Browse Source

Fix sigmod figure

fetches/feikei/master
Shuhui Bu 7 years ago
parent
commit
827b11922b
2 changed files with 52 additions and 18 deletions
  1. +36
    -15
      1_logistic_regression/Logistic_regression.ipynb
  2. +16
    -3
      1_logistic_regression/Logistic_regression.py

+ 36
- 15
1_logistic_regression/Logistic_regression.ipynb
File diff suppressed because it is too large
View File


+ 16
- 3
1_logistic_regression/Logistic_regression.py View File

@@ -34,11 +34,23 @@
#
# 逻辑回归就是一种减小预测范围,将预测值限定为$[0,1]$间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在$z=0$时,十分敏感,在$z>>0$或$z<<0$处,都不敏感,将预测值限定为$(0,1)$。
#
# FIXME: this figure is wrong
# ![LogisticFunction](images/fig2.gif)
#
#

# +
# %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

plt.figure()
plt.axis([-10,10,0,1])
plt.grid(True)
X=np.arange(-10,10,0.1)
y=1/(1+np.e**(-X))
plt.plot(X,y,'b-')
plt.title("Logistic function")
plt.show()
# -

# ### 逻辑回归表达式
#
# 这个函数称为Logistic函数(logistic function),也称为Sigmoid函数(sigmoid function)。函数公式如下:
@@ -69,6 +81,7 @@ X=np.arange(-10,10,0.1)
y=1/(1+np.e**(-X))
plt.plot(X,y,'b-')
plt.title("Logistic function")
plt.show()
# -

# 逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数$g(z)$将最为假设函数来预测。$g(z)$可以将连续值映射到0到1之间。线性回归模型的表达式带入$g(z)$,就得到逻辑回归的表达式:


Loading…
Cancel
Save