|
|
|
@@ -8,14 +8,14 @@ |
|
|
|
|
|
|
|
### 1.1 教程 |
|
|
|
|
|
|
|
* [《动手学深度学习》 — 动手学深度学习 2.0.0-alpha2 documentation](https://zh-v2.d2l.ai/index.html) |
|
|
|
* [《动手学深度学习》- PyTorch版本](https://tangshusen.me/Dive-into-DL-PyTorch/#/) |
|
|
|
* [Introduction — Neuromatch Academy: Deep Learning](https://deeplearning.neuromatch.io/tutorials/intro.html) |
|
|
|
|
|
|
|
|
|
|
|
### 1.2 代码 |
|
|
|
|
|
|
|
* [《统计学习方法》的代码](https://gitee.com/afishoutis/MachineLearning) |
|
|
|
* [《统计学习方法》pytorch实现](https://github.com/fengdu78/lihang-code) |
|
|
|
* [《统计学习方法》PyTorch实现](https://github.com/fengdu78/lihang-code) |
|
|
|
* [pytorch-cifar100](https://github.com/weiaicunzai/pytorch-cifar100) 实现ResNet, DenseNet, VGG, GoogleNet, InceptionV3, InceptionV4, Inception-ResNetv2, Xception, Resnet In Resnet, ResNext,ShuffleNet, ShuffleNetv2, MobileNet, MobileNetv2, SqueezeNet, NasNet, Residual Attention Network, SENet, WideResNet |
|
|
|
* [Attention: xmu-xiaoma666/External-Attention-pytorch: Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐ (github.com)](https://github.com/xmu-xiaoma666/External-Attention-pytorch) 注意力机制,多层神经网络,重参数。 |
|
|
|
* [Python TheAlgorithms/Python: All Algorithms implemented in Python (github.com)](https://github.com/TheAlgorithms/Python) |
|
|
|
|