| @@ -113,6 +113,78 @@ plt.legend() | |||
| plt.show() | |||
| # - | |||
| # ## How to use iterative method to estimate parameters? | |||
| # | |||
| # + | |||
| n_epoch = 3000 # epoch size | |||
| a, b = 1, 1 # initial parameters | |||
| epsilon = 0.001 # learning rate | |||
| for i in range(n_epoch): | |||
| for j in range(N): | |||
| a = a + epsilon*2*(Y[j] - a*X[j] - b)*X[j] | |||
| b = b + epsilon*2*(Y[j] - a*X[j] - b) | |||
| L = 0 | |||
| for j in range(N): | |||
| L = L + (Y[j]-a*X[j]-b)**2 | |||
| print("epoch %4d: loss = %f, a = %f, b = %f" % (i, L, a, b)) | |||
| x_min = np.min(X) | |||
| x_max = np.max(X) | |||
| y_min = a * x_min + b | |||
| y_max = a * x_max + b | |||
| plt.scatter(X, Y, label='original data') | |||
| plt.plot([x_min, x_max], [y_min, y_max], 'r', label='model') | |||
| plt.legend() | |||
| plt.show() | |||
| # - | |||
| # ## How to show the iterative process | |||
| # + | |||
| # %matplotlib nbagg | |||
| import matplotlib.pyplot as plt | |||
| import matplotlib.animation as animation | |||
| n_epoch = 3000 # epoch size | |||
| a, b = 1, 1 # initial parameters | |||
| epsilon = 0.001 # learning rate | |||
| fig = plt.figure() | |||
| imgs = [] | |||
| for i in range(n_epoch): | |||
| for j in range(N): | |||
| a = a + epsilon*2*(Y[j] - a*X[j] - b)*X[j] | |||
| b = b + epsilon*2*(Y[j] - a*X[j] - b) | |||
| L = 0 | |||
| for j in range(N): | |||
| L = L + (Y[j]-a*X[j]-b)**2 | |||
| #print("epoch %4d: loss = %f, a = %f, b = %f" % (i, L, a, b)) | |||
| if i % 50 == 0: | |||
| x_min = np.min(X) | |||
| x_max = np.max(X) | |||
| y_min = a * x_min + b | |||
| y_max = a * x_max + b | |||
| img = plt.scatter(X, Y, label='original data') | |||
| img = plt.plot([x_min, x_max], [y_min, y_max], 'r', label='model') | |||
| imgs.append(img) | |||
| ani = animation.ArtistAnimation(fig, imgs) | |||
| plt.show() | |||
| # - | |||
| # ## How to use batch update method? | |||
| # | |||
| # If some data is outliear, then the | |||
| # ## How to fit polynomial function? | |||
| # | |||
| # If we observe a missle at some time, then how to estimate the trajectory? Acoording the physical theory, the trajectory can be formulated as: | |||
| @@ -217,8 +289,9 @@ Y_est = regr.predict(X_test) | |||
| print("Y_est = ", Y_est) | |||
| print("Y_test = ", Y_test) | |||
| err = (Y_est - Y_test)**2 | |||
| err2 = sklearn.metrics.mean_squared_error(Y_test, Y_est) | |||
| score = regr.score(X_test, Y_test) | |||
| print("err = %f, score = %f" % (np.sqrt(np.sum(err))/N_test, score)) | |||
| print("err = %f (%f), score = %f" % (np.sqrt(np.sum(err))/N_test, np.sqrt(err2), score)) | |||
| # plot data | |||
| @@ -5,12 +5,28 @@ | |||
| "metadata": {}, | |||
| "source": [ | |||
| "# Logistic Regression\n", | |||
| "\n", | |||
| "逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。本节主要详述逻辑回归模型的基础。\n", | |||
| "\n", | |||
| "\n", | |||
| "## 1 逻辑回归模型\n", | |||
| "回归是一种比较容易理解的模型,就相当于$y=f(x)$,表明自变量$x$与因变量$y$的关系。最常见问题有如医生治病时的望、闻、问、切,之后判定病人是否生病或生了什么病,其中的望闻问切就是获取自变量$x$,即特征数据,判断是否生病就相当于获取因变量$y$,即预测分类。\n", | |||
| "\n", | |||
| "最简单的回归是线性回归,在此借用Andrew NG的讲义,有如图所示,$X$为数据点——肿瘤的大小,$Y$为观测值——是否是恶性肿瘤。通过构建线性回归模型,如$h_\\theta(x)$所示,构建线性回归模型后,即可以根据肿瘤大小,预测是否为恶性肿瘤$h_\\theta(x)) \\ge 0.5$为恶性,$h_\\theta(x) \\lt 0.5$为良性。\n", | |||
| "\n", | |||
| "\n", | |||
| "\n", | |||
| "然而线性回归的鲁棒性很差,例如在上图的数据集上建立回归,因最右边噪点的存在,使回归模型在训练集上表现都很差。这主要是由于线性回归在整个实数域内敏感度一致,而分类范围,需要在$[0,1]$。\n", | |||
| "\n", | |||
| "逻辑回归就是一种减小预测范围,将预测值限定为$[0,1]$间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在$z=0$时,十分敏感,在$z>>0$或$z<<0$处,都不敏感,将预测值限定为$(0,1)$。\n", | |||
| "\n", | |||
| "\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 23, | |||
| "execution_count": 2, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| @@ -171,6 +187,16 @@ | |||
| "logistic.train(200)\n", | |||
| "plot_decision_boundary(lambda x: logistic.predict(x), data, label)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "markdown", | |||
| "metadata": {}, | |||
| "source": [ | |||
| "## References\n", | |||
| "\n", | |||
| "* [逻辑回归模型(Logistic Regression, LR)基础](https://www.cnblogs.com/sparkwen/p/3441197.html)\n", | |||
| "* [逻辑回归(Logistic Regression)](http://www.cnblogs.com/BYRans/p/4713624.html)" | |||
| ] | |||
| } | |||
| ], | |||
| "metadata": { | |||
| @@ -0,0 +1,132 @@ | |||
| # -*- coding: utf-8 -*- | |||
| # --- | |||
| # jupyter: | |||
| # jupytext_format_version: '1.2' | |||
| # kernelspec: | |||
| # display_name: Python 3 | |||
| # language: python | |||
| # name: python3 | |||
| # language_info: | |||
| # codemirror_mode: | |||
| # name: ipython | |||
| # version: 3 | |||
| # file_extension: .py | |||
| # mimetype: text/x-python | |||
| # name: python | |||
| # nbconvert_exporter: python | |||
| # pygments_lexer: ipython3 | |||
| # version: 3.5.2 | |||
| # --- | |||
| # # Logistic Regression | |||
| # | |||
| # 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。本节主要详述逻辑回归模型的基础。 | |||
| # | |||
| # | |||
| # ## 1 逻辑回归模型 | |||
| # 回归是一种比较容易理解的模型,就相当于$y=f(x)$,表明自变量$x$与因变量$y$的关系。最常见问题有如医生治病时的望、闻、问、切,之后判定病人是否生病或生了什么病,其中的望闻问切就是获取自变量$x$,即特征数据,判断是否生病就相当于获取因变量$y$,即预测分类。 | |||
| # | |||
| # 最简单的回归是线性回归,在此借用Andrew NG的讲义,有如图所示,$X$为数据点——肿瘤的大小,$Y$为观测值——是否是恶性肿瘤。通过构建线性回归模型,如$h_\theta(x)$所示,构建线性回归模型后,即可以根据肿瘤大小,预测是否为恶性肿瘤$h_\theta(x)) \ge 0.5$为恶性,$h_\theta(x) \lt 0.5$为良性。 | |||
| # | |||
| #  | |||
| # | |||
| # 然而线性回归的鲁棒性很差,例如在上图的数据集上建立回归,因最右边噪点的存在,使回归模型在训练集上表现都很差。这主要是由于线性回归在整个实数域内敏感度一致,而分类范围,需要在$[0,1]$。 | |||
| # | |||
| # 逻辑回归就是一种减小预测范围,将预测值限定为$[0,1]$间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在$z=0$时,十分敏感,在$z>>0$或$z<<0$处,都不敏感,将预测值限定为$(0,1)$。 | |||
| # | |||
| #  | |||
| # | |||
| # | |||
| # + | |||
| # %matplotlib inline | |||
| from __future__ import division | |||
| import numpy as np | |||
| import sklearn.datasets | |||
| import matplotlib.pyplot as plt | |||
| np.random.seed(0) | |||
| # + | |||
| # load sample data | |||
| data, label = sklearn.datasets.make_moons(200, noise=0.30) | |||
| print("data = ", data[:10, :]) | |||
| print("label = ", label[:10]) | |||
| plt.scatter(data[:,0], data[:,1], c=label) | |||
| plt.title("Original Data") | |||
| # + | |||
| def plot_decision_boundary(predict_func, data, label): | |||
| """画出结果图 | |||
| Args: | |||
| pred_func (callable): 预测函数 | |||
| data (numpy.ndarray): 训练数据集合 | |||
| label (numpy.ndarray): 训练数据标签 | |||
| """ | |||
| x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5 | |||
| y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5 | |||
| h = 0.01 | |||
| xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) | |||
| Z = predict_func(np.c_[xx.ravel(), yy.ravel()]) | |||
| Z = Z.reshape(xx.shape) | |||
| plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
| plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral) | |||
| plt.show() | |||
| # + | |||
| def sigmoid(x): | |||
| return 1.0 / (1 + np.exp(-x)) | |||
| class Logistic(object): | |||
| """logistic回归模型""" | |||
| def __init__(self, data, label): | |||
| self.data = data | |||
| self.label = label | |||
| self.data_num, n = np.shape(data) | |||
| self.weights = np.ones(n) | |||
| self.b = 1 | |||
| def train(self, num_iteration=150): | |||
| """随机梯度上升算法 | |||
| Args: | |||
| data (numpy.ndarray): 训练数据集 | |||
| labels (numpy.ndarray): 训练标签 | |||
| num_iteration (int): 迭代次数 | |||
| """ | |||
| for j in range(num_iteration): | |||
| data_index = list(range(self.data_num)) | |||
| for i in range(self.data_num): | |||
| # 学习速率 | |||
| alpha = 0.01 | |||
| rand_index = int(np.random.uniform(0, len(data_index))) | |||
| error = self.label[rand_index] - sigmoid(sum(self.data[rand_index] * self.weights + self.b)) | |||
| self.weights += alpha * error * self.data[rand_index] | |||
| self.b += alpha * error | |||
| del(data_index[rand_index]) | |||
| def predict(self, predict_data): | |||
| """预测函数""" | |||
| result = list(map(lambda x: 1 if sum(self.weights * x + self.b) > 0 else 0, | |||
| predict_data)) | |||
| return np.array(result) | |||
| # - | |||
| logistic = Logistic(data, label) | |||
| logistic.train(200) | |||
| plot_decision_boundary(lambda x: logistic.predict(x), data, label) | |||
| # ## References | |||
| # | |||
| # * [逻辑回归模型(Logistic Regression, LR)基础](https://www.cnblogs.com/sparkwen/p/3441197.html) | |||
| # * [逻辑回归(Logistic Regression)](http://www.cnblogs.com/BYRans/p/4713624.html) | |||
| @@ -1,66 +0,0 @@ | |||
| import matplotlib.pyplot as plt | |||
| import numpy as np | |||
| import sklearn | |||
| from sklearn import datasets | |||
| # load data | |||
| d = datasets.load_diabetes() | |||
| X = d.data[:, 2] | |||
| Y = d.target | |||
| # draw original data | |||
| plt.scatter(X, Y) | |||
| plt.show() | |||
| ############################################################################### | |||
| # Least squares | |||
| ############################################################################### | |||
| # L = \sum_{i=1, N} (y_i - a*x_i - b)^2 | |||
| N = X.shape[0] | |||
| S_X2 = np.sum(X*X) | |||
| S_X = np.sum(X) | |||
| S_XY = np.sum(X*Y) | |||
| S_Y = np.sum(Y) | |||
| A1 = np.array([[S_X2, S_X], [S_X, N]]) | |||
| B1 = np.array([S_XY, S_Y]) | |||
| coeff = np.linalg.inv(A1).dot(B1) | |||
| x_min = np.min(X) | |||
| x_max = np.max(X) | |||
| y_min = coeff[0] * x_min + coeff[1] | |||
| y_max = coeff[0] * x_max + coeff[1] | |||
| plt.scatter(X, Y) | |||
| plt.plot([x_min, x_max], [y_min, y_max], 'r') | |||
| plt.show() | |||
| ############################################################################### | |||
| # Linear regression | |||
| ############################################################################### | |||
| # the loss function | |||
| # L = \sum_{i=1, N} (y_i - a*x_i - b)^2 | |||
| n_train = 1000 | |||
| a, b = 1, 1 | |||
| epsilon = 0.001 | |||
| for i in range(n_train): | |||
| for j in range(N): | |||
| a = a + epsilon*2*(Y[j] - a*X[j] - b)*X[j] | |||
| b = b + epsilon*2*(Y[j] - a*X[j] - b) | |||
| L = 0 | |||
| for j in range(N): | |||
| L = L + (Y[j]-a*X[j]-b)**2 | |||
| print("epoch %4d: loss = %f" % (i, L)) | |||
| @@ -1,70 +0,0 @@ | |||
| # -*- coding=utf8 -*- | |||
| from __future__ import division | |||
| import numpy as np | |||
| import sklearn.datasets | |||
| import matplotlib.pyplot as plt | |||
| np.random.seed(0) | |||
| data, label = sklearn.datasets.make_moons(200, noise=0.30) | |||
| def plot_decision_boundary(predict_func, data, label): | |||
| """画出结果图 | |||
| Args: | |||
| pred_func (callable): 预测函数 | |||
| data (numpy.ndarray): 训练数据集合 | |||
| label (numpy.ndarray): 训练数据标签 | |||
| """ | |||
| x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5 | |||
| y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5 | |||
| h = 0.01 | |||
| xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) | |||
| Z = predict_func(np.c_[xx.ravel(), yy.ravel()]) | |||
| Z = Z.reshape(xx.shape) | |||
| plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
| plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral) | |||
| plt.show() | |||
| def sigmoid(x): | |||
| return 1.0 / (1 + np.exp(-x)) | |||
| class Logistic(object): | |||
| """logistic回归模型""" | |||
| def __init__(self, data, label): | |||
| self.data = data | |||
| self.label = label | |||
| self.data_num, n = np.shape(data) | |||
| self.weights = np.ones(n) | |||
| self.b = 1 | |||
| def train(self, num_iteration=150): | |||
| """随机梯度上升算法 | |||
| Args: | |||
| data (numpy.ndarray): 训练数据集 | |||
| labels (numpy.ndarray): 训练标签 | |||
| num_iteration (int): 迭代次数 | |||
| """ | |||
| for j in range(num_iteration): | |||
| data_index = list(range(self.data_num)) | |||
| for i in range(self.data_num): | |||
| # 学习速率 | |||
| alpha = 0.01 | |||
| rand_index = int(np.random.uniform(0, len(data_index))) | |||
| error = self.label[rand_index] - sigmoid(sum(self.data[rand_index] * self.weights + self.b)) | |||
| self.weights += alpha * error * self.data[rand_index] | |||
| self.b += alpha * error | |||
| del(data_index[rand_index]) | |||
| def predict(self, predict_data): | |||
| """预测函数""" | |||
| result = list(map(lambda x: 1 if sum(self.weights * x + self.b) > 0 else 0, | |||
| predict_data)) | |||
| return np.array(result) | |||
| if __name__ == '__main__': | |||
| logistic = Logistic(data, label) | |||
| logistic.train(200) | |||
| plot_decision_boundary(lambda x: logistic.predict(x), data, label) | |||
| @@ -1,72 +0,0 @@ | |||
| # -*- coding=utf8 -*- | |||
| from __future__ import division | |||
| import numpy as np | |||
| import sklearn.datasets | |||
| import matplotlib.pyplot as plt | |||
| np.random.seed(0) | |||
| data, label = sklearn.datasets.make_moons(200, noise=0.30) | |||
| def plot_decision_boundary(predict_func, data, label): | |||
| """画出结果图 | |||
| Args: | |||
| pred_func (callable): 预测函数 | |||
| data (numpy.ndarray): 训练数据集合 | |||
| label (numpy.ndarray): 训练数据标签 | |||
| """ | |||
| x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5 | |||
| y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5 | |||
| h = 0.01 | |||
| xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) | |||
| Z = predict_func(np.c_[xx.ravel(), yy.ravel()]) | |||
| print(Z.shape) | |||
| Z = Z.reshape(xx.shape) | |||
| plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) | |||
| plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral) | |||
| plt.show() | |||
| def sigmoid(x): | |||
| return 1.0 / (1 + np.exp(-x)) | |||
| class Logistic(object): | |||
| """logistic回归模型""" | |||
| def __init__(self, data, label): | |||
| self.data = data | |||
| self.label = label | |||
| self.data_num, n = np.shape(data) | |||
| self.weights = np.ones(n) | |||
| self.b = 1 | |||
| def train(self, num_iteration=150): | |||
| """随机梯度上升算法 | |||
| Args: | |||
| data (numpy.ndarray): 训练数据集 | |||
| labels (numpy.ndarray): 训练标签 | |||
| num_iteration (int): 迭代次数 | |||
| """ | |||
| for j in range(num_iteration): | |||
| data_index = range(self.data_num) | |||
| for i in range(self.data_num): | |||
| # 学习速率 | |||
| alpha = 0.01 | |||
| rand_index = int(np.random.uniform(0, len(data_index))) | |||
| error = self.label[rand_index] - sigmoid(sum(self.data[rand_index] * self.weights + self.b)) | |||
| self.weights += alpha * error * self.data[rand_index] | |||
| self.b += alpha * error | |||
| def predict(self, predict_data): | |||
| """预测函数""" | |||
| result = map(lambda x: 1 if sum(self.weights * x + self.b) > 0 else 0, | |||
| predict_data) | |||
| print(result) | |||
| return np.array(result) | |||
| if __name__ == '__main__': | |||
| logistic = Logistic(data, label) | |||
| logistic.train(200) | |||
| plot_decision_boundary(lambda x: logistic.predict(x), data, label) | |||