Browse Source

Fix some error; Add section number

pull/2/head
bushuhui 5 years ago
parent
commit
8ba0877787
1 changed files with 42 additions and 41 deletions
  1. +42
    -41
      1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb

+ 42
- 41
1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb View File

@@ -33,16 +33,16 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 简介"
"## 1. 简介"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"这个`numpy`包(模块)用在几乎所有使用Python的数值计算中。他是一个为Python提供高性能向量,矩阵和高维数据结构的模块。它是用C和Fortran语言实现的,因此当计算向量化(用向量和矩阵表示)时,性能非常的好。\n",
"这个`numpy`包(模块)用在几乎所有使用Python的数值计算中。他是一个为Python提供高性能向量,矩阵和高维数据结构的模块。它是用C和Fortran语言实现的,因此当计算向量化数据(用向量和矩阵表示)时,性能非常的好。\n",
"\n",
"为了使用`numpy`模块,你先要下面的例子一样导入这个模块:"
"为了使用`numpy`模块,你先要下面的例子一样导入这个模块:"
]
},
{
@@ -60,14 +60,15 @@
"metadata": {},
"source": [
"在`numpy`模块中,用于向量,矩阵和高维数据集的术语是*数组*。\n",
"\n"
"\n",
"**建议大家使用第二种导入方法** `import numpy as np`\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 创建`numpy`数组"
"## 2. 创建`numpy`数组"
]
},
{
@@ -85,7 +86,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 从列表中"
"### 2.1 从列表中"
]
},
{
@@ -399,7 +400,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 使用数组生成函数"
"### 2.2 使用数组生成函数"
]
},
{
@@ -758,14 +759,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 文件 I/O"
"## 3. 文件 I/O"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 逗号分隔值 (CSV)"
"### 3.1 逗号分隔值 (CSV)"
]
},
{
@@ -945,7 +946,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Numpy 的本地文件格式"
"### 3.2 numpy 的本地文件格式"
]
},
{
@@ -1000,7 +1001,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 更多Numpy数组的性质"
"## 4. 更多Numpy数组的性质"
]
},
{
@@ -1066,14 +1067,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 操作数组"
"## 5. 操作数组"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 索引"
"### 5.1 索引"
]
},
{
@@ -1299,7 +1300,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 切片索引"
"### 5.2 切片索引"
]
},
{
@@ -1627,7 +1628,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 花式索引"
"### 5.3 花式索引"
]
},
{
@@ -1852,14 +1853,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 用于从数组中提取数据和创建数组的函数"
"## 6. 用于从数组中提取数据和创建数组的函数"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### where"
"### 6.1 where"
]
},
{
@@ -1915,7 +1916,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### diag"
"### 6.2 diag"
]
},
{
@@ -1969,7 +1970,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### take"
"### 6.3 take"
]
},
{
@@ -2072,7 +2073,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### choose"
"### 6.4 choose"
]
},
{
@@ -2109,7 +2110,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 线性代数"
"## 7. 线性代数"
]
},
{
@@ -2123,7 +2124,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scalar-array 操作"
"### 7.1 Scalar-array 操作"
]
},
{
@@ -2214,7 +2215,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 数组间的元素操作"
"### 7.2 数组间的元素操作"
]
},
{
@@ -2319,7 +2320,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 矩阵代数"
"### 7.4 矩阵代数"
]
},
{
@@ -2602,7 +2603,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 数组/矩阵转换"
"### 7.5 数组/矩阵转换"
]
},
{
@@ -2812,7 +2813,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 矩阵计算"
"### 7.6 矩阵计算"
]
},
{
@@ -2915,7 +2916,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 数据处理"
"### 7.7 数据处理"
]
},
{
@@ -3226,7 +3227,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 数组子集的计算"
"### 7.8 数组子集的计算"
]
},
{
@@ -3363,7 +3364,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 高维数据的计算"
"### 7.9 高维数据的计算"
]
},
{
@@ -3472,7 +3473,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 阵列的重塑、调整大小和堆叠"
"## 8. 阵列的重塑、调整大小和堆叠"
]
},
{
@@ -3749,7 +3750,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 添加新的维度:newaxis"
"## 9. 添加新的维度:newaxis"
]
},
{
@@ -3890,7 +3891,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 叠加和重复数组"
"## 10. 叠加和重复数组"
]
},
{
@@ -3904,7 +3905,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### tile and repeat"
"### 10.1 tile and repeat"
]
},
{
@@ -4020,7 +4021,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### concatenate"
"### 10.2 concatenate"
]
},
{
@@ -4079,7 +4080,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### hstack and vstack"
"### 10.3 hstack and vstack"
]
},
{
@@ -4129,7 +4130,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 复制和“深度复制”"
"## 11. 复制和“深度复制”"
]
},
{
@@ -4282,7 +4283,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 遍历数组元素"
"## 12. 遍历数组元素"
]
},
{
@@ -4408,7 +4409,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 向量化功能"
"## 13. 向量化功能"
]
},
{
@@ -4589,7 +4590,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 在条件中使用数组"
"## 14. 在条件中使用数组"
]
},
{
@@ -4685,7 +4686,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 类型转换"
"## 15. 类型转换"
]
},
{
@@ -4881,7 +4882,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.6.9"
}
},
"nbformat": 4,


Loading…
Cancel
Save