewG7I#m+)3~)kSj*kcSUYl%2X?pgo`SRuX z#=XQxjT|X(A2C~pXX)FF@X*QgX9br(ngXwr70umMN5lkk3K;basE-LMdbyxv23a`y zD1jlmuC9^_yP(axicyuoBDNweuEZ_Be0-AGb~0TMgm9^@Na>i1_=O@%aFUTDg+b=c z0mc{*5C-)?{%qFwH}koWc|=65VLmqV&kry}N=5Mq>A zcHcG?j2CTHQFSg6z>sQhnH}P)2v&tGvhHb{gnau7)eR5pUB7<&#>fKBYVC+A(*7(U zliO8CZaEZ&2~rVE;^&K0*DMeb6eTv(!bB99WVaKOlGT(o$gzm>h50Y^FXN6QiG%(% z?d3z;R7#R<+qNBUF&(+5tpAi7WuN?Qrl=%czrJ?-P}oMYT#%9cmSC+X?84I0*x@O9 z#fplbgjd!SretLupiV`0L8t+o9B(|Yn#>X0L`pffS8^@&xXq!GXs|7k&yeipaO7gy z2Tao(49I*=pEk9!${H~IH^eL?vbYcf!FXpO`{|=VQGop+pu>w<jhvyL(FXOw=zrAtHCOAI&TNO@H6O6DcggT{%Ai0jh~b$q2S8sZb1kl>qF4dX*E z6k_yMpr>f0G(t;;#Mbf}`M_~;_2i{-(e^$>Mpqv)>tTh_D2OPWpYt#I+VtJX@Z_ZF zrv#0`N$V@w*tg1?m?VYTKBuIH?+N<>ZY!FeU)bAD_t?1O;;uIiYW+ACPi^(291S^4)-`6&A#B?4_h6WMwQpu5smHDyjiaBo7ed zaVs+usPDI=;3-T8BCg#ZOi%9EQoZ^>Rm>pg^?i5Fk|13WIF((%QbRY6ES{TXvh*OA z@}FFu4DMTIWQ4g~i`P0agxAV^3uu}Rr-f3N5^|)=M8V{zjUQWDaO3Y|S|-F@n=n;1 znpXNs@HbWIC5dIYAzF8qye$CvC;x!96e(e=7M+A(#0vtX zq8-Dhgf_q=1Du=ZBuC033edum_t$SC>xdL+|)Oir1!&AKyVs0Z<8I%84KPAg*+a zgXZixa}M0?qIx8%1kYWv89T-+`)Wlqy#_UM$Mx*=^s?qX@G|Y0nx*Rpbs@elne*Lp zg!e*`lly8O6fPN|K#mS&1(4ZRnfHobsIUbg2wW~C61p~RuX=D4fdvd6tRynWo*FBj z#_a>MheV0%1N4#QJ(>i6LN(K0G8C_Li%F!;;-P<0M^IIu+T~Fxs%8nTmdkwK`}Oc# zOOw87FO8?qP!gyDIW@6D!XO>|TWj37P1I@mn$th@*RNg`NbqWY zVF>D^n45`L>bD}6aZ{WrmQ#j%5@P??*AHbmDuP>CD5a=h*?0ONyil*VeP=Ef*|v~= z!~QyHp?Zei=XFd?$E2=jGc+{PEPiw>4mGztRBXRJ-6FhLI^+vRwcnaUm1~Pc7LS#T zFo6yAD`trmRhA%*VmNTFO^zpNdJ1?YH~nopus3GID^~(rkM|zWaQBS*nq9tWtp&EJ zd@UyId;7z4sz;p(kh;3RmX{0I?3&%b`u zTAveBkW`--Gn=(S(d1a8$sKDISWPAs>!CTgN}Nuo`Xd2d8NuP@+7_0m^Z5xp>$N1uwh z(w8JFsDep*Mhkj!p%?mxw@tp~T;01Z?5^z&-b(r-D~n`l!C)7D>f3`W9aVJETk!K? zmv(sZ!iSOi?l01}ufgUP)%_)2pw_Li{k+QJWMeQuN$7*Gl)GSxz&5SKXgSyTK2i@)hB zZlxIU!$DYE&YaQI*0xx`KG4TBARquN>9yk3%uHW##d|v>o%1eGIn?#iKKpQy^_?L; zd3MtzCa=+rKe$S%?`?;}1=Y^xs?wdK-KE_=EscK)lLL=LQLrv*%#kSf@y9Q%PkSG; zdp&BJsLPEVm&IN$3-9{SOCjHG8t*jp%o(!^-LsOd7ngg9qZpYuG`qajDUMvB(gXDZ z0zoJx_wfFs6%5x&HWrXHz%LgrNkYspo^nu&3oco1SN z1*N*cAd=xEw)@h6o&oxIX2uHjj`Bw1$y;T~Ub=(~_1>WZ;CB5vMuhcIQZVz0S&(;a z!x(IukdSlai}S{$p7GOO4-@Yh6)CSFw{O7gh)2Vg^>X^Sb71v?dELE_-&7iM4j#wa z`cwO=lWT0;R%hFnE@-;lDtGz#5j)G_iEVlVi6Ly>WOQ zmW!oxq0M_VEl@6yDt@2l@M&4rQ-g~@?{U_)qzxY#`T%%2DKQaGBe`hg1nTboaC-T8 zON|4byd}G7{jv`T;UnRPg74&IDPi(Fmr1o57 z+29t9es{P1BC2&iLOiCgB4?I;c+LJtH~Lt5PmAOs9-%o5W@ShZ;$C|9qwB<+*ZC|n zm8ug;Q+p(m@c<=N)!y7z#esDNwzrHjm(^^)K&I9|D;vLjx%!}fl$;z3&EQ<-it_BM zXe8Sv4NS~GT-0?;fAWS=0cS{UE#2aNzgLug-A%G+{s0-F}&IQT( z6a)+`PC?c2a2Rf%R;kIKY8QDNLmpq(x#Z;f5_Q*%%QK#S_lY;W?%8v@L|8X4`cS9J ziHgCkN>gQP>!bz+96#PS*mcBauXToZ+$3>S?wu)9x2PIb;|~>CPnm3 z5C&B=Q;ZJTT|jt}PhRPpHzwVDK;e-uyw-f(E^Sry)AsK4HH306G0Eoq{w*l!|6&u4 z{fO470kRJ9gGj3t3P4!?>Fr*v2^6f1=sK~Ah>=Dfln8rDqZ_> z8qOcucx9HD{)Uw+pR~5BSx>aMQclhmiQ}%~UkOiT9so#lwexROgX_}Zqr}VuJzX4l z0)IVo9)p+Z7L}9~BqoyVGsI_SU15;?vTbOK5Ccz|$EHkfGwZ`nDFVyJCHDA{&Nw5~b=D;RqYy*+Lb z;EFBNzmb!4?W0|5*!raj<8ayNQktMy4>1Zkb*jdBCTNLCd_~&kWhednURItxd-POq zpA!9vAwR@S*AaYkmjzW-_4mTqqWkytMKJ!-zVQZEuTFpWX~P;p`RKkr>C6Q^gg2oN zh+{zf$8RpO19qSUIkcprw#^;Jo|=bCO#l=>eadyByQIX&w0AC-Q#rG``LKevz;4=Z z?FeJ#+V;-srFy>ygrzJt&{IVrL|Mof#W0Go$jA%J$D{S7!f`vM2h{rhaWq8y%IM{I zcMr`?!F-8_-_@Kui)3AGEiIpdA;?cX>L;yN*zeho&J~sc6a(QJ%`H6ZZ&3X7nKQzk zD>?SIrSC^;wk@3&Q8uvr#S24|YKmMOX#DpS)zoz`%%lY&C<+QatH*+RkP;hv1P}9) zjN}O_Dw~n0a5d1h*r<)50>JZ15YD)aR}{cdue1&*-+A9bFcdu5Yf4R;4jV4iF?#7D~J zXr25Ld4UxP{*ip${B-%D18L}5+T0u~Zwy-QhZS^s6-pj;_iJ3Fr;yUWiviyf@;{_Z-^dTXzg zFoG4Sjd39j@j*m7Qzj^BMPCj`D#K}EEHnlr;_kWr+I;i<&|I6$y)BWJQ=+1xXdQk_ zRR#8-vj&Qo3wa&%NhDZOq4e5+@9wdRX3Y_z9VRM{;6U33(USb0wMYUZHA+MKui`oIMxVtsq66{ zKSs*Q3EHF9s$9}z9d>>`i-|sY8%@<7pEo^Lr0^c3meS%NmFp%7Olw0Y;;^#iwmt~Ffr)*oN zy9b62W9>4`@LBDTW}}~}=$Nk;#_Q)tz{eo+(QvxmX%E$Puc6ncFN3ka|1amm`tp8P z6;%5w;AnRX=<8=dY_E8`)@lAeTiRxh!kz)=F;O87VVcXBn5wAbhBJErMP4-T2`)0& zRi?p9IYQD++2$4RcMIT7M8;8!_RG<cyfEcwb>lQ-9u2^UNzzE^a z2g~37!BHslsTMFvd;?fwa~g7T@nMcg^Q06gL|MFPThPds7($qCEm{f9@;Cn6WwMk{^R zxsVX_O}622DrXp55gDm$;Yw?XPUU&+T!A-&Db@aZ^W{oke4fywvH8(0{18np@;oUq zUb*SSIkIBi8lW~eYL{%)>#7!uJ^S0pI1_2dP9b#AZd&z1 z9dyVr2)7U4ZSnYilN<`44k?t={1sgPFnzSu?`8WDL;HG?`53@uY;*f+S#`|kO&Bwkt7Nu zWtR3Iw(lH=6ElX-72EskOh~y*kJH`iqeq6{qR647puFDyx>5X#fVh_*5BY&lM`ghf zpWx8Y;Y~8V*3;*>4W3We7W$xQ)uN+|u9Rmp1`?6=0JFreq#!ShRll>V%H(ZVj7PkZ z$e{8gD=)f(H8a0{V}zh$mOn=(%hN^!ru&LsG#wcGKojUrF~kT`K)a#)Y}I5%p3{HqqR$r^GcCq7c4p`Rb1^zObF&i(nQFIw ze!6Lp(rf9$|3^NW6LH(ypvk1*&tIN1D#>h;`rS>Y%2$P&7`!~llW4c<08ubuff~wG zqn~CW=Bm8W#eMhwI3v{=VPYO@l?gSduAWLZ6`4|TD;WvEo&)OOK$O_|j10P+yLNrS zMyf5Ky(i8|>NhjS>K?6YD|u}#S64vkLN`}t8LxaiBP?N>Sz&8j%8W=Q%r3FRrOFJ7F+>>_bo6)%)5L%0wb~k@~W#`uX6#^r7aYJjQk&9*FKGP zMUh2hiKjXe;EZe6aHVCD$yb<99mlZ>>9Nee724TFm(R}C&6KQ{4p{d&9;h<%2lWXo z(3n1*U=BLTf?8^FAZ3JUDX-wh4ysWTcg-6si6!HOy>MUdEBt=1M=y^pwX?TBdhQOY ztk(YK*F6U1hSY!E&xC;Ql`S4x&ngLoa#hTJI$-8e-oY^ zAvYqR*dB_8YoDtMs-8?OV$N2rVp7rk_^06W984(Q$)@zpI=-;Bv%Mks)G0)^#rA15 zozw;kV@b6bub)5>3^N3}p`{i2V!>~n74*TCGr=HRH!H2JtR@c~xI=Rt1uJzd+TK$H z;As)s#3{t1pbtd)Xm5Xk>1vJ{e4y&Vw2Ay}R#S#sPtJGHWMU?be9uO717vm*MObxK z?QFiw2mp5CDIh(-B7r6$YS8;FA8$aMN+cW!-Xz}Y=T7(FB3kf&OebOo^lo>?>Hf#v z&GC>?k#+SdFkd>(_T`BJMslu*#CAIvix=oH!kgu4v*8O08XtaIy_T!KchBtJD=BiwYmVfZ<=;-t8M@p#HfF(!rljWzj$?7RkddUprQ2)+GD)zd;dRDc_Cdy-s%ito_xr@BFfZ;%5%t ziu7z1AylMYxAwrJeG%Wuh|vrmGkWwAcdif~H<~Fv(dEmRDZ*gp>QYh|ji*poU9G-c zllcwwwF{=7y_S{+mI*Ium1aLU($>M@)`mP`TMtr3PoEx&sNBF2T`G!{NoGkoF0bYy zX1%gLo4Ei+Ct~_9)tNfAghXLxb{TvFeT!Q;A@u|=8NP$UoW{lN7)h!8b}%DT)1iW) z8kw1y45F3P*R_VRW`|z;am#W*pcago zwR=4)O46^dKu(8Th`!dsmhsO|NWmtLiF%$%W{ZAK2sxi=k<8Qh_u4h(+gM_8apR20 z9}50e?QCppZ08Beiw{ze&!U0+gm2^aKoB1sB;{w&apcUPNhH1991|mLxQM#BqmSrZ z?MCsNsuahDdS0h=_YJ=JPw-&tb=LQw$!sUY1=PT&PtTtmzUp*XL;+OJ>*VtB`EvB8T=hi#B8_-Z4;7kh zCUsYI(Uw&){`g9#jt-juS4Z~J*w&ZSheZ9moPS8a0oH|j{hJ`_;!N)MBLqe&SxZW&e zex*VxbLRX)8rCrhVcC`~h4yL8SD;1uX=TgGflVbE(a*6iP++?4R@>(@t_%9rFI~QZ zG41!hIXF4>d@WyJw2JnF$+a`Db&l4cX6W#^__nP4a7jb0Sn!QYkMr_snS{=Z*HBZ# zU^vsICZ7xJXM|u9Jq0jj1d>UC&DO28s&M^4J!@a9d$nyxzvLCId;%U{0{!;_s^mJ( zk6w=0le>?UV#%ldm&ypX?uy?;DgO{{mdL)fSho%b>|*O1$W2MvojaPbWE&W6$R@O$ zlJPrQdJiS8f&VJDn^GzB+Zf*c=#dE%6<94^gyvlWNeoq}Y;0<(?e1+9hnG4Hl`sR) zcxwK~kAIx45m>;sAvTU-7pBkk_hwoi9lYbeS^%q&`h|}lw@OUif0bnT+C-J;Ter?H zjQyH*y7s6hHIBW#z1#hNWZjOu*pzSbOrmt**3T!jHtyK*i!pk1YdSjBfGL7W7s#sx z)$ypEt~1XI#+2mbRDCE*W|mau~ZDg z8da?ck$x2*InbjMV{oL3v()5w$4I@ zkm#~*rkdgR7+jGldxfzrb{dqQs5qjYh7_N&)m~& zA??4L!B&moG0ful_xuxS1I^|fJx zBTPtsV3t(*i+8`U#IzHo~oY)cxcPqctz6nYWJFmZ%y{OimDX zbUjWK!DDJ_+vm@eKe8XxB$c%M9Hn=k#?3DNL8~=yL-juilS})hJ~+BR&9}d%LGbl! z;u#l|v?o>f|AMZ%^~a zAoA;x5@W?QG$@x^e>T6ati{(F z;p8D9C})*0=f_xa5ik7>bbNk(i?i1#ld=|Od?qr|Br?G)(NEoe`iTJn?^AhAlPB-k zwS8AFA)8}xW?IvxDVBc@AjDt2V>qUxf`vI%>~CqpAnPy%jeHn5b7Z(6~%dS z`SP{&^k%J;f;CTodpW^a2VkI!B6CX(KK^^V`JbywpPH0EC#US;3g)3PyW#bpE`b@R zkLd~@OwIlhfj}WOD=WfxgiE&UXYudBgHj(jNBDeFUa>f|$c}THvjuh?Zn#CX!^)8d zMhQ<#$$O%Y<7ihRiYCevg$D*W5~2A3+1)?BZL3F)||J06^WM zRNK56A5V3AN{-y8%M0bYWXA+dYI0ffwsel4U~K2+k{g+sBSwwl$@8-;TytsdsgL#b zyGcs-GpIpWo-s8>m^aQeAvWteLQCSFF#W(wyluz;Aabx%tRs{b+7WN4Bdx5ODWP;f zvc-23yi0Z^I}1;OK+JjcC^JO9HfIl)k+EFAK8jCE?Tf8oNsXIBBu|SBU{(OR0Cv-w zKYsKT2gb-I9hmzqF0Nlej+K=aEeDS%(`ALLD?2TjWl6Myfg<5;2 z`9n8vZlH7*+rPb+@+e}x&`V(&|HKSjeG#TYFca~5bo9K9nt-4{rmkOwPl!cttudf9 zML%h3`iu~J+&6k0$pOOER1Y1>BQwfZT{K110sF<2E|qg1>1wJo{#Np0)$+CI3CW)^ zP@JHuic_4rA7qAB0RQtkY8pes!hb$()k#>9nZSdj38gY10|i*0ZU_?>JqeY0kje?c z3Wo0l z4rt5ZQfm72NqLbYMIwc9A%UZKRhyeI7a0CLvAm4$-8%0)_|k?_wOHbZaR~3*k!kG%kF(ZB*`FY zRe4!|?1y_`ABWX*B<=$KEou=TwY%fp(bw+JmZ8#`rBL|@a4+BL3{VesWi+z*s8r^HMx zOO~BiAt!(+8SXgZdnKf`XU-IFryS(At9F?`YSbvSEi6#WDFve$0egXeOivH#3LdcO z#kdHElPPKn3ehe32L(SupN9hA#k9z5;G^bmMqTwe+uX*+=B-CNn`hh`$7Pz#{AkYV zWLD#m+{aI!D#gs6%p2oqK4V3g3}?GZr0v$N7gGmt!-^1$3FvV$X{hjv;ci9)ddD= z<0mO6-EONr3tzz3bM5!a?kW`~L`bC0zR!9+onrc17{Cao^@_tWWqbLQ&kn?ZObj{o zcGcmVO5Z95xvZ2|?2I-OGQM|8cjLX|tSz1Wde@EQqT-6IQd>8Fo}E>++Otloccf2A z!}c$JqZemnrD}dWWuiIj+~4m%i^Ow?CMRR(`Y2Ji*_d6(=;z=g+O+FnrEGA{?xN3K zXbxo8@Yr4ze9y~JKJYfzKVDS(OrKAy4GokzTtuQd-QZemBN2sh-2`Ox3LI0TyHWA& zutxp3l`KRs>@EulE8}n5KczTH`}x|QG8-0??GyD24@7G=$UFO&QwC>SZIQ`>1tic9 z_rH55TK<#md|5BsQ=>klmHH&oCDqRrW76?T@zL&k_GktyY$qYQ<@oW_`qA%akHD3baPcDk_26GW&{GFTus(2w zO_TH^g3w#Paklcv$e3T7zHCe9wCA85@zxXVoo-Z1RaMGaJJ75x@26gp9S|c|YiNC1 zhv9O)b%YNs>`zSYC6td{Yd4PHZE5xQlKKDm`MuaQKWlCN#w zm^yLdXL9}{>k<6{+zB6HWV^7@TD#yDJnJ4HsWFS6rxW+_SajC>?6fJ0~f`fLs?Kp_^<_g8oQj{3U# z>_0+Nxtmxu^}^CvK{Y;7!`_{-F-YJ(Ha1e`q^76;f(8RDV9Gd8u1pZ4Ye|j*{(F8i zp~+u4Hdd{Aif>0Z%9CTG&H6~ts1Gi)7cbG4{p%g6Lr8%Q?3(K8K#12c5#rP-+Z{V9 zpFQ*XOIR{+z*W?jO#S7l&|$f_x}pL?zBX1e**w+u_?k@}f(}sDCne?LMZY4uQ|mi) zFLwU;!I?r+OwmIK*{A>}>F}Baf;pWVz|LycG>7j>qCDxr=!S`-03Td2{xm{P?h&Tq zRZ0KDE|@T30v$Z__&_E;H8v7nz1_)aeTq%5eSKG8WcRs41;lN|9jz+O&BT+d9*G<@ zENt!Df(rOOzWDHchFR*H934+gddh?fS)o=5)m_h+#{sDJf7pA|upHYr>^BOTD?@|Q zT!v5-p-ECCm6MC+?8mF>Zy*Z7wZyXF2Iu~JFU+5>Crn7ezd6i5gA|tH4 zEM;T)+Rk1)Fxo^u;_}IUS~F^OxdCDYJsZvy5P6Fyu5bTGZQyRtp3`~+kIo*q7CfZt zwa1xZM=a_evU=})mF%YJ_gLO%n)ZK&G*1HGuL{{Icdehz(!6z$h!vd6r}haQ6IJ+9 z%z@rcpPx>@7*Q6O!n8kV2&#&u5fcA2g?l`mKH;&k4&mx|T|oOb zVp-Iv#s+A&>%YC!JE0)U?eunJSO7we!J)F0Knitjgf% zp?j<*+~Piu$`S3jQ@O`_6|3t)%J9#bA;D07FV4dzc5?ZX9EM&)knHmc4$St#ID+KP zo#KCK-OqGz=y79j0gMn@Ys3zb3keiMig$gsvarZ*YrL0uNJVZF$11{D#e9i`lXhlI zC`LuI$2#+pU`TM56B*a&p+n^_E;AjAE%=LMm%8`w4c^HMbeq9lc!Fi45GlYa^d37Q zl9`?}XG%957*8wTt!Up&CW)P<3o+?vr34IK_|>WS5YDudw{8hKkxOLGr1@R)MB-kxpeEjOwF?z5_p@|SRXg_Ji z;OvG2AWqjYZ*K3(uYx85giI{%x)Wve)^8{}~&b!gHiU{h|EH&|o9G@VM;d}RL?=>18Q!K!$ zrlz??MN{2=LYG;+VgE80gu%1)Z4vcQWWcsZ?#Q`|bNaq5ltXnKpVu~r4sPO6|x)GK(ZPHw~->T1n=(Ov7(qwCUtR+S*Bo&bb||dNf}k11(IN1l+!#ykUHO1Z$1vvIrs?MhWW!(gNP!D zje8A27h<_S?NlGOZp_iO0>yJ&bxxsenBU4gYwlE6veQ)PSv z(ZRWMjrH{^p$iy4L0<|$sI)X{fgj_!VLZ`61OtHn>>t{Psc}<;!M?29bXdMGU)sct zjj&BRKj$27KY(mZKnB9Wq6*K_!F#F6Eo&6(x{x-*67(%(G+0A71`0<EWs^st zdt@e{vJAKbAqW5;q6+)*$rEPR8{ssJ>b=fG$tz<0U7kH@3q)d)$TYB5NeO<378~G~ z;Za~l@FiSrq@->xzY5FI*0zuNRL)&P4TRn_kF}$wGGd+K4!|%(Y2+etaf3{@G&BEs z;ue5|SJ1b~xnTDc#v+3tIsIel?tKh0&8}TNvON`*lz^k)puuSf+v%#Ix!cf-^(Jjj znTH`bfq+T0rz68bLD8Ju0U0qeDnkjLU{6zf+_*G`4k9p;P4K(dwCHe1N>=IO{ObS~ zK!wP6%o8NKb_J^=jfO&i@_mCh3EbOPuNeOK?aLPk#?C}&+>vND?UfHU_r%PGL>Y!T z%bPuT`ZRo$fl5lu3y-XBgIx(Kk5NRW3_0L@dwa8Qqu=fxCf4s5_l~rAs>bal*QaR+ z+%vT6xQ@&oBBw4B&TOF5(65K>uNunoV}*+w?;JdWa~SqEp@r~Q(`}=avPow{4Hb`7 z9RyHmBDbE?$bXtVaYkmIHfEl|<#u6$X)?dRM6buwiqv4Vy?etoHJJ<^8X8(X^ndhY zADuZfNfK2W(Yi$>vaqtM9?DLk*^3fo{pQUDo>7snrp}lFd_y1JPD=~dei7mI4H`idK6Q1;)e5fk6j7XrmW^67mI2)&s$Aw)FhW&T zW4|>y8>wczZ{xIVFQ(H{tr10JDo2_RVML;>Fz!*tV-^txxQ>5g6=n}4CSjd_Ye$zn zYpOhWR>`lM>1S)m82@}aJ8xd%60DKF^{P$l&Z_^{rP+rnou%kRvw7eh>lMC2D#@z8cHB$4xa zZQd-?ikB@~BG{zNeE_Uc4_Yr$7%<@d*RQ*0-|SL}DDnKfi)zu&QqFYNZGee{6pBE| zzMyiH;^g5)I{R;Dj*SK$Y?&C*cGO{ZY?}wCF)xZ-t(d44OfdDL@1{TKRet_^(qzPG zrVP;PW9@kyM~_2~UuNTt!HhZpX^rxTJxU`qsow9Gl_^@coB^IjSj{B%_l+F#3HDR{ zXLiQeaJ?bEsW^kAmDM8HF8-9^-PnqS~@`WsmJgxuxcMYs`&bK`a2Vxz2Cf}z|HbFh7P-(HHHqF1=DUVUd8&Zn#q7IveOU~Flo z!n{G%k?$r9oGYf)1^Y+R_a#eaySUi(4*+B$TY3F@LXJ;d4}4Qe?UZM%G1Jx8_Z7xF zFzE{r*+f&bOL>O5jp6CA2h$Tv=UrHU_BS$cop?c!nWj=<=-$!Vvtv?I4b}x2Zr&}Y zu`<=cY1S+^4-dO*)7Edn?c0u;q%=M0^P3(*ZK+tnlH-si&canVc#nL>;iA^o4;9tn zWrO!zKxl`CN&T*yt{j^};h!yk46p~_J!n- zGzFSFFNYo%dD!Xa3)c4u^)y&^^;M?+&w@YAMYG|h3(N=$Y~ErD?&mph{8NYs6K%Rz zy?v4PX1H?{qa4+=^k}7R8HQN{;|LS;dzw@kIIF*^Gg8<&iZntx_wlj_-H0V2|H_h; z%3LQ`A7Z+AP3`vPIUM5a9IZpL-XPy6+nTem-?jPWu71ZXD%7o6I(^lLE<7}67^CB0 znbB=cDEOgW8_uF4?^auS8$*TClS?0s7_%?o`#PJ0Zs$|7JfGNam_Xi7y3Fa#BgMZd zStsSLNarai%F?dmzNpO0V2ne8{SiaY6Lr?pPR**ynNfJ6$4!kBNlD}A+Q5HLuvZE? ztngnhz)N)2rN0O6nV=Q3l5`F+kp28xtD9wIZJ4dR=CR^?h4VBBS10wkkxHa~42F5X2xujcy@WG&hhKl1$&A7Dr)waq>UMl5rHeNeVm(M4-+lS z;sl)m@@^U?Sff)WEL<4A;-=m6ZkcwFTmEdm&)s_uQ_7HB@h%+{ zJ@<}zVRUhcx~V5^K7jGkk0YNQd2o@v{bD8t(o#5~w4}VP$;rUC?o6qPh3tguW4;f1 zUAb)h#EH!pk7-m%#M+E~)aSNoU6z{nq?!Sro4=g87x=Eu$ie^2J%!I#ypGtGCta?Y z5vY#M$-W!|TT$qQ!QOwqWaY1y*fD18?dagjo<6K%&>o)wLW}nQOz{Xjrj~mBx{Oo5 z{~Q*U6J!_FHrp8uu0y9z9f|9yJG;HMNrMy=XdLmI zo_o3)Fo%J|oma*8PoiQ63L0tvI@8`C*U8+OyOD^-xX3LhzciP&rGH90$#|uivb8T%(yFPzg{HcRNliGC$C8go>zis_4W-&f9;F6uG@g)= z(kXIC*u#GmC>bnc%r7J*t(a<8)-WsV;VX#^PJv9O-jG3_Q8U-(sw8fx11m3b#KpsnM1EjCNPeOJX~4XF6g*I-$`hyh)hsHwtl!TZ?x?7 zwUtye8j<7J2jssg&MsnFCS@lb4~~_tNO4`d^qMz#(QetjTP$xTifjJyJTXECUtE6j z*N-1}CO_+kx|KR0SG=T`M7K=}Y1Vn(cR$rV_p+G2tT#m-dzyx6O<^r0+N)P%yr(Aj zbo}@(Z4fZ))1qN|kJL`z_*iKsH0QC5Q&dFp#{9K>FzeM0 z!C(9g#rV=CtsKz!OvU+(2y7dU5vH^AI#<`gW1f31FO3pJJ{1*M5AN8}*=U(SyaACI z(x1*Rp`dB4?74df17!cIl zE=ctks}0h1n|b~j*cDT2%bhRs<#6cc5V6o!tEK%yBn2U0J|)HvG<`R1O2rVvOhx5G ztikH%@CqS!f2^#$<(5Ka1)4#)4Sq8+G$@D;4Ca<34?TjRCDSaXg1gjku4NL;4#9wv zvfxKUL&B5Kz;OR+xQm0?4N;w?yiW}a}F#=+aSPR+VHFwI#AG`0yPYEcNS z6{j{&gdpd_>+~y7V#OUbofi+YKj~_F8qx|MgR3^<$P1xAYRDK6Z>3>oy zUfg0t%Co0WMZbS{>DpB-h)USl$Oy&vrIU;z!Yso26j=qV$i&1FDkmg$xG#bX4BX8M zq*s@F^upkXNiU|#(jEs7A^7GZ;o$x_TwI5W_Tt57p9YPk07J3pa$_sKi&q5&UHf_q zopWX7y{jX3?A*y&MF9CyT}?uYa5n$_hD|HqGoIKF_i^A2Fs!q490VT~wRfs|x1&#` zTwn#TcZft3Nc^*tOyK|#gqzDLDTD%&)#9a49i&yOjxSn1XHWJ^H((dQ1jcE3dU@pq zA4GV6ZSe{mzD-E97ykeN5qpj)7Z()Fz+|{S@95IA>#9v469Y#%JKEdB29)UB ziE-{JDdBteJax}V^ZNXlLXrHM`^W5?nwqAX7(1NvdTsid3aNAY0Uf9)H9vlPS3?Yf z+psV0Ge*P<7A*n>CKgbGu32NF-v=6kKoWWI0JgEWjy2p4$8h~!v5GQI&!@_=5^S`t z9zU*PZ0y9b`(XK~4wH^UW!d}k-7Y$20A(cu?&4D6p~%U6;`7;r1XrA3mM_;jRzfF` z0T6)yZ{HeYB+~jALJ*gWxM97k>(y5P=oV%MjnPvq6YM`cJlaYf;GDI21d7>%dGftN zC?F9d;(enRWtj+{xm)h$Wh9BiES=Y+0M&N5T0vaq+~(|Eyto3kPq;k&R_uf5tiRKe zz<1v3^DIXnzWu6Y%MeL3(FpYweB`(XgA0mb1LI5^m2mUS6)_tdyps`75-=Dtu27fV z#J6gM;z<__h{Ss;Gn-Up!Y{exf}VqWer|YJF$6Y{utk^#M!Wa&Wo|irc>+0yt-AV7 zqvy;jg>YQc_^H6Ci!O{M++ z+t(!Yj{M^@MZ&v@_3P0zLSpfb!y><)(&m&OL_6?owgz>1z8mFJ%kSUDm*%bjIs(84 zlww5WeruW;_y7r5;^*+V{T&u6HkSWt(}YX>r|aIdj!j6sw*F7ojK4qqKS#^`|9>sq zd|v-=z9&zf_&o=YCV+ML)S0I&Fxu?X*-S7CT&>h>Q`z~|NG~kOg>#Wzy4jH%bvAUbd=tD!T0OK#uel&0(6FwQCVAe6`K=}85 z@;h%aZj=$QcUm*9U)BZgXO@`v=Z=NWzk4qw(SUba?|*)T4ud@hJD(7KO?VAXp(3dK zW4~wthGM$e7XP_0F(Wq)!8@&$+g%f^PmwXmuk-)+7qFh21$Xk!S7*b;3$SLJqE;$- z1!7RgtD=-NFlkmdpH~*SAwLHF_c!+T{vR_M|DUvx;=Z_6!Wb*zfrF>^*1r?ddl0!4 z8MSE0MuX45!x;Aa{d_jRxTd%kG74K*t{ z=ANY?LqCyR(NrE>=O|XcAaM4BAcIc^>mEBv6lPrK=_2n!ZVQ3>755T6J}Uenu9P>QP}Sla_+_rK}n*} z&uTbBdGZ(&1Xmx^q68Ib;l+!Qu~m`79g^ zLdcy$Lz&L<18FYCyACohJcmc5<_yZcd|8-q8p$|3Ug6=fv`Xj%6^<0Ay(P>XL_6@V z$RoR<>v&VhHI3iyP#@p9vqWcfVh0yx;7CU~QnP^r#|HdugKr{T&Y9f&U=IV_gM;%i zFDXznjhRmUzjkeHq9Z)V&wJ#@z~mY?>@2{spzJ2k;A;WCF!N?gd84z7OZ%@k9-|gq zUQC^d2BQYSp4YSt#=tOXX5lsWQaS}>W~bj9wc!%S_K9>i7(9Dxb(V)gX8M z*H0J(hi2b|_t&;Pg6&9Rjt;mGpgJW{jtj%OMvT9I_pZXv``ZieKmwo`3~gRSd||5F zUhA<41Z4&dnmBA)?`h=3oRVf{VtP|_2D0P#S}%VXZ=B`b;0Czkw#(rn&N5Hm-#cg( zZzz{>g66&R7HSrUCKHSdRU{+ym771qI7BhBu}k9^%&%NS{k3;X~Pv$CRX| zmKMXnYTsrZJXCo9z7Ad}-nSogm=nIkm6KBeWEYjBbEenloqbKH-af?%qXQcB(s;~e z8#Y0&%u9pTfPDl(z=}tTpU0KOw>no1k9Zgg;6-ti0W8Ak7Yr}<^4Ujx?QDob*Y=vU zd?J^m^_9!N^Qg}}Z4X!-%IxkoTY>rYr1pW9!eOTi$`o z?%KQ8uESY%I_|93*A9wuShHpgE#fQ7?pe513olk~UFry}{wU;zxCZ+KQ0 z(6m8fSX?d)O5t?o5dE_*ws0Dqf7WnF^CFsT=&`(Oe585=lOd|xt&pR%)jwU9wZ*PA zX4_jOQ~x#$W3}uM3P%zfiH2sTrGHxVGWO(eji`!0+~4+yVW9G)$ka)DXOUiRZQ?oS z>#4T1{xdyi<5q5wK%rNxRSCkw7PewL|Ge_#96WR)#2P*JN!!d_oo5afO`%il0qLmkZz7`tUgy~-xB$+_|%cm~5=Wij& z_cbyxc?WG>r*TXMTHA^!<1(N3`{z>t{N=oZO{Ib*3Mv2w*cn4`p!5q`V`T zm9mp@&cR1R`EhEUOMA-;0zHhRQ^s0rR;_CJ#N=<3hzomNbneh*fa7&pP#(5&8 z@c7ADjvz%NZ+ndAjJI8f*ejkf;uRd)9l%keY2qLKrqMY1XK#V z<9m7TG2bg%t&R6a!A2J@A5j#^2WX7HGAm*Nd)&A5#1w3JaEDeXS@F<(Z9ZDSY>(|-5uTVItIj$=d8g$v)BW>*4 zV$)Y_8aye$)wvO_D^@f=o<0iLMpHurNgJCoGb>BkaQ)3!ujEVCELn1O*}Z`{mSM3P zXeK2s-GI^({2-=Z8+`5MCGmb-IHO)OGcx>moOxsMsG)<3Dj#=HkbhzaG~Wro(<&<~ zk;*|kEnjOGj>2!Efx%Bsms`E}fn{LK{~TML`)1##K6(8*lMsMu51c;^5BdTmfDF(H z5ZAm^x@a-1Ou{5Acm}OWty4Z#8vO;AX9N_soOswSp{T+~0BQ~B;bpgc;fUp?@Pq6Q`q^JFmf0X@2s#t2E8s{(<1{R!8o^=*7LDl4HwtL~v!!tZ^a*M~s_>$I z2A%UstcaoH1;Av2@Wj|y>6n=$dH`-|U#KZzVUpdu3sZtPFze@&ESWG7*yjU-fEc1+ zS~C>Rf#{^(r%R}JzihEn4MM6b1k{S@1Q94RFaUA{0>{pE>gqXJUjL zJjOY5{yBgQN%55US^+Ku6I|W48IGH1-(*Rgt|HcAD`u zL-Te)DjP6-9;9)hCGVZo@4?kn7O} zEZlrgOxay;>yqv5S#F@2MY_PBd30f@NtVG@RQNht$~WzG-K101^VE_r{OV_-ux2AX z2rVrwh-hQT1`Q3pNw``34r6n=BAa(S-7T7S;;Luo*tfhYDi)u(;`!*wg{~04YHQzm zvt8{P`M=_)2ix;c-++&azM`ZbpZL;lIWK_6C z!FBEB_2}0oZaYU+wDLsk&S9`u&X~l0?A5F22OUd*8U`Y@3oIDCa5FBM%fjtEeta<@ z=kr&?zKU6(W8W4Dw)5D|Z<7oJvqzL3mS^q9HK2BpOdvBL3_U^~PpxAV@Yl%v430>oBC)0cCbpf%j2$aXo%3&m zxE`}_U&W_S>3F3;fC_pPs_dUmjzb^2Y#M-d07KRXU(fC9HEHw%5wbTj=;=)N7}u9f#$(`F5Z>F@B!j| zXFMxSm>fD#XTka(A7=OtZpV@Dn9m16dWV$|UEgu#zE6-|p9zX(x-n_5kn|{yKasL( z_45m_7`DOyst_p#lH$IUD|l-=?j>q4H@3+1^P;&haG1B&LfKXwz_}3b_v;mcX{L;- z2620xDUBMtq=R;Hu2Y6hSYII)VacKt#3ZZ=uy=Hc7&qVMnJ!}$doPcgI%oFmjRYy^ z&CwwT%*MiJP00Ij9~U)oATiY$ww8qzn@#0`~dEz%cwpZPi}N zdEL-=A729!-S&Ku2lEQpMQ(o)ED{KXaj$TO{hFT&--&qqLDW!fXVf5J9#&Yr_SKd5 zLKcILK3t$^yy1QbBWG@m25rOwm0jCP)m#~xRfDO=ji$$hyuONtx}Q!z$+=f=1kx`2 z1gBBBwRo_310$|EH2Zqg!~5f-FCaX4c5bf4UCxX8U%v{L6>?PL#&af^bFds3o?2vz zzDx##=}RM*wjTK}7vR82j6VoZ%6?7K@3N_rXt6=m6aU%cxuJEchkWf=k9Tck$Q0OB z2DppxFCfQx}qvV$Qc?NOgPd2|#)2EpuVrLH9&n*D@ z&g5442hE&6KXl6k^G_tfFg>|y(L0ri6SvW>Cw(0JX|s!pRIh*JgY2=5B;Z5P)H{`y zwgp|5K$+>&iUo^+ydltA5%2SXlGIF+Kt(c#l6rP^RP(<60|#<@3aO;7GVuNUGt^IS zt}KIu{Dxy8xbJIP&ud;^3wO^y{ii8X>NUwB1U#PQDbH!C;PTDQB$gej7it}6XXn?2 zI`TtiIL+JlU^yk0prt~FmG|)sF}+K-ZY75edX|_SS?QS{GLq9_Bg8uZg&@O{cI==< z^>_LTx74+Ul2!2QioB=h$YI3q?R@y_!MJkab{@OgZPlnT zC*O$c|FgR6r0&Di;PeMIJG=GuCvK6)vGmA9dKpM7>Zk@mY^Ap)ZEkT-LJ8sK(XiHr z+Ej!;<*yJTY}qm{^o~z$>WlTWpOF#g*lp?1ANM!^L_4IQ?uKOvq~@-BUP+-t$8N@SjNBfAw2`)U zsC#Qm^9$8`)so3!A zmw#ojZ2g$2#>O{@d$c;*smI}s-I(V1ksQ39HW}(y=mJLX0oFth`#!m{T3-lb0>afG z6tt9y42)#XWc5%yb0~Q&x>Q^(FEgw~yiNjb?ISdlgV6x+!IuzCOdGPmkHvhrN)5%Z=UKH@~N-=<9l z83_`sp&t*%HHc^Vlc2s%+p`&-63K$Ix%q8QoXuaJo)t_BQM%#2B6>qtC}O&pd6;D) zY(q4c%~@4{6q?pgkzBTPsV^I|<`8OcW$JcXVitpugoP#b1qsB+Q@vsC)Txq@wcYMc z<~qwaVI@5wegzJk7fQ=Qj+1^q@xT2dCxb<(sH7Ag=QM1;g0ytPjegaDWAFx1ok0A6 zB?vBYO}`H;AR*=hjtcjTDNNeQ$A3M!5JE$fQ}M**)gm?lO|x!a)OS)=V{z5QVIn*8 zA}S2KIqq~8!HV{HJ1fe_Tv<^vc*GwqR@lT5M~5-wtBKQnwT&+h|6%7UNTFE<*djz2 zzJWo24MvRB75NY{BQo2HEcG72jht(2&Od~NZVf6+UR_zXA>)X5S)vetHh6lSf?c8`LEtG^@VaPnpt1Z|8yQ$}vhAAGNOoJ)Ow- zrz;K6h|^bz1$5Xa{QC1`f#9~U7yp1hxRC#SE8QzBsWGqj?K|e^2GdBP+vSn^^CIvk zaLW9r%q;2~RU6ECg}vSZe}Av2>N;O5X4#4rqa3b<8SR9kDLq3q2>Hj$aeo2O-jMoB zn}g~?-m!RcxZJ;Wgo%kiLCc~`mvvpo*#9lg3b~M$)=YTd#;e%r>*~J5*y+H?$y}UB z=F+{bD*bL){GCLjIY-E$p1{?d2yyPA-*WHV$VGLsilI^us3ZYn!qz>L_@T}Is+ z{#(?rWZSlhrJn1si&orHFgwZi{m7TyYZB)yekiFAgh{If{n#-i7&mSl&8~(w>+Sr3 zba%aHM7qqw8AW%VF`;`&ke!3WVFdfRos9Si#iMzrZDP%%R+7P}8=1S`+}_E;d|}!1Pb&6goc*!5UrHz%OtSCa@l^Z*R!*IIk72Y`&XM%32ECL zGAqrn6}kO_ghB?G?i7^-Xp3GuYCWZva2>x9p>3d7yXDtTb%!3(Y9I|b^PnjU+w zygI3NX-#OjWJ33TTI;>!4#dQ$H`jmbO0|AsrlhLI$dM+?@5_C^Xy4RXW!IKHRnh0@ zVAK@%D+}5#1tFIZPO#{#{_4j)FEcYUhLmA?57*8v-ssh{MeggMsF50N-m(Spt}Fig zl$gI?(7U03Wej8j?#haTfZOl)-(Js?{XRm`&f=_~!?yah=T0m$-9nLQFY!fvI z!4?B-R4Pmi#$=S zeHS*g&+TUM9E6O73|b2a$Cs{Jr64O?Xxt+zea8mnjph# zK*-&w$>2K0i;s|47v(!#t8H$5)}23>eIB2j)^_feQQ^|rK_AWZ4*7$7aWcYyV;@mL z4=|jQnUnJu_ys-^3Ftw%a%_-~3}Q|N!aEjNo>@4R-$YnUt*Wy>?S8YfE6SP6W zi#ICFu2a|nido{Tb)8<9j*gCi8G+tiXs^RfYM_aeqQu}0q8xeECY}dG@m<%|U3wd#Ou#pVrL?XTwKK4%=!t&UHh$_>{m=Hk%_94A47kU^T%hOxpF1SuqEDyrcR@LsZsj z*pMM%MMK(hmIYeG)=N%zeT5nQ+eR0QDN}$N z?irVNi$$B7Vk;<%ZA+=n>lNkA3$jP8>zgB6ZtVuZ12vPi5YSpXE?dGyn}f3c>q5Tv zR>K>HBUf#kl}0Z~r8FS?)?!k0Wl7cVE5@TlYd#~8<{B!LOV-!(b?Dr4^JSi>VjShZ zY84du?-_qvCD(P;=n)KX741@_+N*58ryw=1#j3mJm6DV>IUQCaievuzC8gKR2N8d8 z^@natu9Hu2_wwEVP-P6DA<5ahw{Nq=vX`6_G-|ECsWkO&Y8+rP2owh$RPl)AC_+b! zh>)8bETv$)Rlh{Lq2{7Z?C9XKszCafyWCq2nfPsGsj($N?7{*&u{}9ffq2?7$IOh` zzaOiMkLwO;Uf-Scw6UQ<)zn4fSETOeDwXe|wKf*FOn)N(Wq=lOKF@2kWCGeSl82asDuU-04wC$VD}1$syd?@ye({+d{Fp(z7bc`t+#@O4%k)*&0(fl`RrC9Oo;si9kw!cn01I$@*n8WetR3X8`N4N-(~TK60e&M}%4s6zOsTG=>Vq zgPbdEV3B19=L^-?lMhTM^BL>;L-EZN5xX~|^#OzAeT#ec?JGboJKE2~0u88$mrVT6 zl1`OU^`bKkF3blRjZP&2;LOeolLli3M-$u$#;$d+a~?ytI|js_?F?MoCs+E^`PCrP z%B&KBkloy_8sr^$($up`V&^SvU@`$4=FFJ`!?ZNq6b~|tc@UtI$kU@l^KWCLGkSD% zxunRM10T;`Li1#E^R_>KIJVDfXH;#5P(rN6`tbCrQ@|vrl9FPQCRj*b1S+5a=-j#^ zKsL;ED*j`J{x?>m0T^!?!dBF$N}iY8YX=$I_3N7#E|fQS2kpo^DgmMYerfIHz3+lG zk$C8xT*ScIkApnM7o-tG2xgx8-QC##)$Ub*YTRCA-|C^Un#!VA0fX}&~^ zlh$jQa>&b5%DaeZeFDRn^PSYJCTd&Rwq2Hq0DkKoRjB73@%{6U>CuhTl?r9ot3JWn z_eWNr#oVp@he`a#OE6`b%+^X?oA=Y%(sDVl0Vxz&l1lmY9(!AdoO&q#ebE<$)>Wqi zh{WFisE-%Jr+>tV{OZ9Z=ek>)+#@Gzs;UNhdrFrCk)|B-z1_pe@wc9V0T65DkjJu zD#aEn1WgF?>Pof%7X>uC_1Cvp9QkrTNV`6L@uKc!N;Nw->fk};G0S`ToKR4uH%fNZ zi}B{UCYP>UdHm*0T-&T}=D4FUW6R(F@AgjOP-f^kh54vpRwS^0=<`sc;4eS};(lRa z=vIYK@8-^&nL>{Un-_L1V|7lR)Ib+MvUe%YpzA$7e}l+$?K`*)ZWSFywp{cmG1?D; zzfs!nFEy7C(f~-_ULwx?K`0`G!TA>*^2c08hmxFJhfihw3sOSfk*-;Mv))uYJ8gwo zFW3B{RmyCN^*-8KT4OhVTi~{1P0&6}7-+H$&Um=|DtHl^)0aOc)s#^Y#zaL;GVw;R zR@VYK@W8|5A4{2In*buuQkL>AEG~fygWfeftGDkJ zGS7;w=xMS5IKXcjlHtDO-Rm1<^MYn)QNJ~k8;iyp8U}@gU`4f0yYS2n+X4^MSQ@Lgf&m`_Inx8 z_bC(^1W92&ZXE5!seN|24Sdm^BCO!g$k|tDma=MQl{A{MKKbyU{BZb3Su%R{f|G4P zzrqd;QikFH#V}7}pTORtrO%jv=5#~hU=&=!w~n2!ifD;CQ>uhV)_UN%;^X7qnH}yCALo$rVf%kVW8o+=q zZZfY~*MdocVF&;|{aiq<@T+UMMuFilQUca0beoXHknbC z($SaPw(-`L$kZEG6?bAy2!j+-{I3WGnwr{*IEme^)BbMZC#nxzG7W)+&ol(QR@^jaYP@ zmIIG1>C`ExMf2v&si>_g?Zdw8-?u31!PBQ;nu{h+7SA2~gfx(xp3@%k7WFJYsOH6pz5eEQt3R70n6JWOjz+mZ&kH^eJ%inkc ztyl%?F3an4G_#lJ!kjrX1efj(s<=uW6H;%?JwFep_?QA;Ta$cSaRUGwgJi3R zO!xVIcFOL7y%qEk;M4+Zp$UPh(Nj`V>ZR)kD3{r!k3=1SR{Cc+!cny8jqj1lqcpM+ z>z;NmJwGpxZgnd+&!TTTp%t0|Yz}}AI<1Y_NzB|7PzxW!7)E-*d%EkXD;Zus(>iJl zG$fkhw1L;~7(G0Wjb3(_Hhn`}@?~xiNg{+IMLQ(|z_KMvCSOury>g|}_zg>;o3OT# zLxTRmBfN9t1-s|=m`a$Yn>;;lX3K(8=mT#oYwt}`a}EXYJw~$`UA45cmo>o00t}&Z zMwBn9GvyH{#^-{2;wdo0Xf4HT^8x0*2Pct#^_sw8w}Cti$}`DbUiF6Fy?SvQ!Wyj| z99l>L;gltmx&xu;3|tMDibyjs{VjMwqSaog5{yLMTFa|Eope#s+nUnoe3 z_)%NIyKqxtd2?94+l+Xl-)sQI7oX{#zbPr%+cwr*OybL|!1jy3Pw#p~R0pDHbMSeD z4bxVbFNzzVi9MQo+pEjRU%fY}b*UKi^psD{-#eqed{QlnHBqx+!xvz$*53RDz9k(j zFqyYUkd%&Gy1Sd$((+Bye$JTkH*VMcEz}tnq{&}`DpvpQ`)-IJC7@)pJ7Re2$NuN- zohFC$S}XT=kQPyS#G` z5MR>s)|Ly&g}l4)s`m>_3GVnm{*&43+<*W7QSziz=5}3Estc7104@BfN@ zdU4#LW56+g{-ZFb=YPZ}$6a==QWg6H_1_vL=ihIYmCSxvC1-2$h0r?!FTlwAk?iX41I(BE+x_Yo(rRX^`ZrZw z?Bc3g5x_m0mb zP2u&nwT>cyCfU}(@TNlmZJK$I`RxKQ6v z4O(nxbPQfuZ5fv?J%lO+P)86vg5NbHM`}BsZ0`Pzz0Tu=C?eLABklj^A9sB~hS#L` z(A2}lcsi7j_yH5DVAZ~TOL#V>`YS8r1V*tWAoBV7UApC9WsaX1SrXaTfdkKp(}eK) z?nqYoNQhOw^a-4QQ1#Z^fltEy#r=lM1@LB1^X4_Z7;N;3LjwjjSAle~;R*dgT5Cy{ zF4-oQQt$Bo4I4<#NZ8Sakc9FT!DG~(Aeh2Wt57jCwyr>d1Zp^MOZ$0 z{v6@9)(H!Vep-KNoRJoVa^haOGCIN%h8JkTK$EW>Pa?B(GBDIP+8&M1=NH z!gZsY`6mJ<>JR8ApcIk`-~jZ%`2=cSYSaM(7&YkF_&P5?pY905pq+ovhozpv*Gy~a zIleCN(~a!x|sv)Y8xo;XglRh{j-VjJZ3zu5aW+u2lExi zkfJnm7b-CApqm@mJRM#HLsGV6289POy_GOa@fMos;OGcJXEu^AU(tHijeUiCT9GAw zF<8tV_rg6WMyavPr&?Gng5ym{Z9+rYj1D=E#epqlLRVo+B6 zqK-vX-ka@h7M#`f3goF1;u@i(j@Ye6AGE>Jh1%FW@=x{4=a*gYgk{XawGJOZR#s3% zbGrdj3HHeMKL@|T9WNVkjBQQgpp}Cek=-HPKt+`iBOc(jO1shM#rO?1QzI9yJ#Bl` zVdl(0(>JeQN4G|4X=*NHRMxHy10BI2!LIrpvQ({xa6YAv?y|f6)r2{jVq)#n9)FMqI;fF@rWl!WimcG8!wH`2t0TZE7mpEStA~XQ%lxJ=t z5vkCm4Ct(`Ld!cJdYoxwFzuk4t~a1*ZItl--AGwBGIx_OiflE8$^b zDnYED!mDSWKYX~ZXrC%w1&WpHj1nQOA|GX-`_MDmI5fdGm39c>p?B{HKEhvh^{Q34NfAN?hfeS;UT{NXmi*po?&x@A zn=v!~j+nXa8yuMLHd7;F!ZT=8a~a*MuFX!F;QmPE`&OmvXwLx;5L!89dq>$O{qU_m zq1%uY*|D~72FR3&butS!svGhPC}~=ZRzt5g%D?Zy{VTIv(E$8Qdj{hjI%33oc>z|0 zJ}FEKEcJ+S`LTRHP3hpW%OL`4oE5y!=3j*M?YlFO4JhQzhm0M|9f_Q9`P{ixKnx%+ ze1r7WpWp5l2C;Ao59V|`z5%E+QWFgaO%)??vVDj=(RkVkNFKea#4SrSDUUB+becCW zL`uPM{bFcVzhBVgMVAzP5RmB9phX-~s=3*nRF~q;I$%J)G!yLZ-oL-c%@|5EyF@Xn ze>{GtLOL~QkkB|qZtnVbhs&N@(mqe$iaI<#+CB;=^DtsL97&SUng$&&*7$Pv#6*bbSrB03=mZ|9B%^VD{4+>_vERoJ)l4?_Vsrj~saaLS0Cp zpj!e;2txOdAE_NRc|J==lLaH15G|AZPX&Sz0+#w~#xAn97CJ>Adl?%sJOWbN&T@&% zk_mKh0-a=OUWz|BY7?a#kUoYBny^A5!&j$AI-{j=I{pa&Z&K*hf;~zhL zcm9oee=~RCz8%SZHgEBWov`W4i^$HRyFAYAi%F75AVuusMq-yJn8Qw8T1K_MloXtX z1NivF#eMzq<*u}d7{R{xlXex$kp_o%nb_lP!%@qufR=$h9uugb2$Se>d8DAs-u2r*+EM*h`!8m8`0|x2!D>~$$3+SnY{4;Kka zRb;LHflSiE&}YJ$mzUq|9x7J8k87mz-Sy-BnfvJGd^F`uo%@Zf=JNqh$241YY9iR?^O=}=`vrgu>i4mLIn@03MDVYFPi%PKS zb$@erx~C)#FpkXs{vm||H0HJ$?rysQC~iNqSeo_xKEt;N5Aq3zz1pdlqt(-l<}$&``=b3BJBxB zF&kSQIif`*lA1guc(1nkCmt3>03Xcz0{%hJSM}d2v;d!-2WH2dh z8M)VNu5IpIP79%p%4h`Ab%2t;_h>VR*R#06ap;e^;2KDMaN`)b5rT@^rX(YuApjk^sc#6MxrIW13@0sStrX4hN(c(ppc?bMXqD@67%t zd!fTrcsfKd22EHdMr{;~+c_uT_ODv?*j=AG7eFn(l+Diskv15~q@(cJ83sxbP;WJr z9x9B&OHNrKS8)?Qvg8lnjl;P{lYKMjBs4nPlxgO-Uij!yVV z$G&Xns+BAC^!2kh*D91W&9Z`I++X=IClU7%_=>_vv7M&YBTVxE!|d(ro0>rE)cu(q z_P?)BGt}2J_Urq@ARZhT`tAL5zuZukk+~feDyfPQDAYs$Y2eup9zGm9dURFB!J)gP z1B1;NX-V4y;W|?#uA-bF<*(nplURTW`+@~>r9TP9z}X-LmrN?W7$aFY7nnW~vF*9jld0 z>fAXdquQGM9r{qoJS{n{=2obH)j1?`=(Fiz7hSlZ;~!2v%1lq_SV zbQHln4hV#Hjmn?BTIe^CaDz4evwuG;170=r%&z(TSPuHn?ZAPaf>q6z#mS_~S+itp zckJ4Am#XyN4ir^3y;5lF)Xw2eYC!20zo6a1S{U9c?c8hZ2oa9W+q%0vLl$FQ|Oy&zDtgB5!2% zBa=G%(N~T>A#9Co^j8#Z(&kVE=x@=SlWouy0sWr4aDjhQTlYAdKpGJ-gAx_CkF+`A zgE)-0^V{5jT=+#X#oSSYF=Mj)|75~ZjEE5AaA=UHtclEb!y&kOy3@g`g-%XPD**q7 zqP4?=$xi3$?P$cfprk>5>ZN8q%4V~BD9FeZcIX1N}Gym%AP^eDrITc z2rcLNp80-%=leV7asD`eoYP-3!&IO5`}Mk)>$>jio`0E{8JUJ$;CgsHw-cEVEVytn zIZ&fPj}Z&+iE|kS_eKJQ!bYnxOULVr23V!piyMJp(?|1D330&poDJG}kO@+gD2@^o zs74sdY16tAAFuLykG`^s3X|!=L=0@)EFq?2+zcLA-Xn0TDgXff-I!V9qWB@XnO!-j zIC!O{Bm6tsf4FmCXU~4b(`XC_!USYev$-U4SLP-$?Ts9xhErlNCHL=rc}ScA+43~g zM2ddT@m27KP+6bvAOA2tD|Z^^Is3upmsY^1Q1aM!ev zRw~**bN%{{+zbF}*Tu?!TX-gDYP!&e8l1;h-ihKH4UU>x{`y3E^Pv-#W9_RsVL}=l zGdL#)>wu`xQHO}dsP2yXlD8py7v=5UUzs|z7Ql^-mg1@(1hZ3j_w1~!fRz(x&?peO z5!SYMN4f;vDJ(r<*8a?qFVcoXih%kATeqmFu^2aq1Fug|S7)_vPKNcFX#rd9r{p6e z#1~Eu`PsArNRx2;(D#h)BK3kWXxoeXYtyHfW7=)_0eny(kSF;J2{AzS5$Vl}TaJAP zWjbgH17*w+fS?6DLnlUcMVI`wynJ_!Di^dGB?iq$(4Z8$O0IIYMH>JF+C!Fd3jG|o zGjtL%GY%U^Sb%R1Kr`cJ{4oA3Zv{oiG(HyNQk{z(_6Qyipe_VL-#?i`#fdqYg&2+L zJ-eI)w9SQgNmGm&ML5tIOMp7rSi#1GDecK&fg?gjO!t9TYby>EciX-l4WIw_`r)0Q z>*_*QTyK00&cpNX6Zy+vnXRq(lt^+33Hig0-Mn^s_>;9CvF)zs>WYi+&Y(ROd`egx z-1eK=e?x^tii8&0uJAJnNP=u23O%hpTN`+OeS^D~fZ9~9{t?hus__8H8!T7yiyV4I zX5gsoz_#bK?_&6vSK5|HmqrjFNTm@#eIpGV^Tb2FKl7Jw_;+>EoQ@7aH^(%Q;9g(G;B&w1!Ln^HI?2us>5j|+?@IVfQhCcc} zP^3tRUfDxJN403Xhetz6^1ikE#ZiCRayX9V|9<`YBTHeN@T<=rv+gmENuUqI-0}|Y z`^>2QtCufV02pX(tNM$Gj@kdY9@uvOj)-bo%}){l0(bh^?b!Q>6oJ;T5GP$8NUg$l z8WKBj2Cg1;*e~2qlTc)@5mkDAlMuOBkMnt3Y>QMCsjUQjgK8iOB?oOu+U$eW1(ME_RdUBfQxA#3=*m{>aWQW?2B3#XhmD^5>D^7wn zAu&`w%{n!$`@)8;w-D|B4wEiBQ=94N*b|Pb$3E59`+Y7_6TnG?N#*VV4;;L_y(!ux z{7)hMa&-Ivx}IO>A#88=FcJhG4`{o_%sXjvTnvVkdx!x^Z;5o&1jIIkw*^jvm83;#PabjX3>WzMV*+GZcDv z^rR6NKa1#TYzg3}3x%oS`%}2I=7tlP%bzSo3Bp^X?)+fSnt@LKisDj@F=Nb%c8D8o zpSlZN@q-v;3n{#K*i5nu)|hVUdEHd!MhOObBXrgHL0iR9Lp~h1AnM+|Hm>GDySeTA zPc2j+9hs$9oPDzny#-l|i~GUeEM%Bz(N8^*RIE?Nr~n3{^*5PO+Yd)MULUw&{d!?W z@7!n8d03`aZT0x$xLVG@i9VOtc4=!Aw$Sbpi_{FJDnAbFodS(5q ztx3srx*Yc`)xBm=Y-q~QKwW;k3VoYuY>iHAc%pbhfUw7u0e zG-8o%68i7?(_+>GM+yp&<}673`SiE#MJIk`@B|NmA>=)R%DeXE~9VJ!9x?fdp9lIdbP~fji+BSZQw`7Afp-DRG^3vw%XwaoxJ)X=)XB=4{Ohz`>Z3lS}vL zDBQ}Hw)t$6{cm9O<@6zE%};7+O9-3RIiiz>#Z$PSJ7)ymiOhq0hf|fQ2(cI_pj6*o z%C6tWWy4J1NMdz*s_9nI=iZ-xC#m1(w>7(b8xxsxSGy^GW6)HTJmH`D4N%+iMAQX&-x!*WzmvDR^dOV$UII{`lc~#28!+pN18{ST83?`{ zYZCDDcj=F=l2H@d36WH!uB5x}#($gP(j_F{eKnBK!v2<_s!?QkZZpLqk6m`eh}e@S z|FBah@^ycV`-P!l>Fd{b5t3Y> zuU{`MzXM<1#Ps4ex9?hPV36u!9at&o#Nr%+ z46IDA_<^Wsa9FQLCZpIgKt}hV&nLd1#WfW%fcgdS1?bw@#U(N#;?dnXMkD$f^m#3e zM$f<8r&llJ+Ze}r?p!kX^Y4r;@IXyAeBAo`9+Y>+Or?MUK=-f=5~)OJq^IUnwdDal zXCF?HjT_sO#^uMraYJ;%896hLOiA&9j`Q2E1I9qy{iLGu z9mQ4*YxuVo0O-s8TSt|uqT&OWXEMj~l?VM2Ec#%kO6u0P&y6+EXSW)v7g}NkCAa&> z`}yhZ7(3$D3gp1UhjZ+2vI4gEvzQXIqXbQPEH-=9|BjIArf6c&Swx2^JQrJWqSQM32%Dbx$pmIRV_Y-suW z>&MTZ8q1SJ{`KdlD&8hS!-wGF02J9n0}Zvuxr*#b3Qzp|5hDjU&5uP5<5@u0Lqk1Q3I( zSMw2vwtraM*0(q3@3FgY{|vQ(`}=CTX5{7P1BLWG9P^)C%#~{c+eL?iX2OEet#mY3 zTP|NdOnbm1ItW-@>Nk7)k(!_Kk3zN`=a-wNuO9*dwnlpE;J(o{S^taJe@uNv&yUFv zSKr^7Xg`#gyyu}P!|1HMT-Gk@RKJds?J4?TfCf<$Ra7p%TWhk=e&~2+87P@SV5D2p zkI=7T2^n*K+UUCk>gLS@nJ~*tqa`Q5Q!f~79xqL_)|=hrF?mSO(0T6m^oIXA@?hoU zr1p8AyP42jlW!R5TD){AP;mL6QDeq@=cC1T5o)^_X1N#H6(e(r&#Xz+PPdSwC0>y* zN2Ca_RNqMG1dFJ@J$7${l)z3kH&z(05%&jDG97$nt1L}i?#^CU=z(ZEtn&Ia(k}4M zOw5J{EMWP9S^rXc3jLI~(BKnnZ;1KhOcQqKP^Ik_Oo>2Dn_jWVN<%|H&=8L))z43n zw)#io9h+FgxP!c$+|fSE6a!=jJfe2mR`4R@Y;tn+`Rp2S$g!8|KWM?~g~mFG;=pDr zylw8wtSa|o&4tjd9MR6{;gGUjq2EX;nc@$ehO%Pxo1qB)~r3ipWfnjOZ&etRJVnN zT*Zje@Zl5M$9EBeQAVE6bfAjBkx}}4Vhp_pIahLRH#XbO*!b-1b;DnbBx@vZ=;omg z?V8mwN7DK0o0|$%HApO#r^%7PKau1czxJqKV}^yG z*905w-<-wITe@UP^QleuHC^qa^0L?T0+bWJy_s6%v17)uI(@!bLC@^|gJR)erw3QJ z{b#X97>@Vefpb^Gs3Q+%3PIxOI^>I)iJ^*YapQWFv@zA0u;Om0QYWo6%Y&H3&a|f^ zp=Y#MQ*;FH2r?Tg;q*o2uOm5+$6Tzj#s{Kc(n0U%_P!&n6xt}bK3p5tw9ywGEOmU& zye*8XaTZvPkWd({F<@B84w_?O?DlWv^08>&%J`=(NYOunR*6k z(Al`SS>wO{ILc8w%ZCCnc3yDXLn!e@ca2K|KY=n?;5U)Uy`j@CIXzr`BYdBsplzf#H+p> zb?YKi!0fCGD`poCB@mT>{q0RdBplirD;Tal9~LI40e^(OA8Wod%|U2#c&Lt!${9oN zFr4L39Yw1}3q&F%DOg_r4A@*T!w{GV zQotm-zvt)Vxv0!T13$;3eQG-8o$p@H z){;+;>Qym){Rp~X;x3F#p*zyM)RsjOz;(9v!v~Y&l2FNQd(K|DQp@Q+b^3HrjV3Tt z2D?)E_s-kjJ2A6@87)6Y+8+aSMRivrzAH9x&~N~M^You($R73d+Uz&i^(-4N5ROBd zeF>o|AAT(N*-FhuG(m|1jmmhh!pq}L!VEY!oyHRb&80$UGGXq02hql$NA9CX7`ky3 z1XmqS1KE){qB3I;;FXk&43MB)>{&qq2H>LX6Aa!&fJ9ozFqb9IH{WrXtSse-YsnhS z{3Wt{C?R`{V*6KH8+azwqV2+k zM`cIl9xeTsT3CihZ9s|Y8~Ks}Ncsx{0|V|7CIoHe4|-G%bWjKg(!EOvrjuhO7`iw< z&cWc|swtkHYJrabNQB)zJ;!KDN7VqTkgniws2IR5YoEn2059DzO2XVhdvBX`cRue( zeYXpdk+1oXqzUFz))z)q)YUz9F@{(7Mw8D_WX$9GuV3-cq8O_jyCp)?zP_p|`{*^{ z3fy%__V4n8%fJT~tnyKl&5|WUH5O6>%1l^p(%Cm7YgJS$hJe&fvrSFoSEc>rNAham z)$Qy$Fe*`SPYacw!sxc9j*jFEdDtn*AwwufSXTK9mp%ZA^sHCV9_fMP76Ay0G$7rfjc=r<5Y|(EbX;lOQaVyvS}LMVn)mQRocs!9ID{v;?$-bTgnBG!dbpRu+Bm38_d z?Y8*`7i>3f_!89Ctyb||H=MZxavikDkYJwaJ4~+7FFyMutncgGJWt&IDB3ZkfXvc* z+<++ylbgi7Kxn zZvMf(r^fAn;IJ~)>*knak9Wt8oiM@fmSg_w&|YF^2e(Fk87N2r9t(t8NwWR4p^N^} zzBW;z_|+ZsHTL!OB_STj5HFM9PYhgg_lf`bou_`K9Qde!x?Y_IA?{Vd_ z@p~d~H2fTvE0kNc>4KwFX=?J$u3ar3LlAi;m?*JtcIlrl7lZ%#G?sVE%_==Kmr-(r z;nb7){h4^APkc7+OCS3$H-0P!E)XW2{Z|{Oc^ofI@hE_eBO|b4Dl>Bwdl{870od5; zfZU!eLgWF`&2^t{l10`j!$G{|VC&SO!5-~x+xTF7VIG9;XxI$`t_HzHnZGz zVE_Ke4B47V)p&mFdb&&l{2526oX?Q#DwYr{pQh{d;sQ{^_J$1p8dGCwk|Eq8ly0k* zEskVRgQJZ$N8FNO6)8zc9~B+SS9)v!Jmm;RL!c5t5n6q#&&qr+@&sKtcj?k>W8?D) zQ;JrYIWgP@V29ZCJ5yLnmyOh*1G^JFt z%|3a3vCG?g?b;V~hCZ@)SKX!R zRNYCFoXgTr*PPs6c+tO`*+;x|xhlA3vbnKJg+A*R3UU`0mf(JBjc3+@y!8Clt5zyA zJ^)Lqb8|P~UI%MIbuvrvE{*tQ4~W_hXOv*p+ohf=f+q@`XDWi46TB2J&p(~@+62}S zB;UQAa$ggv0-ek*i8C&s*iSIu=(_#b)XWSd;t5`O#J8HwzrKAEhCc)@=lppIVUIZd zs2i+={Y@b>;giJ2B5AiZO3mK2D~*0GD9FOc=O+V$V~rRtk55h(=IEzem}m4tw7UHa zb4rj+Dc{Rzj3GL{84LmvW|rd951*6@7(E3`eyb~IO8RRuJ^`$iD!{xpm*&dhjGU1n z^563#{hMiu&o--FGWc`S8g=a-*w&ZEfFV+qUipS)ocdn?1Yox04Y3xGwTwymjlaD6T`Cb#MMbaokR) z^X5P<+u~Q|t^B;XBwABR$sO}M-q@P_<7zfgzW8IkkdZ*U29sxp-~e9H2vGz}aT`G_ zN^WZ!F?NS8feF9YGEFxV6Q|+8CPNB2zzc(q|byHRUK!8A%XkbodgTRB@EX%y;S`? zwE|)rtuj@{8!CaiMc+0EeT63e)-*sjZfKQsvtSUOLI^BZG;@Tx4T2G8=XQ{0lHil* ziDr-?D^^USH!J%?KTryPUSIswDD+^$@A*rcS^f6EG4dRW*rP{rf}-fSP7vUhU{BwJ z%JJ#jx64rHpmIkq$Y?Dag5>pal#t{YUw%paLmB~hG2bxw;qqj+YFa3wY11VFos_KX zy)EzVaF;7o82K=HVd&qPiu*CJa>=@llzT+ZoFyO;^w1`y_3$Rbvd;6*^ZM(nA7WUW zqdsZaJRW6UUM=K&Wo6gpUnJ>lFfA1NP^(Z~_+!FjcIIbiE2*jmD!j?cszf#UL52E{ zD`{l(b=V+*s764-wAAzb5OA>!0YL>d*9&H5n_q!}sC<8!D2?u|ik=YjnBjzG5c3L8 zPA(`bJ5v*DB%;_xKU2ANJ;*s+&KPfZBo1hV?I?CbX2)o)?*4ovw=fXTv86Bcd{?b+L_&QXg9kfw3vdw>%g?w~I9#z$@KK z_lE7~cIviPe6FZ~agmmjW5<&=+Ap^=KS-;EYzH2x4x-5EGr7dG0&J)_4Ru|3+WHnR znmEfRm$IZ`U@TAnMb_Z-)79P!`bJxR$g!4bGheWS*e0yhg(~KdE?ee}3Z7r;LZ0s+ zo-&H(OY>c*tjT`-5WeXCpT8M_dRgH8T$<49poWb zuE@&Dmg`V!s&I$N5y)omy&=g$9-p&)#ol1G(JwI-A2Fhy#&P3h{mMp7F(906plD!9(U+StVfj zuvRg*yo(_bx?^5a=ryg`cHuZlKaH6Z*4|TyGOSiQh{M}`z)cM*nue$kP&nySbK#NL zKQMAwSwz=EyL;4s2$CarXW!D^6^2qTvJ^wI1AOUMg;N)P)=EnV2=B~qy&fHritbMHOe9G z87)obrbgh;1`VGYAoyaDDGj#QKEozg+=v%}N`>(P?ysqcb_0%-?|d>kx}v}B)~y=e zTfoo|8s1y}iuDa}sl40pgsVnV{o3!bHH@WQ8nynIl=ta#fKgO9qqa6L#^#`5Btx`# z@gx-_cWAN|EQH-^+qUVmqQVG$#ulzFrK`zH#0o-|&iAj_s*XAsU}^?Sp*wwW-J#mU zl$e(m@C?}j!U?N%qq}$RfTHFxE6~;10bPfI367P8g%ClMCKQ4p~a0fSEbq_b13;y_n=_y`;zNE&uaXbH0@l>hVeelwNXM%k!rwJTnjpnETJUb}P|23O)%C$1$ zE^`v|rw3`AyS8RQoV@j8t@VEXzV;anUko;^f1*%a zJi@Rc<56_<#2VkHP19>y(tPJLzw)U==~3u#%gyTH@W1S*JMmR#NP+daHP;)XgTcmL z(Se{gxR+)%RvI52R_3vM(0EOS4HHGN2Hv;8u9Dv?(jqe#rK`Jxs!9}x?ug@9b=Pr8 zBAcOqGoPUzVy=v<*WuvcwQr(m7&&5sX11)WbIR5%FX$k{T2UP8Auc9kX3Vh(70fPsRSzOQc;;C3fA31~p=&fan zMzxpE_@O_;DI-V8FXrS)VW&xbiT=umto_U7-o1KtBFTsPZYuU)KSq&gXqm_R2SY`! zy5X>=Fl@Mimn+Zmo?nEn!X=xf{zcK2w%^6l_KRsDy`*c*nj#KzjFbTz1)cb-LHMf- z9ym~?YVXhQ4I@X6geaXKG2Md@LUd}oO-yH-h|%>aq#QxNl0H=Rz@fbphJJO11||BI+bAM>^Y1O z;h?*f0S#WVnW& zSCjzZYVsKb(DRenx8`QS?psDH`j=_8>mPg?Y*C-zX`#4&F-)z^x08yUq~eM#D~>?Z zFm_@2k^UZG$i?}sPVpi?-|zaYDbN|6mzlXcRoFxwVVdikcLO~M7~#S`;i&w4+2(a2 zla2~Mx;YM1-bltB?*Npg=;jyz(!l zn~BGh9iw((ZcD_(bTpLY$JPd3JM}2Vebar!gC9C$$k@;R{FAcd_`NF0d;>cPBP0@p z(W0nE9wH$XNXSv1)Nk>{nDt9UrTi5r60>inC2gS^7B7=Qj~dZh2z-izr%L+6TgR_N zjr09jiE5J4PuVk@zVMjpyfv{oQOAz0WqmmQUX%vZoLs`d=liVcoI!em^AAXFFHOxJ#0da!BEO$>{d9~?1qq-Nr;{)&!k)--D`t)O%Q z5`*wo3Lrm2h5@Xyqj$(Jkpyx>5piI|rJ*r@{etDz);i4WG4VQn*{vK}O@3GMRnbjlQ5<7wgAPbZ zO9ylvzr$_rcx#`P(uW0h4mupE;&8zA@Cxfm3>opOT-HD(t$>?fL9%~R8Ew$$AI_An zOyEcNsnEhLQhD*J%L`(3wRtU+3s0^exU-p;#zQaac4!f5bJU(ms-;kgZu>AwT(W%m zCLF~&c4N^HbV=NZmRcsvU(n=G^aU_BSA0-HDep}TNDmvo0EJ%6+LK#q{?6}nTwG<# z54sToN}R@`g$tLV5X(Lu*R4nI^34V@9p_dXR@1myJXS_`e-6k7re@n>yqSyZKlGY4d`KCtZ%~&C`9*AVNucXxMyv?hIK6> zMLN1$N&_g^PK1Y#t~)C0JSQkHE-P}`O5{#VbTObebmX|PA^Y}a!%~v6344>#3eh44 z{y0MrrRpAVzTwT%M4$(pJMP&pJlFB-`>&rrbzFR5hNJI{+A4hLiGsU~?r-}uCt6y# z512>I&%V;B9_m~4Z)-~^IyyMal-F{0bX>GzMZt~!)Q+m##;?i-q_{Hqa7xP57U{{> zJJ$|)b^62!!M2Ei-FU{=aK^N0@1U|)SHCe^wV!GSQSryBDgoLi?9=o`*gHC)7ObhM zVF>Ttlc|H5cpfs*!erJWmkciP(MKW*cNcuHs;jFhK7pwfbe(18W*rij3^L)fuqp?= z5HJhz8+`5T?e4)sVS_T7F>P)t>h=A^M2?2-^5yB?ExrAB=T>dO)``5TyfN}Gm$snm zo$q@Gkg6nHoJUOBcqB}UrRdJOD30S5MZR}q?C}5fK~S8RZd#rnPQ4L z)ou^vv*yj6D`>VibFNE{V64r5*Kz4jF7wGJq8~^$(qCc<#fk6tU zqE3L1nIH07?dyay5G&-7e7)7%3Ll2rE=@ET@$~)sUEub}TW;sHmZW%Gi;LUyr{Sx& zbrNN={NBWyrtOhn#GDMr+S__g+Ui?uZ*kM(wdn?qdJnVZrfl3SUgo^%nv`)}i1s2+ zY82Q)0ps&`(>sM7UOu*A_S=T&PMo;n_NEiJZ+p;wPfq@xi-(8c$iaB0@s1!e5R+I@ zF)_?vs{M_?wxGwkFfuB)3Ye1i+y(CsuQH^JppGm}Yk9d33HY^h=WbEmO;2LBckO}4hf{`|gHNH@3@9LrZ%Kk(Tn^Z^QxAOIN1T0*U8;ObMHL#SwaOvpR z+S(&tiI#Q(p4+AoY%;o8Zs*ROzN^7rUESP_MA&}*#?Ap?GXR^VHa6!=wY5eL6NF`J z^pBOX*bvlDScJiMtM8K6Ueohe$GM~4e^mThAMgy$4=hObXQ*<7?9T?H^P$Sh@|i33 z#s|+Y?!Ca@uCh1E6+)9K)Z2;`G))b~x5rJLdh+B_tY?GfD$Np665(FitIr-@;k}vg zc8z*3fE8`teSGU;AUVx)UBqEMw@GYdrJ4nr31q`qKq3leA;DHM6+awD4?arM)@dBbV zR30Rgd+GQ_S#@9ChZoPE7dXk780JtWL+xZ{X3k%n3W-T7@^W6q%!S%mgS+!S%00Yv zvbyC5KVgbMXZP}-)inpTo` zGi)}`ytT>Y@DDL8nb-g&moeYm+(G~N+5SscH)T;LhvLb`$=W;5S z^(K1w=@!)gVRbn@J@(J)#ddb{!T`*# zcy~4h^s(zq<<jzuJykvA&wU1w? zAxGcbG{`r6MJ??hCp#(Kh6l%rHYz9zX0D@PXpxj40C!PQO>z2A0lTs zDug#j+S?LG;nH@aov@&jv-2PM+2PR8^?u?P3#}z{7gQu_YET~w%XP3RdaCdw8@#@nfa4R`P=aXg11Z1>AvjwNAATBU>_u&h zcGPA`Hn!fsbm=1mGrbrr>^k$h>{3VubjpHv9fEJ*g66><4DN6QpBoBR8<;!TL=I#J z1pQ8uPi$^g(3BqwLu9pKjRJL#L_Mvk8n>LFK_eVL`3D1BUKZQ8C!wQijkns?+Mw&R zM0~)^4M&~KP2AjWB|R7HRFa|<{5x&BB3+XbQ`k=wClyzL59y0 zZ_q4kbWcZpuWTq8shh#FM9#)?mC(}$-r;{fJbL29WbbCjO{#(P*D+C1E7N>V{Jcs3 zFPN^jf2yn;9Xnf7LnE}fQdoh;q{@mFmTrgOph)$2g9cgEI2bQnC=u3tQR73)4r@C9Uo8wiyr=Xg7iz6w5596IX5kHlO45JDp zXa_nU_{QIdfs%NQ*+?V3Y)r_kkZYpOI2H=k*2yq2j2Iy7Xcaiw=|jq!`ni5!rA z@sdV`Te9+>6yaHk3Rg$6`jgqNT+a$hJpx;jO*M}m=H_97NQ-u~q8OpFR9Z(ld3{hA9c zEP{CdNxx5|2ZJ$@Fg`HYeR4rn6N5(|kk+@4&4R4~Skc`l`8=Sr^xQe~Pkt&nNj zc3>+|3^zT6z$jto_xCdY4affYHPPXE+Opb$n&P_pVQQ5rLHT3QTBEwQn2 z2N;C@u-mzO$YPe-qgID*0sr8ETaF&bHVwayoSNySkol8Fmaj}N@?^InmotiSyr*Y` zRRGI1H~RS*b}m8ULE5VKm#2O4n-$#mW=8wxvMn=hMPkQ*P0^iJ<@XqU6laS&ad8i_ zvyCecP@r*BK!Oi+{eJBl+j-YgpI_>O1B;RGc$}>AV3;ii2vlla9Z}&HW^}w>CP-7gyYCV9q5|`sUv(I-Q&RX9 zr?+5Z1=Vf<))QJnZB7yz*%}yL8U|?BZa!V%G6%7O`CWdqw)YSo&5b=Gel51OHJ^9m z!N=n*-@Xxua0fi6nkzHInn(e3zzW>S$@zls3XCJTc)_#WgW~=A_Xi9ZdHd6zsS`t% zZQnl0V$vTUk60wJgpSgUWhQb=2+PZ322%n0LY+Wpf`+JcdJID!V6++u;ra7Q%W5kt zC1IYc<+}%MP&3XSzw(|dpXh`45MkaJPwnJS!tykC_Z9pO`ZJ*&(Ar2u7(qT$Rrc_2C?dtDb|nqz(EQZd-BBF>~cgS3R2S5|&pd?PcB@o}iK419)amoqA<;U*pNa zYmMOSnl?mRPo6U6jJ|u|>g{4DSlmUmiZ0nH!>hAh-@E-iZ7Na1eD)DgVUWTI$DmZ& z7*68L7cX+gJXwgQhphRq@a@VO^3k`a$a61APW1d2=6zPueoa?TrH2b-`J|7KzR}ui zdm9_t>e7(|=+b`$Cg=cO3u1(Mk}Ovd78~lDV$1^o4^o{s<2mEQynOTNT@~4VP#>eU zdoH>1B~}AYh;-dbCeKfuJDFy-;%S`jsbm%$-|^ zdXHfTn&|yTarf^}o4kJ}FEO@K#ZdmYxVQ>#Fa1l>8LAGZI1wcxiwmAP3WJfi>AR*) zwz;-O?qk5!42t+|^umhyIbBy-&At9mNzpO`V%GSXNX-#8CDjv8{;W zitvC+fZ}Xu221IMWsUT?yh`eQD0YNg3uBhAtACAZ`Ktdd{c47EN2pV~$3 z6IP|t!GLZ=pFAmO6xyEKzTrt$R#mY{a<{uBFr5lkr=(tPLtX+}yGTU%1qGt1mWO#gZ3GotK zt)ysx}ahODcm*Mf(E-!!H~kY3O?}EDTnlUrfl40giu` zI_DJ>u%j1msjkIW?V~n_Gb{ud`+0XTZV-G=IJg(h_ih1_Ff%%{_eTEu$mu>sAbb#X zgnI}ntP02{6Mft$>*YTgipd)vM;K5}l z7YRBnUfZt+!$0Wu_$9rxtA1AKYQsqr8uZ2NPm*1%QaYiBgrzgi*5*n9tFRL+FMn3O z!F;0HP9%&+i`*men!@S#(*V`zV{s z>g}43WfnheU`F9O?O5&jO0HML--T4`)Hezy2 z=1{;O5;{|BMvc4Bu_4nN>DKw zE1EHz_Hq}#wR1f;rLImO2#E_e6YX~0Bo@x_*P0zJu{%Sea6-?nY{S-)f0;&h-p%~? zKZ=Q+?!Ee77DZy;Hj4jS_%}1`|JQ$>ySjqdZ1`@+Ke9nSjI5wJDwc`PGMYFs@p`=Q zjD@ev4MJUtT8HZDpRf1063%&@o+mvN0+Q^WvH44{fBjM8TcllUkc8X)(y+0;!VC|n zAo$_+_+kJ08<`tMiHkrmu*SImmxo-mIWw2HDgXcTZ@9uR(_Cu!+s#*&%x`}Nyouz6 zRCK?6qL^<#G)Dg4RsZ>Zjh@)C!4S8zP&6!TS>J2yaL=h}A&Rx43f73E#Vx35nelOH zw>C?mJ`}!uMj4(dqpJq;78g-|rkrvLbddk|D-f%VaOB1P^XQ<2aA=iqg_hp(JA>BO)TAJgusvO+>V_iil`i5$Se( zXSm6D3;*nJS2(RpN=iB~s`;6Sh@I%PlDw`@+T4)0iH^aR#6qIHf@-kPn_)#u-Yj1B zhwR_Z6+{<&G8zaxplAH&x!p$pP}AgqQNaN_(j72^vsSVy~cTDu3F&@ z=?(dtBW#m@2A$2`sw&X0UD@)a`zF!n{`yb(WLgKu;k{%#aT9+pig1T1!ma+jgv@Bf z2zN=i80mJ#{rifDD14_p*MDCJbI5m+{`d6-)&Jjq{T!v~w!b$YN<&8$HZ(M3QEbSW zpqi^4rNo)sN@;pnh$o@hk}1yG!a^aZYs#adyj(J-LBu1MxTT|`CTJ^AQBl$U?{((P z8FTZ@>?6AxxrswAIy*bt5U$CwF*n%po3-)z^ZQ@$7!;b62X6RUTR+g^6>~UStMhJfP@0dA@A&cK0s^gNTZXl7%T`YpJWNQ|QSE z^&Z|Ey}22fqRx}p?Ca~h>K~}78UKU$!Gi}H8XCT{o>e}JW14asy2i#QvTkzIO*e}W z%`h!)E-oy5EOQ+nEO$R9yX)Vv>0}F2ICuVhe^-~hzhbWT0Tz}g1qB>xJ1e-7)PDO1 zy1Tmv1<5VuCM6{$Cnsxk9HEa{nd^67`r5W_MDZ4>hg~Q0Q2_y`kyinC577K~^HJ(N z<8I~E)zzzb4Nnh`FD?=b%M{Cs*;>zEyx@ztuFlil*O#o2JvHW$o}NDN!tscJ08cyB zOQ}v#mRVZy;n3ZCs18Womp9`jWg?t{ENZ%_(AEh$MQuk%M^jT%70EVYBFeWDKR$i> z^y`<`dV)sYpWnYPSLalgmtVo1{rvfJl}jnMR<*3MGH7dK<=3xYcJsUbMTUolKr+L= zeWQ^HN}S~t6>btNiUwrT-A2a7vokX;DH?esJ9pYH?o&25AGv$XK5~4=1(%j0{=vaP zjST6_*!Q(>3%=BZEs`=gckU{eGFh02)1X8od26>o2UBkP97H)7CwGVo*WPm5a*KOx!`~^E-NcrHrU^P zn&RMr+#MuTgVlZv$rn}mgfw0{k8FNTb=DnW{cn+PXz@BYIyP8QQ&aOKUjDd7loi`x zQC?X&?sn!(YjBdJ*p1XwzqRG*bA9AQ=~{s?u0OssM^LjpD&zWZ-?Q)DWiokMQqsK@ zJwp`xwzs#py`3tVq5}gpK{e6F3jdOc>FA;lX96jQQcjnN zsVSxD0V3kbnVIO4JghO@dA(ydZr;?^)61>)-Iledo;mL3&704ki|Kh?{TCNf9LcTB zOiV6Vs{W@*+b;Oj^MC5>%sPK4Ta{bNe^p4JZaZ`Bodngbm)9B-xKtvOZiH|9Z?Ud* zOpYJ?Fzr!MT3VX@ct@>^gM)+m*|W3?+WEISChc89mzS5XU#Bt&kECUk9HV!%x3Bd5 zITJac`0u{c*;%uCOiwWpg|J&6r+Zmw{TJewxb_5Qs!b+{r9naikxMe5tPs?~ZoeZD@>9=)izhc0U8gT`q# z*UCrCVsssYLehHt#xI=$e)bqxiJUhxV~uZe_w-Dc3)*~gzQpVMaKLOYe<)3o+QwoN zTY$fRnaQ^}X7RbXxqJ8SEie}&IF*!@ojyIEexG|r!n^C4RV&sjF)@+DLYLOHlFnHs ze0xw6vR81i5>KLx@ABKWwzHBJN~Gs_Z+-muaU}3hK~@$KNrZO(hpw)!lRZjGM!W8G zK1^XS_otPAnKVrM@^Pa)m)6jSd>wP#Vtadgf$_`Rw{CqF93LB#-CAGjkp1J(|IF&Z zfdhLEX)G@;VlDftu80oTzIme{kjxeOX1`Efb3O#lj|CJ$c z;>!EN_Vvt+bfZKIu|_q4GAOGFs)sZ)#5_!ii0o|b?f1kqyn6LYb2IYw1qn&Xo}Ql3 zcowR>!a@xclb6@F$bFeqrt72jG{v(uO}u&YCNwm(v9YmcYxB?Q;<((_y1S8)k)Pj* z&C8cAT~bhZQ)=HA8GuT>hmMX_+9#N%!hKQ$->&vsS%|NwtlXLm+MMh&51OBy?VkM^ zOItrLWg*hM?QUwS>$Wlfo&uv%GLBm}Zk$w#CC$croRE=8Z?ND$|7_>Rp;!jeo%O^B zQ-y4r7SCA@#`nPlRfJFz+qEiE&%MK${3QM4!dmc{<%u-JnrI<`}DBFK0?J3_U5 ze9BA&G}YDLb#(Lvg$7q{r;%2)?+7DjP~tpiXhoXjOeFi54Xo&=HTEU&1M#NqF7}WWR46nGBo7f zONPzsEihjB@^lw+?8w%}h+Fx3Nr$X)vBfDbuU~l6<#Rvtb}g=?MAk)E#0qX<7s<)U za08Wy$%=~m+J|ErP$s^9{fYn%3=Dian8^3&(IZw_|F@G%yS86d<$kjj3^anh8y+6^ zkQ(aThp5Tgoz|PFoI|;$vuDqqFomv>5zSm}etv#~Cx!``nVAUB#KiIWc^S_cU7p1J zOy8T$mMr2e6K-SjEV0C?ZD!AHX$8DJJP>N6JGUDf4~(wd)6N$b76z1g=`=(}LGh%h zXax!Q*RS4yfF|xStB4Bmg8cl$*O@PB*N8-M8=hyd`l6v(JwGMnA}P@N&#kXbb`xF&z?OSG4kHx1@hAJe=6VG;vf?N{X167&vmc>Pq*A4<0DDQjf>)OaMOts>yhFC>Uw+>Xce`?geZe5@tpo`S-{M!AED&4}Rou-e*_7XGqY zt&v5U6kA^fj~to(J(>CPWSA8FMbc-rv&1F5j%I{L{o1WTK;! z6Y+?t94Bq(u3Zg{jTy25zN@ayZsk???|+G43yh49_jYkHEVbL`F|mWF*6?cIb!6X= zOGCpEtJ4=QeEu=fI^kA6e3J}`vCMvNY=)ab?Sk{WO!Z2si*I(WSI5V9M4FOy zh;Z8KdJ70VQF$Z)=t)ER*78|;`cN=i|G)q;&Zke2&OXw^S9g%m3!3>)zdz{b_h)6; zFMhR)T(C+gaDBBqPm?_CjrZ`CCL}4jpFvVIL8pN>v8^{`;&$!Y<^1Y54{NFV)924A zsHs<$mX?;6pFewMA(A4J^5pU3$CZ_p#l^)B|6YZK*H`Tg4GdQLZ88Hke@}XPdahFW z5ufJ18MHpmCbzz@W3j`+%4*-feaEa?_KJ&(A5T4-*S%;s($dm`46YK-N?T-8Z{ccT z!5QDA)80%)L{w|*D#0R^Zg%e6;uliI1l13nokAbfVo~j1ym(O`t76J^P1$o#bZ|Ds zKHjnKNjn-2`LP3*(<0E?FSQ7^%3f~Z->j_yne%J`u$^~u0{m`q^_wc=lyLk>4<@)NdIkq zV`b@cNZlG5?J8^m%O5n)URhst)z*HGH>|3vqA+Cu-z1H1r~tz{e?G;HO0V1`aJ-R{ zEbQ8!TN&K+F~9v^MMOjd&Ybr6fNY=;c~3_omohIY_sRWE6Yx z@}(TUxf;iy@V34E8zJG=1Xj=NVRZ>DcN(fdvczAagn5qy7})&OOV#BYD!!y*Xm}^^ zT4S<#U`iw-4pber+`3khoV%HsnRC@*BeQc=*M|?wlbJyR#xES|O{q}WHr9Sp%dURT zr)Jt(n=JzW5|ff*0$vYxC8MHp0we`@w6e;5{P;+m^6a;70*LXMnY*GkR2k1c4h*E; zy*u;utM$c;@;O~dglcMPU)&@!)^kWe@|wmuLZzgn($dnF-QNpGw@&bN9NA4q=Id5F zEOhkmg`d8E|9;_})I>&OMn=ZFcj`=W#~nY35rr`B60py1i7A6#$)Kv@a1O8v zxJV2;?RBYdBQ-(mtBXHp`!c1khzJT6RaXx+G#upRRpmlx9?Q$)m zI;Iqs^*yWj(IdOf_1`7}3_&JHYT_gQOJC;5_X#snu*ldIT{F_s)x{C|>0T&m)4q;V zQ070?nGN)k@3&J$r3r8G_*w4ogV&5EW@Z`Lj{yejI1-!PzrH&RG|bQ6hMoQX-A0HJ zSjl~|{ovZNt=Qe_>VUInDK+l5TNJ0Irzh*Hfp0l@=I8!9udA{99lk&7fL2_~` zOidk#3?T1d%GXsps*&@JrQyzLRG+{8wFi9_b-DsPmNMq6?v+$Adb|(l+&Mm=6wVGKfmID z2F{oE5m2i=_0T!qy*M1JHD6X&eK>tTggtu1H#pCeq?Wm6br&iNg0sk^T*U8}gJR#Q z2-K^sR>2zfP>nQ+#rJ0f_g6>}1?SNux6Xh2rc7F1UOqban~1Rl+40jSqtF{59X~!g z?{ob0e0O|wXuGly4~@8;kIyQYT=W~V0!B$# za3`q#S^3^KU7nHNE-srHzg36r6;e}rX=88y_@e#xV7^HCH+S3K94Ia#CK}HkbbZ)T z@VF*xF;P>t+;f&*;1DPTbng-cQCD;y?tGG3<#3-4sQm2qtHG-_Jn1rThv5tpPiK5-Iq?q z(8rY(XIyJU$+D zN{xT+6+=SWmnZaNak2lUb7r819S!0okEJu@!2=$X&N?@)4vnpW68GF2x3&{yk$8D| zi7`=fa3?lL9=x_q=s50WHJ3PDgRO0S09&l0qO#N3`l>5eg6b;0r>pDvSN`REl~Y_f zr}g!FfkRxcK)6Af@Ri6nQaf{ooSYm9DO7$%n?V|`oQ{0K0$xzL>bU{mN6auzNtEPoF*oJI~2cJW5~E?_h5~yL%7MPRJ=M znvUMyD@Y7y)YOosRJrLwUO$Bz;^mbA7~|&j9B?*G=+D2iCQ*Iyb0UHo7)5Rlxs9v*mFBA?I>MT#^5YKgsAm9pXI48^Pr8ezN>oQo@6423fbreylcib$Fs`Z#d=Qt zlsa)j@cc8&zCu%E0Y27+(-y_6C~&_glFgw8d~y4o$SjodZWlQ{MOg|5`1Vu;bidNl zW1E7{UcJg_wj4|1-X=thL{VR>%goH&ru~^0*)bKI8JtVm^cazcee=zOUrnol`}y>L4ii$d(~2VUS{Ck#KfGRF~wj`}F*?(Puh zuK*dek`xf5i1T)!dEn#gOE;@{J2`pQk(Gp~ZVy?QM6sO0ThQXVI>jRqLzUjnhK7u5 znl@bOPCJ#u46VoUHu?dA=__IxazU)|w0T{&f>jIG3N`bhaomt`T+2&hJd=EDe6~$st6bBC;ghnON&_CB-0)aV_>wa#or^`84ksC0Wq49}nEH>;A6 zkofre^=p(PcA5nrX@O+FiI#o-b$MVy6BDKt9?c^oY`)Nx*S^fpo0^y$rH_I1bNO<9 zUS1wSS3I&S<1%ivUfNhkN2iLl^aUiT&xj4kv>~JUwWL>kd>#&n=Pbq6LQRu)|4N}? z3+C6@sbj9MPk-P*+zDgA3&Jh6pZHE8rJ>A|cmRhsCtmhV#|9ST{Q2`-g$@a~ZtZ1b zi>HZ>js`D$K~?y93w;eFI3$74&gJRuBGXFc+?g-@MDa~rJYi>YwJF>0Y4HNFA=GTz z(|&)lFTzLlxnmQC{RS$^lnr14>4}%SwWD30woV5(P#m%Y2yx~r!d zLce#fuAyNhO@-S;3${XU&^{O^ys@ci{NVtCsasRd6v3C}Nkh8R@7LUERn^+`P`lD` zY z-DyA_;k6w$G(rwZwW5z-ytr*h+z75bSmtWfLESevxQ;-jEC04lhz>_4g6e>_w{LlS zL>}E?m)MK1yOF1$ii|~eH8mYNbZ8Q5$z*4}E2G7Kvi*Ruv2mytO7!ERS9ZEPD9{># zY!}xGKw;neBmL2O?m3y$*KA$~Z+j1!30hkp zJ4cEW+XG`GBOhs2f!T}vuW75nuqP%aNI5h$J1V`uUxyA*Z_1;7=SD`x^{rb3oc-r} zP2Uy%9s*^dX>~=eRaQ}v3ta#BRFA0z$L)~%ovg7&$aJqgKFyR`rCYK%^)yvb76pd z=QRQeFJplSa_5dM;!EwPevujBMz}%&e~{!Kwg^C$I%O$x1?QlCDO#1A4{HL9F+DBp z&`?{Fg^2vCjNh92=H=qDu(;SY)M_OvT7pG2yCOkdRlLhr`AOkb8sCW|gI62BjN9~| zbvkxNM*O}As4XSa7YP^@rYNhU(~Uy-c~enO{jS($)V;EGtSwW|r+R{pIT9EX8(YtY z@`~zk+~H&JrE%f728(JeRaq>F-XqS#ho@(H9%IS!G}5)rG!&g*t&YW1RY`~5C@T8C zINqf9&LWoPQ-!BJ#4&}3HE29;Zqzxicd4+IK7Y<0`qAMR5>|f8%_pI&tE&d)0sA;U z3=bEsnGrravif*q+$AB#)k_8j2B%M-hMZ?*buhjOYd{;N*b`Xb*0w>MQJ&9-`z!|`e@!(fv4M8+)KehHOJZEy*l1>S1?&$db zvG@{%l?RP^o%3mpnSpDU@wTKKPy!QF?@yk)w&Puf40dKqnY0=z1PK+3miuAvYB6&fQg&UP-p^4#>O#RR>{dRAv&s?5NYU7yexhe6 zz1gzRtePn~=+C@3zk$;Sur9m`8bkY;n4)VES|`9EjGtb(nwK|;%y#mA^a10l>S|Z# zAH<@a|MLP|bagGBIZ%ZY!c>3GXmP-~X4Eh6{r%H3%8;t3y9s?sj!+~)3yU$W)O1OA zVwG5jG+j0(85)>pInvnU8M zcMG;&&Tj7>*4L-n{^Y$Hc_YP9|K>pM%Qp zuef$WT?8584>eFeelaVHeLh3sr978#k!gs^z}eK}gig*QXE_L(RVT-?1k7K>k~1xD zUGPcJ57mNSARwUH)p|FSjUy1tiY*$z;^}bh*%Rft{X5?F`*1bNW5M~7uS4D=4KhZJ z@uaRNq@;8yn4;dD^z9uU-u(P}he_}1ajqYytgNgkOWW`YE*B?SlJ2JO;s~A8L_s`v zQ6xqAhb46|tNI-w`JXITi5PD?Ma0r2j)>hU>_nF#pNdn;R~xML+&Nl-riO;gUi=bX zO%v$+wNc#@9~~Xt+FYqY{?|yCDz)w6yvG5hC~$2$FE}{3=dnS2R9Hx49!bwgHFj|J ziBuiO8)+a5+P)>07GOcwY{&pLHCxS;V7*a0kGFJ7^c)LZ_lfg6{MT(!D|!m+mGB`! z)zN_lJz5`s@|Xsuv(y|3aXRcYwt3c4jTeN>{1+R*tir>?1#8yn4kgKxHc$M3vWv#~ z98{nuvFqoAFYQTEJ0KTWRd_^{m(!Nz?5yvXj)~zpH5^ecsJ*X3 z7r*PEuj;bq?17L=0o!^R%zQ=>-l%N#Y|evai^G23r`PTSplyBM+K>|$e@V%F+@#9q z90M)ad)|qgFQz7sL%Rl2I>(yHCp8l$&h!etJ4wA+Ou@B3KaN)KhAcaMfQB!pWbQoIFGq1-iO260|k{a%5&q z3BdS#r5FDs0s&91-id4Xt%O7j#c z(gGy|2*$lxcgnCk8^^xVeVl??Fo3e}`g{HNQia4Rm}8C2-oN7yrnExYS@+kt0o?h4{psTMB2TuW8 z5E|R4g{0Z&W7O9xL1--X>bnr8so2%w_@E)H7>n?s=ii~zluIXxYdO+NP?IZUhq59k z=AhD0YHz!w{DeANi`PX~kAKXqT-5scl#; z0NSxokt8E;KHef@EV+G~{+{$&Xxffj$;smimX`O4E3urh*`xW0&@wGhicg;&<&>yr zNbjF~1K|U3uzOVkW*(&qgTISQ6rLUbcX5^8EdXL2JAQm-^!^SS>gAe^U#S|J_Zz<4 zUX!o))a65)BH8ADg^U4D7jjWtioUrYz%jD_G#cpJ6^z++!-v~>|;do1rO z|KHCVn_izO`1dYCoB=!INVAJxt&w%u%uY=iqE`URQpc6usM~d6Ftns!*E&eA{(XMF zXXyO%Dd<3DG%PF*78W8?$6FrPKK3--OSX%F*fcLtse-&ZJlmE0rYg6^xs)80c)M~V zHF^P)Nb;O3J8s^-{UCSd?|Whap)jKV2u*xXG9=h%p0oNJX~|DLrnS)m3B94t^JlK4 z!^4{sq}-%)i0BkQTxV*UnoSc2&)lXc-JjUZ{YI{|FotnoY~PIT8DHNDjYA|MUuy} z$?0$G1*ECncp#`y~cL)_xP2_A9?29Nlxw~=)hMXqDe7D&42$c7qI4GGW^Uc zhPb+n;QlZp`4^+Xw9|sN_q(UzZ9x8C9S7phxpyyex2Nv{$P9WmpMM}SZ>FX`jwwMh zradw}Eg*J4rr5B`q9OXplcVd4>E6Q-Q1)B@Ii1Kedd-O8nD;jm6W+sz%iSiTqy5k= zJZ9hPQf>n9*~X)IJ>1$rO~PY}#>`KVo#v?V3w4z<;d3K3Y%3eqR#qEJnOnN{BPem- z@hy&eOA)=nQ`uVR?tz2H8=m}k%hD&78N@h4QJ+LaM0hmPBIT@YY)E$P0+fnr8lN7W zvlRJ_@=#J*dWsZ)i_ou?3o;uD`S9Tb#mFf|&IIeWyJ4-+us=8mWb!?F{Mg>kPHaFN z<{K!d$Byj_LT7aAOQL4@$Uy-CDh4FOTwf9+7Z;&~Yqr4kk0@3h?ChfB;;LOnucf4% zhmA)`DKvWWJ^h$kYip~Hw)Tgiq1UhfGT43(w0_w3?Q58D>yc5tcyV-rIW!^y^5vdn zkcmq@DkkvGjX<$XR?CHn2b8fa+Hd}2F&DHtXg|>4!i^mF{XIO4u?pYefKf^MHT=K|s;5d2&ha_m@3YKGpg8mk}Qd+2BPa!!NV4 zF5D>@tO;Usre|b)XweWZ|D?>;#%5(n9LG=dO z6Io19%UxStg|8CV2}wz)k?7tLhj1jR!5el(dKhE`9kZmo^EXxR6L1ZBTrKC8gZZqLQ^7C;UdKS)2E{VN`u9>lV)?NTz43F5x2@nODi0-xeiYR z+>D5Q+!ah;&^7@4Pjl0S-iV7kYhhvG;BZu73T=s0ac5=HeS7!90YRzvGA)gTWqKDe zv7HcuYcO!TMyBk6$<<@R!sp>usk*Y{!hUEk8Sb~Wr3F1U=)qF&z_Y=2H66%hClRpDnEV9;spBFx08~vcC@Bt*!f3aR`-#GJvJ!PZx4}zwE?0n9D1~w z_bMw>o5o$s2l1ofN^j~8PA_k7O|(|X$l$73rILg^mRO)XH9L#K&m{|WdDdN5lIZjK z#LP^BdH`4rMsxe`_3D+ZqJbTS=&@tS6rhIq!PTo*p>N=7Io%a^Rf~7-+c)}{2D&IE zz9e`Aik~^9xN;^o!*C1&3AJh31G`ZmSTEz-IrS+wLRs9fGm?fbrh$;FvlS!A$jHQG zBM~|N{_D`}#LzD8S%EnRBEd9%TyIf4 zRlf=Pxz#0j4^|gOkvpC~etafr9uo2fnAxcOC(>+G3UrXD*pP}pI(XUG91?(@0f*y5 zH|S1ULs0qPJ;+E&$zR;EKY2=*@0f^)8^Qryl&mgW;wMoA7x+#@&YF4D{COCckMi^P zI~-^2usYc}83E90b)Ym&bP>8Q9xfT;LrR^LP5o$Pn0Wt`c(Dw zX%4z2TV-xKh}Q%u3Y8nKKHYX93U(Y5a|3wY5Ge7d8BL z8+>CmXt)rTwDT~*D}`oxKf%gzW$9K;Q9*&Hx3`KfHPfQ7+}c#mnPdT(E6zx@ILfq% z3K1)C(p_r0o-X5ubLVxZ&81r!9txBL16H{w(Fg(ja05GsTM8L&#(~Ab=zkUPC%Anc zm;?%c9HSU|)=RZlca*Jz_3(MS!hU26%MfZE{`Q!-ICF(S2McjXG19nnno5U{w3&|1 z9#*rRf7KmHNwjLGwmx)Dh2JYs7LU$KU{7pDmPJj3V+MXW7-rzoht)Q*8UI2<86F;H zWo0!A67KElg0Ico)O4t~mxnG2a>BcJ@33WP@c&DQu4a1({_$(quC1^8v&J7nfS<^~ znThA=Just$#y-dhE@UeRQt;ayrB77lUUzC99wvx8kll?W34Sy%NXWL{-s0$&VvUe} zMXbm|UNZ)&z*BEx61yc2&mM*o3JMBvJGQn{k$;$WW_EPEdxr+!{M1xd_cUGtf){u_ z)A~0;nx?1kg*fivfx{q`-fk&^KLuI9T}K_`S2;fb6Al`!Fug}9Sy)>)j=F5$z8%`- zf`f7!TG*(k=qfBMxLB0JUCfw^rt0Q$w`N_HR$V+V(-s4T(8QtYLtDZ)*dR_DUGI|5 zk^dbuU=eC3ms7oyk^+AKNJ_4Dc9#lHIa;x;SXy;-+Uh2kNS2S>xqBB@ZR=zHZ z4H~=9Ak#CLP%C9KM+OIxajDccB>vvH;D6&QCxg(xeCaswAnhU* zV+gv<5DEEgWV`R77^8hTJZ!d(`UISWtnH(crHQU|X{nxMG&CfFe4r71F5&NF0!~zJ zgL1^bTlRfFIEZ+#=9Cxn;Acv6+vDTo!y@Tck5{YAgG<0fAek}!?WhZ^h0jl%CV7bY z0aRl2r^e%9uSBUikCJzPRSx-^m2|9Ol$*ajY~nS^A9Bv~mP^wR{o6^=iUI zP;zv5WY?X~W(2F9jNdQY#iv*=37;%2UL4(s&#zTK{+mHKdG07ZwV_17Erd%}S6pYX za?z6~y7u1xjZ?Tovu$;8EU)MQAqYHI4F8e?*J;)2HZG zm{gC_+utJDY1CvQ*o-JK#?*jS9< zEB2P~0t&6J&5b`QC6x-Ar$lA(ZdH1h#7#lFX%q% zdjF)0(6)x_nkx7HeOvFwy`2X*9|;~leEQ58a7py`{x`gU-PDoHVulDWkzj3Z&X#aN zX9xT~wjR)l3VNugf??8fTE-#R$9&+wi3>C-{thW9{$L(g;oLAc+W=aj*)7xqF#6wA z!+xfrw+X7;pc5uewzfA~Czx0)Pv+PcxSh1Q#cY}+%>LiH8NBcAhIHt%|5}9bRoe$h zuz(A8E<53TF`&!)n-xAiVd?gm`d}@s$bBT}}R$xWZDqZ3nolk3V|< zzkNJ(UmL?MJOYYjX~LnA%aBpgb};$_3$R7QuH&f%6L+_z7e9YqAJ*Qk;i>Wvs(|fs zair}NOt8>yDgB+XsPzFK=i%nI{q>cZ(F8BXT1;HBzlmji=V7`iG<|wLCHSm~iHg>x z9LEqvP8TvVjRGRHveLL90AMV;tBDi&U~sDCyKlHc&zU6bqVxu&J(VZ(u;3Ovd4jVD zX{z~)@cK1vp2UqmBWPJ5p04=$QLpCf@)3|UJla`uyI@KSFWlZqL;Hn+o?iLXsr*-$ zoSg*)Y8@JdBigLTzhZ*opcJd#wm4a@{NaB~(8;uCPvXaqhA>AD450h#4uXSSL2rD2 zg;|c3ogJ1UlY;yRAKydWN9sJHss*v;0CfV=twXVBnHrVa^+5ZF)Z_@`)Sh~yc|K77 zvS2@<3|Vw`+{&e8WjCiQA4lIpCsN?z4UebnoDnVXQD~JoQtV ztBxMezVS0K$BO{^70iX_lK;8wHd^G1!nJ}aj{Jq?y5QIVgkr)rnBC)zH zi+dyw7iZ8u+V~9JneKj34j5U}Cnfc1&OUJMwAGCZL{|ftIJ&_CrdW75WHZfmbS_P) z?LW}NJQR7C9?GCjV_)A2s-ZM1b;k?91ZWL*&dv-m4RAU`-f0Q&R>)pJU?N{&Fss1= z&RtxT672C!Xa|{GxNyP8M}pwTfV?Ai>==}ORF>asYZ#$Q@!7!JErAwbSZCr;6=(}E zKB0^24w(RAVweI*OnhYI1tCU7(@4-?AZ`e75U-;IQS%|qA<39%Yb*F4PHu&tsHL?P zws(bWIFI5YBk|t`ITU7?3#^L`(ZijYo3j*RL>dC{JZQabdMX-0R{CmkJ z-=&Oy{rW(S{QAv`bY0EdVpgHY1CjM@zn`}|`oVA8rSs{EhFD64d=BmL3KIcAe*WAp z+sFC^_quFXQxBQ1Z|nIlKU7?^5v9{KfLsNK5Ylm;c0M|FNZcjQp1nEZi|-#ibciby zlE7O_kzL!jB{s9Th-GW}z$Ojn9*Zz1VPYd!dm5!8Mco>zoRgD4$ZK}ahj0zyr~n_w zG>jo=0K72cHo8y>5)IR1cef}vw-PrUOo9*+0^#dbJX>>Lix;%lM8H7O7QQVQ^jL)= zB9u7ccPYn&Pk4BX<+C(6Ntc)5z)w)f{!B?mPLA;(5CdT6~rZogWq5M`3A=*h9~@deG%c_3!mlhsSMTCUBcPK&w+NpOBscH zul$7p{(jALzG7DItxe!V%Y1kHH6=G8kO%g@x_f{0bTR`}A}_ ztXXTCIWW{b08Gou3RdTVm4lvxn}!rZ%LrlWXQacT7`^%6Ef4g_F`9$5X`XO{O`b5R zw6RM+Y$nd>=vi`tj;v#B97Dso*8cz>Wc_VdS21#JVIdVs9Pl<=TbR%D7tyb;w^)Qd z0u%>hp^LdigiBBW#2nzd4>LPkdB|AUK}<)4(ujzQBd}C8G#+T@uWlQ|!s9GK9rH0q zpB}vgU0q!o73P!KTCvRH*IOq5arSJDxR(#2pSx`Xc=R#|QoRasNW#sVZzh){S*Tn& zK%?pdf{_-aS-+zp0ZB;W$@`&w`xqDm&0m>x#5lpg7m%T0ig&@RN0{N!SARXUyD2Fr z7JW!L;OYf8NolqmE^~$Ark*Lg0hQ6Jq#uGV^Ke&V<5x6ts?b(}@}85EgF~U3tu-99 z6+oEFl7SKu5~2vx$f;8evHL}dtMpx5U9o4_9GoCb)cQcb!cJq?bGBO9SZOE8!xT!r zxC6Ojf1SO`2N@G91CEJ92qN5`DOcnB)2@ncEfK|eXmAjYyZ5LF;GP2mmC#{j3=EG% zdaKX0ck|qy63S4=1K{Do5BmDNJ3}4trwtagk}Ei+;0Y1Yj1z8Ge0`--)bZBegvt%UTDwXQ(#Ir` zsEvvQCL+fS^!Cy-GoO*3f@P{}dKttm`>r76EBBwX#t=X=2_^BT)$I;aWj!g6xvp3j7g{^teYOhD@bHmK&7 zR2XugEl*8N1qTy_LX0c-|LrC(fAz-^-8${+e-Jh6m__j&AD#zYwh%Ze$jP|^jr8;& z#iE*F@QimaT~vL4|NbpFBnO(BY#!DPV+^19;r9{=;JrEC7-e^ykXvwJL`~DdE|XieI(7Z;^ND;ww+s7^e)2N`}M27 zvGECZq{-2ySL6%=pX0Y*#W;+6dzvH+L-qHJ!(|N7c49CS48EQA;(_(Xr`kwqqK=filJ&(nLld5^hqj;p69 zw$IVona%Ff#A;_-8wSh}=K)8Fe+edwbh7_Gt)C(k% zNDXG`m=26oh=_n|rm5wknXr53_H`X|bMvbwU4H+t0t|+fH#Y~@N|y8p4`Gi*qT^Pd zh&m0HVT=gIz(a@fAdO>~NV>cY!2$yS(vt-O5Fe+nPy9mTC!qsQ2+5Fl$H0U|K4sCa zNJ5$VoN%eWMw$S{a<-P4FSSTsU3~02_-r+shT6U1mL@F&!%9ccCIG@OFs_IB`B>x) zjF!edrKUeT^l;{tlaR3R>qSMx{9--zjP_>0YXf0*s(llAj_Vd@uDHBrRKT}4%Y{BE z1MU#cF&P?-9GJo;;M2v8|I%Otx$V@1O_rTG(^J%HVj9k)m7IQ zWn~}nB3Ei>g0HMgvkJ1avmZSgtDJKMRZPhZ!ScE{V}zZ|Xl>1RqKVwVpbtt=_VC2GhhT|y8$ek*BL0=Z^>pZB zk<&q>9NAiiAhz(z*x5;4cti}1s<;^AT*Vd5tTYPf72){<5Uz_~zFbMnxwF8lGtv6w z(If5I)wLSVbdk4r4EMpqh6`eUL})0D`Iw3_OBZ42Hs~_u>h|vktplV|kv^K-dWv*( zzY{43U(%!Xdpo_~&uZPzpIdr9%kfBczb?#!h;^hhr?5y-FTwMNjAtf$OwonmzK_Z z_c$k=1Jmvrg25}A_ z<7uU{0JM9_4$8@mU=kF0I$sxah0DK{R8;bEb0L*_VUo(n%mQvAg4&nA1j88814{03 zTc#Z#IppLq=glT0?8X^=*%p@_o?TLD=rC}`{7 z<1jq1W1tlsXmy|s4WNLu2G@;^ND3U-tU^JaT9}|1e12KS#AFaHp~sINAw%3t+jU4> z-22n>%brM1xPrS1$5fv)bU7As@+3y7OhS~SIQFe}6&@=jFR&4u90LQDoGus6 zMERe;er4WiwvPLCMIJ@$3Ejm=vA-4^Vj0Dkw-o zX=!Nz*g#vaB_}hqXQ=Tc0=`GDfHW37e27-Jt&`JjRc;&!52=7v;auQ;e2pFz-o~c~ zPf4i6?_jU6(SQ|@M$a1=p~V3`kf75ti)*lLk@0E$ub5Kf-N3T(S2Z=6b)#s>=V3&6 z71Pp2FC5N;S~@v7A&Zrl|IUgc!`$S|>@2YP3yTIaaA?p&7}2j?+m77gmx-Vwu9B!0Y?V26aX#&_#(k4_6U* zaHUtAIuCq6{Dx22j~&x%2;vMeNziDhub&&LWY|Bkpc~qWj0Wc$9$sM6cK2YC8X8hi zw`mppWw(+H%=%wA8Y?O7Ol*eCqM@p)DcA>+_-bx0W@qv$7O37 zraRc@fhy6|_XSphRo|6NKj#!rB3?YVSHR(TC6qD_BpF!Th`EcHjzA9YckluT_!fK@ zqk=*@Kfx1_{tzC>G}yHSHE#zfs`ZBP+xGlYzCSpH56u`(cp{CQTn!W`OgLi>z{!b~ zg+-nFk*k*%Z0W983CuWxk-vON4OrvGfX5~f6beu@Wa~F?EC9%`#{g(`Y3-jrtzljj zPiYC%(SegwNL;+>vKvOD2>xPp!;s1_p#~v*)Fsv?U3o&8O_+$|Fj~}b=!QC@j)+cd-`E^!gBN;WdoZFYkic0r#6X{d^ zKocLo_FqSBJaq6NVVG_A!@9cJDitLq^)!id)Slh>FJ2t4dR7<~)*uu^O=+brz9xF6 zKsiE^@U*3j;~=GYm8%)nSzeKyC3;n)BVX|Jw zB@Q#PcRuGiiH`?YqZ3rB&!2V4?%2PomvNkhDngwH?3h_o*v`=rf(yJIlP(grm9fc<#)A1v4nXkdj9tpyrJKuX@UJ8E|T3IOCR4bbUy{KwJ~jD`&s!bxh#@XJd}sS>VZj0ZR*y^137 zkO=t6(6U+OqR>9()^c?NVhQmRt2|DqvR}U72_g|RcDA;d-qLq{?QwwyPbV?dB-m|E zx>@g&&xz-ED>oTZj_3=-8WDAJq^Q5ZV;I0DcFK=`932~T`}%HwT;`vBWDSU6*Eg8M zL>4RP`LxZE4}-pk#il)cF^p~-sEBrHR##Ifx*5=kLTS=9sL9B*tr%JkW%}RC`Ghl! zULGEfvjWnIgM=XwbSZu|uOZ<;>?iJ6|8?uKqhmFuW6&bN=f$Xw@T5j(Dmpi?0Ha^G zzk-w41#=SedvxK-qz7vR35N!IZ;L`ZtgK7ouy`8=pfNO(yO_NoHNE{R5y4%E7R!(K zT(v&nWqWc?L%oKT*!DVcoGcH8t;ar+y;F8Rb{Nfqc?Ld9C@ko8>GC<+*}Zw0u(>-- zAw^yJsP)fx=!~LO85b4x`pi^pnbx$u-tFEewJXw72o&xV)yNRbKkD!qc z@45is8QLed6Hg&ODdm7wDdsTmLp8ypl3HhuS7^Km$9Cc|T-*UnWMSJoa)`iL@3z?n z*-4j(*NOU#5)tLNeXiXGiX2LV2hY$xQVxq8#X5rz<~4Ak{C7`#5X?{*_XQK^8+(1V z5lzF(mk*mgZ9>~jOfex-EUU}4iA$&qg`!KWLL)p6Pt}Q15*fR{3t}5m3MQR z+KC1)@li9-oXZz4E`DL@L^8(XBS0QPwNMg~i;>cxC28lQFA3RnHJCITU!g|_&(V6& zuWzDd1+(fzzsjc$aK9%0MI3#fm;RiEPO`)4+m@$q^A9YxjH6p++2`6=nc6(}MWy#d zDqHH1!&p6YlWUsk30H^KD6U6mp7TG}dd90gx96O9E=j>-?MVA5(dx7u6U4kWE=9i&MU=jM? z#KcTYOwfn&^dD~o%7wh<<>$wvDtMTQA(ddgLD(^*446IS6f~Wiyb#|#zKG+7XQ-@h z1Tw|FfRAFZ!v1(FL2i5c^s|cu%oTAozH`M*3v(6OIWDN7`1|&@HeiANc`w<_t#_gw zpI;)YK__z-Nm&mJf;aC#HTX`KEjS<)PfMJcZ)bPixGPv(x{-|Yah1C&l06?+?SCr#aqXIOTUkuF4 zW(rD5mKPVhHt$bV{9e{K+t4JbbVp%p8Crn)_N$-8Yks$3Dha*Pl&Ol~Er!i42J@%z zr>w(Yf88la0Z*AQGKv=Lpdr{Vy((qkn2k2yrmvQ-d-L&OH;FV%@=vvUFwrbGH=j;z zBbL{E(nBJnUy=t=M}sd3qb;80lt<}XA)&yHYXV@D(*=@+ZV_BHDa9rg9{CR*gsbns z7Q#7J=yJMV>POX&#Sm$?LuX`2y$xXk(r5lr`iQ#R#ebUNY@`4;VNhtf6|Y7a|Y| z-n{;jL!zR4IPg#?H2(p|UHunm6}JA=Y^CBCGBay%I59c%(-%ismv3LnFZNJ8xWNUG z8Xyj^k16i!q7OX-L-+gltQCURB?J#JZtZPz^XtnUb8{d&ls0CWpA+$nhUcZFFxdRK zbAp91bcGw#()`?Mlck)4M+8c>S19hKqnSOZ86}jcTr(m_AA`y2GLyoQ@0l4HP(gbE zG?VSs&3+gxz`YHEinWO#)tNd#LKK{YevsViYiewt%B$@<@hf1d+g( z^P4PtY0hgEl0FydATpFixRa(|{&Qpvy?&|c^s zCizhD1mPvaPpDEru&1VQ)6^fQzRKOLu4-fzKwfYHDWw^<-?~aL1&lme13!^6luL?i zxH_I!4B|qyl7jVIa`YIF=P*c;g`~a}K6mE1lCgcfyqn}NOR)psrU|aGFM2(?OL0R^ z*W;4{i2q2Cv9h)XUGpLD(XsS)u2J|q9k5<7!)RV-1ZhMTa8w1?yRPyGBQC zUnwGg4t&J0E)Ch5squEqLw!MHMk?&ZUxbc7JD)PYH8wF(^Ibi#ycwo5$Gi8>Riei% zGLB%TxIx1a8M4eBE5%L+^|IeNdf832`}P>#&8&-2;{0kGxBcC%O&b&_&8|)qK`^^( z?euZgi4B`$zp0oyt7nFXho`Row2@zIIx+Z^=_(FeGy$bqfye}9WkpR%xO=y4%*`OD zYrwhW%cSAyq3Ds>#m|n#wF6I$^Q2Q8EiE5pW}=6Lig#ceqTL8(^yw1A!21pA>;W7( zdk;Sag@b7#sinKGZ*4?=%@fa_2UA~7O~A1|G#oqkGSO)BotplfkKcvC{J3K{`PZU1 zI-90;ld}-|K?Ae5jKN-EUWFcaOof12!MhMy{5QwKF|MX;6Z#vkVoKlP#^tIZO-p0 zD=E2~^lNCDgnuYTs=p6K{ecn=l@>?Jp@g?+5iuNGUo_&2Ek&@+ zx9|8D6L5P=e~M_8ggn+4oL}_DY=+r#;j&~>g;n2$&m*F4uR}+kn`Z9~@&D-XqRp=t z$y9Czg*IUl(~>w_gjzZd%HmHGVNd$g?_)xQ_7mg) zelDC{-5ZOz8Z*W(8(OyuEZ0~LVJDM<~S5caJ4s^mcAczgLLfaQ-ycUj2rTK*_VU> zEJHs&ibNrIJzqLt@3RUlOC->O-a06O(z$YJ{=t zW1kD)LK4Djh&bM`C!0fs zlC1YCl1fcP;xtu#>L=Wrzy12=l@Nmq2Uvf>{P}xM_^zeE^^6Zx{&m|yq2Mvll-J!1SbOd znJ!*l^(`{?L4(!!{X2rnrhwBft{DRt#g<-c7)pEcdb@+F zF4w_?w;+j%U%UWG9TRa{Eqw;LF9Schj2dCyt%403gRn_x&-j0+@jsiVr>AkGaV&+l z2B8;=I#RBbMx2JvKmWPzDMslhh-Y6FTA_vSo8^S@A;BBXo38!8FV~k-thBE|_g=kP z_QjE(6rh%ld{Vrk`{m_RKdTAvgm)ko9@r`(LW6rBnWQBC2poIlty@T~K{z#;QZch5 zLvLTH;HDHEzh6!KXfFYN`j5B_%r2r0vn*gCLVBPW1cITI-i|wqxUV}aaH-_NQ6GQ% zHl%m;hKkIr)3h8!vWN)+nk@C&LxYoZ@T~$RhACxCh+^#DB27syffXVUEi| zxKn4pYp1q0Sc#!`M;sRClA?5q?{H%@nq}~*rC%HaxKOr1mcNoF>kCCtWM^fCHVi?U z1DJB#fw`dgih)%cnQ2 zxhMEGmfLXjkmwEIbwHc}GAwtUHplBPnPiHN%E)LD=Rp3W4@Ff!8k;^GafyB)kg zkvRYXqG5|na?ZncTQs>>@Htif>t`SaL%_Wsv~R3G#T#DrXs)~#f8xUyalPJhujsit zt_bsOReeqchJ%G>``3Tx26O5t@xOjh&10-(G~N0XVBwRJ5|-{js`WqTG9G+6{Q6^1 z!!KDn0*F)cw_|_e5kt2oLW}^EVD@Hvx-->p|T3B@2mx zVb1^lvJD%Ax4!=0!Rv-Q_YhFv`p=!s8i3f=fBerYzW?9B>qb%k_kVmx&iO5nGhxWQ ztHr0(IQ0jI10Dsm*XX_5IN4cQG278Cb`H&;jS1kIK6OoD8V0b}S?_?DnB^A({#l7c z!k$+J!L&7GY0~dFIfD4QKcD*kx<3#s{GB4_vxK@0NVRF*U_32ch>RP#+84cI@c458lYw7pEzgO8-9>#bP4#)O#q1o?${m zFGI!qq_0c_U_p_wsh(cU=na`SjlS>ji@W(E8_uDPkxW7yW!V=ISk7JdzSJ9M!Tc!7 zg660B8-P9tw#g($(`*H^eAKDI`>`%3+%mck{?Dlc8N-YR_&%LX{+D{!F#Ds9d~;m{ z^@@JbR@}Zwx;@Ug0g6XlePkV??xFhwO`ZOgW=GF3@*nUBBlvCVt8DZ!eWaH>tw!fj z?9dCd8>jK@PY6GoyqBEpR`!Kb5p^D+x^YWars4dJFPMU8@!yUB%udNkNjMdreVRav zo?vsY+G%Wl2{hp1qGwg#333oJ2FtD-SgZyZi4zH(1m51E8PL9AaNJWyyHL7{}mY`RPhe0{!NEAqT*7bi*^3r!v ze}VQfh}s9kKvB^=3el!bo5J#%c-8U@sI9)Bp$0{OZ|(t*LBEpciAH+u0Nf$qQP30N zP~51IPGs>44_Jkp<^Mr##&^ihyodjbBhtprZ4L$*l=F;tE+F^OM&II)eKX+fEyw9g zoMdn!5mE#^0`Dx)rZz>|7JUQ>0T2QdTu_u*{u*9)=(_N8cliTs3_EXPYD7}as_z;O z06c9_Q-=9vKwJ+YD3R8qqoYPTlJXA6q9m+ig%Cdi{_etk#Ta9M4Ic@d$+Oiih_7Q5p2SNUUV)Vx0 z)}+#GU5LS0n=clJAZ`afIgWGC$M*O|h<>yz_%JdH5vDJaSwT-e;&_h<75d;u85xVK ze<5iFh6IFRY4tC70A$65)VhGvs_HX`=uLibb`d}XfUWRT2G}2fk3nRey|tKdzY2s4 z2{TYzpnL2YpBNh}#didt)i_1S7RKC`zy~xbAQmDf6GhKoqUM{ctjDxMeh>dk9&=_q zUeH#%Nf#I`hD6j`pSn37=jYQG_YY*! zQk}zmC=x%8V;ZL(*Wq2Pte%slBhK#v*XF${pxBY}nC5!7WyS`GQ)47h>5A!^t;0_H z_U_F{OFL^}!L{>O26Q1vKkoea zQIju%m<<@CC0YSHynTzyytl&+g)2H*kxn3^V+?>0BGTbuF3~-mp$8oeEMRQKW`hct z4$-&ej^4*@3*8;rkd7CXP5afj495upCfGSXSBVT<NDjc z_x##0crR?YdTx0&9&$y*$RVb9I?u^xJgwOErr$kV2sv@J3|ohXjM0y%OA7O88j3o%*s2SP0k zExM_goeBx52d54nLoDox6Pew>UXh(r*sH}C0o_%m@omrdQ@iyG@Cd+I ztHU|anpK#Yo0w?*ZPP;gQJVe5WBvNIbWf}S4u zCO&;CLap|jYxczP=ITtj%eT2O7Y8eWFy!f7(UcsG2I4WgSw7(O^tl2ToaN}}F*b8mp-9l$fCaxMSRm&iYuHaD88Q~WJy z8=LEQ+>h~NX-#q3Pf46@fB&hCBgK7Frv;cG#o>$HGWD!>fMiH}XwJpV#DvzdrhYq4 z_6-}t;K_x+aN67h4@d)g?VGjpLJA}(kRdLKZl!E{yRx^1ZS;`2hwRdvE)R0Li3tC)+V$`5WvF~HBkTx^;`6A!=mN~i z&FtmUF4MG3W3&U{b?zGE>;~Bb7sS4O*Amy%K+X(w)sIb%A)f_wqTJdy|Ud*FEMw;Msw9HO@1i?^J)Or9%(#}e2T z-WaIfXBVB@VDC9C|M8**@t(p=5y3g+#vt~3fpOVf7=#!=MKK5j!e=xQD`1$f-pi! z#1qrW_pI@InzdL$v$jTqbzyvNVC{f{%ZcZF{QN08{P%=HSB9RwH-*fvvs>qV%mGXZ zp-Ffn#5@6b0tktc*#p_CrmE`Z-c|Jsy_VKi_0=;J0r=W`mBBs=X?Qa z30V`IQ3uslg%lR19TJB-knu1}@3&B^xmCmJJy^voz3l%%InL6(uRW!DKv4B+*Zriqj(-b^6$k-}yUneM#03Z2c_XXtR32&Y# zQ{g$7pk+0(@keop+`R(02govkBA2g!az=tz|B+s3j^7Rg4BP_ni2(OF(J`azB>P-c z@P2BTi_h+=LVr&~;ETFqfrGg&nh0 zw7AGoy=-QF0ZSqXJ3L+gii(<=_kswzeY9f7U$g;_My~SrCl4{k?x^1@2=eijA||5Y z-ETxer@_MM&z!Bi4=-k2LhS$xCuc(>a5&raq%eyf*`y%5N zkN<&@14WGW}X;*jm7m&N7^->LH+OebE_BmRufkSmue}v-RL`O6H z5I=@L#<8!Pdju`fHy9bvq1d?KI6q5wY~u_O2)UfSZoI;-qSe+qZ9{yB>ioAlm0Da*d$0Ca@+F zWXzC4gvDq7|3N7;RomW<%mT>iLtGb<0N>k+XY0R&UKO*5iJX;_6nz@f&`QKNr z{l$h2Nl4VkWJ9C@m93P(%8`YHd><4$B1JwDL5a?ibnGh3ewi>*I`=DR z@vjg`A_@;6LaeSQq2j*S;O_Yieon8C7TW?tzf+siANq3(*m)?>Hi2%0*WA_4GB`2iJ+Z zI2{3n&5GvgS&HT@_wzusBsts+2zQC#-84M!<+uE)@A_;sC4U51FElk_dF#N8Wu0Sj z>>&%J5Awed<6;K^v~bNVKhnXKDXB$`Dn)o(?)lF9)LPXne5EEB08)8b-jvXpR(M@T z3SL^$UOv0Jkq%5=0Gk`_Ebv`7OowvYn4ok$?XG$GYG|f$b8+Kz9;vi0UWJF7`5NT~ zR*BK*Je?~Lj%9U|>NfSpOC?Y5wdP3%HIFSLNO{FWCzZdO*r?=RfiOpvCxdl4G z>}+o8t-<~ysn}?6%Vqb_jbz<(rmd+*fE0>~-tV&C5&+L9h=l4tL))lofjTm-7)2kO z!)|>VOP)5{oHnhL-#>80(uS{Xq|B1MSC3+A!bk94XDK1QrULzhRH6{@O^06 zKAxa%r^Cc5A_!Rjod)UcIPej7INf>b#OBW=ivmLcyPc<#buu+GjH^;yo1&r>X*+ny zb8v;D65%k8iD4}MBr73t8Bu(=5PE`fR1RS_@u<0crz6kw6w0cy&%wvFVzDaHx{%Jf znuV%`kO9_##P)4e!kR1B`t7jcMqrm9Oqa>(PZ^~co?b<_^?*G zQRutuFC+X1G(Ixy(J??14EW0?vs#_Y4}BIM-r-Z9EgcGbmHgg}&qH_&sRFv{58Vf> z8>4)-#i~iC=var3Iz@yWe@7LBEA#0Q8`t3dA-mJhb`gs>G+PZ&xJPhzQtHdgF+6X_{o!Zj>W*qi=RK2S)J>!ia!>iHjC2d1ilqD z1|jvhp9Fe>(ckvDly;!HnU|bc^96K{=~WrGxM2YcsnrEzS**PKvQ;An>l<V@Jga6aprb}M{Dk31YkJP7|jbv2x!el zyfHt4i(^q_icSOQT@#T6(fm_ZAY#5NIh9WOwcs=`L4J8yk?dYpfr|hj?Ji3!$)aAHx^ z&yPi0s{q0RRCO^oDli0U=`m2VIYoy$XGHb2WdVR|h@22o81(fS^xA6a`xC7FFIP{v zul231a{4C6#a$k44qYzczK36OD!fS`m#+{YwwP`%^xAUWZKCpvXbiT#i;!P|?~ zW>)V*$!}U(_HqtgKEUy@NbCl1sfHm%Ql490l?1>#(^6Mhx^~NWM73Cle9*(vEfEnc zam(#9a&8l3qvediXPg7>3e;PixUDn~%iKhlz=cj*ggv z@MYnzakG(>OFiLpL!Esft_?8D12?OB(7_#Jdzin&aNX&0e!)^?;j8CQ^yur2@O+Xy zSC9-xEA9Y}6I9fA6R&FoHpWdL>+z54Y3SIE7u)L8c}GD!JJhBESwp5R2#9-LKeGK> z@RIs{K}&~PKp04k^UN|e&ebVm>6?&g>!octY`q|epBd_bOay1tfr>fCMVjjk2hrKD z)XJ}H`g_J+l*J7BnqbUwJ03>Ao#mANyqmy5HgF{ZJp&X4m<0stUB4;-(#T%4w||U$ zEpKlV^j(!goP%GS9Y^?A?#QERn}t77$2p896g)6EQ~~_^6*Gf_4>U6{;GCKA@o$RC zd)_|QPLkeHSr}-ewq;viu2B^ao%E5lZr&jT@8QIxxz|W|b*BCt5D|&F(l<>jO}~4j z{I{&QU64o*K9+(w8nbNuL_{!`TVf3?))+zUm70_Ux*cmc2A!(cs)v57#q>Jhf?pVU z6DLC)GCLh%ZAB@D2E+s3Qr!SbDFT>Un9?JNv&BrBBmO_z!!DxUS>&YN7 zy7A`1z>7!oSF2DkV_T-SRO#+ul}_Ox7omcrRqaJzJBvDkM~TD@Cl1hj7(#xpU?;5# z2~P34viG`5IQ4u4?q{sOQ>m!_P*$U73R6)s<+|5moo^dF3OyZF;6ZV5oWVin=z?j2 zEw%UmhQ4p6Gr+o#aC)?Nh1KC^-`3n4QVUQd&5Ri^d=JuAD!g`ZyZz|gC*$1??SDiB zG-Lo$g1V$M8|& zzd~q{9O4TgPUQ;nozF3^049vBAzu-e1{4zs@7Wz=unnhjgJQp zi#1rA3_<{WAO#)14uIO01yUB`=R|kj?1B}%yBo4K_{tHGX*T2nGUZ_IDoyli3Unf} z9Iaj^fg7)Ax=FDEAnfd^Fgp-Zi%4+d4Y|Y0&JLyo5XQLAFRjQ1Wjft6V>S0W@8@@v zI>YG%zlvTqPIKX%LhuZ}e93l2ZyU+W({pij6gb12hl~tIKJL|%Cyug{V#cOzoBk%| z9mVkkoh=SHFBI@2?C+3+4_EnDpFgH?n!)76ADdOkOtW63u{PSO3E?Jq(!~3}@OftR)Fhk8KWzp89zEjb7}&@@ETvvxU#UY&P@Mxv*rjngM6SyzV*!s-RjZriM4F zN@s3e+?Uz0MbVr&OEJ=6&ky3uONuJp?0l(kJ&Y?fmj8sD+tp+1oy=V{H~3&kYrvwG zLx*P5W;iBvY=7l|Qo8akTe^%rYR#wu+;c z_~aWlaARBtB!@vqU;jA=KZEHuzE}bZJgj=N9x)Ex?=)ll-&htz#nz$M)r$`@%J#pH z1%h$!@+by*Zz!J7&?xA27#2=%`&#mPU_-^+`{QT7HU!-vs{4jIaGg7Q+g-f9KabDz zy^!O&+c3mR07O7*?2VH}?c4Z)<9a`~(B49NsV``H{#xJSyDQG>>WwTtQm*ei0lyx3 z8>z5P<@ykG}V3Ppjbxq-JBQmhAte1@|2f38jWtu2GtG;MGA_n;^w zV=E|PicT>Vf6D6_SLI=Fvpx>EBI~38s+(^jkc#GeU*jmRrzp$Nh25}t~5cmk~5AuJHpWOTnxHyjVg+Wew=^bGz15K;2Rf9;nK-)hV3V(Sh=Lf&Zfg$XEEy!dabH zhVza1YfmAb)9Bj2vw~|Qpe5+ER#s##yD~|qV2(?^eH)@wu#_n}YcKa-U^ShrDggUm z29eRpOOioRDm+ctmj&JaI^6|)5*H<~TETSqx?1{qyfjd_UX&^T zV23CS`Gx*X&v?ZHIuE|4pu>sc3GW7U$!Jh{MYgZEL>u;mHw+<|u*<$E>`7yf4pLn4 zX0)hU)j@fTxMBog#ziH2!{UTl-_g$Q+Ii!lFr7^K`OZ_s%M*h~%!uiqDCU?bdRkEy z9A_=ohfEUcm{MC$ATk9{)B@8Z&`De*r9F&zrHG&MEvNH)pfH++5fZp^?QxX=L)f?= zyT;H@tQ2_uT2T4li&%u@5ms8NoUR*3{{zk9KY80i6$+ZbYQO+^+*=XxQ4=(BqdJR# zXBPTYPTTJWWdz{}v?qqbux;$T+0$Pm3Evsml-k-_h#hmfAk!@}P8rqAJBLmawGL1O z?iFBu49Ag60_WH3Eb$y}5Wdjz#bf=y;Xj_b|Emtf|F$p+(_(`wA5NE)S2P=fPQp%h zbgKMZVK1X8!&Bt7Z1$}9iscz2sHW}vcM6YTguyZ@y0^SU0=mD1h`}WR^xsHd9c-Xf zgopxah?-njm=Utaw_o5@bM#dx1%@eTR{fuo7pU7>vq@ zk|S1p$fa_|-B_=&-rMS5WE21?1Dgyk7xV|HP(t2{)GDnihM<1;GN{-u78#$@#U5nN zUAu0oHf`X3Xh3XR-EMj_qn>B3U9iKk_$WKw-OgR>-&Ml0%oy%ytgfkx1Z;%eH&SwP zIDU}=dv2-1LIX_;ai#YzdsmK)*@<;?{lF2t-87i^UAn@BFv7zTxKn$a_+=Z+IcLrc z##USC|M#B{Ko-p1&3hwu-pqheCqwT@iViF)>qed9A_91U0S%+W!8h-9K%M00w?XHG zBIDFQy9f;!7TZAi&^of6M2Rtw&^mV6jQ)zp7Ea`b!diDM6CbSuU1AKD{V)YU`anI+Uh^7vY~Q^VKl&BbM8a`gqZ`L-(|(E^?xDnFA9JtBa>y^Poa zhjeR25{x)9nEE=M{>@IBnAHCJZ^!&RE;BlEP>WkR$v5lYcXegx3r@HnO=^MhDlaD| zosS;DHM@50x{6i=llIP=!DJp1MGtZvy<|9G_cJzrY1hH`;|7#knGlyaIJ~tl0u%w9 zWdE5LL4Br&2HQg9+?rQKYL28lMOne&1Na_%BIFOA6=ryq@gf4}cI<$9;nSz9m;;gz zLm+xWM~46w)6>s+d3_vkp7tomy8tjO#BfR~dDaHC13StyGu1OYK!f;S6pc{p=cMzK!zyLkVBd8{Mlc>f0|Uqm@GpG%lGko~&tq_lD~lD7 zo@09+XJx^{262+Jvok`nkwvrc1uPKlwr!|}|LN<4?!l>zvO#>;Vf+90DA$nOpzVDPG2~x7L^76omc`J|LIJ=OmL*JSZs?VWLcGd0|Y< zaWE5PguJsA$7Oj+z&M)uJvV0)c1-BPU9G^y!ou9IzZ|NRE45&qa zV3d+hp|f$+$-D%uG5#0f9c8)4y!1Q`ItA2zbb4@CfnQlr6|03O1>+xM7&4O*t1XD9 zuecal9l%|Nw&6@fP7FGC%rnR!?sec`W5dgeAZ=3N>i%cMv%~GnJdmuj2NmMT5hFDI zc-#WGu7`v`ylPk2+i3113b8GejF>!OJpziAq1TH$+hvdRT=r@Pu3~t{>-)-pPZodr z(%0Ab@#9NWLC9aqt5;T5{zYnGaV+c~V{RxCkN#4v7t`+C621rs1W0KxpzQ6t2*X{0 zAwJhDZ2=bpYEK zxZ$~GsM5pUY3zn37WaLe#I`3w-*sT{keFDI(g1P-pw@(0SIHJn{?H5&NH#kdXaqvf^s1m}<)uA2)R427fjf4`6?>Y&w9PU%+olk9< z+jhh@L0-kd%F0dRS(r8!zJtP&Y{DIciOK^64_+4>4(u(+zJ^Z|_Pt+Ep|Aop1B0m( zu2h`*0hLi@&X?q>o6b7?F6C_mG?SyF3*dSDbr4&YfBsCqdzUMH z=U)ach*?aK&$P$$iZV7ELn8%J%j!KQaW!%sG9{47=bM4(EhKoQT_F=y!eW2u#SsDY z2a-uHH~SE{#vR{`^C|vkl6_$>%!7^*F00!r`A%i)H^)Wh2R41<0cVHDUy5CKpSegp z_)I)du2+Miu#sYX9;e9XTv%v67U02;;3B2Bho%CO4TAKM_VV4DS5{&u#-~fwxlxMr zK3#J;GHgbP{sB@;)k{D6bpl;WlfBPlOc zvSp|f#O`BMIeRt@me9A@QV-VTxcf0G;u0EOu>ADi1DoQ09ZYI@l9y-t|57az;wG*0k z@2;Cfl6hzG`lcv;W;3C6PxtDNoP6j^0GC2p!D2b8Phw?dEvdJbxXPsTs$S@?$d6wx z=q|9T&E37*vH)y&Ro~R?Vq+kgF74#qxHyOuyFYvg4RMW#jKpC5Iq~_^r~YJ~hMO_Y z=~)IjrY+wtOU0S5GPswTK=tY{PxE233ERFoyX|sV7L5@&zrW(uY%sX*b#YqX)u{@9 z`s?z0^(fQ)M$>L~Pr>fA+0Cn=YN<{3RrX;%vJ&oN>j>}(kzyYybuO;^Bn-tGR7`#I zB*y^^xM7pq2!L&azhUUb_a)~V=%9(V5JkU_rYO{ib2`HcW!3rU9#0o{2!z_(brHFM zl^@p>5V4A`3u9a3eu!@Fp|?V3m6$W7NEZH z3ZiTu)6np=U97&V^{Cf@&TpA~1FiARoAX{i|JD_QHw9yM=abZ1iElg~(nImY;y{Oi zOD}1e$FL&(=~KY^LuPLvatVE}OEy0dD;uG)5ZBhzofc_W7iT`kVCKl|Z1X+nA+?nz z>x>3tZ~NBSw!G0R1rPhnwk#~ji^tQk%-9z8-YM&1jEm*$;V&8Sro7m^{-tJ$4fwnp z3Q5;lhJyIZ=**g{#b<}A(3BYSx2*A|p%cUgu6)!=Z*TTu znSS>e|78BR*Df;rWN_@j2|nOQS=+31@<8HD;@HMu`R7*fdd4=P1^}Q(iWbrH@;Q>} z`mbeN&v_OvdS)R_{^MW1>=hQvg@HaHSfPC2Nrz;*348zqs53Xsj!k4 z_fVIM3^4#=b^Td|p-ig$T3 z@Q@_6w_(2E1N*{eAQy5mSsPC>{DYoVDyAEebK)6Va|z|mZ8i&I_ZvK*sG zd{SzvyriUB-n}k+DB=)6Wc7N7cO7(%@a~@f7SGgs1ie^xW=87>+C?}NhlLZPaTsH~ zwk*h<3&bfe5}#91k+SrlZ;JlVM40d#y{ucBAM^1$rO9AI?H4gTKu#zxFOR59YU*rl zZ;$?Ot{ZPGtfWDfq^YBGr}Frs{E&Gb)B zsHwe1;fKdW4$dW_u}OqJ58ig3MKk6M3c2x!x{Tw z!aZ1tLG+wvow~5c^4qssJ8xcw5H+OsT2Bi9nQ5g@PtVq3EI_LS;2f~(+}!hyG1`S2 z>tyJYR{1p2zIgVohm@X~{;;$Ze{lI1yh#gM~{Nt2rO_*GcpqcU* zlP_lmN8;iCIR^SroVxw}_YHDdnwynL2`$zcdT0}jkUrcNsm{LC79uh?Wmzf~h)El7 zb4guLe4fJM)fz*IAO2qV~8#+Lm?vBuWvSum>n%W=UXej3o?YiMilM(5AQhCEsz z{Jgw?0eMzZun8JcX!ND%F?2F-syu)=z%y6X*wqA>WmxYr{eR%Oo>z-pxBY}ndtV=Bj)sN?R2uw1(DkDs1rDT(eU%khvQ!~Tl<@qh9% ztUw7?YX9FbB?{JzpV~F2<#PuP<`P8}h?mdt5LN0Zx`9PJ4E(CMq*uu>y6LCM`Pvv5&ah|t*nrc zy}xG{*?(Hqy>;v4?Tt_Gc*<}9+$rn@Vg+cg)Fj8~@)pqqEtrWd3jo3(fNaKt;u=?b z91YNf2sK_hY1Tjg3(5k$v2Hq9Us@4(I!jY3y&b^`7ok!=d^oeq9&DF!o(^G$TIUe& zVY&vTdbajDIDfL~KHg0lyrDwylFG_f!02kbUmsSreg+J_Hxp8m>(sJ%aJqX=Zb{M`s`y1;k~RpGk#l zgykING+tWskcJ_Kn?YE7+XEfpoom11s|YLK&!PVXGC!fEs;#S|^xRxCGy^}-pz|sX z5{@odTVI!ME6B>SmB=I07nPJq9XYZ^@dVe+df3U%!2;AFMY#$@R(`2H66dlnO-tAe zbK5k^weM0#>Lm7n{crGm1sDSg)(W&n#2CCMrp{pO!tr(4ca*jtMnB?}Ti_ureS{qS zwk8hO+7l?Z|6jGY^2@u18ynVOA@u<;ZD34VUy5m+L0qQ|cMf8B<)er93ZYB_Onfgi z&23CX4zIiLhhAVY3_)I0@~JDdVZ9U=W7vb`9bDdc#j!*N2@gq|!8Y$yBtY;!ukrmW zEMl*Ncu4_l!FZWLETiJa?V#AdZsrW#6x)RObi!z0qOT7TC*zsD{$yC*fS3&X!$G#Q z{-FrhC?t-YYOgXY(qOtCqU*p;D+> z6aI&bhaL&3Jt!j+ezYFI_YP)e{+DX~Yc}A4Mk2)7@<54#Ij_{h`ynPqp=e%+KHTLi zl0R_9riWErZxdY_#3@EV~MX0EneaF5t67CJrJ8t66!UAJ21fFI&ZJ zkVw!v>qxIL#D?&WKF^Vqu&^+d(}Z*{ln;u1_c8`0`0@E-t2bmygmRG*wANEv)^)H? zo)IG0)58*>YUu#6%PrEu%w+552v1ibiKj_bYQUzFh@Yv%qV2PewDK1Cr5oy^Y6sfJ z=NDX%rSka>6SWXB1ez-CQ95)o4-G!x8Xeyp+aye&r9g%ZI`Z7GM;cO$g@fXUo`7Kl z3eEC;H_tz;o~%6lHUZMDM=d5pb(RN9-Fa9`ND6H|4EAl%oYj3J7G_%sQnZ9$U}xpZ z?}5zquVnK7kbQ${bYcN$Qsm? z49^cfQAVEIHXCP?T(7M_Du5K9{_j7y-yU~C*u%?2gESO~4piLjfw?0?{{zkzt<`?m zFA<}RS;XZGDEo5M2#~z;*uEky4I_;dyAD*(%F2OQ8aO(7QZP;@^VA+jz>WBc^1K9k z0nY+Z3k-OWL++-dj%*Oxx39O{^Ux&k43;=|IY<&F`Hd+*AuFDk_acgqzbw$3Dlk-k ze)iT{h~lILJ+md?*zx0^o}J%%Syz9(r@|u#UmxZ|66G#Qhx?NfN_ge5su_;nvM&f? z1j_@(Vdbz^19%A_LXY$Eh;4m$g8>ZwnVW+G%HM1+_`&*ls0|>c#%OPl6W3xr^6lHj z-e~|px3GJ{p9CM&iULox%6UgM@&&xXd-ra>B7*V{P(f%vO!foRjA4|m zg%sUV_HA$xP%6q}?=0<)&6Zp9Uk&_OZcRQi+q$;Wns)fsS>{V!Yqeif8V>*WEn-OC z=;I^pkB=^Xe3+3mR@vqQ$CaWx&9guXiU*_NqmAK*cyC3DrSsf+HzdPDHyFT^6sq@- z6!7z6+SRdp563F=H4-1$bx(1QjI4gqNEH8Ko0Iy7(g#v*_Ld^9H0b29V~yw)u>z~9))Nz{M#g)Xh)x~Z zCn(6q&JLvv9y|lVIK1^Jy3O$i{=j=Bgs>*uYP2ZWM-FHl?I=DR(wML`wmd*zkXRO} zmR>!}g_8sluuljccgjI1G_*K~WtFmgzQ={#ii(o5uAyPv?IjvM7sSZ0HeUEjNBrmrt<^Nu|z%24?G>>`MzL$QZ(WnM8t+v~BS#TFqs zJftfs0ZR{C#G@|zILMsyUMoK~4i#_{jHBra?+Ar$Rd*D|H#~H|TCoU?v8%Z)$%U=D zD;)bHp~uC%+Wali$dh7OTu*>0a1=IrBwRrs9nDuiGTXFYbS6;9br6}a(Boi}x_2Ab zCMdG8#P;wfkV5!SNU#|Gy#!Y;LK7SBJg5_iTD}A(0eelck>J5ZQ;0;z9`|$(8M5zcu|K6JF^!Fn#KgO)(r6oivhg|`I549akFa;`HWDwZY)YM%E zJ~+I`=|gI?21 z)@94ULW?(hzP=!qyFk?hVXs45-+OOdLM(KB&BX`X3~obR1GXsX3r77?82%qE!0NB& z1KT8TjC@rkwIm!Oo&(rEplrs^>!a{}Sd{lWxqd!snhD~n7jfk(Dk|$_uq(I>c)r=f zcRw)5!4^R^@vk6tJg56N`rgDQ(~ln^Xhm2u0^(^)>oL87WWWp*Fk1Pyjm&GW)i-mf z3M(JE8#Y6ae6xB6Su{tkOtO21rKEfTBh4@AxBYc>^~Syf5pIUJ%@xylgAfD)bO6LD znqbUxR#tmbTRB}@@GzlgLWzNK2CBq|5BCgKUiip*ISq?GRxEGG^I?51!PhD)*J9Cw zvyaqoWJlwcg9p9BI4fxs%7cdcdr$JK`z}luPinKedT}2AzH;!MMmN%gS-7t^3}M3o zc7w4K+g$|XevFLR@F@qt1=E5M)(k=-DCm%ETlYn~8#zU~>VRSt~Tu^|oh$ zkZFr2A{-l%X(;b47oUc$ztT8?p~r^^9ZfrYERc|aIP)AwdB$`8hz^{|2=oA8ML@y9 ztGG~^ISkvfpjy=jfC zs#aP2qAve_8*1DEv+}HtG31eBPar@9pef~8Ix#fh2Np<84gdPg?CdTU7QhLx4|hHO zFE(bPVAtie?GYcH&osEa>-L!a{hL^pLF_i|WldlV<>6&xNfP_^-FUaE>_b+Riu>Dx zVP*EaiPLIico-@?+-l^qdtAMmv@PR|zaIp1t9$aPOIZvyCc&@3~7~ zzI^oXA(8C8G(V2;8h&5b>)Pzxx1*x4hz_Ti^U;k^ePSyv(olbOGbq(Pl~qP40A6e+<;aFk8)l> zV0iO4I1ebUSuh5^cJaQo62+=7hmH%jMl9MGa`ct51uZKf5MX!1LtOsHeV3)3022x! z&pmeRReU(~6;SqLp>lZO>-X>Vkh}Dp;?*pLxTNGQ%enS!i_T!V2x)PUw+KQ9YiLsG zU5Z`7&k7F(N0k+BvlAP!tLx*V(j7c@MmNdk=^AvF78d@Whs8uiqck&a)DI&09M7gT zDVck_3bEWd&73WJaOM%Ml9=lib?+(;QprIlE5#BJ^~~sS0kTs*RJvYe$nA6gJZ`+H8TL9aUbX$pRa2?Ol7{E>Y_iA z@9-qQE|z53u)&uXnh^+r=%x7C$=POq@#eOzaJp}E52^hTq08e_^z@ab!u^~wV+!2~DpFSa}L*8ThKC~&g z;wV9gi)fS_M$CG5_Z{1u@F}Vm+FMffxD8=Ri`nKKSWHcH5(S1b7rJu+y|U#iWOjhk zE(ex_r%xt(8GP(ztke1>O@ub2rw_rHLjW*%Jp5M2%~kYEF`--eQ$3V?=Y%64r8nZ`%E>210L@RST@*Bal8mH;rx0) zAqm?D;$^+O*oxcGXIR|R7ffjr8N@&4Aynsl0YwW2UiAzNVmLHVzwT8Q|B9uPe=Whm zyrK4TIjG4xMx^lLM(D(QQ7M2h#YyoNKBkryRT2Ws5cJGK`zDn99_UrxozEv()g$XZ zuv*aI(Zc^lNXc<~5XLBv@Yh{)Y-f)=SmfEa0x zF1|HU0;J(qN(#D=Lfmx1x8Kk(CV-?8dS*B>5N{d*RuIE(WLhuiG)Wy|}jvl>jJSg$l&I*|OV! zp|3ntjDg_JOktz>6lPyo!=5sK4?jUi3wdV5{UFoT_9S)Uw;Lm@E~HI zKNrWagfMCF2q8%=F3L>3p?r2KRX3CX{9$;gsHgzt($!T|Rkel*?oLR+sj3$(w{@AN z@6pn0hkVa2aYMvgzF7sZrKPgIRk~Q6$wjG;ANo_W4u~ zQ*-l3at%G@IZMlR$FtlzLc9)mh3jOZ)0Pb~-Nic_d-Q%-jved~MKd*c&~Pb!F=C(~ zdc)io5IqbQVQ<5txv-$%o07w8xZv0+WKrIZMs4;SExKi@K+Mo#hrZInj0lbi`aJv1 zzyd|>?|}KN7Lk&crc3y5CKgdW{;Q@ky)l3bo?T~Idrr9@be?Mb+ z{(NwtA!x7%r8SxNaepJ!wzIL>3+_P=QFjQDSCK(ML1->uX1>y8>~PVcDXB3x02oIGs(3cO;2lY z^nVRk`5Z7_0>~9Vp_k$LH#bjpQ7+q}^x5l{n@L2rT4o0VI67>_Wpr=seYET}X&9gu z$nb z*?IufZ{%mC9n?X?zRe2~p85zN* zp)YKZUjb0RhY|HNMtut6Kd4HXX@cv%OsnuNouH$o)#^KHM@+Q_0!+a4s7@W|?&(2E zk*NaYuy=~LQv3NshK^1Zttq+p3j?Q5jxNk-0~)AIL`SWZhGHtk!^8X%{U>C2hQf4P zwkTFHy-fIRd+Ia3{oT73#&0{0Nnzg_KtLc-m>*~ASO|lo|skKAYu$lt|yGP z*{UfjZoKz=dr!BP?e~T+PfaKN$`sR23ZScjBmhEVlq==mg8xr@ZywF%+lKwBRA@q_ zQkhAmPzfa>l38igK&UiPC@RrF2%(9TP=sb0HP9eY$&hA4q0(qbMFabD*Ymvl{o~zx zt-bczYrTK$?|Rm=`jz4Pz3=P3uJb&O<2;T-izvC-oOwiXD)U^n3_^wNmP(l@GA}=2 z61$JXnl+7Z44jSE$r}?zQJgfT*qsp^I*`pB>9|I<7E9;`&<$XO z|6P+f=e|7i5pvXIWGi_+hY@n1C6f;1yRqk2sAy8+LB2 zrC4zI-ZLq~SlIZ3t2Y$Y&74wxBBG_+d#)Q77Zrw(uZLY!g6)|TCxGt=bWE9%(Jh#h zaaZ^Kp5%ax*hd@BWAVuM?2YLIHX>()BNnZ5cR??RfVBaqNt#yE8~*71IH&c!-wv6$ z{v-q=jxBn6dN^cNxZU2%4-f)o_!=SE551m_Y%l1W@88va=p4-2@h9u2P4`G-aBTWS z!R7AS;78mJIuS09t?k1bH$)<*avrf;lNqOCXTvaz^9-sJ4F*e04{QK zb3q6QoxJSjN(;hXCH$+nIJ4&R0|ydx$9XmHyt~wfa)$(44uKF!x@|UQj_uL0kcoZ2 z-XUg-ON&&72RQ-t(=^#0g;y(4sUXlU5ZlZyL%QL{{)(WKWI z*sJr_q|D6eM@wI=Q5rvfeTvR_hoIRfJ~uSnJ<~K!dOyl6)8xUI-W`&m+h(_8NpMuq zEE7qI$IWT0aq2!K+cV2Zgd>S3}(kW zZ5{J1L|>qu19Wi4qg>;-#6=yLg*G|%J_|(EV;mGaiv@o5#*HmF2*%z=1EzM#EAO^% z?Ni=+p&M;~NN})JWcXgoH&EA0i{h6U=m#x2W3>6_dBo+YI)?=~NeQ!CosDk&pb34S zpdP2eMfa;%H-G-i={@VZ1RD;G%q*eu2j+=9HowQ?YP}<8>Eh5cE)RH9?O~(Ln`~@+ z{_gwlKUKe)OpFE_oc<6a(T$HzrxS z*Xh^}{09&wPV^n!TlS`pTl*aGgZul}^OHs5WcbBRJ#a~my+2HM>>+(RTO`|u z)(n>NO0G@0(a*f!ge>RDdli{H?5!KSWkvpS(E&0EwoV)=XGi``vliJB=CXRVO_1c} z6NBSwLR~OaKl*Wx#po8G)3x^p#c7!)BdyrwacwikdKRxb9qWB0yauu?d%>5pAOG_c z#OuC%*_F6#WIu`K11WLDVYJLYthgLr$5b)U zAz1F}z3E}C(Clo6Z{g*emrIUKE`i|X)4X~88tPTjgi2IJ`ewmr2P_5wF!fTfPIk>$ zd#j?dvgumC6&E<~Xq=%Z|18j>iz`BP11b|(?%xkxc^O167WW-0~*!zP;Fut!}h z*SvS?(XOJR5u3A&y(ZY#J2Zh>PTgm zs7i-TR@l-WxyKeban>v;soKi}He!bYo2R!+eA`;%U3CJ+-M_!iktjRA5>jXT4;cco zxNzP){nD55>-{%xPV}n@qZccDDBRFStu@&Tl!7Se7*lDi^O1%IKG9SDNjigQhkwy6eh$$w;(3lvw#0oIi30cCMqbl z=3_4Jo)83F<4>nc2HQ4 z9=)s3ZMV@btK>_Um}xpU_vDr>TcBrZYnXb0d*2xusoJm(*#M9#22$`IkQ10md3lj@ z1@Oeo8ucyPDZ`5kM*BWFIgj13?)FuJ0FgCHijfF`17lN@g|&6L`#6qN-Xp7#F9H_h zRo7kX?GLfE-@q~?CL+CreMME=J7f=i{HIUWRV%Tyb#z3of;xQJgE)bas#rXEbSy0x zd`K@L(?bKClegTw58F~NZ|}jfvM9_Lxxnq}W~R=T`##_|7~-=KE?pX6S2AS40CSHJ zt?whlPiAE`!x&KqQ%%XJk(7(#T7#^)?%fM5PB~tXc<230dCK??HFDpx&>*v(=8@yc zd9-k0f=Mz;r2N?RAbnf_Ot_gqWU|Rney`;cz5))B%CPOyquaNYM~&*0D^!OTTAyb>4}y1MTqT)FY0kke~R_n)>>N-25r8w$Ji$dAaFKEeH@`o2BQ5 zxqGwYY_&`!Zw*V|{9I!;sp8_O%PVDl0p@y%iTQEvvef`Fh(_+|+-I+4#aFEZ4}=gF znDC?1c3uqZXm5J(B9QZ&JSgwC56Jh#j}sxPQnd+Yzf?~2%+g^dQ>GwMBm|e0!nq8O zoO#S7`SRvp<1wQ6+6Lpxwu`JG?Geki%Ne993@LHCwBia^yi6D`B$d5q^#Xbw@NF`M zf_LnIyQRPe9pK%8!%Ho}(tMJ#GTBDt*R}rq3B7aZ&=4dd_Ugc2q4QrOJJTB2lUu?Z zsjI64*_Pmn$45_B+e7Ft)27$<(U~)H%@2dV!Ety(LRCqLq>Rk?I-BI#C$9T79hs}~ zy{SoDT%3?taLK^NS6exlW8TprQE>20ULvqlbdfw|l#ij6zU$ZXz&=@V0q_q{An&Fk zkDZAaEGZ)EpKWcl7aKOg&drBYWH0CHAmIVWrQ*g!w4VeUcG#iX8E4O(>p^;RlgOUJ zJWT*UK02F(y?r$GA!~oG2KSki=FAHhRL2X>U6Nw|_z&I#9SyKQMGpz#AV6#h;8EBP zN(A$)T-IxRjo&xxffd`jm*I((fBg{`k2%0!u;@?6MPIs&(p%~ut zehlQI^aka7Es;t)O=P!8Iy5Z+1obM+A`jiXc^hi;aZI6o77Yvxq+gGj2B^yeg!@ZX zP@D4Dy2s;o)=a&<@FGtRoe%vFfu>B_5S&}+#)K#LCuVyws5{LdEHfM4-`u}BNVDOW ziw9wBgNz2IKQBL@0sSl4*^KVMctdn^^M3bxg`|Ni#U9$aldB|*DC~UDY}J2DMlqWt zfmV=tF?G-*OuSj9(xK(eQIAs~0vXj~PR^o?nKi0JB&e$wl=uD6)H&ENjJ_H458vv; zQBsO-t5**t(zbn2%QN~;sxjExIgAu1J~oNE8zN%krAyU< zP3B$Ss8jmsSB$wF`QKwUcypSdl&DiB=7SrF%yM^keSFG`-wC0v&vc|r0Erov78;}c z{-L3vjHt+SOw|I?wAoK1L~pvY^Q*H5Jyxyq@$!0cc5#=sQs@60KG`0(WD3a1lW$PA zM?Sj72Vj8VlE=`sp=?RW95q{Sk7#ytlBmLn$0 zpjm7~-{s4f>qVeUkrHlg6}DRX95mzJ%_j zN-k-bQt)n;<)lcOz`PLBkvIKYW24^YpFUh{?U1s$r!}%5pTUd}IY`Yppc+Qg%%R;k zEhr@9F5{M%jAS0XEjP$vs$+%BqKj-vG-2uiEEjYa;GKlQO~2&1rj3jcDhs^KMZ0!Y z45D6LGG@^9U1&8;l7-={qNVK3Nr{yw<#(O6c(Xjp zoU=`@)VW@~IH{Q1E?PQ&-n_rc!twi`ci#GQ0GuQ*=73UX#LQWP(yyh(U$6Uf>ttN9 zDL2$x)+Qs^aKxh;8%hp5>98P!hem*RO@0&zpIlQNw_&pO>+>bS8kLT%(OY6j{^WYS z(i9U3i$H0?hse(H)M!E{`MI&SJ>-rtF@?c;@m=B`Ss{q zj&+~)>uZGSEj3kDMa8Y)mt)MdAYn8@SuPhaZe#PpDnm>XfQUR z_-(B{F~?y|d9uB_hPdpYo>ReXP-v*sQNM9NO^J{v*PRS?kWWl#<=#7pf@#b*`*D394yk8jSbBYtO+;)ty;NXzMd8 zOm}U|Fu7Y=d;3A5=N=9-kNe-XbXnrRD!hxyzIhK-$CjtJEjVBWGQKohfN*6!+wm&K$vlr5LX` z*f;P_^!)f3E;T*>;5=v4sPsy&x)=J7U*k3{=k;yqSYUEqfLn-UB1W!$E%JzZN-%fF zu$vXet7z|O%hWNK-{r6AZQeAWT!>Nc=WO}aYj-SiV#=(2mbgJ%ZQmDm9cYPS8OSnU zyryRCm#vY$NW1rh&J`HEgy-qPm+H7%ZO;|$b*yNJ*U;_LZ(%{)G~DXD*jT+~{4+;p z+0CJ5Js%DND>v+YIR)xr?YUWFDvIm~cA@ zXYW6C>NB4Cz2xS`+Z{rc@$8vor~b$6)k9@0|FiAHsm7i%URyggtK3+Q0i&c-B;gNTLS;o*nI zrD<6@L+xuz3-1Iq6m2o-qD&9q(4^!zP4?Ygzo(4}smAyFTFrfyUa8l3`(^XDZ#t)6 zsvHr6={vrq@ouEAsAuRk_WwpBq(B zbN|Wj%6<0g*VcX9fAHY^RjV}GXMG_g%jdmxX6L`IT-Q1AEiHF4W?-sx^SVEGqe%i` zMOBp{s${*jUMdEqf9yo!G?<^gE%@l+D;+b92YT&MOIF}cd7a5;v$B{lqQInM!BB*< zL)z7>%M_U_mZ`S_hfVZ-6vy@A#UqBb4+G6UKK^>6rjL64>C-hH4H(wi%s!2`pHO9k z4D)jeA6AarF|rY98Bx%Gns=N$H7GnxLY9(s)v8sT`Gr03`eUN~)G3`W&)p>sPjnZg z9TWY$BFFF24Gp;74e_S2tJx}NXJ=Epk4>{fN7ssaP3m%ZbHUT6u@&B)DeF3G$gJdh z=mL~t(vy-DaK^`BApfzY-cGHml?Gd~+9G!~cn?*oQtnf-;@YkQolT~E7F#rCxXy_E zpJLv;S0@Rp{ZE~Dw}vD>SH|ksrV$^X^c-<-huiOPE5qZi*Rr(c%y~*%L)`$2xf$ld zbj`$7HDbw>vrH>c>XIUTeWWBQq_r0DgV!iot<`vb?!*87F*6*ihGdIN(YeRAwD-=j>P(mTXeqIX+QkCafUBc+<3TSAvMbpvSR0jB#Yi28sm zk8?+^aen7HpJaWVRNk7YW?A;^9d@9h$z6i{YH@Lnb^~Bkd-ZW&ZUx;HumALET>ZP9 zQC&)l`WV@a3zaVVF<|I$YBtIyc5q-O%ul)A?mR4{N>}Iw))Z zx+C+l%=h20nGA?nSR_kW0$a!QIXkS5gSgP292?`hVC1g$UwLEiv;wQGHvRhqP|`n3fOYW~>SchuR; zOq!!^eSYZ=5!6-Y=66jW#0qA`B3d$iXUtzXYZhZr9LzoU(+<$fJ$W+Q%436eg-rO6 zcVfXN&3A|58d*_+i)Qrlnni)=fa-!dEI1?##^;}HOj?8tb3s!X-B(qWNAxVO@hZ~d za$WLGE{{^W>7OUfH$Q!9ZcBy-_DKSN-($#^$4_Y0+7%A#yABBsf-^o&*V}AzeUaVF z2Q|w?r;LBZGW!Mb>;I$%s=Gl<(7ZvndbZ;NsrE^RZa%QX*X9O&qaPo>&!--Uv#^%r#ygD zw~1m7&Vne`xhyi!<|x?L@#8gK*;CeE?I|ukoD60PuL+t5$m>O#_oeFk$e3y9!%+C} z2I+ahGczAjp>k{ez-Z{mK~S}{N?yE}fR4Dr-f;Z*i%CggKi!)%GtS1HE5 zA|xd|G!*YwLg0yq%lmeT=ajYsNRFOIOi@$w3?Bvnf21GP+RPCYe7wYx={VUZn2rny z3WA`*4ITg%fZgrg=@3`p4x=UI&S2=;$LRN~ckj}keth}j1rT-5pDCDiG+=Uv1q2;3*eY5K~6U{28eRx*EVq%v=<)Sz=M8gXMZX*x=KO%d=)N=C!o19jljitot3CS z&@}Xy%h> zT37%>^%oQ6L4umDsyghx9*O4Dlk*(#OqB_5YCVAW^X1MfhK$u$;^DUXQJ1ZBcfZkn7)XeFIh(*$4q3vJVx~c)!eXOEqnD;2 zE%K}chcq7Nq%P_#3larkW z0#+WdyL}6LZu++;XecUf6_Q+PP(smK;Bwo)|2nk)E?rN}{`lq%bD3MB#IbZaH8->K z9E1EjcNkZKp#H0ua9zC`%NO&eCI7bI9CfXHZIRqDj;Fq(6XLu%z}s+px5S;on`LfA zPa`35t4r7A<7DyaL8hKM1A&p9?fPza1*d(m2HIc>8q{=Pr60dha|0lQfOKHbZl^uv zy@HkrKVwUVYuT|@QIX$Ed+EoKGrD}$Dj>7moWhSy?XnFza&NmwEn`BD17(RZ#FgK( z|7$*;i162L?>v5knQp)1Qkm^-t`tM_TH-#A;n1=&>;rMM2%YNncN){LHOWp{BzL?+ zt{ujcY`cJi2n%2)ur8mgL2CqBmF0{`)^QeL0e3m__ggfg-(StVqkXW zd)t!!`Z4h5Ef$SIe+{wz{`nteCwz^T_%>mx@$XAb_!$3QH&n#_xgPSLaiYco3;Or9 zN5LJ<(%+Y}wCMjx6tw=If6@Q{!~b)IME-ZZET(~CFV%4%DJ~{r2Nw(!7=0Fpi^Rnq zIH3RhpXZdwtHt~+s4I?OMN3h1&1=mF>m|#P)LYI#O!qH&&BxSwk6)eCND|{7vb68N z>HRAsY{lW@rS3V*cw#*}CGWp0%E1OsCNk0n@!iy;+PQB{yGBy!As)$?k#Q)g<*#EA zKQN-}_M2iod(!`o%Y6|fig4fyqWqB1|E}X>W0)~|`SQf0_YY2vRWx=5V!>F@G(`w6 z5MIthK&?3emj;WA%l43vP*eKP=MfR9wN=}5V1uv8HuThGVbcWZm+-oA8EO2OuU}fb z3o3=IEU$_^fA=WXuJADdleiHJ9;yza^eR+LLH8UzKffXJ)c4<4W2!-Q30Vj#&B{}@|7i?jP9O?N1% z!VWVJk1q&VcMZ|c@_AoY_%K#cUS6IN%+H@E(SqcPV{~-?;lsn97DU{@+B=s{^Y<0d z8gwXLU&pTCtQK&cgzyd%!;8-M;-92V;zCu&zaKEp#qrcd&Id*eOp^2N+z}j$1wWR{ zMVp)M4DifpdmC!l%*?34j|y+nFy7?ViEU|W67p`YHslQ6Gy$5Gl)-_UCe#8A&)<{K zbqe)4ndMpDi^~{npf=85d7)Zwd-zI;!@^FrCHUCN5+qG$;g+eWgj5DpL}JNESRLoh zv&p;2?2jN1^k*3OU?JFB4%yP78lAKj@wfS@h6bQjDJgEB-bW~BF9@J*DSQ~5?3w$A z0XEz9qpjn0J>|mh$ewu|P+KtIX}Q5*VM+I}d72c11wI2UD@hG=)&hnzaR*qZhCo+7 z>3DI~AdkMk z>W@ZAH()M-boM)q5nnB6X%QGT?Ke&{=bhp!567lFapEujxgobB0MIacQ{Cs!Op|&F zR=IEyKqSbcChYs!(cfXgf(llKKbI10jG#j6#A%(*aOc9Gd`8go!H zLAWUlregnqUx@CrCGfeqzu#zry0SbC)_vG(e8!fNIuOA=pAn~|XSsp7#)mq%F4~w} zj2gANK)K5UbeKnfy*j<{YE5nJ-NRdXXPLvsN4!V_rBA&6_2EQXfhiteZuc=-aACzPs8GZ^z|S}WptOjb zLr28+cxJ!GJQIjElVmy%zFV-GLLDV%=&z@!$luwhNO$eljm)bxjM;UY`0dNphVeQ& zloB@)k$|Y+G#&W)!qej?PS8Zv*VHrvi^5#*{2jy9NAfp`28F5~Zi}SATai|NiudkOb&b&Vz*jdq z)x;6Hg;oX&03w@!LFsFZI@*fsiq%w9&_hwxC`P?*DZ`_V3xq5dr4*wvOsGhD!nu}ne;hFjXF!ZD;*!gqop>h4 z$mLUzal@&C`6gk%fFsb?Z#(FjbF%?pUI^6aCJ!Y{JHp=ZJ&{}$boQ?_Hq)=RF1)@- z*kn;FK8V*Dsiw9RAg8tSu<@68LwH^=Sj0dx+8!{rnoDT1;b{`1g_mUCzF#SNr4wO* z&s=MkFm$166&{LNBlb1rgqj|K8Y2J~^DFUpE1aE0a&@!zp6Q}tq4kWrp&VQ9u zFb7DhYg}g`m8%|8U#S1xVdLDTqt&y}>w3_`^Fx`L3Jnk6^g4JzXqJ{!3)}PDtLsl0 zuK>z@p6xv>pb`-}7m}X`=#`I#&dh8QyE_f1h73wUMVMU%WLfTY@?teL8{Z}P?l2e( z@q_AtEgt_EX=!OTjVXs-^4Q+kYa$=8Z#aT;K@CL^saP_zuQb5-jX+0w51r70FMwi@ zpuXbvYSX-sx)!l~Egj3L*$1Pe?eQ=y4s3s@&jG`6z8wTOoGkbbUjP1LCFnrjaA#p^_mT&_qF6FR zSG3%lHf+Es6A3`4zo~Vj=U>#&(dqB|5F<?&kZfFt;hOA{L;qMYzM=#Zj#v_gv+tD!SiWsE`gV(YQXw9gEvVU{mH z!AIE6wXO=g+q?yebS_vut^{&!0V02+CoApObV^ zj{l(C`E%!9rcLD(;ki`~f)+#dy}@g)yQ}M1(tm{!9=+Ya+4h<3cYR${&w7M37Yraj zex_!-=uwFecVzKxc2(h5GaaOO`V7zAu~K*FXbuq`0ZWEY@HGle!DKi#_9>HPWd8nT zrG*R6XMm5J>Z65Uykb5TeTmg9CxkNKJxuq~}$;QuNK#M)FDT5EzMuFNvbGr25p)g52 zz4OdM9#ueMK$}aM(3p~*C||{vgjdL8XYdOyaq zk9aL2!H3zka^Im7=6XC0>kM;898L07e?6W3DaJFgJhsVgO>Y`zvq@kOo`x4(OTiL zawYG$5~dBmg;5Wrc{m%_SU-)QS|R%tfd%qwD+>#Pru=Y8F^?DPohoTE=0H!QjlfUx z(<&owIqcV%_W4i?79F{oBy+uE~$g)G;2S4EQgvkl$^Y`tZP5k{j8vG9Ir8 zindMr_~pw~F@RKb5&)-CujfHXbKf~kgzL`GuDhe7w@6O#ejBl1w7FQ} zn`Sn+-A3U@m*B?W-!mW^St{p?0S1(rvMZ;tf@QgYNMk6$e z#yt1WXV2E}vWhJ@P$5B=-Zza3Fz`pE?^?*_cx~5wN~xVz65i|A+ge#Ee~|P2{9@Lk zMIMVET?QQ@ZcJ*J1!F(x&d)5ox}#$=`#9EAw&&M;|M4TRF2?*p3eU|1r9;dgSz24G zJe}{D4#iibTdnfp1e89-RasE);1wHAD}=DML!xgt*L|{zFGmA*QEfWoGJgri6Y7*U(pm zXzMdXZ?eZj!IFjH==N`C0)=mI&yN^nS_)=~>C}KJ`)fH+(NmkZx1%NB$Z)i=_alOZ zumyGTvm3E5J}yqr?N?}KV%hC6-o`OxXR^J8w&rA^n#z$IHT>t|bv`~r4E!VmYr(KK z|N6d=88RVouJrw8cJCDzUNkFiV~Vn1wKlK{5!js<%2SM68$Z$kD!V`#z-#06MQVG5 z6b92I7e$C%x!X|ENaD1xq$FXyk;>{CqCD&|5;uL(50Zq+9X8El-O{sW{yiWktxlFyRIKtJa%>{Z zDxZon=U(e6I1zxdRf081Nq)XiKA4`5l2rO}P?)1%^ZvxlsU^i9=#XS+|)GaPV_;Jux_LF1BlZ9VBI5S!l}_p@b|)%T-e3);$|@lN<~`NADk9iqOj7pSM;U<%0Y-@ z0DH}TEo~Z}36s3t;{=s;_4Q4cGTe&x9zA#ND?+!1itH)Z2;OtTK&?_C7-InVL5DQk z1B1TYZ~lEyKQ&~@+ihdcx|bf|FNu{NoV&!Lv`_fmTKXob4k8do$A%{cOHK9JjhF5A zho3pK^Q$|A`XJ@tY2#X`9c<620g9>40Nw@r@ujon#`GH!yVfS;Q}#HOihdvX3e;nq zK@;gX);5^e94l!ZU36=OQtjg%l{U5gtv8dRC^){;4FOO7dPFZxmKTcthr304y&4@K z*Y>M)`Ed|$j1UUWG3x+wQuOL!f5kj3D>BDnqcoSQUDo^+>KP3x}MI8c7KVUI2O{D$l7dAoa!@#?a48{I}g z%_~IDb#dj0x!wnTV}{ExM-FJrLFgv}&}K12U=ax76$QK{qD6$;wj zs#d(|mA@7GoJ*+>2_C$B&vaZmYz4_sb9Hd$5CI^0wK)E?vGQxWYh;Opn<>N>zTT0* z;gvVx*zuuqS?p&xMV?%cJw}=EUFYacfr~MmPMz`kuyZ%h*Ejq3{4i|orF5#1um|5d zFx9#9^lg=fJJF{$q)kk)T_(9s67S&XwONE*JXJn0NCG*B zY<1EeBZ0C$HGd91idYjm{V@ZB3O=B_&-=l>dml(t%?a!Xz?sPj=R^YDqOX1*)Jjvb zp|$ZfS4Qf&LbtwhQq2zCZZTDyd7lR_FJaHGU%%)(Y0W)G44;r-_^C#xhV>fn>YVXX_>Z|D!Gq~ z=SdGL@h+ZZK2sG(1?8Y1lf_e}bcwnzPJbi>o;<;(EImC;PD_b{(r zgC;xcVTgPG2=kzgwUN37kDY2?_QX{g*Y7`^IA}WHWrlhU1>ZlzuE>#8_aUKliEF{m zq$^h@)V!a90GtLCfewy_5J5Y79@oZ%QT{V&ds1BMd#OhW;A9+L?ylsJ(NDKmCgX__~m~Mk^?I zd{K@UY&#+dx~qZ?EDqt|*iyasFF?Rh5JKc_!$c;F3Eks`3;Gi$3g2?V3NMZ3YIv^TPTH<)QjgDR49kJ3FJbHF@)MCyPmK504g_UnHsvV5Vq=3~4NA zI&zt8YduA>6x{HfMH}Am$WfC0%N2e>b?~CJRQtoi!7+?jM^0tj+J|0}6x?3|9_A%7 zcdRgh4#6rTv;Xkn02VPVMRfP;reZ>m#T0bi_+x-o$r*(qM9{ez70Icp| zgAHZ3zV0k^BbwVFt!pwKu6U^D;$YEjN?&NO-D#Z$nj@7|m^wY{(xqX2oKDU@!7?c5 zl1e;}!QAp`NcXpA_o8{n^JCgHvG%9;?n#)-Vi%*`nB_^>y&|`O#dWhGD z3??*c;MrLYclS~(lduRAHva&pSW zgbbP%bcD{3I`RuGkLkj473o5{sD|p?VwcQq+qd&Ye<%)LD~6t>Gz4E6Zul!(wf7Lc zM!=}(?wu8X`u-s$wYBkfABu;tjyreVfD%o`#+{@pX?T7vWS}eY+QJ-E-ef)I8lWiY z*;}hwFD{civ{$&hGlQ+L!WAJO*hX&ODa|NbsqJI*rcPbDsgD=|M=5T*b;=dQycQPXk5kVbIpV_A>pRT0pLN^&S&mBD!}?VsR84PCb)LH$A&nVBtNva$T5E(vrjh$~vp&!}&^088;|Wb?P{X`tTI8{Y^xVw$FZ zbDelw^Hhn=@i!5f+#Dk6BxQ>;FR#f?S>O)*uasfSy(Q;ThqW~ zj;cP7DG<$0Nmpe2{JAkll}4vUHFosE8ms7o2k-xQd!FO_(e{@-+%qoiP-)%~q0*$Q zD0T#g1g1lBg4(BM(Ua3kI@I?LSXiLjOn3tkhck_h!9t*jKUH3hRS@I)!?!>x;`h>R zI|_yd=2bp^9J%=|KfRjw$AmIHy#A0~`}aTD(Q9z}Amt0^&%*fEl9r)A|m(=c@Y%ym8=W^<^tWo-JZM2ql*X+|5#sNQd)`` z;8%dRD_T;!h{mB*nKo@2*&&o7+!9bF#s?-9B^ht$A!>d26YLte=qCDnybJR}rGT@Q z#9Y9Q&;lSZBUpvER8WA{%G|}=62_FuWqnb+4%#TUvsWl3ZHMYuPM*94RZZIzjQ;N2 zx^-mbERq=nS2x7>cU&-oU?;G#DPoNEQHXaqGe>V48Z=vf&XY!|oVCQt%q*Ch8GRdf zV1R0aOeU$zq{H-+>$y-=Q;1w3$N3(VA<#?dVJlSRe$p>f&}r7GhTn9)eDx{`T&%x! z_eYDJ66gu19y>ISo$1%JP$Wm)zd<`h^9ky3=;`1b)2(0ND>P(IT)VcwTJx`syyTQM z_xj&6O5QX=I4JsUoe8 zjECL5bEnDg8Y}B-(V)K+c4b#r+1J%#|H9Zr>a~vjhi|*m+4w))Z)nhexnxt5|I)-t zivMMUWByC}ZkhI925hnl{BWbEHait~U-3eT);WGiPSe+sf%-OuWD@ zfD7@0g81Dr<3?Z>vkEB77zJZU7rz+)FEzhiH`nyPz)EPYE3BL=ClWoJpFM^v44iEi z@DPu`oXuBTTj+U!orY?=84sH|Sce1d{(A8z$$Iz!< z(pVDPi=Q0cc)2``ZHIROnw7e8CwWRp{DA}W{(3F+<}K6}#2{qGoibG#99NzmBjLrz zhYWA?K#r*l()bPV%&%#$NUaY53EBAdZDgJs{{{+-VFv>H2M<>9GcYhw43z90a+ERW z58*AdAYf2(x_ukVveVXP{_A;epwYo1nQ!ZQ^ay7}^1W}`;E|0K2v=0)jrr!VhzP-Z z6MtT$3ro)L3p~ydi~h+WFo$DENvVdCgVL1$a6uIt6d=@7NS>&q-9BG9ckX4TE7qIJ zVz2Wp<)Ro|Z3Ck7nHVN` zYsnSyc?3+opV`uUfeO+{G|{0EKs|zv9D71uOqn2^ffWXiGObJsfBof)?d)9M1MUW9 zQ>QMvzVR``K=s~1yg6D;=11RuZ8$Aa@#4kLUk$l|8x6Pd3?oz{I@T?wEq7~t{0n|_ zx)JRmA6w|oLM_SQ0T=>qesK2eSw10*GGj3~jbYhM1eNV-N8B@xUuP*;+Sv^gb7`qB zh0>C;{>^dE5@jG~-3nh3ksL{$7Ps`{$1VBt-x`MQ!p%j8FLW5A=1;Bs($Y|EG;W*^ z6ZG^<0J?Rz1UBZy`Q6d7z`0#m%qTe0JMKj46EwRW>@h6dvVL>T%-#s}+=O*2 zh)c-M!|)N9e#RHir>5rScvIc?>6`MfN@}Mst-HsA&pl8wlGLGOSj5IK=al2VJ$ueU zqDWT~&EDtR6o#i}c(VrH7 z(d&Gojrce`-Puu=+@@Ma-5*|5% z2+iLo=ba0hy6;h%9b=`FXp!1Lm+xbFJ#6V!&Slyx1jZ_2N|;!qhd!q}g?|_+w^@EX5l=FfOBq3mzL!oOi19VSwRWyfg-#%fBJRr!ZYj&*NIeT z6pdLz);MgOg6NJ-^btkW}KAm$eK&`OiTLlVEx@ZZVovO2M5k!a3!JI~sOp+W$OU2)=HyjXiblcM6Ux{AA}*E_S*LvF#?(Z;wMvgu1Ti-I5x3Z(@*QQkwMW8) z(a@Dp5!j@_V5)8!4#8VCmfIJ~)0g1_uc*9V6SKyqU~Lf)U^r={OgO9i1V&PziV;KfNzly}=%>^> z1Zlxd;tyL@g*MK9rbS-jf*L!S zfylD_sn^wH=g8x&Q^-cZPX@55a92HAm@ykAx`>RqwfB&y$ONWr6MB}RASI##hR0IU z6j%`_gSO|@)q%fToBXRMZ2s8-OJVlr{g*ER&=IIUw<&Np&_{A>%~ZcUJyT83O=EkB zB9*!BoQa;xDTB>two@g~&-Pm4<1=nhb&h{qSy7RVxp|0e5ZprbC+bZ*yC{WFZa0o! zg9Z+?zq!WM^=M*ZHNY=K?}%|7ki)Ej-@uGqC{bfvr2@G$v>U@3j&Nbnc2E(#sjCy) z=GRgm!+ucW4+@q|=>`$yWe)hUU(?A}e&x*R(_er10M{(%HHG&q2qo$BNqx0SWuj5w ziZmBqA+f?#GLLO$fW}A)$KXHn*69* zNiH4@b^83=umcJR^}$UDvA~v$_scv;)wK;o&ufn#uhuvEM=aVyw@t6;jIa`2&$S#; z#X}DCKY_#X@#W1Q$}`wRkpK1>s5RL=gS$f4ptkwJlO^y^4=6U*u1($#rd9;u8S>&+eHRwyM7n&jWQhI4@-V&)W;`;y-W z3C3hL{Q(aYY$^5g)-K&gGjut`=1+a;QP|WbmY&^eDQW4u$w}hKa~ZEqggHWWun+#9 z8ORXgt9HtqzPq{e)L3PPfe#7R1!b0{nP85YRa?)qgrTaWbTFt_9nmac=B_*%6 z31kat?xW}OG9re`=f`#S8QZmMFiSxINh&KR85kV;eT{YoFTmz=&Upp3O(@I*TVHpd zzCm`-AWYAr6Bz~vP9A0xFNDG$FCHNeZwkwW_LM12=KL(3T4DRy(b+~eZraqt#{RF% z^pvh!X>S1QS~3^G1H0u-lQhNfS*Qe}9Pu$TM3p{W3ZH)1U`27C8MOC@9sJ45F!t}_~l%L2GX4aoLdQ^amh;|%dj3qaOW=1a#WEC|v7RGP7 zshP59T96rxaZwR-p{nCinrRhkS{6Gy-Ei~IAbc-$L&5l=nCXA(BFt0hY~}UVY>5~s zzHOk+ikUP)k23|19#Ec+FL`4$HYg|OW-6(u1l@bh)&-{^IrgVj3DOZMGgsIx3g zbVnS!V(FbVZ6@});1Or^c^rf}B|>usX-kV@NI6ADfxe19pZQ@oyI$+oeFJP;%@Me5 z(*B7jjvO)h{jAwz@v2n|X3aA5jIgn`PPvuFqdUaVe{Q`0gjtGro_+=!eEaSl22Xps z6tJD$x_vv*V1vn`{v0V>E#LYQ#SdY-(YObR_hsD`8mTUten&owijwsm7dNok>z=a~ zo2L1ss?J-^bf$ls2L+Mr@#?fw?&zgQ!m$v;#3VFZ3WyuaSv4c}9NHC}@qY3VIYa=X z{1ZZ_Q9xcrk~K?283#5n*WvBgThTNLk)I>Jf{&Ek6+#*X z*VH4@-g<`s6Ri)73C>x=89dYPRb3r(xf*MG|A~?}s$w@ROR;DP<_?w*?Q^gQe@zLe z1|3z^R4Vh5DGOGlsNZ2KqW;XNy?aypFS!*Y?r(L>Heq8^joAk~dc6-G2kSn4;*eX? z{FSu;e|!IF;3_sH0YJIcldtfSP<;;$_njN$;PhS=7> z6ZjW#I3Mn=qBy31$QW3N-X8xkxfwglG9-rQcu;q_u>H5F&HkI2Q}BRB;@7v2cYSrp zfv&qSr>6hDXrF?IiAF|@hu^%uXKAj;s~%gwWQb(VSh#Stv-9MD9FE>KYtE+c1wmNl zDZB>s*S&cDd}C#O+~1v$G}z|Z3fM3J^_0J0t0I4kkr{j|h8hJd@YhFhmj0xGHju*x z4lMfUd(plcx^#i*%eL&y%VvuXP$gZ1`zI}cfYgq#3kh5i{f*8fk&wA6ai6akl&x1da zbeopOD6{z=iwoK_*r0hFXc)Pem>i34Uj$Og1I96e0i&d7Y4F-GPIB7Zgg>(fTqD^| zE&H^?WS55;9mCRr7MfiS2o*B!^udFJ9}k+Fj?)6dFl1Nu`k^a+H}t#t zi0iQ-z3nKIkKp%xFJAM3O=-*(!fDYNx{@=ChDF7e*ehE(iCGjEE489ecnU z2!ZE>wu1V1%!5}=emoK!dI?&KO=yalSDJLVAF1X=w{IWiA`7R?)KNR*qAAlT77!Yu zJVULsXE^6JIj-rVHCJ_*^ydZ~KV==wmdiNF@mVKOl)x}kq@%;I4se)&iKd7e>alq1(*i)7I9ttS(!yj4WVY# zV`@YS&0fhc**AOk?R)d-lg5hGiH4hnL(w>jqqB{sxA6NFq)+B%W)?<0qug9vOyq6V zt^?h3Ah36Q_#Rv}Ms2zvn30uL8L!6fgMf`En<(oUeO=4GQJU9}b~qQsR1p1~c+~*I zfZvy24(r2%x*qT$`cEYL2OKYrXb+*~qm&g4=x5fO=x7N*8CL7r0%bZkG=8gfW)r$Q(l6&?vq zskrbaMKyj}1iD36La|?o(It>}&@l^J+jbB%{G5!}Nq?ESxznzr7&{AYwi>tO-d;qV3;mzkBV?QY$C(|2zy(zgRl;fGZx7eieOgww zTeEzKwu|Yybr)LZEL}b##jhrCM$<~pQ`NUgz-@l(>3l60gmrq=V|$X+WHn*2ExnEM zKkUo^ryPI5slFuk4)!s)SxfX5qsBfjSl#v<#x5kF&{%QJqFq9EIgh?4O(GDbw5`o^ zlMT?9*KbQ3OJcAQ)BX_+E4}`a!|QvX=;_vf#G?#|wC@SOgp=Xe2(>->%ga=9vegkr zI6B71y*d;XAMcnpVMUqMNWZHK92{;BNO!utW~*ihGweUl(x@us4Eo9=kS@wiu(7hL zy}HkcN|}Nxc)YB=%KFJ1$}LTpsaqTk~Bmv0>l zP`GX#mwNcD`7pr)FJxs`Enyw>7v^xwScs3H0|pH1{q)bFD8ZRN@Nmqz2a z0l*<~9#iXFbiNdNqN1Xq_p(99h=BHgFRxQvM9;Sv$0?ts$EfI{qXxFaZGx~_J#U&7 z0bOQqWBorfWTM7B%tVMUHCjs9s$Y6*AA>6)K*|AV+3 zjh>g~MhRCV-)WkK|GIsCS<@U6ySBBq&YUx+gF95dp06}sKMq5=4U~;!e0-Z*2RY-y z!2TrSil~DQ9BAWqmdfkHPT9ZlUAwmQ$&>HR%}4gH$*$l%3Q{FVQI|0S_<_?uum;#Q z`=G6)DN79&j5pV{?;e{sHHki<8PN$#R;-wS&j=O0eblDQ3p^GtR@ASb4!X>v&%Sre z=<><*^rW|ccKez24=ezQrR8LBaa~x!g9o1+_Y4>DA3gAqm_px{d24`~o}6*gY#ND< zZ&G0UZ|)EBeY+}sx-dv#%*cb~L@8#~#*I6losIA5)|<{PADlyAsqsPyvFLecK50@FWGc+{X zusgo&EISlO5P^VxF~ouYFE@`EC`IDZ`}bgH-CD+aL%)>W7o z`{_q(ZpWV}&-|zKqq|Q9*Ll#$^MPz=cVrv(#>Gv`S!!ReC?+Q6&Q_qQIp9%0&FhGA z>FPmrdHncVUcj)+awXei2)!3xF2S`{H$ho z7{B70ckh1iuGpn0elbYr@bxHM@ITf+!+F@~O*J!P@Y8Dud-L1Zw?j6y)F+=jc?dQO zbLQ2nF$K}2GCsG=4w&S_zU_%eoN@!eVt|F*4jsiz9iTfoIg>mtub=ijDZ6)PffVo< zW3pw-O1oPN&vn>vbG&CjDXoM3qnGC|U4oSr)+NP${Ao39ZQ5rCcWv-_B9~|;c<&m= z(_Kcm4S7_6c$Xia=<51k> zdQc@ssE-`U2ppVsR9RnD16I?gSM~OV6MXEtinK~w_#YV-ZXV#IJpSOR)YM>MXmIj+ zftkE9$J)Z;J^Hc4tNr+%4!8f4q>NY|6sR1r{O?q2((O1wI>M_S8^wQrQjn(U{`-;? z|9{7Y{{12U%O9t*CrQXnlX?C(jaOvyrA^IsVR0A6h|6-kFNqoT@Avy$WzA`?l=^G8 zDpKWP`lf75m_Tai2Ja4IW1f`>Z*;1kMZKg zuiuUS`%Z7XV{_*8Km%26VLkk1QjCHak-Gc$&t`8yb4Ndo1;eAFPSd*lyL7*Mkar6z z%m*Pb&LvN*>1(yUo7{gs(T%58v;V_Di@cH-`Ty!_|34m zfpPN~ydT593I6ta;{F7uNFOadHw|-7Iwu!LYlNK@otw9l6`hqA!Wsj^>zj7$z};Is z*wTAi2_#{09m%BjQ{x`-2f=GG<$hR{F{7kz{#6oHI8uEEZmOP;)YOB@(Q36j%Y70wQ zg)`n>n4Ay`6)r zke4XK-+qO_d-T`b40L~+xV;c%&{I~UlX7&iqJwe4xS)^VUI-6f1~FVZ5f@8qAq{Dn ze{}&qi89!_xj6}Ob9;Jva(VJ`Il9l9yz!&qPzH~ z4{0mcXD$dQH-w`D9lB3*3rBZ1Q3eKZo$g1w#;Jc)~CEx3hm=)&JkF@ zN0KB{y1NLEex;l7Szmt|MBW;-Ou=AaF@5TmxJzkKIOcR~K0^Psap<>*tcPYsb?Va7 z7)cpSa;?#fy2;Y=MZYh|!=lz(i~2a`!#A>Ds_blUE6|4!Nn+0kwDl-H#Rl(@ zRFeNcC$%*qNfZ%Woe1;6>0}UHL_tJ-I+0|GRNoYFn0fu|N6rEFxw$#xk;C_M?sE?H zv%4OC3nMRPx7?_D^#>3Gy?47tYsww!IUHXXyj$3-pS7QM-qJ5#?x5A5>&nFkRu;aZEb$#3D~39XJ4V6P^EMjuf3o-<)8CQhx+E`<{g39 z6#;P0QNhY(yokKkfb<-S^g1`qIh0M3wDvgL>FbnDKChp}(KVn9Ln5QZ{T80!cR}&B zwPgzviV;x-da3;PWAM9vi4Z={rNa*E%HKO*=CJ%zxYJaOXf+u*_FFhMo(|RTt0{L& z8q}fE3W+Csnj$6lFy$F#Sj*e#9rMngM?MlnPdzr9D%qkCnWIEzP|An^(r)J;=U29{ zOqG({jSjJ*ou<8W2_j4hCuj5#IHC^m&c%AE0f7^d=WZY}J>1>-sR&5fZJ?Ct#Sf!t zqjhpOB)p%d#`HeZ);697qJt^ZOOsqmt21$=3&d9QK^}yd706q25U@*PYZK7N z&_^+RHFGmo)#JteG>k-csuraTm#e0!dmO61CXk05-`L3jG-G?Vmi-!HnLuS4Eqn)gBDDZ_5; zz(Zrxq4>f%1Ox_eGL$B$Vq~1Dj?ewPqH$j($ZKm)z}BirdwB@xm2}$n@Q#h{p~{3L zvGY;%MIP*|vCpbc*zmjPu<2eb3MybHi^M6NYHzmfWfcoj;#+>C*U}=wgl>D~QozT| zpy^61J@*G-%7S0+(DMq=c0oA@B-K=iFjK8&>K+Ntkz7VN2KqzbTgT^xW7tCj^+1oT z4qvulh9sNA?(3(9Zr;Pj>t1tfHWok@u-%XAjVcg`eKzY+yjMKCYtgTL&zM>E;H-_X zSEpnG2*n&0RbZPrwRcSXQPa*Zuw2458;L~bZh)nlPA^8(*{?X=W|y9JH=cHOfZ_?p z-ZGtZ68ON0hd1hA*Fy})*1u7aIASCj;bQ+GK3QU+e z9@$y3^~r%G;!5YvR@Pxj#-AW1OvFaxZ=P4+};NE;O?E^-%ED0 zH7+%!sdVa80n{nloIcS|7L;);ut+Q6OQI<~kqUJ0`s$!@+T-ZFgbVazgR> z(ev#7%f7d5yvOt*qtD<932E;~#ezbnsLwb;_7aymvjC zy$n7YJUVFvZJOskmzkGMDtHD>3%4vSNjXP6UC~mpE|?c#PB@K+Kg4JVF|$>7Avq|P zSEb2los-MBXkSaZPMqYUA^_&toYI_E&260?C!$-*hl+( z$%=k!yHePt*)r>5Q?R>L!CSordOubKVt1Mf$JlDI_T655GS`axSs1B>GQHR zckdjSfZ-2WDt*y7gNGszA}1)IEh0M^RPkAD}I`| zHD=vnL{lY)Tlxj&!1r*V>xTg&*v8Yw(~rEw?uYS&$5}rcb@vm>v1ZwZXG<7R;CAyK z?0exWjyMTG?7{rKD8fJ5@n$SWisz_wL6h?qBX2SLDCWfp+;g@e4exr*uyH*Jv**o7 zR=rY8sf`%TKwJyN0=up%+jldcokX61$A$N8WIXW`hSve_KSsoS1?SGFBf4GCy#HscU+ZF4-6OFuX=uG#4rZ!P$mDjyK12`) zAdv>X-GW+j%T5jLk@(C{Xwu4WryrYnX+oHz3T}4wqoM+aEHAPOPtxpXu^ZI=>px@| zZSO>Lw|SlXGPj_W?Bli7(0RIK+=*vFgn8*7Ae7_LY%D@+Sdj|7C`c?wL^+46ba%N; z;d^CCxN2tbTsvk?OiWCAmCpxUUkctI*0O%#jDlQe9wo1{U1=A8m`OzC5lcRnUSpe< z*@NPTqT~Z|cC`fi`Y3vNG;T)Wd~!FIqq;!M)_Dn?w-GY7f0wrVapaS+Kd`0qi$`DOjH4#lfXWkYCSK0VFM0*nWeY5hw-#v9Zo(g!Q%V?u`&CdKZq} z`(q(|H}tDe=KeP%>oV*k6=slL1e_Z>5V%*ln%;8(ssgoBCjn`n4_j`T&@IOGPcUV# z8sJVYtSQ5Q^9an|l#L}zF?^f#%cf4NuJ;-L!t)yO^ICDfswG=`%h{9GN2j^7o6Vy&9bA97y9{Xz{N7 zQAkBYBj$VZewck@b8~ZTAWd!QiFGf1h}v5G9q0>oKDheXr9V}#+>5ZBgdNooRz^+# z&c{i%DKjDU!Q}~9gftgj;upa{`AkE7vRgPq>~NHkzZRRgkUZG3!sA;7W+weCRtEO3 zx`{&x*R-rr?vlg_nS(W)MZ8inzUpyAeL*soFc}vAAgG8 zQqlJHBUbF2dereWCdrqIoOtXGK{a1{DjvTQ)X0FVub#Kb-F`9q7%3ZhVQo&S!jdHI zQmZO{2^&*Ti40>IYJEL4#4de686(rS*HtNnMNU8a^jSe19G4uf9)E|Zv`PB$F%U} zOJPq9C!|fLlivLH-~++35kC18zHrnHC*unL+vL2w(9kFJ9E*m^A_x)2Zee}k_}!^B z33MEOAAjC>!(6iyMy63djR0#rB z4uvQSI}C5>er~ThhqU_F@%jiQBLd#xNK4PY7ilKsOolIbv)J^bBe4@g-ebi(a9;g8?@fU|~wwY0CJ?{-Kli%A?tS_D@d_ynUhfJ$}&Q^0K6QG8oaCBRa}_ zlA#1s?kal67FCSU)zyWnj+4+ej6FZ{2)H<@X1Klc!JxuQ_&rd;s_Cu)GDsXE z6FY0RGsp+%CtJ-C{B+I-W)Y~mOwW5iru#kvvvwy-Eg3y;*V1U6y@1g9<&~2_a+zQM z!%*v*@U12SG6D)pX~CQ6L}WDZ1Uq@O=~M%uwELV%)rJ6pLNX`G@!^;(t@g{twyU$9 z-=D1~TZ4L^&y)?px72uO?gZcX*j^Ror+x?K>&aG}b$s@4$@QpF) zEU>g5!5I#e6|PizX=m6{f{(HnO+}NU2RvbvM3B&FvQ+U zOpn6v`ebKG8KxIe&%{B;;2$DfZpJbN8~VpB-A_5={V+T^N!Fq}fITH|xCpI$Q?e9K zGWHXPFaNuI=RvsojdR+Y*XFk&19JSzuEw6Q`}VIvwuLP&<0~5>c%f_UZEa+JO1=nx zJNbM`Rf+UnAfG1T#iZJrR#-7&Vhe_Sv-;#-2eUW#kkehJOh`S0w0g2Ytom=7AgNXL z!4Ee(IWiwAql8lyuSs^UR(HQfWB|9Ttz8Z8bJGwkGqsP6a#7Q|^am<7TX#4Zf*8m{ zWX7)GhfA%lh7dwDYl;z+1zT!8GPkU5B@p*Iw*$jeve?1(g0AH!Zg*bn%2T}IZ?{SX z??#I~#(y@IJ|mbJ|0p2;34YBC>armI|lXC;p(W~s7|90J&=0zFbHVf z?GmD6a&)7@GDrGG8vUUJn>}8*LZ=J~33_Lmm0poh`;;<9O{o4&5)|LOQ@yf_XsH{5 zx5A?nI^aK5Vp=x2t?<;N>$_gOyn9N=Sp4}iE5;UgJI$bpxC5lxf#%j1Dnj^ohCV~C_BBc9qx022XQ5`AFcGemei(?K;rnP z@7T><#P`LjcizV*wi0?y_m-tnq^7!X*;SG-y~IssmR6Yt4xCB*({z1xq}3q}(2yzp z(Lj(Y5^)qF**{>DBt*YnVhB=GIZKIGV5k@13D;WExSN@@9x45Z&2YzZ8!EnhEpIh$n5KK$RGi4GE1|jN-aMMO5O?OmT$;r zNs?y>f|{!l8+1Tle^?_NduEXsRuj2G898SqY;iBdP+{VONmY0y=Rnko9(Kau;^qU! zLi!eR{8)1BQ%gU-V+)QjgvJ_CjeCfBgy&HAfE5H@xwAYIBW^#d(sKQ_kZx_6>Gq*Q zK}vRa;$SZb-;R%u@jTKIcSS^Wu#-r{%5jJ zEsAr1gons$S~Y!0U8CaZ^5FFId#i7U%gC9QUwlxPO`y`_;JTZ@>La}ztRSbl-Rbfy zlO^@lS}P5c3qxPRSf^0v;wJpdR}dapzyz+O-;iA4ZS6U~5me%jK7RVn1-q0xLmfN) zYrIO=p-4-d#SJLUj+ZDrRlKp@znyy>f8luTdClgU zO_-c6XC1ccGLjutA6mHaUcMgX>Fi4&h;8HHy>HWO<^-!GW7s!$N)hJ4UjdfYvQ+`5 zRF2a(_(W8bFoZokJ}lv0=%P1`28lpyaQCaqou*3R92Iz2Vuu;sIx9~`|A40QgmjM! zW~#+XOhrVw3vcLfnQoO%0Po>jMV0iQolrL_+2mKDhFCb?6J(!81oH>EZn_B(vEA+% zdm;k@=sU6$UjxYlnNz0e5CML6k zIz@GZP2WV!n@E|>#>m!RCM@Fx(T#|HVB)nW1K7>Bc+Oo3+nX2D=oRej7y}mG?zZE6 zi=epphC4=;Y5VZ^t6xi9r^S^mY?ukS`rSKyH?VjkOv$a}&FUJ*#PVjMj_cQxJRt3&#Oi^N!36K}w*7z$H*f(j>?f{tz6Pl0l4$PSN;MDIWyv)0QL)+}Y{&Gy;t zps7}oAIljyoSSF`U0aAaT=-`OkEg+?iDjq--mmM~bEUnSgFY}>OBmZyOv9d+?Fct$ zygPLmLnpldlSm~8LZ?kx#d3c5AsnsazwdYUtPwG3Gr1t zHr2rSs(=|H7ep5j&6`1NnNs_uZ`19USWw{9<^iLYV91voH%L$c+sZy=Z5kU{vj3Eg z3?=r<*C%wy{!|2q}j%jboOCjo^2GdfXoL4Gi<{7z)U1+TT5Fna?!o5+M|Lf3;?M z)l*ac^7!ZFuW<3~kKrx0MG9)#+R0r?dJ5?)uRwVGJcNMzCjA5aa)E$j&w%6FyvrZ^ zE4|)jLww!`tC0n4v;h}9Qwfjy>7=942vZ0VuekWte%v0gYQDZAnjCu0{`=9U7yWq` z{k1kDz6)tRnv!z+45VmSbq1DM^O@#hiVcZS&C&*|_-Uk*asO;}5r^jG7vE4_mbSg? z74fT;CkwtwCz;GV%C6o7VrVJqcYV*$PoU%0K`?5oXij|{p?6!|GF4j2IAEstjJI#h z-DdSeMpA>s7%RWFPn!Yg8jDmrxlj+frOHmmQAg>Vt!4F^&Ahay2tkE^Z$N) zT_%kdzGbtXhw(@XPEN)b)xcTBpY1KPY%1aVGx*m0<;$0@-C>UJ;U(WD3gO_E z@pgZXj~y4*YVbvH)~ zG-Wo~K5W{Fen1O~F?9I*5Mu1%LpR&88H~qMsfTN6rv9gEY0D!Z0Tl82_3Ai_s77Rc zfY#5;OCWsc6?x8qq^$m@0W2gXz~*CKfDoaYvO=0}RvBV;oLYUe{OM--q9idg8_pa{Bt+|fvNSeE z93#Yx{(Z4iA*xiKtH4J`tx7~!^W#?Rws^JrrrKt_#bZ{kjREd<&UgVUOCtIZCYG&m z{V!^pgLBzDLi~+tA?zhLBc<}C`pUnL1nP!KmRxL2N}H%{s;$BF){35pdHq^EJ=_?{ z6IX41$L5Aj4-w+XYNtq}(0=4uFq)4-&>;G6`Y~F>#Kp#rJNL%Xh%WE4hNx}ABsaAh zDzhYQ%4~gqJ6rS!FsT?!m@#`>jL62(I8Tz%Th2hLY6lGOKkgN3$i!mgro3rnUMzNp z(UEYdZjFv=LniXpcv;!_5DtBj%OAYcKlSaGT+yeo@aW;^!y)83#iMqHDnfO|UMVMI zW9pr)w>62TQ@~i%dmpY}T(ltPc_*kJW*H)L$a5yMaUKb22`Z)u;G}4> zPz;ZajfKEv+C`jAb6wRG}&> z!y$HssD2~SHo5S=H%Xg$=6#kikd1!h#~Jco$A8erwv+Qeo6lI=(OW)z=g_Y#6g^G$ zk{j%@SFX;2iCgsrDEgh8zG<)DEy>ON8Ao8J8t)#J{yCotn7fA_Xx&)R<_hYrV1`Dd zd0$BU-LQ_n7-7;HY~`9YEr&khODKLuJhE>P@8axe=V;xB1(9DnL!P66@*FLwy#f22 zTFWG*VxkM%Ad-A+0u-_3iaZB798XS-%$_WzIvqht*^F2r#HnovUNj>>^As|33zqYip40j~Hk^`9?Mg060 zZK{1A@f?d5!34OM&S1<=-@#Pq5Efe8+QUNHD)ZN17ln5Yc0pG^JNx=(AHNq65iuH7 zYArOC2;klrI0BBQgU!j0YT@%P&(n8YNF1g8>%M?Eo zuUqIc{(u`WzdSr*uo z1+3JaO0L5!ICOAzlD792+?2P8O6mVG@7!OPj&`PRC-H=;+zlPZtt2b0LS=j`lIo;k z{PDCl3_38CBkeW}Opc(%eTBfC=PWmhM)72(x=&BN_cdx-u5-Arg8wS4%@#W=y@mDj zwuX%GGE|zfb-8l|=4gz`dyi&6Z|~C%ELuwi`x+0iv(3Wi!WU;dRTB>m$)lbC?}iIB zjaeZZS5auta$O#C(@Fc3w@*pJ!^5K(?T?0SVaUkV)z8p30|NuVBC}|?&Gs zfPiZdYeZJN`TG;}gzY6FWPSHqkNwYQ7ucg*HioIKqFc>?pUjwboNMaI!wDTmt@bP} zEiLafJ#>5LvR&YUE3Nv?0O)Coy2ecMu`4r*Shq4;+9bGJPl4$JnF^`xn;qvU-?=g8T{xf*{dF; zWQpQNJtyNRk&br>^mz$JHa@#FLUM67-F|hsaP7ChF znX}uZgk>j=hp%VfwN7wf!I7%pJ8#=#G{Gvq|9140;m?ihL-FfEHdMgXMnLL!+Hlf< zI)g{PeXsw-pKhrJWKJnDH@37~{HPrfuw!#Wzuvj9#|!YQ3&J+yc|kcZbA2N(fXi{v za6L)4l*jd&yZvJPuq6aVd+0ldfk7dH<^m93Z0ojXZix^-#(d)rmPsKhx3-o~-S&s@ z!YM)Rm#Uo0%S$kNiXTosKADY|m&XewAOrw_b}gzjGX0HUc)1_u)!y}$V<@#`DP7;z z>MG`$yoko(_n^YD&Bet}HJmWt{pH*Ea>WStkMeil+kbEK6DFojee;dX5G@5QK|J|v zT#9&I;oi|~smF2B`d%UlATnC5`ISK<3Jd8X$n#rpj9>2OE7G2wjj8Mkt7#Z5wNxez zB|sFR4pR?yX4;8qt}%FJ<`$9F*Bq8t(qAxlZ8FEDPcp-=kmTeA+`I0 zb|H?6u>Z+0-z9=}b+E6|OwhE))!pKb4N7%FU)2z15iXRr#yeFJHa!Xf>09 z?bAM2o%!~FfY|x%_MflGb3W(bXb(r(#y7L?;or*v(a_-P?9DvigZ_Za>3~RvVnuBc z_d?>G;X3Kf)j2%00ns2SA(pqb9j0fVnVnsMHzb5)u&VynOFe4c^CLXJ*j>1)C}11O z6%AhQD3|Ib2c~YdXMcZx83(9(oz@!cHdh@3b4DQxL;s=uB|t(yel@qTkxlm|+Khjv zEYTyCpXBKiZHq_WjWz%Z^4WKKs9Axw#!sq^*Qc;aoUQgJv8v|UrRYXWmbAPk&mchW zp42iIlBRsIwDt3a>o&b`v=K~39Ha%DrhPq}EYm$1g6h z`QDEoPxqgay$#sPKm={DRMq#!(TX&*5%X{z{0-6F1hz({ zNll7zUZd?~887<~eB0lT^LW0|bpwbU$O6juY~$>KK8V41Lscqhh(Q=lE);F^J0Dg0 zbj=PFg;?{p`cW^%QnkeUV)NpKakdyg^X%@%Jc~Kr8O{+-OG`T-zsUH?Rz|yj+J1fB zJ~BM~>-6H{q9>Xns=%y5^QNGT-g_odSZ|NgNnJOJ6LXRpWQoj+B??vKp(?c@D$Mu% z9tV?OOhiLX*N3EQ?wJq1BLq2w`Dv|!Z_a63f|_{1FRTCzQlI&3p8GLv$3Tk@hn}2h zw!97kxxXK9R4N1IE!%$HV-b@ETTir0S4BNGOrE9alA9gX-x@&;UMt`?D$%FB#~}OB zA|eXg>5&e_+E;`)GLCwy1rBJ69D0`@c%A)5tnW7SoC%CrXvwdawA310P}B>6)HoWC z`t?T7+HI~cK=&BBUQ628*JXbutIV9t=JRB2fJ9 z68^snf#elaVLH(p!7cL4t}oX=f1n|;kbBHGLT&Eq=EgMZ56tCNS`^S#o&2OJn8jx1 z^y(yy%~$0)ZGv2W97U-K?cr_0%;WisA2WPj<=ya9GD`mkHh&MVK>z(^_ zE&@JwlZGufCnpD}$Jpm2qK0U;NEvKuKrFKP5tA8a7mJb~pyut}gYLB-klzaUGh>r6 z*4z2#mUEI93T(^>wMfv*hpy=H@GlvI;Yt#}orU^)z;OP?MC12iJnmMX%Wzjls{$@} z%F4=2FSm8UF8DQMe%?zP&~mdU={TZ+NB(7rF;5ZpZ>Vt!WN5sy5 zV2PjH2#7R9y7V!K=eCr5EiaotuoJ)Z7vGOn+>&~ntK_L&{RC_MZHT^{da^jE-VPd7 z6ZSCr^Kz@B@(yztCM{CpGZ>z!(<{2*OUqD{6pY`R#sL{U)K-`5#hS2fQj1W ziU+iP?u|D}YGDWXS*E`5I`9S=`ZqG(yw!nreZ}QkpEeDc>#ovN`|YM<^~UId^xpTz zTHg99-zz{|aE=C{6T6$r*mpUA;?ZXfss@}*NOL`d^OAE7qsm{WSD3bV(bx6yTn(_) zI=oHPUYGy!bV%!&Rjh_N^Ias>U(C=FnBQ^uoA|@hHlJ6A5wJdulO@7{^!XDoAEENCfh0&xa!2@J-_(fswQoY@u;7ztrlO@~ZL#Z=)6^LKg(Cyd!93y+wV`s&A&Ar7 zd@Jq6B9?0&MxGgf-$1^by0Y?&Smh;vgJk%-;J$yq>=R)U5r}*%#qc?`g9FVs5cCGz zlJ$cSkiB{C&F`NPp%L@J-8EO)w=YJmkr_b2-98;qO+i@t=j1kf3IX~T&mW&Q&QeYN z{LXbv(fxcB8fT3!R-nS1(n^07i)N-_(|>$*7WQ3^3NY;6AyJCe7XPBJa^mzldsHFn zXSK<;6LEsx%%@ykS`DtCfA-slIbeQ&eM69HNoVn=N;e>=<^_QJ!iyM?B=8qH&pn|8P3QJ$!? ze+SqYRJ~gs&9N(=^2p!`8{RdNB%PHDdw`>8j-_B1xuVBb(&Eqsl}`HbS(0?1rh9Bf z;4}HOJDyPg_Xx+iT@U!|Z~9+VD+20}$Ruv>(Lubwb1aHzd01z5-Tfs!_nkxb{Vpg( zb6Tl(WhCIrwb8tP#<>Sm;tiTNdhof!Y;@;nS>UIeP*lO!I%>E&D9s}VChB&Yq6$LH zZS_;pb)w_*OFHavL+P#-2jl4@kr9}(wl-<>l{D!DOmrmpac3$h^1Vo(mS6wuQ2!u| zzMHD9i15aY4VuR)aC(5H9B{eZtS0e$e}0~ZmT0nOS@G=Ze9y*#JC89We#rX4!Odqi zTSqhg*mnx!X>IKzKk;hjC99w|>o%L( znwz7q_=M%{LcU58uy#Se?Rrp#Nf0psrbnzm449*7y!JaP02yN=h+Nd7?PqI!0>(9; ztxF$mmE@7D#sFNoLPxQY>x;I(2gLCgpK?D3nA^;2%>BTIs~Q^`A>F*Lnwb!CE)mUO8YK^SG--=d&bCu-19$fUc-82rEmM7*SUEvSEVFF zw*Ny~AJ(M1pYhUX#GT;4ohHy}1as7imjIPd?)1))P!2&|ge_(FR}Ud-<%tk_+?Nd9 ztoU8~Ua$RDA4$TkJPhq7BtLKyM9sSyKf#x>3tXvMJw{WThor%lGfR|MO>Kx{Cd_Q3 zLl;euR4%vlekG<`45-FrkWSKGj?q3scwB(I|4`qi_v0HRJGnMoy$H$vgOqX?Ff8z; zlqa0l1$O%_Nic8xp&|$;O8%;u5M)1L_~yEM*rh(R*x1-OQZrFJc*zMnE`L+mPC|TB zd`^B{X5SA!J1C{ZLi*#D__NbsYm@k!23y=p_q#PXNCH4E($d)jC|uU5-nx36nXp3~ zy5g_A!mR6$ybDFThAfp724lAh&GK*w4Z_18>C>P^i+y?x0D57YsQd#SDg>{ULO~br zIoeh_SU+(2OYt{r_>7zx4N}0S=XjO>>~E0>6!d^`wWNOYo**x>Na9v0rGYD&AIEpp z|NZ@%Xa1anrx0-I9-f|fBb*PRdq!1g{;riX8#E33_D^6m`lnF1YUc^U( z9F>yE=kCpO%*<?OO*Y2ICS_#H779Y}KgWb`-AgeFowj-cYKTFn}FZClbrV@<9 z*b>%zUHnp~=z!-dE4~z!;#U=E1HctqJN(|+(egRL=sJ+;vxX>^2G7d=iGoD}ui@-t zUXV&7J2Vln`}9?}#!cC$`E`~BJg9nWIH%p$!VQ)aLLME|KCG>{z*Z4?zRzm%WR2G@ zQssaqVyo9#N+Rg)K#g=xa);TQ9Uln%K$mn}$#~(o=Ncs%{W6?SB2aYXFn)*HLXrw^ElAhM z%zMA1D}A++3(B?b?d^*sVRi zVg%5MWZr!dM**t!k3+XcmP3}F%=MS#`Dcpx5MiDuv#&i5{j!kF$Vt?;x6%sbzSq(+ z2Yn62x1asY@zI>}m*!%PKrAScQ-(2XR-u~nHvFkvO%~&&8nX`v61+XV7Ub!e&L*hxc`NKbHr^~mi%61>1I)F1wX)p^4BME*Z-`f{%w3^0}`OzUVrX|1-`up*rL~=8`M|2(%h(H$*b4D zp6uIL8xn_xe|%7ku;6NJY6>!@ZWQfyh(vF%92ITtNq6ez$Rx+#)E&b2bfgC)Vz(T_ zbJj%RuEb*x_k!idA9Q&Ue@Yh%f52$MI!$*~9U1K1k-&Ke?Xko+VpdxUb%oOf<8?^= zvIX&R3*tyuZX6e^V)sAzfK8g3RYF+Z*T=;1CUihK^_VMYIw3^<9*wCIW$hpR@8s15 z%ab=)<6|2*U2j_KpWczCoereKHk$6~a+ng1-89zL79AlCj8Uc?