diff --git a/0_python/0-ipython_notebook.ipynb b/0_python/0-ipython_notebook.ipynb index 5cd577a..809f982 100644 --- a/0_python/0-ipython_notebook.ipynb +++ b/0_python/0-ipython_notebook.ipynb @@ -34,7 +34,7 @@ "\n", "当然,也可以通过 `pip` 来安装 \n", "```\n", - "pip install jupyter。\n", + "pip install jupyter\n", "```\n", "\n", "安装后便可在终端中输入以下命令启动:\n", @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "podoc": { "output_text": "Screenshot of a Jupyter notebook" @@ -78,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -87,7 +87,7 @@ "4" ] }, - "execution_count": 3, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -98,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -107,7 +107,7 @@ "12" ] }, - "execution_count": 4, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -118,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -141,19 +141,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAalElEQVR4nO3df4xldXnH8c/DMNZBTUdkQmCW7W4KXQoaWJ0gdtNWltrFSmDjr4qt2TTG/UdbUTM6tDZC0sa126D+YUk2gm6LARTIAGJdDbvGlETqrAPiClu3iMDwa407/mIqw/L0j3vuevfOOXfOveee7/n1fiVm5575cb9nBp/7vc/3+T5fc3cBAJrjhKIHAAAIi8APAA1D4AeAhiHwA0DDEPgBoGFOLHoAaZxyyim+bt26oocBAJWyf//+n7r7RPf1SgT+devWaW5uruhhAEClmNlP4q6T6gGAhiHwA0DD5B74zWzEzObN7KvR4/Vmdp+ZHTKzW8zsJXmPAQDwWyFm/B+U9FDH409J+rS7nynpiKT3BhgDACCSa+A3szWS3iLp89Fjk7RZ0q3Rl+yWtDXPMQAAjpd3Vc9nJH1U0iuix6+StOjuL0SPn5A0GfeNZrZd0nZJWrt2bb6jBFAbs/ML2rnnoJ5cXNLp42Oa3rJBWzfGhpnGym3Gb2aXSnrW3fcP8v3uvsvdp9x9amJiRRkqAKwwO7+gq25/UAuLS3JJC4tLuur2BzU7v1D00Eolz1TPJkmXmdmjkm5WK8XzWUnjZtZ+p7FGEn8RAEOxc89BLS0fPe7a0vJR7dxzsKARlVNugd/dr3L3Ne6+TtK7JO1197+StE/S26Mv2ybpjrzGAKBZnlxc6ut6mczOL2jTjr1aP3O3Nu3Ym+u7lCLq+D8m6cNmdkitnP/1BYwBQA2dPj7W1/WyCJ2iChL43f1b7n5p9PEj7n6Bu5/p7u9w99+EGAOA+pveskFjoyPHXRsbHdH0lg0FjSid0CmqSvTqAYA02tU7VavqCZ2iIvADqJWtGydLH+i7nT4+poWYIJ9XiopePQBQsNApKmb8AFCw0CkqAj8A9CGvncEhU1QEfgBIqV122a7AaZddSooN2rPzC7rmrgM68tyyJGl8bFRXX3Zu4WsQ5PgBIKV+yi5n5xc0fesDx4K+JC0uLWv6Kw8U3kKCwA8AKfVTdrlzz0EtH/UV15df9MJbSBD4ASClfnYGx5VnthXdQoLADwAp9VN2OWKW+HNOMIvtyROqXw+LuwCQUj9ll0d9ZZqn+3Odi8OS+lo4zoLADwCRNKWaacsuJxN243brXBxOWjgeduAn1QMAGn6HzLi0UJInF5eC9ush8AOAht8hc+vGSX3yra/R5PiYTK13AONjo7Ffe/r4WNCW0qR6AGRSlzNu85hxd6eFujeASccvDvf63DAR+AEMrN+drGUWokNmmsXhEC+i5j1WnstiamrK5+bmih4GgC6bduyNDZaT42O6d2ZzASMaXNJs/JNvfU3lXsTazGy/u091X2fGD2BgVT7jtltVD3EZBIEfwMBCHyCStyoe4jIIqnoADKyqZ9yuJtQO2qIw4wcwsKqlR9JUINVpwToJgR9AJlVJj6QN6L3q+atwn2mQ6gHQCGk3aNVpwToJgR9AI6QN6CF30BaFwA+gEdIG9LouWHci8ANohLQBPa7HTpU3ccVhcRdAI/RTgVSVBetBEfgBNEbdA3papHoAoGGY8QNAyeTd6prADwADaAfnhcUljZjpqLsmhxCkQ+wcJvADQIdes+3OYG+S2k3t4w5PHzRIh9g5TOAHgEiv2bZ0/AlZSSeZZA3SIXYOE/gBILJaW4fuzyXJEqRDtLqmqgcAIkkBe2FxKTYYJ8kSpEPsHCbwA0AkKWBbHz8ja5AOsXOYVA8ARKa3bFhx7m7nIm639ueGWdUj5b/RjMAPAJG4tg69Ujyf/svzK7kTmMAPoBaGtempe7a9acfe2OA/OT6WS9DPe/OWlGOO38xeamb/bWYPmNkBM7smur7ezO4zs0NmdouZvSSvMQBohnYZ5sLikly/LcMcxlm5Ids053kfnfJc3P2NpM3ufp6k8yVdYmYXSvqUpE+7+5mSjkh6b45jANAAq5VhZjk8PWSb5rSnhGWVW6rH3V3Sr6KHo9H/XNJmSe+Oru+WdLWk6/IaB5BViLfeyKbXpqdhtEAI1dUz1LGPueb4zWxE0n5JZ0r6nKT/lbTo7i9EX/KEpNjfppltl7RdktauXZvnMIFEIfqm1FHoF8tem56G1QIhxD2F2Lwl5VzH7+5H3f18SWskXSDp7D6+d5e7T7n71MTERF5DBHoK9dY7iyxpjLzGM+w89Wr32CsPP4xZdJp7GsbfIdR6QpANXO6+KGmfpDdIGjez9juNNZKK/a8U6CHUW+9BhVoM7MewXyzT3GOvPPwwDk9Ps4YwjL9DqPWE3FI9ZjYhadndF81sTNKb1FrY3Sfp7ZJulrRN0h15jQHIKtRb70GF6OTYrywvlnHplLT3mJSHj9uU1e8serV7GubfIcR6Qp4z/tMk7TOz70v6rqRvuvtXJX1M0ofN7JCkV0m6PscxAJmELOUbRBnfkSS9KLrUMwUSN2u+8pb7EzdQpb3HYcyiV3vXUMa/Qy95VvV8X9LGmOuPqJXvB0qvnwO6i1DGdyRxM+y2XovjcbPmXk4fH0u94Jp1Fr3au4Yy/h16YecusIoyH9A9jDTGsHW+WMYFw6QUSD+z47HREV109kSwiqvVJgBl/Dv0QuAHKqys70jaL5brZ+6ObXAWF+RX64sjtZqi9Zv7H5ZeE4Cy/h2SEPiBiivzO5J+UiC9UkRSKzd/78zmY48/dMv9sV9XVF69zH+HbgR+ALnpJwXSDprX3HVAR55bPu5zcd+T9KJygpnWz9wdZNbdvcZw0dkT2vfw4dLP+s09qdN0eUxNTfnc3FzRwwAwgEF2vKb5nu5d1XHGRkdy66tT9POnYWb73X1qxXUCP4Cq6nyBOCE6DKVbd4poWJLaNYd6/jSSAj+pHgCV1ZlXXz9zd+zX5JXzT/tzy1jLT+AHUBpZGqGFrqVPU4WU5/NnwWHrAEoha7+b0Lus456vW1lr+ZnxA1hViJbEWevyQ9fSxz1fVap6CPwAegp1JsEw+t2ErqWvUu1+J1I9AHoKdSbBMNonIx0CP4CeQnWeLHsn1Doh1QOgp17VMsPM/febo+cs5MGxgQtAT3E7VMdGR/S2103qtv0LK66H2KmaNKYid8mWUdIGLlI9AHpKOshk38OHV83953UecBXOQi4zUj0AjklKn8RVr6zWHTPPaqCqnXhVNgR+ICdlzkHHjU1SX4F6tZ2yefbLr9qJV2VDqgfIQdpdqHmlQgYZ2zV3HegrfbJaFU6es3IqgLJhxg9kFDd7TjPbDbUxqlvS2JLaCycF6tWqcPKclVftxKuyIfADGSQF7zRBNPTRgXFjSKNXoO61czXvc2irumu2DEj1ABkkBe8Rs9iv7wyiRS1QJgXy8bHRoaZPkqqBCNbFY8YPZJAUpI+6a2x0pOdsNykVMn7S6PAH2iFpJn71ZedKGm76hFl5ORH4gQySgvdkR64/KYhOb9mg6Vsf0PLR4zdR/ur/XtDs/ELQrpKdYyNQ1x87d4EMsu4gPf+ab2hxaXnF9SKP60N9cPQikIOs1SU/jwn6EhuRkC8CP5BRljw2G5FQBKp6gAKxEalaithwlwdm/ECB8t6IVOa2EVVT1Ia7PBD4gYLlVfKYZ6Bq4gtKURvu8kDgB3qocoDLK1DVaebbjzp1BCXHDyRI22itrPIKVEkvKNfcdSDTzy27Op0JTOAHElT9sI9egSrLImXSC8eR55Yr86I4iDotxBP4gQRVf2ufFKguOnsi0zuZXjPcqrwoDqJOvYfI8aOWhpGbr3qNfVLFUNbc//SWDbpyldO36qouvYcI/KidYS0+5tlWONSi8SBHJqb5mVffeSC21URVXhSbjlQPaidpRnvlLff3lc/O66190YvGw1ikvPqyc2uT724iZvyonV4z135n/3m8tS+6HnwY72Q4AavaCPyojXb6ZLV+s0Vvuil60XhYQbsu+e4myi3wm9kZkv5d0qmSXNIud/+smZ0s6RZJ6yQ9Kumd7n4kr3GgGeLaI/dS5CJkGRaNCdrNlmeO/wVJH3H3cyRdKOn9ZnaOpBlJ97j7WZLuiR4DmcSlT3opchGyTvXgw1aXJmhll9uM392fkvRU9PEvzewhSZOSLpf0xujLdkv6lqSP5TUONEOvGfxqRyCGNkiqpcqtI9JqaiuIIgTJ8ZvZOkkbJd0n6dToRUGSnlYrFRT3PdslbZektWvXBhglqizLEYjdQgTZflItTQmIRS96N0nugd/MXi7pNklXuvsvzOzY59zdzSx2Lc7dd0naJbWOXsx7nKi2XpUqeQfZvF8omhIQi170bpJc6/jNbFStoP8ld789uvyMmZ0Wff40Sc/mOQY0w7Bq7vvtzxOiJr8pAbFOTdDKLs+qHpN0vaSH3P3ajk/dKWmbpB3Rv3fkNQY0yzAqVfoNsiFm42WoAgohz53SOF7ijN/Mvhbl5ge1SdJ7JG02s/uj//2FWgH/TWb2I0l/Fj0GSqHfWWeI2XhTqoDq1ASt7HrN+L8g6RtmtlvSv7j7ysYcPbj7f0myhE9f3M/PAkLpd9YZYjbepF2y7C8IIzHwu/tXzOw/Jf2jpDkz+w9JL3Z8/tqk70X1NKFcMI1+g2yW9EQ/v3MCIoZptRz/85J+Lel3JL1CHYG/aeocGJtSLphWP0F20Nk4v3MUKTHwm9klkq5VazH2te7+XLBRlUzd/0+62gJllV/0ylaT39aUEk2UU68Z/z9Ieoe71/sgzRTq/n/SXguUVXzRawf7hcUlmXSsaVuZxh63LiAd/7f4+OyDuum+x3XUXSNmuuL1Z+iftr4m1BBRY4lVPe7+xwT9lrrXUfeqZKnaubOddfWSVnTqLMPYZ+cXEqse2n+Lj88+qBu/85iOeusOjrrrxu88po/PPhholKgzDmJJoe4bS3qVC1btRS9Ns7aix57UOtqkY4vCN933eOz3Jl0H+kHgT6HuddS96qer9qKXJqgXPfakMbp+m4Jqz/S7JV0H+sFBLCk0oY46aYEyVLnisCTV1bcN+oI9zHvp1VCubcQsNsiPWFKSCEiPwJ9SU+uoq1auGPdC1V7gnRwwYA/7XtK8mF7x+jN043ceW/G9V7z+jL6fD+hmXoG3jlNTUz43N1f0MNCHTTv2Js5q753ZnOtzD/udRtK9SNleTFYbI1U9yMrM9rv71IrrBH7kYf3M3YkLmD/e8ZbQw8kk6V7axkZHgvSUqfJ+ChQjKfCT6kEu6tRRcrV1g84S0bwCcxX3U6C8qOpBLupUCRV3L93agTivvvxV20+BciPwIxd1arHbeS9JRsxyDcxV20+BciPVg9zUqRKqfS/dKRdp5WHunYYVmItInbGmUF/M+IHI7PyCNu3Yq/Uzd2vTjr2xaZqkdzJJ7waGFZhDp85CHCmJ4jDjB9Tf4mnSO5k8jw0MvYmw7o0Jm47ADyh7oAsRmEOmzlhTqDcCP6DhBLo6rWnUqRwXK5HjB1T/Dqz9qlM5LlYi8AMi0HWrUzkuViLVA6gZHVj7VafUFY5H4AciBDo0BakeAGgYZvwIgl2gQHkQ+GukrMGVzpJAuZDqqYkyb7GnsyRQLgT+mihzcGUXKFAuBP6aKHNwZXMUUC4E/pooc3BlcxRQLgT+kkrTIrhTmYMru0CBcqGqp4QGqYIp+85TNkcB5UHgL6FBWwQTXAGkQaqnhMq8UAug+gj8JVTmhVoA1UfgL6EyL9QCqD5y/APKsz1C2RdqAVQbgX8AIXrPsFALIC+5BX4zu0HSpZKedfdXR9dOlnSLpHWSHpX0Tnc/ktcYskqa1Wc9mHuQ56yKqo8faII8c/xflHRJ17UZSfe4+1mS7okel1KvpmdJ1TVxh1MP6zmroOrjB5oit8Dv7t+W9LOuy5dL2h19vFvS1ryeP6tes/qk6hqTMgW5MjdaS6Pq4weaInRVz6nu/lT08dOSTg38/Kn1qqWf3rJBFvM5lzIFuX7q9/tt6RAC+w+AaiisnNPdXa1YGcvMtpvZnJnNHT58OODIWnrV0m/dOJk48CxBLm39fllTKuw/AKohdOB/xsxOk6To32eTvtDdd7n7lLtPTUxMBBtg22q19JM5BLm09ftlTamw/wCohtCB/05J26KPt0m6I/Dzp7ZaR8k8glzaLpZlTanQhROoBmtlXHL4wWY3SXqjpFMkPSPpE5JmJX1Z0lpJP1GrnLN7AXiFqakpn5uby2WcWRRVurhpx97YCqLJ8THdO7M59+cHUA1mtt/dp7qv51bH7+5XJHzq4ryeM7SiNllNb9lw3AYyiZQKgPTYuVtBtHQAkAWBv6Jo6QBgUHTnBICGIfADQMMQ+AGgYQj8ANAwBH4AaJjGVPXQJz47fodAPTQi8Ic4MaufsVQxeJbpdwggm0akesrS1KysXTXTKMvvEEB2jQj8ZWlqVuXgWZbfIYDsGhH4y9InvsrBsyy/QwDZNSLwl6VPfJWDZ1l+hwCya0TgL0uf+CoHz7L8DgFkV9uqnrjqmaJ71Ve9qyaN4YB6qGXgL3PpIcETQNFqmeqpcvUMAOStloG/ytUzAJC3Wgb+KlfPAEDeahn4q1w9AwB5q+Xibq/qmar2yhmGkPfe5N8zUHa1DPxSfPVMmat98hby3pv8ewaqoJapniRNrvYJee9N/j0DVVDbGX+chYpX+8zOL+iauw7oyHPLkqTxsVFdfdm5qWbRISudqKoCyq0xM/7Z+QVZwueqUO0zO7+g6VsfOBb0JWlxaVnTX3kgVVvnkJVOVFUB5daYwL9zz0F5zHWTKlHts3PPQS0fXXkHyy96qhRKXKWTSbro7IlhDbHnc1FVBZRHYwJ/UprHVY0Fx15pkjQplK0bJ/W2100e967HJd22f2HoB8HQ0A0ot8bk+EfMdNRXzphHLCkBVC6nj48lvnilTaHse/jwinc97UXXYQdlehIB5dWYGX9c0O91vWymt2zQ6MjKF6nREyx1CoVFVwBSgwL/ZMKsOOl62WzdOKmdbz9Przxp9Ni18bFR7XzHealn1iy6ApAalOqZ3rLhuE1FUvUWHLOmT+rwOwCQXWMCf9UPQRkGfgcAJMm8Ajnuqakpn5ubK3oYAFApZrbf3ae6rzcmxw8AaCHwA0DDEPgBoGEI/ADQMI2p6kFxOJQFKBcCP3LFoSxA+RSS6jGzS8zsoJkdMrOZIsaAMDiUBSif4IHfzEYkfU7SmyWdI+kKMzsn9DgQBv2BgPIpYsZ/gaRD7v6Iuz8v6WZJlxcwDgRAfyCgfIoI/JOSHu94/ER0DTXEoSxA+ZR2cdfMtkvaLklr164teDQYFP2BgPIpIvAvSDqj4/Ga6Npx3H2XpF1Sq1fPsAdBiWE4HMoClEvwJm1mdqKk/5F0sVoB/7uS3u3uB5K+Z9hN2rpLDKXW+bOuVn9+XgQA1EFSk7bgM353f8HMPiBpj6QRSTf0Cvp5iCsxbL/8UWcOoO4KqeN396+5+x+4+++7+z+Hfv7VSgmpMwdQZ43s1ZOmlJA6cwB1VevAPzu/oE079mr9zN3atGOvZudba8hxJYbdqDMHUFelLefMKk2PmJ17DmphcenYwm4bdeYA6qy2gb9Xj5h2eWH7BYDSTgBNUtvA30+PGOrMATRJbXP89IgBgHi1Dfz0iAGAeLVN9dAjBgDi1TbwS+TuASBObVM9AIB4BH4AaBgCPwA0DIEfABqGwA8ADRP8IJZBmNlhST9J+PQpkn4acDhlwr03T1PvW2ruvWe5799z94nui5UI/L2Y2VzcCTNNwL03796bet9Sc+89j/sm1QMADUPgB4CGqUPg31X0AArEvTdPU+9bau69D/2+K5/jBwD0pw4zfgBAHwj8ANAwlQ78ZnaJmR00s0NmNlP0eEIxszPMbJ+Z/dDMDpjZB4seU0hmNmJm82b21aLHEpKZjZvZrWb2sJk9ZGZvKHpMIZjZh6L/zn9gZjeZ2UuLHlNezOwGM3vWzH7Qce1kM/ummf0o+veVWZ+nsoHfzEYkfU7SmyWdI+kKMzun2FEF84Kkj7j7OZIulPT+Bt27JH1Q0kNFD6IAn5X0dXc/W9J5asDvwMwmJf2dpCl3f7WkEUnvKnZUufqipEu6rs1Iusfdz5J0T/Q4k8oGfkkXSDrk7o+4+/OSbpZ0ecFjCsLdn3L370Uf/1KtANCIgwfMbI2kt0j6fNFjCcnMflfSn0i6XpLc/Xl3Xyx0UOGcKGnMzE6UdJKkJwseT27c/duSftZ1+XJJu6OPd0vamvV5qhz4JyU93vH4CTUk+HUys3WSNkq6r+ChhPIZSR+V9GLB4whtvaTDkr4Qpbk+b2YvK3pQeXP3BUn/KukxSU9J+rm7f6PYUQV3qrs/FX38tKRTs/7AKgf+xjOzl0u6TdKV7v6LoseTNzO7VNKz7r6/6LEU4ERJr5V0nbtvlPRrDeEtf9lF+ezL1XrhO13Sy8zsr4sdVXG8VX+fuQa/yoF/QdIZHY/XRNcawcxG1Qr6X3L324seTyCbJF1mZo+qldrbbGY3FjukYJ6Q9IS7t9/Z3arWC0Hd/ZmkH7v7YXdflnS7pD8qeEyhPWNmp0lS9O+zWX9glQP/dyWdZWbrzewlai343FnwmIIwM1Mr1/uQu19b9HhCcfer3H2Nu69T6++9190bMftz96clPW5mG6JLF0v6YYFDCuUxSRea2UnRf/cXqwGL2l3ulLQt+nibpDuy/sDKHrbu7i+Y2Qck7VFrpf8Gdz9Q8LBC2STpPZIeNLP7o2t/7+5fK25ICOBvJX0pmug8IulvCh5P7tz9PjO7VdL31Kpmm1eNWzeY2U2S3ijpFDN7QtInJO2Q9GUze69a7enfmfl5aNkAAM1S5VQPAGAABH4AaBgCPwA0DIEfABqGwA8ADUPgB/oUdUf9sZmdHD1+ZfR4XcFDA1Ih8AN9cvfHJV2nVn21on93ufujhQ0K6AN1/MAAopYZ+yXdIOl9ks6PWgoApVfZnbtAkdx92cymJX1d0p8T9FElpHqAwb1ZrVbBry56IEA/CPzAAMzsfElvUusEtA+1uycCVUDgB/oUdYm8Tq1zEB6TtFOtw0KASiDwA/17n6TH3P2b0eN/k/SHZvanBY4JSI2qHgBoGGb8ANAwBH4AaBgCPwA0DIEfABqGwA8ADUPgB4CGIfADQMP8P+cSfmrJA8kHAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+QHPV55/H3I6RdDawkJGcRsTESBgNbjrG0Kelskxwr\nLMU+Uod84Q4s1+X8Y83hwxiKuGIErpzgElJgO9FRwTIy2QNCIX76YpMr25JVaG0nKW7XljCc9SOk\niBZwQLsGW2GJBBJ67o+ZkWZ3Z6ane7qnu2c+r6opZnqne56dFd+nv7/N3REREalnVtoBiIhI9ilZ\niIhIICULEREJpGQhIiKBlCxERCSQkoWIiASanXYAZrYfOAgcA464+0ozWwg8DCwB9gOXu/vB1IIU\nEelwWahZHAMG3H25u68sHVsPbHf384AngBtTi05ERDKRLIyZcawF7is9vw/4aEsjEhGRKbKQLBz4\nvpmNmtlnSscWu/sBAHd/GTgttehERCT9PgvgQnd/ycx6gW1mto9iAqmkNUlERFKUerJw95dK/50w\ns28BK4EDZrbY3Q+Y2enAeLVzzUxJREQkAne3MO9PtRnKzE42s57S81OA3wGeAR4HPll62yeAb9e6\nhrvn9rFhw4bUY1D86cfRifHnOfZ2iD+KtGsWi4G/LtUQZgMPuPs2M/sx8IiZfRoYAy5PM0gRkU6X\narJw938CllU5/iqwuvURiYhINVkYDdWxBgYG0g6hKYo/XXmOP8+xQ/7jj8Kitl9lgZl5nuMXEUmD\nmeF56uAWEZF8ULIQEZFAShYiIhJIyUJERAIpWYiISCAlCxERCaRkISIigZQsREQkkJKFiIgEUrIQ\nEZFAShYiIhJIyUJERAIpWYiISCAlCxERCaRkISIigZQsREQkkJKFiIgEUrIQEZFAShYiIhJIyUJE\nRAIpWYiISCAlCxERCaRkISIigZQsREQkkJKFiIgEUrIQEZFAmUgWZjbLzHaa2eOl1wvNbJuZ7TOz\nrWa2IO0YRUQ6WSaSBXAdsLvi9Xpgu7ufBzwB3JhKVCIiAmQgWZjZGcAlwF9WHF4L3Fd6fh/w0VbH\nJSIiJ6SeLICNwB8CXnFssbsfAHD3l4HT0ghMRESKUk0WZva7wAF3fwqwOm/1Oj8TEZGEzU758y8E\nLjWzS4ACMM/M7gdeNrPF7n7AzE4Hxmtd4Oabbz7+fGBggIGBgWQjFpGGTExMsH//fpYuXUpvb2/a\n4XS04eFhhoeHm7qGuWfjpt3MLgK+4O6XmtmXgVfc/XYzuwFY6O7rq5zjWYlfRE548MGHGRy8mq6u\npbz55n6Ghjaxbt0VaYclJWaGu9drzZl5TlYK22nJYhHwCPBOYAy43N1/VeUcJQuRjJmYmGDJkvM5\ndGgHcAHwNIXCKsbG9qqGkRFRkkXazVDHufsPgB+Unr8KrE43IhGJYv/+/XR1LeXQoQtKRy5gzpwl\n7N+/X8kix7IwGkpE2sjSpcWmJ3i6dORpjhwZY+nSpekFJU1TshCRWPX29jI0tIlCYRXz5/dTKKxi\naGiTahU5l5k+iyjUZyHSuFaPTmqH0VDt8DtUE6XPQjULkQ7w4IMPs2TJ+axZ81mWLDmfBx98OPHP\n7O3tZcWKFbktZNP4zrJMNQuRNqfRSeG1+3emmoWIzFAenVQs9KBydJJUp+9sJiULkTan0UnVTUxM\nMDo6ysTExIyf6TubSclCpM1pdNJMQf0R+s5mUp+FSIdo15E9YYXpj2jX7yzXM7hFJFm9vb1tVeBF\nFWaGub6zE9QMJSIdpaenh8OHn0P9EeEoWYhIx3jwwYf5zd/8LWbNWgi8n0LhveqPaJD6LESkI8zs\nqximu3stu3Y9SV9fX9rhtZTmWYiI1DBz7sQA3d1nMzk5mWJU+aFkISIdQXMnmqNkISIdQXMnmqM+\nCxHpKO06dyKMXG+rGoWShYhIeOrgFhGRRChZiIhIICULEREJpGQhIrlQb0lxSZ6ShUgHyWuBqy1O\n06fRUCId4sEHH2Zw8Gq6uoqT04aGNrFu3RWJfmYcw1ST3OI0KL52HWYbZTQU7p7bRzF8EQmye/du\n7+4+1eGnDu7wUy8UFvn4+Hhin7lly0NeKCzyBQv6vVBY5Fu2PBTpOiMjI75gQX8p7uJj/vzlPjIy\nkmh8ccWfRaWyM1x5G/aELD2ULESCbdnykHd3z3c4N/YCt5bx8XEvFBbFkpzivFaj10ziM7MkSrJQ\nn4VIG5uYmGBw8GreeOPbwC9o1bpIMxftO7HBUFhJLNMRFF+c8bcL7ZQn0sZO7Ao3AGwCVgFvo7t7\ngqGhuxJrh5+6aF+xnyEoOdXrH1i37gpWr744tv6DoPiixN/2wlZFsvRAzVAidc1sTtnh3d3zfffu\n3Yl/drnNf/785YFt/mn0DwTFFyb+vCFCM1Sqo6HMrBv4IdBFsZbzmLvfYmYLgYeBJcB+4HJ3P1jl\nfE8zfpGsqXZ3Xh4FNWfOEo4cGWvJKKh68VR7T1KjnZqNT6OhKs5Ju7A1s5Pd/V/N7CTg74BrgcuA\nV9z9y2Z2A7DQ3ddXOVfJQqSk3tDYLBd6o6OjrFnzWQ4e/MnxY/Pn97N9+2ZWrFiRYmTtK5fJoszM\nTqZYy/hvwP3ARe5+wMxOB4bd/fwq5yhZiJDu3Xmz0pxHkdS5WZfLVWfNbJaZ7QJeBr7v7qPAYnc/\nAODuLwOnpRmjSNbVG72T9VnbSYx2mpiY4E/+5E8588xzI8361ozxmbJUs5gP/DXFZqgfufuiip+9\n4u5vq3KOb9iw4fjrgYEBBgYGWhCtSLbUujvfuPE2rr9+/fGmqY0bb6O/f1km75bjupMvN8cdOrQI\neAX4OtDXcG0lz7W0WoaHhxkeHj7++pZbbglds0h9RFPlA/gj4AvAHoq1C4DTgT013h96FIBIu5o+\neueuu74xY2IZFHzevPe23eiesmqT6WCRw3jDkxBHRkZ83rzlLZvAmAbyNinPzH7NzBaUnheANRQT\nxePAJ0tv+wTw7VQCFMmRdeuuYGxsL9u3b2ZsbC/9/ctmNE3Bu3nttSEOHdrB4ODVmW2aiqpac1xx\nUOX3G54nsXPnU7z22l5aNYExL9KelPfrwH1mNoti/8nD7v4dM3sSeMTMPg2MAZenGaRIXvT29k5p\nKpk+sQxeBJYCvcf7NPLatFJNtcl0sI+5cz/X0CTEiYkJrr9+PXAzxQmMZwDPsnHjHW31PUWRarJw\n92eA/irHXwVWtz4ikfZR7jgeHFzF7Nln8tpr+ygWgr20691y5e9cnldy001f4qqrrmyosD8x4/2L\nwKeA/fT0fJr+/mWJx551mengjkJDZ0WClTuOd+58iuuvX5/K5LxGxdXJHfU67di5XU2u51lEoWQh\neZTm+P0szx1IY7+NenHUSqpZ/g4bpWQhknFZKRCz5sQd/TeBU4DXKRQuS+2OvlZCaJe/n5KFSMrq\n3XV2ShNHFKOjo1x00cc4dOhXFDvg9zN37nx++MNHMrPkRzv9/XI5g1ukXQTN+tUeCbX19PRw6NBL\nwA7gJ8AODh8+QE9PT+Rrxj1zvdP/fkoWIjEobzJ06NAODh78SdV5DFOHdUIWRiQlsRRIlGtOTk5S\nKJxDZUFcKJzN5ORkpM9MYrmOLP79WirsLL4sPdAMbqkwPj7uIyMjqWx92eg+0VnaIyGJPSSiXrOZ\nbUynf2a1metxbYmapb9fM9Ae3NKp0tg8p1KYwi7NpFYZQ6v3tQ4SpSCu9pnd3af6vHnvTWy5jiz8\n/ZqlZCEdKYmCL4o83XVWqwmdcsoFvnXr1livGbaQDlsQV/vMefOWeXf3/NT/PWSZkoV0pDgKqbjk\n5a6z+oJ7J/vcuaf6li0PRfo90kjatT6z3BSVh8SdBiUL6UhZqVnkTbkmBGc7LHR4yOGn3tW1wOfO\nPTVSk14atatan5mXxJ2GKMlC8yykLaS5z3Sebdu2jd/7vWt5/fUfUVwzCuAc4H8AHyfKXII0Zji3\nw6zqVtKkPOloKjDCqzbRDD4A7KecPLQfdvvRpDzpaL29vaxYsaLtE0WccyOqbWk6Z84s4KXSOzps\nLoHUpJqFSI4ktTbRnj17GBkZYeXKlTz11NNq0mtzaoYSaWNJrU1ULQGtXn2xmvTamJqhRNpYEmsT\n1VqmBOiIJj1pnJKFSE40szZRrX6OTl8cTxqnZCGSE9U6o4eGNgXe/ddbVK/jF8eThqnPQiRnwgwR\nbqSfo9E5Khqa3D7UwS1tRYVT80ZHR1mz5rMcPPiT48eqzZsI+q7bZYc4KVKykLaR9cIpL4ksjhFU\n7bRDnBRpNJS0hUY2EkpTEhvrJCVqP0cldYILqGYhGdRo00kakrzLTrK20sy1W12zyEutLc9Us5C2\nkOUROkndZSddW2lmKZQ4aieNylOtrdOoZiGZlKVVZCvvdIHY77Lz0ieQ9B1/Xr6HdhClZjE7qWBE\nmrFu3RWZWHKiWkf70NAmBgdXTUlkzcRXrq0cOjSztpLU7x2l4O/t7U3075DG9yCNU81CcivNO10g\nts+Oekcd9fefngBvuukLXHXVlakXyKpZtE6UmkXaO92dATwB/Ax4Bri2dHwhsA3YB2wFFtQ4v9GN\noaQNVO58Vt4dLcpubo1q5XatYXeYi/r7B22nmrY87WOeZ+RtW1XgdGBZ6XlPKTmcD9wOfLF0/Abg\nthrnx/wVSlZNLxznzOlJfBvVJLZrrbfVZ6PbgJ6Ia4fDiMOOhuOqlgBhucMDmdmKVtuhJi/WZAF8\nB1ga9oLNPIBvAauBvcBiP5FQ9tZ4f7zfoGRSrbthGM/cHX8j12q2NjQyMuKFwrscFjn0OyzyuXOX\nNvT7V/8uFzmMJ/YdSvbEnSz+E/APwJeAOWEvHDoQWEpxL8ce4JfTfvZqjXNi/goli6rfDZ/t8ECi\nNYuyOO5046yl7N6926EwrcAv+O7duxs6v5y0it/hQoeHQseju/98i5Isao6GcvdHzey7wB8BPzaz\n+4FjFT//88Z6RYKZWQ/wGHCdu0+a2fRe65q92DfffPPx5wMDAwwMDMQVlmTE1HkXxY7Prq5fMGvW\n5+jq+mosI5LqiWMU0ImRPr8OjAJLGxrpU60Te3JykkLhnCmjhgqFs5mcnGwolvJIs82b7+bWW79C\nV9ftob7DWkuxVO6219fX11As0hrDw8MMDw83d5F6mQToAv47xWahW4AN5UfYrFTnM2YD36OYKMrH\n9jC1GWpPjXPjTriSUdWag/J0dzs+Pu5z5swr3cn3Oyz0OXN66sZeq9lqai1l3OEBnzv31EjfQ9jv\nsFYNaXDwylJt51yHgl9zzbWhY5HWIeZmqI8Au4HbgJPDXrjhAOCvgD+fdux24IbSc3Vwi7un0/QR\n12eOj497V9eCKYVsV9eCmtcNarbasuWhUvI52eEc7+pa0JKRQ9WaBHt63ufQHblZTFov7mTxI+A9\nYS8Y6sPhQuAt4ClgF7CzlKQWAdspjo7aBpxa4/wEvkaRojiH54Ydhhv0/iRGajWi2ucWk+C7pvUp\nvdvvvffeRGOR6GJNFnl4KFlIUsIWxkE1kCjXq/f+Vs4BmW56k+BXvvJnTXW4S+spWYjEJExhPL0G\nctdd36iaOKJOvKv2/rRqFpWfX/k7XnPNtaWE8W71WeSAkoVITBotjGe+73aHgs+bVz0hROlQrvX+\nrM123r17t997772qUeRAlGShtaEkl1qx50EjK99O3XtjguICBDto1dpG2vtBotC2qtIR4t5ytV6B\nG1QYT1387g3gSorjNYqysmmTSCVtfiRtL+4tV4M22wnaNGj79ic4evRN4APA5RQXPUh306aJiQlG\nR0czsw2ttAclC8mVOHeqazbxlM8/cuTvKK5UcyuzZ89qyY5y1WIZHR1l8+a7tdOcJEKbH0muVFv6\nI+rde7Ob7cw8/+OcfPJXefTR21i4cGGkZq0oys1ys2e/g9de+0fgyVJMTzM4uIrVqy9Wf4Y0TTUL\nyZU494Nudq/vWucvX768atNVEvtLV9aOXnttCDiXuPcHFwE0dFbS08xSGnEtw9Hs8NNGz09qXsTU\n+SDjXlxuPJ25F5IfaJ6FtEqzhXUrdrprVLO/y/j4uG/dutW3bt1a8xpJzbiuPc9jWerfq2SXkoW0\nRLMFfdqzj+PWyPeR5O88vXZTawa5SJmShSQujkIvzXWN4hbm+0hyxnWelmuX9EVJFhoNJaE0O4II\n4h3RlLYw30d506EkZlzHsUGTSD0aDSWhNDuCCOId0ZS2sN9H0CQ/kazSch8SWiNrJjWiXdY1Kn8f\nJ530do4ceZ477vgqV111ZdphidSktaGkZdqloI/L5s13c911X6Sr6yyOHo2eQEVaQclCJAVTFxO8\nABimu3stu3Y9SV9fX9rhicyghQRFUjB1vaqHgct4443TWb78gzNmaWuRP8krJQuRkqgF+YlO7mHg\naor7WezjjTd+MGVhwiSW+xBpFSULEZoryMuju7q71wK/RrW1meJeWl2k1ZQspOPFUZCvW3cFu3Y9\nSXf3ONWG0ca5tLpIGpQspC000xcQV0He19fHPffcVXX+SBzzU0TSpGQhuVAvGTTbFxBnQb5u3RWM\nje1l+/bNjI3tPT58tp0mIkpn0tBZSUxcczHq7bk9c9jq0xQKqxgb2xvqM+OaaBhE81MkCzTPQjKj\nXgEfRlAyGB0dZc2az3Lw4E+OnzN/fj/bt29mxYoVVa9Xq7BWQS6dQvMsJBPiHPkT1J8QpgkpqLlK\n6zaJ1KZk0UayMuErSodxrdirJYM33/wnfvnLXzIxMTGlL+CUU95Xsy9AQ1dFmqNk0SayNOErbIdx\nvdindwzPmfNbHDvmXH75jVPe634MeKP035k0dFWkSWE3wIj7AQwBB4CnK44tBLYB+4CtwIIa50bf\n/aONZHHnubj3pi5vXTr9vXPnntrw+Vn7jkTSQoTNj7JQs7gH+PC0Y+uB7e5+HvAEcGPLo8qRLN41\n1xpCOl2jsff29rJw4cIZ7z3ppNOYNeudDZ2voasi0aW+U567/62ZLZl2eC1wUen5fRQX3Vnfyrjy\nJKs7zzWye1uY2Ku99623xjGb1dD5Se5UJ9LuUk8WNZzm7gcA3P1lMzst7YDSVm9YZ/mueXBw1ZR5\nAnkoDMPEXv29dwE0/Ltr+1GRaDIxz6JUs/gbd7+g9PpVd19U8fNX3P1tVc7zDRs2HH89MDDAwMBA\nCyJurUbnLOR5nkCY2Ku9N8+/u0jShoeHGR4ePv76lltuyeekvCrJYg8w4O4HzOx0YIe7z9hFphMm\n5cU1Q1lEpCzPk/Ks9Ch7HPhk6fkngG+3OqCsqNcBnJV5FXFqx99JpB2knizMbAvw98C5Zva8mX0K\nuA1YY2b7gA+VXnekWnMWdu58KjPzKuKSpbkiIjJVJpqhouqEZiiYucjdxo23cf3169uqaUrNbSKt\nk+dmKKlj+pyF/v5lmZtX0awk54qoaUukeUoWOVG5yF3aG+kkUfj29PRw+PBzxP07qWlLJCZhp3xn\n6UEHL/fR6HIaSX3uggX9sX1u+ZqFwlkOBS8UfiOWa2uJD5HqiLDch/oscqzVcwsa6VcIG9PMaw7T\n3b2WXbuepK9vxmjpUMLudSHSKdRn0WFavf9CUL9ClCafmdccoLv7bCYnJ5uON+3mOpF2omQhDatX\n+EbdLyLJAr1ViweqA106gZKFNKxe4Rt1NFPSBXqjq99GpQ506RTqs0hZEv0OSfdl1FqbqZl5Enlc\n20lzQySv1GeRM0nclda6ZlBTSZimlGp9Jc3WEPK4/3UW9xERSUzY4VNZepDjobNJDOusdc277vpG\n3eGu04fD/vEf3xo5jvHxcR8ZGemI4akamit5RYShs6kX+M088pwsRkZGfMGC/lIhU3zMn7/cR0ZG\nYr1mT89veHf3qTULtGoFHpzsc+ee2rK5G3mW1nwXkWZESRZqhkpJEqOAql/zebq6zqJWU0m1phQ4\nj8OHv9bQaKZOl3QHukhWKFmkJIlRQNWueccdX+Xo0TFqJaVqCQbGgDVqf29QHvtbRMLSaKiUtWI0\n1Oc/fx133nk3cAbwItdccyV/8Rd3HH9/eVXbQ4cWAq8CXwf6NLJHpE1FGQ2lZNHmTgzv/CZwCvA6\nhcJlM5LAxMQEmzffza23foWurrOO72WtZhWR9qNkITOEXR8pj/MdRCScKMlidlLBSDZM7ZMoThyr\n15He29urJCEiM6iDu821an0kEWlvaobqEGpeEpEy9VmIiEggrQ2Vc1rqWkSySskiI7TUtYhkmZqh\nMkBLXYtIK6kZKqe01LWIZJ2SRQZor2gRyToliwwoz4Xo6vq3wDnABzh69E22b38i7dBERAD1WaSu\nPP+hp6eH/v4Pcvjw14A1wEsN91vU2ua08pjmWYhImZb7yJnyaq9dXUs5fPgfmTVrCfDx0k97j/db\n1CvcK6/x5pv7GRraBDDl2ODg7zM0dP+U92iBQBEJI9M1CzP7CPA/KTaXDbn77dN+ntuaxcwRUMPA\nJcCTNDoiqtYoKvdjHD78g8jXFZH21lajocxsFnAn8GHgPcA6Mzs/3ajiM3ME1ABz5y6mu/uihtdw\nqjaKatasMzjppMUVx04B3olGWolIM7LcDLUSeNbdxwDM7CFgLbA31ahicmIE1DDlfSbM/oWdO/+e\nycnJhvoWqq0oe+zYi7gfqzj2OvACja46KyJSTZaTxTsolnJlL1JMIG2ht7eXwcHf5847L6F45/8C\ng4NX0tfXF+oaQ0ObGBxcxZw5S45vWARMOTY4eCVDQ1PfoyYoEQkjs30WZnYZ8GF3/6+l1/8ZWOnu\n11a8p436LKL3JWg0lIiE0W6joX4OnFnx+ozSsSluvvnm488HBgYYGBhIOq5YlPsbDh2a2ZcQtjCv\ntmFR+XW5b0KbGol0ruHhYYaHh5u6RpZrFicB+4APAS8BI8A6d99T8R7VLGqoNqRWw2VFBNpwP4vS\n0Nk7ODF09rZpP89tsoATBXplX0IcBboWJhSRetqtGQp3/x5wXtpxJGXduitYvfriun0JUfoa4mzi\nEhGBDM+z6BS9vb2sWLGiaiEedY8LLUwoInHLdDNUkLw3Q9XTbFNSUk1cIpJ/bdcM1cmabUpqpIlL\nRKRRShYZVW12dtimJA2XFZG4qM8io8qzswuFVQ2vFSUikhT1WWScZl6LSNzabp5FkE5IFiIicWur\nJcpFRCQ7lCxERCSQkoWIiARSshARkUBKFiIiEkjJQkREAilZiIhIICULEREJpGQhIiKBlCxERCSQ\nkoWIiARSshARkUBKFiIiEkjJQkREAilZiIhIICULEREJpGQhIiKBlCxERCSQkoWIiARSshARkUBK\nFiIiEii1ZGFm/9HM/p+ZvWVm/dN+dqOZPWtme8zsd9KKUUREitKsWTwD/AfgB5UHzawPuBzoA/4d\nsMnMrPXhJW94eDjtEJqi+NOV5/jzHDvkP/4oUksW7r7P3Z8FpieCtcBD7n7U3fcDzwIrWx1fK+T9\nH5ziT1ee489z7JD/+KPIYp/FO4AXKl7/vHRMRERSMjvJi5vZ94HFlYcAB77k7n+T5GeLiEh8zN3T\nDcBsB/AFd99Zer0ecHe/vfT6e8AGd/+/Vc5NN3gRkZxy91B9wYnWLEKoDPpx4AEz20ix+ekcYKTa\nSWF/WRERiSbNobMfNbMXgPcD/8fMvgvg7ruBR4DdwHeAqz3t6o+ISIdLvRlKRESyL4ujoUIxsy+X\nJu89ZWbfNLP5acfUCDP7iJntNbN/MLMb0o4nDDM7w8yeMLOfmdkzZnZt2jGFZWazzGynmT2edixh\nmdkCM3u09O/+Z2b2b9KOKQwzu740IfdpM3vAzLrSjqkeMxsyswNm9nTFsYVmts3M9pnZVjNbkGaM\n9dSIP3S5mftkAWwD3uPuyyjOybgx5XgCmdks4E7gw8B7gHVmdn66UYVyFPgDd38P8AHgczmLH+A6\nik2deXQH8B137wPeB+xJOZ6Gmdnbgc8D/e5+AcV+04+lG1Wgeyj+v1ppPbDd3c8DniDb5U61+EOX\nm7lPFu6+3d2PlV4+CZyRZjwNWgk86+5j7n4EeIjiZMRccPeX3f2p0vNJioVVbubCmNkZwCXAX6Yd\nS1ilO8Dfdvd7AEqTV/8l5bDCOgk4xcxmAycD/5xyPHW5+98Cv5x2eC1wX+n5fcBHWxpUCNXij1Ju\n5j5ZTPNp4LtpB9GA6RMPXyRHhW0lM1sKLANmDG3OsI3AH1Kc85M3ZwG/MLN7Ss1o3zCzQtpBNcrd\n/xn4M+B5ihNuf+Xu29ONKpLT3P0AFG+egNNSjqcZDZWbuUgWZvb9Uvtm+fFM6b//vuI9XwKOuPuW\nFEPtKGbWAzwGXFeqYWSemf0ucKBUMzJmLjeTdbOBfuBr7t4P/CvFJpFcMLNTKd6VLwHeDvSY2cfT\njSoWebzxCFVuZmWeRV3uvqbez83skxSbFS5uSUDN+zlwZsXrM0rHcqPUhPAYcL+7fzvteEK4ELjU\nzC4BCsA8M/srd/8vKcfVqBeBF9z9x6XXjwF5GiCxGnjO3V8FMLP/DXwQyNtN3gEzW+zuB8zsdGA8\n7YDCCltu5qJmUY+ZfYRik8Kl7v5G2vE0aBQ4x8yWlEaCfIziZMQ8+V/Abne/I+1AwnD3m9z9THd/\nF8Xv/YkcJQpKTR8vmNm5pUMfIl8d9c8D7zezuaXVpD9EPjrop9dCHwc+WXr+CSDrN0xT4o9SbuZ+\nnoWZPQt0Aa+UDj3p7lenGFJDSn+sOygm7CF3vy3lkBpmZhcCP6S4zLyXHje5+/dSDSwkM7uI4lIz\nl6YdSxhm9j6KnfNzgOeAT7n7wXSjapyZbaCYqI8Au4DPlAZ6ZJKZbQEGgLcBB4ANwLeAR4F3AmPA\n5e7+q7RirKdG/DcRstzMfbIQEZHk5b4ZSkREkqdkISIigZQsREQkkJKFiIgEUrIQEZFAShYiIhJI\nyUIkRqXl258rLWtRXsr6OTM7M+hckSxTshCJkbu/CGwCbi8dug24y92fTy8qkeZpUp5IzErrZv2Y\n4j4CnwGWuftb6UYl0pxcLCQokifuftTMvgh8D1itRCHtQM1QIsm4hOKmPu9NOxCROChZiMTMzJZR\nXE31/cAnGjOZAAAAbUlEQVQfmNnilEMSaZqShUj8NlHcEOpF4MsUd4YTyTUlC5EYmdmVwJi7P1E6\n9HXgfDP77RTDEmmaRkOJiEgg1SxERCSQkoWIiARSshARkUBKFiIiEkjJQkREAilZiIhIICULEREJ\npGQhIiKB/j/5Q1J9vJNhTwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], diff --git a/0_python/1_Basics.ipynb b/0_python/1_Basics.ipynb index d0f194d..99e5bfd 100644 --- a/0_python/1_Basics.ipynb +++ b/0_python/1_Basics.ipynb @@ -16,37 +16,37 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['.ipynb_checkpoints',\n", - " 'Python.pdf',\n", + "['0-ipython_notebook_EN.ipynb',\n", " '1_Basics_EN.ipynb',\n", " '2_Print_Statement_EN.ipynb',\n", + " '3_Data_Structure_1_EN.ipynb',\n", " '4_Data_Structure_2_EN.ipynb',\n", " '5_Control_Flow_EN.ipynb',\n", " '6_Function_EN.ipynb',\n", - " '3_Data_Structure_1_EN.ipynb',\n", " '7_Class_EN.ipynb',\n", + " 'Python.pdf',\n", + " 'README_ENG.md',\n", " 'images',\n", - " '0-ipython_notebook_EN.ipynb',\n", " 'test.txt',\n", - " 'README_ENG.md',\n", + " '.ipynb_checkpoints',\n", " '0-ipython_notebook.ipynb',\n", - " '1_Basics.ipynb',\n", " '2_Print_Statement.ipynb',\n", " '3_Data_Structure_1.ipynb',\n", " '4_Data_Structure_2.ipynb',\n", " '5_Control_Flow.ipynb',\n", " '6_Function.ipynb',\n", " '7_Class.ipynb',\n", - " 'README.md']" + " 'README.md',\n", + " '1_Basics.ipynb']" ] }, - "execution_count": 1, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -59,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -134,7 +134,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": { "collapsed": true }, @@ -147,7 +147,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -171,7 +171,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { "collapsed": true }, @@ -182,7 +182,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -228,7 +228,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -237,7 +237,7 @@ "3" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -248,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -257,7 +257,7 @@ "1" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -268,7 +268,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -277,7 +277,7 @@ "2" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -288,7 +288,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -297,7 +297,7 @@ "0.5" ] }, - "execution_count": 11, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -315,7 +315,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -324,7 +324,7 @@ "0.5" ] }, - "execution_count": 12, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -335,7 +335,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -344,7 +344,7 @@ "0.5" ] }, - "execution_count": 13, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -355,7 +355,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -364,7 +364,7 @@ "5" ] }, - "execution_count": 14, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -382,7 +382,27 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "9 // 2" + ] + }, + { + "cell_type": "code", + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -391,7 +411,7 @@ "1.0" ] }, - "execution_count": 15, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -423,7 +443,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 23, "metadata": { "collapsed": true }, @@ -434,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -443,7 +463,7 @@ "True" ] }, - "execution_count": 17, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -454,7 +474,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -463,7 +483,7 @@ "False" ] }, - "execution_count": 18, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -495,7 +515,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 26, "metadata": { "collapsed": true }, @@ -507,7 +527,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -526,7 +546,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -535,7 +555,7 @@ "2" ] }, - "execution_count": 22, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -557,7 +577,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -566,7 +586,7 @@ "10" ] }, - "execution_count": 23, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -616,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -625,7 +645,7 @@ "'0xaa'" ] }, - "execution_count": 24, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -636,7 +656,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -645,7 +665,7 @@ "170" ] }, - "execution_count": 25, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -656,7 +676,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -665,7 +685,7 @@ "'0o10'" ] }, - "execution_count": 26, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -683,7 +703,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -711,7 +731,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -737,7 +757,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -746,7 +766,7 @@ "'b'" ] }, - "execution_count": 29, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -757,7 +777,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -766,7 +786,7 @@ "98" ] }, - "execution_count": 30, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -791,7 +811,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 38, "metadata": { "scrolled": false }, @@ -819,7 +839,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -844,7 +864,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -853,7 +873,7 @@ "(4, 1)" ] }, - "execution_count": 34, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -871,7 +891,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -899,7 +919,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -908,7 +928,7 @@ "int" ] }, - "execution_count": 1, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -919,7 +939,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -928,7 +948,7 @@ "type" ] }, - "execution_count": 2, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -946,7 +966,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -1007,7 +1027,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -1024,7 +1044,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -1033,7 +1053,7 @@ "str" ] }, - "execution_count": 40, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } diff --git a/0_python/2_Print_Statement.ipynb b/0_python/2_Print_Statement.ipynb index 64e88bf..43057ed 100644 --- a/0_python/2_Print_Statement.ipynb +++ b/0_python/2_Print_Statement.ipynb @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -86,7 +86,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -114,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": { "scrolled": true }, @@ -145,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -176,7 +176,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -209,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -236,7 +236,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "当引用多个变量时使用圆括号。" + "**NOTE: 当引用多个变量时使用圆括号。**" ] }, { @@ -270,23 +270,6 @@ "下面是使用print语句的其他不同方式。" ] }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "I want to be printed here\n" - ] - } - ], - "source": [ - "print(\"I want to be printed %s\" % 'here')" - ] - }, { "cell_type": "code", "execution_count": 14, @@ -330,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -354,7 +337,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -371,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -380,7 +363,7 @@ "text": [ "\n", "Routine:\n", - "\t- Eat\n", + "\t- Eat (\\t)\n", "\t- Sleep\n", "\t- Repeat\n", "\n" @@ -390,7 +373,7 @@ "source": [ "print(\"\"\"\n", "Routine:\n", - "\\t- Eat\n", + "\\t- Eat (\\\\t)\n", "\\t- Sleep\\n\\t- Repeat\n", "\"\"\")" ] @@ -413,7 +396,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -422,7 +405,7 @@ "'3.121312'" ] }, - "execution_count": 19, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -440,7 +423,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -449,7 +432,7 @@ "'3.12131'" ] }, - "execution_count": 20, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -467,7 +450,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -476,7 +459,7 @@ "'-33.12131'" ] }, - "execution_count": 21, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -494,7 +477,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -503,7 +486,7 @@ "'00000000000003.12131'" ] }, - "execution_count": 22, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -521,7 +504,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -547,7 +530,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 30, "metadata": {}, "outputs": [ { diff --git a/0_python/3_Data_Structure_1.ipynb b/0_python/3_Data_Structure_1.ipynb index 6e243a5..34ebe5c 100644 --- a/0_python/3_Data_Structure_1.ipynb +++ b/0_python/3_Data_Structure_1.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": { "collapsed": true }, @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -69,7 +69,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -96,7 +96,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "在Python中,索引从`0`开始。因此,现在包含两个元素的列表`x`的apple索引值为`0`,orange索引值为`1`。" + "**MOTE: 在Python中,索引从`0`开始。**\n", + "\n", + "因此,现在包含两个元素的列表`x`的apple索引值为`0`,orange索引值为`1`。" ] }, { @@ -128,7 +130,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -137,7 +139,7 @@ "'peach'" ] }, - "execution_count": 6, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -155,7 +157,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 13, "metadata": { "collapsed": true }, @@ -168,12 +170,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "在这里我们已经声明过两个列表`x`和`y`每一个包含自己的数据。现在,这两个列表可以再一次被放入另一个也具有自己的数据的列表`z`中。列表中的这个列表被称为`嵌套列表`,这就是数组的声明方式,我们将在后面看到。**这是和很多其他计算机语言不同的地方,不要求列表的元素是相同类型,因此编程的时候会非常方便,这也是为什么Python对人类比较友好**" + "在这里我们已经声明过两个列表`x`和`y`每一个包含自己的数据。现在,这两个列表可以再一次被放入另一个也具有自己的数据的列表`z`中。列表中的这个列表被称为`嵌套列表`,这就是数组的声明方式,我们将在后面看到。**这是和很多其他计算机语言不同的地方,不要求列表的元素是相同类型,因此编程的时候会非常方便,这也是为什么Python对人类比较友好的原因。**" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -191,7 +193,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -200,7 +202,7 @@ "'orange'" ] }, - "execution_count": 9, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -220,7 +222,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -245,7 +247,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -254,7 +256,7 @@ "'apple'" ] }, - "execution_count": 11, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -272,7 +274,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -281,7 +283,7 @@ "'apple'" ] }, - "execution_count": 12, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -315,22 +317,22 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[3, 2, 3]\n", - "[2, 3, 2, 3, 4, 5, 6, 7, 8, 9]\n", - "[2, 3, 2, 3, 4, 5, 6, 7, 8, 9]\n", - "[2, 3, 2, 3, 4, 5, 6, 7, 8, 9]\n" + "[2, 3, 4]\n", + "[1, 2, 3, 4, 5, 6, 7, 8, 9]\n", + "[1, 2, 3, 4, 5, 6, 7, 8, 9]\n", + "[1, 2, 3, 4, 5, 6, 7, 8, 9]\n" ] } ], "source": [ - "num = [2,3,2,3,4,5,6,7,8,9]\n", + "num = [1,2,3,4,5,6,7,8,9]\n", "print(num[1:4])\n", "print(num[0:])\n", "print(num[:])\n", @@ -339,15 +341,15 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[2, 3, 2, 3]\n", - "[4, 5, 6, 7, 8, 9]\n" + "[1, 2, 3, 4]\n", + "[5, 6, 7, 8, 9]\n" ] } ], @@ -365,22 +367,22 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[2, 3, 6]" + "[1, 4, 7]" ] }, - "execution_count": 15, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "num[:9:3]" + "num[0:9:3]" ] }, { @@ -399,16 +401,16 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10" + "9" ] }, - "execution_count": 16, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -426,23 +428,23 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[2, 3, 2, 3, 4, 5, 6, 7, 8, 9]\n" + "[1, 2, 3, 4, 5, 6, 7, 8, 9]\n" ] }, { "data": { "text/plain": [ - "2" + "1" ] }, - "execution_count": 17, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -454,7 +456,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -463,7 +465,7 @@ "9" ] }, - "execution_count": 18, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -481,7 +483,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -490,7 +492,7 @@ "[1, 2, 3, 5, 4, 7]" ] }, - "execution_count": 19, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -503,12 +505,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "可能会出现这样的需求,您可能需要检查预定义列表中是否存在特定的元素。考虑下面的列表。" + "可能会出现这样的需求,需要检查预定义列表中是否存在特定的元素。考虑下面的列表。" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 31, "metadata": { "collapsed": true }, @@ -526,7 +528,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -535,7 +537,7 @@ "False" ] }, - "execution_count": 21, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -546,7 +548,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -555,7 +557,7 @@ "True" ] }, - "execution_count": 22, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -566,7 +568,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -575,7 +577,7 @@ "False" ] }, - "execution_count": 23, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -593,7 +595,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 35, "metadata": { "collapsed": true }, @@ -604,7 +606,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -630,7 +632,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 37, "metadata": { "collapsed": true }, @@ -674,7 +676,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -705,7 +707,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -714,7 +716,7 @@ "['h', 'e', 'l', 'l', 'o']" ] }, - "execution_count": 30, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -732,7 +734,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 40, "metadata": { "collapsed": true }, @@ -743,14 +745,14 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 1, 4, 8, 7, 1]\n" + "[1, 1, 4, 8, 7, 1, 1, 1]\n" ] } ], @@ -768,22 +770,22 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3" + "0" ] }, - "execution_count": 35, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "lst.count(1)" + "lst.count(999)" ] }, { @@ -795,7 +797,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 45, "metadata": { "collapsed": true }, @@ -806,14 +808,14 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 1, 4, 8, 7, 1, [5, 4, 2, 8]]\n" + "[1, 1, 4, 8, 7, 1, 1, 1, [5, 4, 2, 8]]\n" ] } ], @@ -831,14 +833,14 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 1, 4, 8, 7, 1, [5, 4, 2, 8], 5, 4, 2, 8]\n" + "[1, 1, 4, 8, 7, 1, 1, 1, [5, 4, 2, 8], 5, 4, 2, 8]\n" ] } ], @@ -856,7 +858,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -865,7 +867,7 @@ "0" ] }, - "execution_count": 39, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -876,7 +878,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 51, "metadata": {}, "outputs": [ { @@ -886,7 +888,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlst\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m999\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlst\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m999\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mValueError\u001b[0m: 999 is not in list" ] } @@ -904,14 +906,14 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 1, 4, 8, 7, 'name', 1, [5, 4, 2, 8], 5, 4, 2, 8]\n" + "[1, 1, 4, 8, 7, 'name', 1, 1, 1, [5, 4, 2, 8], 5, 4, 2, 8]\n" ] } ], @@ -922,7 +924,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 53, "metadata": { "collapsed": true }, @@ -933,14 +935,62 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 1, 4, 8, 7, 'name', 1, 1, 1, [5, 4, 2, 8], 5, 4, 2, 10, 8]\n" + ] + } + ], + "source": [ + "print(lst)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "15" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lst)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lst.insert(15, 20)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 1, 4, 8, 7, 'name', 1, [5, 4, 2, 8], 5, 4, 2, 10, 8]\n" + "[1, 1, 4, 8, 7, 'name', 1, 1, 1, [5, 4, 2, 8], 5, 4, 2, 10, 8, 20]\n" ] } ], @@ -957,14 +1007,14 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 58, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 1, 4, 8, 7, 'Python', 1, [5, 4, 2, 8], 5, 4, 2, 10, 8]\n" + "[1, 1, 4, 8, 7, 'Python', 1, 1, 1, [5, 4, 2, 8], 5, 4, 2, 10, 8, 20]\n" ] } ], @@ -982,16 +1032,16 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[1, 1, 4, 8, 7, 'Python', 1, [5, 4, 2, 8], 5]" + "[1, 1, 4, 8, 7, 'Python', 1, 1, 1, [5, 4, 2, 8], 5, 4, 2]" ] }, - "execution_count": 48, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -1028,23 +1078,23 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 62, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 1, 8, 7, 'Python', 1, [5, 4, 2, 8], 5]\n" + "[1, 1, 4, 8, 7, 'Python', 1, 1, 1, [5, 4, 2, 8], 5, 4, 2]\n" ] }, { "data": { "text/plain": [ - "[5, 4, 2, 8]" + "4" ] }, - "execution_count": 50, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -1056,14 +1106,14 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 1, 8, 7, 'Python', 1, 5]\n" + "[1, 1, 4, 8, 7, 'Python', 1, 1, 1, [5, 4, 2, 8], 5, 2]\n" ] } ], @@ -1080,14 +1130,14 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 64, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 1, 8, 7, 1, 5]\n" + "[1, 1, 4, 8, 7, 1, 1, 1, [5, 4, 2, 8], 5, 2]\n" ] } ], @@ -1105,15 +1155,17 @@ }, { "cell_type": "code", - "execution_count": 56, - "metadata": {}, + "execution_count": 66, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 7, 1, 5]\n", - "[1, 1, 5]\n" + "[1, 1, 4, 8, 7, 1, 1, 1, [5, 4, 2, 8], 5, 2]\n", + "[1, 4, 8, 7, 1, 1, 1, [5, 4, 2, 8], 5, 2]\n" ] } ], @@ -1123,6 +1175,24 @@ "print(lst)" ] }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 1, 1, 1, [5, 4, 2, 8], 5, 2]\n" + ] + } + ], + "source": [ + "del(lst[1:4])\n", + "print(lst)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1132,14 +1202,14 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 68, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[5, 1, 1]\n" + "[2, 5, [5, 4, 2, 8], 1, 1, 1, 1]\n" ] } ], @@ -1159,19 +1229,19 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 70, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 4, 8, 8, 10]\n" + "[1, 4, 7, 8, 8, 10]\n" ] } ], "source": [ - "lst = [1, 4, 8, 8, 10]\n", + "lst = [8, 7, 1, 4, 8, 10]\n", "lst.sort()\n", "print(lst)" ] @@ -1210,7 +1280,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 74, "metadata": {}, "outputs": [ { @@ -1239,7 +1309,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 72, "metadata": {}, "outputs": [ { @@ -1274,7 +1344,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 75, "metadata": { "collapsed": true }, @@ -1285,7 +1355,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -1310,7 +1380,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 77, "metadata": {}, "outputs": [ { @@ -1331,7 +1401,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 78, "metadata": {}, "outputs": [ { @@ -1357,7 +1427,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 79, "metadata": { "collapsed": true }, @@ -1368,7 +1438,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 80, "metadata": {}, "outputs": [ { @@ -1386,7 +1456,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -1407,7 +1477,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -1445,7 +1515,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -1463,7 +1533,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxyz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxyz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mxyz\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxyz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxyz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mxyz\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" ] } @@ -1491,7 +1561,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 85, "metadata": { "collapsed": true }, @@ -1621,7 +1691,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 90, "metadata": { "collapsed": true }, @@ -1632,7 +1702,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 91, "metadata": {}, "outputs": [ { @@ -1649,7 +1719,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 92, "metadata": { "collapsed": true }, @@ -1660,7 +1730,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 93, "metadata": {}, "outputs": [ { @@ -1692,7 +1762,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 94, "metadata": {}, "outputs": [ { @@ -1701,7 +1771,7 @@ "3" ] }, - "execution_count": 83, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } @@ -1719,7 +1789,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 95, "metadata": {}, "outputs": [ { @@ -1728,7 +1798,7 @@ "1" ] }, - "execution_count": 84, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } diff --git a/0_python/4_Data_Structure_2.ipynb b/0_python/4_Data_Structure_2.ipynb index a2d9974..3393eba 100644 --- a/0_python/4_Data_Structure_2.ipynb +++ b/0_python/4_Data_Structure_2.ipynb @@ -19,7 +19,9 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "String0 = 'Taj Mahal is beautiful'\n", @@ -665,7 +667,9 @@ { "cell_type": "code", "execution_count": 25, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "f = ' hello '" @@ -708,7 +712,9 @@ { "cell_type": "code", "execution_count": 30, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "f = ' ***----hello---******* '" @@ -904,7 +910,9 @@ { "cell_type": "code", "execution_count": 39, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "names = ['One', 'Two', 'Three', 'Four', 'Five']\n", @@ -1192,7 +1200,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.5.4" } }, "nbformat": 4, diff --git a/0_python/5_Control_Flow.ipynb b/0_python/5_Control_Flow.ipynb index 88faad8..0efd00e 100644 --- a/0_python/5_Control_Flow.ipynb +++ b/0_python/5_Control_Flow.ipynb @@ -49,7 +49,9 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "x = 4\n", @@ -648,7 +650,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.5.4" } }, "nbformat": 4, diff --git a/0_python/README.md b/0_python/README.md index 099cf0c..4b6ef80 100644 --- a/0_python/README.md +++ b/0_python/README.md @@ -37,7 +37,7 @@ Python 是一门上手简单、功能强大、通用型的脚本编程语言。 ## 参考资料 ### 视频教程 -* [《90分钟学会Python》](https://www.bilibili.com/video/BV1Uz4y167xY) +* [《90分钟学会Python》](https://www.bilibili.com/video/BV1oZ4y1N7ei?p=9) (推荐) * [《零基础入门学习Python》教学视频](https://www.bilibili.com/video/BV1c4411e77t) ### 教程