From 360856ceacfc00fbec97a55e82a992905cb3c434 Mon Sep 17 00:00:00 2001 From: bushuhui Date: Fri, 10 Dec 2021 17:49:35 +0800 Subject: [PATCH] Improve PyTorch lecture --- 5_nn/2-mlp_bp.ipynb | 4 +- 6_pytorch/1-tensor.ipynb | 52 +- 6_pytorch/2-autograd.ipynb | 52 +- ...escend.ipynb => 3-linear-regression.ipynb} | 126 ++-- 6_pytorch/4-logistic-regression.ipynb | 336 +++------ 6_pytorch/5-deep-nn.ipynb | 693 ------------------ 6_pytorch/5-nn-sequential-module.ipynb | 583 ++++----------- 6_pytorch/6-deep-nn.ipynb | 671 +++++++++++++++++ ...tialize.ipynb => 7-param_initialize.ipynb} | 22 +- 6_pytorch/imgs/MNIST.jpeg | Bin 0 -> 41373 bytes 6_pytorch/imgs/logistic_function.png | Bin 0 -> 23619 bytes 6_pytorch/imgs/softmax.jpeg | Bin 0 -> 102103 bytes 6_pytorch/optimizer/6_1-sgd.ipynb | 106 +-- 6_pytorch/optimizer/6_2-momentum.ipynb | 4 +- 6_pytorch/optimizer/6_3-adagrad.ipynb | 4 +- 6_pytorch/optimizer/6_4-rmsprop.ipynb | 4 +- 6_pytorch/optimizer/6_5-adadelta.ipynb | 4 +- 6_pytorch/optimizer/6_6-adam.ipynb | 4 +- 7_deep_learning/imgs/ResNet.png | Bin 0 -> 104058 bytes 7_deep_learning/imgs/lena.png | Bin 0 -> 23303 bytes 7_deep_learning/imgs/lena3.png | Bin 0 -> 150951 bytes 7_deep_learning/imgs/lena512.png | Bin 0 -> 150951 bytes 7_deep_learning/imgs/nn_lenet.png | Bin 0 -> 16925 bytes 7_deep_learning/imgs/residual.png | Bin 0 -> 82332 bytes 7_deep_learning/imgs/resnet1.png | Bin 0 -> 69315 bytes .../imgs/tensor_data_structure.svg | 2 + 7_deep_learning/imgs/trans.bkp.PNG | Bin 0 -> 7835 bytes README.md | 20 +- README_ENG.md | 147 ++-- 29 files changed, 1146 insertions(+), 1688 deletions(-) rename 6_pytorch/{3-linear-regression-gradient-descend.ipynb => 3-linear-regression.ipynb} (70%) delete mode 100644 6_pytorch/5-deep-nn.ipynb create mode 100644 6_pytorch/6-deep-nn.ipynb rename 6_pytorch/{6-param_initialize.ipynb => 7-param_initialize.ipynb} (90%) create mode 100644 6_pytorch/imgs/MNIST.jpeg create mode 100644 6_pytorch/imgs/logistic_function.png create mode 100644 6_pytorch/imgs/softmax.jpeg create mode 100644 7_deep_learning/imgs/ResNet.png create mode 100644 7_deep_learning/imgs/lena.png create mode 100644 7_deep_learning/imgs/lena3.png create mode 100644 7_deep_learning/imgs/lena512.png create mode 100644 7_deep_learning/imgs/nn_lenet.png create mode 100644 7_deep_learning/imgs/residual.png create mode 100644 7_deep_learning/imgs/resnet1.png create mode 100644 7_deep_learning/imgs/tensor_data_structure.svg create mode 100644 7_deep_learning/imgs/trans.bkp.PNG diff --git a/5_nn/2-mlp_bp.ipynb b/5_nn/2-mlp_bp.ipynb index e64ba53..99808a1 100644 --- a/5_nn/2-mlp_bp.ipynb +++ b/5_nn/2-mlp_bp.ipynb @@ -1011,7 +1011,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -1025,7 +1025,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/6_pytorch/1-tensor.ipynb b/6_pytorch/1-tensor.ipynb index f3dcb0f..4e50967 100644 --- a/6_pytorch/1-tensor.ipynb +++ b/6_pytorch/1-tensor.ipynb @@ -4,14 +4,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Tensor and Variable\n", + "# PyTorch\n", "\n", + "PyTorch是基于Python的科学计算包,其旨在服务两类场合:\n", + "* 替代NumPy发挥GPU潜能\n", + "* 提供了高度灵活性和效率的深度学习平台\n", + "\n", + "PyTorch的简洁设计使得它入门很简单,本部分内容在深入介绍PyTorch之前,先介绍一些PyTorch的基础知识,让大家能够对PyTorch有一个大致的了解,并能够用PyTorch搭建一个简单的神经网络,然后在深入学习如何使用PyTorch实现各类网络结构。在学习过程,可能部分内容暂时不太理解,可先不予以深究,后续的课程将会对此进行深入讲解。\n", "\n", - "张量(Tensor)是一种专门的数据结构,非常类似于数组和矩阵。在PyTorch中,我们使用张量来编码模型的输入和输出,以及模型的参数。\n", "\n", - "张量类似于`NumPy`的`ndarray`,不同之处在于张量可以在GPU或其他硬件加速器上运行。事实上,张量和NumPy数组通常可以共享相同的底层内存,从而消除了复制数据的需要(请参阅使用NumPy的桥接)。张量还针对自动微分进行了优化,在Autograd部分中看到更多关于这一点的内介绍。\n", "\n", - "`variable`是一种可以不断变化的变量,符合反向传播,参数更新的属性。PyTorch的`variable`是一个存放会变化值的内存位置,里面的值会不停变化,像装糖果(糖果就是数据,即tensor)的盒子,糖果的数量不断变化。pytorch都是由tensor计算的,而tensor里面的参数是variable形式。\n" + "![PyTorch Demo](imgs/PyTorch.png)\n" ] }, { @@ -20,6 +23,12 @@ "source": [ "## 1. Tensor基本用法\n", "\n", + "张量(Tensor)是一种专门的数据结构,非常类似于数组和矩阵。在PyTorch中,我们使用张量来编码模型的输入和输出,以及模型的参数。\n", + "\n", + "张量类似于`NumPy`的`ndarray`,不同之处在于张量可以在GPU或其他硬件加速器上运行。事实上,张量和NumPy数组通常可以共享相同的底层内存,从而消除了复制数据的需要(请参阅使用NumPy的桥接)。张量还针对自动微分进行了优化,在Autograd部分中看到更多关于这一点的内介绍。\n", + "\n", + "`variable`是一种可以不断变化的变量,符合反向传播,参数更新的属性。PyTorch的`variable`是一个存放会变化值的内存位置,里面的值会不停变化,像装糖果(糖果就是数据,即tensor)的盒子,糖果的数量不断变化。pytorch都是由tensor计算的,而tensor里面的参数是variable形式。\n", + "\n", "PyTorch基础的数据是张量(Tensor),PyTorch 的很多操作好 NumPy 都是类似的,但是因为其能够在 GPU 上运行,所以有着比 NumPy 快很多倍的速度。本节内容主要包括 PyTorch 中的基本元素 Tensor 和 Variable 及其操作方式。" ] }, @@ -32,10 +41,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ "import torch\n", @@ -44,10 +51,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, + "execution_count": 3, + "metadata": {}, "outputs": [], "source": [ "# 创建一个 numpy ndarray\n", @@ -63,13 +68,11 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, + "execution_count": 9, + "metadata": {}, "outputs": [], "source": [ - "pytorch_tensor1 = torch.Tensor(numpy_tensor)\n", + "pytorch_tensor1 = torch.tensor(numpy_tensor)\n", "pytorch_tensor2 = torch.from_numpy(numpy_tensor)" ] }, @@ -96,10 +99,8 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, + "execution_count": 5, + "metadata": {}, "outputs": [], "source": [ "# 如果 pytorch tensor 在 cpu 上\n", @@ -128,9 +129,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# 第一种方式是定义 cuda 数据类型\n", @@ -161,9 +160,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "cpu_tensor = gpu_tensor.cpu()" @@ -697,6 +694,7 @@ "metadata": {}, "source": [ "## 参考\n", + "* [PyTorch官方说明文档](https://pytorch.org/docs/stable/)\n", "* http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html\n", "* http://cs231n.github.io/python-numpy-tutorial/" ] diff --git a/6_pytorch/2-autograd.ipynb b/6_pytorch/2-autograd.ipynb index 2a65563..644bd57 100644 --- a/6_pytorch/2-autograd.ipynb +++ b/6_pytorch/2-autograd.ipynb @@ -15,16 +15,7 @@ "\n", "从 PyTorch 0.4版本起, `Variable` 正式合并入 `Tensor` 类,通过 `Variable` 嵌套实现的自动微分功能已经整合进入了 `Tensor` 类中。虽然为了的兼容性还是可以使用 `Variable`(tensor)这种方式进行嵌套,但是这个操作其实什么都没做。\n", "\n", - "以后的代码建议直接使用 `Tensor` 类进行操作,因为官方文档中已经将 `Variable` 设置成过期模块。" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import torch" + "**以后的代码建议直接使用 `Tensor` 类进行操作,因为官方文档中已经将 `Variable` 设置成过期模块。**" ] }, { @@ -32,12 +23,13 @@ "metadata": {}, "source": [ "## 1. 简单情况的自动求导\n", - "下面我们显示一些简单情况的自动求导,\"简单\"体现在计算的结果都是标量,也就是一个数,我们对这个标量进行自动求导。" + "\n", + "下面展示一些简单情况的自动求导,\"简单\"体现在计算的结果都是标量,也就是一个数,对这个标量进行自动求导。" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -49,6 +41,8 @@ } ], "source": [ + "import torch\n", + "\n", "x = torch.tensor([2.0], requires_grad=True)\n", "y = x + 2\n", "z = y ** 2 + 3\n", @@ -65,18 +59,18 @@ "z = (x + 2)^2 + 3\n", "$$\n", "\n", - "那么我们从 z 对 x 求导的结果就是 \n", + "那么我们从 $z$ 对 $x$ (当$x=2$)求导的结果就是 \n", "\n", "$$\n", "\\frac{\\partial z}{\\partial x} = 2 (x + 2) = 2 (2 + 2) = 8\n", "$$\n", "\n", - "如果你对求导不熟悉,可以查看以下[《导数介绍资料》](https://baike.baidu.com/item/%E5%AF%BC%E6%95%B0#1)网址进行复习" + ">如果对求导不熟悉,可以查看[《导数介绍资料》](https://baike.baidu.com/item/%E5%AF%BC%E6%95%B0#1)进行复习。" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -97,12 +91,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "对于上面这样一个简单的例子,我们验证了自动求导,同时可以发现发现使用自动求导非常方便。如果是一个更加复杂的例子,那么手动求导就会显得非常的麻烦,所以自动求导的机制能够帮助我们省去麻烦的数学计算,下面我们可以看一个更加复杂的例子。" + "上面简单的例子验证了自动求导的功能,可以发现使用自动求导非常方便,不需要关系中间变量的状态。如果是一个更加复杂的例子,那么手动求导有可能非常的麻烦,所以自动求导的机制能够帮助我们省去繁琐的数学公式推导,下面给出一个更加复杂的例子。" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -124,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -136,12 +130,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "如果你对矩阵乘法不熟悉,可以查看下面的[《矩阵乘法说明》](https://baike.baidu.com/item/%E7%9F%A9%E9%98%B5%E4%B9%98%E6%B3%95/5446029?fr=aladdin)进行复习" + "> 如果对矩阵乘法不熟悉,可以查看[《矩阵乘法说明》](https://baike.baidu.com/item/%E7%9F%A9%E9%98%B5%E4%B9%98%E6%B3%95/5446029?fr=aladdin)进行复习。" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -196,12 +190,12 @@ "source": [ "## 2. 复杂情况的自动求导\n", "\n", - "上面我们展示了简单情况下的自动求导,都是对标量进行自动求导,那么如何对一个向量或者矩阵自动求导?" + "上面展示了简单情况下的自动求导,都是对标量进行自动求导,那么如何对一个向量或者矩阵自动求导?" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -222,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -280,7 +274,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -289,7 +283,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -446,7 +440,7 @@ "k = (k_0,\\ k_1) = (x_0^2 + 3 x_1,\\ 2 x_0 + x_1^2)\n", "$$\n", "\n", - "我们希望求得\n", + "希望求得\n", "\n", "$$\n", "j = \\left[\n", @@ -460,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -473,7 +467,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -504,7 +498,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 12, "metadata": { "scrolled": true }, diff --git a/6_pytorch/3-linear-regression-gradient-descend.ipynb b/6_pytorch/3-linear-regression.ipynb similarity index 70% rename from 6_pytorch/3-linear-regression-gradient-descend.ipynb rename to 6_pytorch/3-linear-regression.ipynb index f2306c2..2db4de0 100644 --- a/6_pytorch/3-linear-regression-gradient-descend.ipynb +++ b/6_pytorch/3-linear-regression.ipynb @@ -69,8 +69,8 @@ "最后我们的更新公式就是\n", "\n", "$$\n", - "w := w - \\eta \\frac{\\partial f(w,\\ b)}{\\partial w} \\\\\n", - "b := b - \\eta \\frac{\\partial f(w,\\ b)}{\\partial b}\n", + "w = w - \\eta \\frac{\\partial f(w,\\ b)}{\\partial w} \\\\\n", + "b = b - \\eta \\frac{\\partial f(w,\\ b)}{\\partial b}\n", "$$\n", "\n", "通过不断地迭代更新,最终我们能够找到一组最优的 $w$ 和 $b$。" @@ -93,7 +93,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -113,17 +113,10 @@ "execution_count": 2, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Matplotlib is building the font cache; this may take a moment.\n" - ] - }, { "data": { "text/plain": [ - "[]" + "[]" ] }, "execution_count": 2, @@ -132,7 +125,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAOpklEQVR4nO3df4xlZ13H8fd3u25kEG3TnRItzA4YLJDGah1rIdKAVbGNkWCaWJ1AbIwTo1bwL4ibyB9mE0n8Q41RMqlojGNJ2LaKCVYajWCCrd7F/tiyoqXsDEvRTi2C6SSW7X7949y7O7u9M3Pu7D3nPPfe9yuZ3L3nnp35zrOzn/PMc5/nOZGZSJLKdaDrAiRJuzOoJalwBrUkFc6glqTCGdSSVLiDTXzSw4cP5+LiYhOfWpKm0okTJ57LzPlhrzUS1IuLi/R6vSY+tSRNpYhY3+k1hz4kqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtSTWtrsLgIBw5Uj2tr7XzdRqbnSdK0WVuDlRXY2qqer69XzwGWl5v92vaoJamGo0cvhPTA1lZ1vGkGtSTVsLEx2vFxMqglqYaFhdGOj5NBLUk1HDsGc3MXH5ubq443zaCWpBqWl2F1FY4cgYjqcXW1+TcSwVkfklTb8nI7wXwpe9SSVDiDWpIKZ1BLUuEMakkqnEEtSYUzqCWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKpxBLUmFM6glqXC1gjoi3hcRJyPiyYh4f8M1SZK22TOoI+J64BeBm4AbgJ+MiDc0XZgkqVKnR/0m4OHM3MrMs8CngXc3W5YkaaBOUJ8EbomIqyNiDrgdeO2lJ0XESkT0IqK3ubk57jolaWbtGdSZeQr4MPAQ8CDwGHB2yHmrmbmUmUvz8/NjL1SSZlWtNxMz848z88bMvAV4HviPZsuSJA3UurltRFyTmc9GxALw08Bbmi1LkjRQ9y7k90XE1cA3gV/JzK81WJMkaZu6Qx9vy8w3Z+YNmfl3TRclzYq1NVhchAMHqse1ta4rUonq9qgljdnaGqyswNZW9Xx9vXoOsLzcXV0qj0vIpY4cPXohpAe2tqrj0nYGtdSRjY3Rjmt2GdRSRxYWRjuu2WVQSx05dgzm5i4+NjdXHZe2M6iljiwvw+oqHDkCEdXj6qpvJOrlnPUhdWh52WDW3uxRS3I+d+HsUUszzvnc5bNHLc0453OXz6CWZpzzuctnUEszzvnc5TOopRnnfO7yGdTSjHM+d/mc9SHJ+dyFs0ctSYUzqCWpcAa1JBXOoJakwhnUklQ4g1qSCmdQSx1y1zrV4TxqqSPuWqe67FFLHXHXOtVlUEsdcdc61WVQSx1x1zrVZVBLHXHXOtVlUEsdcdc61eWsD6lD7lqnOuxRS1LhDGpJM2USFxk59CFpZkzqIiN71JJmxqQuMjKoJe1pEocLhpnURUYGtaRdDYYL1tch88JwwSSG9aQuMjKoJe1qUocLhpnURUa1gjoifj0inoyIkxFxb0R8a9OFSRpNU8MTkzpcMMykLjLaM6gj4lrg14ClzLweuAK4s+nCJNXX5PDEpA4X7GR5GU6fhnPnqsfSQxrqD30cBF4REQeBOeCZ5kqSNKomhycmdbigTU2/2bpnUGfmV4DfATaArwJfz8xPXXpeRKxERC8iepubm+OtUtKumhyemNThgra08WZrZObuJ0RcBdwH/AzwP8DHgeOZ+ec7/Z2lpaXs9Xrjq1LSrhYXq4C41JEj1a/3as642j4iTmTm0rDX6gx9/CjwpczczMxvAvcDb63/5SU1zeGJ7rTxZmudoN4Abo6IuYgI4Fbg1PhKkHS5HJ7oThtvttYZo34EOA58Dnii/3dWx1eCpHGYxNkM06CN32ZqzfrIzA9l5hsz8/rMfE9m/t/4SpCkydXGbzPunidJl6npG0C4hFyShihpIyp71JJ0idL2rbZHrfNK6kFIXSptIyp71ALK60FIXSptIyp71ALK60FIXSptIyqDWkB5PQipS6Wt9DSoBZTXg5C6VNpKT4NaQHk9CKlrJa30NKgFlNeDkHSBsz50XtOrqyTtjz1qSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIKZ1BLUuEMakkqnEEtSYUzqCWpcAZ1gbwllqTtDOrCDG6Jtb4OmRduiWVYTw4vtBo3g7ow3hJrsnmhVRMM6sJ4S6zJ5oVWTTCoC+MtsSabF1o1waAujLfEmmxeaNUEg7ow3hJrsnmhVRO8FVeBvCXW5Br8ux09Wg13LCxUIe2/py6HQS2NmRdajZtDH5JUOINakgpnUEtS4QxqSSqcQS1JhdszqCPiuoh4dNvHNyLi/S3UJkmixvS8zPwC8H0AEXEF8BXggWbLkiQNjDr0cSvwxcxcb6IYSdLLjRrUdwL3DnshIlYiohcRvc3NzcuvTJIEjBDUEXEI+Cng48Nez8zVzFzKzKX5+flx1SdJM2+UHvVtwOcy87+aKkaS9HKjBPXPssOwhySpObWCOiLmgB8D7m+2HEnSpWrtnpeZW8DVDdciSRrClYmSVDiDWpIKZ1BLUuEMakkqnEEtSYUzqCWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKtzEBPXaGiwuwoED1ePaWtcVSVI7JiKo19ZgZQXW1yGzelxZMay74kVTatdEBPXRo7C1dfGxra3quNrlRVNq30QE9cbGaMfbNGu9Sy+aUvsmIqgXFkY73pZZ7F2WfNGUptVEBPWxYzA3d/GxubnqeJdmsXdZ6kVTmmYTEdTLy7C6CkeOQET1uLpaHe/SLPYuS71oStNsIoIaqlA+fRrOnaseuw5pmM3eZakXTWmaTUxQl2hWe5clXjSlaWZQXwZ7l5LaYFBfJnuXKtWsTR2dZge7LkDS+A2mjg5mJQ2mjoKdiUlkj1qaQrM4dXSaGdTSFJrFqaPTzKCWptAsTh2dZga1NIVmderotDKopSnk1NHp4qwPaUotLxvM08IetSQVzqCWpMIZ1JJUOINakgpnUEtS4WoFdURcGRHHI+LfIuJURLyl6cIkSZW60/N+D3gwM++IiEPA3F5/QZI0HnsGdUR8O3AL8PMAmfki8GKzZUmSBuoMfbwe2AT+JCL+NSLuiYhXNlyXJKmvTlAfBG4E/igzvx94AfjgpSdFxEpE9CKit7m5OeYypea4wb5KVyeozwBnMvOR/vPjVMF9kcxczcylzFyan58fZ41SYwYb7K+vQ+aFDfYNa5Vkz6DOzP8EvhwR1/UP3Qp8vtGqpJa4wb4mQd1ZH3cDa/0ZH08DdzVXktQeN9jXJKgV1Jn5KLDUbClS+xYWquGOYcelUrgyUTPNDfY1CQxqzTQ32Nck8MYBmnlusK/S2aOWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFa6YoHZPYEkaroiViYM9gQfbTQ72BAZXjElSET1q9wSWpJ0VEdTuCSxJOysiqHfa+9c9gSWpkKB2T2BJ2lkRQe2ewJK0syJmfYB7AkvSToroUUuSdmZQS1LhDGpJKpxBrX1z2b/UjmLeTNRkcdm/1B571NoXl/1L7TGotS8u+5faY1BrX1z2L7XHoNa+uOxfao9BrX1x2b/UHmd9aN9c9i+1wx61JBXOoJakwhnUklQ4g7pgLtGWBL6ZWCyXaEsasEddKJdoSxqo1aOOiNPA/wIvAWczc6nJouQSbUkXjDL08Y7MfK6xSnSRhYVquGPYcUmzxaGPQrlEW9JA3aBO4FMRcSIiVoadEBErEdGLiN7m5ub4KpxRLtGWNBCZufdJEd+Vmc9ExDXAQ8DdmfmZnc5fWlrKXq83xjIlabpFxImd3v+r1aPOzGf6j88CDwA3ja88SdJu9gzqiHhlRLxq8Gfgx4GTTRcmSarUmfXxauCBiBic/xeZ+WCjVUmSztszqDPzaeCGFmqRJA3h9DxJKlytWR8jf9KITWDIco2ZcBiY9YVBtoFtALYBjNYGRzJzftgLjQT1LIuI3qwvsbcNbAOwDWB8beDQhyQVzqCWpMIZ1OO32nUBBbANbAOwDWBMbeAYtSQVzh61JBXOoJakwhnU+xQRPxERX4iIpyLig0NeX46Ix/sfn42IqVvduVcbbDvvByPipYi4o836mlbn+4+It0fEoxHxZER8uu0am1bj/8F3RMRfR8Rj/Ta4q4s6mxQRH42IZyNi6B5IUfn9fhs9HhE3jvxFMtOPET+AK4AvAq8HDgGPAW++5Jy3Alf1/3wb8EjXdbfdBtvO+3vgk8AdXdfd8s/AlcDngYX+82u6rruDNvgN4MP9P88DzwOHuq59zO1wC3AjcHKH128H/gYI4Ob9ZIE96v25CXgqM5/OzBeBjwHv2n5CZn42M7/Wf/ow8JqWa2zanm3QdzdwH/Bsm8W1oM73/3PA/Zm5Aee3CZ4mddoggVdFtavbt1EF9dl2y2xWVnvzP7/LKe8C/iwrDwNXRsR3jvI1DOr9uRb48rbnZ/rHdvILVFfUabJnG0TEtcC7gY+0WFdb6vwMfA9wVUT8Q//uSO9trbp21GmDPwDeBDwDPAG8LzPPtVNeMUbNi5cZ5ea2uiCGHBs6zzEi3kEV1D/caEXtq9MGvwt8IDNf6m+TO03qfP8HgR8AbgVeAfxTRDycmf/edHEtqdMG7wQeBX4E+G7goYj4x8z8RsO1laR2XuzEoN6fM8Brtz1/DVWP4SIR8b3APcBtmfnfLdXWljptsAR8rB/Sh4HbI+JsZv5lKxU2q873fwZ4LjNfAF6IiM9QbRk8LUFdpw3uAn47q8HapyLiS8AbgX9up8Qi1MqL3Tj0sT//ArwhIl4XEYeAO4FPbD8hIhaA+4H3TFEPars92yAzX5eZi5m5CBwHfnlKQhpqfP/AXwFvi4iDETEH/BBwquU6m1SnDTaofqMgIl4NXAc83WqV3fsE8N7+7I+bga9n5ldH+QT2qPchM89GxK8Cf0v1zvdHM/PJiPil/usfAX4TuBr4w36P8mxO0U5iNdtgatX5/jPzVEQ8CDwOnAPuycypuY1dzZ+B3wL+NCKeoBoC+EBmTtXWpxFxL/B24HBEnAE+BHwLnG+DT1LN/HgK2KL6LWO0r9GfPiJJKpRDH5JUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFe7/AeTSyedpFuSCAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAORUlEQVR4nO3db4hs913H8c9ncwl2Y2tC7lo08e42Qmu1GIxjrakU2/gvqTQIeRCcIAZhEbQWn9jqQhHkgoIPoogtQ7BFsjZiTAVF04qlKtSkzLZp/jQqaXp3m0TN3ihVsg/iTb4+OLPZzWTuzpmbOb/znTPvFyyzc+bc4bu/2fu5v3vO748jQgCAvFbaLgAAcDKCGgCSI6gBIDmCGgCSI6gBILlTTbzp6dOnY2Njo4m3BoBO2tnZOR8Ra5NeaySoNzY2NBwOm3hrAOgk27sXe41LHwCQHEENAMkR1ACQHEENAMkR1ACQHEENJLG9LW1sSCsr1eP2dtsVIYtGhucBmM32trS5KR0cVM93d6vnktTvt1cXcqBHDSSwtXUU0ocODqrjAEENJLC3N9txLBeCGkjgzJnZjmO5ENRAAmfPSqurrz62ulodBwhqIIF+XxoMpPV1ya4eBwNuJKLCqA8giX6fYMZk9KgBIDmCGgCSI6gBIDmCGgCSI6gBIDmCGgCSI6gBIDmCGugglkwtq+n2ZsIL0DEsmVpWifZ2RMznnY7p9XoxHA7n/r4AptvYqMJi3Pq6dO5c6Wq6b17tbXsnInqTXuPSB9AxLJlaVon2JqiBjmHJ1LJKtDdBDXQMS6aWVaK9CWqgY1gytawS7c3NRABIgJuJQAsYy4x5qRXUtn/N9uO2H7P9Kdvf0nRhwCI7HFu7uytFVI933CGdPk1gY3ZTg9r2NZJ+VVIvIt4h6TJJtzddGLDItraOJkAc9/zzVYAT1phF3UsfpyS9wfYpSauSnm2uJGDxnTSG9uCgCvJxXCrBxUwN6oh4RtLvSdqT9O+SvhkRnx0/z/am7aHt4f7+/vwrBRbItDG040E+6VIJPW8cqnPp4ypJt0p6i6TvlHSF7TvGz4uIQUT0IqK3trY2/0qBBTJpbO1x40E+6VLJxXreWD51Ln38uKSvR8R+RPyfpPsl3dhsWcBiOxxbe/XVr31t0mQIpn3jJHWCek/Su2yv2rakmyQ90WxZWCZdvTbb70vnz0v33DN9MgTTvnGSOteoH5J0n6QvSXp09GcGDdeFJbEM12b7/WoVtZdfrh4nzVhj2jdOwsxEtIolOY9sb1fXpPf2qp702bNM+14mJ81MJKjRqpWVqic9zq56oMCyYAo50uLaLDAdQY1WcW0WmI6gRqtYkhOYjs1t0bp+n2AGTkKPGgCSI6gBIDmCGgCSI6gBIDmCGgCSI6gBIDmCGgCSI6gBIDmCGgCSI6ixkLq62UAX8NnMH0GNhbMImw0sa1gtwmeziFiPGgsn+2YDh2F1fLPa1dXlWGwq+2eTGRsHoFOybzawzGGV/bPJjI0D0CnZNxtY5h3Fs382i4qgxsLJvtnAModV9s9mURHUWDjZNxtY5rDK/tksKq5RAw1gR3HM6qRr1OzwAjSAXWswT1z6AIDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASC51UC/rvnOZ8ZkA5U1dPc/22yT92bFD10n6aETc1VRR0mv3nTvcJFNiVbK28JkA7ZhpPWrbl0l6RtIPR8SEXeEq81iPepn3ncuKzwRozjz3TLxJ0tdOCul5WeZ957LiMwHaMWtQ3y7pU5NesL1pe2h7uL+//7oLW+Z957LiMwHaUTuobV8u6QOS/nzS6xExiIheRPTW1tZed2HLvO9cVnwmQDtm6VHfLOlLEfGfTRVzHJtk5sNnArSj9s1E2/dK+kxEfGLauWxuCwCzed03E22vSvoJSffPszAAwHS1gjoiDiLi6oj4ZtMFAcCiKDUBbOqEFwDAa5WcAJZ6CjkAZLW1dRTShw4OquPzRlADwCUoOQGMoAaAS1ByAhhBDQCXoOQEMIIaAC5ByQlgjPoAgEvU75eZmUuPGkBndHVjC3rUADqhyxtb0KMG0AklxzWXRlAD6IQub2xBUAPohC5vbEFQA+iELm9sQVAD6IQub2zBqA8AnVFqXHNp9KgBIDmCGgCSI6gBIDmCGgCSI6gBIDmCGgCSI6iBGXR1dTbkxjhqoKYur86G3OhRAzV1eXU25EZQAzV1eXU25EZQAzV1eXU25EZQt4gbU4uly6uzITeCuiWHN6Z2d6WIoxtThHVeXV6dDbk5Iub+pr1eL4bD4dzft0s2NqpwHre+Lp07V7oaAG2zvRMRvUmv0aNuCTemANRFULeEG1MA6iKoW8KNKQB1EdQt4cYUgLqYQt6irm4bBGC+6FEDQHIENQAkVyuobV9p+z7b/2L7Cds/0nRhAIBK3WvUvy/pgYi4zfblklan/QEAwHxMDWrbb5L0Hkm/IEkR8aKkF5stCwBwqM6lj+sk7Uv6hO0v277b9hXjJ9netD20Pdzf3597oQCwrOoE9SlJN0j6WET8gKQXJH1k/KSIGERELyJ6a2trcy4TAJZXnaB+WtLTEfHQ6Pl9qoIbAFDA1KCOiP+Q9A3bbxsduknSVxutCgDwirqjPj4oaXs04uMpSXc2VxIA4LhaQR0RD0uauE4qAKBZzEwEgOQIagBIjqAGgOQIagBIjqAGxmxvV5sPr6xUj+wMj7axcQBwzPa2tLkpHRxUz3d3q+cSmzygPfSogWO2to5C+tDBQXUcaAtBDRyztzfbcaAEgho45syZ2Y4DJRDUwDFnz0qrY9tirK5Wx4G2ENQdwmiF16/flwYDaX1dsqvHwYAbiWgXoz46gtEK89Pv02bIhR51RzBaAegugrojGK0AdBdB3RGMVgC6i6DuCEYrAN1FUHcEoxWA7mLUR4cwWgHoJnrUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQY1LwiYFQDlMIcfM2KQAKIseNWbGJgVAWQQ1ZsYmBUBZBDVmxiYFQFkENWbGJgVAWQQ1ZsYmBUBZjPrAJWGTAqAcetQAkFytHrXtc5L+V9JLki5ERK/JogAAR2a59PHeiDjfWCUAgIm49AEAydUN6pD0Wds7tjcnnWB70/bQ9nB/f39+FQLAkqsb1O+OiBsk3Szpl22/Z/yEiBhERC8iemtra3MtEgCWWa2gjohnR4/PSfq0pHc2WRQA4MjUoLZ9he03Hn4v6SclPdZ0YQCASp1RH2+W9Gnbh+f/aUQ80GhVAIBXTA3qiHhK0vUFagEATMDwPABIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOQIagBIjqAGgOTSBPX2trSxIa2sVI/b221XBAA5nGq7AKkK5c1N6eCger67Wz2XpH6/vboAIIMUPeqtraOQPnRwUB0HgGWXIqj39mY7DgDLJEVQnzkz23EAWCYpgvrsWWl19dXHVler4wCw7GoHte3LbH/Z9l/Pu4h+XxoMpPV1ya4eBwNuJAKANNuojw9JekLSm5oopN8nmAFgklo9atvXSnq/pLubLQcAMK7upY+7JP26pJcvdoLtTdtD28P9/f151AYAUI2gtv0zkp6LiJ2TzouIQUT0IqK3trY2twIBYNnV6VG/W9IHbJ+TdK+k99m+p9GqAACvmBrUEfEbEXFtRGxIul3S5yLijsYrAwBIamitj52dnfO2d2f4I6clnW+ilgVDO1RoB9rg0DK1w/rFXnBElCxkchH2MCJ6bdfRNtqhQjvQBodoh0qKmYkAgIsjqAEguSxBPWi7gCRohwrtQBscoh2U5Bo1AODisvSoAQAXQVADQHLFgtr2T9v+V9tP2v7IhNdt+w9Grz9i+4ZStZVUox36o5//EdtfsH19G3U2bVo7HDvvh2y/ZPu2kvWVUqcdbP+Y7YdtP277H0rXWEKNvxffZvuvbH9l1A53tlFnayKi8S9Jl0n6mqTrJF0u6SuSvnfsnFsk/a0kS3qXpIdK1Fbyq2Y73CjpqtH3Ny9rOxw773OS/kbSbW3X3dLvw5WSvirpzOj5t7ddd0vt8JuSfnf0/Zqk/5J0edu1l/oq1aN+p6QnI+KpiHhR1Zoht46dc6ukP4nKg5KutP0dheorZWo7RMQXIuK/R08flHRt4RpLqPP7IEkflPQXkp4rWVxBddrh5yTdHxF7khQRXWyLOu0Qkt5o25K+VVVQXyhbZntKBfU1kr5x7PnTo2OznrPoZv0Zf1HV/zK6Zmo72L5G0s9K+njBukqr8/vwVklX2f687R3bP1+sunLqtMMfSnq7pGclPSrpQxFx0WWXu6aRtT4m8IRj4+MC65yz6Gr/jLbfqyqof7TRitpRpx3ukvThiHip6kR1Up12OCXpByXdJOkNkv7Z9oMR8W9NF1dQnXb4KUkPS3qfpO+W9He2/yki/qfh2lIoFdRPS/quY8+vVfUv46znLLpaP6Pt71e1m87NEfF8odpKqtMOPUn3jkL6tKRbbF+IiL8sUmEZdf9enI+IFyS9YPsfJV0vqUtBXacd7pT0O1FdpH7S9tclfY+kL5YpsWWFbhackvSUpLfo6GbB942d8369+mbiF9u+gN9SO5yR9KSkG9uut812GDv/k+rmzcQ6vw9vl/T3o3NXJT0m6R1t195CO3xM0m+Nvn+zpGcknW679lJfRXrUEXHB9q9I+oyqO7x/HBGP2/6l0esfV3Vn/xZVIXWg6l/QTqnZDh+VdLWkPxr1Ji9Ex1YPq9kOnVenHSLiCdsPSHpE1VZ4d0fEY+1VPX81fx9+W9InbT+qqjP34YhYluVPmUIOANkxMxEAkiOoASA5ghoAkiOoASA5ghoAkiOoASA5ghoAkvt/nElIdlbTfhoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -208,7 +201,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -217,7 +210,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW1UlEQVR4nO3df2xd5X3H8c/XsUMwoRQlHgJS2zANmpT8IDEsbUcIkIa0QSuI/lHmloYOBchAbFo7YJFGpRR1SBMp6fhlZSlacYdGoIxNWcdaYKEiFGzq0DYpCQtOcGBKYlAK+aEk9nd/HNtxnHt9z7XPOfe5975fkuXccy/nPPfYfO7j53zP85i7CwAQrppSNwAAMDqCGgACR1ADQOAIagAIHEENAIGrTWOnU6dO9ebm5jR2DQAVqbOzc5+7N+R6LpWgbm5uVkdHRxq7BoCKZGY78z3H0AcABI6gBoDAEdQAELhUxqhzOXr0qHp6enT48OGsDlnxJk2apGnTpqmurq7UTQGQosyCuqenR6effrqam5tlZlkdtmK5u3p7e9XT06Pzzjuv1M0BkKLMhj4OHz6sKVOmENIJMTNNmTKFv1CADLW3S83NUk1N9L29PZvjZtajlkRIJ4zzCWSnvV1avlw6eDB6vHNn9FiSWlvTPTYXEwEghpUrj4f0oIMHo+1pI6hjam5u1r59+0rdDAAlsmtXcduTFGxQpzkW5O7q7+9PbocAKl5jY3HbkxRkUA+OBe3cKbkfHwsaT1h3d3dr+vTpWrFihebOnatVq1bpkksu0axZs3TvvfcOve7aa6/VvHnz9JnPfEZtbW0JvBsAleC++6T6+hO31ddH29MWZFCnNRb01ltv6cYbb9T999+v3bt367XXXlNXV5c6Ozu1ceNGSdK6devU2dmpjo4OrVmzRr29veM7KICK0NoqtbVJTU2SWfS9rS39C4lSxlUfcaU1FtTU1KT58+frW9/6lp5//nldfPHFkqSPP/5Y27dv14IFC7RmzRr95Cc/kSS9++672r59u6ZMmTK+AwOoCK2t2QTzSEEGdWNjNNyRa/t4nHbaaZKiMep77rlHt9xyywnPv/TSS/rZz36mTZs2qb6+XgsXLqROGUDJBTn0kfZY0NVXX61169bp448/liTt3r1be/bs0f79+3XmmWeqvr5ev/vd7/Tqq68mc0AAGIcge9SDf1qsXBkNdzQ2RiGd1J8cixcv1tatW/XZz35WkjR58mQ98cQTWrJkiR599FHNmjVLF154oebPn5/MAQFgHMzdE99pS0uLj1w4YOvWrZo+fXrix6p2nFegMphZp7u35HouyKEPAMBxBDUABI6gBkqoVLOxobwEeTERqAalnI0N5YUeNVAipZyNDeWFoAZKpJSzsaG8ENQ5PP7443rvvfeGHt98883asmXLuPfb3d2tH//4x0X/d8uWLdP69evHfXyEpZSzsY3EWHnYwg3qEv7mjAzqtWvXasaMGePe71iDGpWplLOxDZfGbJVIVphBndJvzhNPPKFLL71Uc+bM0S233KK+vj4tW7ZMF110kWbOnKnVq1dr/fr16ujoUGtrq+bMmaNDhw5p4cKFGryBZ/Lkybrrrrs0b948LVq0SK+99poWLlyo888/X88995ykKJAvu+wyzZ07V3PnztUrr7wiSbr77rv18ssva86cOVq9erX6+vr07W9/e2i61ccee0xSNBfJ7bffrhkzZmjp0qXas2fPuN43wlTK2diGY6y8DLh74l/z5s3zkbZs2XLStryamtyjiD7xq6kp/j5yHP+aa67xI0eOuLv7bbfd5t/5znd80aJFQ6/58MMP3d398ssv99dff31o+/DHknzDhg3u7n7ttdf6F77wBT9y5Ih3dXX57Nmz3d39wIEDfujQIXd337Ztmw+ejxdffNGXLl06tN/HHnvMV61a5e7uhw8f9nnz5vmOHTv86aef9kWLFvmxY8d89+7dfsYZZ/hTTz2V930B42GW+383s1K3rLpI6vA8mRpmeV4KV1l+/vOfq7OzU5dccokk6dChQ1qyZIl27NihO+64Q0uXLtXixYsL7mfixIlasmSJJGnmzJk65ZRTVFdXp5kzZ6q7u1uSdPToUd1+++3q6urShAkTtG3btpz7ev755/Xmm28OjT/v379f27dv18aNG3XDDTdowoQJOuecc3TllVeO+X0DhaQ1WyWSE+bQRwpXWdxd3/jGN9TV1aWuri699dZbevDBB7V582YtXLhQDz30kG6++eaC+6mrqxta/bumpkannHLK0L+PHTsmSVq9erXOOussbd68WR0dHTpy5EjeNv3gBz8YatM777wz9GHBCuPISihj5cgvzKBO4Tfnqquu0vr164fGez/44APt3LlT/f39uv7667Vq1Sq98cYbkqTTTz9dH3300ZiPtX//fp199tmqqanRj370I/X19eXc79VXX61HHnlER48elSRt27ZNBw4c0IIFC/Tkk0+qr69P77//vl588cUxtwVhC6HaIpSxcuQX5tBHCvOczpgxQ9/97ne1ePFi9ff3q66uTg888ICuu+66oYVuv/e970mKyuFuvfVWnXrqqdq0aVPRx1qxYoWuv/56PfXUU7riiiuGFiyYNWuWamtrNXv2bC1btkx33nmnuru7NXfuXLm7Ghoa9Oyzz+q6667TCy+8oJkzZ+qCCy7Q5ZdfPub3jXCFdGdiqVYuQTxMc1rmOK/lq7k599hwU5M0cLkDVYRpToEAcWci4iKogRIJ6c5EhC3ToE5jmKWacT7LG9UWpRHCBdxiZRbUkyZNUm9vL+GSEHdXb2+vJk2aVOqmYIzKqdqiHMMtl3K9XT7WxUQz+ytJN0tySb+WdJO7H873+lwXE48ePaqenh4dPpz3P0ORJk2apGnTpqmurq7UTUEFG1mdIkU9/1A/VEYT8gXc0S4mFgxqMztX0i8kzXD3Q2b2r5I2uPvj+f6bXEENIF3t7YlWtA4JOdyKVVMT9aRHMpMGqnRLJomqj1pJp5pZraR6Se8VeD2ADKX5J30lVaekdQE37aGhgkHt7rsl/YOkXZLel7Tf3Z9PthkAxiPNGfAqqToljQu4WYx7FwxqMztT0pclnSfpHEmnmdnXcrxuuZl1mFnH3r17k2shgILS7PVWUnVKGhdws5gmNs7QxyJJ77j7Xnc/KukZSZ8b+SJ3b3P3FndvaWhoSK6FAApKs9dbTtUpcbS2RmPr/f3R93zvI+5wRhZDQ3GCepek+WZWb9GUbldJ2ppcExCKSinBqkZp93rjhlulKGY4I4uhoThj1L+UtF7SG4pK82oktSXXBISgXOtLEam0Xm+pFTOckcXQUGaTMiFslVSCBYxXsWV8SZRGjlaeF+Y0p8hcJZVgAeNV7Ko3aU8Ty6RMkFRZJVjAeIVW6UJQQ1J4v5hAKYU25s/QBySlsqgOUNZCWvWGoMaQkH4xARzH0AcABI6gDhA3ngAYjqAODDeelD8+aJE0gjowWUzwgvTwQYs0ENSB4caT8sYHLdJAUAeGG0/KGx+0SANBHRhuPClvfNAiDQR1YEK7IwrF4YMWaeCGlwBx40n54g5PpIGgBhLGBy2SxtAHAASOoAaAwBHUABA4ghoAAkdQA0DgCGoACBxBDQCBI6gBIHBlE9TM8RsOfhZAtsoiqEOe47faQivknwVQqczdE99pS0uLd3R0JLa/5uYoEEZqapK6uxM7TNEGQ2v4/MP19ZU9iVKoPwug3JlZp7u35HyuHIK6pibqvY1kJvX3J3aYolVjaIX6swDK3WhBXRZDH6HO8VuNk8SH+rPAyaptWK6SlUVQhzrHbzWGVqg/C5yIawmVpSyCOtTJ9KsxtEL9WeBErN1YWcpijDpk7e1MEo/wcC2h/Iw2Rs3CAePEJPEIUWNj7gvdlTwsV8nKYugDQHGqcViukhHUQAXiWkJliTX0YWaflLRW0kWSXNI33X1Tiu0CME4My1WOuD3qByX91N0/LWm2pK3pNQnIFvXGCF3BHrWZfULSAknLJMndj0g6km6zgGyMnAZgsN5YojeKcMTpUZ8vaa+kH5rZr8xsrZmdNvJFZrbczDrMrGPv3r2JNxRIA/XGKAdxgrpW0lxJj7j7xZIOSLp75Ivcvc3dW9y9paGhIeFmAumoxmkAUH7iBHWPpB53/+XA4/WKghsoe9U4DQDKT8Ggdvf/k/SumV04sOkqSVtSbRWQEeqNUQ7i3pl4h6R2M5soaYekm9JrEpCdwQuGTAOAkDHXBwAEoCzmo6aWFQByC2JSJmpZASC/IHrU1LICQH5BBDW1rACQXxBBTS0rAOQXRFBTy1qeuAAMZCOIoGbu3PLD4qlAdqijxpg0N+de6qmpSeruzro1QPkrizpqlBcuAAPZIagxJlwABrJDUAcs5It1XAAGskNQByr0i3VcAAayw8XEQHGxDqguXEwsQ1ysAzCIoA4UF+sADCKoA8XFOgCDCOpAcbEOwKAg5qNGbq2tBDMAetQAEDyCGgACR1ADQOAIagAIHEENAIEjqAEgcAQ1AASOoAaAwBHUABA4ghoAAkdQA0DgCGoACBxBDQCBI6gBIHAENQAELnZQm9kEM/uVmf1Hmg0CAJyomB71nZK2ptUQAEBusYLazKZJWippbbrNAQCMFLdH/X1JfyOpP98LzGy5mXWYWcfevXuTaBsAQDGC2syukbTH3TtHe527t7l7i7u3NDQ0JNZAAKh2cXrUn5f0p2bWLelJSVea2ROptgoAMKRgULv7Pe4+zd2bJX1V0gvu/rXUWwYAkEQdNQAEr7aYF7v7S5JeSqUlAICc6FEDQOAIagAIHEENAIEjqAEgcAQ1AASOoAaAwBHUABA4ghoAAkdQA0DgCGoACBxBDQCBI6gBIHAENQAEjqAGgMAR1AAQOIIaAAJHUANA4AhqAAgcQQ0AgSOoASBwBDUABI6gBoDAEdQAEDiCGgACR1ADQOAIagAIHEENAIEjqAEgcAQ1AIxXe7vU3CzV1ETf29sT3T1BDQC55ArffNuWL5d27pTco+/Llyca1ubuie1sUEtLi3d0dCS+XwDIxGD4Hjx4fNvEiVEQHz16fFt9vXTqqVJv78n7aGqSurtjH9LMOt29Jddz9KgBVJc4wxQrV54Y0pJ05MiJIS1Fr8kV0pK0a1cSrZUk1Sa2JwAI3cie8uAwhSS1th5/XRIh29g4/n0MKNijNrNPmdmLZrbVzH5rZncmdnQAyFKunvLBg9H24YoJ2SlToiGQ4errpfvuG1sbc4gz9HFM0l+7+3RJ8yX9hZnNSKwFAJCVfD3lkdvvu+/k8J04UaqrO3Fbfb304INSW1s0Jm0WfW9rO7GHPk4Fhz7c/X1J7w/8+yMz2yrpXElbEmsFAGShsTEa7si1fbjBkF25MgrxxsbjPeSR2wZfm2Awj1RU1YeZNUvaKOkid//9iOeWS1ouSY2NjfN25joZAFBKuao56usT7wGPRSJVH2Y2WdLTkv5yZEhLkru3uXuLu7c0NDSMvbUAkJbW1tSHKdIQK6jNrE5RSLe7+zPpNglAcFK+8y5Tra1RfXN/f/Q98JCWYoxRm5lJ+idJW939gfSbBCAocUvakJo4PerPS/q6pCvNrGvg60sptwtAlkbrMcctaUNqCga1u//C3c3dZ7n7nIGvDVk0DsA4xB2uKDRXRdySNqSGW8iBSjE8mKdOlb75zXgTBRXqMee7+SPBO+8wOoIaqAQje8W9vdHcFMPlG64o1GPOdfNHwnfeYXQENVAJcvWKc8kVyoV6zGVa0lZJCGqglFaskGprowCsrY0ej0Xc8eJcoRynx1yGJW2VhKAGkhb3It6KFdIjj0h9fdHjvr7o8VjCOs54cb7hCnrMwWPhACBJxdyiXFt7PKSHmzBBOnZs/Metq5M+8Qnpgw9OnpcCwWHhACArxdQc5wrp0baPJlev+Ic/lPbtY7iiAhDUQJK3RxdTczxhQu7X5tteCOPIFYugRnVLemHSYmqOB2/DjrsdVYugRnVL+vboYmqOH35Yuu224z3oCROixw8/PLZjo2JxMRHVraYm6kmPZBYNIYxFe3v+yeWBPEa7mMjitqhucVf8KEZrK8GMRDH0gerG7dEoAwQ1qhs3e6AMMPQBMFSBwNGjRvEG644H56cwK//lmYCAEdQ4Ls6NH8PrjqXjd9GNt/4YQF4ENSJxb/wYbTpNlmcCUkFQIxL3xo9C02myPBOQOIIakbhzVBSqL2Z5JiBxBDUiceeoyFV3PIj6YyAVBHWISlFVEffGj+F1x9LxeSqoPwZSQx11aEZOAD+yqkJKJwwH9xlnjgrqjoFMMSlTaJqbc889MaipKZprGEBFYYWXNCU56bxEVQWAkxDU45H0pPMSVRUATkJQj0fSk85LVFUAOAlBPR7FrI8XF1UVAEag6mM80ph0XqKqAsAJ6FGPB5POA8hA+QR10tUVSWDSeQAZCCeoRwviNKorktLaGtU19/dH3wlpAAkLI6gLBXEa1RUAUCZiBbWZLTGzt8zsbTO7O/FWFAriNKorAKBMFAxqM5sg6SFJX5Q0Q9INZjYj0VYUCuK4M7sBQAWK06O+VNLb7r7D3Y9IelLSlxNtRaEgproCQBWLE9TnSnp32OOegW0nMLPlZtZhZh179+4trhWFgpjqCgBVLE5QW45tJ0255+5t7t7i7i0NDQ3FtSJOEFNdAaBKxbkzsUfSp4Y9nibpvcRbwt14AJBTnB7165L+yMzOM7OJkr4q6bl0mwUAGFSwR+3ux8zsdkn/JWmCpHXu/tvUWwYAkBRzUiZ33yBpQ8ptAQDkEMadiQCAvAhqAAhcKovbmtleSaOs0FrRpkraV+pGlBjngHMgcQ6k4s5Bk7vnrG1OJairmZl15FtJuFpwDjgHEudASu4cMPQBAIEjqAEgcAR18tpK3YAAcA44BxLnQEroHDBGDQCBo0cNAIEjqAEgcAT1GBVanszMWs3szYGvV8xsdinamaa4S7SZ2SVm1mdmX8myfWmL8/7NbKGZdZnZb83sf7JuY9pi/H9whpn9u5ltHjgHN5WinWkys3VmtsfMfpPneTOzNQPn6E0zm1v0QdydryK/FE1O9b+Szpc0UdJmSTNGvOZzks4c+PcXJf2y1O3O+hwMe90LiuaK+Uqp253x78AnJW2R1Djw+A9K3e4SnIO/lXT/wL8bJH0gaWKp257weVggaa6k3+R5/kuS/lPR3P7zx5IF9KjHpuDyZO7+irt/OPDwVUXzeFeSuEu03SHpaUl7smxcBuK8/z+T9Iy775Ikd6/Gc+CSTjczkzRZUVAfy7aZ6XL3jYreVz5flvTPHnlV0ifN7OxijkFQj02s5cmG+XNFn6iVpOA5MLNzJV0n6dEM25WVOL8DF0g608xeMrNOM7sxs9ZlI845+EdJ0xUtNvJrSXe6e382zQtGsXlxkljTnOIksZYnkyQzu0JRUP9Jqi3KXpxz8H1Jd7l7X9Shqihx3n+tpHmSrpJ0qqRNZvaqu29Lu3EZiXMOrpbUJelKSX8o6b/N7GV3/33KbQtJ7LzIh6Aem1jLk5nZLElrJX3R3XszaltW4pyDFklPDoT0VElfMrNj7v5sJi1MV5z33yNpn7sfkHTAzDZKmi2pUoI6zjm4SdLfezRY+7aZvSPp05Jey6aJQRj3coYMfYxNweXJzKxR0jOSvl5BPajhCp4Ddz/P3ZvdvVnSekkrKiSkpXhL1P2bpMvMrNbM6iX9saStGbczTXHOwS5Ff1HIzM6SdKGkHZm2svSek3TjQPXHfEn73f39YnZAj3oMPM/yZGZ268Dzj0r6O0lTJD080KM85hU0k1jMc1Cx4rx/d99qZj+V9Kakfklr3T1nCVc5ivk7sErS42b2a0VDAHe5e0VNfWpm/yJpoaSpZtYj6V5JddLQOdigqPLjbUkHFf2VUdwxBspHAACBYugDAAJHUANA4AhqAAgcQQ0AgSOoASBwBDUABI6gBoDA/T9GRnWgZHl9GwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWs0lEQVR4nO3df2xd5X3H8c/XiSE4BYoSDwGp7XQaawKJl8RZQ4vISiAJBK0g+KNgBmmpIggwNA3RsqgrUpp1SFPa0hWoxTI04g41oaXalBVWfpSt5ZdDHVoSSFiwgwMTjkEZxESJ4+/+OL754V7b59r3nPPcc98vybq5517uffzc5MNzn5/m7gIAhKsm6wIAAEZHUANA4AhqAAgcQQ0AgSOoASBwk5N40enTp3tTU1MSLw0AubR169Z97l5f7LFEgrqpqUkdHR1JvDQA5JKZdY/0GF0fABA4ghoAAkdQA0DgEumjLubw4cPq6enRwYMH03rL3JsyZYpmzJih2trarIsCIEGpBXVPT49OPfVUNTU1yczSetvccnf19fWpp6dHM2fOzLo4ABKUWtfHwYMHNW3aNEK6TMxM06ZN4xtKjrS3S01NUk1NdNvennWJEIrUWtSSCOkyoz7zo71dWrVK6u+P7nd3R/clqbU1u3IhDAwmAgFYs+ZYSBf090fXAYI6pqamJu3bty/rYiCn9uwp7TqqS7BBnWR/nbtrcHCwfC8ITFBDQ2nXUV2CDOpCf113t+R+rL9uImHd1dWlWbNmafXq1Zo/f77Wrl2rhQsXau7cufrmN7959HlXXnmlFixYoPPOO09tbW1l+G2Asa1bJ9XVnXitri66DgQZ1En1173xxhu64YYbdO+992rv3r166aWX1NnZqa1bt+q5556TJG3YsEFbt25VR0eH7rvvPvX19U3sTYEYWlultjapsVEyi27b2hhIRCTVWR9xJdVf19jYqEWLFunOO+/Uk08+qXnz5kmSPvroI+3atUsXXXSR7rvvPv30pz+VJL399tvatWuXpk2bNrE3BmJobSWYUVyQLeqk+uumTp0qKeqjvvvuu9XZ2anOzk69+eabuummm/Tss8/qF7/4hZ5//nlt27ZN8+bNY54yKhJzstOVdH0HGdRJ99ctW7ZMGzZs0EcffSRJ2rt3r9577z3t379fZ5xxhurq6vT666/rhRdeKM8bAilKYowHI0ujvoMM6qT765YuXarrrrtOF1xwgebMmaNrrrlGH374oZYvX66BgQHNnTtX3/jGN7Ro0aLyvCGQIuZkpyuN+jZ3L9+rDWlpafHhBwfs2LFDs2bNKvt7VTvqFcPV1EQtu+HMJGalll+56tvMtrp7S9H3iPkCf2Vmr5nZ78zsX81sSvy3B6pTVv3EzMlOVxr1PWZQm9k5kv5SUou7ny9pkqQvla8IQP4U67e8/npp+vTkA5s52elKo77j9lFPlnSKmU2WVCfpnfIVAcifYv2WktTXN/JAU7la4MzJTlca9T1mULv7Xkn/IGmPpHcl7Xf3J8tXBFS7PE4lG23Of7GBpnLPHGhtlbq6oj7Sri5COmlJ13ecro8zJH1R0kxJZ0uaambXF3neKjPrMLOO3t7e8pYSuZXXqWRj9U8OD3JmamA0cbo+LpH0lrv3uvthST+R9LnhT3L3NndvcfeW+vr6cpcTOZXXgCrWb3m84UHO7nkYTZyg3iNpkZnVWbRT/RJJO5ItVrYefvhhvfPOsW74r371q9q+ffuEX7erq0s/+tGPSv7vVq5cqc2bN0/4/UOU14Aq9FsW232g2EATMzUwmjh91C9K2izpFUm/Hfpvkt9WLsOOy+FB/dBDD2n27NkTft3xBnWe5TmgWlulffukjRvHHmhipgZG5e5l/1mwYIEPt3379t+7NqKNG93r6tyjbsvop64uuj4BjzzyiC9cuNCbm5t91apVPjAw4DfeeKOfd955fv755/v69et906ZNPnXqVD/33HO9ubnZ+/v7ffHixf7yyy+7u/vUqVP9rrvu8vnz5/uSJUv8xRdf9MWLF/vMmTP9Zz/7mbu7v/XWW37hhRf6vHnzfN68ef6rX/3K3d0/+9nP+mmnnebNzc2+fv16HxgY8DvvvNNbWlp8zpw5/uCDD7q7++DgoN96660+a9Ysv/zyy/2yyy7zTZs2Ff2dSqrXACX0UVekjRvdGxvdzaLbaqyDaiapw0fI1DCDurHxxH+5hZ/GxtJ+82Hvf8UVV/ihQ4fc3f2WW27xe+65xy+55JKjz/nggw/c3U8I5uH3JfmWLVvc3f3KK6/0Sy+91A8dOuSdnZ3e3Nzs7u4HDhzwjz/+2N3dd+7c6YX6eOaZZ3zFihVHX/eHP/yhr1271t3dDx486AsWLPDdu3f7Y4895pdccokPDAz43r17/fTTT89tULsTUID76EEd5DanSXRcPvXUU9q6dasWLlwoSfr444+1fPly7d69W7fffrtWrFihpUuXjvk6J510kpYvXy5JmjNnjk4++WTV1tZqzpw56urqkiQdPnxYt912mzo7OzVp0iTt3Lmz6Gs9+eSTevXVV4/2P+/fv1+7du3Sc889p2uvvVaTJk3S2WefrYsvvnjcv3clYHtPYHRhBnVDQzRPq9j1cXJ33Xjjjfr2t799wvV169bpiSee0A9+8AP9+Mc/1oYNG0Z9ndra2qOnf9fU1Ojkk08++ueBgQFJ0ne+8x2deeaZ2rZtmwYHBzVlSvEV9+6u73//+1q2bNkJ17ds2cIJ4wCOCnL3vCRGVpYsWaLNmzfrvffekyS9//776u7u1uDgoK6++mqtXbtWr7zyiiTp1FNP1Ycffjju99q/f7/OOuss1dTU6JFHHtGRI0eKvu6yZcv0wAMP6PDhw5KknTt36sCBA7rooov06KOP6siRI3r33Xf1zDPPjLsseZXHRTJ5wWdTfmG2qAvfg9esibo7GhqikJ7A9+PZs2frW9/6lpYuXarBwUHV1tZq/fr1uuqqq44edFtoba9cuVI333yzTjnlFD3//PMlv9fq1at19dVXa9OmTfrCF75w9MCCuXPnavLkyWpubtbKlSt1xx13qKurS/Pnz5e7q76+Xo8//riuuuoqPf3005ozZ47OPfdcLV68eNy/dx4VFskU5l8XFslI4XShtLeX9a9vxaiEz6YSsc1phavGem1qKt4z1tgYLd/N2vCwkqIvhNWw30bon03IJrzNKRCS0BfJ5HW1ZRyhfzaViqBGxQl9kUw1h1Xon02lSjWok+hmqWbVWp+hr+Kr5rAK/bOpVKkF9ZQpU9TX11e14VJu7q6+vr4Rp/7lWej7LVdzWIX+2VSq1AYTDx8+rJ6eHh08eLDs71etpkyZohkzZqi2tjbromCYap31gfEbbTAxtaAGAIyMWR8AUMEIagAIXNBBzVLU8PCZAOkLcwm5WIoaIj4TIBvBDiayFDU8fCZAcipyMLGaV3eFis8EyEawQV3Nq7tCxWcCZCPYoK7m1V2h4jMBTpTW4HqwQc1S1PDwmQDHFAbXu7ujQ10Lg+tJhHWwg4kAELJyD65X5GAiAIQszcF1ghpAbqS5ICvNwXWCGkAupNlnLKU7uE5QA8iFtI9AS3NwncFEALlQUxO1pIczkwYH0y9PqRhMBJB7eV6QRVADyIU8L8giqAHkQp4XZBHUQAnYjztsra3RYpPBweg2DyEtBbwfNRAa9uNGVmhRAzGlPf0LKCCoM8TX6MrCftzICkGdkbRXUWHi8jz9C2EjqDPC1+jKk+fpXwgbQZ0RvkZXnjxP/0LYmPWRkYaG4nvZ8jU6bK2tBDPSF6tFbWafNLPNZva6me0wswuSLlje8TUaQFxxuz6+J+nn7v4ZSc2SdiRXpOrA12gAcY25e56ZnSZpm6RPe8yt9tg9DwBKM9Hd8z4tqVfSP5vZb8zsITObWuRNVplZh5l19Pb2TrDIAICCOEE9WdJ8SQ+4+zxJByR9ffiT3L3N3VvcvaW+vr7MxQSA6hUnqHsk9bj7i0P3NysKbgBACsYManf/X0lvm9kfD11aIml7oqUCABwVd9bH7ZLazexVSX8i6e8SKxGQMfZgQWhiLXhx905JRUcjgTxhK1OEiCXkOUJLcOLYgwUhYgl5TtASLA/2YEGIaFHnBC3B8mArU4SIoM4JWoLlwR4sCBFBnRO0BMuDPVgQIoI6J2gJlk9eT7JG5SKoc4KWIJBfzPrIETa1B/KJFjUABI6gxriwuAZID10fKBmLa4B00aJGyVhcA6SLoEbJWFwDpIugRslYXAOki6BGyVhcA6SLoEbJWFwDpItZHxgXFtcA6aFFDQCBI6gBIHAENQAEjqAGgMAR1AAQOIIaAAJHUANA4AhqAAgcQQ0AgSOoASBwBDUABI6gBoDAEdQAEDiCGgACR1ADQOAIagAIHEENAIELJqjb26WmJqmmJrptb8+6RAAQhiCO4mpvl1atkvr7o/vd3dF9ieOeACCIFvWaNcdCuqC/P7oOANUudlCb2SQz+42Z/Xu5C7FnT2nXAaCalNKivkPSjiQK0dBQ2nUAqCaxgtrMZkhaIemhJAqxbp1UV3fitbq66DoAVLu4LervSrpL0uBITzCzVWbWYWYdvb29JRWitVVqa5MaGyWz6LatjYFEAJBiBLWZXSHpPXffOtrz3L3N3VvcvaW+vr7kgrS2Sl1d0uBgdEtIA0AkTov685L+3My6JD0q6WIz25hoqQAAR40Z1O5+t7vPcPcmSV+S9LS7X594yQAAkgKZRw0AGFlJKxPd/VlJzyZSEgBAUbSoASBwBDUABI6gBoDAEdQAEDiCGgACR1ADQOAIagAIHEENAIEjqAEgcAQ1AASOoAaAwBHUABA4ghoAAkdQA0DgCGoACBxBDQCBI6gBIHAENQAEjqAGgMAR1AAQOIIaAAJHUANA4AhqAAgcQQ0AgSOoASBwBDUABI6gBoDAEdQAEDiCGgACR1ADQOAIagAIHEENAIEjqAEgcAQ1AASOoAaAwBHUADBe7e1SU5NkJk2eHN02NUXXy2hyWV8NAKpFe7u0apXU3x/dP3Ikuu3ujq5LUmtrWd6KFjUAjMeaNcdCerj+/ujxMhkzqM3sU2b2jJntMLPXzOyOsr07AFSqPXsm9ngJ4rSoByT9tbvPkrRI0q1mNrtsJQCAStTQMLHHSzBmULv7u+7+ytCfP5S0Q9I5ZSsBAJRLYXCvpiaRQb0TrFsn1dUVf6yuLnq8TErqozazJknzJL1Y5LFVZtZhZh29vb1lKh4AxFQY3OvultyPDeolFdatrVJbm9TYGN2fNCm6bWyMrpdpIFGSzN3jPdHsE5J+KWmdu/9ktOe2tLR4R0dHGYoHADE1NUXhPFxjo9TVlXZpSmZmW929pdhjsVrUZlYr6TFJ7WOFNABkYqTBuzIO6mUlzqwPk/RPkna4+/rkiwQA4zDS4F0ZB/WyEqdF/XlJfyHpYjPrHPq5POFyAahUaQ7oHa/Y4F6ZB/WyMubKRHf/b0mWQlkAVLrhq/USWKU3osLrr1kTdXc0NEQhnfT7piD2YGIpGEwEqlSFD+hlacKDiQAQS44H9LJEUAMonxwP6GWJoAbyiAG9XCGogbxJe4Xe8Y5frWeWyCq9asRgIpA3DOhVJAYTgUqwevWxU0ImT47ujwcDerlDUANJi9NfvHq19MADx04JOXIkuj+esGZAL3cIaiAJ7e3S9OlR6/j668fuL25rK/46I10fDQN6uUNQA+XW3i595StSX1/xx4sd01RoSQ830vXRMKCXOwQ1UIo43Rhr1kiHDo3+OsP7iwt7GQ830vWxtLZGA4eDg9EtIV3RCGpguJHCOO60tziDdsP7iwv7YQw30nVUFYIaON5oYVzs1Oli3RhjDdoV6y++/37plluOtaAnTYru33//xH4f5ALzqIHjjTYHec+eKLyHM4u6GAoKfdTFuj+mTZO+9z26IvB7mEeN/ElqifRoc5DjTntrbZU2bIhCuWDaNGnjRmnfPkIaJSOoUXmSXCI9WhiXMu2ttTUKZffoh4DGBBDUyF6preO4fcXjMVoYM+0NGaGPGtkafiKIFAXjaAFYUxOvr3giZcrhKSEI22h91AQ1sjWeDYTYdAg5xGAiwjWeDYRYIo0qQ1CjNIX+5MIOb2YTm3Uxng2E6CtGlSGoEd/xsy2kY/tQTGTWxXhbxyyRRhUhqBFfsdkWBeOddUHrGBgTg4mIb6TZFgXlmnUBVCEGE6tF0geajrWHBRvTA4kgqPMijQNNi/UnFzDrAkgMQZ0XSa7WKzi+P1k6ttMb/cpAogjqLJWzqyKtA00Lsy3cpYGB6JZZF0CiCOqslLurggNNgdwiqLNS7q4KVusBuUVQZ6XcXRXMRwZya3LWBahaDQ3FNxaaSFdFayvBDOQQLeqs0FUBICaCOit0VQCIia6PLNFVASAGWtQAELiwgzrpvSsAoALECmozW25mb5jZm2b29URKMjyUV69Ofu8KAKgAY25zamaTJO2UdKmkHkkvS7rW3beP9N+UvM1psQNOzYpvqcm5eAByaKLbnP6ppDfdfbe7H5L0qKQvlrOARVfpjfQ/kHLvXQEAgYsT1OdIevu4+z1D105gZqvMrMPMOnp7e0srRSnhy94VAKpMnKC2Itd+r7nr7m3u3uLuLfX19aWVYqTwtWFvzYIQAFUoTlD3SPrUcfdnSHqnrKUYaZXezTezIARA1Yuz4OVlSX9kZjMl7ZX0JUnXlbUUhfBdsybqBmloiMKbUAaAsYPa3QfM7DZJT0iaJGmDu79W9pKwSg8Aioq1hNzdt0jaknBZAABFhL0yEQBAUANA6AhqAAgcQQ0AgRtzr49xvahZr6Qi50yNaLqkfWUvSOWhHiLUA3VQUE310OjuRVcLJhLUpTKzjpE2I6km1EOEeqAOCqiHCF0fABA4ghoAAhdKULdlXYBAUA8R6oE6KKAeFEgfNQBgZKG0qAEAIyCoASBwqQX1WAfkWuS+ocdfNbP5aZUtTTHqoXXo93/VzH5tZs1ZlDNpcQ9MNrOFZnbEzK5Js3xpiVMPZvZnZtZpZq+Z2S/TLmMaYvy7ON3M/s3Mtg3Vw5ezKGdm3D3xH0Xbo/6PpE9LOknSNkmzhz3nckn/oehEmUWSXkyjbGn+xKyHz0k6Y+jPl1VrPRz3vKcV7dx4TdblzujvwyclbZfUMHT/D7Iud0b18DeS7h36c72k9yWdlHXZ0/pJq0Ud54DcL0r6F4+8IOmTZnZWSuVLy5j14O6/dvcPhu6+oOhEnbyJe2Dy7ZIek/RemoVLUZx6uE7ST9x9jyS5ex7rIk49uKRTzcwkfUJRUA+kW8zspBXUcQ7IjXWIboUr9Xe8SdG3jLwZsx7M7BxJV0l6MMVypS3O34dzJZ1hZs+a2VYzuyG10qUnTj38o6RZio4B/K2kO9x9MJ3iZS/WwQFlEOeA3FiH6Fa42L+jmX1BUVBfmGiJshGnHr4r6WvufsSGH3KcH3HqYbKkBZKWSDpF0vNm9oK770y6cCmKUw/LJHVKuljSH0r6TzP7L3f/v4TLFoS0gjrOAbnJH6KbvVi/o5nNlfSQpMvcvS+lsqUpTj20SHp0KKSnS7rczAbc/fFUSpiOuP8u9rn7AUkHzOw5Sc2S8hTUcerhy5L+3qNO6jfN7C1Jn5H0UjpFzFhKgwWTJe2WNFPHBgvOG/acFTpxMPGlrDvwM6qHBklvSvpc1uXNsh6GPf9h5XMwMc7fh1mSnhp6bp2k30k6P+uyZ1APD0i6Z+jPZyo6aHt61mVP6yeVFrWPcECumd089PiDikb2L1cUUv2K/g+aKzHr4W8lTZN0/1BrcsBztntYzHrIvTj14O47zOznkl6VNCjpIXf/XXalLr+Yfx/WSnrYzH6rqDH3NXevlu1PWUIOAKFjZSIABI6gBoDAEdQAEDiCGgACR1ADQOAIagAIHEENAIH7f906gbeq7S1IAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -234,13 +227,6 @@ "plt.legend()" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**思考:红色的点表示预测值,似乎排列成一条直线,请思考一下这些点是否在一条直线上?**" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -256,30 +242,21 @@ "cell_type": "code", "execution_count": 7, "metadata": {}, - "outputs": [], - "source": [ - "# 计算误差\n", - "def get_loss(y_, y):\n", - " return torch.sum((y_ - y) ** 2)\n", - "\n", - "loss = get_loss(y_, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "tensor(733.2964, dtype=torch.float64, grad_fn=)\n" + "tensor(704.5194, dtype=torch.float64, grad_fn=)\n" ] } ], "source": [ - "# 打印一下看看 loss 的大小\n", + "# 计算误差\n", + "def get_loss(y_, y):\n", + " return torch.sum((y_ - y) ** 2)\n", + "\n", + "loss = get_loss(y_, y_train)\n", "print(loss)" ] }, @@ -297,7 +274,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -307,15 +284,15 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "tensor([-135.3880])\n", - "tensor([-239.5816])\n" + "tensor([-117.3280])\n", + "tensor([-234.3059])\n" ] } ], @@ -327,7 +304,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -345,22 +322,22 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAX10lEQVR4nO3df5DU9X3H8eebAySnVJ3z4mjI3WnHWpAf53FaTCsSQSDBSbTJH9pLlUwtKKMlnUmq1pmaDrGpf5Fq448bw2gD0VHU1qZUMYkGO/7AOwuooGDInR7acpyGRITC3b37x/f2OM5d9ru3+9397O7rMXOzt7tfvvvZ73157Wc/388Pc3dERCRc40pdABEROT4FtYhI4BTUIiKBU1CLiAROQS0iErjxSez0tNNO86ampiR2LSJSkTo7O/e5e3265xIJ6qamJjo6OpLYtYhIRTKz7kzPqelDRCRwCmoRkcApqEVEApdIG3U6R44coaenh0OHDhXrJSvepEmTmDJlChMmTCh1UUQkQUUL6p6eHiZPnkxTUxNmVqyXrVjuTl9fHz09PZx11lmlLo6IJKhoTR+HDh2irq5OIV0gZkZdXZ2+oYgU0bp10NQE48ZFt+vWFed1i1ajBhTSBabjKVI869bBsmXwySfR/e7u6D5AW1uyr62LiSIiMdx229GQTvnkk+jxpCmoY2pqamLfvn2lLoaIlMi77+b2eCEFG9RJtgW5O4ODg4XboYhUvIaG3B4vpCCDOtUW1N0N7kfbgvIJ666uLqZOncqKFStoaWlh1apVXHDBBcycOZPbb799eLsrrriC2bNnc95559He3l6AdyMileCOO6C29tjHamujx5MWZFAn1Rb09ttvc80113DnnXeyZ88eNm/ezJYtW+js7GTTpk0ArFmzhs7OTjo6Orjrrrvo6+vL70VFpCK0tUF7OzQ2gll0296e/IVEKHKvj7iSagtqbGxkzpw5fPvb32bjxo2cf/75AHz88cfs2rWLuXPnctddd/Hkk08C8N5777Fr1y7q6urye2ERqQhtbcUJ5tGCDOqGhqi5I93j+TjxxBOBqI361ltvZfny5cc8//zzz/Ozn/2Ml156idraWubNm6d+yiJSckE2fSTdFrRo0SLWrFnDxx9/DMCePXvYu3cv+/fv59RTT6W2tpa33nqLl19+uTAvKCKShyBr1KmvFrfdFjV3NDREIV2orxwLFy5kx44dXHTRRQCcdNJJrF27lsWLF3Pfffcxc+ZMzj33XObMmVOYFxQRyYO5e8F32tra6qMXDtixYwdTp04t+GtVOx1XkcpgZp3u3pruuSCbPkRE5CgFtYhI4GIFtZmtNLM3zOxNM/tWwmUSEZERsga1mU0H/hK4EJgFXG5m5yRdMBERicSpUU8FXnb3T9y9H/glcGWyxRIRkZQ4Qf0GMNfM6sysFvgy8PnRG5nZMjPrMLOO3t7eQpdTRKRqZQ1qd98B3Ak8CzwNbAX602zX7u6t7t5aX19f8IIW04MPPsj7778/fP+6665j+/btee+3q6uLn/zkJzn/u6VLl7J+/fq8X19EylOsi4nu/iN3b3H3ucCHwK5ki0Xp1rzh00H9wAMPMG3atLz3O9aglspVwtNcykjcXh+fHbptAP4UeDjJQiUyzymwdu1aLrzwQpqbm1m+fDkDAwMsXbqU6dOnM2PGDFavXs369evp6Oigra2N5uZmDh48yLx580gN4DnppJO4+eabmT17NgsWLGDz5s3MmzePs88+m6eeegqIAvniiy+mpaWFlpYWXnzxRQBuueUWXnjhBZqbm1m9ejUDAwN85zvfGZ5u9f777weiuUhuvPFGpk2bxpIlS9i7d29e71vClNBpLpXI3bP+AC8A24maPeZn23727Nk+2vbt2z/1WEaNje7RuXvsT2Nj/H2kef3LL7/cDx8+7O7uN9xwg3/3u9/1BQsWDG/z0Ucfubv7JZdc4q+++urw4yPvA75hwwZ3d7/iiiv8sssu88OHD/uWLVt81qxZ7u5+4MABP3jwoLu779y501PH47nnnvMlS5YM7/f+++/3VatWubv7oUOHfPbs2b57925//PHHfcGCBd7f3+979uzxk08+2R977LGM70vKUwKnuZQxoMMzZGqsuT7c/eLEPinSSWCe05///Od0dnZywQUXAHDw4EEWL17M7t27uemmm1iyZAkLFy7Mup+JEyeyePFiAGbMmMEJJ5zAhAkTmDFjBl1dXQAcOXKEG2+8kS1btlBTU8POnTvT7mvjxo1s27ZtuP15//797Nq1i02bNnH11VdTU1PDmWeeyaWXXjrm9y3hKuXSTlJegpyUKYl5Tt2da6+9lu9///vHPH7HHXfwzDPP8MMf/pBHH32UNWvWHHc/EyZMGF79e9y4cZxwwgnDv/f3R9dYV69ezemnn87WrVsZHBxk0qRJGct09913s2jRomMe37Bhg1YYrwJJTecrlSfMIeQJzHM6f/581q9fP9ze++GHH9Ld3c3g4CBf+9rXWLVqFa+99hoAkydP5ne/+92YX2v//v2cccYZjBs3jh//+McMDAyk3e+iRYu49957OXLkCAA7d+7kwIEDzJ07l0ceeYSBgQE++OADnnvuuTGXRcJVyqWdpLyEGdQJrHkzbdo0vve977Fw4UJmzpzJZZddRldXF/PmzaO5uZmlS5cO17aXLl3K9ddfP3wxMVcrVqzgoYceYs6cOezcuXN4wYKZM2cyfvx4Zs2axerVq7nuuuuYNm0aLS0tTJ8+neXLl9Pf38+VV17JOeecw4wZM7jhhhu45JJLxvy+JVylXNppNPU+CZumOS1zOq6Sr1Tvk5HrlNbWlu5Do1ppmlMRySipxaSlcBTUIlVOvU/CV9SgTqKZpZrpeEohZOplot4n4ShaUE+aNIm+vj6FS4G4O319fRm7/onEpd4n4StaP+opU6bQ09ODZtYrnEmTJjFlypRSF0PKXNKLSUv+itbrQ0REMlOvD5FAqf+yxBHmEHKRKjC6/3Jq9jxQs4McSzVqkRJR/2WJS0EtUiLqvyxxKahFSkT9lyUuBbVIiaj/ssSloBYpkZBmz6sm5djTRr0+REqorU3BXEzl2tNGNWoRyaoca6HplGtPG9WoReS4yrUWmk659rSJVaM2s782szfN7A0ze9jMNBOQSGCSqvWWay00nXLtaZM1qM3sc8BfAa3uPh2oAa5KumAiEl+q1tvdDe5Ha72FCOtyrYWmk1RPm6SbhuK2UY8HPmNm44Fa4P3CFkNE8pFkrbdca6HpJNHTJskPyZRYs+eZ2UrgDuAgsNHdP/W2zGwZsAygoaFhdnd3d+FKKSLHNW5cFBKjmcHgYH771pqKx9fUFIXzaI2N0NUVfz95zZ5nZqcCXwXOAs4ETjSzb4zezt3b3b3V3Vvr6+vjl05E8pZkrVf9vY+vGE1DcZo+FgC/dvdedz8CPAF8oXBFEJF8JT3Ksa0tqh0ODka3CumjitE0FCeo3wXmmFmtmRkwH9hRuCKISL5U6y28uBcIizEVQNagdvdXgPXAa8DrQ/+mvXBFkFBUyqCGaqVab+HkcoGwGB+SWopLAF0wEhmpUBcIc6GluCSrShrUIJKv0PqOK6gFCO/EFCml0PqOK6gFCO/EFCml0OYKV1ALEN6JKVJKofWi0ex5Ahw9AW+7LWruaGiIQloXEqVahTRXuIJahoV0YorIUWr6EBEJnIJaRCRwCmoRkcApqEVEAqegDpDm3BCRkRTUgSnGahGSLH3QSqEpqAOjOTfKmz5oJQkK6sBozo3ypg9aSYKCOjCac6O86YNWkqCgDozm3Chv+qCVJCioAxPaZDCSG33QShI010eANOdG+dLkVpIEBbVIgemDVgota9OHmZ1rZltG/PzWzL5VhLKJiAgxatTu/jbQDGBmNcAe4MlkiyUiIim5XkycD/zK3dOszysiIknINaivAh5O94SZLTOzDjPr6O3tzb9kIiIC5BDUZjYR+ArwWLrn3b3d3VvdvbW+vr5Q5RMRqXq51Ki/BLzm7v+bVGFEROTTcgnqq8nQ7CEiIsmJFdRmVgtcBjyRbHFERGS0WANe3P0ToC7hsoiISBqa60NEJHAKahGRwCmoRUQCp6AWEQmcglpEJHBlE9Ra2Tkc+luIFFdZzEedWtk5tWhoamVn0Ly/xaa/hUjxlUWNOuSVnautdhny30KkUpVFjTrUlZ2rsXYZ6t9CpJKVRY061JWdq7F2GerfQqSSlUVQh7qyczXWLkP9W4hUsrII6rY2aG+HxkYwi27b20vfvFCNtctQ/xbyadV2/aSSmbsXfKetra3e0dFR8P2GZnQbNUS1SwWXlJrOzfJjZp3u3pruubKoUYdKtUsJVTVeP6lkqlGLVKBx4yDdf20zGBwsfnkkO9WoRapMNV4/qWQKapEKpN45lUVBLVKBdP2kspTFyEQRyV1bm4K5UqhGLSISuLirkJ9iZuvN7C0z22FmFyVdMBGRspHw6KK4TR//BDzt7l83s4lAbbZ/ICJSFYowO1vWGrWZ/R4wF/gRgLsfdvffFOTVRQKgodYSW7qTpQiji7IOeDGzZqAd2A7MAjqBle5+YNR2y4BlAA0NDbO7u7sLVkiRpGiotcSW6WQZHdIpOY4uynfAy3igBbjX3c8HDgC3jN7I3dvdvdXdW+vr62MXTqSUNNRaMhpde165Mv3JUlOT/t8XcHRRnKDuAXrc/ZWh++uJgluk7FXjVLUSQ6r23N0djcXv7oa+vvTbDgwkProoa1C7+/8A75nZuUMPzSdqBhEpexpqLWml+6qVSWo0UYKji+L2o74JWGdm24Bm4B8KVgKREtJQ6yoU5+px3K9UqZOlrQ26uqI26a6ugl/giBXU7r5lqP15prtf4e4fFbQUIiWiodZVJl2TxrJlnw7rTF+p6upKcrJomlMRqR5NTVE4j9bYGNWEU0rQHUjTnIqIQPyrx4F91dKkTCJSPRoa0teo0zV1BDSrVTA1ao0OE5HElenV4yCCOm77vohIXgJr0ogriIuJcdv3RUQqVfAXEzU6TEQksyCCWqPDREQyCyKoy7R9X0SkKIII6jJt3xcRKYogghoSHyovCVCXSpHi0IAXGZMirD4kIkOCqVFLedGE+yLFo6CWMVGXSpHiUVDLmKhLZZXRBYmSUlDLmKhLZRXRHA8lp6CWMVGXyiqiCxIlp6AOWOjfNtWlsoIc72TTBYmSU/e8QKn7mxRNtpMtlzmcJRGqUQdK3zalaLKdbLogUXKxgtrMuszsdTPbYmZaDLEI9G1T8ha37SzbyaYLEiWXS9PHF919X2IlkWPo26bkJZe2szgnW0DLUlUjNX0ESt82JWcja9DXXhu/7UwnW/DiBrUDG82s08yWpdvAzJaZWYeZdfT29hauhFVK3zYlJ6P7Og8MpN8uXTOHTrbgxVqKy8zOdPf3zeyzwLPATe6+KdP2uS7FJSJ5yrSe3Wha3y5YeS/F5e7vD93uBZ4ELixc8UQkb3GuMqs5o2xlDWozO9HMJqd+BxYCbyRdMBHJQaarzDU1as6oAHFq1KcD/2VmW4HNwH+4+9PJFktEcpLpguBDD2noaAXIGtTuvtvdZw39nOfu+u4kUigrVsD48VGtd/z46P5Y6IJgRdMQcpFSWbEC7r336P2BgaP377kn9/2pr3PFUj9qkVJpb8/tcalaCmqRQos7dDtTX+dMj0vVUtOHSCHlMnS7piZ9KNfUJFtGKTuqUYsUUi7THi5LO8g38+NStVSjFimkXKY9TF0wbG+PatY1NVFIj+VColQ01ahFCinXVX/vuQf6+6P5Ofr7FdKSloJapJA0E50kQEEtUkgaeCIJUFCLFHoVYa36KwWmi4lS3bSKsJQB1ailumkVYSkDCmqpblpFWMqAglqqW67d6URKQEEt1U3d6aQMKKiluqk7nZQB9foQ0TzOEjjVqEVEAqegFhEJXOygNrMaM/tvM/tpkgUSEZFj5VKjXgnsSKogIiKSXqygNrMpwBLggWSLIyIio8WtUf8A+BtgMNMGZrbMzDrMrKO3t7cQZRMREWIEtZldDux1987jbefu7e7e6u6t9fX1BSugiEi1i1Oj/mPgK2bWBTwCXGpmaxMtlYiIDMsa1O5+q7tPcfcm4CrgF+7+jcRLJuEr9DzOIpKWRiZK7tatg5Uroa/v6GOax1kkMTkNeHH359398qQKI2UgNdH+yJBO0TzOIonQyETJTbqJ9kfSPM4iBaeglqPitDlnC2LN4yxScApqiaSaNLq7wf1om/PosD5eEGseZ5FEKKglEnftwHQT7QPU1WkeZ5GEKKglEnftwHQT7a9dC/v2KaRFEqLueRJpaIiaO9I9Ppom2hcpKtWoJaK1A0WCpaCWiNYOFAmWmj7kKDVpiARJNWoRkcApqEOUGnhiBuPHR7ea9EikaqnpIzSpgSepPs0DA9GtJj0SqVqqUYfmeHNpaNIjkaqkoA5Ntrk0NOmRSNVRUIcm26RGmvRIpOooqEOTaS4N0AAUkSqloA7NyIEnADU10a0GoIhULQV1vpJYN7CtDbq6oulG+/uj264uhbRIlVL3vHyM7kqnLnQikgDVqPMRdw5nEZE8ZA1qM5tkZpvNbKuZvWlmf1+MgpWFuHM4i4jkIU6N+v+AS919FtAMLDazOYmWqlxk6iqnLnQiUkBZg9ojHw/dnTD044mWqlxoDmcRKYJYbdRmVmNmW4C9wLPu/kqabZaZWYeZdfT29ha4mIHSHM4iUgTmHr9ybGanAE8CN7n7G5m2a21t9Y6OjvxLJyJSJcys091b0z2XU68Pd/8N8DywOP9iiYhIHHF6fdQP1aQxs88AC4C3Ei6XiIgMiTPg5QzgITOrIQr2R939p8kWS0REUrIGtbtvA84vQllERCSN8hmZmMScGiIiZaA85vrQnBoiUsXKo0atOTVEpIqFE9THa9rQnBoiUsXCCOpU00Z3dzT3cqppIxXWmlNDRKpYGEGdrWlDc2qISBULI6izNW1oTg0RqWJh9PpoaIiaO9I9ntLWpmAWkaoURo1aTRsiIhmFEdRq2hARySiMpg9Q04aISAZh1KhFRCQjBbWISOAU1CIigVNQi4gETkEtIhK4nBa3jb1Ts14gzQiWqnAasK/UhSgxHQMdA9AxgNyOQaO716d7IpGgrmZm1pFpJeFqoWOgYwA6BlC4Y6CmDxGRwCmoRUQCp6AuvPZSFyAAOgY6BqBjAAU6BmqjFhEJnGrUIiKBU1CLiAROQT1GZrbYzN42s3fM7JY0z7eZ2bahnxfNbFYpypmkbMdgxHYXmNmAmX29mOVLWpz3b2bzzGyLmb1pZr8sdhmTFuP/wclm9u9mtnXoGHyzFOVMkpmtMbO9ZvZGhufNzO4aOkbbzKwl5xdxd/3k+APUAL8CzgYmAluBaaO2+QJw6tDvXwJeKXW5i30MRmz3C2AD8PVSl7vI58ApwHagYej+Z0td7hIcg78F7hz6vR74EJhY6rIX+DjMBVqANzI8/2XgPwED5owlC1SjHpsLgXfcfbe7HwYeAb46cgN3f9HdPxq6+zIwpchlTFrWYzDkJuBxYG8xC1cEcd7/nwFPuPu7AO5ejcfAgclmZsBJREHdX9xiJsvdNxG9r0y+CvyLR14GTjGzM3J5DQX12HwOeG/E/Z6hxzL5C6JP1EqS9RiY2eeAK4H7iliuYolzDvwBcKqZPW9mnWZ2TdFKVxxxjsE/A1OB94HXgZXuPlic4gUj17z4lHBWeCkvluaxtP0czeyLREH9J4mWqPjiHIMfADe7+0BUoaoocd7/eGA2MB/4DPCSmb3s7juTLlyRxDkGi4AtwKXA7wPPmtkL7v7bhMsWkth5kYmCemx6gM+PuD+FqMZwDDObCTwAfMnd+4pUtmKJcwxagUeGQvo04Mtm1u/u/1qUEiYrzvvvAfa5+wHggJltAmYBlRLUcY7BN4F/9Kix9h0z+zXwh8Dm4hQxCLHy4njU9DE2rwLnmNlZZjYRuAp4auQGZtYAPAH8eQXVoEbKegzc/Sx3b3L3JmA9sKJCQhpivH/g34CLzWy8mdUCfwTsKHI5kxTnGLxL9I0CMzsdOBfYXdRSlt5TwDVDvT/mAPvd/YNcdqAa9Ri4e7+Z3Qg8Q3Tle427v2lm1w89fx/wd0AdcM9QjbLfK2gmsZjHoGLFef/uvsPMnga2AYPAA+6etgtXOYp5DqwCHjSz14maAG5294qa+tTMHgbmAaeZWQ9wOzABho/BBqKeH+8AnxB9y8jtNYa6j4iISKDU9CEiEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKB+3/J1INg/R/OLQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW40lEQVR4nO3dfXBc1X3G8ednScYIHMLICkPiWoLOQG3wC7agTtKAAcc4mElgyB+hIsRJGUM8ULcdUkg9U5hxmJSZTFxIw4uGcUkjJ0wxCZOmNHXCS00HgyMRmRAbbGJkkKG1LIiDjV3b0q9/XEm2lZX2rrX33rN3v5+ZndXuXu2ePd59dHzueTF3FwAgXBOyLgAAYGwENQAEjqAGgMAR1AAQOIIaAAJXm8STTpkyxZubm5N4agDIpc7Ozj3u3ljosUSCurm5WR0dHUk8NQDkkpntHO0xuj4AIHAENQAEjqAGgMAl0kddyOHDh9XT06ODBw+m9ZK5N2nSJE2dOlV1dXVZFwVAglIL6p6eHk2ePFnNzc0ys7ReNrfcXX19ferp6dFZZ52VdXEAJCi1ro+DBw+qoaGBkC4TM1NDQwP/Q8mRtWul5mZpwoToeu3arEuEUKTWopZESJcZ9Zkfa9dKy5ZJH3wQ3d65M7otSa2t2ZULYeBkIhCAlSuPhvSQDz6I7gcI6piam5u1Z8+erIuBnHrzzdLuR3UJNqiT7K9zdw0MDJTvCYFxmjattPtRXYIM6qH+up07Jfej/XXjCevu7m5Nnz5dy5cv19y5c7Vq1SpdeOGFmjVrlu68887h466++mrNmzdP5513ntra2srwboDi7r5bqq8//r76+uh+IMigTqq/7rXXXtMNN9yge+65R7t27dKmTZvU1dWlzs5ObdiwQZK0Zs0adXZ2qqOjQ/fdd5/6+vrG96JADK2tUlub1NQkmUXXbW2cSEQk1VEfcSXVX9fU1KT58+frtttu0/r163XBBRdIkvbt26ft27fr4osv1n333acf//jHkqS33npL27dvV0NDw/heGIihtZVgRmFBBvW0aVF3R6H7x+OUU06RFPVRf/3rX9dNN9103OPPPvusfvGLX2jjxo2qr6/XggULGKcMIHNBdn0k3V93xRVXaM2aNdq3b58kadeuXdq9e7f27t2r008/XfX19Xr11Vf1wgsvlOcFAWAcgmxRD/33b+XKqLtj2rQopMv138JFixZp69at+vjHPy5JOvXUU9Xe3q7FixfrwQcf1KxZs3Tuuedq/vz55XlBABgPdy/7Zd68eT7Sli1b/uA+jB/1ikLa292bmtzNouv29qxLlG/lqG9JHT5KpgbZogZw4piOnq406jvIPmoAJ47p6OlKo74JaiBnmI6erjTqm6AGcobp6OlKo74JaiAhWa0vzXT0dKVR37GC2sz+2sx+Y2avmNkPzWxS+YoA5E+h9Wquv16aMiX5wGY6errSqO+iQW1mH5P0l5Ja3P18STWSvlC+IoTnkUce0dtvvz18+8Ybb9SWLVvG/bzd3d36wQ9+UPLvLV26VOvWrRv36yM9hU4wSVJf3/gXGIujtVXq7pYGBqJrQjpZSdd33K6PWkknm1mtpHpJbxc5fvwy3JdoZFA//PDDmjFjxrif90SDGpVnrBNJo40IYCsujKZoULv7LknfkvSmpHck7XX39SOPM7NlZtZhZh29vb3jK1US65xKam9v10UXXaQ5c+bopptuUn9/v5YuXarzzz9fM2fO1OrVq7Vu3Tp1dHSotbVVc+bM0YEDB7RgwQJ1dHRIimYx3n777Zo3b54WLlyoTZs2acGCBTr77LP1k5/8RFIUyJ/61Kc0d+5czZ07V88//7wk6Y477tBzzz2nOXPmaPXq1erv79fXvva14eVWH3roIUnRJKRbbrlFM2bM0JIlS7R79+5xvW+kr9iJpJFBntBHHnkx2kyYoYuk0yU9LalRUp2kJyRdP9bvjHtmYlOTe/R5Pf7S1FTqZJ/jXv+qq67yQ4cOubv7V7/6Vb/rrrt84cKFw8e899577u5+ySWX+C9/+cvh+4+9LcmffPJJd3e/+uqr/dOf/rQfOnTIu7q6fPbs2e7uvn//fj9w4IC7u2/bts2H6uOZZ57xJUuWDD/vQw895KtWrXJ394MHD/q8efN8x44d/vjjj/vChQv9yJEjvmvXLj/ttNP8scceG/V9Vbo8zqJrb3evry/8MS70UU7gI48Ko3HOTFwo6Q1375UkM/uRpE9Iai//n41BCQxMfOqpp9TZ2akLL7xQknTgwAEtXrxYO3bs0K233qolS5Zo0aJFRZ9n4sSJWrx4sSRp5syZOumkk1RXV6eZM2equ7tbknT48GHdcsst6urqUk1NjbZt21bwudavX6+XX355uP9579692r59uzZs2KDrrrtONTU1+uhHP6rLLrvshN936PI6i26o7CtWRP3Sxyo0IoCxzxhLnD7qNyXNN7N6i7a9vlzS1kRLlcDARHfXl770JXV1damrq0uvvfaa7r33Xm3evFkLFizQd7/7Xd14441Fn6eurm549+8JEybopJNOGv75yJEjkqTVq1frjDPO0ObNm9XR0aFDhw6NWqbvfOc7w2V64403hv9YVMsO43meRdfaKu3ZI7W3Fx8RwNhnjCVOH/WLktZJeknSrwd/J9k9qhIYmHj55Zdr3bp1w/297777rnbu3KmBgQFde+21WrVqlV566SVJ0uTJk/X++++f8Gvt3btXZ555piZMmKDvf//76u/vL/i8V1xxhR544AEdPnxYkrRt2zbt379fF198sR599FH19/frnXfe0TPPPHPCZQldNbQk44wIYOwzxhJrUSZ3v1PSnUUPLJcE1jmdMWOGvvGNb2jRokUaGBhQXV2dvv3tb+uaa64Z3uj2m9/8pqRoONzNN9+sk08+WRs3biz5tZYvX65rr71Wjz32mC699NLhDQtmzZql2tpazZ49W0uXLtWKFSvU3d2tuXPnyt3V2NioJ554Qtdcc42efvppzZw5U+ecc44uueSSE37foUtqk4hKk/TSvqhsFvVhl1dLS4sPjZIYsnXrVk2fPr3sr1XtKr1eR/ZRS1FLkgkaqDZm1unuLYUeYwo5MsUsOqA41qNG5tjUFRhbqi3qJLpZqhn1CVSH1IJ60qRJ6uvrI1zKxN3V19enSZNYHwvIu9S6PqZOnaqenh6Ne3o5hk2aNElTp07NuhgAEpZaUNfV1emss85K6+UAIDcY9QEAgSOoUZFCXxI09PIlqZrfe1IYnoeKE/pCTqGXL0nV/N6TlNrMRKBcmpsLTztvaorW0sha6OVLUjW/9/FiZiJyJfSFnEIvX5Kq+b0niaBGxQl9SdDQy5ekan7vSSKoUXFCXxI09PIlqZrfe5IIalSc0BdyCr18Sarm954kTiYCQAA4mQgAFYygBoDAEdQAEDiCGgACR1ADQOAIagAIHEGNkrAyGpC+okFtZueaWdcxl9+b2V+lUDZCITBDK6Pt3Cm5H10ZjX8XIFklTXgxsxpJuyT9qbsXWCMrUo4JLyOXS5SiqajMcsoOK6MBySnnhJfLJf12rJAul5Urjw9pKbq9cmXSr4zRsDIakI1Sg/oLkn5Y6AEzW2ZmHWbWUY4NbAmF8LAyGpCN2EFtZhMlfVbSY4Ued/c2d29x95bGxsZxF4xQCA8rowHZKKVF/RlJL7n7/yZVmGMRCuFhZTQgG6UE9XUapdsjCYRCmFpboxOHAwPRNf8eqGZpjUyLNerDzOolvSXpbHffW+x4ljkFkHflHpk27lEf7v6BuzfECWkAqAZpjkxjZiIAnIA0R6YR1ABwAtIcmUZQA8AJSHNkGkENIDfSXB8ozZFpteV/SgBI38hRGEOLhknJDSNtbU1niCotagC5kOf1gQhqALmQ5/WBCGoAuZDn9YEIagC5kOf1gQhqALmQ5/WBGPUBIDfSGoWRNlrUABA4ghooARsuIwt0fQAxZTGhApBoUQOx5XlCBcJGUAMx5XlCBcJGUGeI/s7KkucJFQgbQZ2Rof7OnTsl96P9nYR1uPI8oQJhI6gzQn9n5cnzhAqELdbmtqVic9viJkyIWtIjmUU7fAOoLuPe3BblR38ngLgI6ozQ3wkgLoI6I/R3Aogr1sxEM/uwpIclnS/JJX3F3TcmWK6qkNcFZACUV9wp5PdK+pm7f97MJkqqL/YLAIDyKBrUZvYhSRdLWipJ7n5I0qFkiwUAGBKnj/psSb2S/tnMfmVmD5vZKSMPMrNlZtZhZh29vb1lLygAVKs4QV0raa6kB9z9Akn7Jd0x8iB3b3P3FndvaWxsLHMxAaB6xQnqHkk97v7i4O11ioIbAJCCokHt7v8j6S0zO3fwrsslbUm0VACAYXFHfdwqae3giI8dkr6cXJEAAMeKFdTu3iWp4Bx0AECymJkIAIEjqIER2NABoWFzW+AYbGCLENGiBo7Bhg4IEUENHIMNbBEigjpH6FsdPzZ0wAlJ+MtHUOcEm+WWBxs6oCRr10pTpkjXX5/ol4+gzgn6VsuDDR0Q21DrqK/vDx8r85ePzW1zgs1ygZQ1N0et59GU+OVjc9sqQN8qkLJiZ5jL+OUjqHOCvlUgZWMFcZm/fAR1TtC3CqSsUOtIkhoayv7lY2ZijrBZLpCioS/bypVRN8i0aVF4J/AlJKgB4ESl1Dqi6wMAAkdQA8iPnE7PpesDQD7keOlDWtQ4ITltuKCS5Xh6Li1qlCzHDRdUshwvfUiLGiXLccMFlSzH03MJapQsxw0XVLIcT88lqFGyHDdcUMlyPD2XoEbJctxwQaVrbZW6u6NV67q7cxHSUsyTiWbWLel9Sf2Sjoy2FB+qQ4ozZwGotFEfl7r7nsRKgorCuiJAeuj6AIDAxQ1ql7TezDrNbFmSBQJQ4ZgNVXZxuz4+6e5vm9lHJP3czF519w3HHjAY4MskaRqn/4HqxGyoRJS8Z6KZ3SVpn7t/a7Rj2DMRqFKj7SPY1BSNwsCoxrVnopmdYmaTh36WtEjSK+UtIoBcYDZUIuL0UZ8h6b/NbLOkTZL+3d1/lmyxAFQkZkMlomgftbvvkDQ7hbIAqHR33318H7XEbKgyYHgegPLJ8TTuLLHMKYDyYjZU2dGiBoDAEdQAEDiCGsgjZgfmCn3UQN4wOzB3aFEDecNeablDUAN5w+zA3CGogbxhdmDuENRA3rBXWu4Q1EDeMDswdwhqIBTLl0u1tVG41tZGt09UTjd5rVYMzwNCsHy59MADR2/39x+9ff/92ZQJwaBFDYSgra20+1FVCGogaXFmCfb3F/7d0e5HVaHrA0jC2rXSihVSX9/x9482S7CmpnAo19QkV0ZUDFrUQLmtXSt95St/GNJDCs0SHArvkUa7H1WFFjVQbitXSocOjX3MyFmCQycM29qilnVNTRTSnEiECGqg/OJM1S40S/D++wlmFBRM1werMqIixPmgFpuqzSxBlCiIoB5alXHnTsn96PkWwhpBiftBvftuaeLEws/R0MAsQZQsiKBmVUYEZbRWc9wPamurtGZNFMpDGhqk9nZpzx5CGiUzdy/7k7a0tHhHR0fs4ydMiBooI5lFM2CB1IxcdF+Kuira2qQvfpEPKhJjZp3u3lLosSBa1KzKiGCM1Wrmg4qMxA5qM6sxs1+Z2U/LXQhWZUQwxlp0nw8qMlJKi3qFpK1JFIJVGRGMsVrNfFCRkVh91GY2VdL3JN0t6W/c/aqxji+1jxoIxlh91AQyElSOPup/lPS3kkY9Y2Jmy8ysw8w6ent7Sy8lEAJazQhQ0aA2s6sk7Xb3zrGOc/c2d29x95bGxsayFRAoKMkZUiy6j8DEmUL+SUmfNbMrJU2S9CEza3f365MtGjCKkd0To61IB+RESeOozWyBpNvoo0ammpujcB6pqSlqAQMVKPhx1EBJxhpCB+RQSUHt7s8Wa00DiWPiCaoMLWpkr9QTg0w8QZUhqJGtE1k6kSF0qDJBLMqEKsaJQUASJxMRMk4MAkUR1MgWJwaBoghqZIsTg0BRBDWyxYlBoCiCGqUZGkpnJtXWRtfjXWuDtTWAMcVZ6wOIjFxjo78/umatDSBRtKgRX6FtqoawGzGQGIIa8RUbMseQOiARBDXiKzZkjiF1QCIIasRXaCjdEIbUAYkhqBHfsUPpJKmmJrpmSB2QKEZ9oDStrQQykDJa1HmS5D6CADJDizov2EcQyC1a1HlRaIwzY5uBXCCo84LlQoHcIqjzguVCgdwiqPOC5UKB3CKo84LlQoHcIqizVO7hdCwXCuRS0eF5ZjZJ0gZJJw0ev87d70y6YLnHcDoAMcVpUf+fpMvcfbakOZIWm9n8REtVDRhOByCmoi1qd3dJ+wZv1g1ePMlCVQWG0wGIKVYftZnVmFmXpN2Sfu7uLxY4ZpmZdZhZR29vb5mLmUMMpwMQU6ygdvd+d58jaaqki8zs/ALHtLl7i7u3NDY2lrmYOcRwOgAxlTTqw91/J+lZSYuTKExVYTgdgJjijPpolHTY3X9nZidLWijpnsRLVg1YMhRADHFWzztT0vfMrEZRC/xf3f2nyRYLADAkzqiPlyVdkEJZAAAFMDMRAAJHUANA4AhqAAgcQQ0AgSOoASBwBDUABI6gBoDAEdQAEDiCGgACF3ZQl3urKgCoQHHW+sgGW1UBgKSQWtQjW88rVrBVFQAolBZ1odbzaNiqCkCVCaNFXWij19GwVRWAKhNGUMdtJbNVFYAqFEZQj9ZKbmhgqyoAVS+MoB5to9d775W6u6WBgeiakAZQhcIIajZ6BYBRhTHqQ2KjVwAYRRgtagDAqAhqAAgcQQ0AgSOoASBwBDUABM7cvfxPatYraYwFO/7AFEl7yl6QykM9RKgH6mBINdVDk7s3FnogkaAulZl1uHtL1uXIGvUQoR6ogyHUQ4SuDwAIHEENAIELJajbsi5AIKiHCPVAHQyhHhRIHzUAYHShtKgBAKMgqAEgcKkFtZktNrPXzOx1M7ujwONmZvcNPv6ymc1Nq2xpilEPrYPv/2Uze97MZmdRzqQVq4djjrvQzPrN7PNpli8tcerBzBaYWZeZ/cbM/ivtMqYhxvfiNDP7NzPbPFgPX86inJlx98Qvkmok/VbS2ZImStosacaIY66U9B+STNJ8SS+mUbY0LzHr4ROSTh/8+TPVWg/HHPe0pCclfT7rcmf0efiwpC2Spg3e/kjW5c6oHv5O0j2DPzdKelfSxKzLntYlrRb1RZJed/cd7n5I0qOSPjfimM9J+hePvCDpw2Z2ZkrlS0vRenD35939vcGbL0iamnIZ0xDn8yBJt0p6XNLuNAuXojj18OeSfuTub0qSu+exLuLUg0uabGYm6VRFQX0k3WJmJ62g/pikt4653TN4X6nHVLpS3+NfKPpfRt4UrQcz+5ikayQ9mGK50hbn83COpNPN7Fkz6zSzG1IrXXri1MM/SZou6W1Jv5a0wt0H0ile9tLa4cUK3DdyXGCcYypd7PdoZpcqCuo/S7RE2YhTD/8o6XZ3748aUbkUpx5qJc2TdLmkkyVtNLMX3H1b0oVLUZx6uEJSl6TLJP2xpJ+b2XPu/vuEyxaEtIK6R9IfHXN7qqK/jKUeU+livUczmyXpYUmfcfe+lMqWpjj10CLp0cGQniLpSjM74u5PpFLCdMT9Xuxx9/2S9pvZBkmzJeUpqOPUw5cl/YNHndSvm9kbkv5E0qZ0ipixlE4W1EraIeksHT1ZcN6IY5bo+JOJm7LuwM+oHqZJel3SJ7Iub5b1MOL4R5TPk4lxPg/TJT01eGy9pFcknZ912TOohwck3TX48xmSdkmaknXZ07qk0qJ29yNmdouk/1R0hneNu//GzG4efPxBRWf2r1QUUh8o+guaKzHr4e8lNUi6f7A1ecRztnpYzHrIvTj14O5bzexnkl6WNCDpYXd/JbtSl1/Mz8MqSY+Y2a8VNeZud/dqWf6UKeQAEDpmJgJA4AhqAAgcQQ0AgSOoASBwBDUABI6gBoDAEdQAELj/ByZw6bCS3nICAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -387,18 +364,18 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 19, loss: 17.798984092741378\n", - "epoch: 39, loss: 16.14508120463308\n", - "epoch: 59, loss: 15.55101918276564\n", - "epoch: 79, loss: 15.33763961353287\n", - "epoch: 99, loss: 15.26099545058815\n" + "epoch: 19, loss: 21.218688263809952\n", + "epoch: 39, loss: 19.55484974487415\n", + "epoch: 59, loss: 18.824963796393106\n", + "epoch: 79, loss: 18.50477882805245\n", + "epoch: 99, loss: 18.364321569910107\n" ] } ], @@ -419,22 +396,22 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 14, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW+0lEQVR4nO3df5DU9X3H8df7+CGi1DgHcTT07rRTDUR+CKfFTkVUBBIyjdTMNPYSQxKDhmhpZpLRlJmaDmFSZzohMU3Uq6VOwxkn4I/aKVUSfwRn1OidQWNAwZADD205DkuUHwXu3v3je3vAsct993a/3/18d5+PmRvYvXX3s9/B1372/fll7i4AQLjqKt0AAMCpEdQAEDiCGgACR1ADQOAIagAI3MgknnT8+PHe1NSUxFMDQFXq6OjY4+4T8v0ukaBuampSe3t7Ek8NAFXJzHYU+h2lDwAIHEENAIEjqAEgcInUqPM5cuSIurq6dOjQobResuqNGTNGEydO1KhRoyrdFAAJSi2ou7q6NG7cODU1NcnM0nrZquXu6unpUVdXl84///xKNwdAglIrfRw6dEj19fWEdJmYmerr6/mGAqSorU1qapLq6qI/29rSed3UetSSCOky43oC6Wlrk5YskQ4ciG7v2BHdlqSWlmRfm8FEAIhh+fJjIZ1z4EB0f9II6piampq0Z8+eSjcDQIXs3Fnc/eUUbFAnWQtyd/X19ZXvCQFUvYaG4u4vpyCDOlcL2rFDcj9WCyolrDs7OzVp0iQtXbpUM2bM0IoVK3TppZdq6tSpuvPOOwced91112nmzJn62Mc+ptbW1jK8GwDVYOVKaezYE+8bOza6P2lBBnVStaA333xTN954o+666y7t2rVLL730kjZt2qSOjg5t3LhRkrR69Wp1dHSovb1dd999t3p6ekp7UQBVoaVFam2VGhsls+jP1tbkBxKllGd9xJVULaixsVGzZs3S17/+dW3YsEGXXHKJJOmDDz7Qtm3bNHv2bN1999169NFHJUlvv/22tm3bpvr6+tJeGEBVaGlJJ5gHCzKoGxqicke++0txxhlnSIpq1N/85jd18803n/D7Z599Vj//+c/1wgsvaOzYsZozZw7zlAFUXJClj6RrQfPnz9fq1av1wQcfSJJ27dql3bt3a9++fTr77LM1duxYvfHGG3rxxRfL84IAUIIge9S5rxbLl0fljoaGKKTL9ZVj3rx52rJliy6//HJJ0plnnqk1a9ZowYIFuvfeezV16lRddNFFmjVrVnleEABKYO5e9idtbm72wQcHbNmyRZMmTSr7a9U6ritQHcysw92b8/0uyNIHAOAYghoAAkdQA0DgCGoACBxBDQCBI6gBIHAEdR4PPPCA3nnnnYHbN910kzZv3lzy83Z2durBBx8s+r9bvHix1q1bV/LrA8imcIO6Umfe6OSgvv/++zV58uSSn3e4QQ2gtoUZ1EnscyppzZo1uuyyyzR9+nTdfPPN6u3t1eLFi3XxxRdrypQpWrVqldatW6f29na1tLRo+vTpOnjwoObMmaPcAp4zzzxTt99+u2bOnKm5c+fqpZde0pw5c3TBBRfo8ccflxQF8hVXXKEZM2ZoxowZev755yVJd9xxh5577jlNnz5dq1atUm9vr77xjW8MbLd63333SYr2Irn11ls1efJkLVy4ULt37y7pfQPIOHcv+8/MmTN9sM2bN590X0GNje5RRJ/409gY/znyvP4nP/lJP3z4sLu7f+UrX/FvfetbPnfu3IHHvPfee+7ufuWVV/rLL788cP/xtyX5+vXr3d39uuuu82uvvdYPHz7smzZt8mnTprm7+/79+/3gwYPu7r5161bPXY9nnnnGFy5cOPC89913n69YscLd3Q8dOuQzZ8707du3+8MPP+xz5871o0eP+q5du/yss87ytWvXFnxfALJPUrsXyNRYe32Y2TJJX5Zkkv7Z3b+X3EeHEtnn9KmnnlJHR4cuvfRSSdLBgwe1YMECbd++XbfddpsWLlyoefPmDfk8o0eP1oIFCyRJU6ZM0WmnnaZRo0ZpypQp6uzslCQdOXJEt956qzZt2qQRI0Zo69ateZ9rw4YNeu211wbqz/v27dO2bdu0ceNG3XDDDRoxYoTOO+88XX311cN+3wCyb8igNrOLFYX0ZZIOS3rCzP7T3bcl1qoE9jl1d33+85/Xd77znRPuX7lypZ588kn98Ic/1E9/+lOtXr36lM8zatSogdO/6+rqdNpppw38/ejRo5KkVatW6ZxzztGrr76qvr4+jRkzpmCbfvCDH2j+/Pkn3L9+/XpOGAcwIE6NepKkF939gLsflfQLSYsSbVUC+5xec801Wrdu3UC9d+/evdqxY4f6+vp0/fXXa8WKFXrllVckSePGjdP7778/7Nfat2+fzj33XNXV1enHP/6xent78z7v/Pnzdc899+jIkSOSpK1bt2r//v2aPXu2HnroIfX29urdd9/VM888M+y2AMi+OKWP1yWtNLN6SQclfUJS++AHmdkSSUskqaHUHf4T2Od08uTJ+va3v6158+apr69Po0aN0ne/+10tWrRo4KDbXG978eLFuuWWW3T66afrhRdeKPq1li5dquuvv15r167VVVddNXBgwdSpUzVy5EhNmzZNixcv1rJly9TZ2akZM2bI3TVhwgQ99thjWrRokZ5++mlNmTJFF154oa688sphv28A2Rdrm1Mz+5Kkr0r6QNJmSQfd/WuFHs82p+nhugLVoeRtTt39X9x9hrvPlrRXUnL1aQDACeLO+viwu+82swZJfyHp8mSbBQDIiXsU18P9Neojkr7q7u8N58XcndkMZRSnbAUg++KWPq5w98nuPs3dnxrOC40ZM0Y9PT2ES5m4u3p6egpO/UM2VHCnBGRIaofbTpw4UV1dXeru7k7rJavemDFjNHHixEo3A8OU2ynhwIHodm6nBKl8BzmjOqR2uC2AEzU15V/X1dgo9S9yRQ3hcFsgQAnslIAqRVADFVJoXVip68VQfQhqoEIS2CkBVYqgBiqkpUVqbY1q0mbRn62tDCTiZKnN+gBwspYWghlDo0cNgPncgaNHDdQ45nOHjx41UOOWLz8W0jkHDkT3IwwENVDjmM9dBgnXjghqoMYxn7tEudrRjh3RMdy52lEZw5qgBmoc87lLlELtiKAGahzzuYuQr8SRQu2ITZkAII7B02Ok6KvH6adLPT0nP77I3bXYlAkAijW497xsWf4Sh5R47YigBoDB8g0Q5us1S9LevYnXjih9AMBghTYLz6dMG4hT+gCAYsQdCExpegxBDaC2xFmcUmgSeX19RabHENQAakfcxSmFJpd///tRmaOvL/ozpTmMBDVQQexal7K4i1MCm1zOYCJQIYWm5bLYJEF1dVFPejCzqJdcQQwmAgFi17oKyOjGJgQ1UCHsWlcBGd3YhKAGKiSjnbtsC6z2HBdBDVRIRjt32dfSUpGZG6UgqIEKyWjnDhXAmYlABXEKOeKgRw0AgSOoAdSULC4yovQBoGYMXmSUW0EuhV2CokcNoGZkdZERQQ1gSFksF+ST1UVGBDWAU4q74VwWZHWREUEN4JSyWi7IJ6uLjGIFtZl9zcx+Y2avm9lPzGxM0g0DUJykyhNZLRfkk9VFRkMGtZl9RNJfS2p294sljZD0maQbBiC+JMsTWS0XFJLBFeSxSx8jJZ1uZiMljZX0TnJNAlCsJMsTWS0XpCnpwdYhg9rdd0n6R0k7Jb0raZ+7bxj8ODNbYmbtZtbe3d1d3lYCOKUkyxNZLRekJY3B1iFPeDGzsyU9LOkvJf2vpLWS1rn7mkL/DSe8AOlqaooCYrDGxujrPZJTrmtf6gkvcyX9zt273f2IpEck/Wn8lweQtMTLE9UykToBaQy2xgnqnZJmmdlYMzNJ10jaUr4mAChVouWJappInYA0BltjHW5rZn+vqPRxVNKvJN3k7v9X6PGUPoAqQl3llMp1SHHJh9u6+53u/lF3v9jdP3eqkAaQQacqbVTTROoEpDHYyu55QK0baku5hob8PeqsTqROQNIHQLCEHKh1Q03CrtGJ1CGNnxLUQK0bqrRRgxOpQxs/JagxIKQeBFIUZ9pCFtddlyC0jagIakgKrweBMoj7yVujpY1TCW38lKCGpPB6EBiG44N5/Hjpi1+M98lbg6WNoYS2EVWsedTFYh519tTVRf8/D2YWfdtF4PJN5s2Huc+xlGtudDFKnkeN6hdaDwJFyveVKB/mPscS2pcMghqSKFNmXtwA5pM3tpDGTwlqSAqvB4EixQlgPnkzi6DGgJB6EChSvq9Eo0ZJ9fV88lYBlpAD1SAXwMuXR2WQhoYovAnmqkBQA9Ui6Q0nUDGUPoBKWrpUGjkyKk+MHBndBgahRw1UytKl0j33HLvd23vs9o9+VJk2IUj0qIFKaW0t7n7ULIIaqJTe3uLuR80iqIFKGTGiuPtRswhqoNzi7lqXO0Ul7v2oWQwmAuU01LFWx8sNGLa2RuWOESOixzKQiEHYPQ8oJ07sxjCxex6QltB2nEdVIKgDxJFYGcZ+sUgAQR0YjsTKuJUrdXT0iZsjHR3NrnUoDUEdGI7EyrY2tejL3qpONapPpk416sveqjaxBweGj8HEwHAkVrYxlojhYjAxQyhxVkAZBwUYS0QSCOrAcCRWyso8KMAHLZJAUAeGI7FSVuZBAT5okQRq1KhtCQwKtLVx0AqKd6oaNUvIUdsaGvKP/pVQq+CgFZQbpQ/UNmoVyACCGrWNQQFkAKUPgFoFAkePGgACR1ADQOCGDGozu8jMNh3383sz+5sU2gYAUIwatbu/KWm6JJnZCEm7JD2abLMAADnFlj6ukfRbd88z8RQAkIRig/ozkn6S7xdmtsTM2s2svbu7u/SWAQAkFRHUZjZa0p9LWpvv9+7e6u7N7t48YcKEcrUPAGpeMT3qj0t6xd3/J6nGAABOVkxQ36ACZQ8AQHJiBbWZjZV0raRHkm0OAGCwWEvI3f2ApPqE2wIAyIOViQAQOIIaAAJHUGP4yngoLIDC2OYUxWtrk5Ytk3p6jt2XOxRWYstQoMzoUaM4uVO7jw/pnBIOhQVQGEGN4uQ7tft4O3em1xagRhDUKM5QQVzCobAA8iOocUycwcFTBTGHwgKJIKgRydWed+yQ3I8NDg4O63yndktSfT2HwgIJIagRyVd7zjc4mO/U7jVrpD17CGkgIebuZX/S5uZmb29vL/vzIkF1dVFPejAzqa8v/fYANcbMOty9Od/v6FEjUqj2zOAgUHGZCWoWwSUsX+2ZwUEgCJkI6rjjXChBvtpzgcFBPjSBdGWiRt3UFIXzYI2NUmdn2V4GMeQ+NI8fdxw7lgkfQKkyX6MutMYihEVwtda7jDs5BED5ZCKoQx3nqsWSTMgfmkC1ykRQhzrOVYu9y1A/NIFqlomgLmKcK1W12LsM9UMTqGaZCGopCuXOzmjtRWdn5UNaSqF3GWABPNQPTaCaZSaoQ5RY77KtTRo/XvrsZ4MsgIf4oQlUM4K6BIn0LtmYH8AgBHWJyt67ZGN+lEmAlTMME2cmhoaN+VEGgxcmcaRlttGjDg0b86MManHqaDUjqEPDxvwog1qcOlrNCOrQsDE/yoCFSdWFoA4R899QIhYmVReCGqhCLEyqLgR1qZgDhUDxxax6MD2vFMyBApACetSlYA4UgBQQ1KVgDhSAFBDUpWAOFIAUENSlYA4UgBTECmoz+5CZrTOzN8xsi5ldnnTDMoE5UABSEHfWx/clPeHunzaz0ZLyrHGuUS0tBDOARA0Z1Gb2B5JmS1osSe5+WNLhZJsFAMiJU/q4QFK3pH81s1+Z2f1mdkbC7QIA9IsT1CMlzZB0j7tfImm/pDsGP8jMlphZu5m1d3d3l7mZQHJYXIrQxQnqLkld7v7L/tvrFAX3Cdy91d2b3b15woQJ5WwjkJjc4tIAj6YEBgwZ1O7+35LeNrOL+u+6RtLmRFsFpITFpciCuLM+bpPU1j/jY7ukLyTXJCA9LC5FFsQKanffJKk52aYA6WtoiMod+e4HQpGdlYmM+CABLC5FFmQjqBnxQUJYXIosMHcv+5M2Nzd7e3t7+Z6wqSn/99PGxmhHdADIODPrcPe8JeZs9KgZ8QFQw8IJ6lPVoNlOFEANCyOoh6pBM+IDoIaFEdRDrTpgxAdADQtjMLGuLupJD2YWHaEMAFUu/MFEatAAUFAYQU0NGgAKCiOoqUEDQEFhBLWkNrWoSZ2qU5+a1Kk2EdIAIMXfPS9Rudl5uYkfudl5Ep1qAAiiR82ewABQWBBBzQpxACgsiKBmdh4AFBZEUDM7DwAKCyKomZ0HAIUFMetDikKZYAaAkwXRowYAFEZQA0DgCGoACBxBjWHjYHggHcEMJiJbWPYPpIceNYaFZf9AeghqDAvL/oH0ENQYFpb9A+khqDEsLPsH0kNQY1hY9g+kh1kfGDaW/QPpoEcNAIEjqAEgcAQ1AASOoA4YS7QBSAwmBosl2gBy6FEHiiXaAHJi9ajNrFPS+5J6JR119+YkGwWWaAM4ppjSx1XuviexluAEDQ1RuSPf/QBqC6WPQLFEG0BO3KB2SRvMrMPMluR7gJktMbN2M2vv7u4uXwtrFEu0AeSYuw/9ILPz3P0dM/uwpJ9Jus3dNxZ6fHNzs7e3t5exmQBQ3cyso9D4X6wetbu/0//nbkmPSrqsfM0DAJzKkEFtZmeY2bjc3yXNk/R60g0DAETizPo4R9KjZpZ7/IPu/kSirQIADBgyqN19u6RpKbQFAJAH0/MAIHCxZn0U/aRm3ZLyLNeoCeMl1frCIK4B10DiGkjFXYNGd5+Q7xeJBHUtM7P2Wl9izzXgGkhcA6l814DSBwAEjqAGgMAR1OXXWukGBIBrwDWQuAZSma4BNWoACBw9agAIHEENAIEjqIfJzBaY2Ztm9paZ3ZHn9y1m9lr/z/NmVnWrO4e6Bsc97lIz6zWzT6fZvqTFef9mNsfMNpnZb8zsF2m3MWkx/j84y8z+w8xe7b8GX6hEO5NkZqvNbLeZ5d0DySJ391+j18xsRtEv4u78FPkjaYSk30q6QNJoSa9KmjzoMX8q6ez+v39c0i8r3e60r8Fxj3ta0npJn650u1P+N/AhSZslNfTf/nCl212Ba/C3ku7q//sESXslja5028t8HWZLmiHp9QK//4Sk/5JkkmYNJwvoUQ/PZZLecvft7n5Y0kOSPnX8A9z9eXd/r//mi5ImptzGpA15DfrdJulhSbvTbFwK4rz/v5L0iLvvlAa2Ca4mca6BSxpn0a5uZyoK6qPpNjNZHu3Nv/cUD/mUpH/zyIuSPmRm5xbzGgT18HxE0tvH3e7qv6+QLyn6RK0mQ14DM/uIpEWS7k2xXWmJ82/gQklnm9mz/acj3Zha69IR5xr8k6RJkt6R9GtJy9y9L53mBaPYvDhJMYfb4hjLc1/eeY5mdpWioP6zRFuUvjjX4HuSbnf33v5tcqtJnPc/UtJMSddIOl3SC2b2ortvTbpxKYlzDeZL2iTpakl/JOlnZvacu/8+4baFJHZeFEJQD0+XpD887vZERT2GE5jZVEn3S/q4u/ek1La0xLkGzZIe6g/p8ZI+YWZH3f2xVFqYrDjvv0vSHnffL2m/mW1UtGVwtQR1nGvwBUn/4FGx9i0z+52kj0p6KZ0mBiFWXpwKpY/heVnSH5vZ+WY2WtJnJD1+/APMrEHSI5I+V0U9qOMNeQ3c/Xx3b3L3JknrJC2tkpCWYrx/Sf8u6QozG2lmYyX9iaQtKbczSXGuwU5F3yhkZudIukjS9lRbWXmPS7qxf/bHLEn73P3dYp6AHvUwuPtRM7tV0pOKRr5Xu/tvzOyW/t/fK+nvJNVL+lF/j/KoV9FOYjGvQdWK8/7dfYuZPSHpNUl9ku5396o5xi7mv4EVkh4ws18rKgHc7u5VtfWpmf1E0hxJ482sS9KdkkZJA9dgvaKZH29JOqDoW0Zxr9E/fQQAEChKHwAQOIIaAAJHUANA4AhqAAgcQQ0AgSOoASBwBDUABO7/AXHnjGNFpFY8AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWwklEQVR4nO3df2zc9X3H8dfbTiA4SSlNPARkiWESjEB+EBuWtmsIkIbQoAKi0spMId2QgQzGJrUDFmllSilDmpqSrvxwEUWrTdEIBXUTa1n5MZAITW1qKCUlocEOCWxxDEohTpbEee+Pr+045i7+Xvy97/dz33s+JOt8d9/cfe5zl5c/9/l+fpi7CwAQrpqsCwAAODKCGgACR1ADQOAIagAIHEENAIGbUI4HnT59ujc0NJTjoQEglzo7O3e6e32h+8oS1A0NDero6CjHQwNALplZT7H76PoAgMAR1AAQOIIaAAJXlj7qQvbv369t27Zp7969aT1l7k2aNEkzZszQxIkTsy4KgDJKLai3bdumqVOnqqGhQWaW1tPmlrurr69P27Zt06mnnpp1cQCUUWpdH3v37tW0adMI6YSYmaZNm8Y3lBxpb5caGqSamuiyvT3rEiEUqbWoJRHSCaM+86O9XWppkfr7o+s9PdF1SWpuzq5cCAMnE4EArFp1KKSH9PdHtwMEdUwNDQ3auXNn1sVATm3dWtrtqC7BBnU5++vcXQcPHkzuAYFxmjmztNtRXYIM6qH+up4eyf1Qf914wrq7u1tnnnmmVq5cqQULFmj16tU699xzNXfuXH3jG98YPu7yyy9XY2OjzjrrLLW2tibwaoCx3XmnVFd3+G11ddHtQJBBXa7+ujfffFPXXHON7r77bm3fvl0bNmxQV1eXOjs79cILL0iSHnroIXV2dqqjo0Nr165VX1/f+J4UiKG5WWptlWbNksyiy9ZWTiQikuqoj7jK1V83a9YsLVy4UF/72tf09NNP65xzzpEkffTRR9q8ebMWLVqktWvX6oknnpAkvfPOO9q8ebOmTZs2vicGYmhuJphRWJBBPXNm1N1R6PbxmDx5sqSoj/r222/X9ddff9j9zz//vH7+859r/fr1qqur0+LFixmnDCBzQXZ9lLu/7uKLL9ZDDz2kjz76SJK0fft27dixQ7t27dIJJ5yguro6/fa3v9XLL7+czBMCwDgE2aIe+vq3alXU3TFzZhTSSX0tXLp0qTZu3KhPf/rTkqQpU6aora1Ny5Yt0/3336+5c+fqjDPO0MKFC5N5QgAYB3P3xB+0qanJR28csHHjRp155pmJP1e1o16BfDCzTndvKnRfkF0fAIBDCGoACBxBDQCBI6iBHGLJ1HSVu76DHPUB4OixZGq60qhvWtRAzrBkaora23X+tQ36sN+0XxM0INPbatBl/e2J1jdBXcDDDz+sd999d/j6ddddpzfeeGPcj9vd3a1HHnmk5H+3YsUKrVu3btzPj+rAkqkpGWxKzxjoUY2kCRpQjaQG9ej7atFne5Lr/wg3qDPsZBsd1A8++KBmz5497sc92qAGSsGSqSkp9NVl0GT16+7a5JrUYQZ1OdY5ldTW1qbzzjtP8+fP1/XXX6+BgQGtWLFCZ599tubMmaM1a9Zo3bp16ujoUHNzs+bPn689e/Zo8eLFGprAM2XKFN16661qbGzUkiVLtGHDBi1evFinnXaafvKTn0iKAvlzn/ucFixYoAULFuill16SJN1222168cUXNX/+fK1Zs0YDAwP6+te/Przc6gMPPCApWovkpptu0uzZs7V8+XLt2LFjXK8b1YUlU1MyxleUUwYS/Arj7on/NDY2+mhvvPHGx24ratYs9yiiD/+ZNSv+YxR4/ksvvdT37dvn7u433nij33HHHb5kyZLhYz744AN3dz///PP9l7/85fDtI69L8qeeesrd3S+//HL//Oc/7/v27fOuri6fN2+eu7vv3r3b9+zZ4+7umzZt8qH6eO6553z58uXDj/vAAw/46tWr3d1979693tjY6Fu2bPHHH3/clyxZ4gcOHPDt27f78ccf74899ljR1wWM1tYW/Xcxiy7b2rIuUQ4Vy6mjzCtJHV4kU8Mc9VGGTrZnnnlGnZ2dOvfccyVJe/bs0bJly7RlyxbdfPPNWr58uZYuXTrm4xxzzDFatmyZJGnOnDk69thjNXHiRM2ZM0fd3d2SpP379+umm25SV1eXamtrtWnTpoKP9fTTT+u1114b7n/etWuXNm/erBdeeEFXXXWVamtrdfLJJ+vCCy886teN6sSSqSm4887Dh3uMlPBXmDC7PsrQyebuuvbaa9XV1aWuri69+eabuueee/Tqq69q8eLF+t73vqfrrrtuzMeZOHHi8O7fNTU1OvbYY4d/P3DggCRpzZo1OvHEE/Xqq6+qo6ND+/btK1qm7373u8Nlevvtt4f/WLDDeOVjLHPOjdztQZJqa6PLMuz6ECuozexvzew3Zva6mf3IzCYlVoJCytDJdtFFF2ndunXD/b3vv/++enp6dPDgQV155ZVavXq1XnnlFUnS1KlT9eGHHx71c+3atUsnnXSSampq9MMf/lADAwMFH/fiiy/Wfffdp/3790uSNm3apN27d2vRokV69NFHNTAwoPfee0/PPffcUZcF2Sh0muXqq6Xp0wnsXGlulrq7ozf5wIHosrs78a8zY3Z9mNkpkv5a0mx332Nm/ybpy5IeTrQkI5VhndPZs2frm9/8ppYuXaqDBw9q4sSJ+va3v60rrrhieKPbu+66S1I0HO6GG27Qcccdp/Xr15f8XCtXrtSVV16pxx57TBdccMHwhgVz587VhAkTNG/ePK1YsUK33HKLuru7tWDBArm76uvr9eSTT+qKK67Qs88+qzlz5uj000/X+eeff9SvG9koNiCgr4/JJyjdmMucDgb1y5LmSfq9pCclrXX3p4v9G5Y5TQ/1GqaamqhxVcysWVHDa6T29vKtwY7wjWuZU3ffLumfJW2V9J6kXYVC2sxazKzDzDp6e3vHW2agoo11OmX0efEyjUhFTowZ1GZ2gqTLJJ0q6WRJk83s6tHHuXuruze5e1N9fX3yJQUqSKHTLCONDnKmfSckp2dw45xMXCLpbXfvdff9kn4s6TNH82RjdbOgNNRnuIYGBBTawL7QeXGmfScgx19L4gT1VkkLzazOojFjF0naWOoTTZo0SX19fYRLQtxdfX19mjSpvANw0pDTRpCam6WdO6W2tqhP2qz4yC2mfScgx19LYu2ZaGb/KOnPJB2Q9CtJ17n7/xU7vtDJxP3792vbtm3au3fv+EqMYZMmTdKMGTM0ceLErIty1EYvESlFLc6Eh6EGj3pIQLEzuGbS4MiukB3pZGJqm9sChTQ0RN9QRys0KiLvGPUxThX+YWJzWwSLvtlDhuZOHDxYljkT+Zfj1agIamSKvlkkZuSU7iOdEKhABDUyleNGELKQ068lBDUyleNGEJCYMJc5RVVhSU7gyGhRA0DgCGoAycrrDKYM0fUBIDmjZ+4MTeOW6N8aB1rUAJKT42ncWSKoASSHGUxlQVADSA4zmMqCoAaQHGYwlQVBDSA5zGAqC0Z9AEgWM5gSR4saFYmhuuHivUkeQY2KUwk7LlVrWFXCe1OJ2DgAFSf09eGrebeW0N+bkLHDC3Il9B2XqjmsQn9vQsYOL8iV0IfqBjHnI6O+l9Dfm0pFUKPihD5UN/OwyrCjOPT3plIR1Kg4oQ/VzTysMlxvI/T3plLRRw2UQaY7itNRXJGO1EfNhBegDDKd8zFzZuGzmXQUVyy6PoC8ybzvBUkjqIG8oaM4dwhqIBQrV0oTJkThOmFCdP1oNTdHg7YPHowuCemKRh81EIKVK6X77jt0fWDg0PV7782mTAgGLWogBK2tpd2OqkJQAyEYGCjtdlQVghool6Fp3EN9zmbFp3PX1hZ+jGK3o6oQ1EA5rFwpfeUrh8YzD7WMi03nbmkp/DjFbkdVIaiBpLW3S/ffX3h2oFR4Ove990o33nioBV1bG13nRCLEFHIgecXWOR2J6dwYhWVOgaTEWT40znqmTOdGCQhqIK64y4eOFcJM50aJgg7qat13LmRV/Z7EXT600FobQ5jOjaPh7kf8kXSGpK4RP7+X9DdH+jeNjY0+Xm1t7nV17lHTJfqpq4tuRzaq5j1pa3OfNcvdLLoceoFmh7/4oR+z+I8BFCGpw4tkakknE82sVtJ2SX/i7kXPliRxMrGa950LVVW8J0famXbVqiqoAGQlyZOJF0n63ZFCOilB7DuHw1TFe3Kk7g2WD0VGSg3qL0v6UaE7zKzFzDrMrKO3t3fcBct83zl8TFW8J0f6a8TyochI7KA2s2MkfVHSY4Xud/dWd29y96b6+vpxF4zGS3iq4j0Z668Ry4ciA6W0qC+R9Iq7/2+5CjMSjZfwVMV7UhV/jVBpYp9MNLNHJf3M3X8w1rHMTERFy3RnWlSrI51MjBXUZlYn6R1Jp7n7rrGOJ6gBoDTjHvXh7v3uPi1OSAOpqOqZNwhFWh9DtuJC5Rk91nloKrdEFwVSk+bHkNXzUHmqYuYNQpf0x5DV85AvVTHzBqFL82NIUKPyVMXMG4QuzY8hQY3slXpGhrHOCECaH0OCGtmKu8bzSFUx8wahS/NjyMlEZIsTg4AkTiYiZJwYRILyOryeoEa2ODGIhBxNL1qlIKiRLU4MIiFxd0qrRAQ1ssWJQSQkz71oBDWOTpKdgazxjATkuReNoEZp2tul6dOlq6/OZ2cgKlaee9EIasQ3dLamr+/j9+WlMxAVK8+9aIyjRnzFxjwPMYu6LwCUjHHUSMZYZ2Xy0BkIBIigRnxHCuK8dAYCASKoEV+hszWSNG1afjoDgQAR1Iiv0NmatjZp505CGigjtuJCaZqbCWUgZbSoASBwBHWe5HXpsIBQxcgCXR95wc7cZUcVIytMeMkLFuAvO6oY5cSEl2qQ56XDAkEVIysEdV7keemwQFDFyApBnaFET0zleemwQFDFyApBnZHEtw3K89JhgaCKkRVOJmaEE1MARuJkYoC2bpWuUrveVoMGVKO31aCr1M6JKQAfwzjqjNz0qXbd1deiyYoG5TaoR99Xi6Z/SpL4Lg3gEFrUGfmWVg2H9JDJ6te3xC4pAA5HUGdkyvuF+ziK3Q6gehHUWWFQLoCYCOqsMCgXQEwEdVYYlAsgplijPszsk5IelHS2JJf0F+6+vozlqg4swg8ghrjD8+6R9FN3/5KZHSOpwMZ5AIByGDOozewTkhZJWiFJ7r5P0r7yFgsAMCROH/Vpknol/cDMfmVmD5rZ5NEHmVmLmXWYWUdvb2/iBQWAahUnqCdIWiDpPnc/R9JuSbeNPsjdW929yd2b6uvrEy4mAFSvOEG9TdI2d//F4PV1ioIbAJCCMYPa3f9H0jtmdsbgTRdJeqOspQIADIs76uNmSe2DIz62SPpq+YoEABgpVlC7e5ekguukAgDKi5mJABA4ghoAAkdQA0DgCGoACFzYQd3eHu0CW1MTXR71Ft1AfHzsEJpw90xsb5daWqT+we2qenqi6xIrzqFs+NghROG0qEc3Y2655dD/liH9/dIq9hRE+axaxccO4QmjRV2oGVPMVvYURPkU+3jxsUOWwmhRF2rGFMOegigjtrJEiMII6rjNFfYURJmxlSVCFEZQF2uuTJvGnoIlYLTC+LGVJUJk7p74gzY1NXlHR0f8fzC6j1qKmjH8D4mNKgQqm5l1unvBNZXCaFHTjBk3RisA+RVGixrjVlMjFXorzaSDB9MvD4DShN+ixrgxWgHIL4I6JxitAOQXQZ0TdPMD+RXGzEQkormZYAbyiBY1AASOoAaAwBHUABA4ghoAAkdQA0DgCGoACBxBDQCBI6gBIHAENQAEjqDGUWGTAiA9TCFHyQrtRdzSEv3OFHYgebSoUTI2KQDSRVCjZMX2Io67RzGA0hDUKBmbFADpIqhRMjYpANJFUKNkbFIApItRHzgqbFIApIcWNQAELlaL2sy6JX0oaUDSgWJbmgMAkldK18cF7r6zbCUBABRE1wcABC5uULukp82s08xaCh1gZi1m1mFmHb29vcmVEACqXNyg/qy7L5B0iaS/MrNFow9w91Z3b3L3pvr6+kQLCQDVLFZQu/u7g5c7JD0h6bxyFgoAcMiYQW1mk81s6tDvkpZKer3cBQMAROKM+jhR0hNmNnT8I+7+07KWCgAwbMygdvctkualUBYAQAEMzwOAwBHUABA4ghoAAkdQA0DgCGoACBxBDQCBI6gBIHAENQAEjqAGgMAR1AAQOIIaAAJHUANA4AhqAAgcQQ0AgSOoASBwBDUABI6gBoDAEdQAEDiCGgACR1ADQOAIagAIHEENAIEjqAEgcAQ1AASOoAaAwBHUABA4ghoAAkdQA0DgCGoACBxBDQCBCyao29ulhgappia6bG/PukQAEIYJWRdAikK5pUXq74+u9/RE1yWpuTm7cgFACIJoUa9adSikh/T3R7cDQLULIqi3bi3tdgCoJkEE9cyZpd0OANUkiKC+806pru7w2+rqotsBoNrFDmozqzWzX5nZfyRdiOZmqbVVmjVLMosuW1s5kQgAUmmjPm6RtFHSJ8pRkOZmghkAConVojazGZKWS3qwvMUBAIwWt+vjO5L+TtLBYgeYWYuZdZhZR29vbxJlAwAoRlCb2aWSdrh755GOc/dWd29y96b6+vrECggA1S5Oi/qzkr5oZt2SHpV0oZm1lbVUAIBhYwa1u9/u7jPcvUHSlyU96+5Xl71kAABJZVrro7Ozc6eZ9ZTwT6ZL2lmOslQY6iFCPVAHQ6qpHmYVu8PcPc2CFC6EWYe7N2VdjqxRDxHqgToYQj1EgpiZCAAojqAGgMCFEtStWRcgENRDhHqgDoZQDwqkjxoAUFwoLWoAQBEENQAELrWgNrNlZvammb1lZrcVuN/MbO3g/a+Z2YK0ypamGPXQPPj6XzOzl8xsXhblLLex6mHEceea2YCZfSnN8qUlTj2Y2WIz6zKz35jZf6ddxjTE+H9xvJn9u5m9OlgPX82inJlx97L/SKqV9DtJp0k6RtKrkmaPOuYLkv5TkklaKOkXaZQtzZ+Y9fAZSScM/n5JtdbDiOOelfSUpC9lXe6MPg+flPSGpJmD1/8g63JnVA9/L+nuwd/rJb0v6Zisy57WT1ot6vMkveXuW9x9n6I1Qy4bdcxlkv7VIy9L+qSZnZRS+dIyZj24+0vu/sHg1ZclzUi5jGmI83mQpJslPS5pR5qFS1GcevhzST92962S5O55rIs49eCSppqZSZqiKKgPpFvM7KQV1KdIemfE9W2Dt5V6TKUr9TX+paJvGXkzZj2Y2SmSrpB0f4rlSlucz8Ppkk4ws+fNrNPMrkmtdOmJUw//IulMSe9K+rWkW9y96LLLeVOWtT4KsAK3jR4XGOeYShf7NZrZBYqC+k/LWqJsxKmH70i61d0HokZULsWphwmSGiVdJOk4SevN7GV331TuwqUoTj1cLKlL0oWS/kjSf5nZi+7++zKXLQhpBfU2SX844voMRX8ZSz2m0sV6jWY2V9FuOpe4e19KZUtTnHpokvToYEhPl/QFMzvg7k+mUsJ0xP1/sdPdd0vabWYvSJonKU9BHacevirpnzzqpH7LzN6W9MeSNqRTxIyldLJggqQtkk7VoZMFZ406ZrkOP5m4IesO/IzqYaaktyR9JuvyZlkPo45/WPk8mRjn83CmpGcGj62T9Lqks7Muewb1cJ+kOwZ/P1HSdknTsy57Wj+ptKjd/YCZ3STpZ4rO8D7k7r8xsxsG779f0Zn9LygKqX5Ff0FzJWY9/IOkaZLuHWxNHvCcrR4Wsx5yL049uPtGM/uppNcUbYX3oLu/nl2pkxfz87Ba0sNm9mtFjblb3b1alj9lCjkAhI6ZiQAQOIIaAAJHUANA4AhqAAgcQQ0AgSOoASBwBDUABO7/ARH9usRSKFMjAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -456,9 +433,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "经过 100 次更新,我们发现红色的预测结果已经比较好的拟合了蓝色的真实值。\n", - "\n", - "现在你已经学会了你的第一个机器学习模型了,再接再厉,完成下面的小练习。" + "经过 100 次更新,可以发现红色的预测结果已经比较好的拟合了蓝色的真实值。" ] }, { @@ -478,26 +453,19 @@ "\\hat{y} = w_0 + w_1 x + w_2 x^2 + w_3 x^3 \n", "$$\n", "\n", - "这样就能够拟合更加复杂的模型,这就是多项式模型,这里使用了 $x$ 的更高次,同理还有多元回归模型,形式也是一样的,只是出了使用 $x$,还是更多的变量,比如 $y$、$z$ 等等,同时他们的 $loss$ 函数和简单的线性回归模型是一致的。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n" + "这样就能够拟合更加复杂的模型,这里使用了 $x$ 的更高次,同理还有多元回归模型,形式也是一样的,只是除了使用 $x$,还是更多的变量,比如 $y$、$z$ 等等,同时他们的 $loss$ 函数和简单的线性回归模型是一致的。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "首先我们可以先定义一个需要拟合的目标函数,这个函数是个三次的多项式" + "首先定义一个需要拟合的目标函数,这个函数是个三次的多项式" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -524,7 +492,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "我们可以先画出这个多项式的图像" + "多项式的的曲线绘制" ] }, { @@ -535,7 +503,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 16, @@ -608,7 +576,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "接着我们可以定义需要优化的参数,就是前面这个函数里面的 $w_i$" + "接着定义需要优化的参数,就是前面这个函数里面的 $w_i$" ] }, { @@ -644,7 +612,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 20, @@ -677,7 +645,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "可以发现,这两条曲线之间存在差异,我们计算一下他们之间的误差" + "可以发现,这两条曲线之间存在差异,计算一下他们之间的误差" ] }, { @@ -750,7 +718,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 25, @@ -783,7 +751,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "因为只更新了一次,所以两条曲线之间的差异仍然存在,我们进行 100 次迭代" + "因为只更新了一次,所以两条曲线之间的差异仍然存在,下面进行 100 次迭代" ] }, { @@ -835,7 +803,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 27, @@ -877,11 +845,9 @@ "collapsed": true }, "source": [ - "## 5. 练习题\n", - "\n", - "上面的例子是一个三次的多项式,尝试使用二次的多项式去拟合它,看看最后能做到多好\n", + "## 练习题\n", "\n", - "**提示:参数 `w = torch.randn(2, 1)`,同时重新构建 x 数据集**" + "* 上面的例子是一个三次的多项式,尝试使用二次的多项式去拟合它,看看最后能做到多好\n" ] } ], diff --git a/6_pytorch/4-logistic-regression.ipynb b/6_pytorch/4-logistic-regression.ipynb index eaf2864..f536112 100644 --- a/6_pytorch/4-logistic-regression.ipynb +++ b/6_pytorch/4-logistic-regression.ipynb @@ -4,16 +4,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# 逻辑斯蒂回归模型" + "# 逻辑回归的PyTorch实现" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "上一节课我们学习了简单的线性回归模型,这一节我们会学习第二个模型:逻辑斯蒂回归模型(Logistic Regression)。\n", - "\n", - "逻辑斯蒂回归是一种广义的回归模型,其与多元线性回归有着很多相似之处,模型的形式基本相同,虽然也被称为回归,但是其更多的情况使用在分类问题上,同时又以二分类更为常用。" + "逻辑回归是一种广义的回归模型,其与多元线性回归有着很多相似之处,模型的形式基本相同,虽然也被称为回归,但是其更多的情况使用在分类问题上。" ] }, { @@ -22,60 +20,19 @@ "source": [ "## 1. 模型形式\n", "\n", - "逻辑斯蒂回归的模型形式和线性回归一样,都是 $y = wx + b$,其中 $x$ 可以是一个多维的特征,唯一不同的地方在于逻辑斯蒂回归会对 $y$ 作用一个 logistic 函数,将其变为一种概率的结果。 \n", + "逻辑回归的模型形式和线性回归一样,都是 $y = wx + b$,其中 $x$ 可以是一个多维的特征,唯一不同的地方在于逻辑斯蒂回归会对 $y$ 作用一个 logistic 函数,将其变为一种概率的结果。 \n", "\n", "$$\n", "h_\\theta(x) = g(\\theta^T x) = \\frac{1}{1+e^{-\\theta^T x}}\n", "$$\n", "\n", - "Logistic 函数作为 Logistic 回归的核心,我们下面讲一讲 Logistic 函数,也被称为 Sigmoid 函数。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1.1 Sigmoid 函数\n", - "Sigmoid 函数非常简单,其公式如下\n", + "Logistic 函数作为 Logistic 回归的核心,也被称为 Sigmoid 函数。Sigmoid 函数非常简单,其公式如下\n", "\n", "$$\n", "f(x) = \\frac{1}{1 + e^{-x}}\n", "$$\n", "\n", - "Sigmoid 函数的图像如下" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAip0lEQVR4nO3deZQU5dn+8e8tyCLIoqCiLIqCSlwBt6hvQIiCxt0YPMpPjUg0IZpETVATQ9CTRD2Jr764oLgvwARhHA2iYAYToiiCSlgEUXFBlsgqiAww9++Pp5Bm7JlpZrq7erk+59SZrq6nq68pmrtrnqp6ytwdEREpLrvEHUBERLJPxV9EpAip+IuIFCEVfxGRIqTiLyJShFT8RUSKkIq/5AUze8DMfleH13U0s/Vm1qAOr73NzL4ws2U7+9r6qOvvKrIzTOf5S7qZ2WJgkLtPydf3NrOOwAKgk7uvSEe2at7nMkLekzL1HiLJaM9fJLmOwMpMFn6ROKn4S9aYWWMz+18z+zya/tfMGics/7WZLY2WDTIzN7ODomWPmdlt0eM2ZvaCma0xs1Vm9i8z28XMniQU7eejrp5fm9n+0XoaRq/dw8wejd5jtZmVJsnZF5gM7But5zEz62Vmn1Vptzhqi5kNM7MSM3vCzL40s7lm1jOhbQczG29m/zWzlWY2wswOBR4ATojeZ03V3zWav9LMFkW/a5mZ7ZuwzM3sKjN7P9oe95qZ1fffSgqfir9k083A8cBRwJHAscBvAcysH/AroC9wENCrhvVcB3wGtAX2Bm4C3N0HAp8AZ7p7c3e/I8lrnwR2A74D7AXcVbVB1GXUH/g8Ws9lKf5+ZwFjgFZAGTAi+t0aAC8AHwP7A/sBY9x9PnAV8Hr0Pq2qrtDMTgH+BFwItIvWMaZKsx8AxwBHRO1OSzGvFDEVf8mmi4Hh7r7C3f8L/AEYGC27EHjU3ee6+1fAsBrWs5lQCDu5+2Z3/5encPDKzNoRivpV7r46eu2r9fmFqpjm7hPdfSvhS+bI6PljgX2BG9x9g7t/7e7TUlznxcAj7j7L3TcBNxL+Utg/oc2f3X2Nu38ClBO+XEVqpOIv2bQvYc91m4+j57Yt+zRhWeLjqu4EFgEvm9mHZjY0xffvAKxy99Uptt9ZiWcFfQU0ibqbOgAfu/uWOqxzh23m7uuBlYS/Hqp73+Z1eB8pMir+kk2fA50S5jtGzwEsBdonLOtQ3Urc/Ut3v87dOxO6Wn5lZn22La7h/T8F9jCzVjsbHNhA6C4CvunKaZviaz8FOm477lBFbX+x7LDNzKwZsCewJMX3FklKxV8yZVcza5IwNQRGA781s7Zm1ga4BXgqal8CXG5mh5rZbkC157mb2Q/M7KDowOZaYCtQGS1eDnRO9jp3Xwq8CNxnZq3NbFcz+58Uf5+FhD35M8xsV8Kxisa1vGabNwlfbn82s2bR9jgxIW97M2tUzWtHE7bLUdHB8T8Cb7j74hTfWyQpFX/JlInAxoRpGHAb8BYwG/gPMCt6Dnd/EbiH0Ge9CJgerWdTknV3AaYA64HXgfvcvTxa9ifCF8waM7s+yWsHEo4ZvAesAH6Ryi/j7muBnwKjCHvdGwgHnVN57VbgTMKB7E+i1/0oWvwPYC6wzMy+SPLaKYQvwmcJXyAHAgNSeV+RmugiL8lJ0WmQc4DGdewrF5EaaM9fcoaZnRtdC9AauB14XoVfJDNqLf5m9oiZrTCzOdUsNzO7J7oIZbaZdU9/TCkSPyF0xXxA6Me/Ot44IoWr1m6f6IDYeuAJdz8syfLTgZ8DpwPHAXe7+3EZyCoiImlS656/u/8TWFVDk7MJXwzu7tOBVtHFNCIikqOSnXe8s/ZjxwtyPoueW1q1oZkNBgYDNGnSpEfHjh3T8PaZVVlZyS675P6hEeVMn3zICPmV02wXtm7dhS1bjMpKqKy0hAm2bt3+uLLScAf38PPb8+FxsTFzunRZz8KFC79w91SvMalWOop/ytz9QeBBgIMPPtgXLFiQzbevk6lTp9KrV6+4Y9RKOdMnHzJCbuR0h+XL4eOPw7R4cfi5bFl4fsUKWLp0Cxs21FxqGjeGFi3C1KwZNGkCTZvu+LPq48aNoWHD1KYGDXac32WXMJlt//nOO2/To8fRmO34fE2Pa1uWOMRe1eH2dnaZGXTsCGb2MWmQjuK/hB2vxmyPrj4UKSju8NFH8J//wPz5MG9emObPh6++2rFtq1aw336w117QvTscfvgyundvz157hedatdpe6LdNjVO9XC6j1nLyyXFnyJ50FP8yYIiZjSEc8F0bXUkpInnqyy9hxgyYPh1efz38/CLhErT27aFbN7jySujSBTp12j61aLHjuqZOXUSvXu2R3FJr8Tez0YThddtE45n/HtgVwN0fIFzJeTrhqsyvgMszFVZEMsMd3n4bJk0K0+uvw5boCotDDoEf/ACOPx6OPjrMVy3wkn9qLf7uflEtyx34WdoSiUhWuMNbb0FJSZg++SQ8f/TRcP310KsXHHsstG4da0zJkKwe8BWR+K1aBY8/DiNHwoIFsOuucOqp8Ic/QP/+sPfecSeUbFDxFykS8+fDHXfA6NGwaRN897vw8MNw7rnauy9GKv4iBW72bLjtNhg3LpwqefnlcNVVcOSRtb9WCpeKv0iBWroUfvMbePJJ2H13GDoUfvlLaFvvy4OkEKj4ixSYigq4+24YPjw8/s1v4Ne/hj32iDuZ5BIVf5ECMns2XHwxzJkTTs+86y446KC4U0kuyv2BQUSkVpWV8Je/wDHHhIuxysrg+edV+KV62vMXyXP//S9cdBG88gqccw48+KD69aV2Kv4ieWzuXDjzzHBw96GH4Iorvj1ImEgy6vYRyVNvvLEHJ5wAGzfCq6/CoEEq/JI6FX+RPPTww3DTTYdz4IFhALZjj407keQbFX+RPDNyZNjL79lzFdOmhRE2RXaWir9IHrn//nB17hlnwK23zqFZs7gTSb5S8RfJE/ffDz/9aTjA++yz0KiRxx1J8pjO9hHJA2Vl8LOfhQu3xo2DRo3iTiT5Tnv+Ijlu5sxwHn/PnjB2rAq/pIeKv0gO+/TT0M3Tpk3Y+99tt7gTSaFQt49IjtqwIRT+DRvg3/+GffaJO5EUEhV/kRx17bVhoLaJE+Gww+JOI4VG3T4iOWj06HAh1403Qr9+caeRQqTiL5JjPvgAfvKTcJvFYcPiTiOFSsVfJIdUVIQzexo0gGeeCTdXF8kE9fmL5JBbbw1j9YwbB506xZ1GCpn2/EVyxJw58Oc/wyWXwPnnx51GCp2Kv0gOqKyEwYOhZUv461/jTiPFQN0+Ijlg5Eh4/XV4/HHdhUuyQ3v+IjFbsgSGDoU+fWDgwLjTSLFQ8ReJ2S9+Ec7yeeAB3YlLskfFXyRG//pXOLPnppvgoIPiTiPFRMVfJCbucMMNsO++cN11caeRYqMDviIxGTcO3ngjDOOg0Tol27TnLxKDioowbs/hh8Oll8adRoqR9vxFYnD//WEMnxdfDEM5iGSb9vxFsmztWhg+HPr2hdNOizuNFCsVf5EsGzECVq2C22/XqZ0Sn5SKv5n1M7MFZrbIzIYmWd7RzMrN7G0zm21mp6c/qkj+W78e7ror3Ii9e/e400gxq7X4m1kD4F6gP9ANuMjMulVp9lugxN2PBgYA96U7qEghGDkSVq6Em2+OO4kUu1T2/I8FFrn7h+5eAYwBzq7SxoEW0eOWwOfpiyhSGDZuhDvvDH39xx8fdxopdubuNTcwuwDo5+6DovmBwHHuPiShTTvgZaA10Azo6+4zk6xrMDAYoG3btj1KSkrS9XtkzPr162nevHncMWqlnOmTqYwTJuzHPfd04a673uaoo9bWe335sC1BOdOtd+/eM929Z71X5O41TsAFwKiE+YHAiCptfgVcFz0+AZgH7FLTert27er5oLy8PO4IKVHO9MlExk2b3Nu3dz/pJPfKyvSsMx+2pbtyphvwltdSt1OZUjnPfwnQIWG+ffRcoiuAftGXyetm1gRoA6yo21eSSGF58kn47DMYNUpn+EhuSKXPfwbQxcwOMLNGhAO6ZVXafAL0ATCzQ4EmwH/TGVQkX7mHM3yOOgpOPTXuNCJBrXv+7r7FzIYALwENgEfcfa6ZDSf8+VEGXAc8ZGa/JBz8vSz680Sk6L3yCsydC48+qr1+yR0pDe/g7hOBiVWeuyXh8TzgxPRGEykM99wT7s41YEDcSUS20xW+Ihn0wQfwwgtw1VXQpEncaUS2U/EXyaD/+z9o2BCuvjruJCI7UvEXyZB16+CRR+DCC6Fdu7jTiOxIxV8kQx57DL78Eq69Nu4kIt+m4i+SAe5w771hGIdjjok7jci36WYuIhnwz3/CwoXwxBNxJxFJTnv+IhkwahS0bAnnnx93EpHkVPxF0mz16nBz9osv1o3ZJXep+Iuk2dNPw9dfw6BBcScRqZ6Kv0gaucNDD0GPHnD00XGnEameir9IGs2cCbNna69fcp+Kv0gajRoFTZvCRRfFnUSkZir+ImmyYQM880y4ordly7jTiNRMxV8kTSZMCFf0XnFF3ElEaqfiL5ImTz4J++8PJ50UdxKR2qn4i6TB0qUwZQpccolu2CL5QcVfJA3GjIHKynBhl0g+UPEXSYOnnoKePeGQQ+JOIpIaFX+Repo3D2bNCl0+IvlCxV+knp56Cho00D16Jb+o+IvUQ2VlGMvn+9+HvfeOO41I6lT8Reph2jT45BMYODDuJCI7R8VfpB6efhqaNYOzz447icjOUfEXqaMtW+DZZ+HMM8MXgEg+UfEXqaPycli5En70o7iTiOw8FX+ROho7Fpo3h3794k4isvNU/EXqYPNmGD8+9PU3aRJ3GpGdp+IvUgevvBLu1XvhhXEnEakbFX+ROigpgRYt4LTT4k4iUjcq/iI7qaIijN1/zjnQuHHcaUTqRsVfZCdNmQJr1qjLR/Kbir/ITiopgVatwpAOIvlKxV9kJ1RUQGlp6PJp1CjuNCJ1p+IvshNefRXWroXzzos7iUj9pFT8zayfmS0ws0VmNrSaNhea2Twzm2tmz6Q3pkhuKC2F3XaDvn3jTiJSPw1ra2BmDYB7ge8DnwEzzKzM3ecltOkC3Aic6O6rzWyvTAUWiUtlJTz3XLiit2nTuNOI1E8qe/7HAovc/UN3rwDGAFXHMLwSuNfdVwO4+4r0xhSJ38yZsGRJ6O8XyXfm7jU3MLsA6Ofug6L5gcBx7j4koU0psBA4EWgADHP3SUnWNRgYDNC2bdseJSUlafo1Mmf9+vU0b9487hi1Us70qS7jqFEHMHp0RyZM+DctWmyJIdmO8mFbgnKmW+/evWe6e896r8jda5yAC4BRCfMDgRFV2rwATAB2BQ4APgVa1bTerl27ej4oLy+PO0JKlDN9qsvYrZv7KadkN0tN8mFbuitnugFveS11O5UplW6fJUCHhPn20XOJPgPK3H2zu39E+CugS12/kERyzcKF4Ubt6vKRQpFK8Z8BdDGzA8ysETAAKKvSphToBWBmbYCuwIfpiykSr9LS8FN37JJCUWvxd/ctwBDgJWA+UOLuc81suJmdFTV7CVhpZvOAcuAGd1+ZqdAi2VZaCt27Q8eOcScRSY9aT/UEcPeJwMQqz92S8NiBX0WTSEFZuhSmT4c//CHuJCLpoyt8RWrx/PPgrv5+KSwq/iK1KC2FAw+Eww6LO4lI+qj4i9Rg3bpw165zzgGzuNOIpI+Kv0gNJk0KI3mqy0cKjYq/SA1KS6FtWzjhhLiTiKSXir9INSoq4O9/h7POggYN4k4jkl4q/iLVmDo19Pmry0cKkYq/SDVKS6FZM+jTJ+4kIumn4i+SRGVlKP4au18KlYq/SBIzZoQre9XlI4VKxV8kidLScJD3jDPiTiKSGSr+IkmUlkKvXtC6ddxJRDJDxV+kik8+2Y333lOXjxQ2FX+RKv797z0Bjd0vhU3FX6SKadPa0KMHdOhQe1uRfKXiL5Jg6VKYN6+lunyk4Kn4iyQoi25Qeu658eYQyTQVf5EEpaWw335f0a1b3ElEMkvFXySybez+k076QmP3S8FT8ReJTJwImzfDiSd+EXcUkYxT8ReJlJbCXntBt27r4o4iknEq/iLApk1hz19j90uxUPEXAcrL4csvdVWvFA8VfxE0dr8UHxV/KXqVlfDcc9C/PzRpEncakexQ8Zei9+absGyZunykuKj4S9ErLYWGDeH00+NOIpI9Kv5S1Nxh/HiN3S/FR8Vfitq8efD++3DeeXEnEckuFX8pahMmhJ8au1+KjYq/FLXx4+GEE2DffeNOIpJdKv5StBYvhrff1vDNUpxU/KVobevyUfGXYqTiL0VrwgQ4/HA46KC4k4hkn4q/FKXly2HaNJ3lI8UrpeJvZv3MbIGZLTKzoTW0O9/M3Mx6pi+iSPqVlYVz/NXlI8Wq1uJvZg2Ae4H+QDfgIjP71k3uzGx34FrgjXSHFEm3CROgc2c44oi4k4jEI5U9/2OBRe7+obtXAGOAZGdF3wrcDnydxnwiabd2LUyZEvb6dbtGKVYNU2izH/BpwvxnwHGJDcysO9DB3f9uZjdUtyIzGwwMBmjbti1Tp07d6cDZtn79euVMo1zI+core7F5czc6dZrF1KnfvmtXLmRMhXKmV77kTBt3r3ECLgBGJcwPBEYkzO8CTAX2j+anAj1rW2/Xrl09H5SXl8cdISXKmboLLnDfZx/3rVuTL8+FjKlQzvTKl5zAW15LfU1lSqXbZwnQIWG+ffTcNrsDhwFTzWwxcDxQpoO+kos2boQXXwzDOeyic92kiKXy8Z8BdDGzA8ysETAAKNu20N3Xunsbd9/f3fcHpgNnuftbGUksUg+TJ8OGDTrFU6TW4u/uW4AhwEvAfKDE3eea2XAzOyvTAUXSafx4aNkyDOEsUsxSOeCLu08EJlZ57pZq2vaqfyyR9KuoCDduOeccaNQo7jQi8VKvpxSNyZPDaZ4XXhh3EpH4qfhL0Rg7Flq1gr59404iEj8VfykKX38Nzz0XLuxSl4+Iir8UiZdfhnXr1OUjso2KvxSFkhLYYw/o0yfuJCK5QcVfCt7GjaHL57zzYNdd404jkhtU/KXgTZoE69ery0ckkYq/FLySEthzT+jdO+4kIrlDxV8K2oYN8PzzocunYUqXNIoUBxV/KWjPPRe+AC6+OO4kIrlFxV8K2lNPQYcOcPLJcScRyS0q/lKwli8P5/dffLGGbxapSv8lpGCNHQtbt8LAgXEnEck9Kv5SsJ56Co4+Grp1izuJSO5R8ZeCtGABzJgBl1wSdxKR3KTiLwXp6adDP/9FF8WdRCQ3qfhLwXEPXT59+0K7dnGnEclNKv5ScF57DT76SF0+IjVR8ZeC88gj0Lx5GLtfRJJT8ZeCsm4djBkT+vqbN487jUjuUvGXgjJmDHz1FQwaFHcSkdym4i8FZdQoOPxwOOaYuJOI5DYVfykY774bzu0fNAjM4k4jkttU/KVgjBoFjRvrLB+RVKj4S0HYuDGc23/++eFevSJSMxV/KQjjx8OaNTrQK5IqFX8pCA88AAceCN/7XtxJRPKDir/kvVmzYNo0+NnPNG6/SKr0X0Xy3t13Q7Nm8OMfx51EJH+o+EteW748XNh12WXQsmXcaUTyh4q/5LWRI6GiAn7+87iTiOQXFX/JWxUVcP/90L8/HHxw3GlE8ouKv+StkhJYtgyuvTbuJCL5R8Vf8pJ7ONB7yCFw6qlxpxHJPykVfzPrZ2YLzGyRmQ1NsvxXZjbPzGab2Stm1in9UUW2mzoV3noLrrlG4/iI1EWtxd/MGgD3Av2BbsBFZtatSrO3gZ7ufgQwDrgj3UFFEt12G+yzD1x+edxJRPJTKnv+xwKL3P1Dd68AxgBnJzZw93J3/yqanQ60T29Mke1eew3+8Q+44QZo0iTuNCL5ydy95gZmFwD93H1QND8QOM7dh1TTfgSwzN1vS7JsMDAYoG3btj1KSkrqGT/z1q9fT/M8uCVUMeUcOvRw3ntvd0aPnk7TppVpSrZdMW3LbFDO9Ordu/dMd+9Z7xW5e40TcAEwKmF+IDCimraXEPb8G9e23q5du3o+KC8vjztCSool58yZ7uD+xz+mJ08yxbIts0U50wt4y2upr6lMDVP4flgCdEiYbx89twMz6wvcDHzP3TfV4/tIpFq33QatWoVxfESk7lLp858BdDGzA8ysETAAKEtsYGZHAyOBs9x9RfpjisCcOTBhQjjDp0WLuNOI5Ldai7+7bwGGAC8B84ESd59rZsPN7Kyo2Z1Ac+BvZvaOmZVVszqROrvpplD0r7km7iQi+S+Vbh/cfSIwscpztyQ87pvmXCI7ePVVeP55+NOfYM89404jkv90ha/kvMpKuP566NBBQzmIpEtKe/4icRo7NlzN+/jj0LRp3GlECoP2/CWnbdoU+vqPOgouuSTuNCKFQ3v+ktNGjIDFi2HyZN2iUSSd9N9Jctann8KwYWG8/r46pUAkrVT8JSe5w5AhsHVr2PsXkfRSt4/kpAkToKwM7rgDOneOO41I4dGev+SctWvDXv9RR8Evfxl3GpHCpD1/yTk33gjLl8Nzz0FDfUJFMkJ7/pJTJk8ON2UfMgSOOSbuNCKFS8Vfcsby5TBwIBx6aBjGQUQyR39US06orIRLLw39/ZMnw267xZ1IpLCp+EtO+Otf4aWXQpfP4YfHnUak8KnbR2I3fXo4yHv++fCTn8SdRqQ4qPhLrBYvhrPPho4d4aGHwCzuRCLFQcVfYrN2LZxxBlRUwN//Dq1bx51IpHioz19isXkz/PCHsHBh6Os/5JC4E4kUFxV/ybrKytC3P3kyPPIInHJK3IlEio+6fSSrKith8GB49FH4/e/h8svjTiRSnLTnL1lTWQl33nkwkybB734Xir+IxEN7/pIVW7bAFVfApEnt+P3vYfhwndkjEicVf8m4NWvCWT2PPQaXXfYRw4bFHEhE1O0jmbVoEZx5Zvg5ahQceODHwAFxxxIpetrzl4x5+WU47jhYsQKmTAndPiKSG1T8Je02boRrr4XTToN27eDNN+F734s7lYgkUvGXtHrnnTAO/z33wDXXwIwZcOCBcacSkapU/CUtVq2Cn/8cevQIjydNgrvvhqZN404mIsmo+Eu9bN4MI0dC165w331w9dUwZ07o8hGR3KXiL3VSURFG4Tz4YLjqKvjOd2DWLBgxAvbYI+50IlIbFX/ZKStXwl/+AgcdFIZpaNMGyspg6lQ48si404lIqnSev9SqshKmTQt7+n/7G2zaBCefHOZPPVVX6orkIxV/SWrr1nCHrZISGDcOPv8cWrSAK68MI3IedljcCUWkPlT8BQD3cFet8vIwvv7kybB6NTRuDKefDhdeGK7UbdYs7qQikg4q/kVqxQqYPRvefRdefx1eew2WLg3L2rULt1bs1w/69w97/CJSWFT8C9imTfDxx/DBB/Dhh+HnnDmh6C9fvr3d/vtD795w4omhL/+ww9SPL1LoUir+ZtYPuBtoAIxy9z9XWd4YeALoAawEfuTui9MbVdxh/fpw79s1a8L0xRdhj3369P155hlYtizML10a+undt7++aVM49NDQjXPEEdunNm3i+o1EJC61Fn8zawDcC3wf+AyYYWZl7j4vodkVwGp3P8jMBgC3Az9KZ9BtRcx9+1R1PpU2O/uaVasafdMdUlkZDoRu2bLjlOy56p6vqAhj3yROX39d/XPr1m0v9GvXhnUmY9aJtm1Dl80++4S9906doHPnMLxC587hee3Riwiktud/LLDI3T8EMLMxwNlAYvE/GxgWPR4HjDAzc0/c79zR++/vTpMmqRXgeH034+/QpEnYK982Jc63axf21lu1ClPLltsft2oVLqhq1w7mz/8nffpo9DQRSU0qxX8/4NOE+c+A46pr4+5bzGwtsCfwRWIjMxsMDI5mN23aZHPqEjrL2lDl90i3r78O0+rV9VpNxnOmST7kzIeMoJzpli85D07HSrJ6wNfdHwQeBDCzt9y9Zzbfvy6UM73yIWc+ZATlTLd8ypmO9aQyvMMSoEPCfPvouaRtzKwh0JJw4FdERHJQKsV/BtDFzA4ws0bAAKCsSpsy4NLo8QXAP2rq7xcRkXjV2u0T9eEPAV4inOr5iLvPNbPhwFvuXgY8DDxpZouAVYQviNo8WI/c2aSc6ZUPOfMhIyhnuhVVTtMOuohI8dGQziIiRUjFX0SkCGW0+JvZD81srplVmlnPKstuNLNFZrbAzJLe9C86yPxG1G5sdMA5o6L3eSeaFpvZO9W0W2xm/4napeXUq51hZsPMbElC1tOradcv2saLzGxoDDnvNLP3zGy2mU0ws1bVtMv69qxt25hZ4+jzsCj6HO6fjVxVMnQws3Izmxf9X7o2SZteZrY24bNwS7ZzRjlq/De04J5oe842s+4xZDw4YTu9Y2brzOwXVdrEsj3N7BEzW2G2/fonM9vDzCab2fvRz9bVvPbSqM37ZnZpsjbf4u4Zm4BDCRckTAV6JjzfDXgXaAwcAHwANEjy+hJgQPT4AeDqTOZN8v5/AW6pZtlioE0281R5/2HA9bW0aRBt285Ao2ibd8tyzlOBhtHj24Hbc2F7prJtgJ8CD0SPBwBjY/h3bgd0jx7vDixMkrMX8EK2s+3svyFwOvAiYMDxwBsx520ALAM65cL2BP4H6A7MSXjuDmBo9Hhosv8/wB7Ah9HP1tHj1rW9X0b3/N19vrsvSLLobGCMu29y94+ARYRhJL5hZgacQhguAuBx4JwMxt1B9P4XAqOz9Z4Z8M3QHO5eAWwbmiNr3P1ld98SzU4nXCeSC1LZNmcTPncQPod9os9F1rj7UnefFT3+EphPuKI+H50NPOHBdKCVmbWLMU8f4AN3/zjGDN9w938SzpZMlPgZrK4GngZMdvdV7r4amAz0q+394urzTzZkRNUP9J7AmoTCkaxNJp0MLHf396tZ7sDLZjYzGrYiDkOiP58fqebPwVS2czb9mLDnl0y2t2cq22aHYUuAbcOWxCLqdjoaeCPJ4hPM7F0ze9HMvpPdZN+o7d8w1z6PA6h+5y4XtifA3u4eDS3JMmDvJG3qtF3rPbyDmU0B9kmy6GZ3f66+68+EFDNfRM17/Se5+xIz2wuYbGbvRd/cWckJ3A/cSvgPdyuhi+rH6Xz/VKWyPc3sZmAL8HQ1q8n49sxnZtYceBb4hbuvq7J4FqHrYn107KcU6JLliJBH/4bR8cOzgBuTLM6V7bkDd3czS9u5+fUu/u7etw4vS2XIiJWEPwsbRntdydrUSW2ZLQxRcR7h/gTVrWNJ9HOFmU0gdCOk9YOe6rY1s4eAF5IsSmU711sK2/My4AdAH486KZOsI+Pbs4qdGbbkM4tx2BIz25VQ+J929/FVlyd+Gbj7RDO7z8zauHtWBylL4d8wK5/HFPUHZrn78qoLcmV7RpabWTt3Xxp1ka1I0mYJ4TjFNu0Jx1lrFFe3TxkwIDqb4gDCt+qbiQ2iIlFOGC4CwvAR2fpLoi/wnrt/lmyhmTUzs923PSYc1MzqCKVV+krPreb9UxmaI6Ms3Ajo18BZ7v5VNW3i2J55MWxJdIzhYWC+u/+1mjb7bDsWYWbHEv5fZ/VLKsV/wzLg/0Vn/RwPrE3o0si2av+yz4XtmSDxM1hdDXwJONXMWkfdv6dGz9Usw0evzyX0P20ClgMvJSy7mXC2xQKgf8LzE4F9o8edCV8Ki4C/AY0zmTchw2PAVVWe2xeYmJDr3WiaS+jeyPaZAU8C/wFmRx+QdlVzRvOnE84Q+SCmnIsI/ZHvRNMDVXPGtT2TbRtgOOGLCqBJ9LlbFH0OO8ew/U4idO3NTtiGpwNXbfuMAkOi7fYu4aD6d2PImfTfsEpOI9wY6oPos9sz2zmjHM0IxbxlwnOxb0/Cl9FSYHNUN68gHGN6BXgfmALsEbXtSbir4rbX/jj6nC4CLk/l/TS8g4hIEdIVviIiRUjFX0SkCKn4i4gUIRV/EZEipOIvIlKEVPxFRIqQir+ISBH6//1zJnK5PI8iAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "plt.figure()\n", - "plt.axis([-10,10,0,1])\n", - "plt.grid(True)\n", - "X=np.arange(-10,10,0.1)\n", - "y=1/(1+np.e**(-X))\n", - "plt.plot(X,y,'b-')\n", - "plt.title(\"Logistic function\")\n", - "plt.show()" + "![logistic function](imgs/logistic_function.png)" ] }, { @@ -90,78 +47,60 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "另外一个 Logistic 回归的前提是确保你的数据具有非常良好的线性可分性,也就是说,你的数据集能够在一定的维度上被分为两个部分,比如\n", + "### 1.1 损失函数\n", "\n", - "![linear_sep](imgs/linear_sep.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "可以看到,上面绿色的点和蓝色的点能够几乎被一个黑色的平面分割开来" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1.2 损失函数\n", - "前一节对于回归问题,我们有一个 loss 去衡量误差,那么对于分类问题,我们如何去衡量这个误差,并设计 loss 函数呢?\n", + "Logistic 回归使用了 Sigmoid 函数将结果变到 $0 \\sim 1$ 之间,对于任意输入一个数据,经过 Sigmoid 之后的结果我们记为 $\\hat{y}$,表示这个数据点属于第二类的概率,那么其属于第一类的概率就是 $1-\\hat{y}$。\n", + "* 如果这个数据点属于第二类,我们希望 $\\hat{y}$ 越大越好,也就是越靠近 1 越好\n", + "* 如果这个数据属于第一类,那么我们希望 $1-\\hat{y}$ 越大越好,也就是 $\\hat{y}$ 越小越好,越靠近 0 越好\n", "\n", - "Logistic 回归使用了 Sigmoid 函数将结果变到 0 ~ 1 之间,对于任意输入一个数据,经过 Sigmoid 之后的结果我们记为 $\\hat{y}$,表示这个数据点属于第二类的概率,那么其属于第一类的概率就是 $1-\\hat{y}$。如果这个数据点属于第二类,我们希望 $\\hat{y}$ 越大越好,也就是越靠近 1 越好,如果这个数据属于第一类,那么我们希望 $1-\\hat{y}$ 越大越好,也就是 $\\hat{y}$ 越小越好,越靠近 0 越好,所以我们可以这样设计我们的 loss 函数\n", + "所以我们可以这样设计我们的 loss 函数\n", "\n", "$$\n", - "loss = -(y * log(\\hat{y}) + (1 - y) * log(1 - \\hat{y}))\n", + "loss = - \\left[ y * log(\\hat{y}) + (1 - y) * log(1 - \\hat{y}) \\right]\n", "$$\n", "\n", - "其中 y 表示真实的 label,只能取 {0, 1} 这两个值,因为 $\\hat{y}$ 表示经过 Logistic 回归预测之后的结果,是一个 0 ~ 1 之间的小数。如果 y 是 0,表示该数据属于第一类,我们希望 $\\hat{y}$ 越小越好,上面的 loss 函数变为\n", + "其中 $y$ 表示真实的 label,只能取 {0, 1} 这两个值,因为 $\\hat{y}$ 表示经过 Logistic 回归预测之后的结果,是一个 $0 \\sim 1$ 之间的小数。\n", "\n", + "* 如果 $y$ 是 0,表示该数据属于第一类,我们希望 $\\hat{y}$ 越小越好,上面的 loss 函数变为\n", "$$\n", - "loss = - (log(1 - \\hat{y}))\n", + "loss = - \\left[ log(1 - \\hat{y}) \\right]\n", "$$\n", - "\n", "在训练模型的时候我们希望最小化 loss 函数,根据 log 函数的单调性,也就是最小化 $\\hat{y}$,与我们的要求是一致的。\n", "\n", - "而如果 y 是 1,表示该数据属于第二类,我们希望 $\\hat{y}$ 越大越好,同时上面的 loss 函数变为\n", - "\n", + "* 而如果 $y$ 是 1,表示该数据属于第二类,我们希望 $\\hat{y}$ 越大越好,同时上面的 loss 函数变为\n", "$$\n", - "loss = -(log(\\hat{y}))\n", + "loss = - \\left[ log(\\hat{y}) \\right]\n", "$$\n", - "\n", - "我们希望最小化 loss 函数也就是最大化 $\\hat{y}$,这也与我们的要求一致。\n", - "\n", - "所以通过上面的论述,说明了这么构建 loss 函数是合理的。" + "希望最小化 loss 函数也就是最大化 $\\hat{y}$,这也与要求一致。\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 1.3 程序示例\n", + "### 1.2 程序示例\n", "\n", - "下面我们通过例子来具体学习 Logistic 回归" + "下面通过例子来学习如何使用PyTorch实现 Logistic 回归" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch\n", - "from torch.autograd import Variable\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", @@ -174,27 +113,27 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "我们从 `data.txt` 读入数据。读入数据点之后我们根据不同的 label 将数据点分为了红色和蓝色,并且画图展示出来了" + "从 `data.txt` 读入数据,读入数据点之后我们根据不同的 label 将数据点分为了红色和蓝色,并且画图展示出来了" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 13, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfqElEQVR4nO3dfYxd9X3n8fd3jI01jRPAnkqRxx5PKrPBEKTiMU3+yCZqltahWbN5qmwMDWpShzQklZomgCAWMhqlrVat2oVdyYlowOOC2PyxclU2FiJB0WYD9RAeDYIYY8w4SJmMm92Q4OWh3/3j3IE7d+7Dufeeh9/vnM9LuvLce4/v+d1zzv2e3/n+Ho65OyIiEr+RsgsgIiLZUEAXEakIBXQRkYpQQBcRqQgFdBGRijirrBWvW7fON23aVNbqRUSi9Mgjj/zc3cfavVdaQN+0aROzs7NlrV5EJEpm9mKn95RyERGpCAV0EZGKUEAXEakIBXQRkYpQQBcRqYieAd3M7jCzn5nZUx3eNzP7ezM7ZmZPmNkl2RczQwcPwqZNMDKS/HvwYNklEhHJRJoa+reB7V3e/yiwufHYA/y34YuVk4MHYc8eePFFcE/+3bNHQV1EKqFnQHf3HwCnuyxyBXCXJx4CzjGzd2dVwEzddBP8+tdLX/v1r5PXRUQil0UOfT3wUtPzucZry5jZHjObNbPZ+fn5DFbdp5Mn+3tdRCQihTaKuvt+d59y96mxsbYjV/O1cWN/r2dEaft60n6XomUR0E8BG5qejzdeC8/0NIyOLn1tdDR5PSdK29eT9ruUIYuAfgj4o0Zvl/cD/8fdX87gc7O3ezfs3w8TE2CW/Lt/f/J6TpS2L0+ZNWTtdylDmm6LdwM/Av6dmc2Z2WfN7Fozu7axyH3AceAY8E3gT3MrbRZ274YTJ+Df/i35N8dgDkrbF6k5gK9bB3/8x+XVkGPY70oJVZC7l/LYunWr18HEhHsSUpY+JibKLlm1zMy4j46239ZlbPdB9/vMTLKMWfLvzEw+5Wu3vUZH81ufZAeY9Q5xVSNFc1ZC2r6W2qU42imqhjzIfi8y766UUDVVN6AHcj1ZQtq+ltIG6pw7NL1lkP1eZJCNISUk/bOkBl+8qakpz+0GF4tVneZfx+ioImmFbdqU1Gi7Cf0QGBlJauatzJImnyx12l4TE0nTkoTLzB5x96l271Wzhq7rydppl+JYuRLWro3nyqjIYRJKBVZTNQO6ridrp12K4x/+AX7+88I6NA2tyCCrVGA1VTPloutJidTBg8mF5MmTSc18elpBVpaqX8pF15MSqYKHSUjFVDOg63pSRGqomgEdVNWRIAXSm1Yq6qyyCyBSF629aRcHDoHqG5KN6tbQRQKj3rSSNwV0kYLE1JtWqaE4KaCLFKSk+6v0TXO5x0sBXaQgsfSmVWooXgroIgWJpTdtpxRQr7lypHwK6CIFiqE3bacUkJnSLqFTQBeJXNYNmNPTSfBu5a60S+gU0EUilkcD5u7d7afxhTB75MjbFNBFIrRYK7/qqnwaMCcm2r8eWo8cWUoBXTKl/sv5a66VdzJsTTqWHjmyVKqAbmbbzexZMztmZje0eX/CzB4wsyfM7EEzG8++qBI69V8uRpr7pw5bk46lR44s1TOgm9kK4Hbgo8AWYJeZbWlZ7D8Dd7n7xcA+4BtZF1T6U0ZNWf2Xi9Gr9p1VTTqGHjm91O2KMU0N/VLgmLsfd/fXgHuAK1qW2QJ8r/H399u8LwUqq6Yc09D2mHWrfasm/bY6XjGmCejrgZeans81Xmv2OPCJxt8fB9aY2drWDzKzPWY2a2az8/Pzg5RXUiirphzL0PbYdcpvz8zEW5POQx2vGLNqFP0L4ENm9ijwIeAU8GbrQu6+392n3H1qbGwso1VLq7JqympIK0a3/HbdUgzNWr97p0bjSl8xunvXB/AB4HDT8xuBG7ss/w5grtfnbt261SUxM+M+MeFulvw7MzPc501MuCcXmUsfExPDl7WXrL+LpDcz4z46unSfj47WYx+0++5m5f0O8gTMeqf42+mNtxZIboJxHJgEVpGkVy5sWWYdMNL4exrY1+tzFdATefwI6/zDrrMyT+Rl6/TdW4N6nr+DoiozQwX05P9zOfAc8DxwU+O1fcCOxt+fAn7SWOZbwNm9PlMBPZHXj1A15frpVCM1K7tk+ev03Rd/S3n/DoqsRHUL6Ja8X7ypqSmfnZ0tZd0hGRlpP8zaLOkuJp0dPJg0cJ08mTS8Tk/Xu0GwU954YiJpLK2ysr97kes3s0fcfardexopWjL1DBlMHbukdbLYGPjii8sn1apLo3TZDfKhdNlVQC9Z2QdirELsklZGD5PWaQDc3w7qdeqTXvbI1mAqZp1yMXk/lEN/m/Ld/QstX1xWQ3SdG0JDohy6cugyhLJzpq2KLE9z20Gnn6/aYIpXVJuOcuhSOaGlqorKoba2HXSiNpjihTD3jQK6RKnsnGmronKoaWZaVBtMfSmgS7RCqBEtKuqKoVuNP4QTm5TrrLILIFIFiwE07xzqxo1htR1IWFRDF8lIEVcMobUdSFgU0EUiElrbgYRFKReRyOzerQAu7amGLiJSEQroIiIVoYAuIlIRCuhSa3W+ZZtUjxpFpbYWh9EvjrxcnIIX1OgocVINXWorxCl4RYahgC61FcpNCUSyooAutRXMTQlEMpIqoJvZdjN71syOmdkNbd7faGbfN7NHzewJM7s8+6KKZEvD6KVqegZ0M1sB3A58FNgC7DKzLS2L3Qzc6+6/DewE/mvWBa0sdbMojYbRS9WkqaFfChxz9+Pu/hpwD3BFyzIOvLPx97uAn2ZXxArTnY5LF8IUvDqnS1bSBPT1wEtNz+carzW7BbjKzOaA+4AvZVK6qlM3i9rTOV2ylFWj6C7g2+4+DlwOHDCzZZ9tZnvMbNbMZufn5zNa9RDKrhqpm0Xpyj4EdE6XLKUJ6KeADU3PxxuvNfsscC+Au/8IWA2sa/0gd9/v7lPuPjU2NjZYibMSQtVI3SxKFcIhoHO6ZClNQD8CbDazSTNbRdLoeahlmZPARwDM7AKSgB5AFbyLEKpG6mZRqhAOAZ3Tw1H21VoWegZ0d38DuA44DDxD0pvlqJntM7MdjcW+AvyJmT0O3A1c497tnuQBCKFqpG4WpQrhENA5PQwhXK1lwt1LeWzdutVLNTHhnuy7pY+JiXLLJYUJ5RCYmUnWaZb8OzNT7PoHFWu52wnlWEgDmPUOcbW+I0XzrBpV4dqtBkKpHYfQdbJflanRNoRwtZaJTpE+70fpNXT3fKoYMzPuo6NLT/Ojo9FUX0KsdeVZphC/bwxiqtGmEdP3oUsNvd4BPQ8xHRktQjwXhVimqhnkpGbW/jA3y7u0+YjpOFNAb5VntSziIz3Ec1GIZaqSQQNZFfdLLFdr3QK6Je8Xb2pqymdnZ4tfcetdDSBJnGbVu2TTpiSh2GpiIkmQBmxkJPlZtjJL8rtlCLFMVTLo4Zr3z0g6M7NH3H2q3Xv1axTNu/NxKC1tAwixT3SIZaqSQRsD1eM2TPUL6Hk3Z0d8pId4LgqxTFXS6cQ4MtK7k1aMvXMqr1MuJu9HaTn0Kib/MhRiHjHEMlVFuxx66yPUxsG6Qjn0Jkr+iSxx8GCScTx5MqmVv/nm8mUiaAKqDeXQm6VJiWhgUDS0q4bXnDrp1NAc3QCbmqpfDb0X1eCj0W5XrVoFa9bA6dNJfnh6WrutHxF30qoN1dD7EcIUfJJKu1312muwsFCN4ehlUCN0vvK+olRAb1WZSR2qL80u0bm4PxF30gpeEfPfKOXSStec0ei0q1ppEJKEIKvQopRLP7K+5lSrXW7a7ap2NAhJQlDExb8CeqssrzmrNsdoYFp31dq1sHLl0mWU/5VQFDHqWSmXPCl9U7jmPtXq5SIhyaoDnVIuZVEDa+E0HH05Zf3CUESDswJ6njSzVOmqFsz6/T5Vy/rFvj9zr3B0mhMg70dlb3DRLKZZ81OIbU6Vim3+gb5PlaYuqtr+HBTD3uAC2A48CxwDbmjz/t8CjzUezwG/6PWZtQjo7vFFwQ5i/DFVKZi5D/Z9Ir7fyjJV25+DGiqgAyuA54H3AKuAx4EtXZb/EnBHr8+tTUCviBh/TFUKZu6DfZ9O+21x34V8Qm4V8v7sVm/Luk7XLaCnyaFfChxz9+Pu/hpwD3BFl+V3AXenT/pIDGJs361aE8Yg36dbX/3Y8umh7s9u7RSFt2F0ivSLD+BTwLeanl8N3NZh2QngZWBFh/f3ALPA7MaNG4c7TUmhYqyhx5gm6mbQ77NYQ+xWU49BqPuz228jj98NQ6Zc+gno1wP/pddnulIu0Qn1x9RLRZow3jLM9wk5ZZFWiPuz23bNY5t3C+g9BxaZ2QeAW9z99xvPb2zU7L/RZtlHgS+6+//udWVQi4FFFaNBO3HTOLd8dNuukP02H3Zg0RFgs5lNmtkqYCdwqM1K3gucC/xosGJK6DRoJ26aGjcf3bZr0du8Z0B39zeA64DDwDPAve5+1Mz2mdmOpkV3Avd4ryq/iJRCU+Pmo9t2LXqbay6XmCjnEQztCilLt5TLWUUXRgbUOrPPYv8nUCQpmHaFhEpzucRCt8YLhnZFGGKf1yUPCuixiHFkT0VpV5QvrwE7sZ8kFNCzUMRREOowuRrSrihfHldJVZiZUgF9WEUdBZH3OYu95tMs8l1RCXlcJVUildZpxFHej8qMFC1yTHyIw+RSiHWUaTeR7orKyONnF8tIWoYZKZqXynRbHBlJ9nsr3Wr+LRqhKFnL6nZuzWI5TnULujwpodqTGhEla3kM2KlCKk0BfVhVOApypnOe5CHrqSiqMJJWAX1YVTgK0hqwZVPnPIlF7PMVaaRoFhYnbaiyIYZHLr6tofIi+VKjqKQTS4uRSMWpUVSGp5ZNkeApoEs6atkUCZ4CuqSjlk2R4CmgSzp16s3TQZWmL5DiFHncKKBLeot9ug4cSJ5ffXVtIlsVJm6S4hV93NQ7oKvK1b+aRrZKTNwkhSv6uKlvQK9pYFqm35NaTSObOvnIIIo+buob0GsamJYY5KSW0xEa+sWSOvnIIIo+blIFdDPbbmbPmtkxM7uhwzJ/aGZPm9lRM/vHbIuZA1W5Bjup5XCExnCxpE4+MojCj5tO8+ouPoAVwPPAe4BVwOPAlpZlNgOPAuc2nv9mr88tfT70IucxD9UgE0DnMLl5LLtCc6DLILI+bugyH3qagP4B4HDT8xuBG1uW+Wvgc70+q/lRekCv4l0X+jVoJM34CI3lxgIiIegW0NOkXNYDLzU9n2u81ux84Hwz+6GZPWRm29t9kJntMbNZM5udn59PseocqV/14NeDGU9Jp/y0SDayahQ9iyTt8mFgF/BNMzundSF33+/uU+4+NTY2ltGqhxD7XJnDCuSkpvy0SDbSTJ97CtjQ9Hy88VqzOeBhd38deMHMniMJ8EcyKaXkJ4CpfzW9rkg20tTQjwCbzWzSzFYBO4FDLcv8D5LaOWa2jiQFczy7YkrV1f1iqU5C76Ias541dHd/w8yuAw6T9Hi5w92Pmtk+kuT8ocZ7v2dmTwNvAl9194U8Cy4i8RniPimSQqocurvf5+7nu/tvuft047W9jWBOo/H1z919i7u/z93vybPQtacqjgSu0yGq8Xz50i3oYqMqjgSu2yGq8Xz50i3oYqNbwUnguh2ioMN3WLoFXZWoiiOB63aIqotqvhTQY6NROBK4bodoIEMfKksBPTaq4kjgeh2i6qKaHwX02KiKI4HTIVoeNYqKiEREjaIiIjWggC4iUhEK6CIiFaGALpIxzcwgZVFAl/zUMLLFcH9UqS4F9LrKO9iGEtkKPqlo8ikpk7ot1lHr7EmQjPzIsrNwCHPOFPE9W4yMJOevVmbJQBqRYXXrtqiAXkdFBNsQIlsJJ5UQzmNSbeqHLksVMcFXCHPOlDCRmWZmkDIpoNdREcE2hMhWwklFw96lTArodVREsC07sh08CK+8svz1Ak4qmnxKyqKAXkfdgm2WvULKimyLjaELLbe1XbtW1WWptFQB3cy2m9mzZnbMzG5o8/41ZjZvZo81Hp/LvqjUsl9zbtoF21C6Gg6rXd9BgHe8Q8FcKq1nLxczWwE8B1wGzAFHgF3u/nTTMtcAU+5+XdoV993LpYQuaLVTlS4aIfSwEcnJsL1cLgWOuftxd38NuAe4IssCpqIRG/nr1PujXZAPWQg9bERKkCagrwdeano+13it1SfN7Akz+46ZbWj3QWa2x8xmzWx2fn6+v5LqXpr56xTwzOJKu4TQw6amlBUtV1aNov8EbHL3i4H7gTvbLeTu+919yt2nxsbG+luDal35m55Ogncr97iuhMruYVNTVWmCiVmaHPoHgFvc/fcbz28EcPdvdFh+BXDa3d/V7XOVQw9Uu4C++Lryz9JFVZpgQjdsDv0IsNnMJs1sFbATONSygnc3Pd0BPDNoYTtSrasYExPtX9eVUJSKTIEoK1q+ngHd3d8ArgMOkwTqe939qJntM7MdjcW+bGZHzexx4MvANbmUNs9+zUr+JZR/royiUyDKigbA3Ut5bN261YMxM+M+OuqeHPfJY3Q0eb2OZmbcJybczZJ/v/CFpc/rul06ad1egWyfiYmlh/TiY2Iin/XpZ1QMYNY7xFUFdPfij/yY6FfaXYnbp9d5xKz9YW1WXplkeN0CuqbPBQ1E6UYtXd2VtH3S9BHQrqsmTZ/bi5J/7R082HlQkVq6EiW1BKYZZ6fmkMHF2qSmgA468ttZrAJ2UveT3aKSKgNpziN16BiWR+CNuj99p1xM3o+gcujuSv616tSuoBz6UiXl0NXsk9+mD33bokZR6VunFjVQMG9VQmUg7/NIDPWbvAJvGY3J/egW0NUoKu2pRS14Bw8mOfOTJ5MMz/R0NumUWAZl59WXIfRDv1qNolkkzWJt8SiS2hWCl9c4u1gmNs2r+SLqQ79T1T3vx0AplyyuM9WvOr0Yrrslc1mmHPI8hPL8KYd86FOZHHq/SbN2eyX0Fg+RkmX1Eymi7tT8E1+7NnmEGISzVJ2A3k/VodPR1KmhL5QWD4lDyFW4IWUViIusO9Xpwrs6Ab2fI6TTsitWqIZeJWUE1hpEj1SbtcdCRfYWqdOFd3UCej8/pG7d7ir+Y6yNsgJrnaJHJym2fZGbKfSuhlmqTkB3T18j63Y0VfhyuVbKCqx1ih6dpNj2RZ5v63SOrVZAT6sGl8W1V1ZgDSF6lF0pSbntiypmnX7u9Qzo7uUf9JKvsgJr2dGj7PW7h3FSa1GXn3t9A7pUW9GBLZQ+ciEE0xBOKjXVLaDHN1JUZFGR0wm2TsG3sACvvgoHDmR/O8ReQrh55+7d8JnPwIoVyfMVK5LnIc0NUEOay0UkjZAm+AihLLFM+FJB3eZyCSqgv/7668zNzXHmzJlSypS11atXMz4+zsqVK8suigwrpLtahRBMQzip1FS3gH5Wyg/YDvwdsAL4lrv/ZYflPgl8B9jm7n1Xv+fm5lizZg2bNm3CzPr970FxdxYWFpibm2NycrLs4siwNm5sH8DKuNHHYtDOY6rFtEJI+8gyPXPoZrYCuB34KLAF2GVmW9ostwb4M+DhQQtz5swZ1q5dG30wBzAz1q5dW5mrjczFNuNlaFPw5TXVYlq6bWOQ0jSKXgocc/fj7v4acA9wRZvlbgX+ChgqglUhmC+q0nfJVIz3+KrD/dz6EdoJrl+xVShSShPQ1wMvNT2fa7z2FjO7BNjg7v/c7YPMbI+ZzZrZ7Pz8fN+FlYqIZcLtVmXXikMS8wkuxgpFSkN3WzSzEeBvgK/0Wtbd97v7lLtPjY2NDbvqyp5lK0/512qI9QQ3SIUikliTJqCfAjY0PR9vvLZoDXAR8KCZnQDeDxwys7atsJkp+Sx75513snnzZjZv3sydd95ZyDorQ/lXKVO/FYqYavSdRhwtPkh6whwHJoFVwOPAhV2WfxCY6vW57UaKPv300+mHS5U4Wm5hYcEnJyd9YWHBT58+7ZOTk3769Om2y/b1nepCowylTP3GjhBG5jZhmJGi7v4GcB1wGHgGuNfdj5rZPjPbkcdJJpUcLtuPHDnCxRdfzJkzZ/jVr37FhRdeyFNPPbVsucOHD3PZZZdx3nnnce6553LZZZfx3e9+d+D11k7M+VeJX78NuhGlCFP1Q3f3+4D7Wl7b22HZDw9frBRy6Be8bds2duzYwc0338yrr77KVVddxUUXXbRsuVOnTrFhw9tZqPHxcU6dOrVsOeli924FcClHv/34QxqD0EO8c7nk1G1q79693H///czOzvK1r31tqM8SkUD106AbURfNeAN6TpftCwsLvPLKK/zyl7/sOCho/fr1vPTS2z055+bmWL9+fdtlRSRyEaUIg5rL5ZlnnuGCCy4opTyLduzYwc6dO3nhhRd4+eWXue2225Ytc/r0abZu3cqPf/xjAC655BIeeeQRzjvvvGXLhvCdRKQ6us3lEm8NPQd33XUXK1eu5Morr+SGG27gyJEjfO9731u23HnnncfXv/51tm3bxrZt29i7d2/bYC5NIunHKxIz1dBzVsXv1LcQZgcUqQjV0KVcsQ71F4lMqm6LdfXkk09y9dVXL3nt7LPP5uGHB55Qsp4i6scrEjMF9C7e97738dhjj5VdjPhF1I9XJGZKuUj+IurHKxIzBXTJX0T9eEVippSLFEND/UVyF3UNXV2bRUTeFm1AL3uK4u3bt3POOefwsY99rJgVioj0EG1AL7tr81e/+lUOHDhQzMpERFKINqDn0bU57XzoAB/5yEdYs2bN4CsTEclYtI2ieXRtTjsfuohIiKKtoefVtVnzoYtIrKIN6Hl1bU4zH7pIENTNS1pEm3KBfLo2f/7zn+fWW2/lhRde4Prrr287H7pI6VpnsFzs5gXq719jqWroZrbdzJ41s2NmdkOb9681syfN7DEz+19mtiX7ouYv7XzoAB/84Af59Kc/zQMPPMD4+DiHDx8uuLRSa2V385Ig9ZwP3cxWAM8BlwFzwBFgl7s/3bTMO939/zb+3gH8qbtv7/a5mg9dZAgjI8kAjFZmyX0ypbKGnQ/9UuCYux9399eAe4ArmhdYDOYNvwGUc9cMkbro1J1LM1jWWpoc+nrgpabnc8DvtC5kZl8E/hxYBfxuJqUrmeZDl2BNT7e/C5RmsKy1zBpF3f124HYzuxK4GfhM6zJmtgfYA7CxQ03C3TGzrIo1lGHnQy/r9n5SA4sNnzfdlIym27gxCeZqEK21NCmXU8CGpufjjdc6uQf4T+3ecPf97j7l7lNjY2PL3l+9ejULCwuVCITuzsLCAqtXry67KFJVu3fDiRNJzvzECQVzSVVDPwJsNrNJkkC+E7iyeQEz2+zuP2k8/QPgJwxgfHycubk55ufnB/nvwVm9ejXj4+NlF0NEaqJnQHf3N8zsOuAwsAK4w92Pmtk+YNbdDwHXmdl/AF4H/pU26ZY0Vq5cyeTk5CD/VUSk9lLl0N39PuC+ltf2Nv39ZxmXS0RE+hTt0H8REVlKAV1EpCJ6jhTNbcVm80CbCXBTWQf8PMPi5CmmskJc5Y2prKDy5immssJw5Z1w9+XdBCkxoA/DzGY7DX0NTUxlhbjKG1NZQeXNU0xlhfzKq5SLiEhFKKCLiFRErAF9f9kF6ENMZYW4yhtTWUHlzVNMZYWcyhtlDl1ERJaLtYYuIiItFNBFRCoi6IAe063vepW1ablPmpmbWaldrFJs22vMbL6xbR8zs8+VUc5GWXpuWzP7QzN72syOmtk/Fl3GlrL02rZ/27RdnzOzX5RQzMWy9CrrRjP7vpk9amZPmNnlZZSzqTy9yjthZg80yvqgmZU2O56Z3WFmPzOzpzq8b2b2943v8oSZXTL0St09yAfJRGDPA+8huWnG48CWlmXe2fT3DuC7oZa1sdwa4AfAQ8BU4Nv2GuC2SI6DzcCjwLmN578Zcnlblv8SyYR3QZaVpPHuC42/twAnQt62wH8HPtP4+3eBAyWW998DlwBPdXj/cuB/Aga8H3h42HWGXEOP6dZ3PcvacCvwV8CZIgvXRtryhiBNWf8EuN3d/xXA3X9WcBmb9bttdwF3F1Ky5dKU1YF3Nv5+F/DTAsvXKk15twCLd3b/fpv3C+PuPwBOd1nkCuAuTzwEnGNm7x5mnSEH9Ha3vlvfupCZfdHMngf+GvhyQWVr1bOsjcupDe7+z0UWrINU2xb4ZONS8DtmtqHN+0VIU9bzgfPN7Idm9pCZdb1Bec7SblvMbAKY5O0AVLQ0Zb0FuMrM5khmXP1SMUVrK015Hwc+0fj748AaM1tbQNkGkfpYSSvkgJ6Ku9/u7r8FXE9y67vgmNkI8DfAV8ouSx/+Cdjk7hcD9wN3llyebs4iSbt8mKTG+00zO6fMAqW0E/iOu79ZdkG62AV8293HSVIEBxrHc6j+AviQmT0KfIjkpjwhb99MhbxjMrv1XQF6lXUNcBHwoJmdIMmXHSqxYbTntnX3BXf/f42n3wK2FlS2VmmOgzngkLu/7u4vAM+RBPgy9HPc7qS8dAukK+tngXsB3P1HwGqSiaXKkOa4/am7f8Ldfxu4qfHaLworYX/6jXG9ldVgkKJB4SzgOMkl6WIDyIUty2xu+vs/ktxBKciytiz/IOU2iqbZtu9u+vvjwEMBl3U7cGfj73Ukl7FrQy1vY7n3AidoDO4LtawkjXbXNP6+gCSHXkqZU5Z3HTDS+Hsa2FfW9m2UYROdG0X/gKWNov8y9PrK/LIpNsblJLWt54GbGq/tA3Y0/v474CjwGEkDSMcgWnZZW5YtNaCn3LbfaGzbxxvb9r0Bl9VIUlpPA08CO0Peto3ntwB/WWY5U27bLcAPG8fBY8DvBV7eT5Hc0/g5kivLs0ss693AyyS35pwjudq5Fri28b4Btze+y5NZxAQN/RcRqYiQc+giItIHBXQRkYpQQBcRqQgFdBGRilBAFxGpCAV0EZGKUEAXEamI/w9XgLB6OEkCCAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgF0lEQVR4nO3dfYxd9X3n8ffXT3GnOAHbk7R48HiSmgZDoMJjt1ltukhZFOcJl5YoBid0SVXL2SXKP0ugJaErIWtTVSulCWmRN0oDjBWEtklKtgQ3ArWRVpvEY2qDwcAaA2YgEsOMlIYnEZPv/nHu4Dt37sO5956H3++cz0u6Gt9zj+/93nPO/Z7f+T0dc3dERCR+y8oOQEREsqGELiJSEUroIiIVoYQuIlIRSugiIhWxoqwPXr9+vW/atKmsjxcRidLhw4dfcvfRdq+VltA3bdrE9PR0WR8vIhIlM3u202uqchERqQgldBGRilBCFxGpCCV0EZGKUEIXEamIngndzL5pZi+a2bEOr5uZfdXMTpjZw2Z2afZhZujAAdi0CZYtS/4eOFB2RCIimUhTQv8WsKPL6x8GNjcee4C/HT6snBw4AHv2wLPPgnvyd88eJXURqYSeCd3dfwTMd1llJ3CnJ34MnG1mv5lVgJm6+WZ49dXFy159NVkuIhK5LOrQNwDPNT2faSxbwsz2mNm0mU3Pzs5m8NF9OnWqv+UiIhHJIqFbm2Vt75rh7vvdfdLdJ0dH245czdfGjf0tz4iq7etJ+12KlkVCnwHOa3o+BryQwftmb98+GBlZvGxkJFmeE1Xb15P2u5Qhi4R+L3Bto7fL7wE/d/efZfC+2du9G/bvh/FxMEv+7t+fLM+Jqu3LU2YJWftdypCm2+K3gf8L/LaZzZjZn5jZXjPb21jlPuAkcAL4n8B/zi3aLOzeDc88A7/6VfI3x2QOqrYvUnMCX78ePvOZ8krIMex3VQlVkLuX8ti6davXwfi4e5JSFj/Gx8uOrFqmptxHRtpv6zK2+6D7fWoqWccs+Ts1lU987bbXyEh+nyfZAaa9Q17VSNGclVBtX0vtqjjaKaqEPMh+L7LeXVVC1VTdhB7I9WQJ1fa1lDZR59yh6S2D7Pcik2wMVULSP0tK8MWbnJz03G5wsVDUaf51jIwok1bYpk1Jibab0A+BZcuSknkrs6TJJ0udttf4eNK0JOEys8PuPtnutWqW0HU9WTvtqjhWroR16+K5MipymISqAqupmgld15O1066K4+/+Dl56qbAOTUMrMsmqKrCaqlnloutJidSBA8mF5KlTScl83z4lWVmsflUuup6USBU8TEIqppoJXdeTIlJD1UzooKKOBCuQHrVSQSvKDkCkTlp71C4MHgKVOWR41S2hiwRIPWolT0roIgWKqUetqobio4QuUqCS7rHSN83nHicldJECxdKjVlVDcVJCFylQLD1qY6oakjPUy0WkYLt3h5fAW61dC3Nz7ZdLuFRCF6kANWAKqIQuEr08+rbPz/e3XMKgErpIhJpL5H/8x9k3YMbSG0cWU0KXTOnSP3+tXQrffLP9esM0YMbSG0cWS5XQzWyHmT1hZifM7KY2r59jZt81s4fN7KdmdlH2oUro1He5GGnvnzpMaTqW3jiyWM+EbmbLga8DHwa2AFeb2ZaW1f4cOOLuFwPXAn+ddaDSnzJKyuq7XIw0Je8sStNVmN+ubleMaUro24ET7n7S3d8A7gZ2tqyzBXgAwN0fBzaZ2bsyjVRSK6ukrL7LxehU8l6+XKXpZnW8YkyT0DcAzzU9n2ksa3YU+EMAM9sOjANjrW9kZnvMbNrMpmdnZweLWHoqq6SshrRidKrfvuOOuEvTWavjFWOahG5tlrXet+7LwDlmdgT4HPCvwOkl/8l9v7tPuvvk6Ohov7FKSmWVlNWQVoxu9dt1q2Jo1vrd292FEip+xejuXR/A+4GDTc//DPizLusb8Azw9m7vu3XrVpfE1JT7+Li7WfJ3amq49xsfd08uMhc/xseHj7WXrL+LpDc15T4ysnifj4zUYx+0++5m5f0O8gRMe6f82+mFt1ZIBh+dBCaAVSTVKxe2rHM2sKrx7z8F7uz1vkroiTx+hHX+YddZmSfysnX67q1JPc/fQVGFmaESevL/+QjwJPAUcHNj2V5gr58pxf8/4HHgO8A5vd5TCT2R149QJeX66VQiNSs7svx1+u4Lv6W8fwdFFqK6JXRLXi/e5OSkT09Pl/LZIVm2LNn9rcySBi7p7MCBpIHr1Kmk4XXfvno3BnaqNx4fTxpKq6zs717k55vZYXefbPeaRoqWTD1DBlPHLmmdLDQGPvtsUhBoVpdG6bIb5EPpsquEXrKyD8RYhdglrYweJs0nNkhObgtJvU790cse2RpMwaxTXUzeD9Whn6H67v6FVl9cVkN0nRtCQ6I6dNWhyxDKrjNtVWQ8zW0HnX6+aoMpXlFtOqpDl8oJraqqqDrU1raDTtQGU7wQ5r5RQpcolV1n2qqoOtQ0My2qDaa+lNAlWiGUiBYUdcXQrcQfwolNyqVb0IlkYCGB5l2HunFjWG0HEhaV0EUyUsQVQ2htBxIWJXSRiITWdiBhUZWLSGR271YCl/ZUQhcRqQgldBGRilBCFxGpCCV0qbU637JNqkeNolJbC8PoF0ZeLkzBC2p0lDiphC61FeIUvCLDUEKX2grlpgQiWVFCl9oK5qYEIhlJldDNbIeZPWFmJ8zspjavv8PMvm9mR83sUTO7LvtQRbKlYfRSNT0TupktB74OfBjYAlxtZltaVvsvwGPufglwGfA/zGxVxrFWk7pZlEbD6KVq0pTQtwMn3P2ku78B3A3sbFnHgTVmZsBZwDxwOtNIq0h3Oi5dCFPw6pwuWUmT0DcAzzU9n2ksa3YbcAHwAvAI8Hl31w2welE3i9rTOV2ylCahW5tlrTe/+hBwBDgX+B3gNjN7+5I3MttjZtNmNj07O9tnqDkou2ikbhalK/sQ0DldspQmoc8A5zU9HyMpiTe7DvhO46bUJ4Cngfe2vpG773f3SXefHB0dHTTmbIRQNFI3i1KFcAjonC5ZSpPQDwGbzWyi0dC5C7i3ZZ1TwAcBzOxdwG8DJ7MMNHMhFI3UzaJUIRwCOqeHo+yrtSz0TOjufhq4HjgIHAfucfdHzWyvme1trHYr8O/M7BHgAeBGd38pr6AzEULRSN0sShXCIaBzehhCuFrLhLuX8ti6dauXanzcPdl3ix/j4+XGJYUJ5RCYmko+0yz5OzVV7OcPKta42wnlWEgDmPYOebW+I0XzLBpV4dqtBkIpHYfQdbJflSnRNoRwtZaJTpk+70fpJXT3fIoYU1PuIyOLT/MjI9EUX0IsdeUZU4jfNwYxlWjTiOn70KWEXu+EnoeYjowWIZ6LQoypagY5qZm1P8zN8o42HzEdZ0rorfIslkV8pId4LgoxpioZNJFVcb/EcrXWLaFb8nrxJicnfXp6uvgPbr2rASQVp1n1Ltm0KalQbDU+nlSQBmzZsuRn2cosqd8tQ4gxVcmgh2vePyPpzMwOu/tku9fq1yiad+fjUFraBhBin+gQY6qSQRsD1eM2TPVL6Hk3Z0d8pId4LgoxpirpdGJctqx3J60Ye+dUXqe6mLwfpdWhV7HyL0Mh1iOGGFNVtKtDb32E2jhYV6gOvYkq/0QWOXAgqXE8dSoplb/55tJ1ImgCqg3VoTdLUyWigUHR0K4aXnPVSaeG5ugG2NRU/UrovagEH412u2rVKlizBubnk/rhffu02/oRcSet2lAJvR8hTMEnqbTbVW+8AXNz1RiOXgY1Qucr7ytKJfRWlZnUofrS7BKdi/sTcSet4BUx/42qXFrpmjManXZVKw1CkhBklVpU5dKPrK851WqXm3a7qh0NQpIQFHHxr4TeKstrzqrNMRqY1l21bh2sXLl4HdX/SiiKGPWsKpc8qfqmcM19qtXLRUKSVQc6VbmURQ2shdNw9KVU6xeGIhqcldDzpJmlSle1ZNbv96larV/s+zP3AkenOQHyflT2BhfNYpo1P4XY5lSp2OYf6PtUaeqiqu3PQTHsDS6AHcATwAngpjav3wAcaTyOAW8Ca7u9Zy0Sunt8WbCDGH9MVUpm7oN9n4jvt7JE1fbnoIZK6MBy4Cng3cAq4Ciwpcv6Hwce7PW+tUnoFRHjj6lKycx9sO/Tab8t7LuQT8itQt6fvcptWZbruiX0NHXo24ET7n7S3d8A7gZ2dln/auDbqet8JAoxtu9WrQljkO/Tra9+bPXpoe7PXu0UhbZjdMr0Cw/gKuAbTc8/DdzWYd0RYJ4O1S3AHmAamN64cePgpygpXIwl9BiriboZ9PsslA67ldRjEOr+7PXbyPq3w5BVLp9ok9C/1mHdTwLf7/WeriqX6IT6Y+qlIk0Ybxnm+4RcZZFWiPuz13bNert3S+grUhTiZ4Dzmp6PAS90WHcXqm6ppIXuVbEN2tm9O/wY+zHM99m4sf04t7KrLPoR4v7stV2L3O5p6tAPAZvNbMLMVpEk7XtbVzKzdwD/AfiHbEOUUGjQTtw0NW4+em3XIrd7z4Tu7qeB64GDwHHgHnd/1Mz2mtneplWvBP7J3V/JPkwRGZamxs1Hr+1a5HbXXC4x0UQlwdCukLJ0m8slTR26hKB1Zp+Fvk+gTFIw7QoJleZyiYVujRcM7YowxD6vSx6U0GMR48ieitKuKF9eg3ViP0kooWehiKMg1GFyNaRdUb48rpKqMDOlEvqwijoKIu9zFnvJp1nku6IS8rhKqkRVWqcRR3k/KjNStMgx8SEOk0sh1lGm3US6Kyojj59dLCNp6TJSVN0Wh7VsWbLfW+lW82/Rnfgka1ndzq1ZLMepbkGXJ1Wo9qRGRMlaHoN1qlCVpoQ+rCocBTnTOU/ykPVUFFUYSauEPqwqHAX9GKB1U+c8iUXs8xVppGgWQpwCLg8DDpGMdaZGkdioUVTSi6XVSKTC1Cgq2VDrpkjQlNAlPbVuigRNCV3SU+umSNCU0CW9uvXoaVGl6QukOEUeN+rlIv1p7bKyMNFFxZO65kCXQRR93NS7hK4iV/+qMCXdACoxcZMUrujjpr4JvaaJqa1+Tmw1zWzq4CODKPq4qW9Cr2liWqLfE1tOR2joF0vq4CODKPq4SZXQzWyHmT1hZifM7KYO61xmZkfM7FEz+5dsw8yBilyJfk9sORyhMVwsqYOPDKLw46bTvLoLD2A58BTwbmAVcBTY0rLO2cBjwMbG83f2et/S50Mvch7zkPU7CXQOk5vHsis0B7oMIuvjhi7zoacpoW8HTrj7SXd/A7gb2NmyzjXAd9z9VOMk8eKQ55n8qciV6LfEnUPXxVgulmKfuEnKUeRxkyahbwCea3o+01jW7HzgHDP7ZzM7bGbXtnsjM9tjZtNmNj07OztYxFmpeZ/qtwxyYsv4CFX9tEg20iR0a7OsdUavFcBW4KPAh4Avmdn5S/6T+353n3T3ydHR0b6DzZyKXEGc2HSxJJKNNAOLZoDzmp6PAS+0Wecld38FeMXMfgRcAjyZSZSSr5Kn/9X0uiLZSFNCPwRsNrMJM1sF7ALubVnnH4APmNkKMxsBfhc4nm2oUmW6WKqP0LuoxqxnCd3dT5vZ9cBBkh4v33T3R81sb+P12939uJndDzwM/Ar4hrsfyzNwEYmPplDIV6p+6O5+n7uf7+7vcfd9jWW3u/vtTev8lbtvcfeL3P0rOcUroCKOBK/TIarxfPnS5FyxURFHAtftEI2li2qsdAu62Og2cBK4boco6PAdlm5BVyUq4kjguh2i6qKaLyX02GgUjgSu2yEawLCHSlNCj42KOBK4XoeouqjmRwk9NiriSOB0iJZHjaIiIhFRo6iISA0ooYuIVIQSuohIRSihi+RAszNIGZTQJT81zWox3CNVqkkJva7yTrahZLUSTiqagErKom6LddQ6exIkIz+y7CwcwpwzRXzPNpYtS85hrcySwTQiw+jWbVEJvY6KSLYhZLWSTiohnMukutQPXRYrYoKvEOacKWkiM83OIGVRQq+jIpJtCFmtpJOKhr5LWZTQ66iIZFt2VjtwAF5+eenygk4qmoBKyqCEXkfdkm2WvULKymoLjaFzc4uXr1unorJUWqqEbmY7zOwJMzthZje1ef0yM/u5mR1pPG7JPlRq2685F+2SbShdDYfVrt8gwFlnKZlLpfXs5WJmy4EngcuBGeAQcLW7P9a0zmXAf3X3j6X94L57uZTUBa1WqtI9I4QeNiI5GbaXy3bghLufdPc3gLuBnVkGmIpGa+SvU++Pdkk+ZCH0sBEpQZqEvgF4run5TGNZq/eb2VEz+4GZXdjujcxsj5lNm9n07Oxsf5HqXpr565TwzOKqdgmhh02NqWa0PGkSurVZ1no9+xAw7u6XAF8Dvtfujdx9v7tPuvvk6OhoX4Gq1FWAffuS5N3KPa4robJ72NRYVZphYpUmoc8A5zU9HwNeaF7B3f/N3V9u/Ps+YKWZrc8sSlCpqwi7d7eve4b4roTUb7AUqhktV5qEfgjYbGYTZrYK2AXc27yCmf2GWVK0M7PtjfedW/JOw1Cpqxjj4+2X60ooSkVXf6hmtFw9E7q7nwauBw4Cx4F73P1RM9trZnsbq10FHDOzo8BXgV2exyQxeZa6VPGX0JVQZZRR/aGa0ZK5eymPrVu3ejCmptxHRtyT4z55jIwky+toasp9fNzdLPn72c8ufl7X7dJJ6/YKZPuMjy8+pBce4+P5faZ+SvkDpr1DXlVCdy/nyI+FfqHdlbx9up1LzNof1mblxSTD65bQNX0uaCBKN1UZbJSXErdPr7F22nXVpOlze1HFX3sHDnQeVKRWrkSJrYC9epSoOWRwsTapKaGDjvx2Fop/ndT9ZLegxMJAr3NJHTqG5ZF4o+5L36kuJu9HUHXo7qr4a9WpXUF16IuVWIde96afvDZ96NsVNYpK3zq1qIGSeauSCgN5nktiKN/klXjLakxOq1tCV6OotKcWtSgcOJDUmZ86ldTy7Ns3fJVKLBOb5tWXIfRDv1qNollVmsXa6lEUtStEIY+xdrEM38+r+SLqQ79T0T3vx0BVLlldY6pvdToxXHdL5rKucsjrMKprlROVqUPvt9Ks014JvdVDpERZ/jzyLjs1/8TXrUseISbhLFUnofdTdOh2JIXe6iHhC7kIN6Qsk3BRZac6XXRXJ6H3c3R0W1cl9OooI7HWIHuk2qwpViqq7FSnn3R1Eno/P6RuR1INfpC1UNZ+rFP26CTlti9qU9Xpors6Cd09fYms15FU4Uvm2igrsdYpe3SSctsXdc6t0zm2Wgk9LZXCq6+sxBpK9iizUNLHti8izDr93OuZ0N1VCq+6shJrCNmj7BhCOak1qcvPvb4JXaqt6KQWUh+5shNq2SeUGuuW0FeUNqJJZFgLwyKzHvveTut4+Lm5ZPjgXXeVMx6+7Jt3Lnznz38+2RYAv/ZrxXy2dBTf0H+RZnneZ7ZZaOPhQ5nD/7XXzvx7bi6ieWarKajJuX75y18yMzPD66+/XkpMWVu9ejVjY2OsXLmy7FBkWKHd1SqEGbRCn8WqorpNzpWqysXMdgB/DSwHvuHuX+6w3jbgx8An3f1/9RvozMwMa9asYdOmTZhZv/89KO7O3NwcMzMzTExMlB2ODGvjxvbJq6wbfRRZ3dRJ2dU+skTPKhczWw58HfgwsAW42sy2dFjvL4GDgwbz+uuvs27duuiTOYCZsW7duspcbWQuttkuQ5yCr6jqpk5CqfaRt6SpQ98OnHD3k+7+BnA3sLPNep8D/h54cZiAqpDMF1Tpu2Qqxnt81eF+bv0K8SSXVmwFipTSJPQNwHNNz2cay95iZhuAK4Hbu72Rme0xs2kzm56dne03VqmK0BoY0yq7RByaWE9yMRYoUkqT0NsVM1tbh74C3Ojub3Z7I3ff7+6T7j45OjqaMsQuKnqWrTzVvVZHjCe5QQoUkeSaNAl9Bjiv6fkY8ELLOpPA3Wb2DHAV8Ddm9gdZBNhRyWfZO+64g82bN7N582buuOOOQj6zMlT3KmXqt0ARU4m+04ijhQdJT5iTwASwCjgKXNhl/W8BV/V633YjRR977LH0w6VKHCk3NzfnExMTPjc35/Pz8z4xMeHz8/Nt1+3rO9WFRhlKmfrNHWWPym1Bl5GiPUvo7n4auJ6k98px4B53f9TM9prZ3jxOMqnkcNl+6NAhLr74Yl5//XVeeeUVLrzwQo4dO7ZkvYMHD3L55Zezdu1azjnnHC6//HLuv//+gT+3dmKte5Vq6LcxN6IqwlT90N39PuC+lmVtG0Dd/T8NH1YKOfQL3rZtG1dccQVf/OIXee211/jUpz7FRRddtGS9559/nvPOO1MLNTY2xvPPPz/w59bS7t1K4FKOfvvwhzYGoYt4h/7n1GXqlltu4Yc//CHT09N84QtfaLuOtxkxqC6KIhHppzE3ou6Z8Sb0nC7b5+fnefnll/nFL37RcVDQ2NgYzz13pifnzMwM55577lCfKyKBiqiKMKi5XI4fP84FF1xQSjwLrrjiCnbt2sXTTz/Nz372M2677bYl68zPz7N161YeeughAC699FIOHz7M2rVrl6wbwncSkeroNpdLvCX0HNx5552sWLGCa665hptuuolDhw7x4IMPLllv7dq1fOlLX2Lbtm1s27aNW265pW0ylyaR9OMViZlK6Dmr4nfqWwgzA4pUhEroUq5Yh/qLREZ3LOrikUce4dOf/vSiZW9729v4yU9+UlJEkYqoH69IzJTQu3jf+97HkSNHyg4jfhH14xWJmapcJH8R9eMViZkSuuQvon68IjFTlYsUQ0P9RXIXdQldXZtFRM6INqGXPUXxjh07OPvss/nYxz5WzAeKiPQQbUIvu2vzDTfcwF133VXMh4mIpBBtQs+ja3Pa+dABPvjBD7JmzZrBP0xEJGPRNorm0bU57XzoIiIhiraEnlfX5jTzoYuIhCjahJ5X1+Y086GLBENdvaRJtFUukE/X5j179nDrrbfy9NNPc+ONN7adD10kCK2zWC509QL1+a+pVCV0M9thZk+Y2Qkzu6nN6zvN7GEzO2Jm02b277MPNX9p50MH+MAHPsAnPvEJHnjgAcbGxjh48GDB0Urtld3VS4LTcz50M1sOPAlcDswAh4Cr3f2xpnXOAl5xdzezi4F73P293d5X86GLDGnZsmQQRiuz5F6ZUknDzoe+HTjh7ifd/Q3gbmBn8wru/rKfOTP8OlDOXTNE6qRTly7NYllbaerQNwDPNT2fAX63dSUzuxL478A7gY9mEl3JNB+6BG3fvvZ3gtIslrWVJqFbm2VLSuDu/l3gu2b2+8CtwH9c8kZme4A9ABs7lCLcHbN2H1m8YedDL+v2flITCw2fN9+cjKjbuDFJ5moQra00VS4zwHlNz8eAFzqt7O4/At5jZuvbvLbf3SfdfXJ0dHTJ/129ejVzc3OVSITuztzcHKtXry47FKmy3bvhmWeSOvNnnlEyr7k0JfRDwGYzmwCeB3YB1zSvYGa/BTzVaBS9FFgFzPUbzNjYGDMzM8zOzvb7X4O0evVqxsbGyg5DRGqiZ0J399Nmdj1wEFgOfNPdHzWzvY3Xbwf+CLjWzH4JvAZ80gcoZq9cuZKJiYl+/5uIiJCi22Je2nVbFBGR7obttigiIhFQQhcRqYjSqlzMbBZoMwFuKuuBlzIMJ08xxQqKN08xxQpxxRtTrDBcvOPuvrSbICUm9GGY2XSnOqTQxBQrKN48xRQrxBVvTLFCfvGqykVEpCKU0EVEKiLWhL6/7AD6EFOsoHjzFFOsEFe8McUKOcUbZR26iIgsFWsJXUREWiihi4hURNAJPaZb3/WKtWm9bWb2ppldVWR8beLotW0vM7OfN7btETO7pYw4G7H03LaNeI+Y2aNm9i9Fx9gSS69te0PTdj3WOB7WBhrrO8zs+2Z2tLFtrysjzqZ4esV7jpl9t5EXfmpmF5URZyOWb5rZi2Z2rMPrZmZfbXyXhxsTGw7H3YN8kEwE9hTwbpLZG48CW1rWOYsz7QAXA4+HGmvTeg8C9wFXBb5tLwP+dyTHwdnAY8DGxvN3hhxvy/ofBx4MNVbgz4G/bPx7FJgHVgUc718Bf9H493uBB0o8Fn4fuBQ41uH1jwA/ILnnxO8BPxn2M0Muocd067uesTZ8Dvh74MUig2sjbbwhSBPrNcB33P0UgLuXuX373bZXA98uJLKl0sTqwBpL7jpzFklCP11smG9JE+8W4AEAd38c2GRm7yo2zIQn94aY77LKTuBOT/wYONvMfnOYzww5obe79d2G1pXM7Eozexz4R+AzBcXWqmesZrYBuBK4vcC4Okm1bYH3Ny61f2BmFxYT2hJpYj0fOMfM/tnMDpvZtYVFt1TabYuZjQA7SE7yZUgT623ABSQ3tXkE+Ly7l3UH6jTxHgX+EMDMtgPjJDflCVHqYyWtkBN66lvfuft7gT8gufVdGdLE+hXgRnd/M/9wekoT70Mkc0ZcAnwN+F7eQXWQJtYVwFaSe9l+CPiSmZ2fd2AdpDpuGz4O/B9371aKy1OaWD8EHAHOBX4HuM3M3p5vWB2liffLJCf3IyRXxP9KeVcUvfRzrKSS5o5FZen71ndm9h4zW+/uRU/SkybWSeDuxv1S1wMfMbPT7v69QiJcrGe87v5vTf++z8z+JuBtOwO85O6vAK+Y2Y+AS4AniwlxSSxpj9tdlFfdAulivQ74cqNq84SZPU1SN/3TYkJcJO1xex0kjY7A041HiPrKcamU1WCQokFhBXASmOBMA8iFLev8FmcaRS8luUWehRhry/rfotxG0TTb9jeatu124FSo25akSuCBxrojwDHgolC3bWO9d5DUr/564MfB3wL/rfHvdzV+Y+sDjvdsGo22wJ+S1FGXsn0bMWyic6PoR1ncKPrTYT8v2BK6F3jru4JiDUbKeK8CPmtmp0m27a5Qt627Hzez+4GHgV8B33D3tl3FQoi3seqVwD95clVRipSx3gp8y8weIUk8N3rxV2n9xHsBcKeZvUnS8+lPyogVwMy+TdJbbL2ZzQB/AayEt2K9j6SnywngVRpXFkN9Zgm/URERyUHIjaIiItIHJXQRkYpQQhcRqQgldBGRilBCFxGpCCV0EZGKUEIXEamI/w+U6Wmm4uuHBQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -233,23 +172,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "接下来我们将数据转换成 NumPy 的类型,接着转换到 Tensor 为之后的训练做准备" + "接下来将数据转换成 NumPy 的类型,并转换到 Tensor 为之后的训练做准备" ] }, { "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, + "execution_count": 3, + "metadata": {}, "outputs": [], "source": [ "np_data = np.array(data, dtype='float32') # 转换成 numpy array\n", "x_data = torch.from_numpy(np_data[:, 0:2]) # 转换成 Tensor, 大小是 [100, 2]\n", - "y_data = torch.from_numpy(np_data[:, 2]).unsqueeze(1)\n", - "\n", - "x_data = Variable(x_data)\n", - "y_data = Variable(y_data)" + "y_data = torch.from_numpy(np_data[:, 2]).unsqueeze(1)" ] }, { @@ -261,15 +195,13 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": true - }, + "execution_count": 6, + "metadata": {}, "outputs": [], "source": [ "# 定义 logistic 回归模型\n", - "w = Variable(torch.randn(2, 1), requires_grad=True) \n", - "b = Variable(torch.zeros(1), requires_grad=True)\n", + "w = torch.randn((2, 1), dtype=torch.float, requires_grad=True) \n", + "b = torch.zeros(1, dtype=torch.float, requires_grad=True)\n", "\n", "def logistic_regression(x):\n", " return torch.sigmoid(torch.mm(x, w) + b)" @@ -284,22 +216,22 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 16, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAobElEQVR4nO3deXRTZf4G8OdtKUvZKShLaYsjKAUp0KAoIuKCiIiyDSAgDEtJHB2UmRHnoJ45Opyf2yAqmlBQBIriKIwigzAsogMDSgpF9kVpoWW1gKy1pX1/fyTtdMlyk9y1fT7n9LRN03u/ubl58t73vu+NkFKCiIisK8roAoiIKDIMciIii2OQExFZHIOciMjiGORERBZXy4iVNm/eXCYlJRmxaiIiy8rMzPxZStmi8u2GBHlSUhLcbrcRqyYisiwhRI6v29m1QkRkcQxyIiKLY5ATEVkcg5yIyOIY5EREFqdKkAshPhBCnBZC7FZjeTXGkiVAUhIQFeX5vmSJ0RURkQWp1SL/EEB/lZZVMyxZAqSlATk5gJSe72lpqoc53yvCV3nbPfGEftsy1OdN6+eZ+5HJSSlV+QKQBGC3kvumpqbKGicjQ8rERCmF8HyPi5PSE+EVvxITVV1lbGzFxcfGem6nwHxtu8pfWm3LUJ83rZ9n7kfmAcAtfeWvrxvD+QoW5ADSALgBuBMSEnR50KahJBVKv4RQbbWJiZq/V1Rb/radHtvS37rj4iq2BUqDVOvnOdDyK7dPGO7aMjzIy3/VuBa50lRQORmE0Py9otryt+302JZK113aKlb6PJcP3bg4z5eSAA5UT0xM1d8Z5trxF+QctaKHo0eV3S82Fpg5U7XVJiQEvl3Nfk+9+lD1Wo+/bRfu/bRY95UrwIwZwZ9noOopmfx8z5f0np4ZMwZo3tz39vS3/KgooKio4m1FRcDUqcrq15qR5zh05yvdw/kCW+T+hXqsrJJAfZtq9nvq1YeqR19w+RZr7drKWsRqKV1/aWta6RGBku3i75SMksfkb/mBlmM0I85x6NHNBC27VgB8DOAEgCIAuQAmBrp/jQtyA88W+du51OxX1asvXsv1+HqKYmIqdj84HNq9UH2tvzTMlZwbDxQiGRnKQjzQ9vS1fDMHud7nOPR6iWsa5KF+1bggl9J0Z4XU7D/Xqy9ey/Wo8SYRyVMcbP2RBEUop2hC2Z7+3lzi4pQ/bq3ofY5Dr8YMg9zsdA76xLiLbJGXE+mbhMNRdRmhtMiUrN/XLqJkt1EaaqFuz4yMqt1PtWsb3kaRUurfIterMcMgNzO1j8uCvbozMmRGzHgZi0sVV1m7SLc+8nDet9Tu11drWH+gkSNKgyKcNyml2yOUFnmo21PBrmbIgWgkfeTh1MwWeU2XkSFldLR6e4GSV7d3r8vAKJmII1KgWCbiiMyIeyqih6F0548kkNUIBl/rr1276lA6NboulLbIwtkmSsMjWKiV74sP5c032DkDoycShVpvJDWzj7wmU9JsUKtpEB39v/83eIC50ROVAg0iKt8yj4tT9uIP1HWhZR97KE9juGPIy/9/qC1co5/ncERSsx5HJwxyMwp2zBtOp2ugVCn9f4NfYYECSI9D8WCbSMlTomQEUOnj0UooLfJQjpZ8Bb6/g8ZA69arvaDmPhNuzUpCXI0WO4PcjAIlSridrsHeHEr3MgOPeQO1iPUoK9BBi5Kwqlybv6GDDkfgOiINICVPYyhPtZJWd7Cv8oGnR3tB7V1Zi3MVavaeMsjNKJxE8dc0KN/SDvYGUf7+wVJEgyayvx0/3BOOoZbob/3hBFf54YFq1BBOmAdabyjBFOowxWDL1aO9EKhmtd4cg70pB9rGSs5PhIJBbkaB9vRQXoGhNKVC7bTV6JXoK4D8HtaiRPUSfa0/nCALt5tAr96tULoKQh2mWPnL36xQLbvKgtUczu4a6lDSQNtYyQFyKBjkZlU+QUpb4qWn2JUmVKBO2kj2arXTJsir2u/qcMRvk0jNEsPpWgh1PcHeMNTuP1a7RR4drc9MV6WU1BzqcxTqPhXo/mq/yTDIzcxfs1LpKyXYsIlwX2lqnq1S0HTOyJAyVlyueBdckhkY5ffMYbASw+ny8DVkTY33RaWDlNSkZh+5Ga9BrmSbhrq7hrrbB3r5+ltW+UFkoWCQm1mkzUqtjtOVDGWMdFmVaszAYxXHtmNUwMcTav+klvOsgtGihaZ23ZEOU4y0pnC2cbCjHK1b5P7q1mI0E4PczCJt+WrVlx2ouRPq8pU+xhD7HdQ6zaCHYAdOZmvtaiVQCzaS3VjNE8hqLCfQ8x0uBrmZqZE4Wp1VUmPsVCjLCHTWs/KQCO/jzYh7SibGXazy0FUfxxzhNlb6NGt9gtBooQ7WMuJloMZytGhIMMi1pMeAYCNFkohKzyDGxf3v8QYbNqBwe6n6Qor0qlgKyzb7rqCGUEfH6DThWHVaPJcMcq1oMSBYy87JcESSiKGM6YuK+t/jDrQNlPa3q/VCUnqUoHBRVd7zy92YGH1M9VZc0PUr+JtaAh2cqXnJIbNQe5syyLUSabPP1zAJszXJIknESAYn+1tHCEcIqryQtBwvWGnbChRr1ioN9DSqOR4/lPWXX5cau77awWm2bi4GuVZCOaOhJLRVavmpLtw9OpQWudLHreVZTF+PM9hZykjWVakZmogjmj20QJst3JEaAYO30rb0dw388uuKZGy6r3p8XRsnkuUZ3aZikGtF6RijQHuZkq/q1FEY6ePWc5ROoGsHhDOOrPxwGh/bIQOjql4nXqXwECjx+zDCOQ0SMPx9bEt/RxtqPVa1h3eabdSTlAxy7SjtP9WiZWoVvo5Egn2ycbDHreZA5FL+niNfV/NSclUsXzUrOPGbgVEyMfqYuofzGRkyUeT43cThhFbA8PexQH9HG2rt6kraBz6X7Wef8X/JiGLD+lkY5Fryt9eUb86E2gpVq5liVhkZwT/aPdRBxL6WF8oyAiWTluPRIqk5hHX7bO2Ly2H3kQcMf4VHG8FeNiE+xNCXHeCB+318OGLY65JBriUlzZlAXTCVdyIzXMRCL/5aqeWHI4a7jFCbeFofSyt5Mw937rbCdVf5VCg8VnaXUN+rAoa/n21Ztn6h/igVJQc8VZYd4Dn3+fhKLxmh9r6hEINcS5EMEK5Joe1PpK3dYE0xo2fIKq1TyxZeoG6jCPh96hR0OWqxuQOdgvC57CAnB8oen69LRoSyb6mEQa41JWFktrFM1UWwlm4orSYtnyO1h1WEum5f5yViYrRbr4JJVFpv7qDLVnoUZpIznwxyqr4CtXTNdn7ByDfzcD+5IxJmb7woPSwwyVhEBjlVX2r0s9cEql98pppQ+mZjgjclf0EuPH/Tl81mk263W/f1UjW2ZAkwYwZw9CiQkADMnAmMHm10VeaSlATk5FS9PTERyM7WuxoKgxAiU0ppq3x7lBHFEKlu9GhPGJWUeL4zxKuaOROIja14W2ys53ayNAY5UU0xejSQnu5pgQvh+Z6ezje9aqCW0QUQkY5Gj2ZwV0NskRMRWRyDnIjI4hjkREQWxyAnIrI4BjkRkcUxyImILE6VIBdC9BdCHBBCHBZCPKfGMomISJmIg1wIEQ3gXQAPAkgGMEoIkRzpcomISBk1WuS3AjgspfxJSlkIYCmAR1RYLhERKaBGkLcBcKzc77ne2yoQQqQJIdxCCPeZM2dUWC0REQE6nuyUUqZLKW1SSluLFi30Wi0RUbWnRpDnAWhb7vd4721ERKQDNYJ8G4D2Qoh2QojaAEYCWKHCcomISIGIr34opbwmhHgSwBoA0QA+kFLuibgyIiJSRJXL2EopVwFYpcayiIgoNJzZSURkcQxyIiKLY5ATEVkcg5yIyOIY5EREFscgJyKyOAY5EZHFMciJiCyOQU5EZHEMciIii2OQExFZHIOciMjiGORERBbHICcisjgGORGRxTHIiYgsjkFORGRxDHIiIotjkBMRWRyDnIjI4hjkREQWxyAnIrI4BjkRkcUxyImILM5SQf7Od+9g8CeD8e8f/40SWWJ0OUREpmCpIJeQ2HR0Ex7IeAAd3umA1ze/jp+v/Gx0WUREhrJUkP/htj8g95lcLBmyBK0atsKz655Fm1ltMGb5GGw+uhlSSqNLJCLSnTAi/Gw2m3S73REvZ/fp3XC5XVi0cxEuFl7ELdfdAofNgTFdxqBhnYYqVEpEZB5CiEwppa3K7VYO8lKXCi/h410fw+l2YsfJHWhQuwFG3zIaDpsDKS1TVFsPEZGRqnWQl5JSYtvxbXC6nVi6eykKrhXg9vjbYbfZMTx5OOrF1FN9nUREeqkRQV7euavnsHDnQjjdThzMP4hm9ZphfMp42G12tI9rr+m6iYi0UOOCvJSUEl9nfw2n24nP93+OayXXcN8N98Fhc2DQTYNQK6qWLnUQEUWqxgZ5eScunsD7O95HemY6jl04htYNW2NSt0mYnDoZ8Y3ida+HiCgUDPJyrpVcw6pDq+Byu7D68GpEiSg8fNPDsKfacf9v7keUsNSoTCKqIfwFeUSJJYQYLoTYI4QoEUJUWbhZ1YqqhUE3DcKq0atw+A+H8ec7/ozNRzej/5L+nGhERJYTadNzN4AhAL5VoRZD3ND0Bvzfff+HY88cw0dDPkLrhq050YiILCWiIJdS7pNSHlCrGCPVqVUHo24ZhW9/9y12O3YjrXsavjz4Je5ccCdSXClwbnPiwq8XjC6TiKgKdgb70Om6TnhnwDvIm5aH9IHpqBVVC0+segJtZrWBfaUdO0/uNLpEIqIyQU92CiHWAWjp408zpJRfeO+zEcCfpJR+z2AKIdIApAFAQkJCak5OTrg16650opHL7cLHuz9GwbUC9IzvCYfNwYlGRKQbTUetKAny8owetRKJc1fPYdHORXC6nTiQf4ATjYhIN5qMWqmJmtZriqk9p2Lf7/dhw+MbcG+7e/H292+jw5wOuH/x/Vi+bzmKiouMLpOIapCIWuRCiMEA3gHQAsB5AFlSygeC/Z+VW+S+nLh4Ah/s+ADp29Nx9JejnGhERJrghCAdFJcUY9WhVXC6nVh9eDWEEHi4w8Nw2BycaEREEWOQ6+zIuSNIz0zH+zvex5krZ3BD0xswJXUKftf1d2hRv4XR5RGRBTHIDfLrtV/xz/3/hNPtxLc536J2dG0MSx4Gh82BXm17QQhhdIlEZBEMchPYc3oP5mbOxcKdC3Hh1wvofF3nsk80alSnkdHlEZHJMchN5HLhZXy82/OJRttPbEf9mPqeTzTq4UDXll2NLo+ITIpBbkJSSriPu8s+0ejqtavoGd8T9lQ7ftvpt5xoREQVMMhNrnSikSvThf0/70fTuk0xvqtnolGHuA5Gl0dEJsAgtwgpJTZmb4TT7cQ/9/8T10qu4d5298Jus+ORmx5BTHSM0SUSkUEY5BZ08tJJvL/9/bKJRq0atMKk7pMwuftktG3c1ujyiEhnDHILKy4pxleHv4LT7cRXh74qm2hkt9nR7zf9ONGIqIZgkFcTR84dwbzt8/D+jvdx+vJpTjQiqkEY5NVMYXEh/rnPM9Hom5xvyiYa2VPtuDPhTk40IqqGGOTV2N4ze+FyuypMNLKn2jE2ZSwnGhFVIwzyGqB0opHL7ULmicyyiUZ2mx3dWnUzujwiihCDvIZxH3fDuc2Jj3d/jKvXruK2NrfBYXNwohGRhTHIa6hzV89h8Q+L4XQ7K0w0mpI6BTc1v8no8ogoBAzyGk5KiW9yvoHL7cKyfctwreQa7ml3Dxw2BycaEVkEg5zKnLx0Eh/s+ABzM+dyohGRhTDIqYrSiUYutwurDq2CEAIDOwyEw+bgRCMiE2KQU0DZ57PLPtHo9OXTaNekHaakTsGEbhM40YjIJBjkpEjpRCNXpgsbszeidnRtDO04FA6bgxONiAzGIKeQ7Tuzr2yi0S+//oJOLTrBbrNjbJexaFy3sdHlEdU4DHIK2+XCy1i6eymcbmfZRKPHbnkMDpuDE42IdMQgJ1X4mmhkt9kxotMITjQi0hiDnFR1vuA8Fu1cVDbRqEndJhif4vlEI040ItIGg5w0IaXEtznfwul2Yvm+5SgqKULfpL5w2Bx49OZHOdGISEUMctLcqUun8P6O95GemY6cX3LQskFLTOo2CZNTJyOhcYLR5RFZHoOcdFNcUozVh1fD6XaWTTR6qP1DZRONoqOijS6RyJIY5GSInPM5SM9Mx/wd83H68mkkNUkqm2h0Xf3rjC6PyFIY5GSoyhONYqJiPJ9oZLOjd0JvTjQiUoBBTqbBiUZE4WGQk+lcKbpSNtHIfdxdNtHIbrOje6vuRpdHZDoMcjI193E3XG4XPtr1Ea5eu4pb29wKe6odIzqPQGxMrNHlEZkCg5wsoXSikcvtwr6f95VNNJpim4Kbm99sdHlEhmKQk6VwohFRVQxysqxTl06VfaJR6USjid0mIi01jRONqEbRJMiFEK8DeBhAIYAfAfxOSnk+2P8xyCkcnGhENZ1WQd4PwAYp5TUhxKsAIKWcHuz/GOQUqZzzOZi3fR7mb5+PU5dPcaIR1Qiad60IIQYDGCalHB3svgxyUkthcSE+3/85XG4Xvs7+GjFRMRia7PlEI040oupGjyD/EsAnUsoMP39PA5AGAAkJCak5OTmqrJeo1P6f95dNNDpfcB7JLZJhT7Xj8ZTHOdGIqoWwg1wIsQ5ASx9/miGl/MJ7nxkAbACGSAXvDGyRk5auFF3BJ7s/gdPtxLbj2xAbE4vHOnsmGqW2TjW6PKKwadYiF0KMBzAFwL1SyitK/odBTnqpPNGoR+secNgcnGhElqTVyc7+AGYB6COlPKP0/xjkpLfzBeexeOdiON3OsolG41LGwW6zc6IRWYZWQX4YQB0A+d6btkop7cH+j0FORpFS4j9H/wOn24lle5eVTTSy2+x49OZHUTu6ttElEvnFCUFElZy6dAoLshZgbuZcZJ/PxvX1ry+baJTYJNHo8oiqYJAT+VFcUow1P66B0+3Evw7+C0IIDGg/APZUO/rf2J8Tjcg0GOREClSeaJTYOBFTUqdgYveJnGhEhmOQE4XA30Qje6oddyXexYlGZAgGOVGY9v+8H3Pdc/Hhzg8rTDQamzIWTeo2Mbo8qkEY5EQRKp1o5Mp04fu87xEbE4tRnUfBYXNwohHpgkFOpKLtJ7bD5XZhya4luFJ0BbbWNjhsDozsPJITjUgzDHIiDfxS8AsW/+CZaLT3zF40rtO4bKJRxxYdjS6PqhkGOZGGSicaudwufLb3MxSVFOHupLvLPtGIE41IDQxyIp2cvnwaC3YsgCvTxYlGpCoGOZHOSmQJ1hz2TjQ69C9IKTGg/QA4bA5ONKKwMMiJDHT0l6OYlzkP83fMx8lLJ5HYOBFpqWmY2G0irm9wvdHlkUUwyIlMoKi4CF8c+AJOtxMbjmxATFQMhnQcArvNjj6JfTjRiAJikBOZzIGfD2Bu5lx8mPUhzhWcQ8fmHWG3eT7RiBONyBcGOZFJXS26ik/2eD7R6Pu871GvVj3PRKMeDthaV3nNUg3GICeygMoTjVJbpZZNNKpfu77R5ZHBGOREFlI60cjldmHPmT1oXKcxHk95HA6bgxONajDTB3lRURFyc3NRUFCgez01Ud26dREfH4+YmBijS6EApJTYdHST5xON9i1DYXEh+iT2gcPmwOCOgznRqIYxfZAfOXIEDRs2RFxcHM/ca0xKifz8fFy8eBHt2rUzuhxSqHSi0dzMuThy/giuq39d2USjpCZJRpdHOvAX5FFGFONLQUEBQ1wnQgjExcXx6Mdirqt/HabfOR2H/3AYX43+Cj3je+LVza/ihrduwEMfPYSVB1eiuKTY6DLJALWMLqA8hrh+uK2tK0pEof+N/dH/xv449ssxzNs+D/O2z8PDHz+MhMYJSOuehondJ6Jlg5ZGl0o6MU2LnIhC17ZxW7zU9yUcffooPh3+KW5sdiOe//p5tH2zLUZ8NgIbszfCiO5T0heDPEzZ2dn46KOPyn7PysrCqlWryn5fsWIFXnnlFVXWNX78eHz22WcAgEmTJmHv3r2qLJeqj5joGAxLHob1j6/H/t/vx1O3PoW1P65F34V9kfxeMt7a+hbOF5w3ukzSCIM8TMGCfNCgQXjuuedUX+/8+fORnJys+nKp+rip+U2Y9cAs5E3Lw4ePfIjGdRrj6TVPo/XfW2PCFxOwLW+b0SWSykzVR17q6dVPI+tklqrL7NqyK2b3nx3wPosWLcIbb7wBIQS6dOmCxYsXY/z48Rg4cCCGDRsGAGjQoAEuXbqE5557Dvv27UPXrl0xatQovPvuu7h69So2bdqEv/zlL7h69SrcbjfmzJmD8ePHo1GjRnC73Th58iRee+01DBs2DCUlJXjyySexYcMGtG3bFjExMZgwYULZuny5++678cYbb8Bms6FBgwaYOnUqVq5ciXr16uGLL77A9ddfjzNnzsBut+Po0aMAgNmzZ6NXr16qbUuyhnox9TCu6ziM6zoOO07sKJtotCBrAVJbpcJus2NU51GcaFQNsEXutWfPHvztb3/Dhg0bsHPnTrz11lsB7//KK6+gd+/eyMrKwvTp0/HSSy9hxIgRyMrKwogRI6rc/8SJE9i0aRNWrlxZ1lJfvnw5srOzsXfvXixevBhbtmwJqebLly+jZ8+e2LlzJ+666y7MmzcPADB16lQ888wz2LZtG5YtW4ZJkyaFtFyqfrq16oa5D89F3rQ8zHlwDgquFWDyl5PRelZrPLXqKew9w+46KzNlizxYy1kLGzZswPDhw9G8eXMAQLNmzVRd/qOPPoqoqCgkJyfj1KlTAIBNmzZh+PDhiIqKQsuWLdG3b9+Qllm7dm0MHDgQAJCamoq1a9cCANatW1ehH/3ChQu4dOkSGjRooNKjIatqXLcxfn/r7/FEjyew+dhmON1OpG9Px5xtc3BX4l1w2BwY0nEIJxpZjCmD3Exq1aqFkpISAEBJSQkKCwvDWk6dOnXKflZrFEFMTEzZMMLo6Ghcu3YNgKfOrVu3om7duqqsh6ofIQTuTLgTdybcidkPzMaCrAVwuV0YtWwUJxpZELtWvO655x58+umnyM/PBwCcPXsWAJCUlITMzEwAnpEoRUVFAICGDRvi4sWLZf9f+XclevXqhWXLlqGkpASnTp3Cxo0bVXgkQL9+/fDOO++U/Z6VlaXKcql6alG/BZ7t9WzZRKPb42+vMNHoywNfcqKRyTHIvTp16oQZM2agT58+SElJwbRp0wAAkydPxjfffIOUlBRs2bIF9et7Tgx16dIF0dHRSElJwZtvvom+ffti79696Nq1Kz755BNF6xw6dCji4+ORnJyMMWPGoHv37mjcuHHEj+Xtt9+G2+1Gly5dkJycDJfLFfEyqfornWj0+cjPkT01Gy/c9QJ2nNiBQUsH4Ya3b8DMb2fi5KWTRpdJPpjmWiv79u1Dx44176pupX3X+fn5uPXWW7F582a0bKnPjLyaus1JuaLiIqw4sAJOtxPrj6xHrahaGHzzYDhsDtyddDdnCOvM37VW2EdusIEDB+L8+fMoLCzECy+8oFuIEykREx2DoclDMTR5KA7mH4TL7cKHWR/i072f4qa4m2C32TEuZRya1mtqdKk1GlvkNRi3OYXjatFV/GPPP+DKdGFr7lbUq1UPIzuPhMPm+UQjttK1Y/qrHxKRNZRONNoycQt2TNmBx1Mexz/2/AO3zr8Vtnk2zN8+H5cLLxtdZo3CICeisHVt2RWugS4c/+NxvDvgXRQWF3KikQEY5EQUsUZ1GuGJHk/gB/sP+M/v/oOBHQYifXs6Or3XCX0+7IOlu5eisDi8ORgUXERBLoR4WQjxgxAiSwjxbyFEa7UKIyLrKZ1otGTIEuQ+k4tX73sVuRdyMWrZKLR9sy3+su4vyD6fbXSZ1U6kLfLXpZRdpJRdAawE8GLkJSm0ZAmQlARERXm+L1mi26qJKLjSiUaHnjqE1aNX4/b42/Haf1/jRCMNRBTkUsoL5X6tD0CfITBLlgBpaUBODiCl53tamm5hvnDhQrRv3x7t27fHwoULdVknkVVFiSg8cOMD+Hzk58h5OqfCRKN2b7XD3779GycaRSji4YdCiJkAHgfwC4C+Usozfu6XBiANABISElJzcnIq/D2koXBJSZ7wriwxEcjOVlx7OM6ePQubzQa32w0hBFJTU5GZmYmmTa03jpbDD8koRcVF+PLgl3C6nVj30zpONFIo7OGHQoh1QojdPr4eAQAp5QwpZVsASwA86W85Usp0KaVNSmlr0aJFJI8F8F5nW/HtCmzbtg1dunRBQUEBLl++jE6dOmH37t1V7rdmzRrcf//9aNasGZo2bYr7778fq1evDnu9RDVRTHQMhnQcgrVj1+Lgkwcx9bapWH9kPe5ZdA86vtsRs7fOxrmr54wu0zKCBrmU8j4pZWcfX19UuusSAEO1KbOShITQblegR48eGDRoEJ5//nk8++yzGDNmDDp37lzlfnl5eWjbtm3Z7/Hx8cjLywt7vUQ1Xfu49nij3xvIfSYXCx9diKb1muKZNc+gzaw2mPDFBHyf9z0/dzSISEettC/36yMA9kdWjkIzZwKxsRVvi4313B6BF198EWvXroXb7cazzz4b0bKIKDT1Yurh8ZTHq0w0um3+bbDNs2Fe5jxONPIj0lErr3i7WX4A0A/AVBVqCm70aCA93dMnLoTne3q65/YI5Ofn49KlS7h48SIKCgp83qdNmzY4duxY2e+5ublo06ZNROsloorKTzR6b8B7KCouQtrKtLKJRntO7zG6RFPhtVbKGTRoEEaOHIkjR47gxIkTmDNnTpX7nD17Fqmpqdi+fTsAoHv37sjMzFT9E4X0YIZtTqSElBL/PfZfON1OfLr3UxQWF6J3Qu+yTzSqU6tO8IVUA7z6YRCLFi1CTEwMHnvsMRQXF+OOO+7Ahg0bcM8991S4X7NmzfDCCy+gR48eADzdMVYMcSIrEUKgV0Iv9Erohdn9Z2PBjgVwZbrw2PLH0CK2BSZ0m4ApqVPQrmk7o0s1BFvkNRi3OVlZiSzBup/Wwel2YsWBFZBSov+N/eGwOTCg/QBER0UbXaLq2CInomolSkSh32/6od9v+iH3Qi7mb5+PedvnYdDSQWjbqC3SUtMwsdtEtGrYyuhSNceLZvmxa9cudO3atcLXbbfdZnRZRORDfKN4/PXuvyJ7ajaW/3Y5bm5+M174+gUkzE7A8E+HY/1P66v1EEa2yP245ZZb+KHFRBYTEx2DwR0HY3DHwTiUfwhzM+diQdYCfLb3M3SI6wB7qh3juo5Ds3rV67wWW+REVC1VnmgUVy8O0/49DW1mtcH4z8fju9zvqk0rnUFORNVa6USj/078L7KmZGFcyjgs27cMPd/vidT0VMzLnIdLhZeMLjMiDHIiqjFSWqbANdCFvGl5eG/Ae7hWcg1pK9PQZlYbPLnqSew+XfX6SlZg2SDn5ciJKFyN6jSCo4cDO+07sXnCZgy6aRDmbZ+HW5y3oPeC3vho10f49dqvRpepmCWD3ODLkaN///5o0qQJBg4cqM8KiUgTQgjc0fYOLB68GHnT8vD6/a/jxMUTGL18NOLfjMf0tdPx07mfjC4zKEsG+YwZwJUrFW+7csVzux7+/Oc/Y/HixfqsjIh00Ty2Of50x59w8KmDWDNmDXon9Mbft/wdN759Ix5c8iBWHFhh2k80smSQa3A5csXXIweAe++9Fw0bNgx/ZURkWqUTjZaPWI7sp7PxYp8X8cOpH/DI0kfQ7q12ePmbl3Hi4gmjy6zAkkGuweXIFV+PnIhqjtKJRjlP52D5b5ejY4uOeHHji6abaGTJINfocuS8HjkR+VQrqhYGdxyMNWPW4NBTh/D0bU9jw5ENuG/xfbj53Zsxa8ssnL161rD6LBnkGl2OXNH1yImoZrux2Y14vd/ryJuWh0WPLkLz2Ob447//aOhEI0sGOeAJ7exsoKTE8z3SEAeAKVOm4OWXX8bo0aMxffr0yBdIRNVW3Vp1MTZlLDZP2IysKVkYnzK+wkSj9Mx03SYaWTbI1Vb+euTPPfcctm3bhg0bNvi8b+/evTF8+HCsX78e8fHxWLNmjc7VEpGZpLRMgXOgE8enHYfzISeKZTGmrJyC1n9vjbnuuZqvn9cjr8G4zYm0IaXEltwtcLldGNV5FB5s/6Aqy+X1yImIdFI60eiOtnfosj4GuR+7du3C2LFjK9xWp04dfPfddwZVRETkm6mCXEoJIYTRZQCo/tcjN8PYVyJSh2lOdtatWxf5+fkMGB1IKZGfn4+6desaXQoRqcA0LfL4+Hjk5ubizJkzRpdSI9StWxfx8fFGl0FEKjBNkMfExKBdu3ZGl0FEZDmm6VohIqLwMMiJiCyOQU5EZHGGzOwUQpwBkBPmvzcH8LOK5aiFdYWGdYWGdYXGrHUBkdWWKKVsUflGQ4I8EkIIt68pqkZjXaFhXaFhXaExa12ANrWxa4WIyOIY5EREFmfFIE83ugA/WFdoWFdoWFdozFoXoEFtlusjJyKiiqzYIicionIY5EREFmfaIBdC9BdCHBBCHBZCPOfj79OEEHuFED8IIdYLIRJNUpddCLFLCJElhNgkhEg2Q13l7jdUCCGFELoMzVKwvcYLIc54t1eWEGKSGery3ue33n1sjxDiIzPUJYR4s9y2OiiEOG+SuhKEEF8LIXZ4X5MDTFJXojcffhBCbBRC6HKlOCHEB0KI00KI3X7+LoQQb3vr/kEI0T2iFUopTfcFIBrAjwBuAFAbwE4AyZXu0xdArPdnB4BPTFJXo3I/DwKw2gx1ee/XEMC3ALYCsJmhLgDjAcwx4f7VHsAOAE29v19nhroq3f8pAB+YoS54TuA5vD8nA8g2SV2fAhjn/fkeAIt12sfuAtAdwG4/fx8A4CsAAkBPAN9Fsj6ztshvBXBYSvmTlLIQwFIAj5S/g5TyaynlFe+vWwHo8U6rpK4L5X6tD0CPs8lB6/J6GcCrAAp0qCmUuvSmpK7JAN6VUp4DACnlaZPUVd4oAB+bpC4JoJH358YAjpukrmQApZ+i/rWPv2tCSvktgLMB7vIIgEXSYyuAJkKIVuGuz6xB3gbAsXK/53pv82ciPO9uWlNUlxDi90KIHwG8BuAPZqjLe+jWVkr5Lx3qUVyX11Dv4eVnQoi2JqmrA4AOQojNQoitQoj+JqkLgKfLAEA7/C+kjK7rrwDGCCFyAayC52jBDHXtBDDE+/NgAA2FEHE61BZMqBkXkFmDXDEhxBgANgCvG11LKSnlu1LK3wCYDuB5o+sRQkQBmAXgj0bX4sOXAJKklF0ArAWw0OB6StWCp3vlbnhavvOEEE2MLKiSkQA+k1IWG12I1ygAH0op4+HpNljs3e+M9icAfYQQOwD0AZAHwCzbTDVm2NC+5AEo3zKL995WgRDiPgAzAAySUv5qlrrKWQrgUS0L8gpWV0MAnQFsFEJkw9Mnt0KHE55Bt5eUMr/cczcfQKrGNSmqC54W0gopZZGU8giAg/AEu9F1lRoJfbpVAGV1TQTwDwCQUm4BUBeei0MZWpeU8riUcoiUshs8WQEp5XmN61Ii1CwJTI+O/zBOFNQC8BM8h46lJzE6VbpPN3hOdLQ3WV3ty/38MAC3GeqqdP+N0Odkp5Lt1arcz4MBbDVJXf0BLPT+3Byew+A4o+vy3u9mANnwTugzyfb6CsB4788d4ekj17Q+hXU1BxDl/XkmgJf02Gbe9SXB/8nOh1DxZOf3Ea1LrwcVxkYYAE8r6EcAM7y3vQRP6xsA1gE4BSDL+7XCJHW9BWCPt6avAwWqnnVVuq8uQa5we/2fd3vt9G6vm01Sl4CnO2ovgF0ARpqhLu/vfwXwih71hLC9kgFs9j6PWQD6maSuYQAOee8zH0Adner6GMAJAEXwHN1NBGAHYC+3f73rrXtXpK9HTtEnIrI4s/aRExGRQgxyIiKLY5ATEVkcg5yIyOIY5EREFscgJyKyOAY5EZHF/T/+gyEj9TYh0wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAo0ElEQVR4nO3deXQUVd4+8OdmYQk7AWUJSXAAJSBB0iwqqLggIqJsA4gssoRuRwdlRnF+jL5z9OW8OjqKinYTULaguICiDIICAgOi0oEgOzKSQNgNIGvMdn9/dBKz9FLdXWvyfM7pA+l0qr5dXf30rVv3VgspJYiIyLoijC6AiIjCwyAnIrI4BjkRkcUxyImILI5BTkRkcVFGrLRZs2YyMTHRiFUTEVlWRkbGL1LK5pXvNyTIExMT4Xa7jVg1EZFlCSGyvd3PrhUiIotjkBMRWRyDnIjI4hjkREQWxyAnIrI4VYJcCPGeEOK0EGK3GsurMZYsARITgYgIz79LlhhdERFZkFot8gUA+qu0rJphyRIgNRXIzgak9Pybmqp6mPOzInSVt91jj+m3LYN93bR+nbkfmZyUUpUbgEQAu5U8NiUlRdY46elSJiRIKYTn39hYKT0RXvGWkKDqKmNiKi4+JsZzP/nnbdtVvmm1LYN93bR+nbkfmQcAt/SWv97uDOUWKMgBpAJwA3DHx8fr8qRNQ0kqlN6EUG21CQmaf1ZUW762nR7b0te6Y2MrtgVKg1Tr19nf8iu3Txju2jI8yMvfalyLXGkqqJwMQmj+WVFt+dp2emxLpesubRUrfZ3Lh25srOemJID91RMdXfVnhrl2fAU5R63o4cgRZY+LiQFmzlRttfHx/u9Xs99Trz5Uvdbja9uF+jgt1n3lCjBjRuDXGah6SiY313OTJadnHnkEaNbM+/b0tfyICKCgoOJ9BQXA1KnK6teakec4dOct3UO5gS1y34I9VlaJv75NNfs99epD1aMvuHyLtVYtZS1itZSuv7Q1rfSIQMl28XVKRslz8rV8f8sxmhHnOPToZoKWXSsAPgBwAkABgBwAE/09vsYFuYFni3ztXGr2q+rVF6/lery9RNHRFbsfHA7t3qje1l8a5krOjfsLkfR0ZSHub3t6W76Zg1zvcxx6vcU1DfJgbzUuyKU03VkhNfvP9eqL13I9anxIhPMSB1p/OEERzCmaYLanrw+X2Fjlz1srep/j0KsxwyA3O52DPiH2Ilvk5YT7IeFwVF1GMC0yJev3toso2W2Uhlqw2zM9vWr3U61ahrdRpJT6t8j1aswwyM1M7eOyQO/u9HSZHj1exuBSxVXWKtCtjzyUzy21+/XVGtbvb+SI0qAI5UNK6fYIpkUe7PZUsKsZciAaTh95KDWzRV7TpadLGRmp3l6g5N1dstelY5RMwGEpUCQTcFimxz4R1tNQuvOHE8hqBIO39deqVXUonRpdF0pbZKFsE6XhESjUyvfFB/PhG+icgdETiYKtN5ya2UdekylpNqjVNIiM/P3vDR5gbvREJX+DiMq3zGNjlb35/XVdaNnHHszLGOoY8vJ/H2wL1+jXORTh1KzH0QmD3IwCHfOG0unqL1VK/97gd5i/ANLjUDzQJlLykigZAVT6fLQSTIs8mKMlb4Hv66DR37r1ai+ouc+EWrOSEFejxc4gNyN/iRJqp2ugD4fSvczAY15/LWI9yvJ30KIkrCrX5mvooMPhv45wA0jJyxjMS62k1R3oVj7w9GgvqL0ra3GuQs3eUwa5GYWSKL6aBuVb2oE+IMo/PlCKaNBE9rXjh3rCMdgSfa0/lOAqPzxQjRpCCXN/6w0mmIIdphhouXq0F/zVrNaHY6APZX/bWMn5iWAwyM3I354ezDswmKZUsJ22Gr0TvQWQz8NaFKteorf1hxJkoXYT6NW7FUxXQbDDFCvffM0K1bKrLFDNoeyuwQ4l9beNlRwgB4NBblblE6S0JV56il1pQvnrpA1nr1Y7bQK8q32uDod9NonULDGUroVg1xPoA0Pt/mO1W+SRkfrMdFVKSc3BvkbB7lP+Hq/2hwyD3Mx8NSuVvlMCDZsI9Z2m5tkqBU3n9HQpY8Tlig/BJZmOUT7PHAYqMZQuD29D1tT4XFQ6SElNavaRm/Ea5Eq2abC7a7C7vb+3r69llR9EFgwGuZmF26zU6jhdyVDGcJdVqcZ0PFxxbDtG+X0+wfZPajnPKhAtWmhq1x3uMMVwawplGwc6ytG6Re6rbi1GMzHIzSzclq9Wfdn+mjvBLl/pcwyy30Gt0wx6CHTgZLbWrlb8tWDD2Y3VPIGsxnL8vd6hYpCbmRqJo9VZJTXGTgWzDH9nPSsPiSh5vumxT8iE2ItVnrrq45jD3MZKX2atTxAaLdjBWka8DdRYjhYNCQa5lvQYEGykcBJR6RnE2Njfn2+gYQMKt5eqb6Rwr4qlsGyz7wpqCHZ0jE4TjlWnxWvJINeKFgOCteycDEU4iRjMmL6IiN+ft79toLS/Xa03ktKjBIWLqvKZX+7OhMijqrfiAq5fwe/U4u/gTM1LDpmF2tuUQa6VcJt93oZJmK1JFk4ihjM42dc6gjhCUOWNpOV4wUrbVqBIs1apv5dRzfH4way//LrU2PXVDk6zdXMxyLUSzBkNJaGtUstPdaHu0cG0yJU+by3PYnp7noHOUoazrkrN0AQc1uyp+dtsoY7U8Bu8lbalr2vgl19XOGPTvdXj7do44SzP6DYVg1wrSscY+dvLlNyqU0dhuM9bz1E6/q4dEMo4svLDabxsh3SMqnqdeJXCQ6DY59MI5TSI3/D3si19HW2o9VzVHt5ptlFPUjLItaO0/1SLlqlVeDsSCfTNxoGet5oDkUv5eo28Xc1LyVWxvNWs4MRvOkbJhMij6h7Op6fLBJHtcxOHElp+w9/LAn0dbai1qytpH3hdto99xvclI4oM62dhkGvJ115TvjkTbCtUrWaKWaWnB/5q92AHEXtbXjDL8JdMWo5HC6fmINbttbUvLofcR+43/BUebQR62wT5FINftp8n7vP54bBh70sGuZaUNGf8dcFU3onMcBELvfhqpZYfjhjqMoJt4ml9LK3kwzzUudsK113lW6HwcNlDgv2s8hv+PrZl2fqF+qNUlBzwVFm2n9fc6/MrvWSE2vuGQgxyLYUzQLgmhbYv4bZ2AzXFjJ4hq7ROLVt4/rqNwuDzpVPQ5ajF5vZ3CsLrsgOcHCh7ft4uGRHMvqUSBrnWlISR2cYyVReBWrrBtJq0fI3UHlYR7Lq9nZeIjtZuvQomUWm9uQMuW+lRmEnOfDLIqfry19I12/kFIz/MQ/3mjnCYvfGi9LDAJGMRGeRUfanRz14TqH7xmWpC6YeNCT6UfAW58PxOXzabTbrdbt3XS9XYkiXAjBnAkSNAfDwwcyYwerTRVZlLYiKQnV31/oQEICtL72ooBEKIDCmlrfL9EUYUQ6S60aM9YVRc7PmXIV7VzJlATEzF+2JiPPeTpTHIiWqK0aOBtDRPC1wIz79pafzQqwaijC6AiHQ0ejSDuxpii5yIyOIY5EREFscgJyKyOAY5EZHFMciJiCyOQU5EZHGqBLkQor8Q4oAQ4pAQ4lk1lklERMqEHeRCiEgAbwO4D0ASgFFCiKRwl0tERMqo0SLvAeCQlPJnKWU+gKUAHlRhuUREpIAaQd4awNFyP+eU3FeBECJVCOEWQrjPnDmjwmqJiAhQJ8iFl/uqXFJRSpkmpbRJKW3NmzdXYbVERASoE+Q5ANqU+zkOwHEVlktERAqoEeTbALQXQrQVQtQCMBLA5yosl4iIFAj76odSykIhxOMA1gCIBPCelHJP2JUREZEiqlzGVkq5CsAqNZZFRETB4cxOIiKLY5ATEVkcg5yIyOIY5EREFscgJyKyOAY5EZHFMciJiCyOQU5EZHEMciIii2OQExFZHIOciMjiGORERBbHICcisjgGORGRxTHIiYgsjkFORGRxDHIiIotjkBMRWRyDnIjI4hjkREQWxyAnIrI4BjkRkcUxyImILI5BTkRkcZYK8re+fwuDPxyMr/77FYplsdHlEBGZgqWCXEJi85HNuDf9XnR4qwNe2fIKfrnyi9FlEREZylJB/ueef0bOUzlYMmQJWjZoiWfWPoPWr7XGI8sfwZYjWyClNLpEIiLdCSPCz2azSbfbHfZydp/eDZfbhUU7F+Fi/kXceM2NcNgceKTLI2hQu4EKlRIRmYcQIkNKaatyv5WDvNSl/Ev4YNcHcLqd2HFyB+rXqo/RN46Gw+ZAcotk1dZDRGSkah3kpaSU2HZ8G5xuJ5buXoq8wjzcHHcz7DY7hicNR93ouqqvk4hILzUiyMs7d/UcFu5cCKfbiYO5B9G0blOMTx4Pu82O9rHtNV03EZEWalyQl5JS4pusb+B0O/HZ/s9QWFyIu6+7Gw6bA4OuH4SoiChd6iAiCleNDfLyTlw8gXd3vIu0jDQcvXAUrRq0wqSbJmFyymTENYzTvR4iomAwyMspLC7Eqp9WweV2YfWh1YgQEXjg+gdgT7Hjnj/cgwhhqVGZRFRD+ArysBJLCDFcCLFHCFEshKiycLOKiojCoOsHYdXoVTj050N4+panseXIFvRf0p8TjYjIcsJteu4GMATAJhVqMcR1Ta7D/939fzj61FG8P+R9tGrQihONiMhSwgpyKeU+KeUBtYoxUu2o2hh14yhsenQTdjt2I7VbKr44+AV6z++NZFcynNucuPDbBaPLJCKqgp3BXnS6phPeGvAWjk07hrSBaYiKiMJjqx5D69daw77Sjp0ndxpdIhFRmYAnO4UQawG08PKrGVLKFSWP2QDgr1JKn2cwhRCpAFIBID4+PiU7OzvUmnVXOtHI5Xbhg90fIK8wD73iesFhc3CiERHpRtNRK0qCvDyjR62E49zVc1i0cxGcbicO5B7gRCMi0o0mo1ZqoiZ1m2Bqr6nY96d9WD92Pe5qexfe/OFNdJjdAfcsvgfL9y1HQVGB0WUSUQ0SVotcCDEYwFsAmgM4DyBTSnlvoL+zcovcmxMXT+C9He8hbXsajvx6hBONiEgTnBCkg6LiIqz6aRWcbidWH1oNIQQe6PAAHDYHJxoRUdgY5Do7fO4w0jLS8O6Od3Hmyhlc1+Q6TEmZgke7Porm9ZobXR4RWRCD3CC/Ff6GT/d/CqfbiU3Zm1ArshaGJQ2Dw+bArW1uhRDC6BKJyCIY5Caw5/QezMmYg4U7F+LCbxfQ+ZrOZd9o1LB2Q6PLIyKTY5CbyOX8y/hgt+cbjbaf2I560fU832jU3YGuLboaXR4RmRSD3ISklHAfd5d9o9HVwqvoFdcL9hQ7/tjpj5xoREQVMMhNrnSikSvDhf2/7EeTOk0wvqtnolGH2A5Gl0dEJsAgtwgpJTZkbYDT7cSn+z9FYXEh7mp7F+w2Ox68/kFER0YbXSIRGYRBbkEnL53Eu9vfLZto1LJ+S0zqNgmTu01Gm0ZtjC6PiHTGILewouIifHnoSzjdTnz505dlE43sNjv6/aEfJxoR1RAM8mri8LnDmLt9Lt7d8S5OXz7NiUZENQiDvJrJL8rHp/s8E402Zm8sm2hkT7Gjd3xvTjQiqoYY5NXY3jN74XK7Kkw0sqfYMSZ5DCcaEVUjDPIaoHSikcvtQsaJjLKJRnabHTe1vMno8ogoTAzyGsZ93A3nNic+2P0BrhZeRc/WPeGwOTjRiMjCGOQ11Lmr57D4x8Vwup0VJhpNSZmC65tdb3R5RBQEBnkNJ6XExuyNcLldWLZvGQqLC3Fn2zvhsDk40YjIIhjkVObkpZN4b8d7mJMxhxONiCyEQU5VlE40crldWPXTKgghMLDDQDhsDk40IjIhBjn5lXU+q+wbjU5fPo22jdtiSsoUTLhpAicaEZkEg5wUKZ1o5MpwYUPWBtSKrIWhHYfCYXNwohGRwRjkFLR9Z/aVTTT69bdf0al5J9htdozpMgaN6jQyujyiGodBTiG7nH8ZS3cvhdPtLJto9PCND8Nhc3CiEZGOGOSkCm8Tjew2O0Z0GsGJRkQaY5CTqs7nnceinYvKJho1rtMY45M932jEiUZE2mCQkyaklNiUvQlOtxPL9y1HQXEB+ib2hcPmwEM3PMSJRkQqYpCT5k5dOoV3d7yLtIw0ZP+ajRb1W2DSTZMwOWUy4hvFG10ekeUxyEk3RcVFWH1oNZxuZ9lEo/vb31820SgyItLoEoksiUFOhsg+n420jDTM2zEPpy+fRmLjxLKJRtfUu8bo8ogshUFOhqo80Sg6ItrzjUY2O/rE9+FEIyIFGORkGpxoRBQaBjmZzpWCK2UTjdzH3WUTjew2O7q17GZ0eUSmwyAnU3Mfd8PlduH9Xe/jauFV9GjdA/YUO0Z0HoGY6BijyyMyBQY5WULpRCOX24V9v+wrm2g0xTYFNzS7wejyiAzFICdL4UQjoqoY5GRZpy6dKvtGo9KJRhNvmojUlFRONKIaRZMgF0K8AuABAPkA/gvgUSnl+UB/xyCnUHCiEdV0WgV5PwDrpZSFQoiXAUBKOT3Q3zHIKVzZ57Mxd/tczNs+D6cun+JEI6oRNO9aEUIMBjBMSjk60GMZ5KSW/KJ8fLb/M7jcLnyT9Q2iI6IxNMnzjUacaETVjR5B/gWAD6WU6T5+nwogFQDi4+NTsrOzVVkvUan9v+wvm2h0Pu88kponwZ5ix9jksZxoRNVCyEEuhFgLoIWXX82QUq4oecwMADYAQ6SCTwa2yElLVwqu4MPdH8LpdmLb8W2IiY7Bw509E41SWqUYXR5RyDRrkQshxgGwA7hLSnlFyd8wyEkvlScadW/VHQ6bgxONyJK0OtnZH8BrAG6XUp5R+ncMctLb+bzzWLxzMZxuZ9lEo3HJ42C32TnRiCxDqyA/BKA2gNySu76TUtoD/R2DnIwipcR/jvwHTrcTy/YuK5toZLfZ8dAND6FWZC2jSyTyiROCiCo5dekU5mfOx5yMOcg6n4Vr611bNtEooXGC0eURVcEgJ/KhqLgIa/67Bk63E/8++G8IITCg/QDYU+zo364/JxqRaTDIiRSoPNEooVECpqRMwcRuEznRiAzHICcKgq+JRvYUO25LuI0TjcgQDHKiEO3/ZT/muOdgwc4FFSYajUkeg8Z1GhtdHtUgDHKiMJVONHJluPDDsR8QEx2DUZ1HwWFzcKIR6YJBTqSi7Se2w+V2YcmuJbhScAW2VjY4bA6M7DySE41IMwxyIg38mvcrFv/omWi098xeNKrdqGyiUcfmHY0uj6oZBjmRhkonGrncLnyy9xMUFBfgjsQ7yr7RiBONSA0MciKdnL58GvN3zIcrw8WJRqQqBjmRzoplMdYcKplo9NO/IaXEgPYD4LA5ONGIQsIgJzLQkV+PYG7GXMzbMQ8nL51EQqMEpKakYuJNE3Ft/WuNLo8sgkFOZAIFRQVYcWAFnG4n1h9ej+iIaAzpOAR2mx23J9zOiUbkF4OcyGQO/HIAczLmYEHmApzLO4eOzTrCbvN8oxEnGpE3DHIik7pacBUf7vF8o9EPx35A3ai6nolG3R2wtarynqUajEFOZAGVJxqltEwpm2hUr1Y9o8sjgzHIiSykdKKRy+3CnjN70Kh2I4xNHguHzcGJRjWY6YO8oKAAOTk5yMvL072emqhOnTqIi4tDdHS00aWQH1JKbD6y2fONRvuWIb8oH7cn3A6HzYHBHQdzolENY/ogP3z4MBo0aIDY2FieudeYlBK5ubm4ePEi2rZta3Q5pFDpRKM5GXNw+PxhXFPvmrKJRomNE40uj3TgK8gjjCjGm7y8PIa4ToQQiI2N5dGPxVxT7xpM7z0dh/58CF+O/hK94nrh5S0v47o3rsP979+PlQdXoqi4yOgyyQBRRhdQHkNcP9zW1hUhItC/XX/0b9cfR389irnb52Lu9rl44IMHEN8oHqndUjGx20S0qN/C6FJJJ6ZpkRNR8No0aoMX+r6AI08ewcfDP0a7pu3w92/+jjavt8GIT0ZgQ9YGGNF9SvpikIcoKysL77//ftnPmZmZWLVqVdnPn3/+OV566SVV1jV+/Hh88sknAIBJkyZh7969qiyXqo/oyGgMSxqGdWPXYf+f9uOJHk/g6/9+jb4L+yLpnSS88d0bOJ933ugySSMM8hAFCvJBgwbh2WefVX298+bNQ1JSkurLperj+mbX47V7X8Oxacew4MEFaFS7EZ5c8yRa/asVJqyYgG3HthldIqnMVH3kpZ5c/SQyT2aqusyuLbpiVv9Zfh+zaNEivPrqqxBCoEuXLli8eDHGjx+PgQMHYtiwYQCA+vXr49KlS3j22Wexb98+dO3aFaNGjcLbb7+Nq1evYvPmzfjb3/6Gq1evwu12Y/bs2Rg/fjwaNmwIt9uNkydP4p///CeGDRuG4uJiPP7449i4cSPatm2L4uJiTJgwoWxd3txxxx149dVXYbPZUL9+fUydOhUrV65E3bp1sWLFClx77bU4c+YM7HY7jhw5AgCYNWsWbr31VtW2JVlD3ei6GNd1HMZ1HYcdJ3aUTTSanzkfKS1TYLfZMarzKE40qgbYIi+xZ88ezJw5E+vXr8fOnTvxxhtv+H38Sy+9hD59+iAzMxPTp0/HCy+8gBEjRiAzMxMjRoyo8vgTJ05g8+bNWLlyZVlLffny5cjKysKuXbswb948bN26NaiaL1++jF69emHnzp247bbbMHfuXADA1KlT8dRTT2Hbtm1YtmwZJk2aFNRyqfq5qeVNmPPAHBybdgyz75uNvMI8TP5iMlq91gpPrHoCe8+wu87KTNkiD9Ry1sL69esxbNgwNGvWDADQtGlTVZf/0EMPISIiAklJSTh16hQAYPPmzRg+fDgiIiLQokUL9O3bN6hl1qpVCwMHDgQApKSk4OuvvwYArF27tkI/+oULF3Dx4kU0aNBApWdDVtWoTiP8qcef8Fj3x7Dl6BY43U6kbU/D7G2zcVvCbXDYHBjScQgnGlmMKYPcCFJKr0PyoqKiUFxcXPaY/Pz8kJZfu3btCusq/2+ooqOjy2qOjIxEYWEhAKC4uBhbt25F3bp1w1o+VV9CCPSO743e8b0x695ZmJ85Hy63C6OWjeJEIwti10qJu+66Cx999BFyc3MBAGfPngUAJCYmIiMjAwCwYsUKFBQUAAAaNGiAixcvlv195Z+V6N27N5YtW4bi4mKcOnUKGzZsUOGZAP369cPs2bPLfs7MzFRluVQ9Na/XHM/c+kzZRKOb426uMNHoiwNfcKKRyTHIS3Tq1AkzZszA7bffjuTkZEybNg0AMHnyZGzcuBE9evTA999/j3r1PCeGunTpgqioKCQnJ+P1119H3759sXfvXnTt2hUffvihonUOHToUcXFx6Ny5M6ZMmYKePXuiUaNGYT+XN998E263G126dEFSUhJcLlfYy6Tqr3Si0WcjP0PW1Cw8d9tz2HFiBwYtHYTr3rwOMzfNxMlLJ40uk7wwzbVW9u3bh44da95V3S5duoT69esjNzcXPXr0wJYtW9CihT4z8mrqNiflCooK8PmBz+F0O7Hu8DpERURh8A2D4bA5cEfiHZwhrDNf11phH7nBBg4ciPPnzyM/Px/PPfecbiFOpER0ZDSGJg3F0KShOJh7EC63CwsyF+DjvR/j+tjrYbfZMS55HJrUbWJ0qTUaW+Q1GLc5heJqwVV8tOcjuDJc+C7nO9SNqouRnUfCYfN8oxFb6dox/dUPicgaSicabZ24FTum7MDY5LH4aM9H6DGvB2xzbZi3fR4u5182uswahUFORCHr2qIrXANdOP6X43h7wNvIL8rnRCMDMMiJKGwNazfEY90fw4/2H/GfR/+DgR0GIm17Gjq90wm3L7gdS3cvRX5RaHMwKLCwglwI8aIQ4kchRKYQ4ishRCu1CiMi6ymdaLRkyBLkPJWDl+9+GTkXcjBq2Si0eb0N/rb2b8g6n2V0mdVOuC3yV6SUXaSUXQGsBPB8+CUptGQJkJgIRER4/l2yRLdVE1FgpRONfnriJ6wevRo3x92Mf377T0400kBYQS6lvFDux3oA9BkCs2QJkJoKZGcDUnr+TU3VLcwXLlyI9u3bo3379li4cKEu6ySyqggRgXvb3YvPRn6G7CezK0w0avtGW/zvpv/lRKMwhT38UAgxE8BYAL8C6CulPOPjcakAUgEgPj4+JTs7u8LvgxoKl5joCe/KEhKArCzFtYfi7NmzsNlscLvdEEIgJSUFGRkZaNLEeuNoOfyQjFJQVIAvDn4Bp9uJtT+v5UQjhUIefiiEWCuE2O3l9iAASClnSCnbAFgC4HFfy5FSpkkpbVJKW/PmzcN5LkDJdbYV36/Atm3b0KVLF+Tl5eHy5cvo1KkTdu/eXeVxa9aswT333IOmTZuiSZMmuOeee7B69eqQ10tUE0VHRmNIxyH4eszXOPj4QUztORXrDq/DnYvuRMe3O2LWd7Nw7uo5o8u0jIBBLqW8W0rZ2cttRaWHvg9gqDZlVhIfH9z9CnTv3h2DBg3C3//+dzzzzDN45JFH0Llz5yqPO3bsGNq0aVP2c1xcHI4dOxbyeolquvax7fFqv1eR81QOFj60EE3qNsFTa55C69daY8KKCfjh2A/83tEAwh210r7cj4MA7A+vHIVmzgRiYireFxPjuT8Mzz//PL7++mu43W4888wzXh/jbYfiYSBR+OpG18XY5LFVJhr1nNcTtrk2zM2Yy4lGPoQ7auWlkm6WHwH0AzBVhZoCGz0aSEvz9IkL4fk3Lc1zfxjOnj2LS5cu4eLFi8jLy/P6mLi4OBw9erTs55ycHLRqxVGXRGoqP9HonQHvoKCoAKkrU8smGu05vcfoEk2F11opZ9CgQRg5ciQOHz6MEydOVLimd6mzZ88iJSUF27dvBwB069YNGRkZqn+jkB7MsM2JlJBS4tuj38LpduLjvR8jvygffeL7lH2jUe2o2oEXUg3w6ocBLFq0CFFRUXj44YdRVFSEW265BevXr8edd95Z4XFNmzbFc889h+7duwPwdMdYMcSJrEQIgVvjb8Wt8bdiVv9ZmL9jPlwZLjy8/GE0j2mOCTdNwJSUKWjbpK3RpRqCLfIajNucrKxYFmPtz2vhdDvx+YHPIaVE/3b94bA5MKD9AERGRBpdourYIieiaiVCRKDfH/qh3x/6IedCDuZtn4e52+di0NJBaNOwDVJTUjHxpolo2aCl0aVqjhfN8mHXrl3o2rVrhVvPnj2NLouIvIhrGId/3PEPZE3NwvI/LscNzW7Ac988h/hZ8Rj+8XCs+3ldtR7CyBa5DzfeeCO/tJjIYqIjozG442AM7jgYP+X+hDkZczA/cz4+2fsJOsR2gD3FjnFdx6Fp3ep1XostciKqlipPNIqtG4tpX01D69daY/xn4/F9zvfVppXOICeiaq10otG3E79F5pRMjEseh2X7lqHXu72QkpaCuRlzcSn/ktFlhoVBTkQ1RnKLZLgGunBs2jG8M+AdFBYXInVlKlq/1hqPr3ocu09Xvb6SFVg2yHk5ciIKVcPaDeHo7sBO+05smbAFg64fhLnb5+JG543oM78P3t/1Pn4r/M3oMhWzZJAbfDly9O/fH40bN8bAgQP1WSERaUIIgVva3ILFgxfj2LRjeOWeV3Di4gmMXj4aca/HYfrX0/HzuZ+NLjMgSwb5jBnAlSsV77tyxXO/Hp5++mksXrxYn5URkS6axTTDX2/5Kw4+cRBrHlmDPvF98K+t/0K7N9vhviX34fMDn5v2G40sGeQaXI5c8fXIAeCuu+5CgwYNQl8ZEZlW6USj5SOWI+vJLDx/+/P48dSPeHDpg2j7Rlu8uPFFnLh4wugyK7BkkGtwOXLF1yMnopqjdKJR9pPZWP7H5ejYvCOe3/C86SYaWTLINbocuaLrkRNRzRMVEYXBHQdjzSNr8NMTP+HJnk9i/eH1uHvx3bjh7Rvw2tbXcPbqWcPqs2SQa3Q5ckXXIyeimq1d03Z4pd8rODbtGBY9tAjNYprhL1/9xdCJRpYMcsAT2llZQHGx599wQxwAUlNT8eKLL2L06NGYPn16+AskomqrTlQdjEkegy0TtiBzSibGJ4+vMNEoLSNNt4lGlg1ytZW/Hvmzzz6Lbdu2Yf369V4f26dPHwwfPhzr1q1DXFwc1qxZo3O1RGQmyS2S4RzoxPFpx+G834kiWYQpK6eg1b9aYY57jubr5/XIazBucyJtSCmxNWcrXG4XRnUehfva36fKcnk9ciIinZRONLqlzS26rI9B7sOuXbswZsyYCvfVrl0b33//vUEVERF5Z6ogl1JCCGF0GQCq//XIzTD2lYjUYZqTnXXq1EFubi4DRgdSSuTm5qJOnTpGl0JEKjBNizwuLg45OTk4c+aM0aXUCHXq1EFcXJzRZRCRCkwT5NHR0Wjbtq3RZRARWY5pulaIiCg0DHIiIotjkBMRWZwhMzuFEGcAZIf4580A/KJiOWphXcFhXcFhXcExa11AeLUlSCmbV77TkCAPhxDC7W2KqtFYV3BYV3BYV3DMWhegTW3sWiEisjgGORGRxVkxyNOMLsAH1hUc1hUc1hUcs9YFaFCb5frIiYioIiu2yImIqBwGORGRxZk2yIUQ/YUQB4QQh4QQz3r5/WghxI8lt2+FEMkmqevBkpoyhRBuIURvM9RV7nHdhRBFQohhZqhLCHGHEOLXku2VKYR43gx1lastUwixRwix0Qx1CSGeLretdpe8lk1NUFcjIcQXQoidJdvrUa1rUlhXEyHEpyXvyR+EEJ11qus9IcRpIcRuH78XQog3S+r+UQjRLawVSilNdwMQCeC/AK4DUAvATgBJlR5zC4AmJf+/D8D3JqmrPn4/99AFwH4z1FXucesBrAIwzAx1AbgDwEoT7l+NAewFEF/y8zVmqKvS4x8AsN4MdQH4fwBeLvl/cwBnAdQyQV2vAPifkv/fAGCdTvvYbQC6Adjt4/cDAHwJQADoFW5+mbVF3gPAISnlz1LKfABLATxY/gFSym+llOdKfvwOgB7XZFVS1yVZ8koBqAdAj7PJAesq8QSAZQBO61BTMHXpTUldDwNYLqU8AgBSSj22WbDbaxSAD0xSlwTQQHi+GaY+PEFeaIK6kgCsAwAp5X4AiUKIazWuC1LKTfBsA18eBLBIenwHoLEQomWo6zNrkLcGcLTczzkl9/kyEZ5PN60pqksIMVgIsR/AvwFMMENdQojWAAYDcOlQj+K6Stxcckj+pRCik0nq6gCgiRBigxAiQwgx1iR1AQCEEDEA+sPzwWyGumYD6AjgOIBdAKZKKYtNUNdOAEMAQAjRA0AC9Gn0BRJsxvll1iD39n1vXlu2Qoi+8AT5dE0rKlmdl/uq1CWl/FRKeQOAhwC8qHVRUFbXLADTpZRF2pdTRkld2+G5fkQygLcAfKZ1UVBWVxSAFAD3A7gXwHNCiA4mqKvUAwC2SCn9tfrUoqSuewFkAmgFoCuA2UKIhtqWpaiul+D5QM6E54h0B7Q/UlAimNc6INN8sUQlOQDalPs5Dp5P+gqEEF0AzANwn5Qy1yx1lZJSbhJC/EEI0UxKqeUFfJTUZQOwtOQ7UZsBGCCEKJRSfmZkXVLKC+X+v0oI8Y5JtlcOgF+klJcBXBZCbAKQDOCgwXWVGgl9ulUAZXU9CuClkm7FQ0KIw/D0Sf9gZF0l+9ejgOcEI4DDJTejBZUlAenR8R/CiYIoAD8DaIvfT2J0qvSYeACHANxisrra4feTnd0AHCv92ci6Kj1+AfQ52alke7Uot716ADhihu0FTzfBupLHxgDYDaCz0XWVPK4RPP2v9bR+DYPYXk4A/yj5/7Ul+30zE9TVGCUnXQFMhqdfWvNtVrK+RPg+2Xk/Kp7s/CGcdZmyRS6lLBRCPA5gDTxnpt+TUu4RQthLfu8C8DyAWADvlLQyC6XGVztTWNdQAGOFEAUArgIYIUteOYPr0p3CuoYBcAghCuHZXiPNsL2klPuEEKsB/AigGMA8KaXXoWR61lXy0MEAvpKeowXNKazrRQALhBC74Amn6VLboyqldXUEsEgIUQTPKKSJWtZUSgjxATwjspoJIXIA/A+A6HJ1rYJn5MohAFdQctQQ8vo0fs8QEZHGzHqyk4iIFGKQExFZHIOciMjiGORERBbHICcisjgGORGRxTHIiYgs7v8Dp8llgTYBYR0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -329,7 +261,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "可以看到分类效果基本是混乱的,我们来计算一下 loss,公式如下\n", + "可以看到分类效果不好,计算 loss,公式如下\n", "\n", "$$\n", "loss = -\\{ y * log(\\hat{y}) + (1 - y) * log(1 - \\hat{y}) \\}\n", @@ -338,16 +270,14 @@ }, { "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": true - }, + "execution_count": 8, + "metadata": {}, "outputs": [], "source": [ "# 计算loss, 使用clamp的目的是防止数据过小而对结果产生较大影响。\n", "def binary_loss(y_pred, y):\n", - " logits = (y * y_pred.clamp(1e-12).log() + \\\n", - " (1 - y) * (1 - y_pred).clamp(1e-12).log()).mean()\n", + " logits = ( y * y_pred.clamp(1e-12).log() + \\\n", + " (1 - y) * (1 - y_pred).clamp(1e-12).log() ).mean()\n", " return -logits" ] }, @@ -355,19 +285,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "注意到其中使用 `.clamp`,这是[文档](http://pytorch.org/docs/0.3.0/torch.html?highlight=clamp#torch.clamp)的内容,查看一下,并且思考一下这里是否一定要使用这个函数,如果不使用会出现什么样的结果。" + "注意到其中使用 `.clamp`,可以查看[函数使用说明文档](https://pytorch.org/docs/stable/generated/torch.clamp.html?highlight=clamp#torch.clamp),并且思考一下这里是否一定要使用这个函数,如果不使用会出现什么样的结果。" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.7655, grad_fn=)\n" + "tensor(0.7655, grad_fn=)\n" ] } ], @@ -382,26 +312,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "得到 loss 之后,我们还是使用梯度下降法更新参数,这里可以使用自动求导来直接得到参数的导数,感兴趣的同学可以去手动推导一下导数的公式" + "得到 loss 之后,使用梯度下降法更新参数,这里可以使用自动求导来直接得到参数的导数" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 11, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "During Time: 0.306 s\n" - ] - } - ], + "outputs": [], "source": [ - "start = time.time()\n", - "\n", "# 自动求导并更新参数\n", "for i in range(1000):\n", " # 算出一次更新之后的loss\n", @@ -415,31 +334,27 @@ "\n", " # clear w,b grad\n", " w.grad.data.zero_()\n", - " b.grad.data.zero_()\n", - " \n", - "during = time.time() - start\n", - "print()\n", - "print('During Time: {:.3f} s'.format(during))" + " b.grad.data.zero_()\n" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 26, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzAElEQVR4nO3dd3gU1frA8e9JSOi9WAgB9GJJ6IRyRRRRuIgYLCBwEUWQav0pKgp6I4gCegWUDnKlioANkaLSkRoklAQrRboQlF6S7Pn9sRsNIZvsJtN29/08zz7J7k7mvDuZfefMOWfOKK01QgghAl+Y3QEIIYQwhiR0IYQIEpLQhRAiSEhCF0KIICEJXQghgkQhuwquUKGCrlatml3FCyFEQNqyZctxrXXFnN6zLaFXq1aNxMREu4oXQoiApJTa5+09aXIRQoggIQldCCGChCR0IYQIEpLQhRAiSEhCF0KIICEJXQghgoQkdCGECBIBl9B/OP4Dg5YP4mL6RbtDEUIIRwm4hP7lj18ydM1Q6k2sx8YDG+0ORwghHCPgEvoLTV9gcZfFnLl0hlum3kL/r/tzLu2c3WEJIYTtAi6hA7T+R2t29ttJz/o9+e/6/1J3Ql3W7Ftjd1hCCGGrgEzoAKUKl2JC2wkse2QZ6a50bv/wdp5e/DRnLp2xOzQhhLBFwCb0TC2qt2B73+081egpxmwaQ63xtVi2e5ndYQkhhOUCPqEDlIgswei7R7P6sdVEhkdy14y76P1lb05eOGl3aEIIYZmgSOiZbo2+laTeSbx4y4tM2TqFmuNrsvjnxXaHJYQQlgiqhA5QNKIow1sOZ32P9ZQuXJo2s9vw6OePcuL8CbtDE0IIUwVdQs/UqHIjtvTawqBmg5i1fRax42L5/IfP7Q5LCCFME7QJHaBwocIMaTGEzT03c3WJq7n/4/vpNL8Tx84eszs0IYQwXFAn9Ez1rqnHpsc3MeSOIXy661NixsXw8c6P0VrbHZoQQhgmJBI6QER4BINuG8T3vb+nepnqdPqkEw/OfZAjZ47YHZoQQhgiz4SulJqqlPpdKbXTy/tKKfWeUuoXpdR2pVR948M0Ts1KNVnXYx3D7xrOop8XETM2hhnbZkhtXQgR8HypoX8ItM7l/buBGp5HL2B8wcMyV6GwQrzY9EW29dlGTMUYHvn8Edp+1JYDpw5YH8ysWVCtGoSFuX/OmmV9DEKIoJBnQtdarwZyG/PXDpiu3TYAZZRS1xgVoJlurHAjq7qtYnTr0azcu5LYcbFM3jLZutr6rFnQqxfs2wdau3/26iVJXQiRL0a0oVcG9md5fsDzWkAIDwvn6cZPs73PdupfU59eC3vRckZL9v651/zCBw6Ec9lmijx3zv26EMgJnPCPpZ2iSqleSqlEpVTisWPOGjp4fbnrWfbIMsbfM56NBzdSc1xNxm4ai0u7zCv0t9/8ez2fJCkEJjmBE/4yIqEfBKpkeR7lee0KWutJWus4rXVcxYoVDSjaWGEqjD5xfUjul0zT6KY8ufhJmn/YnJ9TfzanwOho/17PB0kKxrLy4CgncMJfRiT0BcAjntEuTYCTWuvDBqzXNtGlo1nSZQkfxH/A9qPbqTOhDu+uf5cMV4axBQ0dCsWKXf5asWLu1w0iSaFgsibwChWge3frDo7+nsCZfbCRM70AoLXO9QF8BBwG0nC3j/cA+gB9PO8rYCzwK7ADiMtrnVprGjRooAPBwVMH9b2z79UkoBtPbqxTfk8xtoCZM7WuWlVrpdw/Z840dPVKae1OP5c/lDK0mKA0c6bWxYrlvP2yPqpWNaf8qlV9Ly+nWIsVM253Mnv9wndAovaWr729YfYjUBK61lq7XC49e/tsXX54eR05JFK/ufpNnZaR5v+KTE7eOfEnKYjLedt2Vh0c/UmiZv+fZT9yDknoBjly+ojuMLeDJgFdf2J9ve3INt//2KYqjtSs8s/b2Y2VSc3XOoDZZ2JypuccktANNj95vq70diVdaHAh/Z8V/9EX0y/m/Uc2VnFsODEICr7U0J1ycJQaeuiQhG6C42eP6y6fdNEkoGuNq6UTDybm/gdSxQk4OZ3dRERoXb688w6O0oYeOiShm2jBDwv0tf+9Voe/Hq5f/vZlfT7tfM4LShUnIAXS2Y3ZsQbStghmuSV05X7fenFxcToxMdGWso3254U/eX7p80xNmspNFW5iavxU/lnln5cvlDkgPOsYwmLFYNIk6NLF2oCFEAFLKbVFax2X03shM32umcoUKcMH7T5g6cNLOZd2jqZTm/Lc0uc4l5YleXfp4k7eVauCUu6fksxFPsh4cOGNJHQDtbq+FTv77qRPXB9GbhhJ7fG1WbV31d8LdOkCe/eCy+X+Kclc+MmJV/7KAcY5JKEbrGThkoy7ZxwrHl2BRtN8WnOe+OoJTl88bXdoIgg47cpfJx5gQpm0oZvo7KWzDFo+iNEbRxNdOprJ906m5fUt7Q5LBLCwMHfizE4p94mf1apVcyfx7KpWdZ+ECuNJG7pNikcWZ2TrkaztvpYihYrQamYrei7oyckLJ+0OTQQoC+Zz84tFE4YKH0lCt8AtVW5ha++tvNT0JaYmTSV2XCxf/fSV3WGJAGTkfG5GtH2XK+ff68JcktAtUjSiKMPuGsaGHhsoW7QsbT9qS9fPunLifG43gxLickYNlpK27+Akbeg2uJh+kTfXvMmba9+kfNHyjLtnHA/c/IDdYYkQMGuWuwM1p3Zv8L/t22lt+qFA2tAdpnChwrx+x+ts7rmZa0tey4NzH6Tj/I78fvZ3u0MLCDJMLn+y1sq98bft22lt+qFOErqN6l5dl42Pb2Roi6F8/sPnxI6LZc7OOdh11lRQViRaaSrIv5yGPGbnbyK24B4thgr6yoC3OQHMfgTLXC5G2Xl0p240uZEmAd3uo3b64KmDdofkF6smb5IpcfIvr+mA8/v/CpQ5XoJlgjFkLpfAkOHKYNSGUQxaMYgihYow8l8jebTOoyil7A4tT1aNR5Y22/zz9j8C9/9p6NDgu3g5s8/gt9/c+05GDneRDLQx89KGHiDCw8J5/pbn2dZnG7Uq1eKxLx6jzew2/HbSvEG9Rp2CWjUeWdps889b80jfvu7fu3YNrmaI7M1zOSVzCLIx896q7mY/pMkldxmuDP3+xvd18aHFdck3S+oJmydol8tlaBlGnoJa1RQSLKfNdsnePNK3b/BuT19vIWjkPmpF8xMyH3rg2n1it24xrYUmAd1iWgv964lfDVu3kUnYykQr834bJ5j7JHy5hWAg3gREEnqAc7lcelLiJF3yzZK62NBievSG0TrDlVHg9Rp9E6VgSIShdAYwc6b3RBcMN9LydrAKDzdnH7Xq4CgJPUj89udv+u6Zd2sS0E0/aKp/PP5jgdYXzLWz/LJ7m1h1UMzpwBVs+4DVB2er7jIpCT2IuFwu/eHWD3WZYWV0kTeK6BFrR+j0jPR8rSuUaqO+svPWr1bcFzTzYBEe7j2ZB9M+YOVZo9TQRb4dOnVIt/uonSYB3WhyI73z6M58rScYmkmMZGcN3cyy86qRZ32E+j6QX9KGLgrE5XLpOTvm6AojKujIIZH6jVVv6Evpl+wOK6DZedZi5tmBHSM+QpHdo1xkHHoAU0rRsWZHUvqlcP9N9zNoxSAaT2lM0pEku0MLWHbe+tXMMfa+jLV28iX7gcLuu0xKQg8CFYtXZE77OXz60KccOn2IhpMb8tqK17iYftHu0AKSXV9KM+dF8XZQCA+Xe5YHE0noQeT+m+8n5YkU/l3r3wxZPYQGkxqw+eBmu8MSPjLz7MDbwWLaNLlneTCRhB5kyhUtx7T7pvHVv7/izwt/0uSDJrz0zUucTztvd2jCB2adHdjZlCSsI5NzBbGTF07S/+v+TNk6hRvK38DU+Kk0jW5qd1hCiAKQyblCVOkipZkcP5lvun7DxfSLNPtfM55d8ixnL521OzQhhAkkoYeAu667i539dtKvYT9GbxxN7Qm1WbFnhd1hBaWgv4GCcDRJ6CGiRGQJxrQZw8pHV6JQtJjegr4L+3L64mm7QwsacjclYTdJ6CHm9mq3s73vdp5r8hwTt0yk5viaLP1lqd1hBYWcbvF27pz7dSGsIAk9BBWLKMZ///Vf1vVYR7GIYrSe1ZruX3Tnj/N/2B1aQLPqJh9CeONTQldKtVZK/aiU+kUpNSCH96OVUiuUUluVUtuVUm2MD1UYrUlUE7aVeokT40ox5b7/cebaCmx553m7wwpYcjclYbc8E7pSKhwYC9wNxACdlVIx2RYbBMzVWtcDOgHjjA5UmGDWLCL7PEHZ308RBlT508VNr7zL2Gdv4fi543ZHF3DMvNIzN9IRKzL5UkNvBPyitd6ttb4EzAHaZVtGA6U8v5cGDhkXYgix+puZQ6Nv8TRo++F6YsfFMj9lvrnlB6GiRf/+vXx58y/ekY5YkZUvCb0ysD/L8wOe17JKAB5WSh0AFgFP5bQipVQvpVSiUirx2LFj+Qg3iNnxzfTSuBt9SlGlVBU6zOtA+7ntOXrmqHkxBInMf19q6t+vnbfg4lzpiBVZGdUp2hn4UGsdBbQBZiilrli31nqS1jpOax1XsWJFg4oOEnZ8M7007qroaDY8voG37nyLhT8tJGZcDDO3z8Suq4oDgV2JVTpizRGozVi+JPSDQJUsz6M8r2XVA5gLoLVeDxQBKhgRYMiw45uZS6NvobBCDLh1AFt7b+WG8jfQ9bOuxM+J5+Cp7P96AfYlVumINV4gN2P5ktA3AzWUUtWVUpG4Oz0XZFvmN+BOAKXUzbgTurSp+MOOb6YPMzbdXPFm1j62lndbvcuy3cuIHRfL1K1TpbaejV2J1a6OWH8EWm03oJuxvN35IusDdzPKT8CvwEDPa4OBeM/vMcB3wDYgCWiV1zrljkXZGH2rHBNunfJz6s/6tv/dpklAt5rRSu/9Y2+B12nnLfCMLNvOOx05+TaCgXjfWjvvK+sL5BZ0Dpf5jYS/795bkG+mid+iDFeGHrtprC4+tLgu8WYJPX7zeJ3hynBamLaU7eTEahR/P6Od92jNL6fHLAndyczILBbskXv+2KNbTm+pSUDf8eEd+tcTvzoxTEeWHajys6s6vbabE6efVUhCdzIzMotF3yKXy6WnbJmiS71VShcbWkyPWj9Kp2ekOy1Mx5UdqPKzqwbqgdPJZ1u5JXSZy8VuZgyPsKiHTilFj/o9SO6XTPNqzXl26bPc9uFt/HD8B5/+3s4RGjI6xH/edsl9+7x3eAZCp21O7L7Zc35JQrebGZnF4m9RVKkoFnZeyPT7prPr2C7qTqjL8LXDSXelOylMx5QdqHLbJbWX4X1y6zuLeau6m/2QJhePvBrs8nvuZ9M54+HTh/UDHz+gSUDHTYrTO47ucGKYeZbt5FNuu+S0qwZic0qgQ9rQHc5b9nB674wXLpdLz905V1ccUVFHDI7Qg1cO1pfSL9kdls9y2uyZbe6hntyz7qreErr0Q5hLEnqgCtQeJY/fz/yuO8/vrElA1xlfR39/6Hu7Q/KJt80eQMdUSwT47mkLI878ckvo0obuZAE+UUfF4hWZ/eBsPu/4OUfPHqXh5IYMWj6Ii+kX7Q4tV3lt3oC5atBk0g/hHyumFJCE7mRGdZjafO11u5vakdIvhYdrP8zQNUOpP6k+mw5usjQGf/iyeQPkmGoq6fD0jyVTCnirupv9kCYXHxjRhu6wdvhFPy3SUe9G6bDXw3T/pf31uUvnbIkjN750/kmzgvCXUdc+IE0uAcqIKpDDZhq6u8bd7Oy7k8frPc4769+hzoQ6rP1trS2xeJN1s4N702cV7M0KgTaZVqCw5NoHb5ne7IfU0C3i4Esiv/31W119VHWtEpR+atFT+vTF03aHlKPsHVl9+wbekEZfO+McdkLns0AYZmrUtkVGuYQwhw9FOH3xtH560dNaJShdfVR1vWz3Mq21c7+ggZjw/InZ4btLjgLpf2L2KBdJ6MEuQPb2NfvW6Brv1XBP9vXcZF20mMuRIQdiwvMn5tzGlzvpwJqVU/4nVl2oJgk91Dm1upvNuUvndP+l/TWl9zriC5oTB7dgeeVPzIE4Bt8J/5Pc6k1G16lyS+jK/b714uLidGJioi1lC2cLC9Nora54XSn3ZEl2qlbNPX44u6pV3ZM4OZE/MWeOlc7ej57X39nJCf+T3GIAY+NTSm3RWsfl9J6MchGOEx19ZTJ3v25xIDkIxItp/Ik5+wifnDhtDL4T/ie5XQNo5fWBktCF4+T0BSXiLNe0e59jZ+29VW0gXkzjb8yZU8d6S+pOOLBm5YT/SW5DEi2dqtlbW4zZD2lDDyA2tMFnLTI62qUfHPiJjhgcoSuMqKDn7JijXS6X6TFYwcndGwHSn+4ITmlDl4Qucuegb/WOozt03KQ4TQL6/jn368OnD1seg5EctGm9cvIBx2lklItwPqeMCfNIy0jTw9YM04WHFNZlh5XV05KmBWxt3WGbNmgYlTydejDLLaHLKBeRu7Awd57JzuYhJz8e/5HuC7qzbv862tRow8S2E4kqFWVbPPnh0E0b0HIapVOsmP9t6katxwwyyiVUmDEJh0NvvnljhRtZ3W01o/41ihV7VlCj538of81pwsJ0wMw/4tBNG9CMmrrIYVMg+c5b1d3shzS5GMysBtkAaOh9d+IRHRZ53skh5igANm3AMeoiIydcrOQN0oYeAsxskHVqY6KHt48eHe38tnWHb9qAY9TXwMn9G7kldGlDDxYh3CDr7aODi59Td/OPcv+wOiRhE2lDF8Eh2Bpk/egP8PYRVZkD1B5fm5HrR5LhyjAlTOEsRl1k5ISLlfLFW9Xd7Ic0uRgsmBpk/fws3hZ/f8oJfe/sezUJ6CZTmuiU31Ms/iBCGA+5Y1EICNgqRQ78HGLg7aM/2aMsX3T6glkPzOKn1J+oO7Eub615i3RXugUfQgjrSRu6cB4T+gOOnjnKk4ufZH7KfBpc04Cp7aZS+6raBQxUCOtJG7oILCb0B1xV4irmdZjHvA7z2H9qPw0mNSBhZQKXMi7le50FIfftDC1W/b8loQvnyWm6RaWgTZsCr7p9THuS+yXzUOxDvL7qdeImxbHl0JYCr9cfmSMo9u1zn4js2+d+Lkk9OFn5/5aE7iRSbXPr0gUefdSdxDNpDdOmGbJNKhSrwKwHZvFFpy84fu44jac05pVlr3Ah/UKB1+2LgL0KUeSLlf9vSehOESrVNl8PWosWXdmObvC3IP7GeFKeSOGROo/w1tq3qDexHuv3rzds/d5YecMDYT/H3eBCKdVaKfWjUuoXpdQAL8s8pJRKUUolK6VmGxtmCAiFaps/By0DvwW5HUPKFCnD1HZTWdJlCWcvnaXp1KY8v/R5zqXlcg+2Agq2SwZE7hx1gwsgHPgVuA6IBLYBMdmWqQFsBcp6nlfKa70yDj0bJ08eYRR/rqc26Nprf4a0n7xwUvf5so8mAX396Ov1yj0r8/EhjY1JBD5H3eAC+CewNMvzl4GXsy0zAng8r3VlfUhCz8bJk0cYxZ+DlkHfgvxs1uW7l+vqo6prEtD9FvbTpy6c8qtMX8gcLqHFMTe4ANoDU7I87wqMybbM556k/h2wAWjtZV29gEQgMTo6Ov+fKBiFQrXN3+xqwLcgvyc+Zy6e0c8sfkarBKWrjqyqv/7la7/LFsIMuSV0ozpFC3maXZoDnYHJSqky2RfSWk/SWsdpreMqVqxoUNFBIpiu9PTG39uzZ96t2OVy/8zHtshv+2XxyOKMaj2KNY+toXChwrSa2YqeC3py8sJJv2MQwiq+JPSDQJUsz6M8r2V1AFigtU7TWu8BfsKd4IU/DEhgjmbDQcvfY0h2TaObktQ7iRdveZGpSVOJHRfLVz99ZXyg4i8yercAvFXd9d/NJIWA3UB1/u4Ujc22TGtgmuf3CsB+oHxu65U2dGEVo9ovNx3YpGPHxmoS0F0/7apTz6UaGabQodHyWFAUpMlFa50OPAksBXYBc7XWyUqpwUqpeM9iS4FUpVQKsAJ4QWudathRRzhDgFadjDrxaVi5IVt6beG1217jo50fETM2hs92fWZkqCElp90pFEbvmkkm5xK+cfKM/zZIOpJE9y+6s/XIVh6KfYgxd4+hYnHpF/KVt90pezLPFAL3afFZbpNzSUIXvqlWzX0hUHZVq7qrvSEoLSONEd+NYPDqwZQqXIr3736fjrEdUVmnLBA58rY7hYdDRg73Ignh3ewKMtuiKDi5Xv0KEeERDLxtIN/3+p7ryl5H508688DcBzh8+rDdoTmet90mI6NgndihThK68I1cr+5VbKVYvuv+HW+3fJslvywhZlwM05KmYdfZbyDwtttkDnwK5tG7ZpKELnxT0PF/Qa5QWCH639KfbX22UbNSTbp90Y17Zt/D/pP77Q7NkXLbnYJ99K6ZJKEL34TChU8GuKH8Dazqtor3Wr/Hqn2riB0Xy6Qtk6S2no3sTuaQTlEhTLL7j930/LIny/csp0X1Fky5dwrVy1b36W8zh/D99pu7eSKz5iqEdIoKYYPryl7Ht12/ZWLbiWw+uJma42vy/sb3cencx9+FytT4wniS0IU1zLgoyY4LnfwsUylFrwa9SO6XzG1Vb+PpJU/T/MPm/Jz6s9e/kYtrRL55u4TU7Idc+h9CzLie245rxAtYpsvl0h9u/VCXGVZGF3mjiH7nu3d0ekb6FcuFwtT4Iv/I5dJ/aUMX5jPjoiQ7LnQyqMxDpw/R96u+LPhxAY0rN2Zqu6nEVIwxuhgRpKQNXdjLjIuS7LjQyaAyry15LZ93/JzZD8zmlxO/UG9iPd5c8yZpGWmAjBAV+ScJXZjPjIuS7LjQqVw5w8pUStG5VmdSnkjhvpvuY+DygTSe0phtR7bJkD6Rb5LQjRKgMxFawluVs02b/G8zq6uxs2bBqVNXvh4ZWaAyKxWvxMftP+aThz7h0OlDxE2O47UVr9Gh0yW5uEb4z1vjutmPoOoUlUmc85Z9UvK+fQu+zay8Mae32+eVL29YEcfPHtddP+2qSUDXHFdTbzqwybB1i+CBdIqaTHqx/Odtm5UvD8ePWx5OnsLC3Ck8OxPmdf3qp6/ovbA3h88cpv8/+5PQPIGiEUUNLUMELukUNZvMROg/b9smNdWZzVUWttnfc8M9JPdLpnvd7oxYN4J6E+uxbv86w8uxi7ROmkcSuhFkJkL/5bZtnHgFjcVt9qWLlGZy/GS+fvhrLqRf4Napt/Lskmc5e+msKeVZRa6CNZckdCPIODP/5bZtnHhmY9PQk5bXt2RH3x30a9iP0RtHU3tCbVbuXWlqmWbWoOUqWJN5a1w3+xFUnaJaG99BZ2WHn13Kl8+5ozE8PLg/dz6t3LNSXz/6ek0Cuu/CvvrUhVOGl2F2/75cBVtw5NIpKgndiUJl1ExOnzP7Ixg/d058PICfvXRWP7fkOa0SlI4eGa2X/rLU0KK8DeapWtX/j5QTs9cfCiShB5pQ2uuzZpfw8ND53Fnl4wC+7rd1+qYxN2kS0N0/767/OP+HIUWZXYMOlbqKmSShB5pQPC+dOdN7LT2YP7fW+T6An087rwd8M0CHvx6ur/3vtfrLH78scFFW1CUCrTXRafFKQg80oVRD1zrvppdg/dyZCngA33xws641rpYmAd3lky76+Nnj+S4qWGrQRiVhJ24PSeiBxol7kZm8HcCC/XNnMuAAfjH9ov7Piv/oQoML6UpvV9Lzk+fnuyh/k6HTarBGfn2cWLeShB4Icro03knfEjN5qzZCcH/uTAZmoG1Htun6E+trEtDt57bXR88cNasoU9ZnBCOTsBNbPyWhWyW/VRUnfius5MRqkNUMrOamZaTpt9a8pSOHROryw8vrWdtnaZfLZUZRjvzXGZmEnfj5JKFbwdeknNO3yYl7jZVC/YBmkpTfU3STKU00Ceh7Z9+rD5w8YHgZRiRPo5tsvH2dwsP9X7cTd01J6FbwtXEyp73DW3NDsI/uyMppDbFWMflzp2ek63fXvauLvlFUl36rtJ76/dTLausF5VNdJJfPaNXdCQuybqftmpLQreBLVSW3qkMo19CdyIpvsYXVv5+O/6SbTW2mSUC3mtFK7/tznyHrzfMj5LGAWSenM2cG79dKEroVfNkzc+v8c9p5XSizKtFa3NSW4crQYzaO0cWHFtcl3iyhx28erzNcGQVeb67Hvjw+o5mdjk7s0DSCJHQr+JIEctu5nXZeF8qsSrR2ZJyZM3VaVGWdAXpPafSQXjfrX0/8al55eXxGMzd1sHZNSUK3Sl5J2Yk9LOJKVlz/ntvYe7MyTg7739kIdLcOEXrU+lE6PSPd+DLzyKpmfiWC9esmCd1JpCbufGZW7fK6KtbMjOPlcx2pUESTgL7lg1v0D8d+MLbMmTO1joy8vMzIyCs6Rs36SgTj100SuhD+MLNql1fN3MyM4+XMw6WUnp40XZcdVlYXHlJYD187XKdlpBlT5syZWkdEXF5mRERwZFabFDihA62BH4FfgAG5LPcgoIG4vNYpCV04mllVOzt76vI48zh06pC+b859mgR0w0kN9Y6jO0wvU/gvt4Se5x2LlFLhwFjgbiAG6KyUislhuZLAM8DG/N1qQwgDFfS2O126uG/w7XK5fxp1ZyI7b1eYx521ril5DZ8+9ClzHpzDnj/3UH9ifd5Y/QZpGWn5L1Put2spX25B1wj4RWu9W2t9CZgDtMthuSHAcOCCgfEJ4T8n37jSztsV+nAbPaUUHWt2JKVfCg/c/ACvrniVRlMasfXw1vyVGSj32w2WO1d7q7pnPoD2wJQsz7sCY7ItUx/4xPP7Srw0uQC9gEQgMTo62qITFBFynH6aH0A9dZ/t+kxf/c7VOvz1cD1w2UB9Ie2CfysIhKEm/sZo8/+PgrSh55XQcdfyVwLVdB4JPetD2tCFaYL1ihKbpJ5L1Y9+9qgmAR0zNkZvPLDRvxU4/QDmTwXAAQeo3BK6cr/vnVLqn0CC1vpfnucve2r2b3melwZ+Bc54/uRq4AQQr7VO9LbeuLg4nZjo9W0h8q9aNXczS3ZVq7rbw0W+LPp5Eb0X9ubQ6UM8/8/neb356xSNKGp3WAUXFuZOzdkp5e5DycoB+5ZSaovWOi6n93xpQ98M1FBKVVdKRQKdgAWZb2qtT2qtK2itq2mtqwEbyCOZC2EqO9upg1ibGm3Y2XcnPer14O11b1N3Yl2+++07u8MqOH/a+R3eyZtnQtdapwNPAkuBXcBcrXWyUmqwUire7ACF8JsPnX8if0oXKc2keyfxTddvuJRxiWb/a8Yzi5/h7KWzdoeWf/5UAJzeyeutLcbsh7ShCxHYTl88rZ9a9JQmAV19VHW9bPcyu0PKP1/b+R3ehu5Lk4sQgSFYhp4FiBKRJXjv7vdY3W014WHh3Dn9Tvos7MOpi6fsDs1/vl534PCzvzw7Rc0inaLCUJljz8+d+/u1YsUc9WULZufSzvHaitcYuWEklUtWZtK9k2j9j9Z2hxWUcusUdVRCT0tL48CBA1y4INcmWaFIkSJERUURERFhdygF54DRBwI2HNhA9y+6s+v4LrrV7ca7rd6lbNGydocVVAImoe/Zs4eSJUtSvnx5lFK2xBUqtNakpqZy+vRpqlevbnc4BefP0DNhqovpFxm8ajDDvxtOpeKVmNB2AvE3yvgJoxR02KJlLly4IMncIkopypcvHzxnQ04ffRBCChcqzNA7h7Kp5yYqFq9Iuznt6PJpF46fO253aEHPUQkdkGRuoaDa1jL23HHqX1OfzT03M7j5YOYlzyNmbAzzkudhV6tAKHBcQhciXxw++iBURYZH8urtr7Kl1xaqlqnKQ/Mfov289hw5c8Tu0IKSJPQC2Lt3L7Nnz/7reVJSEosWLfrr+YIFCxg2bJghZXXr1o358+cD8Pjjj5OSkmLIeoOKWVPeigKrdVUt1vdYz7A7h/HVT18ROy6WmdtnSm3dYJLQCyCvhB4fH8+AAQMML3fKlCnExFwxJb0QjlYorBAv3foSSX2SuLH8jXT9rCvxc+I5eOqg3aEFjUJ2B+DNs0ueJelIkqHrrHt1XUa1HpXrMtOnT+edd95BKUXt2rWZMWMG3bp1o23btrRv3x6AEiVKcObMGQYMGMCuXbuoW7cunTt3ZuzYsZw/f561a9fy8ssvc/78eRITExkzZgzdunWjVKlSJCYmcuTIEUaMGEH79u1xuVw8+eSTLF++nCpVqhAREUH37t3/KisnzZs355133iEuLo4SJUrwzDPPsHDhQooWLcoXX3zBVVddxbFjx+jTpw+/eeaYGDVqFE2bNjVsWwqRXzdVuIk1j63h/U3v88qyV4gZF8O7rd6le73uwdWvYwOpoWeRnJzMG2+8wfLly9m2bRujR4/Odflhw4bRrFkzkpKSeOmllxg8eDAdO3YkKSmJjh07XrH84cOHWbt2LQsXLvyr5v7pp5+yd+9eUlJSmDFjBuvXr/cr5rNnz9KkSRO2bdvGbbfdxuTJkwF45pln+L//+z82b97MJ598wuOPP+7XeoUwU3hYOM82eZYdfXdQ7+p6PP7l4/xr5r/Y92cO1xIInzm2hp5XTdoMy5cvp0OHDlSoUAGAcuXKGbr+++67j7CwMGJiYjh69CgAa9eupUOHDoSFhXH11Vdzxx13+LXOyMhI2rZtC0CDBg345ptvAPj2228va2c/deoUZ86coUSJEgZ9GhGwZs2CgQPdMwRGR7tHAtnU33B9uetZ/uhyJiZO5MVvX6Tm+JoMv2s4feL6EKakvukvxyZ0JylUqBAuz8UpLpeLS5cu5Ws9hQsX/ut3ozqDIiIi/jpNDQ8PJz09HXDHuWHDBooUKWJIOSJIZJ8iIfP2fGBbUg9TYfRt2Jc2NdrQ88uePLHoCeYmz2VK/BT+Ue4ftsQUqOQQmEWLFi2YN28eqampAJw4cQKAatWqsWXLFsA9ciUtzX3T3JIlS3L69Om//j77c180bdqUTz75BJfLxdGjR1m5cqUBnwRatWrF+++//9fzpKQkQ9YrAtzAgZfPdwPu5wMH2hNPFlXLVGXpw0v5IP4Dko4kUXt8bUauH0mGK8Pu0AKGJPQsYmNjGThwILfffjt16tThueeeA6Bnz56sWrWKOnXqsH79eooXLw5A7dq1CQ8Pp06dOowcOZI77riDlJQU6taty8cff+xTmQ8++CBRUVHExMTw8MMPU79+fUqXLl3gz/Lee++RmJhI7dq1iYmJYcKECQVepwgCDr9Bg1KK7vW6k9wvmRbVW/Dc18/R7H/N+OH4D3aHFhAcNZfLrl27uPnmm22Jx06Zbdupqak0atSI7777jquvvtqSskN1m4esAJrETGvN7B2zeXrJ05y9dJaE5gn0v6U/hcJCu6U4YOZyCVVt27albt26NGvWjFdffdWyZC5CUABNkaCUokvtLqT0S6HtDW15ednLNJnShO1Ht9sdmmOF9qHOIYxqNxciT5kdnw4Z5eKLq0pcxfyH5jMveR5PLHqCuElxDGw2kJebvUxkeKTd4TmK1NCFCDUBOkVCh9gOpDyRQofYDiSsSqDh5IZ8f/h7u8NyFEnoQoiAUaFYBWY9MIsvOn3BsbPHaDS5Ea8se4UL6UEyDXQBSUIXQgSc+BvjSe6XzCN1HuGttW9Rf2J9NhzYYHdYtpOELoQISGWLlmVqu6ks6bKEM5fO0HRqU/p/3Z9zaefy/uMgFdgJXe7yLkTI+9c//sXOfjvpVb8X/13/X+pMqMPqfavtDssWgZvQMy9h3rfPfS/JzEuYLUrq06ZNo0aNGtSoUYNp06ZZUqYQImelCpdifNvxLHtkGRmuDG7/8HaeXPQkZy6dsTs0SwVuQrfxEuYTJ07w+uuvs3HjRjZt2sTrr7/OH3/8YXq5Qojctajegh19d/B0o6cZt3kctcbX4tvd39odlmUCN6GbcAnz5s2bqV27NhcuXODs2bPExsayc+fOK5ZbunQpLVu2pFy5cpQtW5aWLVuyZMmSfJcrhDBO8cjijL57NGseW0NkeCQtZ7Sk15e9OHnhpN2hmS5wE7oJd3lv2LAh8fHxDBo0iBdffJGHH36YmjVrXrHcwYMHqVKlyl/Po6KiOHhQ7roihJM0jW5KUu8kXrjlBT7Y+gE1x9dk0c+L8v7DABa4Cd2kS5hfe+01vvnmGxITE3nxxRcLtC4hhL2KRhRlRMsRrO+xnlKFS3HP7Ht49PNHOXH+hN2hmSJwE7pJd3lPTU3lzJkznD59mgsXcr5YoXLlyuzfv/+v5wcOHKBy5coFKlcIYZ5GlRvxfa/vGdRsELO2zyJmbAyf7frM7rAMJ7MtZhMfH0+nTp3Ys2cPhw8fZsyYMVcsc+LECRo0aMD337svO65fvz5btmwx/A5HVnDCNhfCSlsPb6X7gu4kHUniodiHGHP3GCoWr2h3WD6T2RZ9NH36dCIiIvj3v//NgAED2Lx5M8uXL79iuXLlyvHqq6/SsGFDGjZsyGuvvRaQyVyIUFTvmnpsenwTb9zxBp/t+oyYcTHM2TnHsLuI2Ulq6CFOtrkIZcm/J/PYF4+x+dBm7rvpPsa1Gcc1Ja+xO6xcSQ1dCCFyEFsplnU91jHirhEs/nkxseNimb5tesDW1iWh52LHjh3UrVv3skfjxo3tDksIYaBCYYV4oekLbOuzjZiKMTz6+aPcM/se9p/cn/cfO4xPCV0p1Vop9aNS6hel1IAc3n9OKZWilNqulFqmlKpqfKjWq1WrFklJSZc9Nm7caHdYQggT3FjhRlY/tprRrUezat8qYsfFMnnL5ICqreeZ0JVS4cBY4G4gBuislIrJtthWIE5rXRuYD4wwOlAhhDBbmArj6cZPs6PvDuKujaPXwl60nNGSPX/ssTs0n/hSQ28E/KK13q21vgTMAdplXUBrvUJrnTmxygYgytgwhRDCOteVvY5vH/mWCfdMYNPBTdQaX4sxm8bg0i67Q8uVLwm9MpC1MemA5zVvegCLc3pDKdVLKZWolEo8duyY71EKIYTFwlQYveN6s7PfTm6NvpWnFj/F7R/ezs+pP9sdmleGdooqpR4G4oC3c3pfaz1Jax2ntY6rWLHgA/llOnQhhNmiS0ezuMti/tfuf+z8fSe1J9TmnXXvkOHKsDu0K/iS0A8CVbI8j/K8dhml1F3AQCBea33RmPC8s3k6dFq3bk2ZMmVo27atNQUKIWyjlKJb3W4k90um1fWteOGbF7hl6i2kHEuxO7TL+JLQNwM1lFLVlVKRQCdgQdYFlFL1gIm4k/nvxod5JRunQwfghRdeYMaMGdYUJoRwhGtLXsvnHT9n9gOz+fXEr9SbWI8317xJWkaa3aEBPiR0rXU68CSwFNgFzNVaJyulBiul4j2LvQ2UAOYppZKUUgu8rM4wJkyH7vN86AB33nknJUuWzH9hQoiApJSic63OpDyRQrsb2zFw+UAaT2nMtiPb7A6NQr4spLVeBCzK9tprWX6/y+C48hQd7W5myen1/Mo6H/r58+e9zocuhBCVildiboe5fJLyCf0W9SNuchyv3PoKA28bSGR4pC0xBeyVoiZNhy7zoQsh/PJgzIOk9Euhc83ODF49mAaTGpB4KDHvPzRBwCZ0k6ZD92k+dCGEyKp8sfJMv386X3b+khPnT9B4SmMGfDuAC+nW5pCATejgTt5794LL5f5Z0GQO0Lt3b4YMGUKXLl146aWXCr5CIUTIaHtDW5L7JfNY3ccY/t1w6k6oy7r96ywrP6ATutF8nQ8doFmzZnTo0IFly5YRFRXF0qVLLY5WCOFEZYqUYUr8FL5++GvOp5/n1qm3krAywZKyZT70ECfbXAjznL54mgHfDqBJVBO61ulqyDpzmw/dp1EuQggh/FeycEnG3jPWsvIkoedix44ddO16+VG1cOHCMoWuEMKRHJfQtdYopewOA/h7PvRgFUjzPAsh8uaoTtEiRYqQmpoqicYCWmtSU1MpUqSI3aEIIQziqBp6VFQUBw4cQKbWtUaRIkWIipKp64UIFo5K6BEREVSvXt3uMIQQIiA5qslFCCFE/klCF0KIICEJXQghgoRtV4oqpY4BOUyA65MKwHEDwzGKxOUfict/To1N4vJPQeKqqrXO8R6etiX0glBKJXq79NVOEpd/JC7/OTU2ics/ZsUlTS5CCBEkJKELIUSQCNSEPsnuALyQuPwjcfnPqbFJXP4xJa6AbEMXQghxpUCtoQshhMhGEroQQgQJRyd0pVRrpdSPSqlflFIDcnj/OaVUilJqu1JqmVKqqkPi6qOU2qGUSlJKrVVKxTghrizLPaiU0kopS4Zz+bC9uimljnm2V5JS6nEnxOVZ5iHPPpaslJrthLiUUiOzbKuflFJ/OiSuaKXUCqXUVs93so1D4qrqyQ/blVIrlVKWzEinlJqqlPpdKbXTy/tKKfWeJ+7tSqn6BS5Ua+3IBxAO/ApcB0QC24CYbMvcARTz/N4X+NghcZXK8ns8sMQJcXmWKwmsBjYAcU6IC+gGjHHg/lUD2AqU9Tyv5IS4si3/FDDVCXHh7ujr6/k9BtjrkLjmAY96fm8BzLBoH7sNqA/s9PJ+G2AxoIAmwMaClunkGnoj4Bet9W6t9SVgDtAu6wJa6xVa63OepxsAK468vsR1KsvT4oAVPc95xuUxBBgOXLAgJn/ispovcfUExmqt/wDQWv/ukLiy6gx85JC4NFDK83tp4JBD4ooBMu/2viKH902htV4NnMhlkXbAdO22ASijlLqmIGU6OaFXBvZneX7A85o3PXAf7czmU1xKqSeUUr8CI4CnnRCX55Suitb6Kwvi8Tkujwc9p53zlVJVHBLXDcANSqnvlFIblFKtHRIX4G5KAKrzd7KyO64E4GGl1AFgEe6zByfEtQ14wPP7/UBJpVR5C2LLi785Lk9OTug+U0o9DMQBb9sdSyat9Vit9fXAS8Agu+NRSoUB7wLP2x1LDr4EqmmtawPfANNsjidTIdzNLs1x14QnK6XK2BlQNp2A+VrrDLsD8egMfKi1jsLdnDDDs9/ZrT9wu1JqK3A7cBBwyjYzlBM2tjcHgaw1tSjPa5dRSt0FDATitdYXnRJXFnOA+8wMyCOvuEoCNYGVSqm9uNvsFljQMZrn9tJap2b5300BGpgck09x4a4xLdBap2mt9wA/4U7wdseVqRPWNLeAb3H1AOYCaK3XA0VwT0Jla1xa60Na6we01vVw5wq01n+aHJcv/M0lebOicyCfHQqFgN24TykzOztisy1TD3eHSA2HxVUjy+/3AolOiCvb8iuxplPUl+11TZbf7wc2OCSu1sA0z+8VcJ8el7c7Ls9yNwF78Vwc6JDttRjo5vn9Ztxt6KbG52NcFYAwz+9DgcFWbDNPedXw3il6D5d3im4qcHlWfbB8bow2uGtFvwIDPa8Nxl0bB/gWOAokeR4LHBLXaCDZE9OK3BKrlXFlW9aShO7j9nrLs722ebbXTQ6JS+FupkoBdgCdnBCX53kCMMyKePzYXjHAd57/YxLQyiFxtQd+9iwzBShsUVwfAYeBNNxnez2APkCfLPvXWE/cO4z4Psql/0IIESSc3IYuhBDCD5LQhRAiSEhCF0KIICEJXQghgoQkdCGECBKS0IUQIkhIQhdCiCDx/xOJ1wLZ9VXRAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzyUlEQVR4nO3de5xN9f748ddnbpgoGaJMLvVT58xojAypEPVViugURSIhtzqnTqcLOdVESqVOIiFHx7UShUQqSkUuIzOGkZJbIwlTuRtmv39/7FFjzN6z9+zLWmvP+/l47MfM3nvt9Xnvtdd6r8/6rM/6LCMiKKWUcr4oqwNQSikVHJrQlVIqQmhCV0qpCKEJXSmlIoQmdKWUihAxVhVcvXp1qVevnlXFK6WUI61du3afiNQo6T3LEnq9evXIyMiwqnillHIkY8wOT+9pk4tSSkUITehKKRUhNKErpVSE0ISulFIRQhO6UkpFCE3oSikVITShK6VUhHBcQt97eC///Oif/H7sd6tDUUopW3FcQl+ybQmvrn6V5HHJLPx+odXhKKWUbTguoXdt2JWv+3xN1YpVaT+zPXfPvZu8o3lWh6WUUpZzXEIHaFa7GWv7reWJVk8wM3smyeOSmfvtXKvDUkopSzkyoQNUiKnAsDbDWHPvGmpVrsXf3vkbXWd3Ze/hvVaHppRSlnBsQj8ltVYqq/uu5pk2z/DepvdIGpfEOxveQe+VqpQqbxyf0AFio2MZ2moo6/qvo37V+nSd05XbZt3Gz4d+tjo0pZQKm4hI6Kckn5fMij4reLHtiyzasoik15KYmjVVa+tKqXIhohI6QExUDA9f9TBZA7JIPi+Zu+feTYe3OpB7INfq0JRSKqQiLqGfcknCJSzrtYzR7Ubz+fbPSR6XzBtr39DaulIqYkVsQgeIMlH844p/kD0wmybnN6Hfgn60ndaWbb9uszo0pZQKuohO6KdcdO5FfNrzU8a3H8/qXau57PXLGLt6LC5xWR2aUkoFTblI6OCurfdP68+GQRtoUacFf1/0d6753zV8v/97q0NTSqmgKDcJ/ZQ659RhUfdFvNnpTTb8soGU8Sm8tOIlClwFVoemlFIBKXcJHcAYQ6/UXmwctJHrL76ehz95mKsnX03O3hyrQ1NKqTIrlwn9lAuqXMDcO+Yy89aZbMnbQuMJjXn2y2c5UXDC6tCUUspv5Tqhg7u23u2ybmwctJFOl3Zi6NKhNP9vc7J+zrI6NKWU8ku5T+in1Kxck1ldZjG7y2xyD+SS9kYa6Z+nk1+Qb3VoSinlk1ITujFmsjHmF2PMBg/vG2PMq8aYLcaY9caYy4MfZvjclnQbOYNyuCP5Dp5e9jRpE9PI+CkjtIXOmAH16kFUlPvvjBmhLU8pFZF8qaH/D2jn5f0bgQaFj37A64GHZa2E+ASm3zqd+V3ns//ofppPas6QT4dw7OSx4Bc2Ywb06wc7doCI+2+/fprUlVJ+KzWhi8gXgLdbAnUCporbSqCqMeb8YAVopZsvvZmNgzbSK7UXI5ePJHV8Kit+XBHcQoYOhSNHTn/tyBH360GkBwHOpL+b8kcw2tBrAz8WeZ5b+NoZjDH9jDEZxpiMvXudcSOKqhWrMqnjJBbftZijJ4/SYnILHlr8EEdOHCn9w77YudO/18tADwKCJ5wJ1m6/m+5cHEBESn0A9YANHt77EGhR5PkSoElp82zSpIk4zYFjB2TQgkFCOnLx6Ivl822fBz7TunVF3Nvr6Y+6dQOfd/iKiFjTp7uXkzEiCQkicXGnL8P4ePc0oeDv71Y01rp1gxvX9Onu7xqu7648AzLEU6729MZpE3lP6BOAbkWebwbOL22eTkzop3y27TO5aPRFQjoyaMEgOXDsgG8fLGmLC8OWYkzJicGYoBURkUr6acK5Y/Tndwv1aqSVAvsIdUJvDywCDNAcWO3LPJ2c0EVEDh0/JA8uelBMupG6/6krH2/52PsHvG1xoaxaiW6MZeVpuYVrx+jP7xbq31grBfYRUEIH3gJ2Aydwt4/3AQYAAwrfN8BrwA9ANpBW2jwlAhL6Kct3LpdLx1wqpCN95/WV347+VvKEFmZVPVwuG09JLFw/oT+/W6gTrlYK7CPgGnooHpGS0EVEjp44KoM/GSxRT0dJ7Zdqy4LNC86cyOIqTogPAiKSLzX0UO8Yff3dQp1wtVJgH5rQw2TNrjXScFxDIR256727ZN/hfX++qVUcxykpicXGuk+O2m3HGI6Eq5UCe9CEHkbHTx6XJ5c+KTHDYqTmizVlTs4c9xtaxXEkOyYxTzHZMVYVfJrQLZC5O1Maj28spCNdZnWRPYf26BanAmbHeoGu1uHlLaEb9/vhl5aWJhkZIR4jxWInCk4wasUo0pelUyWuCmNuHEPXhl0xxlgdmnKoevXcFxgVV7cubN8e7mj+vPip6MXO8fEwcSJ07x7+eMoDY8xaEUkr8T1N6KGXszeH3vN6s2rXKjpd2olx7cdxQZULrA5LOVBUlLteXpwx4LLgFrmedjAJCbBvX9jDKRe8JXQdPjcMkmoksbz3cka1HcXiHxaTPC6Z/2X+D6t2psq56tTx73VvgnEpv6cRKvbv16EBrKAJPUyio6L511X/Yv2A9Vx23mXcM+8ebpp5Ezt/D96YLSryjRjhbtIoKj7e/bovTiVxY6BHj8DHifG2Iwny+HLKB5rQw6xBQgM+7/U5Y24cw5c7vqThuIZMyJigtXU/lOdBorp3d7dP163rTsp16/reXl10sC84s+mmLIN8etuRBHF8OeUrT2dLQ/2I9F4uvtiat1WunXKtkI5cO+Va+SHvB6tDCkg4ejvYsZeHU/hyoVRZrnNLSCh5Xna8xCISeuSg3Rbty+VyycSMiVLl2SoSPyJeXl35qhS4CqwOy2/hSrR6fVbZ+TKUQVmWo1N2sk6JszSa0B1g52875cbpNwrpyNX/vVo279sclnKDVWMJV6LVQaLKzpcaekJC2dYBu9Z8i8YVHR0ZlQFN6A7hcrlkSuYUqTqyqlR8pqK88NULcqLgRMjKC2aNJVyJVmvoZefrcMBOrLWWxNfvG8x1NBw7Nk3oDvPTgZ/klrdvEdKRphObyoY9G0JSTjCTY7gSrY5ZEpji381J7d/+8nX4Y6cNYKYJ3YFcLpe8nf22VH+husQOi5Xhy4ZL/sn8oJYRzFp1ONsnI/nOPOHcmUyfHp5aq1V8OWfgxJuAaEJ3sF8O/SK3v3u7kI6kjk+VdbvXBW3ewV4BI6Fma2WTTqh3JsVvpxcbG/paq5U8/ZbR0aFZR8PV7KgJPQK8l/Oe1HyxpsQMi5F/L/m3HDtxLOB5Wl0btSMrT7qGcmfia3tyJK0D4V6/tYau/LL/yH7p+X5PIR1Jfi1ZVuWuCniekVCrDiYra+ih3Jn42p4MkbUOhLsJS9vQld8+/O5Dqf1SbYl6Okoe+fgROZJ/xOqQIoaVRy2h3JlYfTu98sLqXi566b8D3dTgJjYO2kifxn14ccWLpE5IZfnO5VaHFRECubQ+UIGO0+KNL4N3Baus8qx7d/cwxi6X+2+4hxDWhO5Q51Q8h4k3T+STHp+QX5BPyzdb8uBHD3I4/7DVoTmeVRtlKHcmJe0s4uLcw9yGe8elQkfHQ48Ah/IPMeTTIYxdM5aLzr2ISTdPok39NlaHpWxmxgz34Fs7d7pr7CNGaAJ3Ih0PPcJVjqvMmJvGsKzXMqJMFNdOvZaBCwZy4PgBq0Mrd+w8EqTVzQEq9DShR5BWdVuRNSCLf135LyZ+M5GG4xqyeMtiq8MqN4oOTytS9jHGlSorTegRJj42nlHXj2J57+VUjqtMuxnt6D2vN78e/dXq0CLe0KGn31sTyjbGuFJl5VNCN8a0M8ZsNsZsMcYMLuH9c4wxHxhjsowxG40x9wQ/VOWP5onN+ab/Nzze4nGmZk0leVwy8zfPP3NCO7cROIynGzrojR5UuJSa0I0x0cBrwI1AEtDNGJNUbLL7gBwRaQS0Bl4yxsQFOdbIF+TkWjGmIiOuG8GqvquocVYNOr3die7vdWffkX1/lqdtBEFTrVrJr5flfp/+0H2y+oOnDuqnHsCVwOIiz4cAQ4pNMwQYBxigPrAFiPI2X72wqJgQX9Fy/ORxSf8sXWKGxch5L54n7258V8eiDaLp00Xi4s5clLGxkXF1orIPArlSFOgMTCryvAcwttg0VYDPgN3AIaC9h3n1AzKAjDp16oRvCThBmJJr1s9Z0mRCEyEdKTAeLheMhKH2wszTz5eQYE25uk8OjJ2HxPCW0H1pQzclVeyLPb8ByAQuAFKBscaYs0s4GpgoImkiklajRg0fii5HwtQAm1IzhZV9V/Lcdc/x4xm/UKFQtxFEIE8/U16eNeXaqd3eaU1CTm6J9CWh5wIXFnmeCPxUbJp7gPcKdyBbgG3AX4ITYjnhKYmWNbl62YpiomIY3GIwMSNf4GhcsVUgzNd/W72xB6v8YP98di/XV05Mjo7ureSp6n7qAcQAW3G3jccBWUBysWleB9IL/68J7AKqe5uvtqEXM3DgmSMolbUx1I+G1YJpU+X3mudKAciOqkY+e6avuFyuIHyhoIZp+/Kt+i5WlOtPc4QTm4Tsft9aAh1tEbgJ+A74ARha+NoAYEDh/xcAHwPZwAbgrtLmqQm9iJK2SmPcSb4syrAVfb//e2n1ZishHbl+2vWy/dftZSs7tGHaunyr2l3tPESs3ZNjSaxeL0sTcEIPxUMTehHBXoPKuBUVuApk7KqxctaIs6Tys5Vl3OpxUuAqKFsMoQszYsp3Im/jqpe0M7F7ciyJ1UeOpfGW0PVKUTsI9pmtMjasRpko7mt2HxsGbeDKxCsZtHAQ1065li15W8oWRymsbv+1unwn8rZKltQ+HsohgUPFyiGUA+Yp04f6oTX0IrxVY8pyPB2EKobL5ZJJayfJOc+dI5WeqSQvr3hZThacLOMXDFmYISu/+P03ExLs2YUt3Hy581Hx2reduwA6EdrkYnOeMsvAgWXPeEHainJ/z5X2M9oL6ciVk66UTXs3lWk+IQ4zqOWXdv9NOx1+h5sv9ybVJivPgrG+a0J3gpJ+aZs0QLpcLpmWNU3OHXmuVBheQUZ+OVJOFJwIawzhVJZaaHnibdUs78vGm2AdkWpCd6pgnbULUjV498Hdcus7twrpSNrENFn/8/oyzcfufLn/ptZCrW8yc5pg1c+8JXQ9KWpnwThrF8QrO2pVrsXsLrOZ1XkWO37bQZOJTRi2bBgnCk74PS8782XxRvqJU18uuHL0yUMLhOWqXk+ZPtQPraH7IBhVoBA12+w9vFe6ze4mpCONXm8ka39aG9D87KS0duK4OOedJPXnIM2JNW+rz8X4Ihw1dE3odhfomhriztZzN82V80edL9FPR8vQJUPl2IljQZmv1Ruop14uCQnuERSdluz8SdA2OXXjM6fsgLQNXQUuDFtn3pE86TW3l5CO/HXsX2XljysDmp+dN1CnJTsR/2P2dg7BDr9BcXb5TbxVQoqeSI6O/jM+7eWi/BPG7Ljo+0Vy4csXStTTUfKvxf+SI/lHyjQfu2ygJXHi1aX+xuytB4tddqxF2eE3Ke2ahmBugprQy7swtl/8fux36f9BfyEdafBqA/li+xd+z8MOG6gndt7ZeOJvzKWdQ7Dbd7XDb+IthmDHpwldhd2SrUuk/iv1xaQb+fvCv8vB4wd9/qwdNlBP7Nwc5ElZYp4+3XNCt8OOtSg7/CbeKiHBrqBoQleBK0Mt/9DxQ/KPhf8Qk26k/iv1ZcnWJT4XZfUG6k0wD3jCdfBUlnLsvGMtzuqT6FpD14TuHAFm2C93fCmXjLlESEf6ze8nvx/73aci7d4NLVBO2HHZOT5PgrXuBKurp7ahq7IJVRYMQhXjSP4ReeTjRyTq6ShJfDlRFn2/KDixFXLiDsAJNWCnLddgJc+yNlOV1sslGMtRE3p5EMrqVBAbAVflrpKk15KEdOTu9++WvCN5AYfn1JqknU/+OlWwdpJ23tl6S+jG/X74paWlSUZGhiVlR6R69dyX9RdXty5s326reR8/eZxnvniG5756jhpn1WB8+/F0+ksnu4QXNk6N286iotyptzhjwOUK/3xCwRizVkTSSnpPx3KJFKEcKCLIdymoEFOB4dcOZ829a6hVuRa3vHML3eZ0Y+/hvX9O5Mfdm8MyRkYIOPHmD3YXrJuWOPbmJ56q7qF+aJNLkIX6GDFEjan5J/Nl+LLhEjssVmq8UEPe2fCOuPxsQ7Hz4XFpnNZGbXdWtqGHC9qGXg7YeQ30QfaebEmbmCakI3uqV/IrQzv8q6sgs6KXSzhpQi8v7LoG+uhEwQl5/qvnpaCkZF7K2UKHf3WlfOYtoWsbeiTp3t19Ns3lcv912MDUMVExPHr1oxQkXlDyBNWqefys0766H6cIVAQI1++tCd1OdCsHIHbkC0hs7Bmvy8GDEbFMgnjPEeUAYf29PVXdiz6AdsBmYAsw2MM0rYFMYCOwrLR5apNLMeWlIdjXtpGEhBKbXU4k1g5ZkeHi5JO4yn+2uvQfiAZ+AC4C4oAsIKnYNFWBHKBO4fPzSpuvJvRiysNW7s9Oy8NVNwUgY1eNlQJXQdCLDBe9oKh8CefgXL40uTQDtojIVhHJB94Gil8FcifwnojsLKz1/+L/sUI559TO1P4YOhSOHDn9tSNH3K8X56HD796Eity/6H7aTGnDlrwtQS0yXBzbx1mVSTh/b18Sem3gxyLPcwtfK+oS4FxjzOfGmLXGmJ7BCrDcKA9buT87LQ9X3Zw3ehKTO04m6+csUl5P4eWvX6bAVRCUIsNFLygqX8L6e3uqup96AF2ASUWe9wDGFJtmLLASOAuoDnwPXFLCvPoBGUBGnTp1yna8Eans2DYQbGW504KHxu/c33Olw8wOQjrSfFJzyfklJyhFhovd2vXtJBKXjW0G5wKuBBYXeT4EGFJsmsFAepHn/wW6eJuvtqGXIBLX5KKCvNNyuVwyY/0MqfZ8NakwvII8+8WzcqLgRCiLVCGmv1fpAk3oMcBWoD5/nhRNLjbNX4ElhdPGAxuAht7mqwndgYKxwwnBTuvngz9L51mdhXSkyYQmkvVzVqiLVEFQ0u9i1yMqOwkoobs/z03Ad7h7uwwtfG0AMKDINI/g7umyAXiwtHlqQncYB1Sd3t34rpz34nkSMyxGnvrsKTl+8rjVISkPPK1OZbhIuNzxltB1+FzlG4eM9brvyD4e+OgBZmbP5LLzLuPNTm/S5IImVoelivG0OkVHQ0EJ57httppZSofPVYGzY3eRElSPr86MW2cwv+t89h/dzxWTruDxJY9z7OQxq0NTRXhabQoKtAdQIDShK984rFvlzZfezMZBG+nZqCfPffUcjSc05usfv7Y6LFXI02pTty5MnOj+a8yfz+0+No9daEJXvnFg5+mqFasyudNkPur+EYfzD3P15Kv51+J/ceTEkdI/rELK2+rktIHW7EQTuvJN9+72rDr5MKDZDf/vBjYM2kD/Jv15eeXLpLyewrLty8Ieqr8ieaw2u65OjufpbGmoH9rLpZwJRd/BMvS8Wbp1qVw0+iIhHRm0YJAcOHbA/zLD0AfSAZ2KlEXQG1woS4UqO5Wx0/Kh44fkgUUPiEk3Uvc/deXjLR9b+z1KoP2xlSfeErp2W1ShF6oujwHemn35zuX0nt+b7/Z/R9/GfRl1/SjOqXiO5w+Eseumne86r6yl3RaVtTz1UduxI7BG4gB73lxd52oy+2fy6FWPMjlzMsnjkvnwuw89f6CkZA4h6brpsE5FyiY0oQdLJJ/BCpSnLGRMYLdxCULPm0qxlXi+7fOs7LOSqhWr0uGtDvR8vyd5R/NOn3DGDHe8JQlBlnVgpyJlB57aYkL9iKg2dD2D5V1Jy8fTqP8JCf7PO0gnKY+dOCZPLn1SYobFSM0Xa8qcnDl/vumpUduYkJ4Y1TFoVHHoSdEQ0zNYpSuenTwN2gGWZ651u9dJ4/GNhXTk9ndvlz2H9njeAYGlsTqV7qzKzltC1yaXYHDIZfGWKn61SN26nqe18nZCQGqtVFb1XcUzbZ5h7rdzSXoticO1Ekqe2Nv3cKhQtx7qTbJDRxN6MITiDFakt8l7awzescPy7x0bHcvQVkP5pt83XFztYu69ch/H4qJPnygCG7XDkWzteFvAiOGp6h7qR0Q1uQS7Db28tMknJHhverHJ9z5ZcFJeXP6i9OwcIzuqGnEZxFWnTnDjCmMbhLeiwtF6qDfJDgzahh4Gwdwgy0ubfEk7Lht/7837NkuLyS2EdKTd9Hay87edwZlxGHfgpRUVjmTrtNXbbu39mtCdpjxVYaZPL72mbqPvXeAqkDGrxshZI86SKs9WkQkZE8TlcgU20zBmuNKKCkco4dh/BSsJ2/FgWRO60zitChOo0nq92PB7b83bKtdOuVZIR66dcq1szdta9pmFcQdeWlFlSWBlSZ6hrPUGMwnbcVPUhB4ugaylRT+bkCASF2evakEoeesSaOPv7XK5ZELGBKnybBWJHxEvr658VQpcBf7PyEY1dBH/VmM71mCDuTjteLCsCT0cfF2zS9paSvpsbKw7sdul4S6UPG2B0dGO+N47f9spN06/UUhHWkxuIZv3bfZvBjZqQ/dXMJJnsGvr3uoH/s5ba+jlNaH7WvUpaWvy1IZsw6aGkLBjNc9PLpdLpmROkaojq0rFZyrKi8tflJMFJ0v/YNFb3UdH//m7W9TLxV8+1WC9FBiKn95bC56/87bjqqkJPRx8WbNLayu203FduNmtK0EZ4/npwE/S6a1OQjrS7I1msmHPBu9l2C1b+KnUekwp3zEUNeDSOk/5O2+7rZqa0MPBlzXT27Fgea6h202Aidblcslb2W9JwvMJEjc8Tp5Z9ozkn8w/c0IrjueDnJ1KXVSlfMdQtVFPnx659SRN6OHgSxLwtHInJDi+phZRgpRo9xzaI7e/e7uQjjQe31jW7V7nfqNoM0s4M06Ijgi87iNKydih3KfZsf07GDShh0tptR9vG5TdjuvKsyBXG+fkzJGaL9aUmGExMuvxW8RV2sVUoco4VmS4UsoMZatTBLRolSjghA60AzYDW4DBXqZrChQAnUubZ0QmdF9o4ra/ECS+/Uf2S4/3esi2c7wk8lBnHCv64A0cWHKZAwf+MUmo+6RH2uYWUEIHooEfgIuAOCALSPIw3VJgoSZ0ZblArwkIUdXO5e08Sqgzjg1r6Mp/3hK6L6MtNgO2iMhWEckH3gY6lTDd34E5wC8+jwymVCgEOmRg9+4wcaJ7aFxj3H8nTnS/HiDjaQTOU/clDUIZHllxGySnDC0dIaOb+pLQawM/FnmeW/jaH4wxtYG/AeODF5pSZRSM8VmLj98erERbQlI9HAtTb/8Lh/MPB6cMT0K4o/LICTdH9bcCYOfk76nqfuoBdAEmFXneAxhTbJp3geaF//8PD00uQD8gA8ioU6dOmA5QVLljx+u1iyrSHFRQ50J58+G2Qjpy0eiL5LNtn1kdXXA54cykP81CNvg+BNiGfiWwuMjzIcCQYtNsA7YXPg7hbna5xdt8tQ1dhYwD222XbV8mF4++WEhHBnwwQA4cO2B1SMFj9zOT/lQAbLBueUvovjS5rAEaGGPqG2PigK7A/GK1/PoiUk9E6gGzgUEiMte/YwWlgsSKtuIAtarbivUD1/NQ84eYsHYCDV9vyOIti60OKzhC1XwVLP40C9n8nECpCV1ETgL3A4uBTcAsEdlojBlgjBkQ6gCV8tmpts0ePaBSJUhICF9bcRDEx8bz0g0vsbz3cuJj42k3ox295/Xm16O/Wh1aZPOnAmD3cwKequ6hfmiTiwoqG7RtBtPRE0dlyKdDJPrpaDl/1Pky/9v5VocU2XxtFrLBeoaXJhfjfj/80tLSJCMjw5KyVQSqV8/dO6G4U90BHWrtT2u5Z949ZP+SzZ2X3cmr7V4lIT7B6rDKtxkz3D2mdu5018xHjAjr0Z8xZq2IpJX4niZ0FRGiotz1peKMcbfdOlh+QT7Pffkcz3z5DNUqVeO1m16jc1Jnq8NSFvGW0H05KaqU/dm9bTMAcdFxPNX6Kdb2W0vi2Yl0ebcLXd7twp5De6wOTdmMJnQVGRzYs8VfKTVTWNV3Fc9e+yzzN88neVwyM7NnYtVRtrIfTegqMlhxFaQFYqJiGNJyCJn9M2mQ0IDu73Wn09ud2HVgl9WhKRvQNnSlHKrAVcDoVaMZunQoFaIr8PINL3NP6j0YY6wOTYWQtqErFYGio6J56MqHWD9gPY1qNaLP/D60m9GOnb+XcpGLncciUQHRhK6UwzVIaMBnd3/Gaze9xvKdy0kel8z4jPG4pITePYGORKlsTZtclIog23/bzr0f3MunWz+ldb3WTLp5EhdXu/jPCSK0v355ok0uSpUT9arW4+O7PuaNm9/gm93fkDI+hdErR1PgKnBPYPOxSFRgNKErFWGMMfS9vC8bB22kdb3WPLj4QVr9rxWb922O6P76ShO6UhEr8exEFnRbwNRbprJp7yYajW/EB3c3RyK8v355pgldqQhmjKFHox7k3JfDTQ1uomPUOzzRrSb5iedHdH/98koTulLlQK3KtZhz+xze6fwOEy49SOV++xj+2dOc+OF7TeYRRBO6UuWEMYbbk28nZ1AOtyXdxpOfP0nTN5qybvc6q0NTQaIJXalypsZZNXjrtrd4/4732XN4D03faMq/l/6b4yePWx2aCpAmdKXKqVv+cgs5g3Lo0agHI74cweUTL2dV7iqrw1IB0ISuVDl2bqVzebPTmyy8cyEHjh/gqslX8cjHj3D0xFGrQ1NloAldKcWNDW5kw8AN9G3cl1FfjyJ1Qipf7fzK6rCUnzShK6UAOKfiOUy4eQKf9viU/IJ8Wr3Zin8s+geH8w9bHZrykSZ0pdRprrvoOrIHZnN/s/sZs3oMl71+GUu3LbU6LOUDTehKqTNUjqvMqze+yhe9viAmKobrpl5H/w/6c+D4AatDU15oQldKedSybksyB2Ty8JUPM2ndJJLHJfPRlo+sDkt5oAldKeVVfGw8L17/Iit6r6BKXBVunHEj98y7h1+P/mp1aKoYnxK6MaadMWazMWaLMWZwCe93N8asL3ysMMY0Cn6oSikrXZF4Bev6r+PxFo8zLWsayeOSmb95vtVhqSJKTejGmGjgNeBGIAnoZoxJKjbZNuAaEUkBhgMTgx2oUsp6FWIqMOK6Eay+dzU1zqpBp7c7ceecO9l3ZJ/VoSl8q6E3A7aIyFYRyQfeBjoVnUBEVojIqeOvlUBicMNUStnJ5edfzpp71zCs9TBm58wm6bUk3t34LlbdAU25+ZLQawM/FnmeW/iaJ32ARSW9YYzpZ4zJMMZk7N271/colVK2ExcdxxPXPMHafmupW7Uut8++nc7vdubnQz9bHVq55UtCNyW8VuJu2BjTBndCf6yk90VkooikiUhajRo1fI9SKWVbl9W8jK/7fM3I60by4XcfkvRaEtOypmlt3QIxPkyTC1xY5Hki8FPxiYwxKcAk4EYR2V+WYE6cOEFubi7Hjh0ry8eVnypWrEhiYiKxsbFWh6IcLiYqhsdaPEanv3Si97ze9Jzbk1k5sxjffjy1z/Z2QK+CyZS2FzXGxADfAdcBu4A1wJ0isrHINHWApUBPEVnhS8FpaWmSkZFx2mvbtm2jSpUqJCQkYExJBwYqWESE/fv3c/DgQerXr291OCqCFLgKGLN6DI8veZzY6Fhevv5lejfurdt0kBhj1opIWknvldrkIiIngfuBxcAmYJaIbDTGDDDGDCic7EkgARhnjMk0xmR4mJ1Xx44d02QeJsYYEhIS9GhIBV10VDQPNn+Q7IHZXH7+5fT9oC83TL+BHb/tsDq0iOdTP3QRWSgil4jIxSIyovC18SIyvvD/viJyroikFj5K3Hv4QpN5+OiyVqF0cbWLWdJzCa+3f52vc7+m4esNGbdmHC5xWR1axNIrRZVSIRNlohiQNoANAzdw1YVXcd/C+2gzpQ1b8rZYHVpE0oQegO3btzNz5sw/nmdmZrJw4cI/ns+fP5+RI0cGpaxevXoxe/ZsAPr27UtOTk5Q5qtUONStWpePun/Efzv+l6yfs0h5PYX/fP0fClwFVocWUTShB6C0hN6xY0cGDz5jpISATZo0iaSk4hfrKmVvxhh6N+7NxkEbue6i63jo44do+WZLvt33rdWhRQxfui1a4sGPHiTz58ygzjO1ViqvtHvF6zRTp05l1KhRGGNISUlh2rRp9OrViw4dOtC5c2cAKleuzKFDhxg8eDCbNm0iNTWVbt268dprr3H06FG++uorhgwZwtGjR8nIyGDs2LH06tWLs88+m4yMDH7++WdeeOEFOnfujMvl4v7772fZsmXUr18fl8tF7969/yirJK1bt2bUqFGkpaVRuXJlHnjgARYsWEClSpWYN28eNWvWZO/evQwYMICdO3cC8Morr3D11VcHbVkqVVa1z67N/K7zmZk9k3989A9Sx6eS3jqdh696mJgo26YkR9AaehEbN25kxIgRLF26lKysLEaPHu11+pEjR9KyZUsyMzN57LHHGDZsGHfccQeZmZnccccdZ0y/e/duvvrqKxYsWPBHzf29995j+/btZGdnM2nSJL7++mu/Yj58+DDNmzcnKyuLVq1a8cYbbwDwwAMP8M9//pM1a9YwZ84c+vbt69d8lQolYwzdU7qTMyiHDpd0YMiSITSf1JzsPdlWh+Zott0dllaTDoWlS5fSuXNnqlevDkC1atWCOv9bbrmFqKgokpKS2LNnDwBfffUVXbp0ISoqilq1atGmTRu/5hkXF0eHDh0AaNKkCZ988gkAn3766Wnt7AcOHODgwYNUqVIlSN9GqcDVrFyT2bfPZnbObAZ9OIgmE5swtOVQhrQcQlx0nNXhOY5tE7oVRKTErnwxMTG4XK4/psnPzy/T/CtUqHBaWUX/llVsbOwfMUdHR3Py5EkAXC4XX3/9NZUqVQpo/kqFQ+ekzrSu15oHPnqA9GXpvPfte0zuOJkmFzSxOjRH0SaXIq677jpmzZrF/v3ukQvy8vIAqFevHmvXrgVg3rx5nDhxAoAqVapw8ODBPz5f/LkvWrRowZw5c3C5XOzZs4fPP/88CN8Err/+esaOHfvH88zMzKDMV6lQqR5fnRm3zmBe13nsPbyXKyZdweNLHufYSb34zVea0ItITk5m6NChXHPNNTRq1IiHHnoIgHvvvZdly5bRrFkzVq1axVlnnQVASkoKMTExNGrUiP/85z+0adOGnJwcUlNTeeedd3wq87bbbiMxMZGGDRvSv39/rrjiCs4555yAv8urr75KRkYGKSkpJCUlMX78+IDnqVQ4dLy0IxsHbaRno54899VzXD7hclbmrrQ6LEcodSyXUClpLJdNmzbx17/+1ZJ4rHTo0CEqV67M/v37adasGcuXL6dWrVphKbu8LnPlDIu3LObeD+4l90Au/2z+T4ZfO5z42Hirw7JUQGO5qNDr0KEDqamptGzZkieeeCJsyVwpu7vh/93AhkEbGJA2gJdXvkzK6yks277M6rBsS0+K2kCw2s2VikRnVzibce3H0SWpC30/6EvrKa25r+l9jPy/kVSOq2x1eLaiNXSllCO0qd+G9QPW88AVDzBuzTgajmvIp1s/tTosW9GErpRyjLPizuKVdq/w5T1fUiGmAm2nteXe+ffy+7HfrQ7NFjShK6Uc5+o6V5PZP5NHr3qUyZmTSR6XzMLvF5b+wQinCV0p5UiVYivxfNvnWdlnJVUrVqX9zPbcPfdu8o7mWR2aZZyd0GfMgHr1ICrK/XfGDKsjUkqFWdPaTVnbby1PtHqCmdkzSXotifc3vW91WJZwbkKfMQP69YMdO0DE/bdfv7Al9SlTptCgQQMaNGjAlClTwlKmUqpkFWIqMKzNMNbcu4bzq5zPrbNu5Y7Zd7D38F6rQwsr5yb0oUPhyJHTXztyxP16iOXl5fH000+zatUqVq9ezdNPP82vv/4a8nKVUt6l1kpldd/VPNPmGd7f9D5J45J4e8PbAY+Z5BTOTeiF43z7/LoP1qxZQ0pKCseOHePw4cMkJyezYcOGM6ZbvHgxbdu2pVq1apx77rm0bduWjz76qMzlKqWCJzY6lqGthrKu/zrqV61PtznduHXWrew+uNvq0ELOuQm9Th3/XvdB06ZN6dixI//+97959NFHueuuu2jYsOEZ0+3atYsLL7zwj+eJiYns2rWrzOUqpYIv+bxkVvRZwQv/9wKLvl9E8rhkpmROiejaunMT+ogREF9sTIf4ePfrAXjyySf55JNPyMjI4NFHHy1xmpJWiJKG3VVKWSsmKoZHrn6ErAFZJNVIote8XrSf2Z4ff//R6tBCwrkJvXt3mDgR6tYFY9x/J050vx6AvLw8Dh06xMGDBzl2rORhOxMTE/nxxz9XiNzcXC644IKAylVKhc6l1S/li3u+YHS70SzbsYzkcclMXDsx4mrrOtpiMR07dqRr165s27aN3bt3nzam+Cl5eXk0adKEb775BoDLL7+ctWvXBv0OR+Fgh2WuVDht/XUrfef35bPtn3Ft/WuZdPMk6p9b3+qwfBbwaIvGmHbGmM3GmC3GmDNuY2/cXi18f70x5vJAg7bC1KlTiYmJ4c4772Tw4MGsWbOGpUuXnjFdtWrVeOKJJ2jatClNmzblySefdGQyV6o8uujci1jScwkTOkxgza41NHy9IWNWjcElLqtDC1ipNXRjTDTwHdAWyAXWAN1EJKfINDcBfwduAq4ARovIFd7ma9caenmjy1yVZzt/30m/D/qx+IfFtKzTkv92/C8NEhpYHZZXgdbQmwFbRGSriOQDbwOdik3TCZgqbiuBqsaY8wOKWimlQqzOOXVY1H0Rb3Z6k+xfskkZn8JLK16iwFVgdWhl4ktCrw0UPSWcW/iav9NgjOlnjMkwxmTs3Wv/K7iys7NJTU097XHFFV4PPJRSDmOMoVdqLzYO2sj1F1/Pw588zFWTryJnb07pH7YZX25wUVJ/vOLtNL5Mg4hMBCaCu8nFh7Itddlll+nNlZUqJy6ocgFz75jL2xve5u+L/k7jCY156pqneOSqR4iNjrU6PJ/4UkPPBS4s8jwR+KkM0yillK0ZY+h2WTdy7suh06WdGLp0KFdMuoKsn7OsDs0nviT0NUADY0x9Y0wc0BWYX2ya+UDPwt4uzYHfRSTyr7NVSkWk8846j1ldZjG7y2x2HdxF2htpPPXZU+QX5FsdmlelJnQROQncDywGNgGzRGSjMWaAMWZA4WQLga3AFuANYFCI4lVKqbC5Lek2cgbl0LVhV4Z9MYwmE5uwZtcaq8PyyKd+6CKyUEQuEZGLRWRE4WvjRWR84f8iIvcVvn+ZiGR4n2Nw6HDoSqlQS4hPYNrfpvFBtw/IO5pH8/8257FPHuPoiaNWh3YGx176b/Fw6LRr146qVavSoUOH8BSolLJUh0s6sHHQRnqn9uaFFS/QeEJjVvy4wuqwTuPYhG7hcOgAPPLII0ybNi08hSmlbKFqxaq80fENPr7rY46dPEaLyS148KMHOZx/2OrQAAcn9BAMh+7zeOgA1113HVWqVCl7YUopx2p7cVuyB2YzqOkgRq8aTcr4FD7f/rnVYTk3oYdgOHSfx0NXSqkqFaow9qaxfH735xgMbaa0YdCHgzh4/KBlMTk2oYdoOHSfxkNXSqlTrql3DesHrueh5g8xPmM8DV9vyMc/fGxJLI5N6CEaDt2n8dCVUqqo+Nh4XrrhJZb3Xk58bDw3TL+BPvP68Nux38Iah2MTOriT9/bt4HK5/waazAH69evH8OHD6d69O4899ljgM1RKlRtXXngl6/qvY/DVg5mSNYXkccks+G5B2Mp3dEIPNl/HQwdo2bIlXbp0YcmSJSQmJrJ48eIwR6uUsqOKMRV57v+eY2XflSRUSuDmt26mz7w+Ybk7kt6xqJzTZa5U6OQX5PPsl89SIboCQ1oOCco8vY2H7stoi0oppcogLjqO9NbpYStPE7oX2dnZ9OjR47TXKlSowKpVqyyKSCmlPLNdQhcRjClpePXwi/Tx0CPtjudKlXe2OilasWJF9u/fr4kmDESE/fv3U7FiRatDUUoFia1q6ImJieTm5uKE29NFgooVK5KYmGh1GEqpILFVQo+NjaV+/fpWh6GUUo5kqyYXpZRSZacJXSmlIoQmdKWUihCWXSlqjNkL7Cjjx6sD+4IYTrDYNS6wb2wal380Lv9EYlx1RaRGSW9YltADYYzJ8HTpq5XsGhfYNzaNyz8al3/KW1za5KKUUhFCE7pSSkUIpyb0iVYH4IFd4wL7xqZx+Ufj8k+5isuRbehKKaXO5NQaulJKqWI0oSulVISwdUI3xrQzxmw2xmwxxgwu4f3uxpj1hY8VxphGNomrU2FMmcaYDGNMCzvEVWS6psaYAmNMZzvEZYxpbYz5vXB5ZRpjnrRDXEViyzTGbDTGLLNDXMaYR4osqw2Fv2U1G8R1jjHmA2NMVuHyuifUMfkY17nGmPcLt8nVxpiGYYprsjHmF2PMBg/vG2PMq4VxrzfGXB5woSJiywcQDfwAXATEAVlAUrFprgLOLfz/RmCVTeKqzJ/nJ1KAb+0QV5HplgILgc52iAtoDSyw4fpVFcgB6hQ+P88OcRWb/mZgqR3iAh4Hni/8vwaQB8TZIK4XgacK//8LsCRM61gr4HJgg4f3bwIWAQZoHoz8ZecaejNgi4hsFZF84G2gU9EJRGSFiPxa+HQlEI6xYH2J65AU/mLAWUA4zjyXGlehvwNzgF/CEJM/cYWbL3HdCbwnIjsBRCQcy8zf5dUNeMsmcQlQxbjvUFMZd0I/aYO4koAlACLyLVDPGFMzxHEhIl/gXgaedAKmittKoKox5vxAyrRzQq8N/FjkeW7ha570wb23CzWf4jLG/M0Y8y3wIdDbDnEZY2oDfwPGhyEen+MqdGXhofoiY0yyTeK6BDjXGPO5MWatMaanTeICwBgTD7TDvYO2Q1xjgb8CPwHZwAMi4rJBXFnArQDGmGZAXcJT+SuNvzmuVHZO6CXdh67Emq4xpg3uhP5YSCMqLK6E186IS0TeF5G/ALcAw0MdFL7F9QrwmIgUhD6cP/gS1ze4x6doBIwB5oY6KHyLKwZoArQHbgCeMMZcYoO4TrkZWC4i3mqBweJLXDcAmcAFQCow1hhzdmjD8imukbh3zJm4j1DXEfojB1/481v7xFY3uCgmF7iwyPNE3Hv+0xhjUoBJwI0ist8ucZ0iIl8YYy42xlQXkVAOEuRLXGnA24X3bK0O3GSMOSkic62MS0QOFPl/oTFmnE2WVy6wT0QOA4eNMV8AjYDvLI7rlK6Ep7kFfIvrHmBkYXPjFmPMNtxt1qutjKtw/boH3CcigW2FD6v5lUt8Eo6TA2U8oRADbAXq8+fJjuRi09QBtgBX2Syu/8efJ0UvB3adem5lXMWm/x/hOSnqy/KqVWR5NQN22mF54W4+WFI4bTywAWhodVyF052Du332rFD/hn4sr9eB9ML/axau99VtEFdVCk/OAvfibrcO+TIrLK8enk+Ktuf0k6KrAy3PtjV0ETlpjLkfWIz7TPZkEdlojBlQ+P544EkgARhXWOs8KSEeWc3HuG4DehpjTgBHgTuk8Be0OK6w8zGuzsBAY8xJ3Murqx2Wl4hsMsZ8BKwHXMAkESmxC1o44yqc9G/Ax+I+egg5H+MaDvzPGJONO0k9JqE9yvI1rr8CU40xBbh7LfUJZUynGGPewt2Dq7oxJhd4CogtEtdC3D1dtgBHKDyKCKjMEG83SimlwsTOJ0WVUkr5QRO6UkpFCE3oSikVITShK6VUhNCErpRSEUITulJKRQhN6EopFSH+P/tNVMVfRWTpAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -469,59 +384,59 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 1.4 torch.optim\n", - "上面的参数更新方式其实是繁琐的重复操作,如果我们的参数很多,比如有 100 个,那么我们需要写 100 行来更新参数,为了方便,我们可以写成一个函数来更新,其实 PyTorch 已经为我们封装了一个函数来做这件事,这就是 PyTorch 中的优化器 `torch.optim`\n", - "\n", - "使用 `torch.optim` 需要另外一个数据类型,就是 `nn.Parameter`,这个本质上和 Variable 是一样的,只不过 `nn.Parameter` 默认是要求梯度的,而 Variable 默认是不求梯度的\n", + "## 2. torch.optim\n", "\n", - "使用 `torch.optim.SGD` 可以使用梯度下降法来更新参数,PyTorch 中的优化器有更多的优化算法,在本章后面的课程我们会更加详细的介绍\n", - "\n", - "将参数 w 和 b 放到 `torch.optim.SGD` 中之后,说明一下学习率的大小,就可以使用 `optimizer.step()` 来更新参数了,比如下面我们将参数传入优化器,学习率设置为 1.0" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# 使用 torch.optim 更新参数\n", - "from torch import nn\n", + "上面的参数更新方式较为繁琐、重复,如果模型参数很多,比如有 100 个,那么需要写 100 行来更新参数。为了方便,可以写成一个函数来更新,其实 PyTorch 已经封装了一个函数来做这件事,这就是 PyTorch 中的优化器 `torch.optim`\n", "\n", - "w = nn.Parameter(torch.randn(2, 1))\n", - "b = nn.Parameter(torch.zeros(1))\n", + "使用 `torch.optim` 需要另外一个数据类型,就是 `nn.Parameter`,默认是要求梯度的,而 tensor 默认是不求梯度的\n", "\n", - "def logistic_regression(x):\n", - " return torch.sigmoid(torch.mm(x, w) + b)\n", + "使用 `torch.optim.SGD` 可以使用梯度下降法来更新参数,PyTorch 中的优化器有更多的优化算法,后面的课程会更加详细的介绍几种常见的优化器。\n", "\n", - "optimizer = torch.optim.SGD([w, b], lr=1.)" + "将参数 $w$ 和 $b$ 放到 `torch.optim.SGD` 中之后,声明一下学习率的大小,就可以使用 `optimizer.step()` 来更新参数了" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 200, Loss: 0.24529, Acc: 0.89000\n", - "epoch: 400, Loss: 0.23901, Acc: 0.89000\n", - "epoch: 600, Loss: 0.23409, Acc: 0.89000\n", - "epoch: 800, Loss: 0.23013, Acc: 0.89000\n", - "epoch: 1000, Loss: 0.22689, Acc: 0.89000\n", + "epoch: 200, Loss: 0.58470, Acc: 0.62000\n", + "epoch: 400, Loss: 0.54856, Acc: 0.66000\n", + "epoch: 600, Loss: 0.51801, Acc: 0.75000\n", + "epoch: 800, Loss: 0.49200, Acc: 0.78000\n", + "epoch: 1000, Loss: 0.46968, Acc: 0.84000\n", "\n", - "During Time: 0.352 s\n" + "During Time: 0.480 s\n" ] } ], "source": [ - "# 进行 1000 次更新\n", + "# 使用 torch.optim 更新参数\n", + "from torch import nn\n", "import time\n", "\n", + "# 定义优化参数\n", + "w = nn.Parameter(torch.randn(2, 1))\n", + "b = nn.Parameter(torch.zeros(1))\n", + "\n", + "# Logistic函数\n", + "def logistic_regression(x):\n", + " return torch.sigmoid(torch.mm(x, w) + b)\n", + "\n", + "# 计算loss, 使用clamp的目的是防止数据过小而对结果产生较大影响。\n", + "def binary_loss(y_pred, y):\n", + " logits = (y * y_pred.clamp(1e-12).log() + \\\n", + " (1 - y) * (1 - y_pred).clamp(1e-12).log()).mean()\n", + " return -logits\n", + "\n", + "# 优化器\n", + "optimizer = torch.optim.SGD([w, b], lr=0.1)\n", + "\n", + "# 进行 1000 次更新\n", "start = time.time()\n", "for e in range(1000):\n", " # 前向传播\n", @@ -538,45 +453,44 @@ " acc = (mask == y_data).sum().item() / y_data.shape[0]\n", " if (e + 1) % 200 == 0:\n", " print('epoch: {}, Loss: {:.5f}, Acc: {:.5f}'.format(e+1, loss.item(), acc))\n", - "during = time.time() - start\n", - "print()\n", - "print('During Time: {:.3f} s'.format(during))" + "\n", + " during = time.time() - start\n", + "\n", + "print('\\nDuring Time: {:.3f} s'.format(during))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "可以看到使用优化器之后更新参数非常简单,只需要在自动求导之前使用**`optimizer.zero_grad()`** 来归 0 梯度,然后使用 **`optimizer.step()`**来更新参数就可以了,非常简便\n", - "\n", - "同时经过了 1000 次更新,loss 也降得比较低了" + "可以看到使用优化器之后更新参数非常简单,只需要在自动求导之前使用**`optimizer.zero_grad()`** 来归 0 梯度,然后使用 **`optimizer.step()`** 来更新参数就可以了,非常方便" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "下面我们画出更新之后的结果" + "下面画出更新之后的结果" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 33, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzFElEQVR4nO3dd3wU1fr48c9JSOgIBBSvoYhfvJogNdgQURRF4WIDlQsKIl1Frz9REK83UhRQ77XQlN4UARsqitIEpEiA0IINBaUICIpUU/b5/bGJhpBNdpOZnZnN83699pXs7uycZ2dnnz1z5sw5RkRQSinlfVFOB6CUUsoamtCVUipCaEJXSqkIoQldKaUihCZ0pZSKEKWcKrhatWpSp04dp4pXSilPWr9+/S8iUj2/5xxL6HXq1CElJcWp4pVSypOMMbsCPadNLkopFSE0oSulVITQhK6UUhFCE7pSSkUITehKKRUhNKErpVSE0ISulFIRwnMJ/atfvuKpJU/xR+YfToeilFKu4rmE/sHXHzB8xXAav9aYtbvXOh2OUkq5hucS+oDmA/i488ccSz/GlZOv5LFPH+NExgmnw1JKKcd5LqEDtPm/Nmztt5WeTXry4uoXaTi+ISt2rXA6LKWUcpQnEzpApdKVGN9uPIvvXUyWL4urp17NQwse4lj6MadDU0opR3g2oedodX4rNvfdTP9L+zNm3RguGXcJi75f5HRYSikVdp5P6AAVYivw8k0vs/y+5cRGx9J6Rmt6fdCLI6eOOB2aUkqFTUQk9BxX1bqK1N6pDLhyAJM2TqL+uPp8/O3HToellFJhEVEJHaBsTFlGtR7F6vtXU6l0JW5+42a6vteVwycPOx2aUkrZKuISeo5Lz7uUDb02MLjFYGZtnkXi2ETe++o9p8NSSinbRGxCByhdqjTDWg1jXc91nFP+HG576zbunnc3B48fdDo0pZSyXEQn9ByNz23Mup7rGHbtMN7Z/g4JYxN4a+tbiIjToSmllGVKREIHiImOYfDVg9nYeyPnVz6fu9++mzvm3MHPx352OjSllLJEoQndGDPZGHPAGLM1wPPGGPOKMeY7Y8xmY0wT68O0TuLZiay6fxUjrx/Jgm8XkDAmgRmbZjhXW581C+rUgago/99Zs5yJQynlecHU0KcCbQp4/iagXvatFzCu+GHZq1RUKR5v/jib+mzi4uoXc+9799LuzXbs/n13eAOZNQt69YJdu0DE/7dXL03qSqkiKTShi8hyoKA+f7cA08VvDVDZGHOuVQHa6e/V/s7ybst5uc3LLNu5jMSxiUxYPyF8tfXBg+FEnoHFTpzwP66UUiGyog39POCnXPd3Zz92BmNML2NMijEm5eBBd/Q0iY6Kpv9l/dncZzNNzm1Crw970XpGa3b+ttP+wn/8MbTHVYmjLXIqFGE9KSoir4tIkogkVa9ePZxFF+qCqhew+N7FjGs7jrV71lJ/bH3GfDkGn/jsK7RWrdAeLyJNCt6kLXIqVFYk9D1AzVz347Mf85woE0WfpD5s67eN5rWa8+DHD3LN1Gv49tC39hQ4fDiUK3f6Y+XK+R+3iCYFa4Xzx1Fb5FTIRKTQG1AH2BrgubbAx4ABLge+DGadTZs2FTfz+XwyacMkOeu5s6TssLLy4qoXJTMr0/qCZs4UqV1bxBj/35kzLV197doi/lR++q12bUuLiVi5P564OJHY2NO3Y7lyln9kfzIm/8/OGHvKK4zNu6oKEpAigXJ1oCf+XADeBPYBGfjbx+8H+gB9sp83wBhgB7AFSCpsneKBhJ5jz+975B9v/ENIRi6bcJlsO7DN6ZBC4rak4CUzZ/oTdn7bLxw/jqH+GNuZcPPbFnb+mKnAipXQ7bp5JaGL+Gvrb2x+Q+JGxkns0Fh5dvmzkpGVEfqKHKjiaA296AJtu3D9OIaSRO1OuLofuYcmdIvsP7ZfOs7pKCQjTV9rKpt+3hT8ix2q4mjNqugCHd2EM6kFWwewO+HqkZ57aEK32Lxt8+Ts58+WmCExkrw0Wf7I/KPwFzlYxdG2z6IJpobulh9HuxOu1tDdo6CEXmLGcrHSHQl3kNYvjTsT7yT582SSXk9i/d71Bb/IwT7nnTvDzp3g8/n/du5se5ERIb9OSDExEBcHxkDt2vD66+7Ynnb3gA1DhyxlAU3oRRRXLo6Zt89k/t3zOXTyEJdNvIwnFz/JqcxT+b8gTH3OlXU6d/Yn7Nq1/0rgU6bAL7+478fR7oSb37Zwy4+ZyiVQ1d3um5ebXPL69eSv0v297kIyctHoi2TVj6vOXEgbs5XNtGmtZECbXOxVuUxlJt0yiYVdFnIi4wTNJzfn0YWPciIj11UhWsVRFgl0cZM2rSnjT/jhl5SUJCkpKY6UbaejfxzliUVPMC5lHBdUuYBJ7SfRsk5Lp8NSESLnyt/cV5CWK6d1g5LEGLNeRJLye05r6BarWLoiY9uOZWnXpQjCNdOu4YGPHuBY+jGnQ1MRwI3DAehYQe6hCd0m19S5hs19NvPIZY8wLmUc9cfW57MdnzkdlvI4tw3QqWMFuYsmdBuVjy3P/9r8j5XdV1KmVBlumHkDPef35MipI06HpjzKbZ2l3HjEUJJpQg+DK2teSWqfVJ5o/gSTUyeTODaRj775yOmwlAe5rT+4244YSjpN6GFSplQZRlw/gjX3r6FK2Sq0e7Md97x7D4dPFjQZlFKns7KzlBVt31Wrhva4spf2cnFAelY6w5cP59mVzxJXNo6xbcdy+8W3Ox2WKkGs6i1TrRocOnTm43Fx/guwlPW0l4vLxEbH8sy1z7Cu5zr+VvFv3DHnDu6adxcHjh9wOjQV4XJq5V26WNP2fTjAAWagx5W9NKE7qFGNRqztsZbhrYbz3lfvkTg2kdlbZ+PUUZNXaDe5osndIyWQUNu+3XaStqTThO6wmOgYnmzxJBt6baBulbp0ersTt711G3uP7nU6NFfSbnJFl1+PlLxCTcRuO0lbmIivDAQaE8DuWySN5WKVzKxMeeGLF6TMsDJSeURlmbJxivh8PqfDClo4xhLRYVyLrrDx3Ys6tJBXxpCJlOGU0PHQveXrX76WFpNbCMlIm5ltZNdvu5wOqVDh+rLoRAtFV9D47m5OxFaJlMpAQQldm1xc6MK4C1nWbRmv3vQqK3atoP7Y+ryW8pqr29bDdYGJttkWXaDmkb59/f/fc0/kNUPkbmIJdO4govrMB8r0dt+0hh6c7w9/L62mtRKSkVbTWsmOwzssXb9Vh8vhqjlHymGzU/J+3n37Ru72dHqSb7ugTS7e5vP55PWU16XisxWl3PBy8vKalyXLl1Xs9VqZHMN5OOuVNlsviJRmiPw4MYVgOPZNTegR4sfffpSbZt4kJCPNJzWXr3/5uljrs/LLHEk155L0gxHJ5yQKOglsx2cbru+AJvQI4vP5ZOrGqVJ5RGUpM6yMjFo5SjKzMou0Lqu/zJGQCJ3+YQrnNpw5UyQ6uuTV0O16b+EqTxN6BNr7+1655c1bhGTk0gmXytb9W0NeRyQfbheVk9sknD8mBbUve/XIKq9w/ziH62hHE3qE8vl8MnvLbKk2qprEDo2VYZ8Pk/TM9KBf73Rt1I2cbIKw+8ckd+0/UM08OjqyPv9wHvFoDV1Z4sCxA3LX3LuEZKTx+Maycd/GoF8bCc0kVnKyhm7nj0mwPT4ioe3cKW5oQ9d+6BGgevnqzO4wm3fufIe9R/fSbEIznl76NH9k/lHoa3Vi4dM5eSm7nX3sg7ns36qySipXzAMfKNPbfdMauj0OnTgk9757r5CMJI5JlC93f+l0SJ7j1FGLnTW8wi771+Y270Br6CVH1bJVmXbrND7650f8duo3Lp90OU989gQnM046HZpnOHXUYmcNL1DNOzrawdqkspxOcBHBjpw6wmOfPsbEjRO5MO5CJrefTPNazZ0OSznAqgktlPN0gosS6qwyZzGh/QQ+u+cz/sj8gxZTWvDIJ49wPP2406GpMHNF+66yndbQS4hj6ccYuGggY9aNoW6Vukz8x0SuPf9ap8NSSoVIa+iKCrEVGH3zaJZ1XYbB0Gp6K/p+2Jejfxx1OjSllEU0oZcwLeu0ZHPfzTx6+aO8tv416o+rz8LvFjodVsSI+BlxlKtpQi+BysWU48UbX+SL7l9QLqYcbWa1ofv73fn15K9Oh+ZpOj2ecpom9BLsippXsLH3RgZdNYjpm6aTODaRD77+wOmwPCtck3woFYgm9BKuTKkyPHvds6ztsZZq5arRfnZ7Or/TmUMnDjkdmucEmvkmombEUa6mCV0B0PRvTUnplUJyy2TmbJtDwtgE5qXNczosT9Hp8ZTTgkroxpg2xpivjTHfGWMG5vN8LWPMUmPMRmPMZmPMzdaHqmyR6yxe7AUX8p89/8f6XuupWakmHed2pOPcjuw/tt/pKD3ByXFglIIgEroxJhoYA9wEJACdjDEJeRZ7CpgjIo2Bu4GxVgeqbBDgLF6DRVtY02MNz133HPO/nk/C2ARmbZ6FU9cseIVTF+9ozxqVI5ga+qXAdyLyvYikA7OBW/IsI0Cl7P/PAvZaF2IJEu5vZgFn8UpFlWLgVQNJ7Z3KhXEX0uXdLtwy+xb2/L7H3pg8bNYs/yb98Ud/M8vw4eFJ5tqzRv0p0KhdOTegAzAx1/17gNF5ljkX2ALsBn4FmgZYVy8gBUipVauW/cOSeYkTs00EOQB3ZlamvLjqRSk7rKyc9dxZMmnDJPH5fPbF5UFOTRais06VPIRhtMVOwFQRiQduBmYYY85Yt4i8LiJJIpJUvXp1i4qOEE70eQvyLF50VDSPXvEom/psomGNhtw//37azGrDrt922RebxzjVZVF71tjDq81YwST0PUDNXPfjsx/L7X5gDoCIrAbKANWsCLDEcOKbGeJZvHpx9VjadSljbh7DFz9+Qf1x9Rm3bhw+8dkXo0c4lVi1Z431vNyMFUxCXwfUM8acb4yJxX/Sc36eZX4ErgMwxlyMP6EftDLQiOfEN7MIZ/GiTBT9mvVja7+tXBF/Bf0W9OO66dex4/AO++L0AKcSqxd61nittuvpC8QCtcXkvuFvRvkG2AEMzn5sCNA++/8E4AtgE5AK3FDYOnXGojysboQNw7Q7Pp9PJq6fKJWeqyTlhpeTl1a/JJlZmW4LMyxlOznhtpvnhfXiROROThQeDHSSaI+w6psZ5m/RT0d+kptn3SwkI1dOulK2H9zuxjBtL9vNidUpXjxp6/aYNaG7ndWZwIE90ufzyfTU6VJlRBUpPbS0jFgxQjKyMtwWpivK9rJQd1W313bz4/ajCk3obmbH3uPgt2jf0X1y+1u3C8lI0utJsmX/FjeG6clE47Si7Kpe/eF089GWJnQ3s2OPd/hb5PP5ZM7WOVJ9VHWJGRIjQ5YNkfTMdFeF6dVE46RA2yw6OnDic3tt14s0obuZHVVFl3yLDhw7IJ3mdRKSkYbjGsqGvRtcE6ZLNpGnBNpVC9uGbq7tepEmdDezq6room/Re9vfkxov1JDoZ6Jl8OLBcirjlCvCdNEm8oRAu6oe5YSXJnQ3K6yqGCFZ5/CJw9L13a5CMpIwJkHW7l7rdEgFyr3Z4+L8N49/BMWW366q5yHCTxO62wVK2hHYLrDgmwUS/994iXomSgZ8OkBOpJ9wOqQzFJa4PP4RFEvuXTU6WmvoobKifqYJ3asi9MzdkVNHpPcHvYVkpN4r9WTFrhVOh3SaYJoWPP4RWCIC6xu2smp7FZTQdcYiN4vQkZcqla7E+HbjWXTPIjJ8GVw95Wr6f9yf4+nHnQ4NCG7zevwjsIRT4797VTiGFNCE7mZWDRDi0sE0rqt7HVv6buGhSx9i9JejuWTcJSz5YYnTYQW1eXXwK7/OnWHnTvD5/H81mQcWjvqZJnQ3s2LkJZcPHVchtgIv3/Qyy+9bTqmoUlw3/Tp6f9Cb3//43bGY8tvsublt8CvlDWEZwC1QW4zdN21DD1Jxz6J4qB3+RPoJeWzhYxL1TJTE/zdePv72Y8diKcm9XCKkY5XrhKMNXRN6pPPgNe5rflojCWMShGSk23vd5PCJw06HdBovJrxgY/bqiU6vfCbay0UVj4dq6LlNnZ4ulc4+LJAlUZV/lH+NWud0SCLizYQXSsxe3F28+JkUhyb0ksyDe3u+/cBjjsnl/V+Rg8cPOhqbFxNeKDEXdHm/W2u+XvxMiqOghK4nRSOdB/uW5de9i4zyrJnWnoQxCczZNsdfG3GAF3uShhJzQSfoXHY+/U9u+UwK6kwWto5mgTK93TetoatAAjf7+yTp9SQhGbn9rdtl39F9YY/Ni7XBUGIO5vJ+t71XN3wmBR0IW32QjDa5KC8p6AuakZUhI1eOlNJDS0uVEVVkeup08fl8YYvNgy1YIcecc+IuUEJ32/l0N3wmBe2zVv/gaEJXnhLMF/Srg1/JlZOuFJKRtrPayk9HfgprfF7oUZFbUWJ2Q803WE5/JgV1JrO6o5kmdOU5wXxBM7My5aXVL0nZYWWl0nOVZML6CWGtrUc6N9R8vUJr6JrQvcPp6k8hvjv0nVwz9RohGbl++vXyw68/OB1S0Fy+aV0fn1toG7omdG/wSDUty5cl49aNkwrPVpDyw8vL6LWjJcuX5XRYBfLIplVBKujHz8ofRk3oqui81JAqIjt/3Sk3zLhBSEaunnK1fHvoW6dDCshjm9YzrEqebj06KSihG//z4ZeUlCQpKSmOlK1CEBXlzzN5GeMfYs+FRISpqVP518J/kZ6VzvBWw+l/WX+io6KdDu00Hty0rpczFl3u6xjKlQv90gur1mMHY8x6EUnK7zm9sCiS2HH1QliGiCu+3G/9/PMNsWn3kfZAGtfXvZ5HP32Uq6ZcxfaD250O8zQe2bSeYtWY4+EYu9wWgarudt+0ycVidjXIeqCht6AQfT6fzNo8S6qOrCqxQ2Pl2eXPSkZWhtMhi4gnNq3nWNVF0M1j2qFt6CWAnQ2ybm1MzBbMW//56M/SYU4HIRlp+lpT2fTzJqfCPY3LN63nWPU1cPP5jYISurahR4oS3CAbyluflzaPfh/147dTvzG4xWAGtRhEbHRseAJVttM2dBUZIq1BNoTzAaG89Q4JHUh7II2OiR1J/jyZpNeTWL93vSUhK+dZNRadB8e08wtUdbf7pk0uFoukBtkQ30tR3/r7X70v575wrkQ/Ey2DFg2SkxknbXgzSlkLbUMvISKlQbYIDZhFfeu/nvxV7nvvPiEZuWj0RbLqx1UWvAGl7FNQQtc2dOU+DpwPWPjdQnp+0JPdv+/mX5f/i6GthlIupoCZopVyiLahK29x4HzAjf93I1v7baVPUh/+u+a/NBjXgM93fm5beUrZQRO6cp/hw/1dCnIrV87/uI0qla7E2LZjWXLvEgThmmnX8OCCBzmWfszyssI2g41yhXB93prQlfvkdDGIi/vrsbJlw1b8tedfy+Y+m3n4socZu24s9cfWZ9H3iyxbf06XuF27/C1Lbp3aTVkjnJ+3JnQ30Wrb6U6e/Ov/Q4fCmvXKx5bnpTYvseK+FZQuVZrWM1rTc35Pjpw6Uux1e/ayclUkYf28A50ttfumvVzyiKRuhwUJtjuKiy7VO5F+Qh7/9HGJeiZKznvxPPnw6w+LtT43X1aurBfOGYuCqqEbY9oYY742xnxnjBkYYJk7jTFpxphtxpg3LP3VKQlKQrUtlGNPC6dyL+6BT9mYsoxsPZI196+hcpnKtHuzHfe+ey+HTx4OORaIvGvAVMHC+nkHyvQ5NyAa2AHUBWKBTUBCnmXqARuBKtn3zy5svVpDz6MkVNtCqXVbVEO3+sDnVMYpeXrJ01JqSCk55/lz5J20d0JeR0k5GFN+rpqxCLgCWJjr/iBgUJ5lRgE9CltX7psm9Dxc1MRgm1B+tCz6Fti1WTfu2yiNxzcWkpE7594p+4/tD+n1kXINmAqOa2YsAjoAE3PdvwcYnWeZ97KT+hfAGqBNgHX1AlKAlFq1ahX9HUWiklBtCzW7WvAtsPPAJz0zXYZ9Pkxih8ZKtVHV5M0tb+ok1cp2BSV0q3q5lMpudrkG6ARMMMZUzruQiLwuIkkiklS9enWLio4Qnh0NKASh9i/v3Bl27vRfHbpzZ5G2hZ3tlzHRMQy+ejAbem2gbpW6dHq7E7e9dRv7ju4r/sqVKoJgEvoeoGau+/HZj+W2G5gvIhki8gPwDf4Er0JhQQJzNQd+tMJxjVLi2Yl80f0Lnm/9PAt3LCRhbALTUqflHJWqEGnv3WIIVHWXv5pJSgHfA+fz10nRxDzLtAGmZf9fDfgJiCtovdqGrsIlnO3VX//ytVw1+SohGblp5k3y428/2ldYBCoJLY/FRXGaXEQkE3gQWAhsB+aIyDZjzBBjTPvsxRYCh4wxacBSYICIHLLsV0e5g0erTuE88Lkw7kI+7/Y5r7R5hc93fU7i2EReX/+61tbzkd/uVBJ679pJR1tUwXHzFC4u9f2v39Pzg54s+WEJrc5vxYR/TKBulbpOh+UKgXanvMk8RwmYeCtoBY22qAldBadOHf+FQHnVru2v9qp8iQgTNkzgsU8fI0uyGHHdCB649AGiTMkedSPQ7hQdDVlZZz6uu9lfdPhcVXwWXrlZkhhj6NW0F9v6bePq2lfT/5P+tJzakm8OfeN0aI4KtNtkZTky0GbE0ISugqPXqxdLzbNqsuCfC5h6y1S2HthKw/ENeWHVC2T58qmOlgCBdpucjk+R3HvXTprQVXAcGqM8khhj6NqoK2n90rjxghsZ8NkArpx8JWkH05wOLewK2p0ivfeunTShq+CUhAufwuTciufy7l3v8uYdb7Lj8A4av9aY4cuHk5GV4XRoYaO7kz30pKhSDjpw/AAPffwQc7bNoXGNxky5ZQoNazR0OizlYnpSVCmXOrv82bzV4S3evvNt9h7dS9KEJP6z9D9Mm5HpxS7/ymGlnA5AKQW3X3w7LWu35JGFjzBk9LeYDzOQdP/XM2fYeNAmCVUwraGr8LDjKlMnrly1scy4cnHMuG0G1ddMRNJPn0NVr5ZUwdAaurJf3ssCrahy2rFOl5T5y75y+T6uXf5VYfSkqLKfHVeZOnHlapjKDFRMxbMPs++n0pSPLW9ZWcp79KSocpYdV5k6ceVqmMrMr492qdJ/cPSqB2kwvgHLdi6ztDwVOTShK/vZcZWpE1euVq0aljLz66M9dVJplr3YG4Ph2mnX0u+jfhz946il5Srv04Su7BfossCbby76CcZwX7k6axb8/vuZj8fG2lJmfldLtqzTks19N/Po5Y8yPmU89cfV59Mdn1petvKwQAOl232LuAkudNbfguXdPn37Fn8mg3Bu80DzocbF2VdmAVb9uEouGn2RkIx0f6+7/HryV0fiUOFHARNc6ElRK+hY4aHz2nC8UVH+FJ6XgwN1n8o8xTPLnuH5Vc9zToVzGN92PP/4+z8ciUWFj54UtZtOsxK6QCcS80vybuDC0SbLlCrDc9c/x5oea4grG0f72e3p8k4XDp3QycJKKk3oVtCxwkMXKBEa487r3F082mTS35JI6ZVCcstk3tr2FgljE3g77W2nwwrIozMZeoImdCu4sPbmesOH+5N3XiLuPLJx+fCAsdGx/Oea/7C+13riK8XTYW4HOs7tyIHjB5wO7TQ5rZO7dvk/6pxrszSpWyRQ47rdt4g6KapTlRdNficZwX+SUxVZRlaGPLv8WYkdGitxI+Nk1uZZ4vP5gn69neeaA51brl3bujIiHQWcFNUauhXsqL2VhOPS2rXzfzwqKrLft81KRZViUItBpPZOpV5cPTq/05lb37qVvUf3Fvpau2vQ2jpps0CZ3u5bRNXQrVZSavz5vc+8t0h83/mxqVqcmZUpL656UcoMKyNnPXeWTN4wWWbO9AUsyu4atNbQi48Cauia0N2oJO31uRNZdHTJed+5heEH/JtfvpGrp1wt3N5JomJPBizKGHtbwUpKXcVOmtC9xu5vlRvNnBm4lh7J71skbD/gWb4sqVLjSIFFhSMUr12D57Z4C0ro2obuRiWt10xOw20gkfq+c4SpYTnKRPHb/koFFhWO3pnhmATaqlNQnuuVEyjT233TGnoBStpxaaBqYaS/7xxhbGILVFSVGkckMytTREKvkbqtBmvl18eNrZ9ok4sH5DfWiZu+JXYK1MQEkf2+c4TxBzy/oqJiTwq3d5IrJ10pXx38yq2hB83KJOzG1k9N6OFS1KqKG78V4eTGalC4hbGae2ZRPpmeOl2qjKgipYeWlpErR0pGVkZQ63LjR2dlEnbj+9OEHg7FScpu3GvCqaT/oLnE3t/3yq2zbxWSkWavN5Mt+7cU+horkqfVv2WBvk7R0aGv2427pib0cAg2Kee397rxuC7c3NYQW0L5fD6ZvWW2VBtVTWKGxMjQz4dKemZ6wOWLWxexI2EWdHlDUdbttl1TE3o4BJOUA+29cXElu4buRuH6FrstW2Q7cOyA3DX3LiEZaTS+kWzYuyHf5YJKyAW8R7sOTmfOjNzLGjShh0Mwe2ZBkyS47biuJAvXcbYbj+fzeHf7u1LjhRoS/Uy0DF48WE5lnDpjmQJ/kwp5j3YenEbqga8m9HAI5stZ0B7m0ppaiRSucxoeOXdy6MQh6fpuVyEZSRiTIGt3rw3+xYW8Rzs3gUc2b8g0oYdLYUk5UvewSBOuqp0TVchiVBw++uYjif9vvEQ9EyUDPh0gJ9JPFP6iQt6jnQcpHjgAKhJN6G4RqXtYpLH7hzcnqeZXhp0/8Bbsf7+d/E16zu8pJCMXvnqhrNy1suAXBLEt7Tw4jcQDX03obhKJe1ikCXe1MVw/8Bb+UH224zOp81IdMclG+i/oL8f+OJb/gjNnisTGnl5ebKzu98VQUELXsVzCLRwDWajisXN2ovzmn81h9yxIFo4Zc33d69nSdwsPXvogr3z5CpeMu4QlPyzJf2GRgu8ryxgJYuMaY9oALwPRwEQRGRFguTuAeUAzEUkpaJ1JSUmSklLgIkpFnqio/BOaMf4feTvVqZP/JNy1a/srF0W0YtcKus/vzneHv6N3096Maj2KSqUr2VpmSWaMWS8iSfk9V2gN3RgTDYwBbgISgE7GmIR8lqsIPAysLV64SlnArTM+OTmSpk1DKbao3YJNfTbx/674f0zYMIH6Y+vzyXef+J/UKYrCqlQQy1wKfCci3wMYY2YDtwBpeZYbCowEBhQ1mIyMDHbv3s2pU6eKugoVgjJlyhAfH09MTIzToVgrZ8zTnKaNnDFPwfkmruHDT48NrB+fNpCc9z54sD+h1qrlL9eCbVIuphwv3PACHRI60P397tw06ya6NerGxPjziP5p95kvcNuQyLNm2bJdwi5Q43rODeiAv5kl5/49wOg8yzQB3s7+fxmQFGBdvYAUIKVWrVpnNPZ///33cvDgwZAmtFVF4/P55ODBg/L99987HYr13N49NMJPjJ/KOCVPLnpSop+Jlr6dzpKMMqXd3bMr1JPgDn9+FKeXS2EJHX+zzTKgjhSS0HPf8uvlkpaWpsk8jHw+n6SlpTkdhvUi9RJBj1m/d700GNdAOt2OHKhWTnxu/QELpQLggq7HBSX0YHq57AFq5rofn/1YjopAfWCZMWYncDkw3xiTb6N9YYwxRXmZKoKI3dYlbcYnl2pybhPW9VzHxf2HcF7/DM4ZWY25Hz2P/POfTod2ulDa+fPrpXTihP9xFwgmoa8D6hljzjfGxAJ3A/NznhSRIyJSTUTqiEgdYA3QXgrp5aKUbcIxj5oKSmx0LP9u+W/W91pP7cq1uXPenXSY24Gfj/3sdGh/CaUC4PKTvIUmdBHJBB4EFgLbgTkiss0YM8QY097uAN1s586dvPHGG3/eT01NZcGCBX/enz9/PiNG5NvDM2TdunVj3rx5APTo0YO0tLznpNWf7OxHrorkknMuYfX9qxlx3Qg++uYjEscmMnPzzJxmW2eFUgFw+9FfoLYYu2+B2tC9ZOnSpdK2bds/70+ZMkUeeOABW8rq2rWrzJ071/L1em2bK+/bfnC7XDHxCiEZafdGO9l9ZLfTIQV/otPlbejBdFt0xCOfPELqz6mWrrNRjUa81OalApeZPn06L7zwAsYYGjRowIwZM+jWrRvt2rWjQ4cOAFSoUIFjx44xcOBAtm/fTqNGjejUqRNjxozh5MmTrFy5kkGDBnHy5ElSUlIYPXo03bp1o1KlSqSkpPDzzz8zatQoOnTogM/n48EHH2TJkiXUrFmTmJgYunfv/mdZ+bnmmmt44YUXSEpKokKFCjz88MN8+OGHlC1blvfff59zzjmHgwcP0qdPH37MPhR86aWXaN68uWXbUqmiuqjaRay4bwWvfvkqTy5+koSxCfz3hv/SvXF3587rdO4c3BGcjV0/raCX/ueybds2hg0bxpIlS9i0aRMvv/xygcuPGDGCFi1akJqayhNPPMGQIUO46667SE1N5a677jpj+X379rFy5Uo+/PBDBg4cCMA777zDzp07SUtLY8aMGaxevTqkmI8fP87ll1/Opk2buPrqq5kwYQIADz/8MP/6179Yt24db7/9Nj169AhpvZ7k1ouJ1Bmio6J55PJH2NJ3C41rNKbHBz24ceaN7Potn6tK3cbFw3e4toZeWE3aDkuWLKFjx45Uq1YNgKpVq1q6/ltvvZWoqCgSEhLYv38/ACtXrqRjx45ERUVRo0YNrr322pDWGRsbS7t27QBo2rQpn332GQCLFi06rZ39999/59ixY1SoUMGid+Mybr6YSAV0QdULWNJ1Ca+lvMbjix6n/rj6jLx+JH2S+hBltL4ZKt1iQShVqhS+7HE2fD4f6enpRVpP6dKl//xfLDoZFBMT8+dhanR0NJmZmYA/zjVr1pCamkpqaip79uyJ3GQOru9OpgKLMlH0bdaXrX23ckX8FTyw4AFaTWvFd4e/czo0z9GEnkurVq2YO3cuhw4dAuDw4cMA1KlTh/Xr1wP+nisZGRkAVKxYkaNHj/75+rz3g9G8eXPefvttfD4f+/fvZ9myZRa8E7jhhht49dVX/7yfmppqyXpdy+XdyVThaleuzcIuC5nUfhKpP6fSYFwD/rf6f2T5spwOzTM0oeeSmJjI4MGDadmyJQ0bNuTRRx8FoGfPnnz++ec0bNiQ1atXU758eQAaNGhAdHQ0DRs25H//+x/XXnstaWlpNGrUiLfeeiuoMu+44w7i4+NJSEigS5cuNGnShLPOOqvY7+WVV14hJSWFBg0akJCQwPjx44u9Tldze3cyFRRjDN0bd2dbv220Or8Vj376KC2mtOCrX75yOjRvCNT9xe5bJHRbtMrRo0dFROSXX36RunXryr59+8JWdsRscxd0J1PW8vl8MnPTTKk6sqqUHlpanlvxnGRkZTgdluPQCS7crV27djRq1IgWLVrw73//mxo1ajgdkvfoxUQRxxhD5wadSeuXRrsL2zFo8SAun3g5m/dvdjo01wpqggs75DfBxfbt27n44osdiaek0m2uvGLutrk8sOABfjv1G4NbDGZQi0HERsc6HVbYFWuCC6WUcoOOiR1JeyCNjokdSf48mWYTmrFh3wanw3IVTehKKc+oVq4as26fxft3v8/B4we5dMKlPLn4SU5l6qQ4oAldKeVB7f/enm39tnFvw3t5buVzNHmtCWt2r3E6LMdpQleqpImQIRKqlK3C5Fsm80nnTziWfozmk5vz2KePcSLjROEvjlDeTugRsmMqFTY5QyTs2uXv3JkzRIKHvzs3/t+NbO23lV5NevHi6hdpOL4hy3ctdzosR3g3oTu8Y06bNo169epRr149pk2bFpYylSq2CB0ioVLpSoxrN47F9y4my5dFy6kteXDBgxxLP+Z0aGHl3W6Lder4k3hetWv7R0Cz0eHDh0lKSiIlJQVjDE2bNmX9+vVUqVLF1nLtoN0WS5ioKH8FKC9j/KMHRoDj6cd5cvGTvPrlq9SuXJsJ/5jA9XWvdzosy0Rmt0Ubxu5Yt24dDRo04NSpUxw/fpzExES2bt16xnILFy6kdevWVK1alSpVqtC6dWs++eSTIperVNiUgCESyseW5+WbXmbFfSuIjY6l9YzW9PqgF0dOHXE6NNt5N6HbsGM2a9aM9u3b89RTT/H444/TpUsX6tevf8Zye/bsoWbNv+bNjo+PZ8+ePWcsp5TrlKD5VpvXak5q71QGXDmASRsnUX9cfRZ8u6DwF3qYdxO6TTvm008/zWeffUZKSgqPP/54sdallOuUsCESysaUZVTrUay+fzWVSlei7Rtt6fpeVw6fPOx0aLbwbkK3acc8dOgQx44d4+jRo5w6lf/FCueddx4//fTTn/d3797NeeedV6xylQobF8+4Y5dLz7uUDb028FSLp5i1eRYJYxJ4d/u7TodlOe+eFLVJ+/btufvuu/nhhx/Yt28fo0ePPmOZw4cP07RpUzZs8F923KRJE9avX2/5DEfh4IZtrlQ4bdy3ke7zu5P6cyp3Jt7J6JtGU718dafDClpknhS1wfTp04mJieGf//wnAwcOZN26dSxZsuSM5apWrcq///1vmjVrRrNmzXj66ac9mcyVKokan9uYL3t8ybBrh/Hu9ndJGJvA7K2zLZtFzElaQy/hdJurkmzbgW3c9/59rNu7jlsvupWxN4/l3IrnOh1WgbSGrpRS+Ug8O5FV969i1PWj+Pjbj0kcm8j0TdM9W1vXhF6ALVu20KhRo9Nul112mdNhKaUsVCqqFAOaD2BTn00kVE+g63tdaftGW3468lPhL3aZUk4H4GaXXHJJ5E+urJQC4O/V/s7y+5Yz+svRDFo8iMSxibx4w4v0aNIDY4zT4QVFa+hKKZUtykTR/7L+bOm7haS/JdHrw160ntGaH379wenQgqIJXSml8qhbpS6L7l3E+Lbj+XLPl1wy7hJGfzkan7h7vBtN6EoplY8oE0XvpN5s7beVq2pdxUMfP0TLqS359tC3TocWkKcTug6HrpSyW62zavFx54+ZcssUth7YSoPxDXhh1Qtk+bKcDu0Mnk3oTo/T36ZNGypXrky7du3CU6BSyjHGGLo16sa2ftu44YIbGPDZAK6cfCVpB9OcDu00nk3oTo/TP2DAAGbMmBGewpRSrvC3in/jvbve443b32DH4R00fq0xz654loysDKdDAzyc0G0YDj3o8dABrrvuOipWrFj0wpRSnmSModMlnUh7II1b/n4Lg5cM5rKJl7Hp501Oh+bdhG7HOP3BjoeulFJnlz+bOR3nMK/jPPYc3UPShCT+s/Q/pGelOxaTZxO6XeP063joSqlQ3JFwB2n90uhUvxNDlg+h6etNSdmbUvgLbeDZhG7XOP3BjIeulFK5xZWLY/pt0/mg0wccPnmYyyZexsBFAzmVGd4c4tmEDvaM09+7d2+GDh1K586deeKJJ4q/QqVUidHuwnZs67eN+xrdx8gvRtJofCNW/bQqbOV7OqFbLdjx0AFatGhBx44dWbx4MfHx8SxcuDDM0Sql3KhymcpMbD+RT7t8ysnMk1w1+SqSlyWHpeygxkM3xrQBXgaigYkiMiLP848CPYBM4CDQXUR2FbROHQ/dHXSbK2Wfo38cZeCigVwefzn3NLzHknUWNB56oaMtGmOigTFAa2A3sM4YM19Ecveo3wgkicgJY0xfYBRwV/FDV0op76pYuiJj2o4JW3nBDJ97KfCdiHwPYIyZDdwC/JnQRWRpruXXAF2sDNIpW7Zs4Z57Tv9VLV26NGvXrnUoIqWUCiyYhH4ekHuk991AQbM83A98nN8TxpheQC+AWgE6jIuIa8YejvTx0L06K4tSKn+WnhQ1xnQBkoDn83teRF4XkSQRSape/cxZtsuUKcOhQ4c00YSBiHDo0CHKlCnjdChKKYsEU0PfA9TMdT8++7HTGGOuBwYDLUXkj6IEEx8fz+7duzl48GBRXq5CVKZMGeLj450OQyllkWAS+jqgnjHmfPyJ/G7gn7kXMMY0Bl4D2ojIgaIGExMTw/nnn1/UlyulVIlWaJOLiGQCDwILge3AHBHZZowZYoxpn73Y80AFYK4xJtUYM9+2iJVSSuUrqEmiRWQBsCDPY0/n+v96i+NSSikVIr1SVCmlIkRQV4raUrAxB4ECryYtQDXgFwvDsYrGFRqNK3RujU3jCk1x4qotImd2E8TBhF4cxpiUQJe+OknjCo3GFTq3xqZxhcauuLTJRSmlIoQmdKWUihBeTeivOx1AABpXaDSu0Lk1No0rNLbE5ck2dKWUUmfyag1dKaVUHprQlVIqQrg6oRtj2hhjvjbGfGeMGZjP848aY9KMMZuNMYuNMbVdElcfY8yW7GEQVhpjEtwQV67l7jDGiDEmLN25gthe3YwxB7O3V6oxpocb4spe5s7sfWybMeYNN8RljPlfrm31jTHmN5fEVcsYs9QYszH7O3mzS+KqnZ0fNhtjlhljwjIinTFmsjHmgDFma4DnjTHmley4NxtjmhS7UBFx5Q3/dHc7gLpALLAJSMizzLVAuez/+wJvuSSuSrn+bw984oa4sperCCzHPxFJkhviAroBo124f9XDPxtXlez7Z7shrjzLPwRMdkNc+E/09c3+PwHY6ZK45gJds/9vBcwI0z52NdAE2Brg+Zvxzx1hgMuBtcUt08019D9nShKRdCBnpqQ/ichSETmRfXcN/qF93RDX77nulgfCcea50LiyDQVGAqfCEFMocYVbMHH1BMaIyK8AUoyRRC2OK7dOwJsuiUuAStn/nwXsdUlcCUDObO9L83neFiKyHDhcwCK3ANPFbw1Q2RhzbnHKdHNCz2+mpPMKWD7gTEkWCyouY8wDxpgd+OdX7e+GuLIP6WqKyEdhiCfouLLdkX3YOc8YUzOf552I60LgQmPMF8aYNdmTpbshLsDflACcz1/Jyum4koEuxpjd+Afze8glcW0Cbs/+/zagojEmLgyxFSbUHFcoNyf0oBU2U5ITRGSMiFwAPAE85XQ8xpgo4L/A/3M6lnx8ANQRkQbAZ8A0h+PJUQp/s8s1+GvCE4wxlZ0MKI+7gXkikuV0INk6AVNFJB5/c8KM7P3OaY8BLY0xG4GW+Od1cMs2s5QbNnYgoc6U1F6KOFOSHXHlMhu41c6AshUWV0WgPrDMGLMTf5vd/DCcGC10e4nIoVyf3USgqc0xBRUX/hrTfBHJEJEfgG/wJ3in48pxN+FpboHg4rofmAMgIquBMvgHoXI0LhHZKyK3i0hj/LkCEfnN5riCEWouKVw4Tg4U8YRCKeB7/IeUOSc7EvMs0xj/CZF6LourXq7//wGkuCGuPMsvIzwnRYPZXufm+v82YI1L4moDTMv+vxr+w+M4p+PKXu4iYCfZFwe6ZHt9DHTL/v9i/G3otsYXZFzVgKjs/4cDQ8KxzbLLq0Pgk6JtOf2k6JfFLi9cb6yIG+Nm/LWiHcDg7MeG4K+NAywC9gOp2bf5LonrZWBbdkxLC0qs4Ywrz7JhSehBbq/nsrfXpuztdZFL4jL4m6nSgC3A3W6IK/t+MjAiHPGEsL0SgC+yP8dU4AaXxNUB+DZ7mYlA6TDF9SawD8jAf7R3P9AH6JNr/xqTHfcWK76Peum/UkpFCDe3oSullAqBJnSllIoQmtCVUipCaEJXSqkIoQldKaUihCZ0pZSKEJrQlVIqQvx/vHDJPHFjoEsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAz+klEQVR4nO3dd3gU1frA8e9JSCjSA4oYmj/BS0ITQlEExQYoYAEFRLzSi96LelVQRANYUFFBIUAICkgUFUQQKSIIgiAQJLSIihQJImBQWihJ9vz+2IAh7Ca7m5md2d338zz7JNmdzLw75Z0zZ+aco7TWCCGECHxhVgcghBDCGJLQhRAiSEhCF0KIICEJXQghgoQkdCGECBLFrFpwpUqVdM2aNa1avBBCBKRNmzb9qbWu7OozyxJ6zZo1SUlJsWrxQggRkJRS+9x9JlUuQggRJCShCyFEkJCELoQQQUISuhBCBAlJ6EIIESQKTehKqfeUUoeVUtvdfK6UUu8opXYppbYqpRobH2aQS06GmjUhLMz5MznZ6oiEEAHIkxL6dKBdAZ+3B2rnvvoDk4oeVghJTob+/WHfPtDa+bN/f0nqQgivFZrQtdbfAkcLmORuYKZ2+h4or5S60qgAg97w4ZCZefF7mZnO94UQwgtG1KFfBezP83d67nuXUEr1V0qlKKVSjhw5YsCig8Bvv3n3vo+kVicwyXYT3jAioSsX77kcNUNrnai1jtNax1Wu7LLlaqEOnTzEY4se46/Tf/n0/7ZTvbp37/tAanUCk2w34S0jEno6UC3P39HA7wbM16WVe1cyOWUyMQkxzPtxnlmL8Z+XX4ZSpS5+r1Qp5/sGkVod3+UvIQ8e7L8Ss922m1wtBACtdaEvoCaw3c1ndwGLcZbUWwAbPJlnkyZNtK9++P0H3WhyI008ussnXfTBEwd9npctzJqldY0aWivl/DlrlqGzV0prZxnv4pdShi4m6MyapXWpUq7X3flXqVKGb64LvN1uZu5GrtaFmd9duAekaHe52t0HFyaAj4CDQBbO0ngfYCAwMPdzBUwEfgW2AXGFzVMXMaFrrfW57HP65W9f1pGjI3WFMRX0jNQZ2uFwFGmepjM5cbtTo4brxFCjhl8WH7DcrTd/rUdvtpvZCVf2IfsoUkI361XUhH5e2uE0fcO0GzTx6Paz2ut9f+8zZL6Gs7CII6Ur37grIfvrSseb7WZ2wpWrPPsI6oSutdbZOdl6/PfjdamXS+nSr5TWCRsSdI4jx7D5G8LiIo5FFwcBzeoSutaebzezE66U0O0j6BP6ebuP7ta3zbxNE49u/X5r/fOfPxu+DJ9JESfgWF2H7g2zE65c5dlHQQk9qPpyqVWhFl899BXTOk1jyx9baDC5AW989wbZjmyrQ/PL44nCWD16QGIi1KgBSjl/Dhp08d+Jic7prGb2w1Ku1oVdvrvIw12mN/tlRgk9rwPHD+h7Zt+jiUfHJcbpLX9sMXV5hZIijjCIu2oYqVYLDYRKlUt+DodDf7z9Y1359cq62Khi+oUVL+iz2WdNX65bcsSJIpJygSgooSvn5/4XFxen/TWmaEZmBo8vfZxZW2cRWzmWaZ2m0Ty6uV+WLYSRatZ0thjNr0YN2LvX39E4JSc7Gzv99puzBvHll6UqxkxKqU1a6zhXnwVVHbo7UaWi+ODeD/jywS85dvYYN7x3A/9b+j8yszIL/2chbMRPXf94TLonsJeQSOjn3Vn7TnYM3kH/xv156/u3qD+pPt/s+cbqsITwmN3urbvrnmDIEGviCXUhldAByhYvy6QOk/jm39+gUNwy8xYGfDGAY2eOWR2aEIUy8mkWI/pmcXdlkJEhpXQrhFxCP+/mmjezddBWnrr+KZI2JxGbEMvCnxdaHZYQBTLq8UGjqkoKujKQzt/8LyRuihZmw4EN9FnQh+2Ht9O9XnfGtxtP5ct8695XCDs7fwPT1Y1V8P7manIyPPSQ68+UAofD6xBFIUL+pmhhml3VjE39N/HiTS8yJ20OMQkxzN4+G6tOdqJg0o2rb/KWyt3x9uZqjx4QFeX6M2kz53+S0HNFhkcSf3M8Pwz4gVrla9F9bnfu+fgeDhw/YHVoAcMfiVaeqvCdqxuY+fmShMePN71Lf8MEfWHA3QPqZr/80bDIV1k5WfqN797QJV4qocu9Wk5P3TTV/l3zWsxfDV6kkyjfFdZ7ZFG2VyC0mQuWRlmEesMiX/2S8Qv9vujHqn2ruKXWLUztOJWrK1xtdVi25K8GL2FhzkMxP6mvLZy7bQTO7RSMDYLyNnoKC4OcnEunsbJRli+kDt1HtaNqs+LfK5h812Q2HthI/Un1Gff9OHIcLvaKAGXUJai/GrzY7TnsQOLukcdBg5y/9+wZXNUQ+avnXCVzsK5RlincFd3Nftm5ysWV/cf267uS79LEo1sktdA7Du+wOqQiM/IS1F9VIcFy2WyV/FUjgwYF7/q0oj97f1Q9EaqdcxnN4XDoWVtm6ajXonTk6Eg9etVofS77nNVh+czIJOzPRGv2QRMI9cFGCeZ7Ep6MOGXkPuqvY0ASusEOnTykH/j0AU08uuGkhnrT75usDsknRo+5EQyJ0OorAH+uw1mz3Ce6YBh3xd3JKjzcnPXrr5OjJHSTzPtxnr5y7JU6fGS4HrpsqM48l2l1SF4J5tKZr6xcJ/6+yiloNKZg2Af8fXL216BkktBNdDTzqO79eW9NPLrOu3X06n2rrQ7JY1aXRu3IypEC/TGM3PnSf3i4+2QeTPuAP694pIQeRJb9ukzXHFdTq3ilH/vyMX38zHGrQ/JIMFSTGMnKErqZJxNPxkc9/wr1fcBXUoceZE6cPaH/u+i/WsUrXf3t6nrprqVWhyS8ZOVVi5knEyue+AhFVj/lIs+hG6h0ZGnGtx/P6l6rKRVRiraz2tJrfi/+Ov2X1aEJD1k5GLKZAz178qy1XZvrB5IePZyNlBwO509/N9SShG6CltVbsnnAZp678Tk+2PIBMQkxfPbjZ1aHJTxk1UFp5snEXcOr8HD/n7iEeaTpv8k2H9xM7wW9Sf0jlc51OzPhzglUKV3F6rBEiDnfajJv51ylSkkSD0TS9N9C1115HRv6buCVW15h4c8LiZkYw8wtM7HqRCpCk5VVScJ/pITuRzv/3EmfBX1Yu38t7a5px5QOU6heTjohEUJ4TkroNvGvSv9ida/VvNPuHVbvW01sQiwJGxNwaOkmMFgEfX/bwtYkoftZmArjP83/w/bB27k++noeXfQoN0+/mZ8zfrY6NFFEMviGsJokdIvULF+TpQ8t5f2732fb4W00nNyQ1797nWxHttWhCR+5GhEoM1MGSxb+41FCV0q1U0r9pJTapZQa5uLzckqpL5RSW5RSO5RSvYwPNfgopXik0SOkDU6j/TXtGfr1UFoktWDroa1WhyZ84K8+4YVwp9CErpQKByYC7YEYoLtSKibfZI8CaVrrhsDNwJtKqUiDYw1aV5a5krkPzOWTLp+w//h+miQ24cVvXuRs9lnzFy6VvoaRwTeE1TwpoTcDdmmtd2utzwGzgbvzTaOBMkopBZQGjgJSd+AFpRT3x95P2uA0utfrzqhvR9EksQnr09ebt1Cp9DWUmS09CyLnZHGeJwn9KmB/nr/Tc9/LawJQF/gd2AYM0frSRzeUUv2VUilKqZQjR474GHIQS04mKqYJMzvPIjPxctqsPcj1067nyaVPkplVyHDtvpBKX8OVLPnP71FR5j/rLedkkZcnCV25eC//w+ttgVSgKtAImKCUKnvJP2mdqLWO01rHVa5c2ctQg1y+I7Pk74d5Z95pkk7cwtvfv039SfX5Zs83xi5TKn0Nc37zZWT8897p0+YvV87J5gjUqx5PEno6UC3P39E4S+J59QI+y+0MbBewB/iXMSGGCBdHpso8Te85u1j1yCrCVBi3zLyFAV8M4NiZY8YsUyp9DWNVYpVzsvEC+arHk4S+EaitlKqVe6OzG7Ag3zS/AbcCKKWuAK4FdhsZaNAr4MhsXaM1Wwdu5ekbniZpcxKxCbEs/Hlh0ZdpVaVvELIqsQbCOTnQSrsBfdXjrl/dvC/gTuBn4FdgeO57A4GBub9XBb7CWX++HXiosHkGY3/oReJhZ9gb0jfoegn1NPHo7nO668MnD7uen6cdM1s8woXVA2wYtXyrBsaw+6hTdo/PFStHrfIEMsBFABg06NI9yc2efzb7rB65cqSOGBWhK71eSX+07SPtcDj+mSBAjiKrwzRy+VZ+F3+fFL1ZXiCOW2v3mCWh252rbKCUM8kXYNuhbbrZ1GaaeHTHDzvq9GPpzg/svkfmsjpMo5dv9dWGP3h74rJ7adcVqwsahZGEbndFyCzZOdl67HdjdcmXSuqyr5bViSmJ2hEgR5HVYVq9/EBU0FB2rk5iVp+0fWXnk3NBCV36crGDItxRCw8L5383/I+tg7bS+MrG9F/Yn0MV3TTStdOdMqy/oWf18gNRQbukq6dBAvW+u9VDyflKErodGJBZrql4DcsfXs6UDlN47hY4FZFvAhseRVYf7FYvPxAVtkvmfxpEBtbwM3dFd7NfUuWSR0GVdj5c++0/tl+/PriR3lMOnQP6bPSV9rpmzMPqS1t3y8/7flSU82XHy29/c7WrSpWVfyF16AHAVWYpwt0Zh8Ohk7cm66jXonTk6Eg9auUofS77nOlfIxgUlrTsdIPMCud31YLq0oVrRhRgJKEHKgPuKB06eUh3/bSrJh7dYFIDnXIgxbRwg0VByUqS1j/s/jSI3Ri1vgpK6FKHbmcGND+8/LLLmd1lNvO7zefIqSM0T2rO0GVDOZ3lh45GApQnq1ea1kv9uLf80QJVErqdGfUYRnIyndr+lwNP/8EfE0qwf/LrNJrSiNX7Vhc9xiDkyeqVJ2GcAvVpECv4o3sISeh2ZsRjGHl6GlJaU+nIKT5YXJz264/SenprHlv0GCfOnjA27gDnarXnFQpPwgRa/yuBwC+PybqrizH7JXXoHirqXRQ3FcI51avpIYuHaBWvdPW3q+slvywxIfjAVdBTLoMG2bfRiTve7EaBWDdu9dNSnvBHHbok9GBXSHPItb+t1XUn1NXEo/897986IzPD4oCd7HqABmqy8ybmQGvdGUjbRJ5yEUXjwdF5Ouu0Hr58uA4fGa6veOMKPTdtrmXham3vAzTQkp3W3sfsrgwA9tgG+dllmxSUrI0soEhCD2VeZMfNBzfrxlMaa+LRnT/urA+eOGhBwPY5QF0JxP5fvI25oMc27XJizcsO26SwtoFGFlAkoYc6L4oHWTlZ+tXVr+rio4vrCmMq6Ombp1/cNa8f2OEAdcfOJxt3vI25sIZVdvuudtgmBcVgdHyS0IXXfjzyo245raUmHt32g7Z639/7/LZsOxyg7ti5OsgdX2KeNct9QrfDiTUvO2yTggohRhdQJKELn+Q4cvQ737+jL3v5Ml36ldJ6wvoJOseRY/py7XCAFsSuN2wL4kvMdj6x5mf1NpESuiT0gLHnrz36lYH1LnT2dS66qulHjNUHqL/Y+Xva/cRqJ1KHLgk9cMyapR359shzxSN09gczrY4soAVCwrTzCcdu5CkXERjcXDMeqBihUw+mWh1dwAqkKo1AYlTytOvJrKCELk3/g4lZ7bXddDZR5WgWcVPjGLFiBGezzxqzLB8FYlN1f/TtEWry9HSB1q5HUfLnfPzOXaY3+yUldIOZef3upiiZXS1a9/yspyYeXXdCXb1u/7qiL8sHgVB14YqU0I1n1Dq187ZBqlxCgJl7YCEZc9HPi3S1t6ppFa/044sf1yfPniz6Mr1g54OvIIF6IrIzox4RtHNbiIISulS5BAszr98L6fi6fe32bB+8nYFxAxm3fhz1J9Vn+e7lRV+uhwK16kL6EzeeUT0aBuoA4pLQg4XZe2AhHV+XLV6WhLsSWPXIKsLDwrntg9vot6Aff5/527fleVEpHqgHH0h/4kYzauDvgB1A3F3R3eyXVLkYzEbX75nnMvUzXz2jw0aG6apvVtXzd873bgZefhcbfXVhA6H8lIsk9GBisz1w44GNun5CfU08utucbvrwycOe/aMPleI2++pCmKaghK6cn/tfXFycTklJsWTZwn/O5ZxjzJoxvPTtS5QrUY532r1Dt3rdUEq5/6ewMGcKz08pZ92EECFMKbVJax3n6jOpQxemigyP5IWbXmDzgM1cXeFqHvzsQe6efTcHjh9w/0+BXCnuoUB8bl74zl/bWxK6nQTxUR57eSxre6/lrTve4uvdXxOTEMPUTVNxeYXo6o6UUnDnnf4J1mQB22hF+MSv29tdXYzZL6lDzyeE7uztytil20xvo4lHt5neRu/K2HXpRIMGXfowcJCsj0B9bl74xp+9LUoJ3S6GD4fMzIvfy8x0vh9MkpP5v8a3srzXSo5PrkitReuoP6k+b697mxxHzj/TLVp0aT26j+vDbhc+gfrcvPCNP7e3RwldKdVOKfWTUmqXUmqYm2luVkqlKqV2KKVWGRtmCAiFozzPtafSmjJ/HGXqF4qRv1/Lk189Scv3WrLj8A7ntAatDztWb4TALQKRhz+3d6EJXSkVDkwE2gMxQHelVEy+acoDCUAnrXUscL/xoQa5UDjKXVyFhJ0+zVMLjzLr3lnsOrqL66Zcx+hVo9HVqrmeh5frw44XPgHbaEX4xK/b211dzPkXcD2wNM/fzwLP5ptmMPBSYfPK+5I69HxCoQ69kA4yDp08pLvN6aaJRw/tVU1nlyxR5PVh1z455Ln50GKb/tCBLkBSnr97AhPyTTMOZyl+JbAJeNjNvPoDKUBK9erVff9GwSrYj3IP7w7N3zlfXzn2Sv3gfeijl5fVjiKsD7kBKYJNQQndkzp0Vy1A8j9rVgxoAtwFtAVGKKXquLgaSNRax2mt4ypXruzBokNMsHfs4eG1Z6drO5H2aBol/92HioOPc+34a/h21Uyf1odUbwQeu93EDiSeJPR0IG+FZjTwu4tplmitT2mt/wS+BRoaE6IIGl50L1i+RHmSOiXxdc+vyXZkc9P0m3j0y0c5cfaEWYsUNmDHm9gBxV3RXf9TTVIM2A3UAiKBLUBsvmnqAstzpy0FbAfqFTRfqUMPQBZVCZ08e1IPWTxEq3ilq71VTS/+ZbFflivM5Wp3kiqywlHUzrmAO4GfgV+B4bnvDQQG5pnmaSAtN5k/Xtg8JaEHGBvctF3721pdd0JdTTz64XkP6z9P/em3ZQtjududXCVzO9zEtpOCErp0ziU8U7Om8/o3vxo1nPX9fnI2+ywvffsSY74bQ8WSFZl450S6xHTx2/KFMdztTuHhkJNz6ft+3s1sTTrnEkVnk4ZPxYsVZ/Qto0npl0J02Wju//R+On/SmYMnDvo1DlE07nabnBy5iV0UktCFZ2zW8KlhlYas77ueMbeO4cufvyQmIYbpqdOx6opTeMfdbnP+prXcxPaNJHThGRs+/1csrBhDbxzKloFbqHd5PXrN70X75Pbs+9vFtbywlYJ2p2B/etdMktCFZ2z8/N+1la5l1SOrmNB+Amt+W0NsQiwTNkzAoWUwDLuy8e4U0OSmqAgq+/7ex4CFA1j661JurH4j0zpNo07UJW3cAkJysrPPmd9+c1ZRnC+9itAmN0VF8MrXrLDGl2tY3GMx0++ezo7DO2gwqQGvrXmNbEe2Kcszq8WLNLARPnH3PKPZL3kOPcSY0SipkGfjD544qO/7+D5NPLrxlMY69WCqqcszkjSwEe4gz6ELS50vbubtx7ZUqaJXmnr4bPzctLk8uuhRMk5nMKzlMJ5v/TzFixU3bXlGkHGyhTsFVblIQhfmMysRepH1jp4+yhNLn2DmlpnUrVSX9+5+jxbRLUxbXlHZpB2XsCGpQxfWMqtRkhfPxlcsWZEZ98xgcY/FnDx3khum3cATS57g1LlTni+vYkXv4igCGz4lKgKAJHSjSJ+f7rlLeBUrFm2d+ZD12l3Tjh2DdzAobhDj1o+j/qT6LN+9vPBlJSfD8eOXvh8ZaUqWlcf6hE/cVa6b/Qqqm6I26LjK1lytn8hIrSMiir7OinCzddXeVbr2O7U18ei+8/vqv07/5X5id3cpo6K8i1eIIkJuippMKjwLl/+h6pMnISPj0umiouDPP/0W1ums08SvjGfsurFUKV2FSXdNotO1nS6dUO5SCpuQOnSz2aTjKlvL35776FHX02Vk+LW6qmRESV67/TXW911PpVKVuHv23XSf250jp45cPKHN+rIJdFJDaQ5J6EaQg917Ba2b4cP9F0euuKpxbOy3kVE3j2Ju2lzqTqzLh9s+/KezL7lLaRhpNGUeSehGkIPdewWtG4uubCLDIxlx0wg2D9jMNRWvocdnPeg0uxPpx9ND6i6l2aXn4cMvbpIAzr8tOI8HH3eV62a/guqmqNbGt4S0aLg3v4qKcn2jMTzc8u+dnZOt31r7li75Ukld9tWyekrKFO1wOMxboE22tz/u7yvlerPLqESeoahD0JnxCrqEbqRQeWrG1ffM/7L4e+/K2KVvmXGLJh7dZnobvStjl/EL8fP2Lujc4Y8uB6Rbg6KRhB5oQmmPL2hkYJt8b4fDoRNTEnXZV8vqki+V1G+ufVNn52QbtwA/bu/Czh3+KD0HWnnFJhdPF0hCDzShdk1aWEndJt87/Vi67vhhR008uvnU5nr7oe3GzNiP27uwc4e/zi1mJ0mj5m/Hk48k9EATSiV0rW1fQs/L4XDoj7Z9pCu9XklHjIrQo1aO0mezzxZtpn7c3oWdO3xJYHYrwRqZhO14KEpCDwR5j4qoKGdLSjsVC8zkLsvY+HsfPnlYd5/TXROPbjCpgd54YKPvM7NZt7zeJGg7lmCNTMJ2vFiWhO4vvhZVXB0VERHOxG6XYo+Z3B2B4eG2/94Ldi7QVd+sqsNGhulnvnpGZ57L9G1GfirmGp2A7ViCNTIJ2/H7SUL3B0+PFFcHrh33Gn+yYzHPC3+f/lv3W9BPE4+u/U5tvWrvKqtDKpCR5w4jkqfR5zIjywd23DUlofuDp9eyrvYOd9UNNrkZ6Bd2q4j1wfLdy/XV46/WxKMHLxysj585Xvg/Bfj39qgsUsB3NCNhFnSP3c/9v5lCEro/eFJUKajoEMoldDvy8Sg+efakfmLJE1rFK13trWp68S+LC16G3Yp/Xir0KxQygVkXp7NmBe9hJQndHzzZMwu7+RfAB3ZQMSDRrtu/TtedUFcTj+75WU/956k/L50oSKraCjz3FfIdzbzpaMcbmkaQhO4PniSBgnZuu13XhTKDEu2ZrDP6+eXP62KjiunL37hcf7rj04snsCLj+Hs/K+Q7mnlOC5Lz5SUkoftLYQdLEFxihwSDE23qwVTdZEoTTTz6vo/v00eTJhT87L1ZGceK/a+QrGpmSMF6uElCtxMpidufCUW7rJws/dqa1/TDXcL1qQg3idzsjGNFkXXWrEvbVERGXnJj1KxDIhgPt4ISuoxYJER+5zvsztvHa6lShnSXm1XtKiLSf3f9YY0azm6FzeqS14pRl5KToVcvyMr6572ICHj//aDsetgfijxikVKqnVLqJ6XULqXUsAKma6qUylFKdfE1WCEMUZROvU3s+zziwEGX72ulnCM5mZnkrBiIZfjwi5M5OP+Wzs9NUWhCV0qFAxOB9kAM0F0pFeNmuteApUYHKYRXjBgSJ/+QeUYlWjfJ81DFSH768ydjluGOFQOxBMrwjEEyJp4nJfRmwC6t9W6t9TlgNnC3i+n+A8wFDhsYnxDes/OQOC6SanaJSEbcFk7DyQ0Zs2YMWTlZbv65iKwYdSkQhmcMojHxPEnoVwH78/ydnvveBUqpq4B7gckFzUgp1V8plaKUSjly5EhBkwrhOzuXCl0k1WJJ7zE66Vc61OnAs8ufpXlSc1L/SDVv+WZcebgTCMMzelsAsHNp3t3d0vMv4H4gKc/fPYF3803zKdAi9/fpQJfC5huyT7kI8wXwA8hzdszRV7xxhQ4fGa6f+/o5fTrrtNUhFZ3dHzXx5jFVGzwLSQFPuXhSQk8HquX5OxrIf5s+DpitlNoLdAESlFL3+HaKEaKIAqFU6EbnmM6kPZpGz4Y9eWXNK1w35TrW7V9ndVhF4++rAm95Uy1k5+o8PKty2QjUVkrVUkpFAt2ABXkn0FrX0lrX1FrXBOYAg7XWnxsdrBAesaKu2EAVS1bk/bvfZ0mPJWRmZdLyvZY8vuRxTp07ZXVowcmbAoCdq/PwIKFrrbOBx3A+vfIj8InWeodSaqBSaqDZAQrhE7uXCj3Q9pq2bB+0ncFNBzN+/XjqTarH8t3LrQ4r+HhTALD7TV53dTFmv6QOXRjO7nW1RfDt3m91nXfraOLRfeb30X+d/svqkEJTENShC2F/QfTomSutarQidUAqQ1sOZXrqdGImxjB/53yrwwo9Nq/Ok6b/IjjUrOlM4vnVqOGscgkim37fRO8Fvdl6aCtdY7vybvt3qXxZZavDEn5S5Kb/QtiezW9WGalJ1Sak9EthdJvRzNs5j7oT6/Lhtg+xqnAm7EMSuggOdr9ZZbCI8Aieb/08mwds5pqK19Djsx50/Kgj6cfTrQ5NWEgSuggOAfzseVHEVI7hu97f8dYdb7FizwpiE2JJ3JSIQ5vUe6KwNUnoIjjY/GaVmcLDwnni+ifYPng7cVXjGLBwALfOvJVdR3dZHZrwM7kpKkQQ0VqT9EMSTy17iqycLEa3Gc3jLR4nPCzc6tCEQeSmqBAhQilFvyb9SBucxm1X38ZTy57ihvduYPvh7VaHJvxAEroQQeiqslcxv9t8PrzvQ3b/tZvGUxozcuVIzuWcszo0YSJJ6EIEKaUU3et3J21wGl1iuhC/Kp64xDh+nTDavt2/iiKRhC5EkKt8WWU+7PwhC7otoNWa/VR58oWgbVEb6iShCxEiOl7bkXdXl+Gy/AMi2aj7V1E0ktCFCCFh6a4bHukgbFEbiiShCxFK3LScPVA+jEW/LPJzMMJoktCFCCUuWtTmlCzB+E5XcNeHd/HwvIfJyMywKDhRVJLQhQglLlrUhk9N4qWk3YxoPYKPtn9ETEIMn+74VDr7CkDSUlQIccHWQ1vpPb83mw5u4t5/3cvEOydyZZkrrQ5L5CEtRYUQHmlwRQO+7/s9r932Got3LSYmIYb3N78vpfUAIQldCHGRYmHFeKblM2wZuIX6l9en94LetJ3Vlr1/77U6NFEISehCCJfqRNVh5SMrmXjnRNalr6NeQj3eXf+udM1rY5LQhRBuhakwBjcdzI7BO2hVoxX/XfJfWr/fmp1/7rQ6NOGCJHQhRKGql6vOogcXMeOeGaQdSaPR5Ea8uvpVsnLyNzsVVpKELoTwiFKKhxs+TNqjaXSo04HnVjxH86TmbD642erQRC5J6EIIr1QpXYU5D8xhzv1z+P3E7zSd2pThy4dzJvuM1aGFPEnoQgifdI7pTNqjaTzU4CFeWfMK1025jrX711odVkiThC6E8FnFkhWZfs90lvRYQmZWJje+dyP/XfxfTp47aXVoIclWLUWzsrJIT0/nzBm5dPOHEiVKEB0dTUREhNWhiCBw4uwJnlv+HBM2TqBm+Zokdkjk9v+73eqwgk5BLUVtldD37NlDmTJliIqKQillSVyhQmtNRkYGJ06coFatWlaHI4LI6n2r6ftFX37O+JnejXrzZts3KV+ivNVhBY2Aafp/5swZSeZ+opQiKipKroaE4VrVaEXqgFSGtRzGjC0ziJkYw+c7P7c6rJBgq4QOSDL3I1nXwiwlI0ry6m2vsr7vei6/7HLu/fheHvj0AQ6dPGR1aEHNdgldCBE8mlRtwsZ+G3mpzUvM/2k+MQkxzNo6Szr7MolHCV0p1U4p9ZNSapdSapiLz3sopbbmvtYqpRoaH6r97N27lw8//PDC36mpqSxa9M+oLwsWLGDMmDGGLOuRRx5hzpw5APTt25e0tDRD5iuE2SLCIxjeejibB2ymTlQdes7rSYePOrD/2H6rQws6hSZ0pVQ4MBFoD8QA3ZVSMfkm2wPcpLVuAIwGEo0O1I4KS+idOnVi2LBLzn9FlpSURExM/k0ghL3FVI5hTa81jGs7jpV7VxKbEMuUlCnS2ZeBinkwTTNgl9Z6N4BSajZwN3ChiKi1ztua4HsguqiBPb7kcVL/SC3qbC7SqEojxrUbV+A0M2fOZOzYsSilaNCgAR988AGPPPIIHTp0oEuXLgCULl2akydPMmzYMH788UcaNWpE9+7dmThxIqdPn2bNmjU8++yznD59mpSUFCZMmMAjjzxC2bJlSUlJ4Y8//uD111+nS5cuOBwOHnvsMVatWkWtWrVwOBz07t37wrJcufnmmxk7dixxcXGULl2aIUOGsHDhQkqWLMn8+fO54oorOHLkCAMHDuS33MF/x40bR8uWLQ1bl0L4IjwsnCEthtDx2o70/6I/A78cyOwds5nacSrXVLzG6vACnidVLlcBea+N0nPfc6cPsNjVB0qp/kqpFKVUypEjRzyP0k927NjByy+/zIoVK9iyZQvjx48vcPoxY8bQqlUrUlNTGTp0KKNGjaJr166kpqbStWvXS6Y/ePAga9asYeHChRdK7p999hl79+5l27ZtJCUlsW7dOq9iPnXqFC1atGDLli20bt2aqVOnAjBkyBCeeOIJNm7cyNy5c+nbt69X8xXCTFdXuJplPZeR1DGJzQc302BSA95c+yY5jhyrQwtonpTQXT0K4fKOhlKqDc6EfqOrz7XWieRWx8TFxRV4V6SwkrQZVqxYQZcuXahUqRIAFStWNHT+99xzD2FhYcTExHDokPNu/5o1a7j//vsJCwujSpUqtGnTxqt5RkZG0qFDBwCaNGnCsmXLAPj6668vqmc/fvw4J06coEyZMgZ9GyGKRilFn8Z9aF+7PYO+HMRTy57ik7RPmNZpGvUur2d1eAHJkxJ6OlAtz9/RwO/5J1JKNQCSgLu11gE5bLjW2uWjfMWKFcPhcFyY5ty5cz7Nv3jx4hctK+9PX0VERFyIOTw8nOzsbAAcDgfr1q0jNTWV1NRUDhw4IMlc2FLVMlX5vOvnzO48mz1/7aHxlMaMXDmSczm+HWehzJOEvhGorZSqpZSKBLoBC/JOoJSqDnwG9NRa/2x8mP5x66238sknn5CR4TwfHT16FICaNWuyadMmAObPn09WlrMP6DJlynDixIkL/5//b0/ceOONzJ07F4fDwaFDh1i5cqUB3wTuuOMOJkyYcOHv1NRUQ+YrhBmUUnSt15W0R9O4P/Z+4lfFE5cYx8YDG60OLaAUmtC11tnAY8BS4EfgE631DqXUQKXUwNzJXgCigASlVKpSKsXN7GwtNjaW4cOHc9NNN9GwYUOefPJJAPr168eqVato1qwZ69ev57LLLgOgQYMGFCtWjIYNG/L222/Tpk0b0tLSaNSoER9//LFHy+zcuTPR0dHUq1ePAQMG0Lx5c8qVK1fk7/LOO++QkpJCgwYNiImJYfLkyUWepxBmq1SqEsn3JfNF9y84evooLaa14OmvniYzK9Pq0AKCrfpy+fHHH6lbt64l8Vjp5MmTlC5dmoyMDJo1a8Z3331HlSpV/LLsUF3nwv6OnTnGM8ueIfGHRK6peA1JHZO4qeZNVodluYDpyyVUdejQgUaNGtGqVStGjBjht2QuhJ2VK1GOKR2nsOLhFTi0g5tn3MyghYM4fva41aHZlidPuQiTGVVvLkQwalOrDdsGbWPEihGMWz+Ohb8sZEqHKdxZ+06rQ7MdKaELIWyvVEQp3mz7Jmt7r6Vs8bLc9eFd9JzXk4zMgHygzjSS0IUQAaN5dHN+6P8DL7R+gdnbZ1N3Yl0+2fGJdPaVSxK6ECKgFC9WnJFtRrKp/yZqlK9B1zldue+T+zh44qDVoVlOEroQIiA1uKIB6/qs4/XbXmfJriXUnViX9za/F9Kl9cBO6MnJULMmhIU5fyYnWx2REMKPioUV4+mWT7Nl4BYaVmlInwV9aDurLXv/3mt1aJYI3ISenAz9+8O+faC182f//n5L6jNmzKB27drUrl2bGTNm+GWZQgjX6kTV4Zt/f0PCnQmsS19HvYR6vLP+nZDr7CtwE/rw4ZCZr/VYZqbzfZMdPXqUkSNHsn79ejZs2MDIkSP566+/TF+uEMK9MBXGoKaD2DF4B61qtGLIkiG0nt6anX/utDo0vwnchJ7bz7fH73tg48aNNGjQgDNnznDq1CliY2PZvn37JdMtXbqU22+/nYoVK1KhQgVuv/12lixZ4vNyhRDGqV6uOoseXMTMe2ay88+dNJrciFdXv0pWTpbVoZkucBN69ereve+Bpk2b0qlTJ55//nmeeeYZHnroIerVu7QbzwMHDlCt2j8dUEZHR3PgwAGflyuEMJZSip4Ne5I2OI1O13biuRXP0TypOZsPbrY6NFMFbkJ/+WUoVeri90qVcr5fBC+88ALLli0jJSWFZ555xuU0ru6iu+p2VwhhrStKX8En93/CZw98xsGTB2k6tSnDlw/nTPYZq0MzReAm9B49IDERatQApZw/ExOd7xfB0aNHOXnyJCdOnODMGdcbPTo6mv37/xnEKT09napVqxZpuUII89xb917SBqfxcMOHeWXNK1w35TrW7l9b+D8GGOltMZ9OnTrRrVs39uzZw8GDBy/qU/y8o0eP0qRJE3744QcAGjduzKZNmwwf4cgf7LDOhfCnr379iv5f9Oe3Y7/xn2b/4eVbX6Z0ZGmrw/KY9LbooZkzZ1KsWDEefPBBhg0bxsaNG1mxYsUl01WsWJERI0bQtGlTmjZtygsvvBCQyVyIUHTH/93B9sHbeazZY7y74V3qT6rPsl+XWR2WIaSEHuJknYtQtua3NfRd0JefMn6id6PejL1jLBVKVrA6rAJJCV0IIVy4sfqNpA5MZVjLYczYMoPYhFg+3/m51WH5TBJ6AbZt20ajRo0uejVv3tzqsIQQBipRrASv3vYqG/pt4PLLLufej+/lgU8f4NDJQ1aH5jUZ4KIA9evXl8GVhQgRja9szMZ+G3lj7RuMXDWS5XuWM77deHrU7xEwjyVLCV0IIXJFhEfwXKvnSB2QyrVR19JzXk86fNSB/cf2F/7PNiAJXQgh8qlbuS6re61mXNtxrNy7ktiEWCanTMahHVaHViBJ6EII4UJ4WDhDWgxh+6DtNLuqGYO+HMQtM27hl4xfrA7NrYBO6NIduhDCbLUq1GJZz2VM6zSN1D9SaTC5AWPXjiXbkW11aJcI2IRucXfotGvXjvLly9OhQwf/LFAIYRmlFL2v603ao2m0/b+2PL3saW6YdgPbDm2zOrSLBGxCt7A7dACefvppPvjgA/8sTAhhC1XLVGVe13nM7jybvX/vpXFiY1785kXO5ZyzOjQggBO6Cd2he9wfOsCtt95KmTJlfF+YECIgKaXoWq8raY+m0TW2K6O+HUXjKY3ZcGCD1aEFbkI3oTt0j/tDF0KISqUqMeu+WXzR/Qv+PvM310+7nqe+eorMrMzC/9kkAZvQTeoO3aP+0IUQ4rwOdTqwY/AO+jXux5vr3qTh5Ias3LvSklgCNqGb1B26R/2hCyFEXuVKlGNyh8mseHgFWmvazGjDoIWDOH72uF/jCNiEDs7kvXcvOBzOn0VN5gD9+/dn9OjR9OjRg6FDhxZ9hkKIkNGmVhu2DtrK/67/H4k/JBKbEMuXP3/pt+UHdEI3mqf9oQO0atWK+++/n+XLlxMdHc3SpUv9HK0Qwo5KRZRi7B1jWddnHeWKl6PDRx3oPb+3y6ErjeZRf+hKqXbAeCAcSNJaj8n3ucr9/E4gE3hEa/1DQfOU/tDtQda5EOY5l3OOV1a/QvHw4jzb6llD5llQf+iF9raolAoHJgK3A+nARqXUAq11Wp7J2gO1c1/NgUm5P4UQImRFhkcSf3O835bnSfe5zYBdWuvdAEqp2cDdQN6EfjcwUzuL+98rpcorpa7UWh80PGI/2rZtGz179rzoveLFi7N+/XqLIhJCCPc8SehXAXn7jkzn0tK3q2muAi5K6Eqp/kB/gOpuHhjXWtum7+Fg7w/dquEHhRDm8OSmqKvsmj8TeDINWutErXWc1jqucuXKl/xDiRIlyMjIkETjB1prMjIyKFGihNWhCCEM4kkJPR2olufvaOB3H6YpVHR0NOnp6Rw5csTbfxU+KFGiBNHR0VaHIYQwiCcJfSNQWylVCzgAdAMezDfNAuCx3Pr15sAxX+rPIyIiqFWrlrf/JoQQAg8SutY6Wyn1GLAU52OL72mtdyilBuZ+PhlYhPORxV04H1vsZV7IQgghXPFokGit9SKcSTvve5Pz/K6BR40NTQghhDekpagQQgQJj1qKmrJgpY4A+3z890rAnwaGYxS7xgX2jU3i8o7E5Z1gjKuG1vrSxwSxMKEXhVIqxV3TVyvZNS6wb2wSl3ckLu+EWlxS5SKEEEFCEroQQgSJQE3oiVYH4IZd4wL7xiZxeUfi8k5IxRWQdehCCCEuFagldCGEEPlIQhdCiCBh64SulGqnlPpJKbVLKTXMxec9lFJbc19rlVINbRLX3bkxpSqlUpRSN9ohrjzTNVVK5SilutghLqXUzUqpY7nrK1Up9YId4soTW6pSaodSapUd4lJKPZ1nXW3P3ZYVbRBXOaXUF0qpLbnryy9dgHgQVwWl1LzcY3KDUqqen+J6Tyl1WCm13c3nSin1Tm7cW5VSjYu8UK21LV84+435FbgaiAS2ADH5prkBqJD7e3tgvU3iKs0/9ycaADvtEFee6Vbg7Mqhix3iAm4GFtpw/yqPcyCX6rl/X26HuPJN3xFYYYe4gOeA13J/rwwcBSJtENcbwIu5v/8LWO6nfaw10BjY7ubzO4HFOLsfb2FE/rJzCf3CSEla63PA+ZGSLtBar9Va/5X75/c4u+21Q1wnde4WAy7DRd/wVsSV6z/AXOCwH2LyJi5/8ySuB4HPtNa/AWit/bHOvF1f3YGPbBKXBsrkjjFcGmdCz7ZBXDHAcgCt9U6gplLqCpPjQmv9Lc514M6Fkd601t8D5ZVSVxZlmXZO6O5GQXKnD86zndk8ikspda9SaifwJdDbDnEppa4C7gUm4z+ebsfrcy/VFyulYm0SVx2gglJqpVJqk1LqYZvEBYBSqhTQDucJ2g5xTQDq4hwLYRswRGvtsEFcW4D7AJRSzYAa+KfwVxhvc1yh7JzQPRoFCUAp1QZnQh9qakS5i3PxnqvRmeZprf8F3AOMNjsoPItrHDBUa51jfjgXeBLXDzj7p2gIvAt8bnZQeBZXMaAJcBfQFhihlKpjg7jO6wh8p7UuqBRoFE/iagukAlWBRsAEpVRZc8PyKK4xOE/MqTivUDdj/pWDJ7zZ1h7xqPtci3g0CpJSqgGQBLTXWmfYJa7ztNbfKqX+TylVSWttZidBnsQVB8zOHbO1EnCnUipba/25lXFprY/n+X2RUirBJusrHfhTa30KOKWU+hZoCPxscVzndcM/1S3gWVy9gDG51Y27lFJ7cNZZb7Ayrtz9qxc4b0QCe3JfVjNkpLeL+OPmgI83FIoBu4Fa/HOzIzbfNNVxDqpxg83iuoZ/boo2xjnSk7I6rnzTT8c/N0U9WV9V8qyvZsBvdlhfOKsPludOWwrYDtSzOq7c6crhrJ+9zOxt6MX6mgTE5/5+Re5+X8kGcZUn9+Ys0A9nvbXp6yx3eTVxf1P0Li6+KbqhqMuzbQldezZS0gtAFJCQW+rM1ib3rOZhXJ2Bh5VSWcBpoKvO3YIWx+V3HsbVBRiklMrGub662WF9aa1/VEotAbYCDiBJa+3yETR/xpU76b3AV9p59WA6D+MaDUxXSm3DmaSGanOvsjyNqy4wUymVg/OppT5mxnSeUuojnE9wVVJKpQMvAhF54jJ8pDdp+i+EEEHCzjdFhRBCeEESuhBCBAlJ6EIIESQkoQshRJCQhC6EEEFCEroQQgQJSehCCBEk/h/dYJ5K1qagJAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -613,48 +527,40 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 1. 5 PyTorch的Loss函数\n", - "前面我们使用了自己写的 loss,其实 PyTorch 已经为我们写好了一些常见的 loss,比如线性回归里面的 loss 是 `nn.MSE()`,而 Logistic 回归的二分类 loss 在 PyTorch 中是 `nn.BCEWithLogitsLoss()`,关于更多的 loss,可以查看[文档](http://pytorch.org/docs/0.3.0/nn.html#loss-functions)\n", + "## 3. PyTorch的Loss函数\n", "\n", - "PyTorch 为我们实现的 loss 函数有两个好处,第一是方便我们使用,不需要重复造轮子,第二就是其实现是在底层 C++ 语言上的,所以速度上和稳定性上都要比我们自己实现的要好\n", + "前面使用了自己写的 loss函数,其实 PyTorch 已经提供了一些常见的 loss函数,比如线性回归里面的 loss 是 `nn.MSE()`,而 Logistic 回归的二分类 loss 在 PyTorch 中是 `nn.BCEWithLogitsLoss()`,关于更多的 loss,可以查看[文档](https://pytorch.org/docs/stable/nn.html#loss-functions)\n", "\n", - "另外,PyTorch 出于稳定性考虑,将模型的 Sigmoid 操作和最后的 loss 都合在了 `nn.BCEWithLogitsLoss()`,所以我们使用 PyTorch 自带的 loss 就不需要再加上 Sigmoid 操作了" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# 使用自带的loss\n", - "criterion = nn.BCEWithLogitsLoss() # 将 sigmoid 和 loss 写在一层,有更快的速度、更好的稳定性\n", + "PyTorch 实现的 loss函数有两个好处:第一是方便使用,不需要重复造轮子;第二就是其实现是在底层 C++ 语言上的,所以速度上和稳定性上都要比自己实现的要好。\n", "\n", - "w = nn.Parameter(torch.randn(2, 1))\n", - "b = nn.Parameter(torch.zeros(1))\n", - "\n", - "def logistic_reg(x):\n", - " return torch.mm(x, w) + b\n", - "\n", - "optimizer = torch.optim.SGD([w, b], 1.)" + "另外,PyTorch 出于稳定性考虑,将模型的 Sigmoid 操作和最后的 loss 都合在了 `nn.BCEWithLogitsLoss()`,所以我们使用 PyTorch 自带的 loss 就不需要再加上 Sigmoid 操作了" ] }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.6314)\n" + "tensor(0.9880)\n" ] } ], "source": [ + "# 使用自带的loss\n", + "criterion = nn.BCEWithLogitsLoss() # 将 sigmoid 和 loss 写在一层,有更快的速度、更好的稳定性\n", + "\n", + "w = nn.Parameter(torch.randn(2, 1))\n", + "b = nn.Parameter(torch.zeros(1))\n", + "\n", + "def logistic_reg(x):\n", + " return torch.mm(x, w) + b\n", + "\n", + "optimizer = torch.optim.SGD([w, b], 1.)\n", + "\n", "y_pred = logistic_reg(x_data)\n", "loss = criterion(y_pred, y_data)\n", "print(loss.data)" @@ -662,20 +568,20 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 200, Loss: 0.22419, Acc: 0.89000\n", - "epoch: 400, Loss: 0.22191, Acc: 0.89000\n", - "epoch: 600, Loss: 0.21997, Acc: 0.89000\n", - "epoch: 800, Loss: 0.21830, Acc: 0.88000\n", - "epoch: 1000, Loss: 0.21685, Acc: 0.88000\n", + "epoch: 200, Loss: 0.40936, Acc: 0.86000\n", + "epoch: 400, Loss: 0.32933, Acc: 0.87000\n", + "epoch: 600, Loss: 0.29321, Acc: 0.87000\n", + "epoch: 800, Loss: 0.27238, Acc: 0.87000\n", + "epoch: 1000, Loss: 0.25875, Acc: 0.87000\n", "\n", - "During Time: 0.215 s\n" + "During Time: 0.313 s\n" ] } ], diff --git a/6_pytorch/5-deep-nn.ipynb b/6_pytorch/5-deep-nn.ipynb deleted file mode 100644 index 8488a8c..0000000 --- a/6_pytorch/5-deep-nn.ipynb +++ /dev/null @@ -1,693 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 深层神经网络\n", - "前面一章我们简要介绍了神经网络的一些基本知识,同时也是示范了如何用神经网络构建一个复杂的非线性二分类器,更多的情况神经网络适合使用在更加复杂的情况,比如图像分类的问题,下面我们用深度学习的入门级数据集 MNIST 手写体分类来说明一下更深层神经网络的优良表现。\n", - "\n", - "## MNIST 数据集\n", - "mnist 数据集是一个非常出名的数据集,基本上很多网络都将其作为一个测试的标准,其来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST)。 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员,一共有 60000 张图片。 测试集(test set) 也是同样比例的手写数字数据,一共有 10000 张图片。\n", - "\n", - "每张图片大小是 28 x 28 的灰度图,如下\n", - "\n", - "![](https://ws3.sinaimg.cn/large/006tKfTcly1fmlx2wl5tqj30ge0au745.jpg)\n", - "\n", - "所以我们的任务就是给出一张图片,我们希望区别出其到底属于 0 到 9 这 10 个数字中的哪一个。\n", - "\n", - "## 多分类问题\n", - "前面我们讲过二分类问题,现在处理的问题更加复杂,是一个 10 分类问题,统称为多分类问题,对于多分类问题而言,我们的 loss 函数使用一个更加复杂的函数,叫交叉熵。\n", - "\n", - "### softmax\n", - "提到交叉熵,我们先讲一下 softmax 函数,前面我们见过了 sigmoid 函数,如下\n", - "\n", - "$$s(x) = \\frac{1}{1 + e^{-x}}$$\n", - "\n", - "可以将任何一个值转换到 0 ~ 1 之间,当然对于一个二分类问题,这样就足够了,因为对于二分类问题,如果不属于第一类,那么必定属于第二类,所以只需要用一个值来表示其属于其中一类概率,但是对于多分类问题,这样并不行,需要知道其属于每一类的概率,这个时候就需要 softmax 函数了。\n", - "\n", - "softmax 函数示例如下\n", - "\n", - "![](https://ws4.sinaimg.cn/large/006tKfTcly1fmlxtnfm4fj30ll0bnq3c.jpg)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "对于网络的输出 $z_1, z_2, \\cdots z_k$,我们首先对他们每个都取指数变成 $e^{z_1}, e^{z_2}, \\cdots, e^{z_k}$,那么每一项都除以他们的求和,也就是\n", - "\n", - "$$\n", - "z_i \\rightarrow \\frac{e^{z_i}}{\\sum_{j=1}^{k} e^{z_j}}\n", - "$$\n", - "\n", - "如果对经过 softmax 函数的所有项求和就等于 1,所以他们每一项都分别表示属于其中某一类的概率。\n", - "\n", - "## 交叉熵\n", - "交叉熵衡量两个分布相似性的一种度量方式,前面讲的二分类问题的 loss 函数就是交叉熵的一种特殊情况,交叉熵的一般公式为\n", - "\n", - "$$\n", - "cross\\_entropy(p, q) = E_{p}[-\\log q] = - \\frac{1}{m} \\sum_{x} p(x) \\log q(x)\n", - "$$\n", - "\n", - "对于二分类问题我们可以写成\n", - "\n", - "$$\n", - "-\\frac{1}{m} \\sum_{i=1}^m (y^{i} \\log sigmoid(x^{i}) + (1 - y^{i}) \\log (1 - sigmoid(x^{i}))\n", - "$$\n", - "\n", - "这就是我们之前讲的二分类问题的 loss,当时我们并没有解释原因,只是给出了公式,然后解释了其合理性,现在我们给出了公式去证明这样取 loss 函数是合理的\n", - "\n", - "交叉熵是信息理论里面的内容,这里不再具体展开,更多的内容,可以看到下面的[链接](http://blog.csdn.net/rtygbwwwerr/article/details/50778098)\n", - "\n", - "下面我们直接用 mnist 举例,讲一讲深度神经网络" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import torch\n", - "from torchvision.datasets import mnist # 导入 pytorch 内置的 mnist 数据\n", - "\n", - "from torch import nn\n", - "from torch.autograd import Variable" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# 使用内置函数下载 mnist 数据集\n", - "train_set = mnist.MNIST('../../data/mnist', train=True, download=True)\n", - "test_set = mnist.MNIST('../../data/mnist', train=False, download=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "我们可以看看其中的一个数据是什么样子的" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "a_data, a_label = train_set[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAAAAABXZoBIAAABAElEQVR4nGNgGMyAWUhIqK5jvdSy/9/rGRgYGFhgEnJsVjYCwQwMDAxPJgV+vniQgYGBgREqZ7iXH8r6l/SV4dn7m8gmCt3++/fv37/Htn3/iMW+gDnZf/+e5WbQnoXNNXyMs/5GoQoxwVmf/n9kSGFiwAW49/11wynJoPzx4YIcRlyygR/+/i2XxCWru+vv32nSuGQFYv/83Y3b4p9/fzpAmSyoMnohpiwM1w5h06Q+5enfv39/bcMiJVF09+/fv39P+mFKiTtd/fv3799jgZiBJLT69t+/f/8eDuDEkDJf8+jv379/v7Ryo4qzMDAwMAQGMjBc3/y35wM2V1IfAABFF16Aa0wAOwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a_data" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a_label" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "这里的读入的数据是 PIL 库中的格式,我们可以非常方便地将其转换为 numpy array" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(28, 28)\n" - ] - } - ], - "source": [ - "a_data = np.array(a_data, dtype='float32')\n", - "print(a_data.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "这里我们可以看到这种图片的大小是 28 x 28" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 18.\n", - " 18. 18. 126. 136. 175. 26. 166. 255. 247. 127. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 30. 36. 94. 154. 170. 253.\n", - " 253. 253. 253. 253. 225. 172. 253. 242. 195. 64. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 49. 238. 253. 253. 253. 253. 253.\n", - " 253. 253. 253. 251. 93. 82. 82. 56. 39. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 18. 219. 253. 253. 253. 253. 253.\n", - " 198. 182. 247. 241. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 80. 156. 107. 253. 253. 205.\n", - " 11. 0. 43. 154. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 14. 1. 154. 253. 90.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 139. 253. 190.\n", - " 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 190. 253.\n", - " 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 35. 241.\n", - " 225. 160. 108. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 81.\n", - " 240. 253. 253. 119. 25. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 45. 186. 253. 253. 150. 27. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 16. 93. 252. 253. 187. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 249. 253. 249. 64. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 46. 130. 183. 253. 253. 207. 2. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 39. 148.\n", - " 229. 253. 253. 253. 250. 182. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 114. 221. 253.\n", - " 253. 253. 253. 201. 78. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 23. 66. 213. 253. 253. 253.\n", - " 253. 198. 81. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 18. 171. 219. 253. 253. 253. 253. 195.\n", - " 80. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 55. 172. 226. 253. 253. 253. 253. 244. 133. 11.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 136. 253. 253. 253. 212. 135. 132. 16. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", - " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", - " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]\n" - ] - } - ], - "source": [ - "print(a_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "我们可以将数组展示出来,里面的 0 就表示黑色,255 表示白色\n", - "\n", - "对于神经网络,我们第一层的输入就是 28 x 28 = 784,所以必须将得到的数据我们做一个变换,使用 reshape 将他们拉平成一个一维向量" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def data_tf(x):\n", - " x = np.array(x, dtype='float32') / 255\n", - " x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到\n", - " x = x.reshape((-1,)) # 拉平\n", - " x = torch.from_numpy(x)\n", - " return x\n", - "\n", - "train_set = mnist.MNIST('../../data/mnist', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换\n", - "test_set = mnist.MNIST('../../data/mnist', train=False, transform=data_tf, download=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([784])\n", - "5\n" - ] - } - ], - "source": [ - "a, a_label = train_set[0]\n", - "print(a.shape)\n", - "print(a_label)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from torch.utils.data import DataLoader\n", - "# 使用 pytorch 自带的 DataLoader 定义一个数据迭代器\n", - "train_data = DataLoader(train_set, batch_size=64, shuffle=True)\n", - "test_data = DataLoader(test_set, batch_size=128, shuffle=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "使用这样的数据迭代器是非常有必要的,如果数据量太大,就无法一次将他们全部读入内存,所以需要使用 python 迭代器,每次生成一个批次的数据" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "a, a_label = next(iter(train_data))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([64, 784])\n", - "torch.Size([64])\n" - ] - } - ], - "source": [ - "# 打印出一个批次的数据大小\n", - "print(a.shape)\n", - "print(a_label.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# 使用 Sequential 定义 4 层神经网络\n", - "net = nn.Sequential(\n", - " nn.Linear(784, 400),\n", - " nn.ReLU(),\n", - " nn.Linear(400, 200),\n", - " nn.ReLU(),\n", - " nn.Linear(200, 100),\n", - " nn.ReLU(),\n", - " nn.Linear(100, 10)\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Sequential(\n", - " (0): Linear(in_features=784, out_features=400, bias=True)\n", - " (1): ReLU()\n", - " (2): Linear(in_features=400, out_features=200, bias=True)\n", - " (3): ReLU()\n", - " (4): Linear(in_features=200, out_features=100, bias=True)\n", - " (5): ReLU()\n", - " (6): Linear(in_features=100, out_features=10, bias=True)\n", - ")" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "交叉熵在 pytorch 中已经内置了,交叉熵的数值稳定性更差,所以内置的函数已经帮我们解决了这个问题" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# 定义 loss 函数\n", - "criterion = nn.CrossEntropyLoss()\n", - "optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 0, Train Loss: 0.511304, Train Acc: 0.830540, Eval Loss: 0.232364, Eval Acc: 0.925732\n", - "epoch: 1, Train Loss: 0.167128, Train Acc: 0.948744, Eval Loss: 0.171745, Eval Acc: 0.942148\n", - "epoch: 2, Train Loss: 0.118102, Train Acc: 0.963420, Eval Loss: 0.107683, Eval Acc: 0.965882\n", - "epoch: 3, Train Loss: 0.092869, Train Acc: 0.971565, Eval Loss: 0.090614, Eval Acc: 0.970728\n", - "epoch: 4, Train Loss: 0.073340, Train Acc: 0.977229, Eval Loss: 0.081820, Eval Acc: 0.972805\n", - "epoch: 5, Train Loss: 0.060981, Train Acc: 0.980727, Eval Loss: 0.087822, Eval Acc: 0.972211\n", - "epoch: 6, Train Loss: 0.051884, Train Acc: 0.982809, Eval Loss: 0.127961, Eval Acc: 0.958564\n", - "epoch: 7, Train Loss: 0.044878, Train Acc: 0.985741, Eval Loss: 0.102081, Eval Acc: 0.967366\n", - "epoch: 8, Train Loss: 0.039214, Train Acc: 0.987223, Eval Loss: 0.067912, Eval Acc: 0.977551\n" - ] - } - ], - "source": [ - "# 开始训练\n", - "losses = []\n", - "acces = []\n", - "eval_losses = []\n", - "eval_acces = []\n", - "\n", - "for e in range(20):\n", - " train_loss = 0\n", - " train_acc = 0\n", - " net.train()\n", - " for im, label in train_data:\n", - " im = Variable(im)\n", - " label = Variable(label)\n", - " # 前向传播\n", - " out = net(im)\n", - " loss = criterion(out, label)\n", - " # 反向传播\n", - " optimizer.zero_grad()\n", - " loss.backward()\n", - " optimizer.step()\n", - " # 记录误差\n", - " train_loss += loss.item()\n", - " # 计算分类的准确率\n", - " _, pred = out.max(1)\n", - " num_correct = float((pred == label).sum().item())\n", - " acc = num_correct / im.shape[0]\n", - " train_acc += acc\n", - " \n", - " losses.append(train_loss / len(train_data))\n", - " acces.append(train_acc / len(train_data))\n", - " # 在测试集上检验效果\n", - " eval_loss = 0\n", - " eval_acc = 0\n", - " net.eval() # 将模型改为预测模式\n", - " for im, label in test_data:\n", - " im = Variable(im)\n", - " label = Variable(label)\n", - " out = net(im)\n", - " loss = criterion(out, label)\n", - " # 记录误差\n", - " eval_loss += loss.item()\n", - " # 记录准确率\n", - " _, pred = out.max(1)\n", - " num_correct = float((pred == label).sum().item())\n", - " acc = num_correct / im.shape[0]\n", - " eval_acc += acc\n", - " \n", - " eval_losses.append(eval_loss / len(test_data))\n", - " eval_acces.append(eval_acc / len(test_data))\n", - " print('epoch: {}, Train Loss: {:.6f}, Train Acc: {:.6f}, Eval Loss: {:.6f}, Eval Acc: {:.6f}'\n", - " .format(e, train_loss / len(train_data), train_acc / len(train_data), \n", - " eval_loss / len(test_data), eval_acc / len(test_data)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "画出 loss 曲线和 准确率曲线" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xl8VfWd//HXJzuQEEIStrCEzYVNwKgYLC60CnYqWrXF2nGprbXWLtPpWDvtr7XOTKe21a6OVatttbVqtbS0YtHWKq0IEkCBiGAIWyJLCFtCCNk+vz/uQa8xIReynCT3/Xw88shZvveeTw6X9/3e7zn3HHN3REQkPiSEXYCIiHQdhb6ISBxR6IuIxBGFvohIHFHoi4jEEYW+iEgcUeiLAGb2MzP7fyf42BfM7JMdXZNIZ0gKuwCR9jKzLcAn3f2vJ/oc7n5Tx1Uk0n2ppy+9npmpcyMSUOhLj2ZmjwAjgT+ZWbWZ3Wpm+WbmZnaDmW0Dng/a/s7MdprZATNbYmYTo57nl2b238H0eWZWZmb/bma7zWyHmV0fYz0JZvZ1M9saPPZhM8sM1qWZ2a/NrNLM9pvZCjMbHKy7zsxKzazKzDab2dUdvKtEAIW+9HDu/q/ANuBD7p7u7t+NWn0ucCpwUTD/DDAeGASsAn5zjKceAmQCecANwD1mlhVDSdcFP+cDY4B04KfBumuD5xwBZAM3AYfNrB/wY2Cuu2cAhcCrMWxL5Lgp9KU3u93dD7n7YQB3f8jdq9z9CHA7cNrRXngL6oE73L3e3RcB1cDJMWzzauBudy9192rgq8D8YIipnkjYj3P3Rndf6e4Hg8c1AZPMrI+773D34hP9o0WORaEvvdn2oxNmlmhm3zGzTWZ2ENgSrMpp5bGV7t4QNV9DpNfelmHA1qj5rUROmBgMPAIsBh4zs7fM7Ltmluzuh4CPEun57zCzp83slBi2JXLcFPrSG7R2qdjo5R8D5gHvJzLEkh8stw6u5S1gVNT8SKAB2BV8aviWu08gMoTzL8A1AO6+2N0/AAwF3gAe6OC6RACFvvQOu4iMnx9LBnAEqAT6At/upFp+C/ybmY02s/RgO4+7e4OZnW9mk80sEThIZLinycwGm9m8YGz/CJGhpKZOqk/inEJfeoP/Bb4enBHz5VbaPExkqKUceB1Y1km1PERkGGcJsBmoBT4XrBsCPEkk8NcDLwZtE4AvEfmUsJfIAejPdFJ9EudMN1EREYkf6umLiMQRhb6ISBxR6IuIxBGFvohIHOl2F6LKycnx/Pz8sMsQEelRVq5cucfdc9tq1+1CPz8/n6KiorDLEBHpUcxsa9utNLwjIhJXFPoiInFEoS8iEkcU+iIicUShLyISRxT6IiJxRKEvIhJHek3o76+p40d/fZN15QfCLkVEpNvqdl/OOlEJCcaP/raRxqYmJuW1dttTEZH41mt6+v3TkpkyfAAvbaoMuxQRkW6r14Q+wMxx2by2fT/VRxrabiwiEod6V+iPzaGhyXlls3r7IiIt6VWhP31UFilJCbxUotAXEWlJTKFvZnPMbIOZlZjZbS2sn2Vmq8yswcyuaLZupJk9a2brzex1M8vvmNLfKy05kYJRWbxUsqezNiEi0qO1GfpmlgjcA8wFJgBXmdmEZs22AdcBj7bwFA8D33P3U4Ezgd3tKbgtM8fl8MbOKiqrj3TmZkREeqRYevpnAiXuXurudcBjwLzoBu6+xd3XAE3Ry4M3hyR3fy5oV+3uNR1TessKx2YD8HKphnhERJqLJfTzgO1R82XBslicBOw3s9+b2Woz+17wyaHTTM7LJCM1SeP6IiIt6OwDuUnA+4AvA2cAY4gMA72Lmd1oZkVmVlRRUdG+DSYmcNaYbJZu0ri+iEhzsYR+OTAian54sCwWZcCrwdBQA/AHYHrzRu5+v7sXuHtBbm6bt3hsU+HYbLZW1lC2r1NHkkREepxYQn8FMN7MRptZCjAfWBjj868ABpjZ0SS/AHj9+Ms8PjPH5QCwVEM8IiLv0mboBz30W4DFwHrgCXcvNrM7zOwSADM7w8zKgCuB+8ysOHhsI5Ghnb+Z2VrAgAc65095x0mD08lJT+UlDfGIiLxLTBdcc/dFwKJmy74RNb2CyLBPS499DpjSjhqPm5lRODabpZsqcXfMrCs3LyLSbfWqb+RGmzkum4qqI5Tsrg67FBGRbqPXhn7h2Mi4vr6dKyLyjl4b+iMG9mXEwD661LKISJReG/oQuermstJKGhqb2m4sIhIHenXoF47Loaq2gXVvHQy7FBGRbqF3h35wHR6N64uIRPTq0M9JT+WUIRm8rHF9ERGgl4c+RM7iWbFlL7X1jWGXIiISujgI/WyONDSxatu+sEsREQldrw/9s8YMJDHBdB0eERHiIPQz0pKZMjxT1+ERESEOQh8i5+uvKTtAVW192KWIiIQqLkK/cFw2jU3OK5v3hl2KiEio4iL0p4/MIjUpQbdQFJG4Fxehn5acSEF+lm6hKCJxLy5CHyLn67+xs4o91UfCLkVEJDRxE/pv30JR384VkTgWU+ib2Rwz22BmJWZ2WwvrZ5nZKjNrMLMrWljf38zKzOynHVH0iZicl0lGWhJLdR0eEYljbYa+mSUC9wBzgQnAVWY2oVmzbcB1wKOtPM1/AUtOvMz2S0wwZozJ1vn6IhLXYunpnwmUuHupu9cBjwHzohu4+xZ3XwO858L1ZnY6MBh4tgPqbZeZY7PZvvcw2/fWhF2KiEgoYgn9PGB71HxZsKxNZpYA3AV8uY12N5pZkZkVVVRUxPLUJ6Tw7XF99fZFJD519oHcm4FF7l52rEbufr+7F7h7QW5ubqcVM35QOrkZqTpfX0TiVlIMbcqBEVHzw4NlsTgbeJ+Z3QykAylmVu3u7zkY3BXMjMKx2bxUUom7Y2ZhlCEiEppYevorgPFmNtrMUoD5wMJYntzdr3b3ke6eT2SI5+GwAv+omWNz2FN9hI27qsMsQ0QkFG2Gvrs3ALcAi4H1wBPuXmxmd5jZJQBmdoaZlQFXAveZWXFnFt0eheN0C0URiV+xDO/g7ouARc2WfSNqegWRYZ9jPccvgV8ed4UdbHhWX0Zl92Xppj184pzRYZcjItKl4uYbudEKx2azvHQvDY3vOcNURKRXi9PQz6HqSANryw+EXYqISJeK09CPjOvrOjwiEm/iMvSz01M5ZUiGDuaKSNyJy9CHyFU3i7buo7a+MexSRES6TByHfjZ1DU2s3Lov7FJERLpM3Ib+GfkDSUwwDfGISFyJ29DPSEvmtOGZOpgrInElbkMfIuP6a8r2c7C2PuxSRES6RFyHfuHYHJoclpfuDbsUEZEuEdehP33UANKSEzSuLyJxI65DPzUpkTPyB+qmKiISN+I69CEyxLNxVzW7q2rDLkVEpNMp9INLMryss3hEJA7EfehPysukf1oSS3ULRRGJA3Ef+okJxowx2bykcX0RiQMxhb6ZzTGzDWZWYmbvud2hmc0ys1Vm1mBmV0Qtn2pmL5tZsZmtMbOPdmTxHWXmuBzK9h1mW2VN2KWIiHSqNkPfzBKBe4C5wATgKjOb0KzZNuA64NFmy2uAa9x9IjAH+KGZDWhv0R1t5tFbKKq3LyK9XCw9/TOBEncvdfc64DFgXnQDd9/i7muApmbLN7r7m8H0W8BuILdDKu9AY3PTGZSRqvP1RaTXiyX084DtUfNlwbLjYmZnAinAphbW3WhmRWZWVFFRcbxP3W5mRuHYbF7eVElTk3f59kVEukqXHMg1s6HAI8D17v6eG9O6+/3uXuDuBbm54XwQKByXQ+WhOjbsqgpl+yIiXSGW0C8HRkTNDw+WxcTM+gNPA19z92XHV17XmTkuB4Bni3eFXImISOeJJfRXAOPNbLSZpQDzgYWxPHnQfgHwsLs/eeJldr68AX244JRB/GLpZqp01U0R6aXaDH13bwBuARYD64En3L3YzO4ws0sAzOwMMysDrgTuM7Pi4OEfAWYB15nZq8HP1E75SzrAF2aPZ39NPQ+/vDXsUkREOoW5d68DlwUFBV5UVBTa9j/xyxWs2raPf9x6PhlpyaHVISJyPMxspbsXtNUu7r+R25x6+yLSmyn0mzltxAAuOGUQD/yjVGP7ItLrKPRboN6+iPRWCv0WnDZiAOefnMsD/yil+khD2OWIiHQYhX4rvvD+k9hfU8+vlm4JuxQRkQ6j0G/FVPX2RaQXUugfg3r7ItLbKPSPQb19EeltFPptONrbf/jlLWGXIiLSbgr9NkwdMYDzTs7lgSXq7YtIz6fQj8EXZo9nn3r7ItILKPRjMG1klnr7ItIrKPRjpN6+iPQGCv0YRff2D6m3LyI9lEL/OLzT29c1eUSkZ1LoH4ejvf37l2xSb19EeqSYQt/M5pjZBjMrMbPbWlg/y8xWmVmDmV3RbN21ZvZm8HNtRxUeFvX2RaQnazP0zSwRuAeYC0wArjKzCc2abQOuAx5t9tiBwDeBs4AzgW+aWVb7yw7PtJFZnHuSevsi0jPF0tM/Eyhx91J3rwMeA+ZFN3D3Le6+Bmhq9tiLgOfcfa+77wOeA+Z0QN2h+sL71dsXkZ4pltDPA7ZHzZcFy2IR02PN7EYzKzKzooqKihifOjzT1dsXkR6qWxzIdff73b3A3Qtyc3PDLicmR3v7jyxTb19Eeo5YQr8cGBE1PzxYFov2PLZbe6e3r/P2RaTniCX0VwDjzWy0maUA84GFMT7/YuBCM8sKDuBeGCzrFb7w/vHsPVSn3r6I9Bhthr67NwC3EAnr9cAT7l5sZneY2SUAZnaGmZUBVwL3mVlx8Ni9wH8ReeNYAdwRLOsVpo/MYpZ6+yLSg5i7h13DuxQUFHhRUVHYZcRs5dZ9XH7vUm6bewo3nTs27HJEJE6Z2Up3L2irXbc4kNuTnT5KvX0R6TkU+h3gC7MjY/u/1ti+iHRzCv0OcLS3f9+SUmrq1NsXke5Lod9Bjvb2/+/vm8IuRUSkVQr9DnL6qCwunz6c/3uhhGWllWGXIyLSIoV+B/rWvImMHNiXf3v8VfbX1IVdjojIeyj0O1B6ahI/uWo6e6qP8JWn1tDdTocVEVHod7DJwzP5j4tOZnHxLn6zfFvY5YiIvItCvxN88pwxvG98Dv/159fZuKsq7HJERN6m0O8ECQnGXR85jYy0JD736Gpq6xvDLklEBFDod5pBGWl878rT2LCrim8vWh92OSIigEK/U51/8iBuOGc0D7+8lWeLd4ZdjoiIQr+z3TrnZCYO68+tT61h54HasMsRkTin0O9kqUmJ/PiqaRypb+LfHn+Vxiadxiki4VHod4Gxuel865KJvFxayc9e1GUaRCQ8Cv0ucmXBcP5lylDufm4jq7btC7scEYlTMYW+mc0xsw1mVmJmt7WwPtXMHg/WLzez/GB5spn9yszWmtl6M/tqx5bfc5gZ/3PZZIb0T+Pzv13Nwdr6sEsSkTjUZuibWSJwDzAXmABcZWYTmjW7Adjn7uOAHwB3BsuvBFLdfTJwOvDpo28I8SizTzI/vmoqOw7U8rUF63SZBhHpcrH09M8ESty91N3rgMeAec3azAN+FUw/Ccw2MwMc6GdmSUAfoA442CGV91CnjxrIF2eP50+vvcWTK8vCLkdE4kwsoZ8HbI+aLwuWtdgmuJH6ASCbyBvAIWAHsA34fks3RjezG82syMyKKioqjvuP6GluPn8cZ40eyDcXFlNaUR12OSISRzr7QO6ZQCMwDBgN/LuZjWneyN3vd/cCdy/Izc3t5JLCl5hg/HD+VFKSEvj8Y6s50qDLNIhI14gl9MuBEVHzw4NlLbYJhnIygUrgY8Bf3L3e3XcDLwFt3q09HgzN7MOdl09hXflBvr94Q9jliEiciCX0VwDjzWy0maUA84GFzdosBK4Npq8AnvfIUcptwAUAZtYPmAG80RGF9wYXTRzCx2eM5IF/bOaFDbvDLkdE4kCboR+M0d8CLAbWA0+4e7GZ3WFmlwTNHgSyzawE+BJw9LTOe4B0Mysm8ubxC3df09F/RE/29Q9O4KTB6Xz5d69RUXUk7HJEpJez7nbaYEFBgRcVFYVdRpfasLOKS376T84ak80vrzuDhAQLuyQR6WHMbKW7tzl8rm/kdgMnD8ng6x88lSUbK/jOX97Q+fsi0mmSwi5AIj4+YxTrd1Zx/5JS9tfU8e3LJpOUqPdkEelYCv1uwsz4n0snkd0vhZ88X8L+mnp+fNU00pITwy5NRHoRdSW7ETPj3y88mW9+aALPvr6Lax96RdfoEZEOpdDvhq6fOZofzZ/Kyq37+Oh9y9hdpZuviEjHUOh3U/Om5vHzawvYsucQV9z7MlsrD4Vdkoj0Agr9buy8kwfx6KfO4mBtPZff+zLFbx0IuyQR6eEU+t3ctJFZPHnT2SQnGvPvW8ay0sqwSxKRHkyh3wOMG5TBk58pZFD/VK556BWeLd4Zdkki0kMp9HuIvAF9+N1NhZw6tD83/XolT6zY3vaDRESaUej3IAP7pfDoJ89i5rgcbn1qDT97cZO+vSsix0Wh38P0S03iwWvP4EOnDeM7z7zBtxetp6lJwS8isdE3cnuglKQEfvTRqQzsm8wD/9hM5aE67rx8Csm6bIOItEGh30MlJBi3XzKRnPRU7npuI/tr6rnnY9Ppk6LLNohI69Q17MHMjM/NHs9/XzqJv2/YzccfXM7+mrqwyxKRbkyh3wt8fMYo7vnYdNaWHeCy/1tKye6qsEsSkW4qptA3szlmtsHMSszsthbWp5rZ48H65WaWH7Vuipm9bGbFZrbWzNI6rnw56uLJQ3n0U2dRVVvPpfcs5W/rd4Vdkoh0Q22GvpklErnt4VxgAnCVmU1o1uwGYJ+7jwN+ANwZPDYJ+DVwk7tPBM4DdNnITlKQP5CFt5xDfk5fPvlwEff8vUSndIrIu8TS0z8TKHH3UnevAx4D5jVrMw/4VTD9JDDbzAy4EFjj7q8BuHuluzd2TOnSkmED+vC7TxfyoSnD+N7iDXzut6s5XKddLiIRsYR+HhD99c+yYFmLbYIbqR8AsoGTADezxWa2ysxubWkDZnajmRWZWVFFRcXx/g3STJ+URH40fypfmXMKT6/dwRU/W0r5/sNhlyUi3UBnH8hNAs4Brg5+X2Zms5s3cvf73b3A3Qtyc3M7uaT4YGZ85ryxPHhtAdsqa7jkJ//klc17wy5LREIWS+iXAyOi5ocHy1psE4zjZwKVRD4VLHH3Pe5eAywCpre3aIndBacMZsFnZ5LZJ5mrf76MR5dvC7skEQlRLKG/AhhvZqPNLAWYDyxs1mYhcG0wfQXwvEeOIC4GJptZ3+DN4Fzg9Y4pXWI1blA6Cz47k8KxOfzngrX8vz+so76xKeyyRCQEbYZ+MEZ/C5EAXw884e7FZnaHmV0SNHsQyDazEuBLwG3BY/cBdxN543gVWOXuT3f8nyFtyeyTzEPXncGnZ43hkWVb+fjPl1NZfSTsskSki1l3O6WvoKDAi4qKwi6jV/vD6nK+8tQactJTeeCaAiYM6x92SSLSTma20t0L2mqnb+TGoUun5fG7m86mscm5/N6lLFq7I+ySRKSLKPTj1JThA1h4y0xOHZrBzb9Zxd3PbtAlmkXigEI/jg3qn8Zvb5zBRwqG8+PnS7jxkZUcrNUXpkV6M4V+nEtNSuTOy6fwzQ9N4O8bdnPB91/g0eXbaNDZPSK9kkJfMDOunzmaBTcXMjqnH/+5YC0f/PE/WbJR344W6W0U+vK2KcMH8MSnz+beq6dzuL6Rax56hWsfeoWNu3SpZpHeQqEv72JmzJ08lOe+NIuvXXwqq7btY84Pl/C1BWvZo/P6RXo8hb60KDUpkU/NGsOL/3E+15ydz2MrtnPe917g3hc2UVuvq3aK9FQKfTmmgf1SuP2SiSz+4ixmjBnInX95g9l3vcjC197StfpFeiCFvsRk3KB0fn7tGTz6ybPo3yeZz/92NR++dykrt+4LuzQROQ4KfTkuheNy+PPnzuG7V0yhfN9hLr93Kbc8uorte2vCLk1EYqBr78gJO3SkgfuWlHL/kk00NcH15+Rz83njyOyTHHZpInEn1mvvKPSl3XYcOMz3F2/kqVVl9E9L4lPvG8P154wmPTUp7NJE4oZCX7pc8VsH+MFzG/nr+t1k9U3mxlljubZwFH1TFP4inU2hL6F5bft+7n5uIy9urCAnPYWbzh3Lx2eMIi05MezSRHothb6EbuXWvdz93EZeKqlkUEYqnz1/HPPPHEFqksJfpKN16PX0zWyOmW0wsxIzu62F9alm9niwfrmZ5TdbP9LMqs3sy7H+AdLznT5qIL/55Aweu3EG+dn9+ObCYs773gv8ZvlW6hp0QTeRMLQZ+maWCNwDzAUmAFeZ2YRmzW4A9rn7OOAHwJ3N1t8NPNP+cqUnmjEmm8c/PYNf33AWQzLT+NqCdVxw1ws8sWK7ruYp0sVi6emfCZS4e6m71wGPAfOatZkH/CqYfhKYbWYGYGaXApuB4o4pWXoiM+Oc8Tn8/jOF/OL6MxjYL4Vbn1rD++9+kd+vKqNRN3AR6RKxhH4esD1qvixY1mKb4EbqB4jcKD0d+ArwrWNtwMxuNLMiMyuqqNDlfHszM+P8kwfxx8/O5IFrCuiTksSXnniNC38QubSD7t4l0rk6+xu5twM/cPfqYzVy9/vdvcDdC3Jzczu5JOkOzIwPTBjM0587h3uvnk5igvH5367mgrte4Bcvbab6SEPYJYr0SrGcQF0OjIiaHx4sa6lNmZklAZlAJXAWcIWZfRcYADSZWa27/7TdlUuvkJAQuZTzhROH8My6HTz4z81860+vc9ezG7myYDjXFeYzKrtf2GWK9BptnrIZhPhGYDaRcF8BfMzdi6PafBaY7O43mdl84MPu/pFmz3M7UO3u3z/W9nTKpry6fT+/eGkzT6/ZQaM7s08ZxPUzR1M4NpvgUJGINBPrKZtt9vTdvcHMbgEWA4nAQ+5ebGZ3AEXuvhB4EHjEzEqAvcD89pUv8WzqiAH8aP40/vPiU/n1sq08unwbf12/nJMHZ3DdzHwunZpHnxSd6y9yIvTlLOn2ausbWfjaW/zipS2s33GQAX2TuerMkfzrjFEMG9An7PJEugV9I1d6HXfnlc17+cVLW3j29Z2YGXMmDeETM/OZPjJLQz8S1zpseEekuzAzzhqTzVljstm+t4ZHlm3lsVe28fSaHUwZnsn1M/OZO2morvEjcgzq6UuPVlPXwFOryvnlS5vZVHGItOQEZozJ5tyTcjn3pFxG5/TTJwCJCxrekbjS1OS8XFrJc6/vYsnGCkr3HAJgeFaft98ACsfl6Br/0msp9CWubaus4cU3K1iysYKlJXs4VNdIUoJRkJ/FuScN4tyTcjl1aIY+BUivodAXCdQ1NLFy6z5e3FjBixsrWL/jIAC5GanMGp/LuSfn8r5xOWT1Swm5UpETp9AXacWug7Us2VjBkjf38I83K9hfU48ZTBk+gIsmDmbe1DzydCqo9DAKfZEYNDY5a8r28+LGCl7YUMGr2/cDcNbogVw2LY+5k4fqRu/SIyj0RU7Atsoa/vhqOQtWl1O65xApiQnMPnUQl07L47yTc3XXL+m2FPoi7eDurC0/wILV5fzptbfYU11HZp9kPjhlKJdOzaNgVBYJCToILN2HQl+kgzQ0NvHPkj38YXU5i4t3cbi+keFZfbh0ah6XThvGuEEZYZcootAX6QyHjjTw3Ou7WLC6nH+8WUGTw+S8TOZNHcYlpw1jUP+0sEuUOKXQF+lku6tq+fNrO/jDq+WsKTtAgsHZY7OZM2koF00czKAMvQFI11Hoi3Shkt3V/PHVcp5eu4PSikOYwRn5A5k7aQhzJg1haKZOAZXOpdAXCYG78+buahat3cEza3eyYVcVANNGDuDiSUOZM2kIIwb2DblK6Y0U+iLdwKaKav6ybieL1u6g+K3IN4En52Uyd/IQ5k4ayugc3QpSOkaHhr6ZzQF+ROTOWT939+80W58KPAycTuTeuB919y1m9gHgO0AKUAf8h7s/f6xtKfSlt9pWWcMz63awaN1OXgu+BHbKkAwunjyUuZOGMH6wzgKSE9dhoW9miUTukfsBoIzIPXKvcvfXo9rcDEyJukfuZe7+UTObBuxy97fMbBKw2N3zjrU9hb7Eg/L9h/nLup08s3YHRVv3ATBuUDpTRwwgNyOV3PRUcoLfuRkp5Kan0b9Pki4QJ63qyNA/G7jd3S8K5r8K4O7/G9VmcdDm5eBG6juBXI96cou8WiuBoe5+pLXtKfQl3uw6WMvi4p38Zd1ONu85xJ7qI9Q3vvf/ZUpiAjnpKeRmpJKTnhp5c4iazklPZfygdF04Lk515J2z8oDtUfNlwFmttQlupH4AyAb2RLW5HFjVUuCb2Y3AjQAjR46MoSSR3mNw/zSuOTufa87OByIHgw8crqei6kjkpzrye0913dvzOw7Usqb8AJXVR2hq9v5w6tD+FI7NpnBsNmeMHkj/NF07SN7RJXeUMLOJwJ3AhS2td/f7gfsh0tPvippEuiszY0DfFAb0TWlznL+xydlXE3kz2F11hDXb9/NyaSWPLNvKg//cTILB5OEDKBybzdljsinIz6Jvim4kE89i+dcvB0ZEzQ8PlrXUpiwY3skkMpSDmQ0HFgDXuPumdlcsIm9LTDBy0iNDO6cOhXNPyuVzs8dTW9/Iqm37WLapkqWbKnlgSSn3vrCJ5ERj6ogBnD02h8Kx2UwbOeC4LiJX19DE7qpadh6oZefB4PeBWnYcrGX3wVqGDejDpdPyeN+4HJISEzrxL5cTFcuYfhKRA7mziYT7CuBj7l4c1eazwOSoA7kfdvePmNkA4EXgW+7++1gK0pi+SMc7dKSBoq37WLppD8s2VbK2/ABNDqlJCRTkZ1E4NocZY7LJ7JMcFeiH3wn2g7XsPHCEPdXvPRyXlpzAkP5pDOqfxsZdVeyvqScnPZVLThvGh6fnMXFYfx2A7gIdfcrmxcAPiZyy+ZC7/4+Z3QEUuftCM0sDHgGmAXuB+e5eamZfB74KvBn1dBe6++7WtqXQF+l8Bw7Xs2LzXpZuqmTppj28sbOqxXZZfZMZ3D+NIZlpDM1Mi0wH80My0xjav8+7ziqqa2ji7xvK+irTAAAHzklEQVR2s2BVOc+/sZu6xibGD0rnsul5XDo1j2G6OU2n0ZezRCRmew/Vsby0krrGJgb3fyfg05JP/P4B+2vqeHrtDhasKqdo6z7MYMbobC6bnsfcSUPI0AHmDqXQF5FuY1tlDQtWl7NgdRlbKmtITUrgwolD+PC0PN43XuP/HUGhLyLdjruzevt+Fqwq509r3grG/1P40GnD+PC04UzK0/j/iVLoi0i3dnT8/w+ry/nb+sj4f5/kRDL7JNO/TxL905Lp3yc5Mp+WRP8+ycGyyLpIu3eWZaQlkxjHdzPryC9niYh0uJSkBC6aOISLJg7hQE09i9btYNPuag7W1nPwcAMHDtez62Atb+6u4uDhBg7W1tNWHzUlKYHkBCMpMYHkRCMpIYGkRCM5MYGkdy1/d5ujv4dkpnH6qCwK8rN67eWw1dMXkR6hqck5VBd5Mzj6JnDwcD0Haxs4eLieA4frqa1vpL7RaWxqor7JaWhsoqHR356ub3QamiLLjv6Obrdtbw2H6xsByBvQ5+03gNNHZXHKkP7d+pOEevoi0qskJBgZacmRs36yOmcbDY1NrN9RRdHWvRRt3ccrm/ey8LW3AOiXksi0kVlvvxFMG5lFemrPi1D19EVEWuHulO8/zMqt+yjaso+irft4Y+dB3CHB4JQh/d/+JFCQP5C8EL+HoAO5IiKdoKq2ntXb9lO0dR8rt+5l9bb91NRFhoSSE40EO/pD5HfCO9NmRmIC77SJmjaDicMy+clV006oLg3viIh0goy0ZGadlMusk3KByJDQGzurKNqyl11VR2hyxz1yMbyj003uwXzk00Nk/p3pJodGd0YO7PxPCgp9EZF2SEpMYFJeJpPyMsMuJSb6GpyISBxR6IuIxBGFvohIHFHoi4jEEYW+iEgcUeiLiMQRhb6ISBxR6IuIxJFudxkGM6sAtrbjKXKAPR1UTmdQfe2j+tpH9bVPd65vlLvnttWo24V+e5lZUSzXnwiL6msf1dc+qq99unt9sdDwjohIHFHoi4jEkd4Y+veHXUAbVF/7qL72UX3t093ra1OvG9MXEZHW9caevoiItEKhLyISR3pk6JvZHDPbYGYlZnZbC+tTzezxYP1yM8vvwtpGmNnfzex1Mys2sy+00OY8MztgZq8GP9/oqvqiathiZmuD7b/n/pQW8eNgH64xs+ldWNvJUfvmVTM7aGZfbNamS/ehmT1kZrvNbF3UsoFm9pyZvRn8bvF23WZ2bdDmTTO7tgvr+56ZvRH8+y0wswGtPPaYr4VOrO92MyuP+je8uJXHHvP/eyfW93hUbVvM7NVWHtvp+69DuXuP+gESgU3AGCAFeA2Y0KzNzcDPgun5wONdWN9QYHownQFsbKG+84A/h7wftwA5x1h/MfAMYMAMYHmI/947iXzxJLR9CMwCpgPropZ9F7gtmL4NuLOFxw0ESoPfWcF0VhfVdyGQFEzf2VJ9sbwWOrG+24Evx/Dvf8z/751VX7P1dwHfCGv/deRPT+zpnwmUuHupu9cBjwHzmrWZB/wqmH4SmG1m1hXFufsOd18VTFcB64G8rth2B5sHPOwRy4ABZjY0hDpmA5vcvT3f0m43d18C7G22OPp19ivg0hYeehHwnLvvdfd9wHPAnK6oz92fdfeGYHYZMLyjtxurVvZfLGL5/95ux6ovyI6PAL/t6O2GoSeGfh6wPWq+jPeG6tttghf9ASC7S6qLEgwrTQOWt7D6bDN7zcyeMbOJXVpYhAPPmtlKM7uxhfWx7OeuMJ/W/7OFvQ8Hu/uOYHonMLiFNt1lP36CyCe3lrT1WuhMtwTDTw+1MjzWHfbf+4Bd7v5mK+vD3H/HrSeGfo9gZunAU8AX3f1gs9WriAxXnAb8BPhDV9cHnOPu04G5wGfNbFYINRyTmaUAlwC/a2F1d9iHb/PI5/xuef6zmX0NaAB+00qTsF4L9wJjganADiJDKN3RVRy7l9/t/y9F64mhXw6MiJofHixrsY2ZJQGZQGWXVBfZZjKRwP+Nu/+++Xp3P+ju1cH0IiDZzHK6qr5gu+XB793AAiIfo6PFsp8721xglbvvar6iO+xDYNfRIa/g9+4W2oS6H83sOuBfgKuDN6b3iOG10CncfZe7N7p7E/BAK9sNe/8lAR8GHm+tTVj770T1xNBfAYw3s9FBT3A+sLBZm4XA0bMkrgCeb+0F39GC8b8HgfXufncrbYYcPcZgZmcS+XfoyjelfmaWcXSayAG/dc2aLQSuCc7imQEciBrK6Cqt9rDC3oeB6NfZtcAfW2izGLjQzLKC4YsLg2WdzszmALcCl7h7TSttYnktdFZ90ceILmtlu7H8f+9M7wfecPeyllaGuf9OWNhHkk/kh8iZJRuJHNX/WrDsDiIvboA0IkMCJcArwJgurO0cIh/z1wCvBj8XAzcBNwVtbgGKiZyJsAwo7OL9NybY9mtBHUf3YXSNBtwT7OO1QEEX19iPSIhnRi0LbR8SefPZAdQTGVe+gchxor8BbwJ/BQYGbQuAn0c99hPBa7EEuL4L6yshMh5+9HV49Iy2YcCiY70Wuqi+R4LX1hoiQT60eX3B/Hv+v3dFfcHyXx59zUW17fL915E/ugyDiEgc6YnDOyIicoIU+iIicUShLyISRxT6IiJxRKEvIhJHFPoiInFEoS8iEkf+P5l97Mx45o99AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.title('train loss')\n", - "plt.plot(np.arange(len(losses)), losses)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'train acc')" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xt8VPWd//HXh1whhEASruF+FagoCHgDwUsRe9Eqtqu9WbXr9mK77dbtw253bdf+uq7Vrlu7tn3Y1nqprbfWilYrglpBC3JHLkICIiRckgAhCZD75/fHnNgxJjCQSc4k834+HvOYM+d8z8xnTibvOfM93zlj7o6IiCSHHmEXICIinUehLyKSRBT6IiJJRKEvIpJEFPoiIklEoS8ikkQU+iJRzOwXZvYfYdch0lFM4/SluzCzncAX3X1x2LWIJCrt6UvSMLPUsGsQCZtCX7oFM3sEGA48a2bVZvZtMxtpZm5mN5rZLuDloO2TZrbPzA6b2WtmNjnqfh40s/8XTM81s2Iz+5aZlZrZXjO7/jg1XG9mW8ysysx2mNk/tVh+hZmtM7NKM9tuZvOD+blm9hsz22Nmh8zsTx2wiUQAhb50E+7+OWAX8HF37+3uP4paPAeYCFwa3H4BGAcMANYAjx7nrgcBOUABcCNwn5n1a6NtKfAxoA9wPXCPmU0DMLOZwMPAvwJ9gQuAncF6jwC9gMlBTffE9KRFToE+7koy+L67H2m+4e4PNE+b2feBQ2aW4+6HW1m3Hrjd3RuA582sGpgALG/Z0N3/HHXzr2a2CJhN5I3lRuABd38pWF4SPP5g4DIgz90PNa97ak9T5MS0py/JYHfzhJmlmNl/B90rlfx9bzu/jXUPBIHf7CjQu7WGZnaZmS03s4NmVgF8JOp+hwHbW1ltGHAwKvBFOpRCX7qTtoaiRc//NHAFcAmRbpuRwXxrzwObWQbwB+BuYKC79wWej7rf3cCYVlbdDeSaWd/2PL5IrBT60p3sB0afoE02UAscINKP/l9xeux0IAMoAxrM7DJgXtTyXwPXm9nFZtbDzArM7DR330vkGMPPzKyfmaWZ2QVxqknkAxT60p3cAfy7mVWY2S1ttHkYeJdIn/pmWumbPxXuXgV8HXgCOETkE8XCqOVvEhzcBQ4T6bcfESz+HJFjB28TORj8jXjUJNIafTlLRCSJaE9fRCSJKPRFRJKIQl9EJIko9EVEkkjCfSM3Pz/fR44cGXYZIiJdyurVq8vdvf+J2iVc6I8cOZJVq1aFXYaISJdiZu/G0k7dOyIiSUShLyKSRBT6IiJJRKEvIpJEFPoiIklEoS8ikkQU+iIiSSThxumLiHQ1pZU1vLK1lANH6sjvnUH/7Az6B9e5WemkpSTO/rVCX0TkJLk7m/ZUsmRLKUve3s+G4tZ+XvnvcrPSye+dTv/sDPJ7Z7z3xvD368iy3F7ppHbwG4RCX0QkBjX1jbyxvZzFW0p5eUsp+yprMIMzh/XllnnjuXjiQEbk9aK8qo6y6lrKqmopr45cmqfLqmpZu6uCsqpajtU3fuAxPlTQh+e+NrtDn4dCX0SkDaWVNSx5u5QlW/azrKicmvomeqWncMG4/lw0cQAXThhA/+yM960zPC+V4Xm9TnjfR2ob3v+GUF1HVnpKRz2V9yj0RUQCzd02i7fsZ8mWUt4qiXTbFPTtyT9MH8ZFEwdyzuhcMlLbH85ZGalkZaQyIi+r3fd1MhT6IpJUmpqc8upa9hyuYW/FMfYermHv4WPsOVzD6p2H3uu2mTqsL/966QQunjiACQOzMbOwS48Lhb6IhGpPxTGe27CHP2/YS3l1HdmZqfTpmUafzDT69EwNrtPo08r8nOB278xUUnoY7s6BI3Xsrahhz+FjkVCvrGFvRRDsFTXsr6yhoen9vw2ekdqDIX17MnV4Xy46bQAXnjaA/N4ZbVTctSn0RaTTlVfX8vxbe3l2/R5W7jwEwJShOZw9KpfKmgaqauopqTjGlr31VNbUU1XTcML7zM5IpbahibrGpvfNT0/pwaCcTAbnZDJzVC6DcjIZkpPJ4Jyekem+PenXK63b7MmfiEJfRDrF4WP1vLhxH89u2MPrReU0OYwb0JtvfXg8Hz9jCCPz2+7bbmxyqmsbqDwWeROoPNYQXNdTWROZf/hYPRlpPRjSHOY5PRncN5PcXun06JEcgR4Lhb6IdJijdQ0s3lLKwnV7eG1bGXWNTQzP7cWX547h8jMKmDAoO6b7Selh5PSMdOdI+yj0RSSuahsa+evWMhau38OSLaUcq29kYJ8MPnfuCC4/YwhThuYkTVdKIlLoiwillTW8sf0A5dW1mBkGmBFc23vTvG+ZRbWJ3M/KnYd4cdM+qmoa6NcrjaumFXD5GUOYMTJXXSwJQqEvkoSqaxtYseMAy4rKeb2onG37q+Nyv9kZqcybPIjLzxzCeWPyEuqcMxKh0BdJAvWNTazfXcGyonKWFZazbncFDU1ORmoPZo7KZcG0oZw/Np9hub3AwXHcwYl8YSlyHZnPe/Pf366pyRnQJyMuX1ySjqPQF+mG3J3C0mqWFUb25JfvOMCRukbMYEpBDjddMJpZY/OZNqIfmWkK6WSi0Bfp4pqanMPH6jlwpJb1uw9H9uaLyimrqgVgZF4vPjG1gNnj8jlndB59e6WHXLGESaEvkkDcnaN1jRw8Useho3UcPPL3S+R2PQeP1HLoSD0Hj9ZxKJgf/QXT3Kx0zh+bz6yxeZw3JuiyEQko9EVCVFpZw/J3DrJ8xwFW7DhA8aFj1DY0tdo2pYfRr1cauVnp9OuVzrgBvemXlU5ecLtfVhrjB2YzcVAfjZSRNin0RTpRdMgv33GAHWVHAOidkcqMkf24eOJAcrPSye2VTr+sdHKz0sjNivy4RnZmqsJc2k2hL9KB9lfWBAF/kBU7DrCjPBLy2RmpzBiVyzUzhnHO6DwmDe7T4b+YJAIKfZG4Ol7IzxyVyzUzFfISLoW+SDu5O4u3lPKTJdvYWFIJ/D3kr505PBLyQ/qQoq4ZSQAKfZFT5O68XnSAuxZtZf3uCkbm9eLfPnIa547OV8hLwlLoi5yC1e8e5K4Xt7J8x0GG5GRy54LTWTBtqLpsJOEp9EVOwqY9h/nxom28/HYp+b3T+d7HJ/Hps4fr1APSZSj0RWJQVFrNPS9t489v7SWnZxrfnj+BL5w3kl7p+heSrkWvWJHj2H3wKP+7uJCn1xbTMy2Fr180lhtnj9aPeUiXpdAXacX+yhp++nIhj6/cjZlx46xRfGnOGPK66Y9lS/KIKfTNbD7wEyAF+JW7/3eL5SOAB4D+wEHgs+5eHCy7E/ho0PQH7v54nGoXibuDR+r4xV+389AbO2lscv5hxjC+dtE4BuVkhl2aSFycMPTNLAW4D/gwUAysNLOF7r45qtndwMPu/pCZXQTcAXzOzD4KTAPOBDKAV83sBXevjPcTETlV7s7Gkkqee2sPjy7fxdG6Bj4xtYBvXDye4Xk6WZl0L7Hs6c8Eitx9B4CZPQZcAUSH/iTgX4LpV4A/Rc1/zd0bgAYz2wDMB56IQ+0ip6y+sYkVOw6yaPM+Xtq8n72Ha0jpYVw6eSD/8uHxjB0Q2w92i3Q1sYR+AbA76nYxcHaLNuuBq4h0AV0JZJtZXjD/e2b2Y6AXcCHvf7MAwMxuAm4CGD58+Ek+BZHYVNc28Nq2MhZt2sfLb5dSWdNAZloP5ozvzy3zJnDRaQPol6VzzUv3Fq8DubcA/2dmXwBeA0qARndfZGYzgDeAMuBvQGPLld39fuB+gOnTp3vL5SKnqqyqlsVb9rNo0z5e336AuoYmcrPSuXTyIOZNHsSssfn0TNcYe0kesYR+CTAs6vbQYN573H0PkT19zKw3sMDdK4JlPwR+GCz7HbCt/WWLtO2d8iMs2rSPRZv3s2bXIdxhWG5PPn/OCOZNHsRZI/rpFAmStGIJ/ZXAODMbRSTsrwE+Hd3AzPKBg+7eBHyHyEie5oPAfd39gJlNAaYAi+JYvwgAO8qqeXptCX/ZuI/C0moAPlTQh29eMp55kwcyYWA2Zgp6kROGvrs3mNnNwItEhmw+4O6bzOx2YJW7LwTmAneYmRPp3vlqsHoasDT4Z6skMpSzIf5PQ5LR4aP1PLthD39YU8zaXRX0MDhndB6fOXs4H548iIK+PcMuUSThmHtidaFPnz7dV61aFXYZkqDqG5t4bVsZf1hTzOLNpdQ1NjFhYDYLzirgE2cWMKCPxtNLcjKz1e4+/UTt9I1c6RI27TnMH9eU8My6Esqr68jNSucz5wxnwbShTB7SR103IjFS6EvCKquq5Zl1JTy1upi391WRlmJcfNpAFpw1lLkT+pOm0xiLnDSFviSUmvpGFm/Zzx/XlPDXbWU0NjlnDOvLD66YzMemDNE4epF2UuhLQjhQXctPXy7ij2uKqaxpYFCfTG66YDQLphXo27EicaTQl1DVNzbxyN/e5Z7F2zhW18jHpgzm6rOGce6YPI2lF+kACn0JzdLCMm5/djOFpdXMHpfP9z4+SXv1Ih1MoS+dbteBo/zgz5t5afN+huf24pefn84lEwdoBI5IJ1DoS6c5UtvAfa8U8aul75CaYnx7/gRunDVKvy8r0okU+tLh3J1n1u3hjhe2sL+yliunFnDrZacxUF+kEul0Cn3pUG8VH+b7z25i9buHOL0gh5995izOGtEv7LJEkpZCXzpEeXUtd/1lK0+s3k1eVjo/WjCFq88aSg+NyBEJlUJf4qquoYmH/7aTnywu5Fh9I1+cNYqvXTyOPplpYZcmIij0JU7cnVe3lvGDP29mR9kR5ozvz398bBJjB/QOuzQRiaLQl3apa2jiuQ17uP+1Hby9r4qReb349XXTueg0DcEUSUQKfTkllTX1PPbmLh5YtpN9lTWMG9CbH109hSvOHKIhmCIJTKEvJ2VPxTF+8/o7/P7N3VTXNnDemDzuWHA6c8b110FakS5AoS8x2VhymF8t3cFzG/biwEdPH8w/zh7N6UNzwi5NRE6CQl/a5O78dVsZv1y6g9eLDpCVnsJ1543k+vNHMrRfr7DLE5FToNCXD6hraGLh+j388rUdbN1fxcA+Gdx62WlcO3M4OT019FKkK1Poy3sOH6vndyt28eAb77C/spbTBmXz40+ewcfPGEJ6qn6lSqQ7UOgLAGt3HeKGB1dy6Gg9s8bmc9fVZzB7XL6GXYp0Mwp94bVtZXzpt6vJ753BIzeezYcKdHBWpLtS6Ce55zbs4ZuPr2PsgGweumEGA7J15kuR7kyhn8QeWf4utz2zkRkjcvnlddN1kFYkCSj0k5C7c++SIu5ZvI1LJg7g/z49jcw0fYtWJBko9JNMU5Nz+3ObefCNnVw1rYA7F0whLUUjc0SShUI/idQ1NPGvT63nmXV7+OKsUfzbRybq1AkiSUahnySO1jXw5d+u4a/byvj2/Al8ec4YDccUSUIK/SRQcbSOGx5cybrdFdxx1elcO3N42CWJSEgU+t3cvsM1fP6BFewsP8p9n57GZacPDrskEQmRQr8be6f8CJ/91Qoqjtbx4PUzOG9sftgliUjIYhq2YWbzzWyrmRWZ2a2tLB9hZkvMbIOZvWpmQ6OW/cjMNpnZFjO719SR3Ck2lhzm6p+/wbH6Rn5/0zkKfBEBYgh9M0sB7gMuAyYB15rZpBbN7gYedvcpwO3AHcG65wHnA1OADwEzgDlxq15a9bftB7jm/uVkpqXw5JfOZcrQvmGXJCIJIpY9/ZlAkbvvcPc64DHgihZtJgEvB9OvRC13IBNIBzKANGB/e4uWtr24aR/X/eZNBuVk8tSXz2VMf/0wuYj8XSyhXwDsjrpdHMyLth64Kpi+Esg2szx3/xuRN4G9weVFd9/S8gHM7CYzW2Vmq8rKyk72OUjgiVW7+fJvVzNpcB+e/KdzGZzTM+ySRCTBxOurmLcAc8xsLZHumxKg0czGAhOBoUTeKC4ys9ktV3b3+919urtP79+/f5xKSi73v7adbz+1gfPH5vPoF8+mX1Z62CWJSAKKZfROCTAs6vbQYN573H0PwZ6+mfUGFrh7hZn9I7Dc3auDZS8A5wJL41C7EDmPzl0vbuVnr27no1MGc8+nztQPnohIm2JJh5XAODMbZWbpwDXAwugGZpZvZs339R3ggWB6F5FPAKlmlkbkU8AHunfk1DQ2Od/900Z+9up2rp05nHuvmarAF5HjOmFCuHsDcDPwIpHAfsLdN5nZ7WZ2edBsLrDVzLYBA4EfBvOfArYDbxHp91/v7s/G9ykkp7qGJr7+2Fp+t2IXX5k7hv+68kOk6Dw6InIC5u5h1/A+06dP91WrVoVdRkI7WtfAl367hte2lfFvHzmNmy4YE3ZJIhIyM1vt7tNP1E7fyO1iDh+t5/oH32Td7gruXHA6/zBD59ERkdgp9LuQ0soaPv/Am+woO8LPPjON+R/SeXRE5OQo9LuIXQeO8tlfr6C8upYHvjCDWeN0WgUROXkK/S5g674qPvfrFdQ2NPHoF89m6vB+YZckIl2UQj/Brdl1iOt/s5LMtB48+aVzGT8wO+ySRKQLU+gnsKWFZdz08GoG9MngtzeezbDcXmGXJCJdnEI/QT3/1l7++bG1jOnfm4dvnMmA7MywSxKRbkChn4B+/+Yuvvv0W0wb3o9ff2EGOT3Twi5JRLoJhX6C+fmr27nzL28zd0J/fv6Zs+iZnhJ2SSLSjSj0E8idf3mbn7+6nY+fMYQff/IMnUdHROJOoZ8gnly1m5+/up1Pnz2cH1yh8+iISMfQrmQC2La/iv94ZiPnjs5T4ItIh1Loh+xoXQNffXQNvTNS+cm1ZyrwRaRDqXsnZLc9s4mismoeueFsDcsUkQ6nPf0QPblqN0+tLuZrF43TuXREpFMo9ENSuL+K257ZxDmjc/nni8eFXY6IJAmFfgiO1jXwlUfXkJWRwr3XTFU/voh0GvXph+B7QT/+wzfMZEAf9eOLSOfRnn4n+8PqYp5cXczNF45l9rj+YZcjIklGod+Jikqr+Pc/beTsUerHF5FwKPQ7ybG6Rr7y6Bp6padw77VTSU3RpheRzqc+/U7yvYUbKSyt5qHrZzJQ/fgiEhLtbnaCP64p5olVxXx17lguGK9+fBEJj0K/gxWVVvHdpzcyc1Qu37hE/fgiEi6Ffgc6VtfIVx9dS6/0FH6qfnwRSQDq0+9A31+4ia37q3joBvXji0hi0K5nB3l6bTGPr9rNVy8cwxz144tIglDod4Ci0upIP/7IXL55yfiwyxEReY9CP84i/fhryEzTeHwRSTzq04+z/3w20o//4PUzGJSjfnwRSSzaDY2jP60t4bGVu/nK3DHMnTAg7HJERD4gptA3s/lmttXMiszs1laWjzCzJWa2wcxeNbOhwfwLzWxd1KXGzD4R7yeRCMqqavnu028xY2Q//uXD6scXkcR0wtA3sxTgPuAyYBJwrZlNatHsbuBhd58C3A7cAeDur7j7me5+JnARcBRYFMf6E8Z9rxRR09DEj64+Q/34IpKwYkmnmUCRu+9w9zrgMeCKFm0mAS8H06+0shzgauAFdz96qsUmqpKKY/xuxS4+edZQRuVnhV2OiEibYgn9AmB31O3iYF609cBVwfSVQLaZ5bVocw3w+9YewMxuMrNVZraqrKwshpISy72LCwH4uk6XLCIJLl79ELcAc8xsLTAHKAEamxea2WDgdODF1lZ29/vdfbq7T+/fv2t9kemd8iM8taaYz5wznCF9e4ZdjojIccUyZLMEGBZ1e2gw7z3uvodgT9/MegML3L0iqsmngKfdvb595Saee17aRnpKD74yd2zYpYiInFAse/orgXFmNsrM0ol00yyMbmBm+WbWfF/fAR5ocR/X0kbXTle2ZW8lz27Yw/Xnj6R/dkbY5YiInNAJQ9/dG4CbiXTNbAGecPdNZna7mV0eNJsLbDWzbcBA4IfN65vZSCKfFP4a18oTwI8XbaN3Rir/dMGYsEsREYlJTN/IdffngedbzLstavop4Kk21t3JBw/8dnlrdx1i8Zb93DJvPDm90sIuR0QkJhpQfop+vGgbeVnpXH/+qLBLERGJmUL/FPxt+wGWFZXz5bljyMrQ6YtEpOtQ6J8kd+fuRVsZ1CeTz54zIuxyREROikL/JL2ytZTV7x7iaxePJTMtJexyREROikL/JDQ1OXe/uI3hub341PRhJ15BRCTBKPRPwgsb97F5byXf/PA40nRSNRHpgpRcMWpscv7npa2MG9Cby8/odiNQRSRJKPRj9PTaEraXHeFb88aT0sPCLkdE5JQo9GNQ19DE/y7exukFOVw6eVDY5YiInDKFfgweX7mL4kPH+Na88ZhpL19Eui6F/gkcq2vkpy8XMXNkLnPGd63TPouItKTQP4FHlu+ktKqWWy6doL18EenyFPrHUVVTz89f3c4F4/szc1Ru2OWIiLSbQv84fr3sHQ4dreeWeePDLkVEJC4U+m04dKSOXy19h0snD2TK0L5hlyMiEhcK/Tb84rXtHKlr4FvzJoRdiohI3Cj0W1FaWcNDb+zkE2cWMH5gdtjliIjEjUK/Ffe9UkRDo/ONS8aFXYqISFwp9FvYffAov3tzF5+cPowReVlhlyMiElcK/RbuXVKImfH1i8eGXYqISNwp9KNsL6vmD2uK+ezZIxic0zPsckRE4k6hH+Wel7aRmZbCVy4cE3YpIiIdQqEf2F9Zw3Mb9nLdeSPJ750RdjkiIh1CoR9YWlgOwMemDA65EhGRjqPQDywrLCMvK52Jg/qEXYqISIdR6APuzrKiA5w/Np8e+lUsEenGFPrA2/uqKK+uZda4/LBLERHpUAp9YFnQnz9boS8i3ZxCH1haVM6Y/lkamy8i3V7Sh35NfSNvvnOA2eP0U4gi0v0lfeivefcQNfVNzBqrrh0R6f5iCn0zm29mW82syMxubWX5CDNbYmYbzOxVMxsatWy4mS0ysy1mttnMRsav/PZbVlROag/jnDF5YZciItLhThj6ZpYC3AdcBkwCrjWzSS2a3Q087O5TgNuBO6KWPQzc5e4TgZlAaTwKj5dlReVMHd6X3hmpYZciItLhYtnTnwkUufsOd68DHgOuaNFmEvByMP1K8/LgzSHV3V8CcPdqdz8al8rj4NCROt4qOcysserPF5HkEEvoFwC7o24XB/OirQeuCqavBLLNLA8YD1SY2R/NbK2Z3RV8cngfM7vJzFaZ2aqysrKTfxan6I3tB3BH4/NFJGnE60DuLcAcM1sLzAFKgEYgFZgdLJ8BjAa+0HJld7/f3ae7+/T+/Ttvr3tZURnZmamcMTSn0x5TRCRMsYR+CTAs6vbQYN573H2Pu1/l7lOB7wbzKoh8KlgXdA01AH8CpsWl8nZyd5YWlnPu6DxSU5J+EJOIJIlY0m4lMM7MRplZOnANsDC6gZnlm1nzfX0HeCBq3b5m1rz7fhGwuf1lt9+7B45SfOiYvoUrIknlhKEf7KHfDLwIbAGecPdNZna7mV0eNJsLbDWzbcBA4IfBuo1EunaWmNlbgAG/jPuzOAVLiyKnXpilL2WJSBKJaZyiuz8PPN9i3m1R008BT7Wx7kvAlHbU2CGWFZZR0LcnI/N6hV2KiEinScrO7IbGJt7YfoDZ4/Ix06mURSR5JGXobyg5TFVNg4ZqikjSScrQX1ZYjhmcP0ahLyLJJWlD/0NDcuiXlR52KSIinSrpQr+6toE1uw6pa0dEklLShf6KHQdoaHJm61TKIpKEki70lxaWk5nWg7NG9gu7FBGRTpd0ob+sqJyZo/LISP3Aed9ERLq9pAr9vYePUVRara4dEUlaSRX6ywqbT72g0BeR5JRcoV9UTn7vDE4blB12KSIioUia0G9qcl4vKmfW2DydekFEklbShP7b+6oor67TWTVFJKklTegvK4r8DOMsHcQVkSSWNKG/tLCccQN6MygnM+xSRERCkxShX1PfyJvvHNSoHRFJekkR+qvfPURtQ5N+GlFEkl5ShP7SwnLSUoyzR+WFXYqISKiSIvSXFZUxdXg/sjJi+nVIEZFuq9uH/sEjdWzaU6lTL4iIkASh/3pROe469YKICCRB6C8rLKdPZipThvYNuxQRkdB169B3d5YVlXPemHxSeujUCyIi3Tr03yk/QknFMXXtiIgEunXoLyuKnEpZ4/NFRCK6degvLSxnWG5PRuRlhV2KiEhC6Lah39DYxPLtB5g1VmfVFBFp1m1Df31xBVW1DeraERGJ0m1Df2lhOWZw3hidekFEpFm3Df1lheVMKcihb6/0sEsREUkY3TL0q2rqWbu7QkM1RURaiCn0zWy+mW01syIzu7WV5SPMbImZbTCzV81saNSyRjNbF1wWxrP4tizfcZDGJtdBXBGRFk542kkzSwHuAz4MFAMrzWyhu2+OanY38LC7P2RmFwF3AJ8Llh1z9zPjXPdxLSsso2daCtNG6NQLIiLRYtnTnwkUufsOd68DHgOuaNFmEvByMP1KK8s71dKics4enUtGakqYZYiIJJxYQr8A2B11uziYF209cFUwfSWQbWbNw2YyzWyVmS03s0+09gBmdlPQZlVZWdlJlP9BeyqOsaPsiH4AXUSkFfE6kHsLMMfM1gJzgBKgMVg2wt2nA58G/tfMxrRc2d3vd/fp7j69f//29cMvK2w+9YL680VEWorlp6RKgGFRt4cG897j7nsI9vTNrDewwN0rgmUlwfUOM3sVmApsb3flbVhaVM6A7AzGD+zdUQ8hItJlxbKnvxIYZ2ajzCwduAZ43ygcM8s3s+b7+g7wQDC/n5llNLcBzgeiDwDHVVOT83pRObPG5mOmUymLiLR0wtB39wbgZuBFYAvwhLtvMrPbzezyoNlcYKuZbQMGAj8M5k8EVpnZeiIHeP+7xaifuNq8t5KDR+o0Pl9EpA0x/VK4uz8PPN9i3m1R008BT7Wy3hvA6e2sMWbNp1LWQVwRkdZ1q2/kLissZ8LAbAb0yQy7FBGRhNRtQr+mvpE3dx5U146IyHF0m9CvrKln/uRBXDxxQNiliIgkrJj69LuCAdmZ3Hvt1LDLEBFJaN1mT19ERE5MoS8ikkQU+iIiSUShLyKSRBT6IiJJRKEvIpJEFPoiIklEoS8ikkTM3cOu4X2R2GD7AAAFE0lEQVTMrAx4tx13kQ+Ux6mcjqD62kf1tY/qa59Erm+Eu5/w16MSLvTby8xWBb/UlZBUX/uovvZRfe2T6PXFQt07IiJJRKEvIpJEumPo3x92ASeg+tpH9bWP6mufRK/vhLpdn76IiLStO+7pi4hIGxT6IiJJpEuGvpnNN7OtZlZkZre2sjzDzB4Plq8ws5GdWNswM3vFzDab2SYz++dW2sw1s8Nmti643NbafXVwnTvN7K3g8Ve1stzM7N5gG24ws2mdWNuEqG2zzswqzewbLdp06jY0swfMrNTMNkbNyzWzl8ysMLju18a61wVtCs3suk6s7y4zezv4+z1tZn3bWPe4r4UOrO/7ZlYS9Tf8SBvrHvf/vQPrezyqtp1mtq6NdTt8+8WVu3epC5ACbAdGA+nAemBSizZfAX4RTF8DPN6J9Q0GpgXT2cC2VuqbCzwX8nbcCeQfZ/lHgBcAA84BVoT4995H5IsnoW1D4AJgGrAxat6PgFuD6VuBO1tZLxfYEVz3C6b7dVJ984DUYPrO1uqL5bXQgfV9H7glhr//cf/fO6q+Fst/DNwW1vaL56Ur7unPBIrcfYe71wGPAVe0aHMF8FAw/RRwsZlZZxTn7nvdfU0wXQVsAQo647Hj7ArgYY9YDvQ1s8Eh1HExsN3d2/Mt7XZz99eAgy1mR7/OHgI+0cqqlwIvuftBdz8EvATM74z63H2RuzcEN5cDQ+P9uLFqY/vFIpb/93Y7Xn1BdnwK+H28HzcMXTH0C4DdUbeL+WCovtcmeNEfBvI6pbooQbfSVGBFK4vPNbP1ZvaCmU3u1MIiHFhkZqvN7KZWlseynTvDNbT9zxb2Nhzo7nuD6X3AwFbaJMp2vIHIJ7fWnOi10JFuDrqfHmijeywRtt9sYL+7F7axPMztd9K6Yuh3CWbWG/gD8A13r2yxeA2R7oozgJ8Cf+rs+oBZ7j4NuAz4qpldEEINx2Vm6cDlwJOtLE6Ebfgej3zOT8jxz2b2XaABeLSNJmG9Fn4OjAHOBPYS6UJJRNdy/L38hP9fitYVQ78EGBZ1e2gwr9U2ZpYK5AAHOqW6yGOmEQn8R939jy2Xu3ulu1cH088DaWaW31n1BY9bElyXAk8T+RgdLZbt3NEuA9a4+/6WCxJhGwL7m7u8guvSVtqEuh3N7AvAx4DPBG9MHxDDa6FDuPt+d2909ybgl208btjbLxW4Cni8rTZhbb9T1RVDfyUwzsxGBXuC1wALW7RZCDSPkrgaeLmtF3y8Bf1/vwa2uPv/tNFmUPMxBjObSeTv0JlvSllmlt08TeSA38YWzRYCnw9G8ZwDHI7qyugsbe5hhb0NA9Gvs+uAZ1pp8yIwz8z6Bd0X84J5Hc7M5gPfBi5396NttInltdBR9UUfI7qyjceN5f+9I10CvO3uxa0tDHP7nbKwjySfyoXIyJJtRI7qfzeYdzuRFzdAJpEugSLgTWB0J9Y2i8jH/A3AuuDyEeBLwJeCNjcDm4iMRFgOnNfJ22908Njrgzqat2F0jQbcF2zjt4DpnVxjFpEQz4maF9o2JPLmsxeoJ9KvfCOR40RLgEJgMZAbtJ0O/Cpq3RuC12IRcH0n1ldEpD+8+XXYPKJtCPD88V4LnVTfI8FrawORIB/csr7g9gf+3zujvmD+g82vuai2nb794nnRaRhERJJIV+zeERGRU6TQFxFJIgp9EZEkotAXEUkiCn0RkSSi0BcRSSIKfRGRJPL/ARFv7V2ZbvTRAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(np.arange(len(acces)), acces)\n", - "plt.title('train acc')" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'test loss')" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xl83GW1+PHPmUkme7N3Sdqme6GF7oS2QCmCUFBoRVAQpUWvKMp1l4t6f+DlXlfcroqKXtlRQBSoUq1lsWyldKEtlNKVLkm3ZJI0eybJPL8/Zr7pNM0ymfnOft6vV16dzHxnvk+n6ckz5/uc84gxBqWUUqnBEesBKKWUih4N+koplUI06CulVArRoK+UUilEg75SSqUQDfpKKZVCNOgrFSIR+ZeI/Fusx6HUUGjQV0lFRPaLyCU2vM4KEXnFjjEpFU806CulVArRoK+Shog8DIwF/ioizSJym//++SLymog0iMhWEVkc8JwVIrJPRJpE5D0RuUFEzgR+Ayzwv05DEOd2iMh/isgBETkuIg+JSL7/sUwReURE3P4xbBCREf2dPwJvjVI9NOirpGGM+QRwELjSGJNrjPmhiJQDzwL/AxQBXwP+LCKlIpID/By43BiTBywEthhjdgCfBdb5X6cgiNOv8H9dBEwAcoFf+h9bDuQDY4Bi/2u39Xf+MN8GpQakQV8lu48Dq4wxq4wxXmPMGmAjcIX/cS9wlohkGWOOGGO2h3ieG4CfGGP2GWOagW8A14lIGtCJL9hPMsZ0G2M2GWMabT6/UkHRoK+SXQVwrT+t0uBP1ZwPjDLGtAAfxTfzPiIiz4rIGSGepww4EPD9ASANGAE8DKwGHhORwyLyQxFJt/n8SgVFg75KNr3bxh4CHjbGFAR85Rhjvg9gjFltjHk/MAp4F/hdP68zmMP4fsFYxgJdwDFjTKcx5r+MMdPwpXA+CNw4yPmViggN+irZHMOXU7c8AlwpIpeJiNN/UXWxiIwWkREistSfW+8AmvGlW6zXGS0iriDP+0fgyyIyXkRyge8CjxtjukTkIhE5W0ScQCO+dI93kPMrFREa9FWy+R7wn/5UzteMMYeApcA3gRp8M/+v4/vZdwBfwTdLrwMuBG7xv84LwHbgqIjUBnHe+/ClcV4C3gPagX/3PzYSeBJfwN8BrPUfO9D5lYoI0U1UlFIqdehMXymlUogGfaWUSiEa9JVSKoVo0FdKqRSSFusB9FZSUmLGjRsX62EopVRC2bRpU60xpnSw4+Iu6I8bN46NGzfGehhKKZVQROTA4EdpekcppVKKBn2llEohGvSVUiqFaNBXSqkUokFfKaVSiAZ9pZRKIRr0lVIqhWjQVypOvLanlj3Hm2M9DJXkNOgrFSe++qet/OKF3bEehkpyGvSVigPGGGqaOqht7oj1UFSS06CvVBxobOuiy2twN3tiPRSV5DToKxUH3C0d/j816KvI0qCvVBywgn19iwfdwlRFkgZ9peKAldbp8hoa27piPBqVzDToKxUHrPRO79tK2U2DvlJxoC7gAq7m9VUkadBXKg4EBnpdwaMiSYO+UnHA3eIh2+UEoE5n+iqCNOgrFQfczR1MLM3tua1UpGjQVyoO1LV4GJWfSV5Gmub0VURp0FcqDtQ2eyjOdVGU69L0joooDfpKxZjXa6hv9VCck0FxjkuXbKqI0qCvVIydaOuk22soynFRlJOhq3dURGnQVyrGrBx+ca6L4hxN76jI0qCvVIxZq3WKczIo9uf0tf+OihQN+krFWF3ATL8ox6X9d1REadBXKsZqraCf46I41wVo/x0VORr0lYoxq+9Oof9CLmhVroocDfpKxZi7pYP8rHTSnQ6Kc3wz/VpdwaMiRIO+UjHmbvH0pHWsP3WmryIlqKAvIktEZKeI7BGR2/t4fJGIbBaRLhG5ptdjY0XknyKyQ0TeEZFx9gxdqeTgbu7omeEX5VhBX3P6KjIGDfoi4gTuAS4HpgHXi8i0XocdBFYAf+jjJR4C7jbGnAlUAsfDGbBSyaauxVeNC5CR5iQvI03TOypigpnpVwJ7jDH7jDEe4DFgaeABxpj9xphtgDfwfv8vhzRjzBr/cc3GmFZ7hq5UcnA3eyjyp3UA7b+jIiqYoF8OHAr4vsp/XzCmAA0i8hcReVNE7vZ/clBKAd3+vjslOQFBX6tyVQRF+kJuGnAB8DXgHGACvjTQKUTkZhHZKCIba2pqIjwkpeJHQ6sHrzmZywdfZa62V1aREkzQrwbGBHw/2n9fMKqALf7UUBfwNDCn90HGmN8aY+YZY+aVlpYG+dJKJb6T1bgZPfcV57h0IxUVMcEE/Q3AZBEZLyIu4DpgZZCvvwEoEBErkr8PeGfow1QqOVkXbItzTs3p17dq/x0VGYMGff8M/VZgNbADeMIYs11E7hKRqwBE5BwRqQKuBe4Vke3+53bjS+08LyJvAQL8LjJ/FaUST38z/c5uQ2O79t9R9ksL5iBjzCpgVa/77gi4vQFf2qev564BZoQxRqWSltVj55ScvtV/p9lXqauUnbQiV6kYcjd7EIHC7JPBXfvvqEjSoK9UDLlbOijISifNefK/opXf1xU8KhI06CsVQ3UtnlPy+RCY3tGgr+ynQV+pGKpt9pySzwftv6MiS4O+UjFU1+KhJPfUoJ+R5iQ3I03TOyoiNOgrFUPu5o7TZvpAz165StlNg75SMdLtNTS0dfas1glUlOPSnL6KCA36SsWIr+qW09I74G/FoDN9FQEa9JWKEWsm31d6x9dpUy/kKvtp0FcqRqxq3OI+0jvFuRnUtWj/HWU/DfpKxYg10y/uJ72j/XdUJGjQVypGepqt9ZPeCTxGKbto0E8SXq/hsp++xBMbDw1+sIoL7uYORKAgu68lmxk9xyhlJw36SeJ4Uwc7jzVx/6v7Yz0UFSR3i4eibBdOh5z2mPbfUZGiQT9JVNX79pvfcaSRXceaYjwaFQx3Hy0YLJreUZGiQT9JVDe09dx+Zkuwu1mqWPI1W9Ogr6JLg36SqKr3Bf1zxhXyzJbDutQvAdS2dPS5XBMgM93Xf6dWc/rKZhr0k0RVfRvFOS6uO2csVfVtbDpQH+shqUEMNNMHq0BLZ/rKXhr0k0RVfSvlhVlcdtZIMtMdPK0pnrjW2e2lobWz35w+aNM1FRka9JNEdUMbowuzyM1I45IzR/DstiN0dntjPSzVj/rW0zdE7604x0WtNl1TNtOgnwSMMVTXt1FekAXAslnl1Ld28tKumhiPTPWnpxp3gJm+9t9RkaBBPwnUNnvo6PL2BP1FU0opyE7n6S2HYzwy1Z+BqnEtRTnaf0fZT4N+ErCWa44uzAbAlebgA2ePYs07R2np0N4t8chalTPQhdySXO2/o+ynQT8JWIVZ5YVZPfctm11Oe6eXf75zNFbDUgM4OdPvP6eva/VVJGjQTwLV/jX6gUF/7thCyguyePpNTfHEI3ezB6dDyM9K7/cY3SBdRYIG/SRQVd/GsMw0hmWeDCAOh3DVrDJe2VOrBT5xyN3ioTDbhaOPvjuWkp6mazrTV/bRoJ8EfMs1s0+7f9mscrq9hr9t1dl+vHE3dwx4ERdOzvS16ZqyU1BBX0SWiMhOEdkjIrf38fgiEdksIl0ick0fjw8TkSoR+aUdg1ansgqzeps6Mo8zRubpKp44NFg1LmhOX0XGoEFfRJzAPcDlwDTgehGZ1uuwg8AK4A/9vMx/Ay+FPkzVH2uN/ug+gj74LuhuOdTA/tqWKI9MDcTd0n+HTYvVf0fTO8pOwcz0K4E9xph9xhgP8BiwNPAAY8x+Y8w24LQSUBGZC4wA/mnDeFUvDa2dtHi6e9bo93bVzDJE4Bmd7ccVd3NHT85+IEU5rp69dJWyQzBBvxwI3I6pyn/foETEAfwY+Nogx90sIhtFZGNNjVaRDsXJNfp9B/2ygiwqxxXxzJZqLfKJE54uL43tXYPO9EGbrin7RfpC7ueAVcaYqoEOMsb81hgzzxgzr7S0NMJDSi5WS+W+LuRals0uZ19tC29XN0ZrWGoAJ/vuDB70i3Ncmt5Rtgom6FcDYwK+H+2/LxgLgFtFZD/wI+BGEfn+kEaoBtRTmNVPegfgirNG4XJq58140VONG8RMXzttKrsFE/Q3AJNFZLyIuIDrgJXBvLgx5gZjzFhjzDh8KZ6HjDGnrf5RoatuaCPH5aQgu/8in/zsdBZPLeWvWw/T7dUUT6z1VOMGldPPwN3Soak5ZZtBg74xpgu4FVgN7ACeMMZsF5G7ROQqABE5R0SqgGuBe0VkeyQHrU6qqm+jvDALkf6LfMCX4jne1MG6ve4ojUz1x0rXBJPTL87x9d9p0h5KyiZpwRxkjFkFrOp13x0BtzfgS/sM9BoPAA8MeYRqQL7lmv3n8y3vO2M4eRlpPL2lmvMnl0RhZKo/VrFVyQB9dyxW3r+u2XNKxbVSodKK3ARXVd86YD7fkpnu5LKzRvKPt4/S3tkdhZGp/ribO0hzCMOyBp9znazK1WWbyh4a9BNYY3snje1dfVbj9mXZrHKaO7p4fsfxCI9MDaTOX5g1WEoOTnbh1BU8yi4a9BNYdf3Aa/R7WzCxmOF5GbqKJ8ZqmwevxrX0pHd0BY+yiQb9BNbTUjmI9A6A0yFcObOMf+08zonWzkgOTQ2griW4alzQpmvKfhr0E1jvHbOCsWxWOZ3dhlVvH4nUsNQggum7Y8lMd5Ljcmp6R9lGg34Cq6pvJSPNQUkQlZ2Ws8qHMaE0h6ff1BRPrNQ1D95hM1BRrm6QruyjQT+BVTcEt0Y/kIiwbFY569+r47D/k4KKno6ubpo6uoKqxrUU52RoekfZRoN+Aquqbws6nx9o6awyAFbq5ipRN5RqXIv231F20qCfwIItzOqtojiH2WMLNMUTA0OpxrVop01lJw36CarV04W7xRP0cs3els0q592jTew82mTzyNRAeqpxh5DTL87NoK7Fo/13lC006CcoKx8fSnoH4AMzRuF0iK7ZjzK3v8NmURAtGCzFOS483V7tv6NsoUE/QVUNsTCrt5LcDM6fVMLKLYfxaufNqDmZ0x9aegd8q36UCpcG/QRlBf1gWzD0ZdnsMqob2th0sN6uYalB1DZ7SHcKeRlB9ToETv6C0BU8yg5JE/SPNbbz6Yc28sru2lgPJSqqG9pIdwrD8zJDfo1Lp40kK92pF3SjqK6lg+KcjCEtsz3Zf0fX6qvwJU3Qz89K55XdtTy341ishxIVVfVtjMrPwukIPnj0lpORxvunjeDZt47g6TptT3sVAe4h9N2xFGn/HWWjpAn6melO5k8o4qVdqbGxenV9a8j5/EDLZpfR0NqZMu9brLlbhlaNCye3VdT0jrJD0gR9gAunlLKvtoVDda2xHkrEhVqY1dsFk0spynHpKp4ocbd0DKkaF07239GZvrJDUgX9RVNKAVib5LPWjq5ujjd1hFSY1Vu608EHzh7FczuO0axLAiPO13cn+OWalqJcl+b0lS2SKuiPL8lhdGFW0gf9ww3tQHgrdwItm11Ge6eX1W8fteX1VN/aO7tp8XQPOacP1gbpOtNX4UuqoC8iXDillHV73Ul9YXKoffQHM2dsIWOKsjTFE2GhVONaSrQVg7JJUgV98KV4mju62JzEa8+rG3zXLOy4kAu+X5ZLZ5bz6p5aapo0hRApoVTjWoq06ZqySdIF/YUTi0lzSFKvRqmqb8MhMDI/9DX6vS2bXYbXwLPbtPNmpLhDqMa1+Hrqa/8dFb6kC/p5menMqShM6rx+tX+NfrrTvn++ScPzGFuUzev76mx7TXUqa6Y+1NU7ACU5GXi6vXqxXYUt6YI++JZubj/cmLSpCruWa/Y2t6KQTQfrdTYZIdbuVyGt3rHW6muKR4UpaYM+wMu7k3O2X93QZls+P9CcikJqmjp6+vooe7mbPbjSHOS4nEN+bpH231E2ScqgP23UMEpyXUmZ1+/s9nLkRJttyzUDzR1bCMCmA8l7ETyW3C0eSnJcQ+q7Y7FSQrqCR4UrKYO+wyFcMLmUl3bXJl3b4KMn2vEa+1buBJo6Mo8cl1ODfoS4mzt6ZuxDZaWEdIN0Fa6ggr6ILBGRnSKyR0Ru7+PxRSKyWUS6ROSagPtnicg6EdkuIttE5KN2Dn4gi6aUUNfiYfvhxmidMip6WioXhF+N25vTIcweW6hBP0LqWjw9HTOHyprp12pOX4Vp0KAvIk7gHuByYBpwvYhM63XYQWAF8Ide97cCNxpjpgNLgJ+JSEG4gw7GBZN9ef2XkiyvX90Qfh/9gcypKOTdo4206CoR29U2e0JauQO+/jvZ2n9H2SCYmX4lsMcYs88Y4wEeA5YGHmCM2W+M2QZ4e92/yxiz23/7MHAcKLVl5IMoyc3grPJhrN2ZZEHfP9MvK7BvjX6gOWML8BrYeqghIq+fyupC6LAZqDhXq3JV+IIJ+uXAoYDvq/z3DYmIVAIuYG8fj90sIhtFZGNNjX1B+sIppWw+WE9je6dtrxlrVfWtDM/LICNt6CtAgjFbL+ZGRKuni7bO7pCqcS1FORnUatM1FaaoXMgVkVHAw8BNxpjTmuIYY35rjJlnjJlXWmrfB4FFk0vp8hpe2+O27TVjLVLLNS35WelMGZGrWyjarKcwK5yZvvbfUTYIJuhXA2MCvh/tvy8oIjIMeBb4ljHm9aENLzxzKgrJzUhLqrx+VX0b5Ta0VB7I3IpCNh+oT7qVT7HU04IhxJy+9VwN+ipcwQT9DcBkERkvIi7gOmBlMC/uP/4p4CFjzJOhDzM06U4HCycWs3ZnTVJUmXZ7DUdORHamD76um43tXeytaY7oeVJJONW4Fl9Pfe2/o8IzaNA3xnQBtwKrgR3AE8aY7SJyl4hcBSAi54hIFXAtcK+IbPc//SPAImCFiGzxf82KyN+kH4umlFLd0Ma+2pZonjYijje109ltItKCIdDcCs3r2602jL47luIcl/bfUWFLC+YgY8wqYFWv++4IuL0BX9qn9/MeAR4Jc4xhsVoyrN1Zw8TS3FgOJWzWyp1Iz/THl+RQmJ3O5oP1XFc5NqLnShV1YXTYtFgXgetaPORlptsyLpV6krIiN9CYomwmlOQkRV6/KkpBX0SYo0VatnI3d5CZ7iDbFdQ8q0/F2n9H2SDpgz74Ujyv73PT3tkd66GExSrMKotwegd8F8H31rRQrwHGFu4wqnEtxdppU9kgJYL+hVNKae/0smF/YveKr6pvozjHFdZsMVhWXv/NQzrbt4O7ObzCLDjZXln776hwpETQP3dCEa40R8JX51bVt0as/UJvM0cX4HSIpnhs4uu7E17Qtz4paHpHhSMlgn62K43KcUUJn9ePdGFWoCyXk+llwzTo28Td3BFWNS74/k2yXU5N76iwpETQB1+KZ9exZo6cSMwNQowxVEdox6z+zBlbyNZDJ+jqPq2IWg2BMcbXSz/M9A74UjxaoKXCkTJBf5F/6WaibqxS2+yho8vL6AhX4waaW1FIW2c37x5tito5k1GLp5uOLm9PTj4cxbkZmt5RYUmZoD9lRC4jh2Xy0q7aWA8lJFX1rQDRnelrkZYt6nr67oSX3gHfCh63Nl1TYUiZoC8iLJpSwsu7axIyXWEt1xxdFL2gX5afychhmRr0w1RrtWCwYaav6R0VrpQJ+uBL8TS2d7G16kSshzJkJ3fMil7QFxHmVmiRVrjqbOiwaSnOceFu0f47KnQpFfTPn1SCQ2BtAub1q+vbGJaZFvXy+zkVhVQ3tHH0RHtUz5tM3P6Zvj05fReeLi8tnsQuNFSxk1JBvyDbxcwxBQl5Mde3XDN6F3EtVpHWZu2vH7KTbZXDz+lbyz41r69ClVJBH3xLN7dWNSRce4FoFmYFmjZqGBlpDk3xhMHd7CHb5STLFf5uZz2tGBLs51fFj5QL+oumlGIMvLIncVbxWGv0o1WYFciV5mDm6AKd6Ych3L1xA1mvU6cFWipEKRf0Z44uID8rPaHy+g2tnbR4uqN6ETfQ7IoC3q4+kfAN62Kl1oZqXEtRz0xf0zsqNCkX9J0O4fzJJby0K3F20+pZrhmDnD7A3LGFdHYb3q5OvFVP8aCuxUOJDRdxQfvvqPClXNAHuHByKcebOhKm0tQqzIpFege0SCtc7maPLSt34GT/HU3vqFClZNBPtJYM0do8pT8luRmMK87WoB8CY4w/p29Pegd8KR6d6atQpWTQH5mfydQReQnTdbOqvo0cl5P8rNhtkTenopDNB+sTJiUWL5o6uvB0e22pxrUUa9BXYUjJoA9w4dRSNrxXT6sn/jeZrm5oo7wwCxGJ2RjmVhRS2+zhYF1rzMaQiOysxrX4WjHohVwVmpQN+osml+Lp9vL6PneshzIo33LN2FzEtWiRVmjsrMa1FOdmaE5fhSxlg/68cYVkpifGblpV9a0xW65pmTw8j9yMNM3rD5G14UmJjTn94hwXtdp/R4UoZYN+ZrqTBROKeWl3fBdpNbZ30tjeFbOLuBanQ5g9toBNBxpiOo5EY+Xe7ZzpF+Vo/x0VupQN+uBbxfNebQsH3fGbp662umvGOOiDbyetnUcbaWrvjPVQEkZdBIK+tRJIUzwqFCkd9C/0L91cG8ereKrrY1uYFWhuRSFeA1sPaZFWsGqbO8jNSCMzPfy+OxZrJVCtXsxVIUjpoD++JIfRhVlxndePxY5Z/Zk1tgARLdIaCjv77lisTw0601ehSOmgLyJcOKWUdXtr8XTF525a1Q1tZKQ5bNlUO1zDMtOZOiKPTbqCJ2h2VuNaepqu6Vp9FYKggr6ILBGRnSKyR0Ru7+PxRSKyWUS6ROSaXo8tF5Hd/q/ldg3cLoumlNLi6Y7b2WtVfezX6AeaU1HImwfr8Xp15Ugw3C0eW/roB7JeT9M7KhSDBn0RcQL3AJcD04DrRWRar8MOAiuAP/R6bhFwJ3AuUAncKSKF4Q/bPgsnFpPmkLitzq1uaIuL1I5lzthCmtq72FPTHOuhJAR3c4et1bjg67+Tla79d1RogpnpVwJ7jDH7jDEe4DFgaeABxpj9xphtQO8cyWXAGmNMnTGmHlgDLLFh3LbJy0xnTkVh3Ob146EwK9Bcbb4WtJN9d+xPzekG6SpUwQT9cuBQwPdV/vuCEdRzReRmEdkoIhtraqIffC+cUso7RxqpaYqvj8utni7cLZ6Yr9EPNK44m6Iclwb9IDS2ddHlNbbn9AFKcrX/jgpNXFzINcb81hgzzxgzr7S0NOrnt5ZuvhxnKZ7DDbHtrtkXEWHO2EI2a9AflNWCwc5qXIuv02Z8TVJUYggm6FcDYwK+H+2/LxjhPDdqpo0aRnGOK+TdtIwx1DR18M7hRjq77VsFdMgqzIqjnD74Ujz7als0vTCISFTjWopytP+OCk1aEMdsACaLyHh8Afs64GNBvv5q4LsBF28vBb4x5FFGmMMhLJpSytpdNXi9Bofj1JUynd1ejp5op6q+jcMNbVQ3tFFd7/vT+r7Dv+TzixdP5svvn2LLuOKpMCtQT/O1A/VcMm1EjEcTv9wR6LBpsdI7xpi4WdmlEsOgQd8Y0yUit+IL4E7gPmPMdhG5C9hojFkpIucATwGFwJUi8l/GmOnGmDoR+W98vzgA7jLG1EXo7xKWRVNKeOrNan723C483eaU4H6sqZ3eva1K8zIoK8jizFHDuGTaCMryM1n19lEeXX+Az100kYy08Cswq+rbSHcKw/PsTw+EY8bofNIcwuaDGvQHYqVf7F6yCb5PDx3+/ju5GcHM3ZTyCeqnxRizCljV6747Am5vwJe66eu59wH3hTHGqLhgcimuNAc/f2EP6U5hVH4W5QVZnDephPLCLEYXZFFWkEV5YRaj8jP7LKufODyXT/z+DZ7ddoSr5/T5dgxJdUMbZQVZp33yiLXMdCfTy4bpxdxBWOmXyKR3TlblatBXQ6E/LX4luRms/fpiBKE0LwNnCIH2/EklTCzN4cHX9tsS9OOhpXJ/5lQU8sc3DtLZ7SXdGRfrAeKOu8VDXmYarjT73x/r4rC7pYOxxfGV/lPxTf+3BhiVn8XI/MyQAj74VrYsXziOrVUneNOGVgXV9fFVmBVobkUh7Z1edhxpjPVQ4pa7xRORlTsQMNPXi+lqiDTo2+zqOaPJzUjjwdf2h/U6HV3dHG/qiLuLuBYt0hqcu7kjIqkdOBn03bqCRw2RBn2b5Wakcc3c0Tz71hGON7WH/DqHG3zPjYc++n0ZlZ9FWX6mBv0B1LV4bG/BYLFWBGmBlhoqDfoRcOOCCjq7DX9cf2jwg/txcrlmfAZ98OX1tUirf7XNkWnBAJDtSvP139ECLTVEGvQjYEJpLoumlPLo+gMhF2vFUx/9/sytKOTwiXaOnGiL9VDijtdrqG+1v8NmoKIcl6Z31JBp0I+QFQsrON7UwT/ePhrS86sb2nA6hFH5mTaPzD5zxlpFWrpvbm8n2jrpjlDfHUux9t9RIdCgHyGLpwynojg75Au6VfVtjByWSVocL4ecVjaMzHSH5vX7YAXjSKV3wLdtoq7eUUMVvxElwTkcwifmV7DxQD1vVw99T9lq/+Yp8Szd6WDG6ALdSasP7ubIVeNainIyes6jVLA06EfQtfPGkJXuDGm2X93Qxug4zudb5lYUsr36BO2d3bEeSlypi8ZMP6D/jlLB0qAfQflZ6Vw9p5xnth4e0sfwzm4vR07E/0wfYO7YQrq8hm1VQ/80k8xqraAfyZy+v/9Oq0d/4argadCPsOULx+Hp8vLYhoNBP+foiXa8Jr6Xa1rmaJFWn6y+O4URDPpalatCoUE/wqaMyGPBhGIeWXeAriCXb1b19NGPz2rcQEU5LiaU5LBZ8/qncLd0kJ+VHtG+RFbqqFbz+moINOhHwfKF4zh8op3ndhwP6vjqONwxayCz/TtpaW75JHcEq3EtRf6LxDrTV0OhQT8KLjlzOOUFWUFf0LUKs0YVxO8a/UBzKwpxt3g44G6N9VDihru5I6IXceHk9QJdq6+GQoN+FKQ5HXx8fgXr9rnZebRp0OOr69sYMSzDlo1YokGbr52ursUT0cIsCOi/o1W5agg06EfJdeeMISPNwYPr9g96bFUct1Tuy+ThueRlpOl6/QDuZg/FEWqrbMl2pZGZ7tD+O2pINOhHSWGOi6UzCbdIAAAZjElEQVSzynhqczUnWjsHPLa6oY3yOG2p3BeHQ5itzdd6dPf03YnsTB98xV+a3lFDoUE/ipYvHEdbZzd/2tR/981ur+HIibaEuYhrmTu2kJ3HmmhsH/gXWipoaPXgNZFdo28pztWma2poNOhH0fSyfM4ZV8hD6w7Q7e17pcvxpnY6u01CpXfAl9c3BrYe0uZr1mqaogind8C3ZFZX76ih0KAfZcsXjuNgXSv/2tn38s1E6KPfl5lj8nEIrNvrjvVQYq7WP/MuiVJ6R4O+GgoN+lF22fSRjBiWwQP9LN+sStCgn5eZzgWTS3lyU1XIewgki5Mz/Sild1o6tEZCBU2DfpSlOx3ccG4FL++uZW9N82mPW4VZiVCN29ty/x4Cq7eHtodAsnC3RL7DpqUox0V7p/bf8XoN/9p5nNf21uovwEFo0I+B6yvH4nI6eHjdgdMeq6pvpTjHRZYrMdboB7pwynDGFGXx0Gun/71SiXVhtTA7PeLnSvX+O+2d3Ty6/gCX/GQtK+7fwMd+t55l97zKmneOafDvhwb9GCjNy+ADM0bx5KYqmju6Tnmsqj7xVu5YnP49BN7YX8e7RxtjPZyYcbd0UJidHpUNcEpSdIN0d3MHP12zi4Xff4FvPfU2ORlp/Pz62Xzv6rOpa/Xw6Yc2cvn/vsyz2470u2giVWnQj5HlC8fR3NHFnzdVnXJ/ImyeMpCPzPMVoT3Ux6eYVBGNalyL1X8nVTZT2VvTzDefeouF33+B/31+N7PHFPDYzfNZeet5XDWzjOsrx/LiVxfzk4/MxNPt5fN/2MylP13LU29WBd3wMNlp0I+RWWMKmDmmgAfX7cfrn4kYY3yFWQm2XDNQQbaLq2b6i9DaUnPNfm0UqnEtqdB/xxjDG+/V8W8PbuSSn6zlyU1VXD2nnOe+sojfrziH+ROKEZGe49OcDq6eM5o1X76QX35sNulOB19+fCvv+/FaHnvjIJ6u1A7+QQV9EVkiIjtFZI+I3N7H4xki8rj/8fUiMs5/f7qIPCgib4nIDhH5hr3DT2wrFlawr6aFV/bUAr5g0dHlZXQCVeP2xSpC6/0pJlXURaHDpsXqv5OMOf2ubi/PbjvCsl+9xkfuXcfGA3X8+0WTePU/3sf3rp7BpOF5Az7f6RA+OKOMVV+4gN9+Yi4F2enc/pe3WHz3izy0bn/K7vY2aNAXESdwD3A5MA24XkSm9TrsU0C9MWYS8FPgB/77rwUyjDFnA3OBz1i/EBRccfYoSnJdPd03re6aiTzTBzirPJ/ZYwt4+PUDPZ9iUkk0OmxarP47dqR3dh5t4siJNhtGFZ6Wji7uf/U9Lvrxv/j8HzbT0Orhv5dOZ93tF/OVS6dSmje0T1EOh3Dp9JE88/nzeOCmcxhVkMUdz2zngh++yP+9vI9WT9fgL5JE0oI4phLYY4zZByAijwFLgXcCjlkKfNt/+0ngl+L7vGWAHBFJA7IAD5C6V/h6yUhz8rHKsfzixT0cdLee7KNflNhBH2D5gnF86fEtvLKnlkVTSmM9nKjp6vbS0NbZk2uPBjv67xyqa+VDv3qVUfmZrP7SoqhchO6tpqmD+199j0deP0BjexdzKwr51hXTeP+0ETgdMvgLDEJEWDx1OBdOKeX1fXX84oXd/M+zO/jVv/byqfPHc+OCCvIyI7/iKtaC+ZctBwKbxVT57+vzGGNMF3ACKMb3C6AFOAIcBH5kjKnrfQIRuVlENorIxpqamiH/JRLZDfMrcIrw0Lr9ATtmJX7Qv/zskRTnuFLugm59ayfGnFxVEw3FueG1YjDG8I2/vIWny8vemhYe29B/b6hI6ejq5iP3ruPXa/eycGIJf75lAX++ZSFLzhppS8APJCIsmFjMHz49nz/fsoCZo/O5e/VOzvv+C/zyhd1Jn/aJ9K/zSqAbKAPGA18VkQm9DzLG/NYYM88YM6+0NHVmhQAjhmVy2VkjeWLjIXYfayY/Kz0pZhsZaU6uqxzD8+8e41Bd6myu0lONG6WcvnWucIL+ExsP8cqeWu68ajqV44r42XO7TltKHGn3v7qf92pb+P3yefzmE3OZW1EUlfPOrSji/psq+eut53PuhGJ+9M9dXPazl3ixnzYpySCYoF8NjAn4frT/vj6P8ady8gE38DHgH8aYTmPMceBVYF64g042KxaOo7G9i5Vbq5Nilm+54dwKBHh0ffCbwic6K7cejWpcS1FO6J02j55o53/+toNzxxdxQ+VYvvmBM6lt9nDv2r02j7J/x5va+cXzu7nkzOG874wRUTtvoLNH5/O7G+fxyKfOxekQbrp/A59+aGNSTliCCfobgMkiMl5EXMB1wMpex6wElvtvXwO8YHzlcAeB9wGISA4wH3jXjoEnk3kVhUwbNYzObpOwhVl9KSvI4v3TRvD4hoNJ/5HZYuXWo3UhF3zLNt0hbKRijOFbT71Fp9fLDz48A4dDmDWmgCtnlvG7l/dx9ER7BEZ7urv/sRNPt5dvfaD3+pDoO39yCf/44iL+Y8kZvLK7lkt+spZfPJ9cKZ9Bg74/R38rsBrYATxhjNkuIneJyFX+w34PFIvIHuArgLWs8x4gV0S24/vlcb8xZpvdf4lEJyKsWDgOIKELs/qyfME46ls7+du2I7EeSlRYaZZoLdkEKM7N8PffGVpKZuXWwzz/7nG+dulUxpXk9Nx/22VT8Xrhx//cafdQT7OtqoEnN1dx03njGR8whlhypTm4ZfFEnv/qhVxy5gh+vCa5Uj5B5fSNMauMMVOMMRONMd/x33eHMWal/3a7MeZaY8wkY0yltdLHGNPsv3+6MWaaMebuyP1VEttVs8o4Z1wh508qifVQbLVgYjGThufy8Lr9sR5KVLibOxDxFalFi3X9YCgpnpqmDu5cuZ3ZYwu46bzxpzw2piibFeeN48nNVbxzOHKL7Ywx/Ndf36E4x8Wt75sUsfOEqqwgi3tumMPDn6rsSfncnAQpH63IjROZ6U7+9NmFXHxmbHKakSLi68ezteoEW1JggxV3i4eibJftK04GEkpV7rdXbqe1o5u7r5nR51g/v3gSwzLT+d7fd9g2zt5Wbj3MpgP1fP2yqQyL48ULF0wu7Un5vJwEKR8N+irirp5TTo7LyUPr9sd6KBHnbo5e3x2L1fIh2A3S//7WEZ596whfvGRyv1Wt+dnpfOHiyby8u5a1u+xfRt3m6eb7f3+X6WXDuGbumMGfEGOBKZ+LzxzOj9fsYkmCpnw06KuIy8tM5+o5o/nb1iNJ3xisrsUT1Yu4cHKmXxtEeqeh1cP/e2Y708uGcfOi01ZPn+IT8yuoKM7mu8/usL1T5W/W7uXIiXbuvHJ6VD8VhausIItf3TCXhz9ViUMSM+WjQV9FxY0LKvB0e3l8Y+QKfxrbO2PeRre2pSOqyzVhaD317/rbOzS0evjhNTNIH6Tq1pXm4LbLzmDnsSZb+yhVN7Txm7V7+eCMUVSOj856fLtdMLmUv3/pAm5bMpWXd9fy/p/6Uj4n2jpp83TT0dVNZ7eXbq+Ju77+wbRhUCpsk0fksWBCMY++fpDPLJpo++xu17Emrvn1a0wozeW+FedEPcViicVMP9vlJDPdMWjQf/Hd4/xlczVfeN8kppflB/XaV5w9ktljC/jRP3fywZmjyHaFHzK+/3ffqu1vXHFm2K8VSxlpTj63eBJLZ5XznWff4cdrdvHjNbv6PFYEHCI4ev7033bIKffPGJ3P/TdVRnTcGvRV1Ny4oIJbHt3M8zuOcen0kba97rHGdlbc9wbpTgc7jjTy4V+/xoM3VTK2OLrdSju7vTS0dkb9F46I+PrvDJDeaWzv5JtPvcWUEbl8fggrZUSE//zAmXz41+v43Uvv8cVLJoc11jfeq+OvWw/zhYsnJ00hYrk/5bNur5u3qhvwGvAag9dr+rzdbQzG+LZ47LltDN1eE5UOuxr0VdS8f9oIRuVn8vDrB2wL+s0dXXzygQ00tHXyxGcW0N7Zzace3MjVv36NB246h7PKg5vR2qG+1SrMim56B/xVuQNcyP3eqnc51tjOrz9+HhlpQ9uKc25FEZefNZJ7X9rL9eeOYXheZkhj9HoNd/1tO6PyM/nshQNfT0hECyYWs2BicayHMSjN6auoSXM6+Fjl2H43hR+qrm4vn390M+8ebeKeG+ZwVnk+88YV8edbFpCR5uCj966LyMqT/lgz7WgWZlkG6r/z2p5a/vjGQf7tggnMGlMQ0uv/x5Iz8HR5+ema3SGP8clNVbxd3cjtl59hS5pIhUaDvoqq6yrHku6UPjeFHwpjDP/vmbdZu6uG/1l2FhdNHd7z2KThefzlcwsZW5zDpx7YELXNXGJRjWspzu27/06rp4v/+Ms2xpfk8JX3Twn59ceV5PDx+RU8vuEgu481Dfn5Te2d/HD1u8ytKOSqmWUhj0OFT4O+iqrSvAyuOHsUf95URUsYnRx/9a+9/PGNQ3z+oolcXzn2tMdHDMvk8c/M59wJRXz1T1u558U9EV9FUWs1W4vyhVzov//O3at3cqiujR98eAaZ6UNL6/T2hYsnk5ORxvf+PvT2Wb98YQ+1zR7uvHLaKVsbqujToK+i7sYFFTR1dPHUm72btQbn6TeruXv1TpbOKuNrl07t97hhmencv6KSpbPKuHv1Tu54ZntEl3SenOnHIqd/ev+djfvreOC1/SxfUGHL0siiHBefv2gSL7x7nNf8W3wG473aFu579T2unTuaGaNDSy8p+2jQV1E3Z2wh08uG8fC6A0Oefa/b6+brT25l/oQifnjNjEFnja40Bz/9yCw+s2gCD79+gFse2RSx8nl3swenQ8jPin5LAevThZXiae/s5rY/b6MsP4vblpxh23lWLBxHeUEW31m1I+itML/z7A5cTgdfX9L/L2gVPRr0VdSJCDcuqGDnsSbWv3faRmr92n2sic88vJGK4hzu/fi8oFehOBzCN644kzuvnMaaHce44f/WUx+BjcTdLR4Ks104YlBh2rv/zv8+v5t9NS384MMzyMmw76JpZrqT25ZMZfvhRp7eMvgntZd21fDcjmPc+r7JIa/6UfbSoK9i4qqZ5eRnpQd9Qfd4Yzsr7t9ARrqTB246h/zsoc+mbzpvPPd8bA5vVZ/gw795zfbSeXdzR0wu4kJgVW4H26oa+O1L+/jovDGcP9n+rq1Xzijj7PJ8frR654Cfmrq6vfz3396hojibT54/zvZxqNBo0FcxkeVy8pF5o1m9/eigm3W0dHTxyQc3UNfi4b7l54RVwHLF2aN4+JOV1DZ1cPWvX2P74RMhv1ZvsajGtZT4awOONXZw25PbKMl18c0PRKbi1eEQvnnFmRw+0c59r77X73GPrj/I7uPNfPOKM4dcG6AiR4O+ipmPz6+g2xj+8Eb/2yl2dXu59Q+beedwI/fcMJuzR4dfbHXuhGKevGUhaQ7ho/e+ziu7g78oGcjrNeyvbWH19qP8/Pnd7D7eHLP2D9Z5f/H8bt492sR3P3R2RK8tLJhYzCVnjuDXL+7ts4lefYuHn6zZxXmTirl0WnK1C090WiGhYqaiOIfFU0r54xsHufWiSbjSTp2DGGO4c+V2XtxZw3c+dJat+6dOGeFby3/T/RtYcf8b3H3tDD40e3S/x9c0dbDrWBPvHm1i59FGdh5tYtexZtoC0htji7JZcpZ97SWGItvlJCPNweET7SybVRaVfRluv/wMLvvZS/z8+d3819KzTnnsp8/toqm9kzs+OF2XaMYZDfoqpm5cMI6bHtjAP7YfPa1o5zdr9/Ho+oN89sKJ3HBuhe3nHpWfxROfXcDND23ky49v5VhjB5+YX8Hu483sPNroD/C+r8ANSopzXEwdmcd1lWM4Y2QeU0cOY/LwXFsvmA6ViFCSm0FHVzd3Xjk9KuecNDyX6yvH8Oj6gyxfOI4JpbkA7DzaxKPrD/Lx+RVMHdl3v34VOxJvbT/nzZtnNm7cGOthqCjxeg2Lf/QvRgzL4E+fXdhz/zNbqvniY1u4cmYZ//vRWRFdEdPR1c1Xn9h62j6+WelOpozIZao/sJ8xMo8pI/IozYv+OvxgPPfOMYpzXcweWxi1c9Y0dbD47hc5f3IJ935iHsYYPv779bxd3ci/vraYwhilu1KRiGwyxswb7Did6auYcjh82yl+Z9UO3jncyLSyYazf5+brf9pG5fgifnTtjIgvgcxIc/Lz62ZTOb6IhtZOpo7M44yReYwpzI7J8stQXRKD3HlpXga3LJ7Ij/65izfeq6Oh1cOre9x8+8ppGvDjlM70Vcw1tHo497vPc/Wccj51/niu/tVrlORl8JdbFkZ1g3EVmjZPNxf5P601tHXicjpY9cULBt2kRdlLZ/oqYRRku1g2q5yn3zzMy7trcaU5ePCmSg34CSLL5eSrl07h609uA+ChT1ZqwI9j+i+j4sInFlTQ1tmNu9nDfSvOYUxRdDdAUeG5es5oKscXsWxWGYumlMZ6OGoAOtNXceGs8ny+dcWZnFWer025EpDTITz26fno6sz4p0FfxY1PL0q+3ZRSSSJd9E5lmt5RSqkUokFfKaVSSFBBX0SWiMhOEdkjIrf38XiGiDzuf3y9iIwLeGyGiKwTke0i8paIaH9VpZSKkUGDvog4gXuAy4FpwPUiMq3XYZ8C6o0xk4CfAj/wPzcNeAT4rDFmOrAY6LRt9EoppYYkmJl+JbDHGLPPGOMBHgOW9jpmKfCg//aTwMXi67J0KbDNGLMVwBjjNsZEZtsipZRSgwom6JcDhwK+r/Lf1+cxxpgu4ARQDEwBjIisFpHNInJbXycQkZtFZKOIbKypqRnq30EppVSQIn0hNw04H7jB/+eHROTi3gcZY35rjJlnjJlXWqqFHUopFSnBBP1qYEzA96P99/V5jD+Pnw+48X0qeMkYU2uMaQVWAXPCHbRSSqnQBFOctQGYLCLj8QX364CP9TpmJbAcWAdcA7xgjDEishq4TUSyAQ9wIb4Lvf3atGlTrYgEt3Fq30qA0LZCig4dX3h0fOHR8YUnnscX1KYTgwZ9Y0yXiNwKrAacwH3GmO0ichew0RizEvg98LCI7AHq8P1iwBhTLyI/wfeLwwCrjDHPDnK+sPI7IrIxmE5zsaLjC4+OLzw6vvDE+/iCEVQbBmPMKnypmcD77gi43Q5c289zH8G3bFMppVSMaUWuUkqlkGQM+r+N9QAGoeMLj44vPDq+8MT7+AYVdztnKaWUipxknOkrpZTqhwZ9pZRKIQkZ9MPp+hmFsY0RkRdF5B1/Z9Ev9nHMYhE5ISJb/F939PVaER7nfn/X0y0ictpO9OLzc/97uE1EolZUJyJTA96bLSLSKCJf6nVMVN9DEblPRI6LyNsB9xWJyBoR2e3/s7Cf5y73H7NbRJZHcXx3i8i7/n+/p0Skzy3JBvtZiOD4vi0i1QH/hlf089wB/79HcHyPB4xtv4hs6ee5EX//bGWMSagvfLUCe4EJgAvYCkzrdczngN/4b18HPB7F8Y0C5vhv5wG7+hjfYuBvMX4f9wMlAzx+BfB3QID5wPoY/nsfBSpi+R4Ci/BVk78dcN8Pgdv9t28HftDH84qAff4/C/23C6M0vkuBNP/tH/Q1vmB+FiI4vm8DXwvi33/A/++RGl+vx38M3BGr98/Or0Sc6YfT9TPijDFHjDGb/bebgB2c3qAuESwFHjI+rwMFIjIqBuO4GNhrjAmnSjtsxpiX8BUeBgr8OXsQWNbHUy8D1hhj6owx9cAaYEk0xmeM+afxNUAEeB1fC5WY6Of9C0Yw/9/DNtD4/LHjI8Af7T5vLCRi0A+n62dU+dNKs4H1fTy8QES2isjfRWR6VAfmY4B/isgmEbm5j8eDeZ+j4Tr6/88W6/dwhDHmiP/2UWBEH8fEy/v4SXyf3Poy2M9CJN3qTz/d1096LB7evwuAY8aY3f08Hsv3b8gSMegnBBHJBf4MfMkY09jr4c340hUzgV8AT0d7fMD5xpg5+DbH+byILIrBGAYkIi7gKuBPfTwcD+9hD+P7nB+X659F5FtAF/BoP4fE6mfh18BEYBZwBF8KJR5dz8Cz/Lj/vxQoEYN+OF0/o0JE0vEF/EeNMX/p/bgxptEY0+y/vQpIF5GSaI3Pf95q/5/HgafwfYwOFMz7HGmXA5uNMcd6PxAP7yFwzEp5+f883scxMX0fRWQF8EHgBv8vptME8bMQEcaYY8aYbmOMF/hdP+eN9fuXBlwNPN7fMbF6/0KViEG/p+unfyZ4Hb4un4Gsrp8Q0PUzGoPz5/9+D+wwxvykn2NGWtcYRKQS379DNH8p5YhInnUb3wW/t3sdthK40b+KZz5wIiCVES39zrBi/R76Bf6cLQee6eOY1cClIlLoT19c6r8v4kRkCXAbcJXxtTbv65hgfhYiNb7Aa0Qf6ue8wfx/j6RLgHeNMVV9PRjL9y9ksb6SHMoXvpUlu/Bd1f+W/7678P1wA2TiSwnsAd4AJkRxbOfj+5i/Ddji/7oC+Cy+vYIBbgW241uJ8DqwMMrv3wT/ubf6x2G9h4FjFHx7I+8F3gLmRXmMOfiCeH7AfTF7D/H98jmCb4/nKnz7QhcDzwO7geeAIv+x84D/C3juJ/0/i3uAm6I4vj348uHWz6G1oq0MX8fbfn8WojS+h/0/W9vwBfJRvcfn//60/+/RGJ///gesn7mAY6P+/tn5pW0YlFIqhSRiekcppVSINOgrpVQK0aCvlFIpRIO+UkqlEA36SimVQjToK6VUCtGgr5RSKeT/AxYn+g7gTQWjAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(np.arange(len(eval_losses)), eval_losses)\n", - "plt.title('test loss')" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'test acc')" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xd8m+W5+P/P5SkvyfGIR3ZIQggkJCEEyi50QKGQBOiBLlZLFz0dpwNKD79z6KAt7bfn9LSHAi27h9Ew2zLL7GBl2NnDSSBesR0ntiU7li3p/v2hR46ieMjWo2H5er9efll6lm7Jsi7d47pvMcaglFJKZSS7AEoppVKDBgSllFKABgSllFIWDQhKKaUADQhKKaUsGhCUUkoBGhCUUkpZNCCoCUNE3hORD9lwnatF5O92lEmpVKIBQSmlFKABQU0QIvIgMB34k4h4ROQ71vZTReSfItIhIrUick7YOVeLyG4RcYvIHhH5lIgcB/wW+IB1nY4hHu8aEdlqnbtbRL4Qsf8SEakRkS4R2SUi51vbS0TkXhFpEpGDIvJUnF4SpY4iOnWFmihE5D3gc8aYv1r3pwAbgM8AzwPnAY8A84EeoBk42RizXUSqgBJjzGYRudq6zhnDPNaFwDZgN3AW8BxwhjFmnYgsB14CLgNeBqqAImPMNhH5C+ABvmj9Ps0Y87q9r4RSg8tKdgGUSqJPA88aY5617r8kImuAjwGrgQBwgojsNcY0EwwQUTHG/CXs7usi8iJwJrAOuA64xxjzkrW/EcAKOhcApcaYg6Fzx/bUlBo9bTJSE9kM4HKruajDav45A6gyxnQD/0Lwm3qziPxFROZHe2ERuUBE3hKRA9Z1PwaUWbunAbsGOW0acCAsGCiVUBoQ1EQS2T5aDzxojCkO+ykwxvwEwBjzgjHmwwSbdLYBdw9xnSOISC7wOPBzoMIYUww8C0jY4x4zyKn1QImIFI/huSkVMw0IaiJpAWaH3X8I+LiIfFREMkXEISLniMhUEamwOn4LAC/B9vxA2HWmikjOEI+TA+QCbYBPRC4APhK2//fANSJynohkiMgUEZlvNUs9B/yviEwSkWwROcu2Z6/UCDQgqInkNuD7VvPQt4wx9cAlwPcIfnjXA98m+H+RAXwTaAIOAGcDX7Ku8wqwGdgnIvsjH8QY4wb+FXgMOAh8EngmbP87wDXAL4FOgv0EM6zdnwH6CdZIWoGv2/TclRqRjjJSSikFaA1BKaWURQOCUkopQAOCUkopiwYEpZRSwDjLVC4rKzMzZ85MdjGUUmpcWbt27X5jTPlIx42rgDBz5kzWrFmT7GIopdS4IiLvR3OcNhkppZQCNCAopZSyaEBQSikFaEBQSill0YCglFIK0ICglFLKogFBKaUUoAFBKaVSWktXL//5p830+wMjHxwjDQhKKZWiXtveygX//Tcefbeerc1dcX+8cZWprJRSE0G/P8AvXtzBb1/fxfzKIn79yaXMmVwY98fVgKCUUimkseMQ//rweta+f5BPnjKdWy5agCM7MyGPrQFBKaVSxEtbWvjWH2vxBwy/unIJF59YndDH1z4EpVRc7W3v4bev70pIp+h41ecL8IM/b+HzD6xhWkkef/7qGQkPBqA1BKVUHAUChq8/up51ezvY1erhZ5ctQkSSXayUUn+ghxv+bx21DZ1cfdpMbvrYfHKzEtNEFEkDglJprqWrl7f3HODji6oS/mG8el0D6/Z2cMqsEv64toEpk/L4+ofmJbQMqezZjc189/ENCPDbTy/l/BOqkloeDQhKpbmH39nLf/11J5kiXLgocR84nT39/OS5bZw0YxIPf/5Uvr16A//1151UF+fxiWXTElaOVNTb7+dHf9nKg2+9z4nTivn1lUuYVpKf7GJpQFAq3bV0eQH4/57ZxGnHlDKpICchj/uLl7bT0dPHrZcsJyNDuG3VQlq6evneExupdDo4a96IC3ilpT37u/nKH9axpbmLz585i29/dD45WanRnZsapVBKxU2b20tpQQ4dPf3c+uctCXnMTY2dPPTW+3z2AzM5vtoFQE5WBnd8Ojie/ksPrWVzU2dCypJKnq5p5KJf/Y2mzkP8/qpl3HzhgpQJBqABQam01+bxsqDayZc/OIcn1zfy6rbWuD5eIGD496c3UVKQwzc+fGR/QZEjm/uuWY4zL5tr7n2Xxo5DcS1LqjjU5+fGxzfwtUdqOK7KybP/eibnHVeR7GIdRZuMlEpz+91ejikv4IYPzuH5Tc1878mNvPiNsyhyZMfl8VavbWD93g5+cfmJuPKOfoxKl4N7rzmZy+94k2vufYc/fvG0QY9LFXWtbh56a29Mw2bf2XOAna0evnzOMXzzw/PIykzN7+IaEJRKY8YY2txeyotyycnK4GeXnciq//0Htz23jR+vXGj743X09PGT57dx8sxJrFo6Zcjj5lc6ufMzJ3HVve/whQfXcP+1y5M21HI4z25sHkgUK3KM/ePSmZfN/dcu5+wU7zfRgKBUGus65KPPH6C8MBeAxdOKue6MWdz9tz1ctKiK044ps/Xxfv7idjoP9XPrJSeMOMT1tDll/OyyRXzj0Vq+s3oDv/zEYjIyUiNHwecPcPsL27nzjd0smV7MHZ86iUqXI9nFirvUrLcopWzR5ukFoLwod2DbNz98LDNL87nx8Y309Plse6yNDZ384e29fPYDMziuyhnVOSuXTOXbHz2Wp2uauP3F7baVJRbtHi+fvecd7nxjN585dQaPXv+BCREMQAOCUmmt1R0cchoeEPJyMvnJpYvYe6CHX7y4w5bHCQQM3396E6UFuUd1JI/ky+ccw5XLp3PHa7t46K33bSnPWNXWd/Dx//k7a94/yO2XLeIHK05IqVFA8TZxnqlSE1CbFRAmhwUEgFNnl/LpU6dzzz/2sG7vwZgf57E19dTWd3DzhfNxjrKzWkT4wSXHc+78ydzy9Cb+uqUl5vKMxSPv7OXy376JiPDEl07j8gmYPKcBQak0FgoI5YVHN3l89/z5VDkdfGf1Brw+/5gf42B3Hz99fhvLZ5awYvHQHcnDycrM4H+uXMLx1S6++vB6aus7xlye0fL6/Nz0xAZufGIjp8wu4c9fPYMTprgS9vipRAOCUmmszeMlJzMDZ97R40eKHNn8eNVC6lo9/PqVujE/xu0vbqer18etK46Paa6kgtwsfn/1MkoLc7ju/nfZ294z5mtFq6njEJ/47Zs8/E49Xz7nGO67ZnnCMrlTkQYEpdJYaMjpUB/U5xw7mVVLp3DHa7vY0jT6JRpr6zt4+J29XH3aTOZXRteRPJzJRQ7uu2Y5/X7D1fe+w8HuvpivOZR/7trPx//n7+xq6+a3nz6J75w/n8wUGeWULFEFBBE5X0S2i0idiNw4yP4ZIvKyiGwQkddEZGrYvp+JyGYR2SoivxLrnSkiJ4nIRuuaA9uVUvZpc3spi+g/iHTLRQsozs/h26trR5V85bcykssKc/n6h+bGWtQBcyYX8rurltHQcYjPPbCG3v6xN2cNxhjDXW/s4tO/e5vi/Gye+srpnH9Cpa2PMV6NGBBEJBP4DXABsAC4UkQWRBz2c+ABY8wi4FbgNuvc04DTgUXACcDJwNnWOXcAnwfmWj/nx/pkVHp6ZVsL//7UpqQtsPL8pmauvvcd/uOZzTzyzl7W7z1It9e+4Zrx1Ob2DuQgDKU4P4cfXHI8m5u6uOuN3VFf+9F369nQ0Mn3LzzO9qznk2eW8MtPLGbd3oN849Ea/AFjy3W7vT5u+L/1/PjZbXz0+EqevuGMhKxVPF5Ek5i2HKgzxuwGEJFHgEuA8FmyFgDftG6/Cjxl3TaAA8gBBMgGWkSkCnAaY96yrvkAsAJ4LqZno9KOzx/g35/aTGPHIfr9AW5btTChc/q/vbudrz68nkn5Obyz5wA9fYe/rU4ryePYCifzK4s4trKI+ZVFzCwrIDuFpiXY7/GyZPqkEY+7YGEVH1tYyX+/vJOPHl854ofkge4+fvbCNk6ZVRK3lb0uXFRFc+dx/PAvW/neExv52KIqygpzKCvMpaQgZ9Sv8+42D194cC272jzceMF8vnDWbF2sJ0I0AWEKUB92vwE4JeKYWmAV8N/ASqBIREqNMW+KyKtAM8GA8GtjzFYRWWZdJ/yagw5PEJHrgesBpk+fHkVxVTr5y8ZmGjsOcfqcUh55t57Z5QVcf9YxCXns9/Z384WH1jKtJJ8nv3Q6RY4sGg4eYtu+Lrbvc7Otxc2OfW5e3d468A02JzOD2eUFVpA4HCyqXI6Ef/j4/AHau/uOyEEYzn9efAL/3PU63318A4994QPDtqff/sI23L0+frBi5IzkWHzuzNk0d/by+7/v4dE19UfsK87PprQgGCDKCnMptYJFaWEOpQW5lBcFf5cV5fLPuv3822O1ZGUKD153CqfPsTdDO13YNXXFt4Bfi8jVwBtAI+AXkTnAcUCoT+ElETkTiHqKQ2PMXcBdAMuWLbOn3qjGhWBb726OKS/ggWtP4asPr+O257Yxs7SAjxwf3zbfzp5+rr3vXQS49+qTceUHm0Sml+YzvTT/iMf3+vzsau1me0sX2/a52b7PzTt7DvBUTdPAMfMri3jua2cmNCgc6O7DGKIOCOVFudxy0QK++VgtD7z5HtecPmvQ49bvPcgj79bzuTNmMa+iyMYSD+7fL1rA1afNpNXdS5u7j/ZuL/ut3+2ePto8Xrbt62K/p4/OQ/1DXmfhFBd3fHopUyclfyGaVBVNQGgEwjM0plrbBhhjmgjWEBCRQuBSY0yHiHweeMsY47H2PQd8AHiQw0Fi0Gsq9c9d7Wxu6uInqxaSmSH84vLFNB58k689UsMfv/iBuI0V7/cH+NIf1lJ/sIeHrjuFGaUFwx6fm5XJgmonC6qPHGXTeaifHS1u/vDW+zxV00RXry+hs3oOZCmP0IcQbuWSKTxT28TPnt/Oh46rOGoVL3/AcMvTm5lclMvXErgU5rSS/KhWFOvzBTjY00eb20t7dx/73V7au71kZmTwqVOm48hOvQn0Ukk0jXDvAnNFZJaI5ABXAM+EHyAiZSISutZNwD3W7b3A2SKSJSLZBDuUtxpjmoEuETnVGl30WeBpG56PSiN3vrGbssJcViwJtibm5WRy91XLmJSfzefuX8O+zl7bH9MYwy1Pb+Kfu9r5yapFnDK7dMzXcuVlc/LMEs615r1v6bK/vMNp8xw9bcVIRIQfrwwG4Jue2IgxR1bKH35nLxsbO7n5wgUU5qbe3Jg5WRlUOB2cMMXF2fPKufSkqVx/1jFcd8YsDQZRGDEgGGN8wA3AC8BW4DFjzGYRuVVELrYOOwfYLiI7gArgR9b21cAuYCPBfoZaY8yfrH1fBn4H1FnHaIeyGrC1uYs3drRxzekzj/hHnlzk4HdXnYy7t5/PPfCurZOzAfzub3t4+J16vvLBY7j0pKkjnxCFSmcwSzgeAWw4Q01bMZLq4jxuvGA+f6/bz2Nh7fbtHi+3v7CdD8wu5eMJXJtZJU5UId4Y8yzwbMS2W8Juryb44R95nh/4whDXXENwKKpSR7n7jd3k52Ty6VNmHLVvQbWTX125hM8/sIZvPlrL/35qqS3TJr+0pYUfP7eVjy2s5N8+fGzM1wupcAY/kBNeQ7ACQtkomoxCPrl8On+qbeKHf97K2fMmU+ly8LPnt9Pt9XHrJbFlJKvUlTrj45SyNHUc4pnaJv7l5GkDnbmRzjuugpsvXMDzm/fxsxdinzZ5c1MnX3tkPYumuPjF5fbOy19h1RCSERCKcrPIyxl9U0lGhvDTSxfRHwjw/ac2sm7vQR5dU891Z8xibgI6klVypF4joJrw7v3HHgxw3RmDj3IJufb0mexu8/Db13cxu7yAT4xxdsqWrl6uu28NxXnZ3P3ZZWP6AB2OIzuT4vxs9iWhD2E0/QeRZpYV8K2PHMsP/7KV9Xs7qHQ6+Op59mUkq9SjNQSVUrp6+3n4nXouXFg14vBAEeE/Lj6eM+eWcfOTG3lrd/uoH6+nz8fn7l9DV28/v7vqZCY747MQSqXTwb5Ob1yuPZRopq0YyTWnz2LxtGLau/v4/kXHpWRHsrKPBgSVUv7v7b14vD6uP2t2VMdnZ2bw608uZUZpAV98aC179ndH/ViBgOGbj9ayqamTX12x5Khho3aa7HTQ6k5sDWG/O7YaAkBmhnDHp5fy88tP5MKF2pGc7jQgqJTR5wtw7z/2cPqc0lHlGLjysrnnqpPJEOG6+96loye6GTJvf3E7z2/ex80fO44PLagYa7GjUunMTfwoI8/I8xhFo8qVx2UnTdWO5AlAA4JKGU/XNNLS5R3T1BTTS/O58zMn0XDwEF96aB19vuEnwntsTT13vLaLT54yfcS+CjtUOh3s93jxJWiCvt5+P+5eX8w1BDWxaEBQKcEYw91/2838yiLOmju2eWZOnlnCTy9byJu72/n3pzYdlVQV8tbudm5+ciNnzCnjPy9OzBDKyU4HAQP7PfGb3z9c2yBrKSs1Eg0IKiW8tr2NHS0ero9xBsqVS6by1XPn8Oiaeu7+29FTOe/Z380XH1rL9JJ8fvOppQmbmXQgOS1BI43GkqWslAYElRLufGMXVS4HH7dhKuVvfGgeFy6q4rbntvHC5n0D2zt6+rjOmrDunqtPTui8QpWuxGYrt41hHiOlNCCopNvQ0MFbuw9w7emzbPnGnpEh/OLyE1k0tZivP1LDpsZO+nwBvvTQOuoP9nDnZ5aNOGGd3RKdnDbWaSvUxKYBQSXdnW/spig3iyuWjy2xbDCO7Ezu/uxJlBQEF2z/tz/W8ubu4IR1y2eV2PY40SotyCErQxIaEESgZAIvGK9GTwOCSqq97T08t7GZT5463fZlGIMT4S3D0+vjT7VN3PDBObZNWDdaGRnC5KLchPYhlBbkkJVCq7ep1Kdphyqpfv/33WRmCNcOsRhLrI6rcnLvNct5970DfOnsxKy0NpQKlyOhNYSxTGqnJjYNCCppDnb38diaBi5ZPGWgjT0els8qSUozUaSKIgd1bZ6EPFabDVnKauLR+qRKmgffep9D/f6op6kY7ypdDloSOMpIA4IaLQ0IKil6+/3c/8/3+OCx5QlZlzcVVDgduL0+ur32LuoTyRgT80ynamLSgKCS4vF1DbR3941pmorxqtIV/ICOd8dyV6+PPl9AcxDUqGlAUAnnDxh+97c9LJrq4tTZyW/bT5SKosTkIui0FWqsNCCohHtpSwt79nfHPE3FeFPh0oCgUpsGBJVwd72xi2kleZx/fGWyi5JQoZFU8V4oJzSPkWYpq9HSgKASas17B1i3t4PPnTF7wiVNFeZmUZiblbgaQmH8hvKq9DSx/iNV0t35xm6K87O5fFlyMoaTrcKZm5CAkJOZgTNP04zU6GhAUAmzq83DX7e28NlTZ5CfMzE/rCpdjriPMgrlIEyk/hllDw0IKmF+97fd5GRm8NnTZia7KElT4Yx/clqbx0uZ9h+oMdCAMA5sauzkte2tyS5GTNrcXh5f18ilJ02d0HPsVDgdtLq9BAKDr+Zmhza3l/JCneVUjZ4GhHHgO6s38L0nNia7GDG5/5/v0e8P8PkzJ8Y0FUOpdDrwBQzt3fFbSlOnrVBjFVVAEJHzRWS7iNSJyI2D7J8hIi+LyAYReU1EplrbPygiNWE/vSKywtp3n4jsCdu32N6nlh42N3WypbmLfV29CVug3W7dXh8PvvU+H1lQwayyxC5Mk2rivVCOP2A40O3VLGU1JiMGBBHJBH4DXAAsAK4UkQURh/0ceMAYswi4FbgNwBjzqjFmsTFmMXAu0AO8GHbet0P7jTE1sT+d9PP42kYAAubw+PLxZvXaBjoP9U+oaSqGUuEMflDHKyC0d3sJGE1KU2MTTQ1hOVBnjNltjOkDHgEuiThmAfCKdfvVQfYDXAY8Z4zpGWthJ5o+X4CnahqZlB9cOKapIzEzZdrtH3X7mV1WwEkzJiW7KEk3sLZynAKCZimrWEQTEKYA9WH3G6xt4WqBVdbtlUCRiJRGHHMF8HDEth9ZzUy/FJFB38Eicr2IrBGRNW1tbVEUN328tr2VA919fM5qd0/UAu1229nq4djKiTGj6UjKC3PJEOI20kgDgoqFXZ3K3wLOFpH1wNlAI+AP7RSRKmAh8ELYOTcB84GTgRLgu4Nd2BhzlzFmmTFmWXl5uU3FHR8eX9dAWWEu/3JycK3h5s5DSS7R6PX2+3m/vZu5kwuTXZSUkJWZQVlh/JbS1CxlFYtoAkIjEL76+VRr2wBjTJMxZpUxZglws7WtI+yQTwBPGmP6w85pNkFe4F6CTVPK0u7x8vLWVlYuqaa0IIe87Eyax2ENYc/+bgIG5kyQNQ+iUeF00NIVn/6gUD9TWZEOO1WjF01AeBeYKyKzRCSHYNPPM+EHiEiZiISudRNwT8Q1riSiuciqNSDBdMoVwKbRFz99PVPbhC9guPSkqYgIVcWOcVlD2NHiBmBehdYQQoIBIX41hMLcrAmbCa5iM2JAMMb4gBsINvdsBR4zxmwWkVtF5GLrsHOA7SKyA6gAfhQ6X0RmEqxhvB5x6T+IyEZgI1AG/DCmZ5JmVq9tYOEUF/MrnQBUuRzjsoZQ1+ohM0Mm/HDTcJWu+DYZaf+BGquovkYYY54Fno3YdkvY7dXA6iHOfY+jO6Exxpw7moJOJFuautjc1MV/Xnz8wLYqVx5/37k/iaUamx0tbmaU5pOblZnsoqSMiiIHHT399Pb7cWTb+7oEs5Q1IKix0UzlFPT4ugayM4WLT6we2FblctDqHn/JaTtbPdqhHCG0UE5rHPoRdC1lFQsNCCmm3x/gqfWNfOi4CiYVHO4YrHLlETDQ6h4/yWlen5/323uYO1k7lMNVOuOXi6BNRioWGhBSzGvb22jv7uPSpUeuF1BlfascTx3Le/Z34w8Y5mqH8hHilZzW2+/H3evTgKDGTANCilm9tp6ywhzOPvbInIuq4lBAGD8dyztbPABaQ4hQURRqMrL3b3k4B0EDghobDQgp5EB3H69sa2XF4ilkRywvWeXMA6B5HE1fsbPFTYbA7HIdYRTOmZeFIzvD9szzUA6C1hDUWGlASCHP1DTS7w/mHkRy5mWRnzO+ktN2tnqYUVpg+0ia8U5EqHTav3KaTluhYqUBIYWsXtfACVOcHFflPGqfiFi5COOnD2Fnq4c5OsJoUJPjkJymAUHFSgNCitja3MWmxi4uWzr04vNVrrxxU0Po8wV4b3+3ZigPoTIO01e0ub2IQEmBTluhxkYDQop4fK2Ve7D4qBy+AeOphvBeeze+gNEO5SFUuoJNRsbYt5Rmm8dLSX7OUf1PSkVL3zkpoN8fXPfgvPkVw367CyaneekfB8lpAyOMtIYwqAqngz5fgI6e/pEPjpLmIKhYaUBIAa9vb2O/p4/LBulMDldVnIcZJ8lpO1rciMAx5RoQBjOwcprbviZADQgqVhoQUsDqtQ2D5h5EGkhoGgfNRnWtHqaX5OsIoyEMZCvb2Cek8xipWGlASLID3X28vK1l0NyDSNWuYC7CeFhKc0eLW/sPhlFhBQS7RhoZY9iv8xipGGlASLLhcg8iHa4hpHZA6PcH2LO/W/sPhjHZajLa12lP85/b68PrC2hAUDHRgJBkj69r5PjqwXMPIjkdWRTkZNKU4k1G71sjjHTI6dByszIpKcixrQ9BcxCUHTQgJNG2fV1sbOwcsTM5RESCwxVTvIawQ+cwikqF00GLTX9LncdI2UEDQhKFcg8uGSb3IFJ1cR5NKR4QdrZ4dIRRFCqd9q2cpjUEZQcNCEnS7w/w5Pomzp0/eVSZpZVOB80dqd1ktKPVzbRJ+eTl6Aij4VTYmK2sAUHZQQNCkryxo439Hi+XnTRtVOdVFefR5knt5LS6Fl0lLRoVTgft3fb8Lds8XrIzBVdetg0lUxOVBoQkWb22gdKCHM4ZIfcgUrXLgTH2DVe0m88fYPd+D3MrtP9gJJXW39KORMNQDoKI2FAyNVFpQEiCg919/HVrCyuWjJx7ECnVh56+195Dv99oDSEKdianaZaysoMGhCR4praJfr+JenRRuOpiKzktRQNCXasb0DmMohHKRbBj5TQNCMoOGhCSYPXahqhzDyKl+vQVoSGnug7CyAZqCHYEBM1SVjbQgJBg2/e52djYyaXDrHswHKcjm8LcrJSdvmJnq4epk/LIz8lKdlFSXklBDtmZEnNA8AcM7R6dx0jFTgNCgj2+roGsDOGSxdVjvkYqJ6ftbHEzTzuUoyIiTC5y0Brj0NMD3X0EjA45VbHTgJBAPn+AJ9Y1cu78yZTG8G0uVRfK8fkD7G7r1g7lUbAjuGsOgrKLBoQEemNnKPdgbM1FIcGAkHo1hL0HeujzB7T/YBQqbVhbuc2jAUHZI6qAICLni8h2EakTkRsH2T9DRF4WkQ0i8pqITLW2f1BEasJ+ekVkhbVvloi8bV3zURFJ+4VgQ7kHH5w/OabrVLmCyWl9vtRKTgt1KGuTUfQqnLEvpXl4HiOHXcVSE9SIAUFEMoHfABcAC4ArRWRBxGE/Bx4wxiwCbgVuAzDGvGqMWWyMWQycC/QAL1rn/BT4pTFmDnAQuM6G55OyDnb38dctrVwSxboHI6kaSGhKrVpCaMjpMVpDiFqFM5eePj8er2/M1wgFhLKitP9OpeIsmk+m5UCdMWa3MaYPeAS4JOKYBcAr1u1XB9kPcBnwnDGmR4LplOcCq6199wMrRlv48eRPG5ro8wdibi6C4PQVQMo1G+1s9TClOI/CXB1hFK3QMOJYmo3a3F4Kc7N0ZJeKWTTvoClAfdj9BuCUiGNqgVXAfwMrgSIRKTXGtIcdcwXw/6zbpUCHMSb0tajBepyjiMj1wPUA06dPj6K49rvz9V08sa6RqZPymFaSz/SS/LDf0Q2xXL22gQVVThZUjz73IFKV9SGSagFhR4tHE9JGqWIgW9nLnDFOF645CMoudn2l+BbwaxG5GngDaAT8oZ0iUgUsBF4Y7YWNMXcBdwEsW7Zs7A2tMXhsTT3uXh8i8Nbudrr7/EfsLyvMORwgJgV/Ty3JY3pJPlWuPOpaPWxo6OSWiyJb2sZmICCk0Kyn/oBhV5uHM+aUJrso44odS2m2uXuUdi07AAAbWklEQVQ1B0HZIpqA0AiET8k51do2wBjTRLCGgIgUApcaYzrCDvkE8KQxpt+63w4Ui0iWVUs46pqpoqu3n11t3fzbh+fx1fPmYozhQHcf9QcPsfdAD/XWz94DPax9/yB/3tCMP3A4bmVnCvk5WTHnHoQrcmRTlJuVUjWEvQd66PMFdFK7UbIjW7nN7WV+Zew1T6WiCQjvAnNFZBbBD+0rgE+GHyAiZcABY0wAuAm4J+IaV1rbATDGGBF5lWC/wiPAVcDTY30S8bSxoROAxdOLgWAyUWlhLqWFuSyeVnzU8f3+AM0dvdQfDAaJ0M/CKa6Ycg8iVaZYLsLOFmsOI+1QHpW8nEycjqyY+xDOnKs1BBW7EQOCMcYnIjcQbO7JBO4xxmwWkVuBNcaYZ4BzgNtExBBsMvpK6HwRmUmwhvF6xKW/CzwiIj8E1gO/j/nZxEFNfbCis2jK0R/+g8nOzGB6aT7TS/M5PY7lqirOS6kaws5WncNorGJJTuvt99PV69M+BGWLqPoQjDHPAs9GbLsl7PZqDo8Yijz3PQbpMDbG7CY4giml1dR3MLusAFd+ai08UuV0sLW5K9nFGLCzxU21y0GRI7Vep/GgwumgZYxrIuz36FrKyj6aqTwMYww19R2cOEjTULJVFTvYn0LJaTtbPczR/oMxqXA6aBljDUGnrVB20oAwjH1dvbS5vZw41ZXsohylKoVWTvMHDHWtHuZpc9GYVDodtHm8RwxGiNZAUprWEJQNNCAMo9bqP0jJGoIrdZLTGg724PUFNAdhjCqcuQNTWI+WzmOk7KQBYRg19Z1kZ4otyWR2O5yclvyRRjsHFsXRJqOxqIhh6GmohlBaqNNWqNhpQBhGbX0HC6qc5GZlJrsoR0ml6St26LKZMYllnew2t9daaEf/lVXs9F00BH/AsKEhNTuUAQpzsyjKzUqJhXLqWjxUOh04dYTRmFTGkK3c5taV0pR9NCAMYVebh+4+PydOTc2AAMGRRk0pMH3FzladwygWpYW5ZGYILWNYOU3nMVJ20oAwhJoU7lAOqXTl2bJAeywC1gijudp/MGaZGUJ5Ye6Y+xA0ICi7aEAYQm19B0WOLGaXFSS7KEOqdjlo6khuQGjsOMShfr/WEGJU4Rr9ymnGGA0IylYaEIZQ29DBiVOLyciQZBdlSFWuvKQnp+2w5jCapwEhJhVFuaMOCG6vD68voH0IyjYaEAbR2+9nW7ObE6elXkJauCobFleJ1eE5jLTJKBZjmc9Is5SV3TQgDGJzUye+gEnpDmUIdipDcoee7mzxUOHMxZWnI4xiUeF00NXr41DEWhvD0YCg7KYBYRA19daU1yncoQypkZy2s9WtHco2GMu6CBoQlN00IAyitr6DKpeDydY/aaqqtKavSFbHcmiEkU55HbuxrJw2EBC0D0HZRAPCIEIdyqmuMDeLIkcW+5JUQ2jsOERPn595OstpzCpdwQ/1UQUEj5fsTNHmOmUbDQgRDnb38X57z8AKaamu2pVHU5L6EOqsDmUdchq7gfmMRvG3bHN7KSvMTemRcGp80YAQoabBSkgbBzUEiG21rVjtbNVlM+1SmJtFfk7mqLKVNQdB2U0DQoTa+g5EYGEKroEwmOri5K2tvKPFQ3lRLsX5OtNmrESESufoktN0HiNlNw0IEWrrO5g7uZDC3KhWF026Smce+z19eH3RD1e0y85Wj9YObFThdIxulJHOY6RspgEhjDGG2obOcdNcBIdzEVo6x7Ym71gZY6hrcWuHso1G0/znDxgOdPdpQFC20oAQpuHgIQ5096X0hHaRkpWL0NTZS3efX4ec2miyM5dWdy/GjLyU5sGePvwBowFB2UoDQpjQDKepnpAWLllLae4cmMNIawh2qXQ66PcHv/mPRHMQVDxoQAhTU99BblYGx1aOnw+5wzWERAcEa8ip1hBsM5psZc1SVvGgASFMbX0HJ0xxjavlCAtys3A6shLeZLSz1U1ZYQ6TCnSEkV1CmfGtUQw91YCg4mH8fPLFWb8/wKam8dWhHFJdnJf4GoIuimO7gbWVo6kheIIBoUybjJSNNCBYdrS46e0PpPyU14OpdCU2FyE4wkiXzbTb5KJcRKLLVm5zeynIyaRgnAyPVuNDVAFBRM4Xke0iUiciNw6yf4aIvCwiG0TkNRGZGrZvuoi8KCJbRWSLiMy0tt8nIntEpMb6WWzXkxqL2nEyw+lgqlx5Cc1W3tfVi9vrY652KNsqOzOD0oLoFsrRLGUVDyMGBBHJBH4DXAAsAK4UkQURh/0ceMAYswi4FbgtbN8DwO3GmOOA5UBr2L5vG2MWWz81MTyPmNXUH2RSfjbTS/KTWYwxqXI5EpqctkM7lOOmwqkBQSVPNDWE5UCdMWa3MaYPeAS4JOKYBcAr1u1XQ/utwJFljHkJwBjjMcb02FJym9XWd3LitGJExt9EYaGRRomqJYSGnGpAsF+l08G+aDqVNUtZxUE0AWEKUB92v8HaFq4WWGXdXgkUiUgpMA/oEJEnRGS9iNxu1ThCfmQ1M/1SRAZ9d4vI9SKyRkTWtLW1RfWkRsvj9bGj1T0uO5Qh8bkIda0eSgtyKNUOTdtVuKKbz0jnMVLxYFen8reAs0VkPXA20Aj4gSzgTGv/ycBs4GrrnJuA+db2EuC7g13YGHOXMWaZMWZZeXm5TcU90qbGTowZn/0HEL6UZmI6lne0uDVDOU4qihwc6B6++c/r89N5qF9rCMp20QSERmBa2P2p1rYBxpgmY8wqY8wS4GZrWwfB2kSN1dzkA54Cllr7m02QF7iXYNNUUtRaGcqLxskMp5ESmZxmjGFnq0czlOMktFDOcLkI+z3BTGYNCMpu0QSEd4G5IjJLRHKAK4Bnwg8QkTIRCV3rJuCesHOLRST01f5cYIt1TpX1W4AVwKZYnkgsahs6mFaSN26bQPJzsnDlZdOcgKU0W7q8uHt9OuQ0TqJZSlOT0lS8jBgQrG/2NwAvAFuBx4wxm0XkVhG52DrsHGC7iOwAKoAfWef6CTYXvSwiGwEB7rbO+YO1bSNQBvzQtmc1SjV7O1g8bVKyHt4WVS5HQmoIoUVxtMkoPqJJTjs8j1Fqr/mtxp+oslqMMc8Cz0ZsuyXs9mpg9RDnvgQsGmT7uaMqaZy0dvXS1NnLteO0uSikKkHJaaE5jLTJKD4qikI1hKGbjLSGoOJlwmcq1zaM34S0cFXFiUlO29nqZlJ+NqU6h1FcFOdnk5OVEVWTUWmh/g2UvTQg1HeQmSEcXz3OawhOB+3dffT2xzc5bWeLh7kVReMyX2M8CC2lOVxwb/P0UlKQM64mYVTjw4R/R9U2dHBsRRF5OZkjH5zCqoqDuQijWZN3tIwx7Ghxa0JanFU4c0fsQ9AcBBUPEzogBAKG2voOFk8f381FcHjoaVMcRxq1ub109fo0IMRZhdNB60gBQfsPVBxM6ICwp72brl4fi8dphnK4gekruuLXsbyzVTuUEyE4fcXQS2nqtBUqXiZ0QAglpI2nNZSHEpq+Ip41hB3WHEZzNAchripdDnr7A3Qd8h21zxijNQQVNxM+IOTnZKbFmPq8nEyK87PjOtJoZ6sHV162tl/HWWjltBb30X9Lj9dHb39A/wYqLiZ0QKhp6GThFBeZGekxYqbSGd9chJ0tbuZVFOoIozgbWFt5kOCuOQgqniZsQPD6/Gxt6hr3+Qfh4rmUZnCEkYc5umxm3A0EhEE6ljUgqHiasAFhW7ObPn8grQJCZRynr9jv6aPzUD/ztP8g7iY7gx/2LYPVEDwaEFT8TNiAUJNGHcoh1a7g1MnxSE47vCiO1hDizZEd7A8arA/h8DxGGhCU/SZsQKit76C8KHdguGY6qLRGGsWjYzk05FRnOU2MYLby0fMZtbm9ZGcKrrzsJJRKpbsJGxBqGjo4cer4XDJzKNWh5LQ4dCzvaHHjdGQxWZsqEqLCOfjKaW1uL2WFuWSkyUAIlVomZEDoPNTP7rZuFk8b3/MXRQpNXxGvGoLOYZQ4Fc7cwQOCJxgQlIqHCRkQNloznKZT/wEcHp0Sj47lulaPdignUKXTwX6PF58/cMR2TUpT8TQhA0JN/UEAFqXBlBXh8nIymZSfbXsuwn6PlwPdfTrkNIEqXA4C5vCoohCd2E7F0wQNCJ3MLi9Iy465Slee7UtphhbF0UntEie0UE54858/YGjv7tMagoqbCRcQjDHU1HekxYR2g6mOQy5CnbVspk5qlzihpTTDV0472NOHP2A0IKi4mXABobmzl/0eb9r1H4RUxmEpzS3NXRTlZlHh1A+iRKkIzWcU1rGsWcoq3iZcQEinGU4HU12cx8GeftuS0/r9AV7c3MKZ88p0hFEClRbkkJUhR0xfoQFBxduECwg1DR3kZGZwXFV6Nn/YPdLojR1ttHf3sXLJVFuup6KTkSFMLsodvIagncoqTiZeQNjbwXHVTnKzxveSmUOpKg4FBHuajZ5c38ik/GzOnlduy/VU9CpcRyan6TxGKt4mVEDwBwwbGztZPDW9EtLChRbKsWOkUVdvPy9taeHjJ1aTkzWh3iopITh9xZE1hPycTApys5JYKpXOJtR/eV2rh54+f9r2H0D4UpqxB4TnN+7D6wuwcsmUmK+lRi84fcXhUUaalKbibUIFhHTvUIbgTJmT8rNp6oi9yeiJ9Q3MKitIqynCx5MKpwOP14fHG1xKU5PSVLxNqIBQ09BBkSOLWaUFyS5KXFW5Yl8op7HjEG/tPsDKJVN0dFGSVLqsdRGs2l6bR2sIKr6iCggicr6IbBeROhG5cZD9M0TkZRHZICKvicjUsH3TReRFEdkqIltEZKa1fZaIvG1d81ERybHrSQ2ltj44w2m6zxRZXRx7ctpT6xsBWLFYm4uSZSAXwfpbapORircRA4KIZAK/AS4AFgBXisiCiMN+DjxgjFkE3ArcFrbvAeB2Y8xxwHKg1dr+U+CXxpg5wEHgulieyEgO9fnZts89IZo/Yk1OM8bw5PpGls2YxPTSfBtLpkZjICC4e/H6/HQe6tcmIxVX0dQQlgN1xpjdxpg+4BHgkohjFgCvWLdfDe23AkeWMeYlAGOMxxjTI8E2iHOB1dY59wMrYnomI9jc1Ik/YNK6/yCkypVHR08/h/rGlpy2uamLulYPK5dq7SCZBtZW7vTS7ukDdMipiq9oAsIUoD7sfoO1LVwtsMq6vRIoEpFSYB7QISJPiMh6EbndqnGUAh3GGN8w17TVwJKZaTzkNCQ00mistYQn1jWSk5nBRQur7SyWGqWC3CyKcrNo6erVLGWVEHZ1Kn8LOFtE1gNnA42AH8gCzrT2nwzMBq4ezYVF5HoRWSMia9ra2sZcwNqGTqpdDiY702fJzKFUxbCUps8f4JnaJs6dPxlXfvrNBjveTHbmsq9TA4JKjGgCQiMwLez+VGvbAGNMkzFmlTFmCXCzta2D4Df/Gqu5yQc8BSwF2oFiEcka6pph177LGLPMGLOsvHzs2bK19R0TorkIDtcQmsYQEP5Wt5/9Hq82F6WISpeDFnevZimrhIgmILwLzLVGBeUAVwDPhB8gImUiErrWTcA9YecWi0jok/xcYIsxxhDsa7jM2n4V8PTYn8bw2j1e9h7omTABITR18r4xNBk9ua6R4vxsPnjsZLuLpcagwumgJayGUFqgAUHFz4gBwfpmfwPwArAVeMwYs1lEbhWRi63DzgG2i8gOoAL4kXWun2Bz0csishEQ4G7rnO8C3xSROoJ9Cr+37VlF2GAtmTkRRhhBMDmtpCBn1DUEj9fHi1v2cdGiKp2qIkVUOh20ur20dPUyKT9b/y4qrqKaFMUY8yzwbMS2W8Jur+bwiKHIc18CFg2yfTfBEUxxV1PfQYbAwinp36EcUuVyjLoP4bmNzfT261QVqaTC6cAXMGzf59bmIhV3E+LrRm1DB3MnF02oScGqXI5RT1/x5PpGZpTms3T6pDiVSo1WKBdhc1OXBgQVdxPiE/IbH5pH56H+ZBcjoapceax5/2DUxzd3HuLN3e3867lzdaqKFBLqDzrU79ekNBV3EyIgTJTO5HCVLsdAclpezshrPzxd04QxaHNRiglftlRrCCreJkST0URUPYqFcowxPLmukaXTi5lZlt4T/4035YW5hKbe0oCg4k0DQpoaWCgnio7lLc1dbG9xs3KpLpOZarIyMyizmoo0IKh404CQpgaS06LoWH5yXSPZmcJFC6viXSw1BqF+hPLC9M+yV8mlASFNVQxMjDZ8DcHnD/B0bRPnHDuZSQVxn4FcjcHkIisgaA1BxZkGhDTlyM6kNIrktH/saqfN7WWVdianrNBCORoQVLxpQEhjVcWOEaeveHJdA05HFucep1NVpKql0ycxZ3IhxXk62aCKrwkx7HSiqnTm0XCwZ8j93V4fL2xuYcWSKeRmjTw0VSXHqqVTWaUd/ioBtIaQxkZaSvOFzfs41O9nlc5sqpRCA0Jaq3Q56DzUT0+fb9D9T65vZFpJHstm6FQVSikNCGmtephchJauXv5Rt5+Vi6foVBVKKUADQloLjV9v7jg6IDxd00jAwAodXaSUsmhASGOHawhHjzR6Yl0jJ04rZnZ5YaKLpZRKURoQ0liFNX49ssloa3MX2/a5NfdAKXUEDQhpLDcrk7LCnKMCwpPrG8nKED5+YnWSSqaUSkUaENJclSvviCYjf8DwdE0j5xxbTolOVaGUCqMBIc1VRiyl+eaudlq6vKxcoolOSqkjaUBIc9URS2k+sb6BIkcW5+lUFUqpCDp1RZqrdOXR1euj2+tDBJ7ftI+LT6zGka1TVSiljqQBIc0dXjmtl02NnfT0+TX3QCk1KG0ySnOVzsNLaT6xvpEpxXksn1mS5FIppVKRBoQ0V10cTE7b0NDJ33e2sWJJNRkZOlWFUupoGhDS3GRnMDntvn++R8Cgo4uUUkPSgJDmgslpubS5vSya6mLOZJ2qQik1OA0IE0CVNcndSu1MVkoNI6qAICLni8h2EakTkRsH2T9DRF4WkQ0i8pqITA3b5xeRGuvnmbDt94nInrB9i+15SipSlctBpk5VoZQawYjDTkUkE/gN8GGgAXhXRJ4xxmwJO+znwAPGmPtF5FzgNuAz1r5DxpihPuy/bYxZPfbiq2hcfdpMzpxXTlmhLtKulBpaNDWE5UCdMWa3MaYPeAS4JOKYBcAr1u1XB9mvkui0OWV85tQZyS6GUirFRRMQpgD1YfcbrG3haoFV1u2VQJGIlFr3HSKyRkTeEpEVEef9yGpm+qWIDPr1VUSut85f09bWFkVxlVJKjYVdncrfAs4WkfXA2UAj4Lf2zTDGLAM+CfyXiBxjbb8JmA+cDJQA3x3swsaYu4wxy4wxy8rLy20qrlJKqUjRBIRGYFrY/anWtgHGmCZjzCpjzBLgZmtbh/W70fq9G3gNWGLdbzZBXuBegk1TSimlkiSagPAuMFdEZolIDnAF8Ez4ASJSJiKha90E3GNtnxRqChKRMuB0YIt1v8r6LcAKYFPsT0cppdRYjTjKyBjjE5EbgBeATOAeY8xmEbkVWGOMeQY4B7hNRAzwBvAV6/TjgDtFJEAw+PwkbHTSH0SkHBCgBviijc9LKaXUKIkxJtlliNqyZcvMmjVrkl0MpZQaV0RkrdWXOyzNVFZKKQVoQFBKKWUZV01GItIGvD/G08uA/TYWx25avtho+WKj5YtNqpdvhjFmxHH74yogxEJE1kTThpYsWr7YaPlio+WLTaqXL1raZKSUUgrQgKCUUsoykQLCXckuwAi0fLHR8sVGyxebVC9fVCZMH4JSSqnhTaQaglJKqWFoQFBKKQWkYUCIYrnPXBF51Nr/tojMTGDZponIqyKyRUQ2i8jXBjnmHBHpDFta9JZElc96/PdEZKP12EfNEyJBv7Jevw0isjSBZTs27HWpEZEuEfl6xDEJff1E5B4RaRWRTWHbSkTkJRHZaf2eNMS5V1nH7BSRqxJYvttFZJv193tSRIqHOHfY90Icy/cfItIY9jf82BDnDvu/HsfyPRpWtvdEpGaIc+P++tnOGJM2PwQn39sFzAZyCC7csyDimC8Dv7VuXwE8msDyVQFLrdtFwI5ByncO8OckvobvAWXD7P8Y8BzBSQlPBd5O4t96H8GEm6S9fsBZwFJgU9i2nwE3WrdvBH46yHklwG7r9yTr9qQEle8jQJZ1+6eDlS+a90Icy/cfwLei+PsP+78er/JF7P8FcEuyXj+7f9KthhDNcp+XAPdbt1cD51lTcMedCa4Bsc667Qa2cvTqc6nuEoLrZxtjzFtAcWgq8wQ7D9hljBlr5rotjDFvAAciNoe/x+4nOL17pI8CLxljDhhjDgIvAecnonzGmBeNMT7r7lsE1zhJiiFev2hE878es+HKZ31ufAJ42O7HTZZ0CwjRLPc5cIz1T9EJlJJgVlPVEuDtQXZ/QERqReQ5ETk+oQUDA7woImtF5PpB9kfzGifCFQz9j5jM1w+gwhjTbN3eB1QMckyqvI7XEqzxDWak90I83WA1ad0zRJNbKrx+ZwItxpidQ+xP5us3JukWEMYFESkEHge+bozpiti9jmAzyInA/wBPJbh4ZxhjlgIXAF8RkbMS/PgjkuBCTRcDfxxkd7JfvyOYYNtBSo7tFpGbAR/whyEOSdZ74Q7gGGAx0EywWSYVXcnwtYOU/1+KlG4BYcTlPsOPEZEswAW0J6R0wcfMJhgM/mCMeSJyvzGmyxjjsW4/C2RLcLW5hDCHlzxtBZ7k6KVNo3mN4+0CYJ0xpiVyR7JfP0uLHF4RsApoHeSYpL6OInI1cBHwKStoHSWK90JcGGNajDF+Y0wAuHuIx03265cFrAIeHeqYZL1+sUi3gDDicp/W/dCIjsuAV4b6h7Cb1eb4e2CrMeb/DXFMZahPQ0SWE/wbJSRgiUiBiBSFbhPsfIxc2vQZ4LPWaKNTgc6w5pFEGfKbWTJfvzDh77GrgKcHOeYF4CMSXGZ2EsHX+oVEFE5Ezge+A1xsjOkZ4pho3gvxKl94n9TKIR43mv/1ePoQsM0Y0zDYzmS+fjFJdq+23T8ER8HsIDgC4WZr260E3/wADoJNDXXAO8DsBJbtDILNBxsILhtaY5X3i8AXrWNuADYTHDXxFnBaAss323rcWqsModcvvHwC/MZ6fTcCyxL89y0g+AHvCtuWtNePYGBqBvoJtmNfR7BP6mVgJ/BXoMQ6dhnwu7Bzr7Xeh3XANQksXx3B9vfQezA06q4aeHa490KCyveg9d7aQPBDviqyfNb9o/7XE1E+a/t9ofdc2LEJf/3s/tGpK5RSSgHp12SklFJqjDQgKKWUAjQgKKWUsmhAUEopBWhAUEopZdGAoJRSCtCAoJRSyvL/A/qsGwZGnblTAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(np.arange(len(eval_acces)), eval_acces)\n", - "plt.title('test acc')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "可以看到我们的三层网络在训练集上能够达到 99.9% 的准确率,测试集上能够达到 98.20% 的准确率" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**小练习:看一看上面的训练过程,看一下准确率是怎么计算出来的,特别注意 max 这个函数**\n", - "\n", - "**自己重新实现一个新的网络,试试改变隐藏层的数目和激活函数,看看有什么新的结果**" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/6_pytorch/5-nn-sequential-module.ipynb b/6_pytorch/5-nn-sequential-module.ipynb index d37a416..9d3b8c9 100644 --- a/6_pytorch/5-nn-sequential-module.ipynb +++ b/6_pytorch/5-nn-sequential-module.ipynb @@ -6,7 +6,7 @@ "source": [ "# 多层神经网络\n", "\n", - "本节在前面学习线性回归模型的基础上,我们学习如何利用PyTorch实现多层神经网络。" + "本节在前面学习线性回归和逻辑回归模型的基础上,本节学习如何利用PyTorch实现多层神经网络。" ] }, { @@ -14,7 +14,7 @@ "metadata": {}, "source": [ "## 1. 多层神经网络\n", - "在前面的线性回归中,我们的公式是 $y = w x + b$,而在 Logistic 回归中,我们的公式是 $y = Sigmoid(w x + b)$,其实它们都可以看成单层神经网络,其中 Sigmoid 被称为激活函数。" + "线性回归的公式是 $y = w x + b$, Logistic 回归的公式是 $y = Sigmoid(w x + b)$,其实它们都可以看成单层神经网络,其中 Sigmoid 被称为激活函数。" ] }, { @@ -22,48 +22,31 @@ "metadata": {}, "source": [ "### 1.1 神经网络的结构\n", + "\n", "神经网络就是很多个神经元堆在一起形成一层神经网络,那么多个层堆叠在一起就是深层神经网络\n", "\n", "![nn demo](imgs/nn-forward.gif)\n", "\n", - "可以看到,神经网络的结构其实非常简单,主要有输入层,隐藏层,输出层构成,输入层需要根据特征数目来决定,输出层根据解决的问题来决定,那么隐藏层的网路层数以及每层的神经元数就是可以调节的参数,而不同的层数和每层的参数对模型的影响非常大,我们看看这个网站的示例 [demo](http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)\n", - "\n", - "神经网络向前传播也非常简单,就是一层一层不断做运算即可。" + "可以看到,神经网络的结构其实非常简单,主要有输入层,隐藏层,输出层构成,输入层需要根据特征数目来决定,输出层根据解决的问题来决定,那么隐藏层的网路层数以及每层的神经元数就是可以调节的参数,而不同的层数和每层的参数对模型的影响非常大,具体的动态示例可以参考 [demo - classify2d](http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html) 。神经网络向前传播也非常简单,就是一层一层不断做运算即可。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 1.2 示例程序" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import torch\n", - "import numpy as np\n", - "from torch import nn\n", - "from torch.autograd import Variable\n", - "import torch.nn.functional as F\n", + "### 1.2 多层神经网络示例程序\n", "\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline" + "首先生成一些训练、测试数据。" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB7HElEQVR4nO2ddXgUV/fHP3dmLW4kIYQEd3d3hwItUHd52771t+7u3lJ3+bWUtlQoxd3dPSEQkhBCiNvazPz+2BAIu3GH+TwPD8nszL1nN7tn75x7zvcITdPQ0dHR0bnwkeraAB0dHR2d2kF3+Do6OjoXCbrD19HR0blI0B2+jo6OzkWC7vB1dHR0LhIMdW1ASTRq1Ehr3rx5XZuho6Oj06DYtm3baU3TQj09Vm8dfvPmzdm6dWtdm6Gjo6PToBBCxJf0mB7S0dHR0blI0B2+jo6OzkWC7vB1dHR0LhJ0h6+jo6NzkaA7fJ1KY03N5OTq3eQeT6lrU3R0dMpBvc3S0am/aKrKxvs/4vBX85EtJlSbgyajezL8l2cweFvq2jwdHZ0S0Ff4OhVm/8w/ifl2IarNgSMrD8Vq58TS7Wy458O6Ng0A1eEkY+9R8pJS69oUHZ16he7wdSrM/g/moOTbih1TrHbiZi1HsdnryCoXcbNXMCt8OvMG3sucNjcwf9gDFJzKqFObdHTqC7rD16kwtoxczw+oGs6CunP4p7ceYu2tb2HPzMWZW4BitXNq436WTHqyzmzS0alP6A5fp8I0HtYNhHA77hMdhjPfSvquI3Wy0t/73u8o533haA6FzAPxZO4/Vuv26OjUN3SHr1Nh+rx5O0Y/LySja89fyBKylwlTkC9zWl/P/KEP8HPoNA5+Ma9W7cpLOAUeOrhJRgP5yem1aouOTn1Ez9LRqTABbaO4dM/X7H37V1I37iegfTTZMYmkbY9BtTtRrK5V9uYHP8G/ZQRNRvfCmpbFgY/+ImnxVnybhdPpfzMI7dO+Wu2KHNObtK2Hi+Y/g2pzENKjdbXOpaPTEBH1tadt7969NV08rWGQl5TKnNbXo9gcbo81GdOLoT8+wd89bseeketyxkIge5kY/NXDtLxqZLXZYUvP5q+ut2E9nYVqdwJg8LHQ+aHL6fH8TdU2j45OfUYIsU3TtN6eHtNDOjpVpiAlA8ls9PhYftJp9rzxC7bT2WdX3pqGkm9jw10foDqc1WaHOdifqTu+oMM9l+LfLoqwgZ0Y8t1jurPX0SlED+noVJnADs3QFNXtuGQ00GRMLxL+3ejRsatOhazDiQR1al5ttlhCA+n79n/p+/Z/q21MHZ0LBX2Fr1NlDF5mer12G7K3ueiYMMoYA7zp8siVWBoFeLxOczgxB/nWlpk6Ohc9+gpfp1roeM9l+LeOZM9bs8k/kUbkmF50ffxqvJs0otP/ZpC+6wjOPGvR+cJoILR/R7ybNKpDq3V0Li50h69TbTQd35em4/u6HW82bQgZe4+y541fkMxGVIeToM4tGPHrs3VgpY7OxYuepaNTa9gyckjfGYtXRAiB7aPr2hwdnQuS0rJ09BW+Tq1hDvIjYkSPujbDDcVWmCpq8pxppKNzoaA7/AuYrJhE8hJSCe7assSN04uZ3PgU1t76FidX7QIBESN7Mvirh/FpGlrXpuno1Ai6w68GEuZvYt97v2M9lUnUJf3p9OAMLCF152Btmbksu/QZTm85hGQyoFjtdLjnUvq8eQfCgwbOxYizwMa8AfdgPZWJprpSSpOXbWfewHuYEft/tbLa11SV+L/WcXT2CmSLiba3THDpFOno1BC6w68iu9/8hV0v/ViUgZJ1OIHYHxdz6c4vMQf714lNa258ndSN+10yBwUuGeNDn/1DYMfmtL15fJ3YVN+In7MaR25BkbMH0BQVR1Y+x/9eT4vLh9Xo/JqmsXz6c5xYut313hGC+D/W0PGB6fR66ZYanVvn4kXPw68C9qxcdj7/fbF0Q9XmwHo6i/0f/VUnNtkyc0lavLVIWuAMzjwr+9/7vU5sqo9kx57AmVvgdtyZbyUnNqnG5z+xZNtZZw+gaTjzrOx75zdyjp2s8fl1Lk50h18F0nce8SgpoFodJC3cXAcWgSM7DyF5/rPa0nNq2Zr6S1DXlhh8vdyOy95mgrq2rPH5j/+zvthC4QxCkjixZFuNz69zcaI7/CpgCQv0rAUjBN6RdbPx59M0FFOgj9txYZCJHO8xU+uiJHryALybhBRJPANIJiO+0eFEju9T4/ObAnwRBtn9AVlg9HP/ItLRqQ50h18FAjs0I7BDM7cPrsHLRKcHpteJTUKSGPT5g8je5qKVvmQ2YgrwqTERsbykVPa9P4fdr88ibdcREv7dyMHP/iFtR0yNzAeQfzKdHc9/x5JLnmTbM9+Sn5xWoeslo4FL1s+k9Y1jMQb4YAr0pc3N45m45gOsqVke++Hmn0xn7X/eZlbj6fzW8lr2vDUb1alUyv7WN4xBMro7fAFETR5QqTF1dMpCL7yqIgUp6Sy77FnSdx1BMhrQNI1+799N25sn1KldaTtj2ffe72THJhExvDsd77sMr/Dgap/nyKxlrLv1bQAUhxMUFclkQMiyK9VxRA9G/fFCsZV0Vck8eJx5A+5BsdpRbQ4ksxHZbGTSuplVEmLLOpzAyqtfJmt/PAiBb4sIhv/8FMHdWmHPyuXPTrdQcCoTrdDJy95moib1Z8TsylUMx/7fEtbf8V6R4xdCMGruyzQe0rXSz0FHp7TCK93hVxM5R5OxpWUT2LkFBouprs2pFWzp2cxueqVbw5Fzkb3M9HjxJro8dEW1zbtwzMMkL99ZvLuVEDQe2pUJK96t1JhOq53fml+NNTWr2LimAB8uP/YzMd8uZNvT37g1b5ctJqbu/IKAtlGVmteenUfyip3IZiMRI7ojmy+O945OzaHr4dcCfi0iaNS73UXj7AESF2z2HIc+B6XAxuEv/q3WeU+u2u3eylDTOLlmN5VdwBz/ex3OApvbuKpDIW7WClLW7nVz9uBSBU3bEVupOQFM/j40mzqIpuP76s5ep8bRHb5OjaPa3TthVQWDl2fHKFtMZRaWaapKXmIqjpz8YsfzElJRre52OvOt5B5PIaBdFJLJQ1hK0/BtFl5+43V06hDd4etUmqYT+hbFs0tCMhtpfuXwap239c3jkc+7k5ItJlrfOK7U6479uZbZTa9gTrsb+TlsGiuvfglHYS5+aN/2Hh26wdeLsP4daXfHJW77EMJowK9FE0L7dajiM9LRqR10h99AUOwOnPnuedt1iTnYn0FfP4xsMZXY4tArLIhuT1xTrfP2fu0/NB7WFdnLjNHfG9nLTNjgzvR9644Sr0nddIDV171KwckMlAIbqs1B/F/rWHn1ywCED+lCo97tkL3ONnGRLSb820TSdFI/fKPDGbf4TddK32xEMhmIHNOT8Uvf0uUqdBoM+qZtPceWkcP6O97l+Nz1aIpKcPfWDPryIUK6t65r04rIS0pl7c1vkbxih1urQ0tEMFclzC6xGKwqZB6IJ/PAcQLbRxHYsXmp5y6b/hzH/1rnFqOXLSamx/yAT2Qois3Onjdns/fd33Bk5YEQ+DRtxIBP/0fUxH5F11hTM5EtJox+3tX+nHR0qoq+adtA0TSNRWMe4fjc9ah2J5qikrbtMAuG/a/Ceec1iU9kKLnHUzz2tXVm55MdUzNSBYEdmtF82pAynT1AzpET7hu9uEJOeQmunHvZbCI7JvGsLIWmkZeQyoorXiB10wFURSH2xyWsvOYVVlz5IsfmrK70JrGOTl1QLcnRQohvgEuAU5qmdfbwuAA+ACYC+cBNmqZtr465L2RObz5I1qEEN10cxe7g0Jf/0uPZGyo9tqaqJC3eSvrOI/i1jCB66sAqZYkYvC2e51HUYr1uqxNbRg573vyFY3PWYPT1osM9l9LmpnEe7ybCh3Qh80A8mqP4noNqcxDYwdWMxZqWxbHfV7ulmSoFdna+8n+uTKCVu4okEVLW7CHh340M+ebRGnl+OjrVTXWt8L8DSpNhnAC0Kfx3O/BpNc17QZN95ARCco8PqzYHmXuPVnpce3Yec3vfyYorXmT7M9+w7j9v81vL68iNT6n0mO3/OwWDT3GnLySJwE7N8I0Kq/S4JeHIK+CfPv9l3/tzyIlNIn1nLJvu+4h1d3jOw+/y6FUYfbzgnC8Dg7eFTg9fjinA1Ug9LyG1xEyc9J2xxZw9uATpjs5eSfruI9X75HR0aohqcfiapq0G0ks5ZSrwg+ZiIxAohIiojrkvZIK7tkR1uodJZG8zof07VnrcHc9+R+aB4zhzC1ySwDkFWE9lsObmNyo9ZttbJ9B8+lBkLxMGXy8Mfl54N23EiN+er/SYpXHkx6Xkn8xAtZ1NpXTmW4n7aZlHtUnfqDAmb/mUFlcOwxIeRGDn5gz49AF6vnBz0Tn+rZqgOtyzjoQsYQzw8Sh2pqmqqwisHKhOhaO/rWLNLW+y9YmvyK4FVU4dnXOpLT38SCDhnN8TC48ln3uSEOJ2XHcAREfrPU+DOreg8fBunFy5E6XAFWYQsoTR14s2t1ReuuHIrGXFHCW4Qi8pa/fiyCtwrYQriJAkhnz3GF2fupbUjQfwbhJCxIjuNbJZC3Bi2XYUD1lLktFA6qYD+DVv7PaYf6smDP/p6RLHNPp50+mB6ez/4I9iGVGyl5moif3JiT3h9rpJRgPmYL8y7VVsdhaMfIiM3XE486wIo8z+D/9g6I9P0HzakDKv19GpDurVpq2maV9omtZb07TeoaF6mzmAUX+8QKcHL8cSFojR35vmM4YxecunmAN9Kz9oDW40BrRpSuvrx9BkVM8ac/YAvs3DER7ExzRNw7tJSKXH7fnyLfR5+w58WzTG6OdNkzG9mLT2AzrdP83j8xECml02uMxxD3+zkIxdcUV3CZpDQSmwseLyF9j+wveeVVd1dKqZ2lrhJwHnio00LTymUway2USvl26p1i5ILa4YweGv5hevgJUEYf07Vmp1Xxe0v3MKhz6di/OcEIyQJbwaBxM+uEulxxVC0P7OKbS/c4rbYyPnPM+qq192ZeZorgyfUX+9VK70zKO/LPdcR6Fp7HltFpm74xg554VK262jUx5qy+HPBe4RQvwC9AOyNE1LLuManRqi58u3kLxiB3kJqThzCzD4eiFbTAT3aM2c9jcim420u2Oyq7pULl0rp67wb9WEkX+8yJqb38CRnY+mqAR1a8WIX58tsxAqLzEVZ4EN/9aRFSqaajq+L1elzCF14wGEQSa0X/tyvz7nb2ifi2p3kLhwM1mHEghoVzkRNh2d8lAthVdCiFnAcKARkAI8BxgBNE37rDAt8yNcmTz5wM2appVaVaUXXtUsqlMhYd4G0ncewSc6jL3v/kpu3MmilETZ20LTCX0YWUObrtWBPSuXlLV7sOdYCR/UqcxsoNz4FJZf/jyZe48hJAlTkC9Df3yCiOHda9zW+L/Xsfq6Vz1u/IJr/2DQlw/R4orhNW6LzoWNLo98kWLPyqXgVCa+zcKRTZ6lDwDiflnOutvfdevxKnubuWTDRwR3aYmmaShWe7kEymqD/TP/ZOtjXyCZjWiqijnQj7GL3iCwvefNflVR+L319eQnpBZrXG7wsXDZvm/wja5ZATRN09j84Ccc+OgvjwVqBh8L45e/Q2if9jVqh86Fj15pe5HhtNpZdf2rzGo8g7m97mRW2DQOfPJ3ieefXLXLY0Nv1eFkzxuz2PnaT8wKm8b/+V/C7MjLOfztgpo0v0xObdjH1ie+RLHacWTl4cwpIC8xlcVjHy3mzM/l5Iqd2NNz3B5XHQqHv5pf4zYLIej33t1MWPmem+6QZDQQ0C6KRr3b1bgdOhc3usOvBTRN48j/LeGvHrczO+pK1tz6JrnHzxY5KXYHBacyUJXKtcs7n/V3vkv8H2tQbQ6cuQU4svPZ+ujnHJ+73uP5PtHhSB50/DWHwtFfV7HjqW+wpWWjKSoFJzPYeO9MjsxaXi22VoYDn84tSlMtQtOwZ+VyasN+j9fkn0hD09y/DFS7g7Sdsex58xf2z/yzxiUrwgd1ZuKq9wns3BzJKCOZDDSd1I9xi9+sF3dOOhc2ekinFtj21Nfs//CPovitkCVMgb5M3fkFBz/7h/3vz3FJEHiZ6fnSzXS4a2ql57Jn5/FL+HQUm7u2e6O+7Zm88WO34/nJacxpe0OJ8WVP+LVqwoyYHyttZ1VYPPFxkhZucTtu9Pdh2M9PFRM6O0PWoQT+7nG7m2yCMMhFjlYYXOufId8/TosZwzzOrdgdHPlxCUf+bwmyxUy7Oy4heuqgSjlrW2YustmIwatmpCd0Lk5KC+nUVpbORYstI4d97/1ezNGcqW5deeWLpO88grOwk5JitbPl0c8xBfrS6ppRJY7ptNo59Pk/HPlxCZLRQLvbL6HVDWOQZBlbWrarC5UHh5+f6N6YG8A7IoSxC15n1bWvkpd0GkoIi5xLXsKpMs+pKZpdNoSU1Xvc0hxVu4OwgZ08XhPQLopm04dw/M91RdcJo4zmVM8KoBW+ZGtufIPIMb2KJBeKxlcUFo17jLQth4rGSFm7h9Y3jmXAR/dX+HmUVEtxetth9r49m+zYEzQe2pXOD12Od5NGFR5fR+d89JBODZOx96hHrXjV7uDUxgNFzv4MSr6NnS/+UOJ4qqKwaPTDbHvqa9K2x5C66QAb75vJqmtfBcAnKsxjw3AhSYSVkp8ePrgLlx/7mSajepTrefm3iQQg/8Rpdrz4A6tvep2Ybxe62gTWMK2uH0NA+6izgm1CIHub6fXabaUWpA357jH6vHMnQV1b4tc6kqAuLT2eJwwyiR7uIBLmbSRt26FiXzTOPCsx3ywkKyaxak+qkOP/rGf+sAc4+usq0rYd5sDHf/Fnl9s8ykXo6FQU3eHXMD5NQ93K8QFXiWYJ4bT8E6dLHC9x/ibSd8cV66/qzLOSMG8DaTtjkQwyvd+6o5hCpZAkDD5mer5wU6m2CiE8iqCdj+xtpvfrt5Oyfh9z2t3I7td+5sgPS9h430z+6nobtoycUq+vKgaLiYlrP6Tve3cROa4PLa8eybhFb9Lp/umlXifJMu3vmMylO79kxuEfCO1T0iap5vFvk7RoC85cD2EvSXBy5a5KPJPzZlVV1t/5nutvWzi/anfiyM5jx7PfVnl8HR3d4dcwfi0iCB3QEem8tEjZy4Q52N/jNUGdW5Q4XvJKzxk1mqKSsmYPAO1uncjI354jbGAnfKLDaH6FS46hPEU90VMGEn3pIJfTl4Srm5XJgHdkI2SLiaAuLRnx63M0ndiP1de78srPfKE586zkJZxi92s/lzlPVTFYTLT7zyTGLnidYf/3JOGD3FS5SyUn7gSn1u/z6Ng1p0Lk+L5ux73CAj2qaUqyXC49nbLITTiFPTPX3R5F5cRSXU1cp+roMfxaYNQfL7DmpjdIXLgFSZYw+Hkz4JMHUAqsrLv93WKrddnbTJ83S27V5x0RjGwxuW0+SiYDXuFBRb83ndCPphPcNy/LQkgSQ394gtNbDpG0cDPGAB9aXjUCr/DgYuflHk+hINldIFW1Ozn626pSn0Nd47Ta+XfQfRScynR7TLaYGPz1Ix5DQ61vHMeet34FiuveCINM00n9K23P6a2HWP/f90nbdrjEc8whnhcHOjoVQXf4tYApwJdRf76ELSMHe1YevtFhRUJcpgBfdjz3HTlHTxLUpQW9Xr2N8BI2HgFaXTeGnS+4x/glo4GoKQOrxV4hBKF92xPat+QiINliKrHbk8Gr8o1UaoPjf67FkWd1W91LJiO9Xr2VlleN9HidX4sIhs96mtU3vOY6oGkY/bwZ/c8rGDyktZaHnLgTLBj5kMe7tjMYfCx0evBynFY7adsOY/CxENytlZ7GqVNhdIdfTvKSUombtRxbWjaRY3vTeHj3Cn/gzEF+mIOK3/pHTepPVAVWh7LFxPDZz7L21rdcaZSahiUsiFF/vlBpp1MZvMKCaNSrLambDhSrHDV4mz0Kj9U1WYcT2PzgJySv2IUQeNxcVu0O7Fn5pY4TPWUgV5/6g9SNB5AtJhr1bltpVdCClHTW3vZOic3pDX5eaA6FDvdciuxl4pfwaSAEmqriFR7MmHmv6to7OhVCz8MvBwn/bmTFlS+iKSqqzYHBx0LEyB6M/OOFWhMXyzqUwOobXiN9p6u7UqO+7en6xDX4NQ8noEMzhBA4rXaO/7WW3PgUQvu2r9SXUkXITTjFgmH/w5qWBaqGpmo0ndiX4bOeQTLUH9G1/OQ0/ux0C/asvFKloQ2+Xgz7vyeJrqY7pdI48tNS1v3nHRS7A1R3mwx+XvR49kba3DKe/BNp/NP3LpRzv6SEwLtJCJcf+7neCtzp1A16Hn4VUGx2Vl37iltWTPLyHRz7dRUtr/Z8+1+dOHIL+HfwfdjSc4ocVuqG/az7z9tcHvcT4FrBzh/yAIrVhrPApXkT3K0V4xa/WWOFPb5RYcyI/ZHk5TvIS0ylUZ/2BHVqXiNzVYX9M/90rehLW9wIMDfyp+mkiu97VJT8k+kuZ3/ePsy5KAV2jsxaxoml25CMhuJS1gCahiM7n5Mrd9FkVM8atljnQkF3+GVwav0+j8edeVZif1xcKw7/6K8rXc7hHIelqSqO7Hz+6Xc3mfuOoanFUwmduQWkbT/Mnjd/ocdzN9aYbUKSaDK6V42NXx2c3nLQc2rsuWhgTckkY3ccIT3a1Kg9x/9aBx56FRchBJqmkb49xvWrLHkUXAMN6+msmjFS54JET8ssAyHLUMLCsKywhbPAxtHfVnHoi3lkHzlRaRty4pI9yh4486xk7IlzOQMPq1elwE7s94srPe+FQlCXlggPxWjno1jt7Hq15lNKVafiMYwDrupfYZDgHAfv2dm7hN/CB1csHVXn4kZ3+GUQNrCTx9xrg4+l1L6yqZsPMrvJ5ay97S02PfgJf3W5lU0PfFxiZktpNOrdFoNvCZ2oyhiuJPXIi4mO916G7KHa2Q1NI3Pf0Rq3J3ryAI/HZW8zjYd0RfPQSB1JFKvlMPhY6Hj/dHwi9VagOuVHd/hlIBlkRv35IkY/Lwy+XkhmI7KXmRZXjSB66iCP16iKwtLJT2EvlO5V8m0oVjuHv55P4vxNFbYh6pIB+EaHFZNoEHLZfzrZYqLVtaMrPN+Fhl+LCMYve5uQnm0QkoQwGTy+fkKWCOnZtsbt8W0WTs+Xbkb2Mrl0jyQJ2ctMx3suJaB9tEfbDN4W2v5nIqEDOhI5rg/Dfn6KXq/eWuO26lxY6Fk65cSRk0/8n2uxpefQZHTPUqthU9buYcmkJ3HkuKf4RU8dxKg/X6zw/PasXHa88ANxs5YjJEFgx2acWr/PXSa4EIOvF/5tIpm46n2MJd0dXIQodgeSQWbzw59x6It5xTbjDT4WJm/+hMAOzWrFlsz9x4j7dSWaU6X59CGE9GhDxt6j/NP/7mJ2IQTekSFcflTPyNEpG73jVS1zYtl2lk9/Dke2u8NvMrY34xa+UeU57Fm5/N7mhmJNPYTJgE+TEFpeO5rQvu1pOrEfQpJYtTSWRX8fIC/PRuduTZh+bXdCQn2qbEN9wFlgY+sTXxL77UKcBXYaD+tK/5n3ldj56gyaqrLvvd/Z++5v2NJzCO3bnr7v3kWjXjW/wi+LuF+Ws+6OdxFCoCkqXo2DGfPvqwS0vXBy7nNzbCz+5wA7tybiF2Bh/JSOdOnRpK7NuiDQHX4t4yywMSt8ulv1pMHHwoBPHqD19WOqZZ6cYyfZdN9MkhZtRTIZaHnNKPq+fSdGP++ic37+ZisrFh3GbnPFhSUJvHxMvPrhFAKDGv7Kf9G4Rzm5cheq46zcgTHAh2kHvsO7cXApV9ZvzlTVGn29COra8oKqqs3LtfH0A/PIzrLidLgWKyazzLSruzHh0pKrzHXKh97isJYxeJkZ8u2jyF7mIqlig6+FsAGdqjWN0695Y0bPfYUbbYu4PudfBn3+YDFnn5NtZfmCQ0XOHlxS9zark8X/HKg2O+qKhPkbObFkWzFnD64v3EOfza0jq6oHg8VE+KDOF6SEwtL5h8jJthU5ewC7TeGPn3dRkF9ybUJ9JzOjgB2bEzgam1ap5IzaQM/DryGaTx9KSM82xH6/COvpLJpO7E/T8X0qXYZfGRLjMzEYZRyO4pk6TofKwb0pJVzVcNhw94cej2t2J6e3HUZVFNcm7QXmMBs6u7Ym4bC7ZyLJBon4uAzad67ZhvLVjaZp/PLtNpYuOITRKKOqGo1CfXjkhdEEBXuXPUAtojv8GsSvRQQ9nr+p0terioIjKw9jgE+lNuuCG3njdLqnZQpJ0LhJ1eV865K8xFQKTrqrdZ4hbUcs35vGIZkMtL5hLH3f/S9Gn9oLYeXGp7Dn7dmkbjxAYMdmdH74CoJLaLhysREU7A0Ct5RiRVHxDyi9F0N9ZNPaY6xYFIPToRbdtSQnZTPz9VU8+2bJqdt1ge7w6yGaprH3rdnseu1nlAI7Bm8z3Z+7gY73TavQajU8wp/WbRsRczC1mOM3GiXGT+1YE6ZXO5qmkbJ2D6fW7sWrcTDNZwzF6OeN6lRKvVsqOOFqRq7aHBz5cTE5cScYv+TtWrE580A88wbcg7PAhuZQSN8RS/yc1Yya+wpNRpavo1hVyE9OI/bHxeQnniZiRA+iJg+oV9pG46Z0YPeOpGKhRkkSREQG0CQqoA4t80xuto0tG+LJz7PTqVsEzVuFFHt80T8HsdmKhxVVVeP40QzSUvPqVYKE7vCrgezYJLY99TUnV+7E3CiAzg9fSZubxlU6lLD/wz/Y+dKPRdW1druD7U99g8HHQrvbJlVorPueGM5XM9eza2sSQhL4+Jq45a4BRLeo/xuaqsPJkslPcWrdXhSrSx9o84OfMG7Z24T0aIN3ZAg5sR4qmCVRrJJVsTo4tWE/mQfiayXlcsujn+PIKSiqftZUFWe+jQ3/fY/ph0puX1kdnFy9myWTnkBTVBSrnZjvFhHYIZoJK9+rN83S23YM45pbejPr221IQqAoKpHRgTzw5PC6Ns2NfbuS+eDVlWhoKE6Vv2bvpu/AZtx238Ciz3dBnud9B0kWFBSUIelRy+hZOlUk93gKf3X7D86cgqL0SIO3hY73T6PXK5UrjJkVPh1raqbbce+moVx5/JdKjVmQb6egwElQsFeDiWnv/+hPtj7+ZfGcdMC3eWNmHPk/0rYdZuGoh1GdCkqBDYOvF0LgcrbnYfT3Zsj3j9OshGK56uT/AiZ7rMEQBplr0/4qtrFenWiqyuyoK90a08heJno8fxNdHrmyRuatLHabk4T4DHz9zIRH1L8GLw6Hwr03/kZBfnGnbbYYuPN/g+nZz5Um++sP21n0z4Fim9AAvn5mZn43A6kcRZLViZ6lU4PsefMXnPnWYhIGznwr+977HXuWe7u6stBU1aOzB0qNWZeFl7eJ4BDvBuPsAWK+Wejm7AGsqZlkHUqgUe92XH70J3q/fhudHrqcoT88TvDlo1E97HeodieBHWunoMoU6PkWXjLIyDXYsyDzwHGPtR9KgZ0jPy2tsXkri8lsoFXb0Hrp7AEO7z/lUbrEZnWyZvmRot8nXtaJgEAvTCbX+06SBCazzK33DKh1Z18WekiniqSs2etR+0QyG8k8cJyw/hWLlQtJwrdFBLlHk90eC2jbtNJ2NkhKu/ssfMwc7E/He6cBsGV9PPNOHaS7kBEonPlqE2YjTcb2JqBN7bx+nf43g+1Pf4Pz3NaVFhMtrx1VlKZbE0hGucR0QNlUDi0hHXdKWB+d+zr7+pl55YNLWLUklr07kwkJ9WHMpHY0bRbk+eI6pH59/TRA/NtEgodVs2K1k5dwisPfLCBtZ2yFxuzz9p3I3sXjrbKXmT5v31klW+srNpuzMNPhMKdO5hQdb33TOLfXAVz9XQPOq6TVNI1Z324jTzKzfegk0sMiUSQJh9FERpfujJj9TI0/jzN0vG+ay3aLCWOAD7LFROS4PvT/8N4ande/TVN8moa6vR8NPhba/qdiez860KZDmMc1h9liYPCIVsWOeXmbGD+1Iw8/N4qb7+pfL5096DH8cqNpGgnzNhA3azmS0ZXqFzGyB6e3HmLBiAeLhR4ks9GVFVG4eahpGo2HdGXUXy8im8t3S5+4cDPbn/6G7NgkAtpF0evV2y7IRhcxB0/xzgvL0dBQVQ1Ng9ET23HljT1RHU4Wj3+c01sP4cwrwOBlQRgkxi15i9A+xfvtOhwK/7niZ48fUINR4uvfrq2lZ3QW6+kssg4ex7d5Y5cjrkac+VaELLm9nzL3H2P+iAdRrQ5XQZokiJrUn2E/P6Xr8FSC3duTmPnGKjQNnA4Fk0mme98o7vzfYKTSehrUIbq0QhXRNI1V171Kwtz1RZkzBh8L7e64hL5v/5fjc9ez4a73saXnoGka5iA/rKez0JxnQz2yl4kuj11Fj2cr14xE0zTStseQG59CSM82+DVvXOHrTyzeSswPi0FVaXXdGJfWTh3G9J1Olftu+o283OJZDmazgfueGEbn7k3QNI3k5TtIWbsX74hgWlw5HFOAr9tYmqZx13Wzyc9zz4poFObDO19Mq7HnUZtk7DvG2lvfIm17DEIIIsf3YdCXD+EVdnZFqdjsJPy7iYLkNMIHdyG4W6tSRtQpi6zMAjatPUZBnoNO3SNo1bZRvd4L0x1+FTm5ZjdLJj7h1oRE9jIxdfsXBLSLQtM016aqJPgt+mq3cn+ofJaN9XQWi8Y9SvbhRIQsodqdtLhyOIO+erjcq7b1/32PI/+3tNgXVvPLhzHkm0crbE91sX93Mh+8tgqrh9S1voOacfcjQys03j+/72Xub7uL5XebzDLX396XoaNaV9ne2kDTNGzp2Ri8zBi8ixchWdOymNP6euzZ+UV7GMIg49+6CZft/aZWq7h16i96lk4VSZy/CWe+e8cpTYOkRVsAEELgHRFS6uZYaT1MS2P19a+Rsfcozjwrjux8FKudo7+t4uAnf5fr+vRdR4j9cUmxLyxnnpWjv64kdcvBStlUHTgcakl7Yjg8NQEpg0umd2LSZZ2wWAwYjTLePkYuv65Hg3H2J1fvZk67G5kdeQU/BU9l+RUvFMv0ivluEYrdWbzVpVMhL+k0ySt31YXJOg2MCzpLJ2PfMbIOHiewQzSBHZtXehyjvw+S0ejWSFqSJbecanOQHwEdosnYHVfsuDDKNLu04jng9qxcklfscMsEUvJtHPjor6IMldJIWrTF4x2HYnWQtHCLWzy8tmjfKQzFQ0cus9nAgKEl9xsoCSEEl17VjUtmdCEv14avnxm5nqXFlURWTKLrLvKchUXC3A0sSX6KSWs+cJ1z8DhKgXuaqqao5Bw5ARWs4k1avJWDn/+DM7eAlleNpNV1o2s0i+hiQVVUTibn4O1tJFDX0ql5nPlWlk59hlMb9iEZZFSnQvigzoz666VKVRu2umYUu17+0eNj0ZcNdjs25NtHWTDiQVS7E8Vqx+BjwRziT8+Xb6nEc7EhStgc8lRg5AmjnzeS0YBy3peGbDJ4LAJKWrKVHc99R3bsCYK6tKDnS7cQPrD6ZWvNFiO33TuQrz5cj6JoKIqK2WKgfadw+gwoXc++NAwGiYDAmtPNsZ7OIjsmEd8WEdUmwbz/gzko5y0oVLuDtB0xZOw7RlCn5oT2ac/RX1a4hRaFEBWO02998isOzPyzaKxT6/cR891Cxi97p17JMDQ0tm48zrcfb8ThUFAUldbtQrn74SH41+D7sSJUy/JHCDFeCHFICBErhHjcw+M3CSFShRA7C//dVh3zlsTmRz53lePn21whkHwbJ9fsYevjX1ZqPN9m4Qz59jFkbzNGP2+M/t4Y/bwZ9eeLmAPdNxBDerRh+uEf6P7cDbS+aRx93/kvl+37ptjGWnnxahyMJdyDU5EloqZ47o16Ps1nlBALF9DiyuHFDh37Yw3LLnuW1I0HsJ3O4uSKnSwa8wgnV5UdMog9mMp7r6zg8bv/5qsP15OSnF3mNf0GN+flDyYzaXonRk1sx72PDeOBp0bUu4IVcInZrb/rfX6NvorFE5/g95bXsvKal90cdWXIOpRQbJP/DJJBJjfepWza8tpRmAJ9XW0RC5EtJkJ6t6VRn3blnis34RT73/vdLcSXtj2G43+vq8KzuLjITM8nJ/vsa3j8aDqfv7uW3BwbNqsTp0Ml5sAp3n5xeR1aWZwqr/CFEDLwMTAGSAS2CCHmapq2/7xTZ2uadk9V5ysPsd8vcouXq1Y7sd8tpP8HlTOhxRXDaTqhL8krdiIMMhEje2AopWrSKyyIro9dXam5zkUIQWi/DuTFp7gdL+/4ltBARv72HCuufKnobkFTVIb99BTeEWeFoDRNY/ODn7hVtyoFNrY88jmTN39S4hzbNyfw6dtrsDsU0CAlOYctG+J59s0JREYFlmpfeIQf06/pXq7nUpfsfftXYn9YjGK1F72/jv+9jq2Pf0m/d++q0tjhgzqTsnYvqu38Vb6ToC6u8JbRx4vJWz5l62NfcHzuemSTkdY3jaPH8zdWKGvk5MpdCKMBzpvLmWcl4Z8NNJ9esc3yi42jsWl8/t5aUk/lggbNWgXz3weHsPifgzjOU6dVFI3kpCwSjmUQ1bzuc/OrI6TTF4jVNC0OQAjxCzAVON/h1wqappW4Oeosof9reTH6eRM9ZWCVxqgoeYmpJHhYdUkmAyeWbsMU6Ed+0mlC+7UntH/HEj/4TSf04+qUOSQv3wGa5vrCOi8LRLE5yE887fH69D1xHo+D6zX/4bNN2O3nNlrRsFqd/PrDDv731IjyPNV6z/4P/vDwZWjn0Bfz6Pv2nVXKkulw96Uc+Phv7E4FTXE5DdnbTIsrhuMbFVZ0nnfjYIZ+73YTXSFMgT4e3yfCIGMODUDTNPKOnwJcd7c6Z8nJtvL6M0uKZZYdjUnjlScXEdbYD011z3qUZYnMjIILxuFHAgnn/J4I9PNw3nQhxFDgMPA/TdMSzj9BCHE7cDtAdHTlYrhCCMKHdCFl9Z7ipflC0HhY10qNWZekrNuLZDKinLcaU/JtbLzvI2STAcXmRDLKhA3oxOh5r5SYKWTwMhM1qX+Jc8lmIwY/LxxZeW6PnXsncD65OTZyst03E9Eg5sCpEq9raNgzPWsjKVY7qlNBNlXe4VtCA5my9TNWXf8qp9bvc6l9ShIhvdqgaVq15n1HjuuDZHL/6EtGA+GDOvNHx5vJO+66o/RtFs7wX54huKueyw+wdkUcilJ8Fa+qGgX5dkJCvTGaZLfmLk6HQrOW9UOdtrYCpf8AzTVN6wosAb73dJKmaV9omtZb07TeoaGVr0wc+PH9GP29kcwuxydZTBj9vek/875Kj1lXWEID8ajghEvr3ZFTgGp34MyzkrJuL/s/+KPScwkh6PzwFW5yBgZvM92eLrlS1WwxelKXAMDPv+E1tCiJ0P4dPB4P7NCsWrRq0ncdIW17TJG0s5JbwLbHvmL/zMr/TT0hm4yMW/wmXo2Di/akDN4W+n94D2tveYvsQwkoBXaUAjtZBxNYMOJBHLnlSxC40Dl1Msdjty5V0YhqHoSPrwmD4axbNZllxlzSvt40dqkOh58ERJ3ze9PCY0VompamadqZJeBXQK9qmLdEAjs2Z9qB7+jyyJU0vaQ/XR+9kmkHviOwfeUzPypD/sl0Dn7+Dwc++Zu8xNQKX69pGmk7Y3DkudcAeEIpsHH4mwVlnpe++wibH/mMDXd/wIll24sJQXV74ho6PTADg48F2cuM0d+bHi/cRJubS+7cYzLJDBzWEqOpeHaHySwzadqF05S633t3uySYCzeUhSRh8LYw4OP7q2X8bU997RYycuZb2fnij8XUWKuDkB5tuCLhF8bMf40Rvz3H1afmICTJY/quandy7PdV1Tp/Q6Vt+zDMFg+BEQEdOjfmpXcnMWpiO8Ia+9KidQi33D2AK26oP5Io1RHS2QK0EUK0wOXorwKuOfcEIUSEpmln5B+nADXeQdu7cTA9X7y5pqcpkZgfFrHhzvddejoabHn4M3q98R86lSNv/gx73prNrhd/LNbMA0DyMoFT9fjh9JTpcS77PpzDtie+RrU70BSV2B8WEz11EEN/fAIhBEKS6PXyLXR/5jpsadlYQgPLlZt93e19sVqdbNt0HINBRlVUJkztyJBRF04oILhbK6Zu/5w9b/7C6S2HCOzUnK6PX01Q54rXDHgi9+hJj8cd2fk4820YfasntS/naDJ5CakEdW5O+KDORcfzkk4XU/g8g7PARn5SWrXM3dDpPTCav3/dTWpKblEXOaNJpm2HMFq0doU9r7mlN9fc4rHQtc6pssPXNM0phLgHWATIwDeapu0TQrwIbNU0bS5wnxBiCuAE0oGbqjpvfcCRW8Cx31eRfyKNsAEdaTy8O0II8pPT2HDn+26bx9se+5Km4/oQ0DaqhBHPoioKu1/72WOFb0Dbpij5NrJjit1IIVlMtLp2VIlj5p9MZ9vjXxWzy5ln5fjf60hetp0mo3sVzZ0dewKDt7nchTgmk8xdDw8hO8tKRlo+YRF+eHldeJK8/q0jGfTFQzUytl/rJm4Fe+DaZDX4VD0kYM/OY8WMF0hZuwfJbES1OWh/z6X0eeN2hBCE9e+AwceC87zwjcHbUmI462LAblew5tvx9bdgNMo888YE/vl9D5vWHsNgkBg2pg3jpzSM16daCq80TZsPzD/v2LPn/PwE8ER1zFXTpKzby7YnvyJzf7yrCfmLN9F0fF+389J3HXEVVzmcRe33GvVux9iFrxP/51qPksmqU+HY76vp9mTZyo2O7HyPVZXgWgmOX/YOC0c9hOo42+3Jv3UTOpfS1ejE4q3FcrjP4MyzcmzOapqM7kXSkq2svv41nHmupi7+bZoycs4L+LdqUqbNAP4BlnoTr2xo9H7tNpbPeKHY393gbabnCzdXy6bt2tve5uSa3ag2R9GX/qFP5xLYPpq2t0wgYmQPgru1Im17TJENspeZ4O6tiKiFXrz1DYdD4acvt7B2RRwaGj4+Jq69rQ/9Bjfnqpt6cdVNNRqZrhHqX3VLHXJy1S4WjX2UlDV7sKVlc3rrIZbPeJ6j58UvNU1jxRUvYM/MdTlGRcWZZyV180H2z/zTlVbnSZRO0zyGYTxhCvDB4OP5Fj6gXRSNerXl8rif6P3Gf4q6PU3e/CnGEq4Bl2yzR/EaScLgbSbn2EmWX/Yc1lOZOPOsKAV2MvYeZeGIB1GVimvb6FSMphP6MfyXp/FvF4WQJXyiwug3817a/3dKlcd25OSTMHeDW56/M8/K3nd/A1x7EuOWvEX3Z6/Hv10UAe2i6P7cDYxb/Fa9VoesKb77ZCPrVsbhcCg4HSpZmVa+mrmeg3tTyr64nnJBSitUls0Pf+a2qlbybWx56DOaTx9a9KbPPZpMnod8daXARux3ixg971W2PvaF2+OSyUgzD1IMnhCSRI8XbmTb418W75zkZabXq65CZXOwPx3vuazczy9qYj+3/QBwpWO2un4sh7+ej+o87wtJ1bBn5ZG8fAeRY+pnXPJCInryQKInV3+thz07r0SJDnva2Ypog8VE18eurpaiwYZMXq6NTWvj3UT87DaFv3/bTfvOY+rIsqqhr/DPIXPfMY/H80+cRrE5yI5NYt/7c4j9cUmJ7fc0DfyaN6bHizche5kQBtnVqMLbTMf7p1Uon7njPZfRb+a9+DQLRzIaCOrSglF/vFDpRihGP29GznkBg48Fo58XBl8LssVIz5duJqR7a/LiU1DtHjaCVdWtMbZO/SXn2EkOfvYPsT8uKVLb9I4IwRzs53aukCWajGl4oYmaJjOjANng+Qsy9WTFe1XXF/QV/jl4RQR7zJQw+Hqx581f2PP6LFcKoxCoNveqXdnLTJubxwHQ5eEriZrUn6O/rkRzqjSbPoSQ7hWX6W178wTalpISWVEix/bmqhO/kfDvRhSrnchxfYqKqpqM7kX8n2vdxLk0RSWsBsTTdCqGI68A1aF41G86w47nv2PPm7NBCIQsseG/7zPyjxeIHNubfjPvZdV1r7rCOqqGZDJg8LHQow6z2eoroWG+aB4yYYUkaNWuUe0bVE3oDVDOIea7hWy8Z2axzBjZ20ybm8cT881Cj5uosrfZtWnq40VIj9aMXfRmqRo79Rmn1c4/ve8kJy65aFOvPjRKudixns5izc1vcGLxNgD82zVlyDeP0qh3ccG0Uxv2sXDMI265/LK3mZDurUnd5MqGtoQF4RUaSMSYnnT+3wy8mzRcB1aTzJuzl79/PaehjnBJdz//9kSaNA2oW+NKobQGKPoK/xxa3zgOe2YuO174AdXmQBgkOv1vhkssy+auiHhG68SvRQRhAzoSMapng97cMlhMXLLhI/a9P4ejs1dg8LbQ/q4ptL5hbF2bdtGiaRoLRz1E5sHjRT0RMvceY+Goh5h24Ltizjrm+0UoHvSilHwbpzbsLwpDWlMzkc1Ger/2H10KuRQmTetEcCNv/vl9L9mZBbRuF8rl1/eo186+LHSHfw5CCDo9MIMO91yG9XQW5mA/ZJORzY9+7jFmL4QgfFBn2t46sQ6srRmMft50f+Z6uj9zfV2bUqvExZzmj593kXAsg/Amflx2VTc6dKlY3+Ca4NSG/eQcPeneAMfu5NCX/9LjubM9klWbs8S9pfO7ZNnSskhauJmoS8onsX0xIoRg4LCWDBzWsq5NqTb0TVsPSAYZ78bBRfooLS4fhuzlHqbRFJWoS0oWI6tu8k+cJnnlTvKSKi7T0NAoKHBgt5UvhbWqHD5witeeXsyeHSfIzCjg0L5TvPvScrZtPF4r85dGbtwJj8dVm4Osg8Xta3Hl8HIXaCl2J9mxnsfWuXDRV/jlILRPezrcNZUDH/+NancgJAlhkOj3/t14eWpOUs2oDidrbn6T+DmrkSwmVJuD6KkDGfL94yWKduUlpmLLyCGwfXSDaluXGJ/BVzM3EH80HQF06hbBrfcOJDCo5joGzfp2W7HG5+Cqrvz5m6307BdVp2G64B5tiuSSz0X2NrttpEeO60P01EHE/7XWLY5/PpLRQFDXC2flqlM+Go4nKCfpu46QuukA3k1CiBzft9pilH3evINW143m+N/rkUyGoth9bbDj+e+J/3Mtis1RtJdwfO4Gtj/9LX3evL3YuQUp6Syf8QJp2w4jjDKSLDPg0wdoeWX916TPzbbxypOLyM87u1+yd1cyrz65iNc/nopUQh55VUk4luHxeFpqPg6HislUd3HuoE7NaTKmJ0mLt6GekcSQJUwBvjS9ZABbHvuCxPmbsIQF0vl/Mxj64xNse+pr9r79a4m6SpLZSEC7KCJGdK+9J1KP0DSNpIQsbFYHzVoEYzBePPsYF4zDV50KK658kaSFW0CAJMsY/byYuPp9/FqWTxagLIK7tqoTXfCDn851LwgrsHHo83/cHP6SSU+SvjvO9WEvTDZae+tb+Ldq4pbVUZdomsbieQdZ8Oc+cnPttGgdQvNWwTgd52mNKxpZmQXs351M5+7V83c8H/8AC2mp7j0AzBZDManbuqLjvdNcGTpCQKE2fudHrmDBkPuxns5GtTtgH5zedJBuz1xH/JzVJTp7U5Afra4bTa9Xbm3QCQaVJSU5m/deXkH66TzXnbqAW+4ZQN+BzeratFrhgnH4Bz+bS9KiLUWOUcGVt7z8iheZuvWzujWuipSkRe7ILSjWHCNj71GyDrr3RlWsdvZ9MIdhPz5Z47aWl1+/387SBYeKQimH958i9lAqquK+6agqGqkpNVfsMnlGZ37+ZmuxsI7JLDNucvtK3VXYMnJIWbsHk78PYYM7I8mVX0Has/NYdtmzxQTvNKfC1ke/QMiSy9kX4sy3svOFH6CEfsCSUebyoz9h8veptD0NGVVRef2ZJWSk5RfuYbv+3l++v46mUYE0iSo9+8ZuV9i45ih7dyYT0siH4WPbEB7hXsxWn7lgHP6hz/5xj1uqGln748lLTMWnaeUbqtQ1oX3bu7ognUejPu2KrdIKTqYjPN2eqmdb1tU2h/ef4o9ZuziRmEXT6ACmXd2dyOgAlsw/5NZIQlM1JEmgnif/IIQgukXNtYcbPrYNuTk25v2+F01z3X2MHN+WS6+seIe0fTP/YNtjX7o6SmmuOoaxi94guEvl4uXH/17v8bimKJ6bnpuM+DYP96i6aQkNxOjnXSk7LgQO7T9Ffp7dLZHJ6VRZvugw193WBwCb1cHKJbFs35SAf4CF0RPbEd0ymBcfWUBaah42mxNZFiydf5B7HxtGs5bBHNhzEouXkc7dIup1iOiCcfie8uQBkETJjzUQ+s+8l/nD/oditaM5FYRBRjYbGfBR8Q5eIT3buIljAcgWE5Hj+tSWuUXs2XGCD19fWbRyzsooIObAEq69rTeyLOHgPIfvKmJGlgVK4UrfaJJp0TqElm1qrjhICMHkGV0YP7UjmekFBARaMJkr/tFI3XSAbU98VazJuSMnn8XjHuOKhF8qtdK3Z+V5Ds+UkH2pOpx0e+o61tz8hisnv9C7yd5m+r5310UZxjlDdpbnRkKqqpGZlg+AtcDBC48s4PSpXFePZgE7tybSoXNjUlNyi7R1FEVDURRmvrEKVdVcvbSdrte6ZdsQbr9/EBGR9S9fv+4DlNVEy2tGIpvdM1a8woLwa1k7m6s1RUiPNkzd8QVtb5tIo77taXPLBKbu+MItJm8O9qfzI1cUS82TTEbMIf7VorhYUX76aovH7JfFcw/g9OTEBHTq1phBw1vi42vCP9DCuMnteejZkbXiqIxGmdBw30o5e4CDn/3jsfDJmWclZc2eSo0ZOaaXR4VT2WLyeDdn9Pem+YyhTFz9Pk3H98ErIpiwQZ0Y9eeLtLh8eKVsuFBo0yEMxeme8WQyG+jaOxKAlUtizzp7AM0lmLZ7e5KbkBq4HnM61CJnDxB3OI3nH55PZnp+zTyRKnDBrPC7PHwl8X+sJTf+JM5cq+sDIUsM/b8nL4hVjX+rJgz85IEyz+vx/E0Ed2vNvvd+x5aWRdQlA+jy6FWYg2o31qhpGslJ2R4fS0rMZujo1mxcc7R43NwkM+2a7rRs04jLrs4jIT6TsMaVd8C1jS0j23Phk3D1N6gMAe2iaHvbJGK+WVCkcWTwsRAxuifJy3fgdBTf33Hk5JM4fxNRk/oz5t/XKjXnhUpwiDejJrZjxcIYbIU1HkaTTFi4L/2HuLqWbd90/KyzPxdBiXdVnrDbFZYuOMyMa7tX3fBqpGF8ksqB0c+bKds+I37OGk6u3oVv88a0vnEc3o3rR7f42kIIQfNpQ2g+bUid2+HrZyY3x3M+eHiEH6MntmPZgsPYbU7CI/y4/va+NG8ZzJcfrGPT2ngMRgnFqdKqbSPuf2pEve+g1eyyISQv2+EmPqfanYQP6VLpcfu9fzdNJ/Ql5tuFqHYnra4dhSUsiJPLd7qdq+TbOPzVfKIm1V5BYEPiqpt60aZDGMvmH6Ig30G/Qc0YOaFtUeqtn7/nwjVZlkDGLYusJFRF42iMu4R6XXPBOHwA2WSk5dUjaXn1yLo2RQcYf2kHfv9xp8fHlvx7kA++mcHl1/dEUVSMheGJf//cx+b1Lh3yM7fQMYdS+f7TTdz5YPl6CZwhLuY0G1YfBQ36DW5O6/Y1u3Hf8uqRHPp8Hhl74lxOXwhkLxO9Xrm1SndYQgiaju9brPPaiWXbPTezwdWDVsczQgh694+md/9oj4+PuaQ9u7cnFbvzFAJCQn1o3ymc9SuPIssCBBgMMjar02OoR5YF0S3q32LzgnL4OrXPwb0pzP5+G4nHMwkK8eayq7oyYKgrI2XspJIdfn6uK9YtSQJJOhuLXvrvQbe4v9OhsmV9PLfeO6Doi6Es5vy0g4VzDxRlAq1cEsOIcW1rtLm0bDIyYeW7xM1aTvycNZiD/Wh3xyWEDah+aemwgZ3QPDSzMfhYaHVNyX2NdUqnfadwLr+uB7/+uAODQUJVNQKDvXjkuVGEhvsxeUZnYg6mEhDoRdsOobz3ygr270lx+1sYTTKjJ9afupcz6A5fp9Ic2pfCOy8uK4p5ppzI4ZuPN5Kf52TUhLaYLQYiIv09xvJbt/O82i7I95xRpWkaDrtSLod/MimbBX8fKJb2abcprFh4mMEjWtboyks2GWlz4zja3DiuxuYAMHiZGfLto6y+4XU0p4LqcGLwtRDWvxMtz3P4rl7Kqzj660qMft60vW0ijYd0xZaZS+z3i0jfdYSQHq1pfcNYTAEla+1fLIyd3IEho1px5PBpfHzNNG8VXLQPGBruR2j42bu1h58dxaZ18fwxayepJ3PRNGjVthE33tmPkND6V++gO3ydSvPrjzvcNrjsNoU/ft7JiHFtkCTBjXf2492Xl+OwK2iaa0VvNMlcfYvnLkudukewbWOC24oprLEf3j7l6zOwY0uix9Wv06mwfXNCvbzVrgzNpw8lpGcbYr9fhDU1i6aT+tN0fB+EdDb5TlUUFk98nNQN+4vCTPFzVtP29ks48uMSnAU2lHwbx35dyc6X/o/Jmz/Br3ndq4TWNV7epnJVdkuyxIChLRgwtAWaprlqSUoofKsP1F/LdOo9ScczPR63Wh1FIZsOXRrzzOvj6TuoOaHhvvj6mRECPn9/HVs9qFFeeUNPvL2NGIyut6YkC0xmmZvvKv8mpNEke+zfKkkSJtOFtcbxaxFBj+dvYsDH9xM1sV8xZw+QMHfDWWcPoGk4823s/+APbBk5RcWKznwb9vQcNt77YW0/hQsGIUS9dvagr/B1qkCjMB8SjmW6HTcYZLx8zmbURLcIZvSkdrz1XELRHUFifCafv7eWgtv7MmTU2daPYY39eO2jKSyZd5DYQ6k0aRrA2MkdaNzEv9x29R4QzS/fbXM7LiRB30HumikOh8LyhYdZu/wIQsDQ0a0ZPrZtvdDRqSrH/17nljUEuNJHz7sJ0lS1qKtWfSY+Lp2Vi2PIybLSs38UfQc2q9fVrfUJ3eHrVJpp13Tn07fXFAvrmMwyE6Z2cKWxncOv32/3GP6Z/f12Bo1oVUyzJiDQixnX9ai0XYFBXtx270C+mrm+aFxV1bjxjr40Ciseo1ZVjbdfWEZczOmizeLZ329n55akWiv4qkmMgb4IWfIosewJqZbvgNJS81g6/xAJ8Rm0bBPCqAntCAgsWQp79ZIYfvxyC06niqpq7N5xgqXzD/HEy2PLvaF/MaM7/FLIOpRAXtJpgru2xNKo/pVJ1zU9+0Zx8939mf3ddrKzrZjNBiZe1olLpnd2OzchPtPjGAX5DgryHfj4Vm8f4P5DmtO5ewS7tiahodGtV6THHOv9u5M5GptWLDPIblM4vP8UMQdTadshrFrtqm3a3jqBw1/+66a2esaxq/azTWYks9Ftw7cmOXYkjVefWozTqaI4VQ7uOcmSeYd4/u0JGAwyp0/lEhkdiK+fGXA1xfnxyy3FFg42q5OEYxlsWHWUoaNblzRVnZOelk/MgVP4B1ho1zGszkI/F4XDT1qyle3PfEN2zAkC2kfR6+VbiBhR8grSlp7N0qnPkLY9BslkQLU56HDvZfR+/T8NfsVX3Qwc1pIBQ1tgtzkxmgwlqkuGhHqTdDzL7bjBIGHxqpm3oa+fmUEjWrJrWxKvPb2ElBPZBDfyZto13YpSRw8fOIXN6t5Zy+FUiDlwqsE7/OAuLen3wd1suv8jVyMczeXsh89+lq2PfU7WocSi6uDAjs3p+/adtWbbt59sLPbaOxwqTqedlx5biNXqxGCQcDpURk1oy1U39yL2YCqyQQIPd4qb1h6rlw5f0zR++W4by+YfctkOePuYePylMYRHlD9MWV1c8A4/Yd4GVlz5UtEKJ3XDfpZc8hSj/nihREGxVde/xunNB1EdzqLrDn7yN0GdW9D6+jG1ZntDQQiB2VJ6FexlV3Xjiw/WuUsQT3EP/5SH+Lh0TiRk0SQqgGYtS8662b09iY/eWFW0Kjx1MpdvPt6Iw6YwdEwbAoO8MZllt9x/o1EuNbTQkGh32yRaXD6Mk6t2Y/A203hYNySjgcmbP+XU+n1kHTxOYMdmhPbvWGsLGqdDIT7OvfGMpkFOtuszdyatdvmiwzSO9CcyOhCthJ695c3gqm22bUpgxcIYHA4VR2GVrs3q5L2XV/DaR1NqfQF5wTv8zQ996rF5yOaHP+UyDw7fmpZF8vIdqI7iqz5nnpV97/2mO/xK0mdgM/Ly7Pz2ww6sBQ5kg8S4ye259KpuAByNTePXH7Zz7EgaQSHeTL2iK/0GN3cbx2Z18O7LK4iLOY0kBKqm0bxVCA89MxKLB+mF30pIHf3tp50MGd2afoObMfv77XCecqcsCXoP8FyN2RAxBfgSPWVgsWNCCMIHdSZ8kHsIrqaRJIEsC5zOsgVq7DaFhX8f4LWPpuDlZcRaUPyzaTLLjBzftqZMrRLL5h8q0u05g6ZB2uk8TiRmERkVWKv2XNAOX9M0smOSPD6WdTDB43FHdj6ihBWnLS2n2my7GBk+pg1DR7UmP8+OxctYlAXjiuUuKlpl5+dl8dXM9eRkWRk9qX2xMX75bjtHDqUWrZbAJaEw69ttHlM3T5Yg4JabbcNuc+Lja+bRF0bz0ZuryMuxo6EREOjFvY8N8/gFolM9SLJE/yHN2bj2WLn0afJybUiS4KFnR/Hmc0uxF+49KE6VS6Z3pkOX+lk7UFIhoSRJbl9ctcEF7fCFEFhCA7CmuseOvcI9N9TwbRaO0c/brZmKMMhETujr8Rqd8iNJomgT7gxzftrpLqNsU5jz806GjyueHrluZVwxZw8u6YX1K+M8OvyQMB+SE92dvpe3sUiFs1XbRrz75TTXeQIiIv31vZpa4Prb+3I6NY+4mNPIsitej9Bw2Iv/fYUkihx6VPMg3v9mOgf3ppCXa6ddp7B6HXrrO6gZiccz3Zr9CAHNarCpT0k0/ETjMuj6xLUYvItnZxi8LXR7+jqP5wtJYtDnDyJ7m4uKWCSzEXOQH92f8XyNTtU4diTd43GnQyU7s+C8Y557tTocisf47oxre7g1ITeZZaZe0aWYUxdC0CQqgCZNA3RnX0tYvIw88fJYnntrIv+5byCvfHgJ9z42HJNZ5syfQJYlvLwMxdJ0ZVmiU7cI+g5qVq+dPcCoCW0Jb+xXtLiQJIHJJHPLPQPqpHbggl7hA3S8fxrOfCt73vgF1eFEMhvp9tS1tLtjconXRE8ZyKS1H7Lvvd/JiTtBxMgedLznMiyhgaXOlRN3gt1vzub05oMEdmpGl0evqnRru/LitNrZ/tTXHP5mAUq+jcYjutP/w3sIaBtVo/NWJ43CfErsRnT+3UCHLo3Ztyu5mOy8EK7jnhx17wHR2O39+fWHHWSm5+Pja2bqFV0Yc0l7t3N16oam0YE0jQ4EIDzCn6dfG8/8P/eRkpxDmw6hTJjakeBG9U+XpjyYLUaee3siG9ccZffWJAJDvBk5rm2p/XPzcu2Aho+vucRzKosoade7rundu7e2devWahtPdTixZeRgDvZHMlT/N2v6njjmD74PZ0FhG0JJQrYYGT3vVSKGd6/2+c6weNITnFyx82yTayEwBfgw7cC3eIU3DM2YXduS+OjNVW4ZPMPHtOHa24pvrJ88kc2Ljy7AbldcYmomGaNR4tk3J5TZUs7pUJAN0gW1gnda7dgzc7GEBlSpWbpO+cnKLGDe73vZuTUJXz8T46Z0oN/g5lV+X6Wm5PD5e+uIi00DIKpZIHf8bzBNmlasBkgIsU3TNI+ysBeNw69pFo59hOSl292OB7SPZtr+b2tkzswD8czt/V/3ohqLia6PX0WPZ2+skXlrgnUrjvDLd9vJz7cjSYKR49pyxY09PaZs5mRbWbk4hvgj6US3DGb42Db4B3huXOGJY0fSWLbgMNmZBfToG8XAYS0aTFetM6gOJ5sf+pTDX88vapbe5+07q1Wl05FXwM4XfiD2h8Voikqz6UPp9cotWEIu3iLE3BwbT933Dzk5tqJ2iWazgTGXtOPy63sWnZeelk9aai4RkQFud6mecDgUHr79T7KyrGeF/wT4+Jh458tpFWr+U5rDb1jv8nrMqfX7PB7PjknEWWDD4FX9t2eZ++ORjDJK8TA3qtXO6S2Hqn2+mmTQiFYMGNaS3BxboXhayatVP38Lk2dUroPUmdJ8h1NFUzX27znJkn8P8uybEzA3IKe/8f6PiP1hcVEPXcVqZ8PdH2AJDSRqYr8qj69pGovGPEL6ziNFd4+x3y4kedl2Ltv7NbK5fua91zTLFhwiL9dWrDeuzeZk0dyDjJ/aEbPZwGfvrmX39hMYjK6N6BHj2nD1Lb1LLEoE2LklEavVUVzlVQOnU2XT2mMMH9OmWuyvlk1bIcR4IcQhIUSsEOJxD4+bhRCzCx/fJIRoXh3z1idMgZ51xCWTocb0SQLaRaF6aAYumY0Ed6+eN0htIkkC/wBLjWxmOR0KP3y+ia8/3ojdrhR9sOw2hVPJOaxaHFPtc9YUjrwCYr9b5JZJpuTb2PXSj9UyR8qaPWTsPXo2VIjrrqIgJYNjc9ZUyxwNkb07k92yxAAMRon4uHR+/HJLUcPzgnwHDofCyiUxLJt/sNRxU1Ny3TJ5wFWklXqy+tLBq+zwhRAy8DEwAegIXC2E6HjeabcCGZqmtQbeA96o6rz1jU73T0f2Lr6Kl71MtLl5Qo3FVoM6tyCsf0ckc/HbPdlspMN/S96Urm9omkZ+nr3EDJyKkJdrJyU5B+U8sbBvP9nIqiWxHq+x2xU2rD7Kbz9u583nlvLrD9tJP51XZVuqm+wjJ9j65FesveUtNNVz7nru8ZRqmSttRwyqh7+HM7eAtG2Hq2WOhkhomA+eQvWKouLnb2bDKve0YbtNYeHcA6WO27xVsMeFjsVioEXrRlWy+VyqY+nZF4jVNC0OQAjxCzAV2H/OOVOB5wt//h34SAghtPq6gVAJOj90ObnHThLz7UIksxHV5iBq8gD6vlOz2iSj/n6JzQ99ypEflqDYHYQP7ET/j+/Hu0n1vUlqkj07TvD9Z5tIP52HJAkGj2zFNbf2cUulLAub1cFXH21g+6YEZFnCYJC45uZeDB7VmtxsG5vWHsPpLLnA59iRdI4fzcDpVDm0L4VlCw7x1GvjiW5e8Vzp3duTWDLvILk5Nnr1j2bUxHZVbsAe/9daVl33KqpDQXOUULAjBI16V09bPb+WEUU6Uudi8LHg36ZptcxR1+RkW/n1hx1s3RCPEIKBw1sy/drupf6txk3pyJYNx4slGMiyIDI6kNBwP1QPjXfgTOZNyXTo0pim0YEcP5pe9IVhMEgEh/rQvU/1vd5V3rQVQswAxmuadlvh79cD/TRNu+ecc/YWnpNY+PuRwnNOnzfW7cDtANHR0b3i4+OrZFtdYD2dRdahBPxaNK5Vp6tpGmiaWwOM+szR2OIVtuBqXtKjT1PufmRohcb68PWV7N6WVGx1ZTLLPPDkCHz9zLz29OISqx6FAE8fg7Ydw3jq1Yptgs79dTf/zNlb9JyMJplGoT688M7EMvWGSkKx2ZkVPh1Hdn7JJwmBwdvMpHUfEty1VaXmORfVqfB7m+vJT0w9K60sBKYgXy6P+wmTf8NMkzyDw6Hw5L1zSUvNL7obNBglIqMCeeGdiaVm3GxZH893n27C4VBQFJU27UK565Gh+PmbeeTOv0hNyS12vhDQrVck/3t6ZKk22WxO5v66h7UrjqBpLsXXS6/sWmGdoAazaatp2hfAF+DK0qljcyqFpVFAnUgpCyHweK9Zj5k3Z69b3NJhV9ixOYHMjAICg8pXVJOdZWXXtiS3En27TWHeH3u577FhJa7uhVSCtwdiDpxC07Ryp9vlZtuY+9teHOeEQhx2hbTTeaxaeoSxlcz9P7215BCK7GPBYDHRqE87er16W7U4ewDJIDNp7QesvfktTq7aiQY06tmWwd8+2uCdPcC2jcfJyrQWC/05HSopJ7I5sOckHbtGlHhtn4HN6NkvipTkHLx9TMXepzf9tx8fvLbybEtPWWAyGbjyRs8tPc/FbDZw+fU9uPz6yveCKIvqcPhJwLlVPk0Lj3k6J1EIYQACgLRqmFunAXMyKdujrzUYZdJP5xX7INlsTnKzbQQEebl1osrOLCiS0j2ftFN5eHmbGDOpHUvnHyp2N2EwSjz24hjeeXE51gL31b/JZKhQbvWRw6cxGKViDh9cXzw7tyZW2uHLFpPHHr0AjQd3ZuyCmtkS84kMZdziN3HmW9EUFaOfd43MUxcci033KIvtdKocP5ZRqsMHV7Wvp/z4zt2b8PRr4/n3j32cPJFFq7ahTLysE6Hh9aM5fHU4/C1AGyFEC1yO/SrgmvPOmQvcCGwAZgDLL6T4vU7laNWuEScSs9zink6nWqQV7nSq/Pz1FlYvc7UfNBgkpl/bg9ETz8aqwxr7efzikCRBu44uPfsrbuhJUIg3C/7aT26OjVZtG3H1zb1p1jKYYWNas3zB4WKO2miUGDKqYqtlX3+zxxiuEJT7bsUTIT1aYw7yxZlbPP/W4GMptWK8ujhfmuRCoHFTf8xmg5uSpcEoEdbYr0pjN2sZzF0PD6nSGDVFlQO+mqY5gXuARcAB4FdN0/YJIV4UQkwpPO1rIEQIEQs8CLilbupcfEya1hmTWYZzFtEms8yoCW2LOmDN+nYba5YdwWFXsNsU8vMczP5+G1vWx59zjYFp13RzjVWIEGC2GJhyRZfC3wVjL+nAe19N58vZ1/D4S2OLdPRnXNeDTt0aYzTJeHkbMZpkOnRpzJU3ni2kKQ8t24QQGOTl1kDdaJIZM6ns1X1erp2khEzs5zkhIUmM/ucVzI0CMPp5Y/CxIFtMtLllAtFTB1XIxvKQm3CKhHkbyNh3rNrHri/0H9wc4zmaPeBaIPj4munWK7LuDKth9EpbnTol8Xgms7/fzuH9p/D1MzPh0o6MmtAWIQR2u8Jd1832mJ8c1TyQl98vvrrdtvE48+bsJTO9gPadw7ns6m4VWq2dPJHNicQsmkQG0Diyct2IUlNyeffl5Zw+lYssS6iqxvX/6VOsUfv5OBwK332ykY1rj2EwSGgqTJ7RmUtmdC4WUlLsDpIWbcF2OpvGw7ri17JJpWwsCVVRWPefdzj6ywpXppnDSUiPNoyZ9wqmgPoRkqgKTofCji2JnDqZQ3SLYBqF+fDtxxuJOZgKAjp1jeDWewcQFNywQ1e6tIJOgyQzo4CHb//TLSYOLlG1j3+8og6sKhtN00hKyKIg306zFsFlyjZ89/pi9v+zlXyDhZzARq5sGLPMjXf2Y/CI6tmELQ973/ud7c98U6ygSzIZiZrcn5G/PV/idelp+Rw5lIpfgIW2HcJKrSitK9JS83jp8YUU5Nux2xVMRpmwCD+efGUssiwhJFGuJuiqorJ0/iGWLTyM3eqk14Bopl7RxWO/5LqiwWTp6Oici7+/GbPF4NHht2gdUgcWlQ8hRJH6Y2lomsaG+z5C+XQubSQZNA2blw+7BozFjg/z5uytVYd/YOafbtW7qt1Bwj8bcOZb3WL5nvq1+vqaeeylMVWOg8ccPMWKRTHk5djpMyia/oObV6kC+6uZ68nKKCjaY7EqTk4kZjHn511cd5vnVqfnomkaRw6d5ocvNpF0PKso62vFwsNs35TAqx9ObhANcxpO0rbORYckS1x9U89isXmEK2Zfk6lrtUXcz8uI/XYhkqpicDowKE68crPptHUlANmZniWjawpHTsl5/s7zBPoAtm0826/VWuDEWuAk7XQe77+6okp2LPh7P28+t5T1K+PYuTWRHz7bzOvPLCm1cK407DYnh/aluCcHOFQ2rDpa5vUOh8Kbzy3l9WeXEB+XUcwOp1MlJ9vKupVxlbKtttEdvk69ZvCo1tz9yFBatgnBP9BC916RPPP6uFIblzcU9n/wB0p+cacuoeGblY7ZmkerdrVbLR05rrfH9p6+0eGYg933NJb8e9Bjv9bUlFySk9y7zJWH3Gwbc/5vB3abUpR5ZbM5OX40g83rjlVqTI0SSy1KbIp+Lgv+2k/swVSPe0ngSrs9tK96JC1qGj2ko1Pv6d67Kd17u8rL09PySU7MIjUlh9DwqoUN6hp7tme9Hk0IvITKFddXLEuoqvR69TaSFm3FmWdFsdoRBhnZbGTQVw97rEcorV9rSY+dQVVUlvx7kKXzD2EtcNK9dyTTru3uqmUwyG56NDabky3rjzNwWMUbCpnNBlq3Dy0spDt7XJYFfQc1K/P61UtjsZfg7MGVKlzVEFZtoTt8nQaBoqh8NXM9W9bFYzDKOJ0qnbo25u5HhjY4LfszNLtsMPven+OmVyNbTDz62VVENqvdnqe+0eFM2/8tBz6dS8qaPQR2iKbDvZcRUIJ2Tp+B0ZxIzPLYrzW6Rel3YF/N3MCWDfFFhXBrV8axc1sSN93ZD09rbiHcu59VhNvuHchLjy/AblOwWZ1YvAwEBnmXKzRYkj7OGWRZYsS4tpW2rTZpmJ8UnYuOeXP2snX9cRwOtWj1t2/XSX7+Zis3/de9eXlDoMujV3F09koKUjJQCmwIWUIyGxkx60kim1V/yOpEYhY/fbWFg3tTMFsMDBvTmmnXdC+WnWIJDaTHszeUa7wxk9qzfuVR0lJzsdkUJElgMEjces8ADuw5yS/fbeNkUjZBId5Mu6Zb0eo8NSWXzevii23Gq4pGQb6DE4lZmEyyW+Wz0SQzYlzlJb/DI/x45/PL2LzueGFaZhA9+ka5VW17ov+Q5iz654DHSu7QcF9uv38QIaENQ25CT8vUaRDce+NvHvveGo0yX8y+ul6mApYHR04+Md8uJGnxVnybh9Ph7ksJ7FB2mKGiZKbn8/g9c7EWOIrCGkaTTOduETzw1IhKj2u3OVm/+ii7tiYR3MibkePbkpGWzwevriwWBjGZZa65pTcjxrVl68bjfPXheo9hn669mnD59T156/ml2G1OBAKnonLVjT0ZXY7itZqgIN/OS48t5HRqHjarE5NJRpIFdz8ylC49mtS7lpl6WqZOg8eT1g2A06mgKiqS1DD7uRr9vOl43zQ63jetRudZWigdce76zmFX2LsrmZTk7CIpi4piMhsYPqZNsY5Mn7+3zi3mbbcpzPlpJ8PHtqFRqA+q4r7QlGVB4yb+RDcP4oOvp3No/ykKChy06xheVHldF3h5m3jxvUvYsTmBmAOnaBTuy8BhLasUYqordIev0yBo2zGMvbuSOT/A27RZYI10yCqLvTtP8Mt320lOzCIgyItLr+rK0FKqaeuao7GnPYYkDAaJpONZlXb4njiZlO3xeH6eHavVSeMm/ggPkRRZlhg90bWKl2SJDl0aV5tNVcVgkOgzsBl9Blb/3Vdtoqdl6jQIrr21D14WY1GBjyQJzGYDN91Z+/H7A3tO8sGrK0k45srJTkvN48cvNrN4XuldjeqS6ObBHuPVilOttIxESTQK9xzPNluMmM0Gfvxis8ec+gHDWxAe0TCyXRoqusPXaRA0iQrglQ8nM2ZiO9q0D2X42Da8+N4kWrcPrXVbfv1xh8eQxZ+zdqMqlSsOqmlGT2yHwVj84240SrTpEOpR5rcqTL+mu1vHMpNZZvLlnVFVjY1rj3m829i19XxVdZ3qRg/p6DQYQkJ9uPoWj3tRtUpyoueiIrvNSX6eA1//6ovtappG+ul8ZFkQWAVRr5BQH558ZRw/fL6pKNd90IiWXHNr9b+evfpHc8s9A/j1++1kpOfj42tmyuWdGTu5A3ab02P8HsBaRu5+VUlOymL7pkRkg6DPgGYNJrOmOtEdvk6DJjfHxs/fbGXLung0TaN73yiuu61Pmfrz8XHpzPp2G0cOp+Lr61LpHHNJ+3JlXIQ19iM+Lt3tuNEo4+VTfXoqx46k8ek7a0k7nQeaRmR0IHc9PLTSYY9mLYN55o0JqIqKkESNZpcMGNqCAUNb4HQoyAapaC6zxUjjSH9OJBT/0hSCMpuOVIW/ftnFvD/2oSoaQoLf/28n1/2nT7HN5osBPaSj02BRFZWXH1/IxjXHsNsVHA6VbRuO88Ij80utjExOyuKVJxdxYM9J7DaF9LR8fvu/Hcz+fnu55p1+Tffi+j6A0STRtFkgzz74L+++tJwDe05W6bnl5th4/ZklnDyRjaPwucXHpfPKEwtxehCTqwiSLNVaKqHBKLvNdfNd/TGbDUWptAaDhJe3kStvqpnK4uPHMvj3j3047K4etE6HisOu8H9fbCEzo6DsAS4gdIev02DZsyOZjLR8lHM2AFVVIz/XzrYNx0u87p/f9rhVh9ptCkvnHyI/z17mvN16R/Kfc4ptvLyNSEIQF5tGYnwmu7Yl8e7Ly1m9NLaSzwzWr4or9rzApQdjsznZ2cBj3W07hPHie5MYPrYN7TuFM25KB16dOYXGTap38/gMm9cew+l0/5IUEuzYnFAjc9ZX9JCOToMlKTHTo3Sy1eokMT4DaOHxurjYNI/l8gaDxKmTOTRvVbb0ct+Bzeg7sFlRC8aVi2NQzolN220KP3+zlYHDWlQqbfT0qTyPdylOp0p6Wh6KopKXa8fH14QsS2iaxvpVR1k09wB5uTa6927KlCu6EBBY+daKNUnjJv7ceGe/Sl1rtzn59YftrC7shNauUxjX396XyKjAEq+pp/WltY7u8HUaJKqi4utrxmCUUZTzWgIK2LQuHl8/MyMntMVsKR5Xb9I0gOSkbLecfqdDqfBGnsEgsXdncjFnfwZN0zh5IpumHjRxEuMziItNI6SRDx26NHarFG7TPpSVi2PcGm1LQpCSnMPd1/+Kw6FgNMhMmt6ZvFwbyxYcLmqPuGJRDFvWx/Pqh1OqdRO5PvDh6ys5uDelSGLjwN4UXnpsIa9/NMXjxnbfQc1YNPeA2xeopkKPvlG1YnN9QXf4Og2OdSvj+PnrrdisDteHXlDMeZ+R6J0zaxdrV8bx3FsTi6UJTp7RhT07ThQJdwGYTDJ9BjarVOeigCAvUpJz3I4rThXf88ZTFJWP31rDnu1JCCEQEvj5W3jylbEENzr7ZdOjbxRhjX05mZRd5NhMJpmQUG+XemOh7U6Hyt+/7kZxqsXuWhRFJT/PzrKFh5h6RdcKP6f6yomELA7tO1VcTVNzadYvXXCYGdd2d7smukUwE6d14t8/9hWlzWoatGgTQuzBVHr0bYrsQRb6QuTieJY6Fwz7dyfz3acbyc2xFX3oS9p+dNgVUlNy2bTmWLHjLVqHcP8TwwmP8EOSXO0Eh49rwy13V66Ia+KlHd02cQ0GiXadw92yhZbMO8ieHUnY7Qo2W2HTkNQ8Pn1njdv1T702nvGXdiI0zJfwCD8uvaorBQXOYl9UZ56npxCVw6Gyb1dypZ5TfeVEUpZH5+x0qMTHpZV43WVXdePFdycxYJgrzCcEHN5/ii8+WMerTy7yGBq8ENFX+DoNin9+3+vm8DTNtQFnMhncQiA2q5NdWxMZMqp4q8DO3Zvw5qeXYrM5MRokpCqs8Hr0jWLa1d34Y9YuZFnC6VRp0z6Uux4a4nbu8kWH3exXVY24mDRysq3F7jC8vIzMuLZ7sVXr7/+3s9x2CUkQGt7wm4+fS5PIABQPxW0Go0SzliXvvWiaxqG9KaxbEVcsnm+zOjl+LIPVS2MZNaFdTZhcr9Advk6DIjUl1+Nxgyx53JmTJEFgSMkFS+Zq0tKfcGknRo5vS1JCFgGBXiXuBZTUNUkIUeJj5xIR6U9Sgnvh15k9gHNX+kaDxLjJHcpjfp2jKiq7tiVxYG8KgUFeDBrRkoBAL+x2lzjemX6x/oEWzBaDWzzeaJQZNaFkTfrF/xzgtx93eNy8tdsUNqw6qjt8HZ36Rpv2oaSl5rmFMIQk8PYxY7fnF/tQGwwSI2upOYXZYqRlm5LbEuZm20rMfw8K8SKolC+mM1x1cy9mvr7KPYNHaGiqK1RhNMmYzQZuuXtAmY1I6gN2u8Ibzy4m4VgmNqsTo1Hmz1920axFMHExaWhoNI0O5NZ7BvDNxxvJzytekSskwb2PDSOohEpkRVH5a/Zuty5a53J+SO5CRY/h6zQopl7ZFZNZ5ly/aTLLTLu6G4+/PIbwCH/MZhmLlxEvbyP/eWAQTaKqVyumsrzz0jIy0twbhZvMMnc8MLhcxVBde0byv6dH0Kpto2KZPariusGRDRLDx7blw29n0LNfw8hAWb7wMMfjMorCcQ6Hgt2mEHMwFUVRURWN40czeOXJRSQnZrmFdGRJsL+UQre8HFupd09ms6HBdKyqKvoKvwLYs3JRnQqWkPrhQC5GGjfx57m3JvLHzzs5tP8UgUFeTJ7Rpag36esfTyEpIQub1UGzFsF1Ip3siYRjGSQez/S4udqrX3SFROA6do3gwaeDuf+W393GczpUdmxK4NpyaOQciTnN5++u5dTJHGRZou/gZtx6z8BydYGqTtavPFJqZfQZnA4F1cMi3elU3aQazsXb14wsS55X+AIGjWhB7wHRFTG5waI7/HKQl5TK6hte59S6vQAEtItmyPePEdK9/uqfX8g0aRrAPY8O8/iYEIKm0YG1a1A5cAmgSYC7Y8vKrHh5v6KqJaYnOcuh2Jl4PJOXHl1QFP5yOlXWrzxK/JF0Xp05pcL2VIXypkR6cvZnCG5UcjjMYJCYeFkn5v1RfMNfNkjceGc/ho2+eD7HekinDFRFYf7Q/5Gyejeq3Ylqd5KxJ44Fw/+H9XTJqwodnXOJbhlUYupfVPPACo8XEOhFeGN3ETWDQaLf4LKbdHz78QaPG5hJCVkc2lc1HaCKMmJc23JtnkuleKvQsNKzkaZc0YVLr+pW1DmrUZgPdz00+KJy9qA7/DJJXrod6+lMtPNWTapDIea7hXVklU59QNM0CgocHsM05xMU7E2PPk09PrZ9YyKV6S19x/8G4+VtLCoqM1sMhIb7MuXysgutEuIzS3xs7u97K2xLVRg8oiXdekdiMskYjBIWLwOyLIqFliRJYDTLGI3uLstskYks465OCMGkyzrx8Y9X8PXv1/LOF9PoPaBhd6+qDHpIpwxyjp10c/YASoGN7NgTdWCRTn1g3co4Zn+/ndxsKyazgQmXdmTyjC6lNlM3mQ1uVcEA2dlW4mJO06ptxZq5GE0yfQc3J/bgKXz9zAwZ2YoBQ8un3WOxuNcsnKGk1NeaQpIl7n5kKPFx6Rzefwr/QAtdejRh4d/7WbkkFofdSffeTblkRmdefnwRDqe96DWUZEFgkDedupVPWlkIgcFQv5qO1ya6wy+DkJ5tEB6CpQZfL8IGdKwDi3Tqmu2bEvjuk41FG40F+Q7mzdmLpmpcelW3Eq/Lyihwc/bgWr3mZNsqZMPOLYl8/NZqnIWSCiazTGZ6Ab36R5fL4Y+d0oHfftjh8bGIGlKtLItmLYNp1tKVRpp4PBP/QC+uu60P3fs0LbqLefr1cXz54Xri49IRQKfuEdx6z8BSv2h1zqI7/DII7dOesIEdSVm3F6XAJZ0rmQxYQgNpccXwujVOp074Y9ZOjy0OF/y1n8mXdylxE7J7n6Yc3n/K7VqHQ6FV25Lz989HUVS+/HB9sXHsNoW003ksnLufaVd3L3OMS6Z1ZsGf+8jNKS4HbTAKxtZhsZaqanw1c72roQ0gywJZlnj8pTFEtwgmMiqQ59+aiLXAUSiLUT9c2InELDasPorDrtC7fzSt2jWqtZ4DFUGP4ZeD0f+8QpfHrsYnKhRLeBBtb5vE5M0fY/C6sFQIdcrH6VN5Ho87nSoFeSW36Rs6qhUhoT4YzxFyM5sNTJnRpUKibScSsjw2QXE6VLasL7kPwPm8+O4lRDT1x2iUMFtkjCaZGdf2KHd4pCbYuOYoW9cfdzW0sStYC5zk5dp5/5UVxfY5LF7GeuPsl84/xLMP/su8OXtZ8Nd+3nhuCd99uqlS+zI1Tf14xeo5stlEj2dvoMezN9S1KTr1gMioQGIPpbodt3gZ8S7MAvGE2WLkubcnsnzhYbZuOI6vr4nRk9rTrVdkhea3eBlRStgozs2xoapauUIcIaE+vDZzCgnHMsjJttGidQjePiXbX14yMwqY++tudm1LwsfHxLgpHRk4vEW5VrwrF8dgs7nvLeTm2jl+NKMo5FNfyMos4JdvtxbL8T8j1TBoeEvadgyrQ+vc0R2+jk4FufyGHrzzwrJiIRWTWWbGdd3LdLReXkYmXdaJSZd1qvT8oeG+NGkaQPzRdLc9gbxcGwv/3s/Eco4vhKiU/IKmaTgcKkZj8XaJudk2nv3fPHJzbCiKxmny+O6zTSTEZ3DVTb3KHNfp9JxsLwQeRdPqml3bkpAkCShum83uZNPaY/XO4VcppCOECBZCLBFCxBT+797pwXWeIoTYWfhvblXm1NGpa9p3CuehZ0fRsm0jzGYDjZv4c9u9A2u1PP/eR4d63ABWnBqL/jlQY/Nqmsb8v/Zx9/W/cvuVs3jg1jmsXxVX9PiyBYfIz3Oc1/3LydJ/D5KdZS1z/IHDWnjUtZENUr1b3UNh0ZiH73gBHlNI65qqrvAfB5Zpmva6EOLxwt8f83BegaZp3as4l45OvaF953Cee3NCnc0fEOSFEJ5b9+Xnlt2Xt7L8++c+/p69u6hiNTO9gM/fW8e2jcf574ND2Lc72WOBmcEoEx+XTpceTUodf9iYNmxaG098XDo2qxODUUKSBHc9NKReNinp3rsp36kb3Y4bjTIDhrWsA4tKp6oOfyowvPDn74GVeHb4OjoXNUkJmSyae4CTJ7Jp1ymcMRPb4V+FfrMms4HGkf4kJ2a7PdamQ8Xy+cuLqmrM89CPAGDrhgRmvrGqRB0eRVHLpQZqNMo88dIYdm8/wd6dJwgI8mLwyFYlKmHWNT6+Jv770GA+fWctQhKuIjwNpl7VtV7ekYiq7CQLITI1TQss/FkAGWd+P+88J7ATcAKva5r2Vwnj3Q7cDhAdHd0rPj6+0rbp6NQX9u48wQevrcTpcOXMG4wSFouRF9+dVOEeuudyYM9J3n15OQ6Hila4UWs0yTzz+niimnuMrlaJgnw7d1//q8f+veCKsxsM7iJlsixo1jKY596aWO021Rdyc2xs35yA06HSrVdklf6uVUUIsU3TNI/qeWU6fCHEUqCxh4eeAr4/18ELITI0TXN7pwkhIjVNSxJCtASWA6M0TTtS2ry9e/fWtm7dWqptOjr1HU3TeOj2P0lLLZ7KKQQMHN6S2+8fVKXxE45l8O8f+0hKyKRlmxAmXtaZ8Ah3jZ3qQFU17r3xN3JzKlYk1r5zGPc8OqxS/YJ1Kk5pDr/MkI6maaNLGThFCBGhaVqyECICOFXCGEmF/8cJIVYCPYBSHb6OzoVAVkYB2R7UMDUNNqw+yrW39sbHt/L1HFHNg7jzwcGlnpObbSPlZA6hYT5VCiNJkmDGdd354fNNpSpXnovFYmDMpA66s68nVDWGPxe4EXi98P+/zz+hMHMnX9M0mxCiETAIeLOK8+roNAjMXkaPG6sAqqLx1cwN3P/E8BqZW1VUfvxqC6uXxmI0yjgcCv0GNeeWewZUWvN+xLi2OJ0KP321tdjzKmkDGSEw1MNslYuVqv4lXgfGCCFigNGFvyOE6C2E+KrwnA7AViHELmAFrhj+/irOq6PTIPDyMtK1Z8mFVbu3JXksNKoO/v1zH2uXH8HpUCnId+B0qGxeH8/v/+dZQ6e8jJnUgRfemUSL1iGFYmQSnbtFFOndnIsQroYtOvWDKm3a1iR6DP/iRlVUNq2NZ93KOAxGiWGjW9O9T9N6qU9SFnm5du654VePMsqyQeLDb2fg61f9Mh333vibx9x3s8XA57OuqpbX0uFQkCWBJEv8MWsX8//Yh5AEUmFP+QefHkn7zuFVnken/FQphq+jU9tomsb7r67k4N6UotXv/l0nGTSiJTfe2a+Oras4Pr4m+g9pzobVR93CHmHhvjXi7AHy8zzn49tsTlRVQ5ar7vCN5yhzTru6G8NGt2bPzhNYLAa6926KxctY5Tl0qg89uKZT79i3K5mD+1KKhTpsNidrlh8ptXdpfeby63vg628uEk6TDRJmi4Fb7x1QY3O2LEGBs2l0YI0VMYWE+jB8TBv6D2mhO/t6iL7C16l37N5+wnNzDg327U6mSVTDayIf3MiH1z+aysrFMcQcOEVEpD+jJrYnNLz01nxV4ZpbevPaU4txOBRUVUNIAqNR4obb+9bYnHVBXq6dVUtiOLA3hcYRfoye1I7wiLrR9K/v6A5fp97h62fCYJRweijg8SlFjbK+4+tn5pLpnWttvhatQ3jh3YnMm7OXY0fSaRodyCXTO1dLUdaJxCxOn8olqnlQnVbBZmYU8NyD/5KXZ8dhV9gnC1YuieHBp0fSoYun8qGLG93h69Q7Bg1vxT+/eeirKqBn36jaN6gBExEZwH/uq1px17nk59l5/9UVHI1JQzZIOB0Kg0a04sY7+9VJ16k/Z+0iJ9taVP2rKBqKovDVzPW8/fllDXKTvybRY/g69Y6QUB/++/AQLF4GvLyMWLwM+PqZefi5UXpcuI75+uMNHDl8GrtdoSDfgcOhsn5VHEv/PVgn9uzcmuhR6iEr00pGunvB28WOvsLXqZf07BvFzO+vIObAKWSDRJv2ofVSLfFiwmZ1sHNzoptmvd2msPjfg3XSGtFi8ezCNFXDXE86YtUn9E+QTr3FZJLp1C2C9p3CLwhnn5aax4E9J8nyILXQELB5UMk8Q2mtHWuS0ZPae9TPB/j9px3l0uC/mNC/AnV0qhlN0yjId2A0yRiNMnabk0/eWcPeHckYjBIOh8KQEa244Y6+SDX8RWa3K9V2l+TnbyYoxJvUlNxix4WAzj3qppp21IR2xMels2FVHIqiFdU5OJ0qqxbHsnNLIq/OnIKXHgoEdIevo1OtHNybwjefbOB0Si5CEvQd2AxJEuzd6WoMcqY5yLpVcYRG+FWp1WFZbN+UwOfvr0Ug0NAwGGQeeGo4bdpXru2eEIJb7u7Pe6+sxFmY6umSejZw+XU9qtn68tp09ofzVQMURSU3x8ba5UcYM6l97RtXD9GlFXR0qokTiVk8/9D8YgVjBqOE4lQ9CosFhXjz/tfTa8SWtNQ8Hrv7bxz24mEYi5eRD7+djtlS+RXvicQsVzOXpGzadgqrcjOXqrBlfTxffrC+VD2i3gOiufexYbVoVd2iSyvo6NQCC//e79be7/xagnMpSfqgOli38giaB+0eTdPYvimRAcNaVHrsJk0DuPmu/lUxr9pYtTS2VGdvMEg0blIz/QEaIg1/J0xHp55wIjHLo0Cax1RwAe06VS60Uh5yc+xu2TTgkmTOq8EvmtpG8fAcz0WWpVptLl/f0R2+jk410aZ9mEedeUmWMJqkosIk2SDhZTFy9U0e77qrha49m2D2lLIooFO3C6cCdfCIViWmX4aG+fLwc6NoFFZz8hUNDT2ko6NTTYyd3J6Viw+jKGdj9iazTP8hLRg/tQML/txPUkImrdqFMn5Khxp1RB27utJZz1UcNZsNDBrRkojIhqdFVBL9hzZn09pjLrE9qxODUUIIuPmuAQwc1kKvtD0PfdNWR6caSUnOZvb3O9i/OxlvbyNjJndg3CXtazz90hMXUk+B0tA0jf27T7J35wn8/C0MGNaiTvV96poqNTGvK3SHr6Ojo1NxSnP4egxfR+ciQNM0TiRkkXAsw+PGss7FgR7D19G5wDl+LIMPX1tJVmYBQgi8vIzc/chQ2nasuSwhnfqJvsLX0bmAsdmcvP70YlJTcrHbFGxWJ5kZBbz94jJdZ+YiRHf4OjoXMNs3JXjMVVdVjQ2rjtaBRTp1ie7wdXQuYLIyCzwWYDnsCpkZ+XVgkU5dojt8HZ0LmHYdw5Fk9zRMs8VA+04XTgGWTvnQHb6OzgVMi9YhdOnRBPM5mvEms0x0iyC61JGksU7doWfp6Ohc4NzzyFBWL4tl5ZJYVEVl0IhWjBzftk6KwXTqFt3h6+hc4EiyxPCxbRk+VhcRu9jRv+J1dHR0LhJ0h6+jo6NzkaCHdHR0dGqNtNQ81iw/QmZ6Pp26RdCzX9QF0aC+oaA7fB0dnVph784TfPDaSlRVw+lQWb/qKE2iAnjy5bGYStC016le9K9WHR2dGkdVVD59dy12m1LU9tFmdZIUn8nyhYfr2LqLB93h6+jo1DgJ8Zk4z2uoDmC3K6zXJR5qDd3h6+jo1DgGo0RJvTdMJtnjcZ3qR3f4Ojo6NU6TpgEEBHnDeSoPZrNBbzJei+gOX0dHp8YRQvDAU8Px8zNj8TJgMsuYTDK9B0YzYFiLujbvoqFKW+NCiMuB54EOQF9N0zz2JBRCjAc+AGTgK03TXq/KvDo6Og2PyKhA3v96Oru3nyArs4B2HcNpEnXhNFRvCFQ1F2ovMA34vKQThBAy8DEwBkgEtggh5mqatr+Kc+vo6DQwDEaZnv2i6tqMi5YqOXxN0w6A63atFPoCsZqmxRWe+wswFdAdvo6Ojk4tUhsx/Egg4ZzfEwuPuSGEuF0IsVUIsTU1NbUWTNPR0dG5eChzhS+EWAp46pTwlKZpf1enMZqmfQF8AdC7d2/POVw6Ojo6OpWiTIevadroKs6RBJwbtGtaeExHR0dHpxapjZDOFqCNEKKFEMIEXAXMrYV5dXR0dHTOQZRU/Vaui4W4DJgJhAKZwE5N08YJIZrgSr+cWHjeROB9XGmZ32ia9ko5xk4F4gt/bQScrrShtUtDsVW3s3rR7axeGoqdUP9sbaZpWqinB6rk8GsLIcRWTdN617Ud5aGh2KrbWb3odlYvDcVOaFi26pW2Ojo6OhcJusPX0dHRuUhoKA7/i7o2oAI0FFt1O6sX3c7qpaHYCQ3I1gYRw9fR0dHRqToNZYWvo6Ojo1NFdIevo6Ojc5FQLx2+EOJyIcQ+IYQqhCgx3UkIcUwIsUcIsVMI4VGauaapgK3jhRCHhBCxQojHa9PGwvmDhRBLhBAxhf8HlXCeUvh67hRC1FqBXFmvjxDCLISYXfj4JiFE89qy7Tw7yrLzJiFE6jmv4W11YOM3QohTQoi9JTwuhBAfFj6H3UKInrVtY6EdZdk5XAiRdc5r+Wxt21hoR5QQYoUQYn/hZ/1+D+fUi9e0TDRNq3f/cOnrtwNWAr1LOe8Y0Ki+24qr4OwI0BIwAbuAjrVs55vA44U/Pw68UcJ5uXXwGpb5+gB3AZ8V/nwVMLue2nkT8FFt23aeDUOBnsDeEh6fCCzA1X+qP7Cpnto5HJhXl69loR0RQM/Cn/2Awx7+7vXiNS3rX71c4WuadkDTtEN1bUd5KKetRRLRmqbZgTMS0bXJVOD7wp+/By6t5flLozyvz7n2/w6MEmXoctcA9eHvWCaapq0G0ks5ZSrwg+ZiIxAohIioHevOUg476wWapiVrmra98Occ4ADuir/14jUti3rp8CuABiwWQmwTQtxe18aUQrklomuQcE3Tkgt/PgmEl3CepVCieqMQ4tLaMa1cr0/ROZqmOYEsIKRWrPNgQyEl/R2nF97W/y6EqI/dPurD+7G8DBBC7BJCLBBCdKprYwpDiT2ATec91CBe06p2vKo01SS7PFjTtCQhRBiwRAhxsHDVUK3UpkR0VSjNznN/0TRNE0KUlI/brPA1bQksF0Ls0TTtSHXbegHzDzBL0zSbEOIOXHclI+vYpobKdlzvx9xCPa6/gDZ1ZYwQwheYAzygaVp2XdlRFerM4WtVl11G07Skwv9PCSH+xHXLXe0OvxpsrRWJ6NLsFEKkCCEiNE1LLrzVPFXCGGde0zghxEpcq5madvjleX3OnJMohDAAAUBaDdt1PmXaqWnauTZ9hWvvpL7RICTLz3WqmqbNF0J8IoRopGlarQuVCSGMuJz9T5qm/eHhlAbxmjbYkI4QwkcI4XfmZ2Asrh679ZH6IBE9F7ix8OcbAbc7EyFEkBDCXPhzI2AQtdOKsjyvz7n2zwCWa4W7ZbVImXaeF7edgiveW9+YC9xQmFnSH8g6J9xXbxBCND6zTyOE6IvLX9X2lzyFNnwNHNA07d0STmsQr2md7xp7+gdchisGZgNSgEWFx5sA8wt/bokrS2IXsA9XeKVe2qqd3cU/jGu1XOu24op3LwNigKVAcOHx3rikrAEGAnsKX9M9wK21aJ/b6wO8CEwp/NkC/AbEApuBlnX09y7LztcK34+7gBVA+zqwcRaQDDgK35u3AncCdxY+LoCPC5/DHkrJhKtjO+8557XcCAysIzsH49ov3A3sLPw3sT6+pmX906UVdHR0dC4SGmxIR0dHR0enYugOX0dHR+ciQXf4Ojo6OhcJusPX0dHRuUjQHb6Ojo7ORYLu8HV0dHQuEnSHr6Ojo3OR8P8bHnaTn6HLoQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAB6nElEQVR4nO2ddXgU1/eH3zuzEk+IECG4uzvFixYolBbq7u7tt+7yq3upuxsUK1Dc3SEEJ+6+NjO/PzakLLsJkU2ygXmfh4dkdmbu2cnumTvnnvM5QtM0dHR0dHTOfqT6NkBHR0dHp27QHb6Ojo7OOYLu8HV0dHTOEXSHr6Ojo3OOoDt8HR0dnXMEQ30bUBGRkZFaixYt6tsMHR0dnQbD5s2bMzVNi/L0mk87/BYtWrBp06b6NkNHR0enwSCEOFrea3pIR0dHR+ccQXf4Ojo6OucIusPX0dHROUfQHb6Ojo7OOYLu8HWqjS2/iNSVO8hLOF7fpujo6FQCn87S0fFddrzyA9ue+RrJZES1Owjv1orRs5/HLyqsvk3T0dEpB32Gr1Nljs1Zw/bnvkWx2LDnF6GUWMncnMC/05+ub9MA0FSV3L1HKTicUt+m6Oj4FPoMX6fK7H7zVxzFFpdtmkMhc+N+Co+nE9S0cT1ZBilLt7L8ihex5xejqRrBreMY9fszhLRpUm826ej4CvoMX6fKWNJzPW6XjAasWfl1a8wpFJ3IYPHkxylJycZRZEEpsZK7+wjzht2L6lDqzS4dHV9Bd/g6VSZ+Qn8kk4eHQwF+UaFkbUvEXlhS53YlfD7f3bFrGo7CEpL+0Su2dXR0h69TZbo8cAnmiBAks9G5QQgkfxNhnVvwW9srmT/8Xn6IvogtT31BXXZUKzqWjmq1u23XVJWSlKw6s0NHx1fRY/g6Vca/cSMu3P4pe979naQFmwhsGoWqqiQv3IhisaNYnE539xu/Etg0mvY3TMBeVML+WXM5+sdKzOEhdLrjQuJG9/aqXbEje3L456U4Ck9bX1A1Gg/q7NWxdHQaIsKXe9r26dNH08XTfB/FZue7sMkoFpvba8FtmnDhtlnM6X87BYdSUEqsABgC/Oj2+OV0f+Qyr9oxp++t5B9IKrNFDjDT/MIhDPv2f14bR0fHlxFCbNY0rY+n1/SQjk6NcRSWoKmqx9csGbkc+OofCg7/5+wBHMUWtj/7DZasPK/ZIZuMTFz9Lt0fu5ywTs2J6NWWAW/fwdCvH/HaGDo6DRk9pKNTY0yNgvGPbkTR8QzXF4QgenBnjs9eg1JsdTtOMhnIWLeXphMHeM0WY5A/3R+7gu6PXeG1c+ronC3oM3ydGiOEYMB7dyH7m0EI5zZZwhDoR5+Xb8I/phFIwu04TdUwR4TUtbk6OucsusPX8QrNJg1i3OL/I35Cf0LaxdPqslFM3vQhjbq0pMNtU5D9TK4HSAK/qFCi+nesH4N1dM5B9EVbnTph/2fz2HD3+wiDjKYoBMRFcv68lwhpHVffpunonFVUtGirx/B16oT210+g9aUjydy4H2NoIOHdWyOEe5hHR0en9tAdvk6dYQjwI2ZY9/o2ww3V7kBVVAynh510dM4ydId/FlN4PJ38A0mEtosnMN5jE/tzGktWHmtueZPjs9eiqSqRfdoz+JP7adSlZX2bpqNTK+gO3wukrdnNzld+oOBQCjHDutP14Zn1qhipWG0sv/IlTvy9FslsQrXaaTZ1CEO/fBjJqP/JATRNY8GoB8jbewzV7gAgY8M+5p53N9MTvq4TXX9N00hZsoUDXy1Ecyi0unQUTS8YgJD0XAqd2kH/9teQwz8vY+V1r5blmeclHOfQ90uYvOlDglvVz4Lk5v99xom561xkDo79uZqtT39F7xeurxebfI301bsoOJRS5uwB0DRUm52Ez+fT7eFLa92GDQ98SMKsuTiKnFIQx+euo+kFAxn23WP6+oZOraBPJWqAqiisveMdl6Iiza5gyy9my1Nf1ptd+z+Zi1LiKnOglFjZ99HserLI98hPTPK4XSmxkbv7SK2Pn7vvGPs/mlPm7AEchRaOz1lL+updtT6+zrmJ7vBrQPGJTLdGIACoKilLt9W5PeAME5zqRE7FXlD3ksW+SqNurcCDHIQc4Edkvw61Pn7yP5vwlBHtKLZwfO66Wh9f59xEd/g1wBQWiKZ41pDxbxxWt8aUIoQgsm97j681Htipjq3xXSJ7tSOyf0eXgjAhS5iC/Wlz1ZhaH98YHIAku3/9JKMRY0hgrY+vc26iO/waYAoNotmkgf/pwpdiCPCj64Mz68kqGPjeXRiC/BAGGQBhlDEE+TPgnTtrZTxLVh77PpzN9he+I23tbpL/3cq+j+aQunJHrenhW3ML2fnaTyya9D/W3/dBuSGaijj/7xfpeOdUzJGhGIL9aTF9GJM2fYhqc1B4NM3NdntBMRse/Igfm1zCT/GXsOl/n2Ivqt5TU7OpQzxuF7JE68tGVeucOjpnQq+0rSH2whKWX/Y8yYu3IJkMqHaFbo/MpPvjV9brwlv+wWR2vf4z2dsOEtG7LV3uu5jglrFeHydl2TYWT3oMTdPK1g2ELJCMRoQsEdqhKeMWv4bJi7PWkrRsZve+BWtOIUqJFWGUkY1GRs95ntgRPWt03mWXvUD6mt0IScIvMoQhXzxM3MieqA6F2X1uIW//8bImK7KfiUZdW3LB2veqlVmTvHizS+N3zaEw5IuHaXnxsGq/Bx2diiptdYfvJYqTMylKyiSsQzOMwQH1bU6doDoUfoi5CFt2Qbn7SGYjba4ey+CP7vXauGtufYuEz+eh2V3bGQa1iGb6we+qdaPVNI0/u99A3r7jaKe0STQE+DFl+yfk7DrMiitfwnFa60ZDkD8jf3uaJud7/H6dEYfFRurSragOhdgRPTEG+VfrPDo6J9H18OuAgLhIovp2OGecPUDG+r0uztETqtXOoe+XeHXcY3PWuDl7gJLUHIqTMqt1zswN+yg8kur2fhS7g30f/EX2lgNuzh5AsdjI2nKgWmMCGPxMxI/vT7NJg3Rnr1Pr6A5fp9ZxyXX3AuXdVDVVwxDoV+GxmqZRnJKFNcf1qaToeLrHsIxmd5B/MJmgFjEezy37mwhqHl0F63V06g/d4etUm6j+HcsWhstDyBLxE/p7ddxOd1yIHGB2HccgEzOsO+ZGweUel7ZqJ7+1u4pfW1/Bj7HTWTjmIUrSsgGI6NMe1eZ+YzIEmIkd0YMWFw9zZvScGi6SBMYAP5pd6HkBVkfH19AdfgNBdSjYPYQU6hPJIDPy16cxBPoh+XsWHjME+dP/rdu9Om6HWyfT8pLhyH4mjCEBGAL9aNS5BcO+fbTcYwqPpvHP+EcoOJiMYrGh2hykLN/GgtEPomkawS1iaHXpSAwB/83iJaMBU3gIba8dhzHIn4mr3iGydzskkwHJZCCqf0cmrn5HF13TaTDoi7Y+jsNiY8O9H5D41UJUh0JwyxgGfngvcSOrn43ibSxZeWy4/yMO//CvW/hG9jdxafrvGAO9H58uOJJK9tZEAptGEdG7XYWLtZse/YTdb/7qNos3BPkzduErNB7YGU1V2ffxHLY+/RXWzHwAzBHB9H31ZtpeM67sGGt2PghR4dOEjk59oS/aNmBWXPkiiV8tRLHY0BwK+QeSWDz5MbJ3HKxv08rwiwjFkp7jMVYvGQ2kr6odqYDgFjE0nzqEyD7tz5iZk38gyWPIBuGc/QMIScKSkYdSZAFNA03DmpnP2jve4cjvK9E0jWOz17Di6pdZevEzHPhigdfXJ3R0ahOviKcJIT4HLgDSNU3r4uF1AbwNTACKgWs0TdvijbHPZoqTMznx9zqU0rzvk6gWOztf/Ylh3/6v2ufWNI301btIW70L/5hwWlw0tEZZIuUeq+EWb/cWDouNPW//RuLX/yCEoM214+h051Rkk9Ft35ih3TixYINbM3XNrhDZx1mZrCoKu1//Bcdp+yjFVrY+9SWpy7Zx4IsFZdIVGev3kvjNIsYuehVJrngtQ0fHF/DWDP9LYFwFr48H2pb+uwn40EvjntUUHElD8hAf1lSV3D1Hq31e1e5g0cRH+Wf8I2x54gvW3fkuPzedQdbW6qcXtr/pApf490kMAWYaD+pc7fOWh6aqLBz9ANue/Zq8vcfI3XOUrU99yaLxj3is7m1zzVjM4cEI43+OWQ4w0+zCwYS0aQI4tYYUq83tWIDCI6kkfDrPVeysyELmpv2cmLfey+9OR6d28IrD1zRtBZBdwS5TgK81J+uAMCGE98s+zzJC28ejWNwdkDDINWr+vX/W36Su2IGjyILmUHAUlmDLK+Lfi56uthRC3OjedLrvImQ/E4Ygf4whAZgjQjh/3ku1MvtNXrSZ7B2HXFRBlWIrGRv2kbZqp9v+ppBAJm/6iPY3TMA/NpzgNk3o/fx1DP3m0VP2CcAUGuRxPL/GYSC5h40chSWcmL+hUjZrmsaJBRtYfdPrrLvnfbK2JVbqOB0db1FXevhNgOOn/H6idFvK6TsKIW7C+RRAs2bN6sQ4X8UvIpT2N07kwOfz/wszCIHB30TXh2ZU+7wJn893C20AWDJyydt/nLAO1bvuvZ+9jg43TyJ16TZMYUHEjenjMbziDdLW7vZcCGW1k75mNzHndXN7zb9xIwa+fw8D37/H4zmFJNH7pRtYd9e7LtdHDjDT9ppx7HrtJ04v95JMhkoJ5WmaxrKZz3Fi3nrnU4IkkfDJXHq/eD2d777ojMfr6HiDulq09bSi5nEqqWnaLE3T+mia1icqSm/L1/+t2+n1/HUENo3CEORPkzF9mLjmvZrp4lQ0i69h1lZgkyhaX3E+TS8YWGvOHiAwLtJjCEn2MxEQF1nt87a7bjxDv3yYsE7NMQb7EzWgI2PmvUyXB2cgPDypCFmmzdVjz3jepIUb/3P2AKqKUmJlw70fsObWN30u5Vbn7KSuZvgngKan/B4PJNfR2A0aIUl0vmc6ne+Z7rVztrl6LJsTPnOb5ZsjQgit5uy+rmk5YzgbH5rltl0yGmg+rWaFUC2mD6PFdHcBs7GL/o/Fkx7DUVTiLMDSNM776pFK3XyP/r6y3D4FCZ/NJ3PjfiZt+EBvb6hTq9SVw58N3CGE+BHoD+RpmuYWztGpGzrcOpljf64mc3MCjsISDAFmhCzTfOoQ/ux2A5qi0PqK8+l8z0UeZ9G+gCk0iHH/vsaymc+X6udoBDWPZsTPT50x578kLRtbbhHBreOQzlApfCqRvdsx48RPZGzYh2Kx0XhgJ2Rz5YquDIF+IEkem65oDoW8hBMkL95CkzHVE2HT0akMXim8EkL8AAwHIoE04CnACKBp2kelaZnv4czkKQau1TTtjBVVeuFV7aGpKin/biVt1S78ohtx9PcVpK/dUzbrl/1NNOrSkolr3vXZlENHiZXUFTuwZuYR2bcDoe3iK9zfmp3PsktfIHXFdiSjs1p24Pt302rGiFq3NWtbInMH34VS4r52As6F+N7PX0fXh+qvj4LO2UFFhVdemeFrmlZhx2fNeVfxbn29zhmxF5VQnJxFYBP3eLeQJOJG9yZudG/S1+1h00Mfu4R4lBIbuXuPcWLeeppNGuTUu7fYkP1MPtFg+8jvK1l5zSuI0swZYZAZ/edzRA/pWu4xi6c8QebGfag2R5mm/arr/4/glrFE1XJbw4gebej94vVsfOhjj0qfsr+JoFroV6Cjcyp6wPAsRFNVNjzwIT80nsbs3rfwfdQ0Nj/+ebkplxlr96B6cEKOwhL2vP07ez/8i5+bz+TbkAv4PmIK21/+vtY6WVWGwqNpZdr09vxi7PnF2LILWDTx0XIXP/MTk8jacsCt2lYpsbHrjZ/rwmw6330R0/Z9iSHI3yWNwdlaMYBmUwbViR065y66w68jjs9bz9+D7uTH+Ev496KnyN1zpOw1VVEoKUeaoDpsf/F79n00B6XEhqOwBKXEyp63fmPP27973N8/LgLJ7PlhL3X5dtbd/g7FJzLRFBVbbhE7nv+O7c9/4xVbq0Pit4vQFPcblKbBsb9WezymODkLyeThPWoaefuPs/vNX9n1xi8UHKrdXIKQlnFM3vwRjQd2RhhlhFEm+ryuTFz9bq1mNenogC6eVickfD7fNbdbCAyBflyw5l1Sl29nyxNfoFhsCFmi070X0evpa2qUrfFd+BRsuYVu2/1jwpmZ/IvbdofFxs/NZmLNyq90WqYh2J/Ls/6q0qKnt1h//4fsefNXt+2yv4m+/3cLHW+b4vaaNbeQn+Iudi9kkyWEEAhZAg2EJOj1/HV0ue9ij2NrmsaRX1eQ8OlcVIdCm6vG0Pry0dW6DvaCYhBCb3yi41V08bR6RHUobHzQNT6OpuEosrDymlfY+PAsbLmFKBYbjiILu9/4lW3Pf1vhOTVV5cCXC/h70J3M7nMLu9/6FUepI9NU1aOzB7Bk5nncbvAzMWH5m4R1ag5y5T4Sqs1R7ji1Tfy4vuU2Ookb3cvjdnNYEF0fmuF6nEECRUVzKKhWO6rNjmKxseXxz8k7cMLjeVZd+yqrrnuV5EWbSV26jXV3vMPiyY9XK8RlDA7w6OzzEo6z6obXmN3nFlbf9Hq5tujoVBXd4dcyxSlZHuUR0DSytx90y4VXiq3sfv0XNA/peydZfuWLrLvzXTLW7SFrywE2P/45C0beh+pQEJKzcbgnwru3LvecYR2bM3XnZ3S4ZZJHCYHTMQT4YWoUhDU7n52v/8yKq19mzzu/Y8ur/ZtA3OjexIzo4eK8DYF+tLt+AqHtPL93gB5PXc2Qzx8isl8HglvF0rh/JySzexhFU1SO/r7SbXv29oMc/nW5m55O2qodpPy7tYbvyknGxn3M7n0LiV8tJGvLAQ58sYDZvW4mc9N+r5xf59xGd/i1jDk8uNwwiaZ63u4oseIoJ30ve+chjv25xsXpKMVWcnYd4fjfawHo//YdyP6nKFQKgRxgpt8bt57R3nbXT3B2dqoAQ4AfvZ69hoKDyfza7iq2PvklB79ZxOb/fcqv7a6i4EjqGcepCUIIRv3xLIM/fYD4iQNoPm0Iw396kv5v33HG41pePIxJ695neuK3tJh2nsf9NDSPdeApS7ehKe43YkehheTFm6v1Xk5n3Z3vOjWOSsfRFBVHkYV1d73rlfPrnNvoDr+WMQb60/qK0a4OGKc+S3CbOI/H+EWFlVvwlLZyJ568kaOwpGyW2eT8Poxb/H/EjelDYNMo4sf3Y8KyNz3qy5xORI82dL5vOrK/sxjrZHengKZRyH4mglvHMfCDu+l4+4WsufUtbDmFZbnljmIrtuwC1t/z/hnHqSmSLNNqxgjOn/MCI399hqYT+lcpXdSSmcfxuWvL0jNdzm2QPVbrmsODkYzuC7+ynwlzZGjV3oAHFIej3Jl85kZ9hq9Tc+qq0vacZsB7d6FpGoe+W4KQJWeRzQvX06hrS/4Z94hLMY4cYKbf67eU67z8oxshGQwouIaJJLORgCb/acg0HtiZsQteqZa9vZ+9jtYzR3L0z9VIBpkWFw9zkw/QVJXU5dvdnl40RSVp4cZqjVtXaJrGgtEPkLf3mNtrktlIjyev8hgaaj51iMeZtpAErS8bVW178hOTWHPLm6Qs2wblPPWV17hdR6cq6A6/DpBNRoZ88gD937gNS0YugU0bl80Ux/7zKpsf+4ycnYcJbhVLz6evpunEAeWeq+kFAzymF0oGmTZXjfGazWGdWhDWqUX5OwiBZJA9dpHy9fTCjHV7KDiU4pYGK2SJdtePp9vDnusIjcEBjFnwCksufMIpyyycxwz/4QkCYiOqZYstr5C/B96BNaegXGcv+5vpcOtkVIdC1uYEEIKI3m19tgJax3fRHX4lsWbnc/D7fyk6nk704C7ET+xf5S+cMTjAbaYWPbgLE5a9WelzqDYHo/56jpVXvUxJag5IAkOAH8N/eKzaTqc6CCFoOWMEh39ahmr7LywimY20vur8OrOjshSnZLHhgQ85PmcdWmlmzuloioolPbfC8zQe0IkZST+TuXE/mkMhqn9Hj2GeymDLK2Tt7W9jzy/26OwNgX5oikqLi84jdmRPfoy7GNVqR0PD4G9m5O/PEl0LzWV0zl50h18JMjftZ8HoB1DtCkqJlX0fzia0fVMmLH+zzsTFilOzWXn1y6Qu2w4CQts35byvHiK4dRMadW2JJMuoDoUT89aTu/coYZ2aEz+h6jelqtD/7TvI3XOEvP0nykI74d1b0+elG2ttzOrgKLYwp/9tlKTmeHT0JzEEmGk82K1DpxuSLNN4QKca2ZT871aWTHkcxWr3aJPkZ6L9zZPo8sAlSAaZX1pe5podVFDCovEPc8mxH8tt2qKjczq6wz8DJxtX2POLy7Y5CkvI3X2E3W/+SvfHrqh9G1SV+cPuoeBwaplzyNl5mFXXv8ZFCV8jJImS9BzmDrkbS1o2jhIbBn8T/rERTFz1Dn5eWFD0hDksiEkbPiR97R7y9x8nrHMLIvueuaF4XXPox6XYcgordPYAwmSg7TVn1ravKQ6LjX+nPVmuXDIAmkbyki1kbUkgqFm0xzRdTXUWgbW7fkItWqtzNqE7/DNQeCSV4hT37o2KxUbiN4vqxOGnLNtOcWq2m8NSrHYWjH6Q/ITj/8WjSyMD9oISFEsq6+95j2HfPlZrtgkhiB7U2adDC1lbD1TsXEtRrXbSVu2qcA3FG6Qu21bxDpJAtTvI2X7Q+avR4FF2Q7Hayy2m09HxhJ6WeQacJfeeF9M8dUA6FdXu4Pjfa9n38RyyS7+81aHwcIrHGK9qtZO7+7Bz4VTDLVtTtTs4+vuqao97thDWsTlyJUJvSomNLU98Uev2VPSkISTJKatxyt+7PI0l2WQkdkRPr9unc/aiz/DPQFCzaILbxJG7+6iL45cDzLS7fny5x+UfTGbe0HtwFJagOhQQ0GRsX0b89GSVdVciercrX+PmDBX9vqyVVFe0vmI0W5/6EsViLTcT5iS1LZ4GEDO8B5rDPURjCPQjfkJ/jvyy3P0gAZLhv5m+IdCP+PH9al3WWefsQp/hV4IRPz+FOTIEQ7A/ksmIIdCP6CFd6XTn1HKPWXrx05SkZWMvKEYpsaIUW0lauJF9H82u8vgRPdoQfV431+KtSoirCYNMs0kDqzze2YYpJJAL1r5HzNBupXUQUrmZNaEda7/FozHInyFfPITsb0IqTWE1BPoRP7E/jQd2divSA2dqZusrzyd6aDdihndn0If3MPzHJ2rdVp2zC10ts5I4LDaOz15DcVImUQM7EdW/Y7mLk0UnMvit3VUeNXQadWnJhTs+rfL4itXGjld+JOHTeahWOxG92pC6ahdKObFpQ5A/5vBgLlj3PgEx4VUe72xFtTtACPbP+puNpzV9kf3NnP/3C3UWJik8msbB75dgzyskfsIAos/rijUzj19aXe625mAMDuCS4z9iCgmsE9t0Gi4VqWXqDr8WyD+YzJ/dbvDYzi6kbRMu2v91jcdQFYU/ulxP4akFRLKEOTSQtjdMJKJ7a5pPG4JsNrF53TH++nknOVnFtG4fyfTLexDfvFGNbfAFVEVhx0s/sOft37DlFhLRqy39376jUmmTiV8vZOuz31CclElYh2b0/b+biRvduw6srpiUpVtZesmzpUVtGnKAH6N+f4bGA313Ybyq2KwO/l2QwLqVRzCZZUaNb0+/wc19LsOrIaI7/DpG0zR+aXU5RUfTXLbLfia6PjSDnk9f45VxLFl5rL/3A47+ugJNVWk2eRD9377DpQBryfz9/PjlZmxW50KhEGAyG3jy1fHENwvzih31yZpb3+LAl/NRrf8tbBoCzFyw7n0adWlZj5bVjLKqWkkQ2btdjfoj+BoOu8KzDy8g+UQedpvzc2k2Gxg8ohVX39K/nq1r+Oh6+HWMEIJh3z2GIci/THnSEORPcJs4utx/idfG8YsIZdjXj3JV8XyutixkxM9PuTh7h0Pll2+2ljl7cK792qwOfv9+u9fsqC9y9x9n/6w5Ls4ewFFiY/uL39WTVd5BMshE9e9IVN8OZ5WzB9i49hipyfllzh7AanWw8t+DpKcW1KNlNaOo0Ma2TSdI2JOOeobkgPpCz9KpJaIHdeaihK9J/HohhYdTiRnWnebTzqtTnZmcrCJUxf2Dp2lwMCGjzuyoLdbe+qbnLKXSXgOqoji7WZ1lDrOhs3NrMlaLe6qpJAkS9qTTOCa4HqyqGf/M2cvP32zFYJDQNA3/ABMPPj2KJk3D6ts0F3SHX4sExITT7SHPQlyV4WT3KmNIYLVa6AWH+KGW00glIqphL/6pikLaql3lvm7NLuBrv3EgBM2mDGLQB/fgFxVWZ/ZZMnLZ/dZvJC3aTGDTKLrcf4lPF6fVJY3CA5ANEsppqalCQHBo3UiVeJPEfRn88u1W7Dal7KnFYnHwf08v4Y1PpiFVoqFQXaE7fB/lwNcL2fTQLGy5RUhGmY53TKXX89dWSRvHz9/IwGGtWLvisMvjs8ksM+XiM2vj+wpZ2xJJWrgRU0ggLS4e5pSK0Kiw/64lI7cs5/7Y7DXk7DzM1N2f14nCZElaNn/1uAlrbiGq1U7W5gSSFm5k0If30OZK7ymaloc1t5CD3y0mb98xovp2oMUlwzGcoalNXTLs/Db8M2cvLuVnwhnH79IjtrzD6g1LiZ1Na4+Rm1NCmw5RtO/U2GVxecn8/dhspxXTaVBSbCNxXwbtOjWuY4vLR3f4XqA4NZutT37BsTlrMQT40eHWSXS+Z3q1G3wfm7OGtbe9XZYyqNrs7Hn3D9BU+rx8U5XOdfXN/ZAkweqlhxACjCaZGVf3onufJtWyrS7RNI3VN73OoR/+RbU5kEwGNjz4EaN+e4YmY/sSM7wHqUu3uevMyAJOCWVpdoXilCySF20mfly/Wrd7xys/Ys0uOEXuQkMptrLurvdoOWNErYb1cvceZe7gu1BsdpRiK4lB/7D1ma+YtP6DWtNUqiqNY4K5/aGhfPzmalRVRVM1wsIDuOexEciV7KlcVxw7nM3LTyzC4VCx2xSMJplWbSN54MmRGIzO73dhoc1jaFEIQXGxh/am9YiepVNDbPlF/NHpWkrSc8tK5uUAM00vGMiIahbGzO5zC1lbDrhtNwSYuSzrT2Rz1WdrVoudokIboY38fe5LVR7H565j2cznPOakz0z7jZKULP4ecAeOYguOIguGID8QAkdBidu5JLORPi/fSOe7L6p1u3/reA35+4+7bTcG+zNh1TuEd21Va2PP6X8bmZsSXJ5+JKOBNlePYfCs+2tt3OqgKCrHDudgNMk0aRrqcymZmqbx8G1/kZbiupBsMstcdFkPxk1xpv4uX3SAbz/d6JIcAc7J1dufTycwqG6frvQsnVrkwBcLsOa6KjEqxVaOz1lD3oET1Tpn4WnpnCfRVA1bbvWahJv9jIRHBjYYZw+Q+NVCz6JnwilAFtwylukHv6X/W7fT+b7pDPrgHlo+dCWq0X0GLRkNdZam6R/leSat2h34RYTU2rj2whKytia6hbqcmkruTdnrG1mWaNkmgvhmYT7n7AHSUwvJyS52226zKqxc8p821qDhrWjSNBST2Tnjd6Y+y1xyZc86d/ZnQg/p1JDUFTtcqjVPIgwyWZsTCG0bX+VzhndvXdaf9lRkf7NXeqc2FCp8+ix9zRjkXyYPnLgvg2/+nE8P2YjJ4UA6ebzRQHDrOGJH9Khli510eWAGWVsScRT/d7OSjAaiBnQiIC6ygiNrhpAEQnhOXBLVbNJyblP+50875TWjUeaxl8axdvlhNq49RnCwiZHj2tOmQ1RdGFklGs50z0cJbd/UY8tBTVWxF1lI+Hw+aat2VknErPeLN2AIcNVTMQSY6f38dWdlWzuHXWHL+uP8uyCB40dyyra3uXIMhkD3rA1N1YgZ3sNt+8/fbMHiEGwZegEZsc1RZBmHwUBG87aM+/f1OkvPbDZ5EN0evxzZ34QxNBDZ30xk3/aM+PmpWh3XEOBHzIieiNPWjiQ/k1fbX54rNI4JJjTM3227ySRz3ojWLtuMRpmho9tw/xMjuemeIT7p7EGP4VeJ1BU7OPD5fBwWG61mjKDZlEEUncjgjy7X4Sg8JfQgS8hmo/MxVQMkCGkTz7glr2FuVLkc4/R1e9j0yCdkbz9IYJNIejx5FS0vGV4r76s+SUnK48XH/sFmdZTVDPToG8+t9w1BSIKV17zCkd9WoFjsyCYDCMGIn56g6QXuonC3XPYjJcV2t+0Gg8TbX0wnKNhdlKw2seUXkbPjEP4x4YS08e4iucNiA83Z6vBUilOymDvkbqyZeah2B0KWCO/RhrELX6mz7mxnE0cOZvHyE4tQFBWbVcHsZ6B5y3AeenY0RqNvTr50aQUvsPnJz9nzxm84SqzOL1qQH3GjezPyt2dIX7uHVde+SuGxNNA0/KMbUZKei2o9pderyUCL6cMY9u3/qm1D7t6j5O49RljHZoR1bF7l49PX7mb/J3Ox5xXR4uJhtJg+rNqZRN7i0Ttnk3IizyXsbDLLXHZdH0aMbQdAxsZ9JC3YiCk0kJYzhuMf7VkM7n93zSbpmHtDELOfgQ++nYHB0PAfaIuSMlh13WukLHWG/BoP6syQTx9wuaGoikLyP5soOJRCeI82NB7U2Sdj5A2F4iIb61cdITenhLYdoujULdancutPR3f4NaTgSCp/dLrWTf3SEOjHyN+focn5fdA0DUtGLrKfiZ+bzXRpiXgSyWTgqpIFVf7yOUqsLJn6JGkrdyIZZVS7QvR5XRn1x7NuM7zy2PnaT2x9+iuUktKZYaAfkf06MHbhq/Xm9NNTC3jsrjnuOcxA81bhPPvGxCqdb8Pqo3zyzmqXbAmTWWbMBR25+MqG0yjEmluIJEtuDe9Vu4Nf215JcVImmlKaiioJzBEhXHzoO4yB7uEHnXMPPUunhiQv2uwx/usosnBs9hrAmXPr37gRppDAcjsUqQ7FY2/SM7Hp4VnOxeESK/Z8p75+6oodbHp4VqWOL0nPYeuTXzoXl0tv8I4iC5kb9nH0j/rriOWwq+Xe/Bxn6D/riX6Dm3PZdX0IDDJhNEqYzDLnT+zARZd1r6mpdULOrsP81fsWfoy+iO8jp7Jg9AMUJf0ngXH873XYcgr+c/YAqjPH//BPy+reYJ0Gx1m9dF9wOIWsLQcIah5NRO921X6sNQb7O4t5TkMYZEyhQW7bm4zrx7G/1sCpzl0IYoZ2q9ai64EvFqCe9nShWmwc+GIBA96584zHpy7b7szSOO0cjiILR39fScuLh1XZJm8Q0yQE/0Aj1tPEz4wmmQHnVS+FcsTYdgwb3YbCAisBgaay4hhfx5pTwLzz7saWV1S2LXX5duYNuZuLEr9BkmXyDyajWNzXKBxFFvIPJFV5zPR1e9j73p8Up2TRbPIg2l0/AWOQ/pRQUzRNIz21AINB9jkJk7PS4auKwsprX+XoryuQTAY0RSWkbTxj/3m1WtWGTScNRNzsvl0yyrS56ny37f3fvI301btwFFpwFFuQA8zIZhODPrq3Om/HYyOVirafjjHYH0/3OiFJmBq537AyNu5j82Ofkb3tIMEtYujx9NU0neB92VpJEtx6/3m88dy/qIqK3a5i9jMQExfC2EnVb90nyRIhHrIrvIW9oJic3UcIiIsgqFm0V86Z+M0iFJvrjU9TVKzZBSQt3ETTCf0J794KyWx0e4I0BPkT0bNNlcbb/+lc1t/zflmIL2P9XvZ9OJvJGz90CyXpVJ6Evel8+PpKCgusaBrExIVw58NDiY6tvfqLquAVhy+EGAe8DcjAp5qmvXza68OBv4DDpZt+1zTtWW+M7Ym97/7B0d9XolhsZU4xZ/dhVlz9MmPmvlTl8xkD/Rk950UWT3m8LCSi2h0M+uheQts1dds/qFl0qVLmP2RtTqBR11a0vWYs5vDq/dGjz+tK6jJ3OePooZXTw4kd1ctjnF4yG2l3wwSXbRnr9zJ/1P1ltQXWzDyWXvIMgz++j9aXj65wnBPHcpnzy06OHsqmSfMwJk/vSvNWFXfb6tA5mlc/mMLKfw+SnVlEx66x9Orf1GcXWLe/8C3bX/zeuZZic9B4cGdG/vq0xye9qpB/4ITHhjmq3UHhkVQA4kb1IqRtE3L3HC1LCJCMBvxjwml24eBKj2UvKmHDPe+71I8oxVaKjqez76M5dH1wRo3ey7lCfp4FVdUIa+ScXOTmlPDaM0tclEBPHM3hxf/9w+ufTPOJz3SNHb4QQgbeB84HTgAbhRCzNU3bc9quKzVNu6Cm41WGve//5VYMpdkVUpZswZZfVK02cTFDu3Fp6q+k/LsVxWondmTPCs9jCgmk0x3l97ytCtFDurg7fCHo9dy1lTpeNhkZs+AV/pnwKKrN6ShUm4O+/3czkb3auey78eFZbtdOKbay8YGPaHXpyHJz2Q8dyOTlxxdhsytoqkZqcj47Nidx3+Mj6dg1pkL7wsIDmDS9a6XeS31y5Nfl7HjpB2eP4lL1hrSVu1h+5UucP/uFGp07ql9HZ2VxoWtlsZClstm7kCQmLHuTzY9/zqHvl6CpKi2mD6P3i9dXSZ8na8sBt1x9AKXExtE/VuoO/wykpxbw4esrOXY4BwRExwRz871D2Lk1CVVxXaPTNLBY7OzckkTPfu6Tw7rGGzP8fkCipmmHAIQQPwJTgNMdfp3hKHTXUgGcOivF1mr3BZXNJuLH121HHkexhd1v/ua2XTIaShfxCslPOEFYlxbEjepVrkOO7NOemUk/k7p8O/bCEmKGdfdYE5C9LdHj8dacAmy5heU+pXz36SaXWLyz0YrCN7M28OK7kyvzVn2ena/97FI9C05hu+RFm7Fk5tVInKzFxcPY9sxXFNkySlsbOjukRfRuR9Qp7RqNwQEMePsOBrx9R7XHMoUFuS78nsLJ91CcnImj2Epw6zg9pfMUHHaFFx5dSF5uSVkqcdLxPF56/B/6DGyK3e5+XVVVIzenHJ9Ux3jD4TcBTlWKOgF48ooDhRDbgWTgAU3Tdns6mRDiJuAmgGbNmlXLoPgLBpD41T8u+jYAgU0i8Y9uWL1cc3YeRnjQv1Ftdna/8St73/8T1epAMhsIbhnLhOVvlhtekIyGM/ZsDWgSSV7+MY/HVhTbPXIwy+P2pBN5KIraoDR8ysOSnuNxu2SQsWbn18jhG/xMXLD+fVZd/xon5q5DU1Q0TSN6SBc0VUV4scK6UZeWBDaLJn//cZesMUOAHy1njGDOgNvJ3n4QSZYwNQpm6NeP1Fljd19n2+YkLBa7mzK3oqhomrPmw625iwat2/tG5a03voWebv+nJ/dvAZprmtYdeBf4s7yTaZo2S9O0Ppqm9YmKqt5F6vXstfhFhSKX5qgLowFDoB9DPn+owc1W/KJCy0/ztNtxFJSg2pz/5+07zsYHP67ReD2euBL5NFkHOcBMxzumIlWgx1KeSJSf2eDTRSpVIW50b4+hEMlsJLhVXI3PX3gkjeTFm8tm36rVzu63fmPDvR/U+NynIoTg/LkvEtwmDkOQP8aQQGQ/E92fuIItT35J1uYEVKsdR7GV4qRMFk9+vFxBv3ON7IwiHA73WbzNquAfYCIqOsilAtdklunWuwnNWvjGRNMbDv8EcGpwKh7nLL4MTdPyNU0rLP15HmAUQtSailRAbARTd39Bz2euJv6CAXS680Iu3P4JMZVc5PQW1txCDnyxgD3v/E6eB7ncypC+fm+5j9+n31ZVm71S+dgFh5LZ/MTnrL7lDY7+uQpV+e9JqNXMkfR95SZMYU4NGDnATIfbptDr+YrXC8ZO7limFngSk1lm9MT2De4mWx49nrwKU2jgf9pJQiAHmBnw7p1eKV7b9tw3zqyZU1CKrSR8Og9bXvVUUssjuEUM0/Z+yfilbzDipyeYkfQzUf06YMnMdfu8qXYH+z+Z69XxGyot20Ygewibmv0MtO/UmCdeHsfEizoTExdCfPMwZl7Tm9sfOK8eLPWMN0I6G4G2QoiWQBIwE7js1B2EEDFAmqZpmhCiH84bjecYgJcwhwXR9YEZdH2gfhagkhdvZsnUJ0GA6lDZ9OgntL9lEv1eu7XSDvDIbytYfePrZTHdMgySs8GHhyrpcm8OJ8/5xypWXPkiml1BtTs49P2/RPRsw9hF/1e28Nfx9gtpf/MkLOk5mMJDKtUtafyFncnNLmHpwgMYDBIOh8qA81oy7bIelXqvDYHA+Cgu3PEpu17/mZQlWwlqEUOXB2d4rXVh7u4jHv+mktFA0fGMGmcCnaQ4OZP8xGRC2sQR2fu/RfvipEyPApGqzUHh4RSvjN3QadM+ilbtIkjcn1nWRc5glIiMCqRnP2d22dSZ3Zk60zeL/Wrs8DVNcwgh7gAW4kzL/FzTtN1CiFtKX/8ImA7cKoRwACXATM2XNR0qiWK1cfTP1RQkJtOoW0viJ/RHkmUcFhv/Tn/aTcs9YdZcmo7vf8Y4+kk2P/6ZR+llc2gQ4T3bkvrvVpcYrDDINJ3iLip2qr2rrnnF5ZyOwhKyNh/g4Nf/0O4Gp5SBpmkUHEoGDfxjIyplqyQJLr+hLxfO7E5meiERUYF1LlZWFwTERtDvtVtr5dzh3VpRcCjFo559UPOa5/urdgcrryutT/EzoVpsNL9oKOd98RCS0UBk/45u617glBCJHXnuxvAddoWiIhtBwWZkWeL+J0cx/889rFiciKKoDBzakknTu/hE2uWZ8EoefmmYZt5p2z465ef3gPe8MVZtk7PrMJv/9ynpa/fgHxNOt0cvo/Vlo9z2KzyeztxBd2LLK8JRbMUQYCawaRQTV71D+lrPCUqOIgsHvlpYaYdfdDTd43ZbTiED3r2D+cPuxVF0stuTP+bwYPq9flu558tYv8/jiouj2MLB75fQ7oaJZG09wL/Tn6EkLRsB+EWFMeKXp4js075SNgcGmQgMqjj3Xscz3Z+4kqSFm1wygQwBZtrfPMkrxVBbnvqSo7+vQrHaUUrz+I/+sYqgZo3p/eINhLaNp/n0oRz7fVWZDZLZiH9sBK08fAfOdlRV488ft7Pgr72oqobR5Jy9j5nUkckXd2Xyxb6fSnw6vn9LqkNy9x3j70F3cnzueqxZ+eTuPsKam15nx//95Lbv6htfpyQ125kCqqo4CksoOJjMpkc/QVPK14HxNIMqj+DWnhcCzVGhhLZr6uz29PYddL7/YgZ9cDfT9n1FQEz5zlY2G8vV5TcE+GEvKGbByPspPJyCUmzFUWyl8GgaC0Y/4PUYso47ET3aMGbhK0T0aYcwyPhFhdH9yavo+38eyryrwb4PZ7sVdyklVvZ+OLvs96FfPkzf12+hUdeWBLeOo/O905m04YNKi/SdTcz5dSfz/9qD1erAblcoLrLzy7dbWbX04JkP9lHOSmmF6rLtma9cBMYAHMVWtj/3NZ3unFoWy1ZsdlL+3eK+uGVzcOSnZfR77dZyH41bXVr5mVKfl29k6SXPunxJ5QAzvV+4HiEExkB/2l03vtLni+zbHlNwgFvPV0OgH+1unMiR31agerBbU1QO/7yc9jdWTb1Sp+pED+7C5A0f1sq57QXuCq6nbxeSRIebJ9Hh5km1YkNDQVU15v+5x61Prc2q8NdPOxhyWgOUhoI+wz+FjPV7PatZCkHhkVSKkzPZ+/6f7Hnnj3K7n2k42+4N+fwhZH8zUulCqCHQj6aTBtL0ggGVtqfpxAGM+OkJQjs2RzIaCG4Vy+CP76uSk3d5G5LE6DkvYA4PxhgcgCHQD9nPRNtrx9Fs8iBKUrI96vM4ii2UpNTqGruOFylJyybh07kkfDaPklNqB6L6edYnKm/7uYzdrrjn05eSm+0bRVTVQZ/hn0JQy1gKj7jnG2t2hZSlW9l4/0cgnC32NFVzdis+5WlAMhnKlCdbXjKcqP4dOfj9Euz5RTSdOIDGg7tUOUWx6QUDPXZ3qi4RPdsyI+lnTszbgDU7n5jhPQgpDR01HtwF2c/ktthsCPSn8eAuXrNBp3o4LDYcRSWYw0PK/RwlfDGfdbe/U1ast+7Odxnw/l20u3Y8/d64jQWjH0C1OdAcCsIgI5uNlVJcPdcwmWRCG/mTk+X+VBTfPKzuDfISegOUU0hZupVFkx5zyWKR/c00mzyQY3+t8Tj7lQPMKMVWDEH+BDaJZOLqd6otklbfaJrGP2MfJm3NrrJrIPubierXwdkT9izJp29oOIotrLntLWeNhaYREBfBoA/vpcnYvi77FR5L4/cO17h9TiWz0SnAt3w7qBrmiBD8osJoPKgzXR64hNC28XX4bhoOG1Yf4ZO317g06DGZZO5/ahQdOntHJbU20DteVYFDPy1l/T3vYy/VJW991fmEd2vNpodmuemoIAmaTRpERM82NOrWiqYXDKz3loE1RbHZ2f/xHA58vgBN02h77Tg63DIJ2XzmXHyd2mHxlMdJXrTZxZEbAsxMWPUOET3+k0Xe9cYvbH7sM5fWmmVIAtTS77oQmMKCmH7wW8xh3sntP1vZvjmJP37YTnpqAfHNw5h+RU/adWxc32ZVSEUOXw/pnEarGSNoefEwLBm5GEMCMfib2ffxHDSPQXtBWKfm9Hjyqjq3s7aQTUY63TmNTndOq29T6pTUpHx++34bCXvTCWvkz6TpXekzsHpaTt6k8Hi6m7MHZ3hn5//9xPDvHivbptod5XdUU0/5/GoaitXGwW8XeU3R9Wyle+8mdO/t3Qb09Ym+aOsBIUn4R4eXpaI1mzTQ9QtTimw20mL60Dqzy5KVR8qybeQfTD7zzg0cq9WBpcTDTLUWSE3O56kH5rJxzVFys0s4cjCbj99axcLZ9Sb4WkbR0TQkswfpY1Uj/zS5jmaTB1X6CVMptpK756g3TNRpQOgz/EoQEBdJ39duYeMDHzlVDFUVyWSk093TiOjZttbH1zSNjQ/PYu+7fyD7mVCtdqIGdGTUH8+WW25fkpZNSVoOIW3jG1QOdXZmEZ+8s4b9u9PQgFZtIrnxrkHENKm9dZE/f9yBzaq4FLjarAq/f7+dEePaYzLVX5gutGMzjyEaYTTQ+DRJh7COzel8/8Xsfv1Xj81UTsUQ6FfpYjqds4ezzuHnJyaRsnQb5kZBxE8c4DVn1/G2KTQZ25cjvyxHdThoNmUw4V1beeXcZ+LAlwvZ/+FsVKu97MufvmYPK699lVG/uzYOsxeWsOLKFzmxYKOz0EpR6fnMNXS57+I6sbUmOBwqzz2ygNzsEtTSJ6qDCRk898gCXps1FX//yjf5qAoH9qWXjeeCgMz0QuLiqy97XFP8IkJpf8sk9n08B7XENYbf4bbJbH/pOw7/tAxDgB8db5tMr2euJahZNGtve7vcIj9hkDGHB9Nq5oi6ehs+R1pKPgV5Vpq2CMPsVzufK1/krHH4mqax4d4P2D/rb5AEkiwjJMGYf14lqq938oxDWsfR7ZFLvXKuqrD7jV/cUiVVm50T8zdgyyt0meWvvPZVTizc6HJz2PrkFwS3iqX5hUPq1O4zsWb5If74YQc5WcXExofQq188xUU2F+erac6c6PUrjzB8TO08TUU2DiIzvchtu8OhEhLqVytjVoW2140vbWRvd14QSaL9zRewbMZz5B9I+q+N585DpCzfTtGJjHKdvSE4gOYXDqbvqzdhCKj/91bX5OeW8NaLyzh+JAfZIKEoKhdf0ZMxkzrWt2l1wlnj8E/MW0/CZ/PKPvwnP+6LJz3GjKSfkbzYQKKuseYUeNwuJAlbfnGZw7fmFHD877VuIQBHsZUdr/zoUw5/6cIEvv98U1kl47HDOSQdy/UkFonV4iAtJb/WbJk0vQuHDmS6VFUajRK9BzSrlgCco9hC6vLtCFkmZli3GmU4qYrCovGPlGWNOTeq7H7rNyRZclnMdRRZOPTdEvzLkdcwBgcwYeVbhHdrmFWi3uDtl5Zx5GAWiqJBabrlL99uJa5pKF16VNzTQFFUtqw/zub1xwkMMjHs/LY+o3NfWc4ah79/1t9us2Bw9unMWLeX6AZcONRkdG8OfrfYTcrBFBZEYJP/2gpYs/KRDLLHmG99VcoeP5LD799v59CBTCIaBzLl4m507RXHb99tcytbVxQNT6n+Zj8DLVpXTrWzOnTpEcfVN/Xj+y82Y7crqKpGv8EtuObWqrezPPL7SlZe/XJZ4ZMQgpG/P1PtjlHpa3Zjz3d/+tBsDjzN4YUsEdg0iqLj6e7SH4pCSJuzJ+OkqqSnFnD0cI7T2Z+Czaqw4K+9ZQ7f4VBZs/wQa5cfxmw2MHxMW7r0jOW1Z5Zw6EAWVosDIWDFokQuv6Ev/QY3Z/f2FIQQdOkRi18thR69wVnj8E9vHFGGwGPBVEOi57PXcHzuOuyl3a2QBLKficEf3+vSwzaoebTHrlRClogd3qMOLXZy7EgOzz+8AJvNgaZBbk4J7/3fcmZe04viovL/JgajhKO0N6jBIBHWyJ/e/Wu3AfSQUW0YOLwVOVnFBAabq7VeUHg8nRVXvuj2WVw85QlmHP+xWnr29rwiPN4Fwal8etoTkZAk2l43nuztB3EUWsrSNA2BfnR/4spzMoxzkoJ8K7IsYfdwq8zLdcolqIrK/z29mMMHssp6NO/ZkUq7To3LnD2U9my2KXz18Xq+/XQjmqaVfWZj4kK46Z7BtG5Xaz2eqs1Zk5bZ+orRGALdP8yapjV4WYCgZtFcuPMzOt97EVH9O9Jq5kgmrnzbTXJBMhro9+ZtLi0KhUHGGBxAj6fqvlbgl2+2YC119iexWRV++247JrPnuUZsk1BGT2hPcKiZoGAT541qzZOvjsdgrP2QnCxLRDYOqvbi8KHvFjslN05H0zj6x6pqnbPxkK7uDXAA2d/ksd2iYnfQcuYIJm/6iBYzhuEfG054zzYM+exBuj00s1o2nC00bR7m8e9jMEp0K82137YpicOJ/zl7cKYI79qW7FFbR1U07DalzNmDM833pccXcvyI5x7I9clZM8NvddkoEr9dRMa6PTgKLUhGA8Igc97nD1WqY5OvExATTp+Xbjzjfm2vHktg08bsfOUHCo+mETO8O90fvdwrDTSqyuEDWR5F5oqLbIy/sBNL5iW4fLFMJpnpV/Sg94BmXHBRFw4nZhEa5l9uv1xfw5ZX5DGcpjoU7PmelSrPhDksiD4v38im/33qfHLQNAyBfoR1ao4lM4/Cw6ku+wsBCZ/MpdMdUxn+3ePVGvNsxWQ2MOOaXvz45eaycKLRKBEYbGbcZOei7fbNSR4duxCiXGlxT9htKrN/2cntD9ZdnU5lOGscvmSQGTP/ZZLmb+D4vPX4RYXR9uoxXmku3dCIG9mTOB/oUNQoPICCfPd8cE2DgjwLUy/txpxfd1FcZCeskR+XXN2LXv2b8tt3W5n/514MRglV0YiKCeLBp0YRFl7zJiC1Sfy4fux970+3tSQhCeLGeKx0rxSd7ppGZN/27PtoDtbsfFpMG0r00K782fUGt32VEhsJs+bqFbTlMGp8e+LiQ1kwew85WSV079OEMRd0IDjEGR0IDjEjy8Itzn/ys+ipgXl5HD2U7VXbvcFZ4/ABJFn2urqkTvWZfElX3nt1hcfX1q08wkc/XMq4KZ1wOFQMBgkhBJvWHmPh7L3Y7Qp2u3MWlnw8j3deXs6Tr1ZNFjr5eB6rlh6kpMROr35N6dIjtlYF4KKHdqPJuH4kLdhQ5vQNgX60vXYcYR1qJtPQeGBnGg/8r9Aq/2ByubF9RwNfs6ptOnaNoWPXGI+vnTeqNQtm70U5rYmR0SgzZloH/v51F7JB4uQCiuJQsds93wSaNAvzruFe4Kxy+Dp1z7HD2fzwxWYS92cQFGxm/JROnH9BB4QQ9B3UHKNR8viFUFUNm9VBQKAJ4ynx+YVz9mI9LXtHVTWOHckhM72QyMaVW/hcsegAX3+yEcWhoqoaq5ceokuPWO54aBiSVDtOXwjBiJ+e4Oifqzn0/WIko4E2V491U7X0BsGtYvGLCqXomGsbTNnPRKtLz92CqpoSHRvCzfcM5pN31iAJgYaG2Wzg3sdH0rJNBMPHtGPvzlT8A4x07hbD1x9vYNWyQ6inPRGYzLJPtkDUHb5OtUlNyuf5RxeWxTyzrcX88u1WsjKLuPRaZwijY7cYdmxJdovlh0cG4h/gvjhaWOBZEkCWRIWZPadSVGjj6082Yj9F1tZqcbBrWwrbNp6gVy1m/AhJosW082gx7bxaGwOcN5dh3z/OP+MeRnMoKBYbhiB/glpE0/WBGS77aprGifkbSPz6H9A02lx5PvETB6CUWDn041LSVu0kpG087a4bh3+03o+476DmdO8TT+K+dIwmmdZtI5FK02zDGvkzcGjLsn2vu2MgfQc356evtpB8Ig9V0YhrGspVN/WjZZvaSyWuLrrD16k2s3/d6eJUwZmFs2R+AlMu6UZAoImZ1/QmYU86Nqszv10IMJpkrr6lv8fwSq9+TUlPKXCLlUqyRFzTsErZtWdHCrIsOH351GpxsG7lkVp1+HVJ9KDOXJTwNYlfLaTwSCoxw7rTfNp5yCbXG+nqm17n8I9Ly8JMJ+atp+mkgWSs24slIxdHkQXZz8TOl39g3L+vE9m7XX28HZ/CZJLp1C32jPsJIejWqwndejVB0zRUVUOWfTf50Xct0/F5Dh/I8qhBYzBIpKU4q4ObNA3juTcvYOjo1kTHBhMS5ockCb6ZtYGlCxPcMh/GX9iJ0DB/jKWCZUISmMwy19zaH4Ohch9X57HuNxMhwGxuuBXXngiICafbw5cy6MN7aTVzpJuzz9ySwKEf/nVZSHYUWTj8y3KKTmSUbVcsNuwFxay46uU6tf9sQgjh084e9Bm+Tg2IjQ8hJSnPTQ7BYVeIbBxY9nvjmGDGX9iZtSuOONMwNbCUFPD955vJziziosv/yygKCjbz/NsXsPSfA+zckkREZCBjJnWkeavKhxo6dYv1uJ5pNMmcN7qN23ZV1Viz7BBL5u/HZlPoP6QFYy7o4NMVk5Ul+Z/NHvP4UVSPHR4KDiVTkp6Df2PflQxIS8nn3wUJZKYX0qlbLENGtDqnBNBqgu7wdarNpOld2bk12UUiwWSS6TOoWVma20nm/LoTu83hEsu3WR3M/2svE6Z1cSl2Cgg0MXFqZyZOdZX/rSwmk8w9j43gzef/BZw9iFVVY+LUzh67FX3+3lrWrz5S9j7SUnayftURnn5tgsuCckPEGOyPZDSgnC6m5qFKFwBNQzLVnfMsyLfw74IEDuzLoEl8KKMndiAquvyF+Z1bk3nn5WUoDhVF0dixJZkFf+3h6dcmEBjUcGTA6wvd4VdA4dE08hOTCG3flMD4qPo2x+do2SaCux8dztcfbyAjrRCDUWL4+W2ZcXUvt30P7s/EUzMmgyyRnlJQpRl8ZejQOZp3vpjOtk3OQprO3WOJiAp02y81KZ91q464rEXYbQoZaYVsXHOUQcPqRgK7tmh5yXA2PjzLbbuQZSSD7CI7ImSJxoO71Fnbw8z0Qp66fx5WiwO7XWHPjlSW/nOAh54ZTVR0EKlJ+UTHBpfVX6iqxqy3V7tMMGxWhezMYub9sZuLr3T/3PkKhflW9u5KxWQ20LlbTJ1UjnvinHD4mZv2s+nRT8jakkhgfCQ9nryKFheVXwHnsNhYftnzJC3YiGQ2olpsNL9oKOd98ZBHrZpzmS494nj1wwuxWuwYjXJZNsPpxDQJISU5321WaXcoNIqonYIqs5+R/kNacDAhgw9eW8GRQ9kEBZuZMLUzY0pTRw/sy8BTlqbV4mD3tpQG7/D9osIY+ctTLJ3xHKL0jWqqxtCvHyHh03mkLNuGQCBkgV/jRgz75tE6s+2nr7ZQVGgtCwkqDhXFofL6s0uw2RSMRhmHXaHXgGbcdNcgMtILsZa4h6ccDpWNa475rMNfNHcfP325pTR/H2RZcP+TI2ndru4nkWe998rcnMD84ffiKHam+9lyClhx9ctYsvLpcNMFHo/Z9NDHJC3YiGKxlc2Ajv6xiuDWcfR65pq6Mr1BcaYY6gUXdWH39hRXCWKTTO/+TaulOZ+anM/hxCwiogJp2yGq3IKqY4ezefmJRWXj5maX8Ou3W8nLLeGSK3sR2sivzBGeisEgEe7hiaAhEj++P5em/Ubqsm1oGsSO6IHB30zzC4eQtS2RrM0JBDWPJnZkTxcxvtpm17Zkj3LYxUXO/KqT+jRb1h/n1++2MWZSR8+NasBn11uOHMzi56+2uBQSArz+7L+888X0Op/pn/UOf/Njn5U5+5MoxVY2P/op7a4b79YDVNM0Ej6b76awqZRY2ffBX7rDryZt2kdx+wND+erj9eTnWhCSYMiIVlx2vbMoKTU5n5+/3sK+XWkEBJkYP6UTI8e1c3PkqqLy0Vur2bL+OLIs0DSIiAzg4efGENbI323cv372nDq6aM4+Jk/vSufuTjlbq8VV5E2SBcM8LPA2VAz+ZuLHu8s9R/RoQ0SP+nmfZj9jmXOvCLtNYemCBGZe05umLRtxJNE1O8xklhk90TfbNS5flIjdgxyDomjs3p5K9z51K1ft2zlEXiBrc4LH7YrFiiUj1227pqrlyinbC6ongKXjpEffeN74ZBpvfzGdD7+bwTW3DsBkksnKKOLpB+axZf1xigptZKQW8uOXm/n+801u51g0dx9bNxzHblOwlDiwWhykJhfw8Rue1SiPHsr2OIuUZEFmRhGyLPHo82OIaxqKySRj9jMQEurH3Y8Or3RVr071GDmuXaX7BVusDlRV486HhhIVHYSfnwE/fwNGo8zAoS0ZMsI3m7qUFNs9K6iiYbGc+Wbnbc76GX5Q82isWZ66JQlMjYLdtkqyTESvNmRtPuD2WvQQ3yuVbmgIIdy6SM3/aw82q7uM8tIFB5hycTeCQv7bf8n8BLfGKaqqkbA3ncICq9u54+JDyUgrdLNDUTTCS9cOYuJCePGdyaSlFGC3OYiLDy13LULHe0yc1pkTR3PYsv4EBqOz3aAkCSwe4vTNW4YjSYLwyEBe+WAKB/ZmkJNdTKu2kRVm9dQ3vQc0ZcuG424KnIpDK1fPpzY56x1+j6euYtmlz6OcEtaRA8x0uGVSubLJA9+/hwWj7kex2tEcCsJowOBnot+bt9WV2ecUB/amu6kTglOhMPlEHu06/ZdKabN6yCnHeSOx2dwbW0yZ0ZW9O1NdXjOZZc4b2ZqAQNe/f3Ss+wRAp/aQZYnbHhhKRloBx4/kEhUdhKpqvPC/hdhtzspsSRIYjTJX3dyv7DghhMtnwpfp3b8pS9tHkbg/o6xTltEkM+2yHvXSL1lUReO5runTp4+2aZP7Y31VOfDlAjY+9DH2ghIkWaL9rZPp89KNbvH7U8lPTGLXG7+Qs+MQkX3a0/ne6WfUlC9OzWb3G7+QsmQrgc0b0+X+S2q9taKqKOx85Uf2vP0b1pxCIvu0o/9bdxDVzzuN2+uCj95YxbqVh91CL0ajzCsfTHFJp/z64/UsW5SIclpctHFMEK9+eKHHxdudW5P59tONpCXnY/YzcP7EDky9tLvPV0Weq6Sl5DPvjz0cOZhFs5bhTJjaidgmofVtVrVRFZXN64+zYfVRAgKNDB3dtsJuWJYSOzabQnCIuVrqrkKIzZqmedTjPiccPjgdozUrH1NYkFv5uTcoTs7kzx43Yc8vdrYhFALZ38Tgj++j9eWjvT7eSdbd9S4Jn893eYIxBPgxacP7hHVqUWvjepNjh7N57pEFbk3EO3WP5b7HR7rsm59n4an751JYYMVmVTAYJGRZ4oGnRp1x1udwqMiyqFWJ5LpGtTuwZObhFxmqpwzXESUldub/uZv1K49iNEmMGNuOEWPa1jgMWJhvZdY7q9m1LQUBRDYO5Ia7BtG2Q9WeZnSHXwesvf0t9n8yD+20ikZTWBCXpv1WK19Ga04BPzW5xG2RWUgSLWeOYNi3//P6mLXFzq3JfPnhenKzixEC+g1uwdW39POY7llSYmf10oPs25VGdFwII8a0rdICa2pSPovn7yctpYBOXaIZNqatW3jH19E0jR0vfseOV35EUxQkg4Fu/7uMrg/N9NoNTXUo7HrtZ/Z+8BeOwhKajO1Ln5dvrJfuab6Cw67w1P3znOs9pWmWJrNMjz7xLt2tCvItpCbnE9U4qFKNezRN46n753HiaC7KKc3nzWYDL7wzqUrrFBU5fH1K4CWSFm5yc/bg/NLkJyYR1rG518csOJSCZDK4OXxNVcna6r7o7Mt07RnHax9fSFGBDZOfocLsDX9/I6MndGD0hKqHrXZuTeadl5bhUFRURWPfzlQWztnLs29MJCTMPa3TV9n91q/seOkHHMWl4mfY2P78txiDA+h42xSvjLHiqpc4NntN2dPj4V+Wk7x4M9P2folfZMMNsdSEjWuPkZFe6JJTb7MqbNt4ghPHcolrEsI3n2xk5ZJEDKWFYz37NeWmewZXKNNx5GA2qUn5Ls4eQFFU/l2Q4LF6vTp4JYgphBgnhNgvhEgUQjzi4XUhhHin9PUdQgjfLImrAX6NwzxuV+0OzBEhtTJmUItoz8JYkqBR15bu230cIQRBIeZKp+pVBU3TmP3LDl4rreI82bDCZlPIz7Py1887vD5mbbLz5f+c/UkcRRa2v/CdV85fcDiFY3+udgkVoqo4iizs+3C2V8ZoiOzdmeqx5y0CEvdlMP+vvaxaehC7XaWk2I7drrJ14wl+/HJzhefNSCv0WADocKikJOV5y/yaO3whhAy8D4wHOgGXCiE6nbbbeKBt6b+bgA9rOq6v0eWBGRgCXVfdJZOB2OHda0150C8ilNZXjEYOcE1FNPiZ6P7o5bUyZm1RUrpQVVMsJXbSUvLdzjX7l53M/mWnR8EwpXRRbc6vO3n16cV8/fF6r37JvEVxShbbX/iWlde8giXDs32W9ByvjJW945BHETXFYiN97W6vjNEQiYgKxGB0d5uSJBEW7s/COXvd0obtNoUVixLLrRIGaN4q3G12D04hwPYeBP+qizdCOv2ARE3TDgEIIX4EpgB7TtlnCvC15lwwWCeECBNCxGqaluKF8X2CFtPOI2/fMba/8B2SyYBqsxPVvyPDvn+8Vscd+ME9+DUOY++7f2IvKKZRt1YMeOdOwrv7ZiHK6RxOzOKz99aQfDwPhKBnv3iuu21AlZUPFUXl+882sXxxYlkLw0nTu3DBRV3QVI15f+zBbiu/AXVejqWsKnfvjlRW/nuQe/43gs7dz9wE43ScM709ZGUU0bl7DGMndaxxuCh93R4WjnkI1aGgWmxOcX8P62+hHbzT3CW4VSyqw30mK4yGWglP1gdWq4M/vt/GyqWHUBwqvfo3ZcbVvQit4G81dHQb5v6+u0z2AZx/Cj9/A117xlFSTlc2u13F4VDLfXqNjg2mV/+mbN1wvOyGIUkC/wAjQ89vW4N36UqNF22FENOBcZqm3VD6+5VAf03T7jhln7+BlzVNW1X6+xLgYU3T3FZkhRA34XwKoFmzZr2PHj1aI/vqGlt+ETm7jhAQG05wy6o7i5qgqWqdaqHUlOzMIh65Y7bLI7LBING0RSOe+r/xVVp8/OmrzSyet99Vqtksc8UN/egzsCl3XfOrWxetk0iSQNM0N/8ZHhnAG59Mq5Ida5Yf4ov312GzK6A5awkCAkw899YFHqUfKoOmafzW7ioKDiZXuJ/sb2bUH8/SZIzH9boqM3fIXWRuSnBmnZViCPTjwh2f1vln29tomsaL/1vI4cTssni8JAtCw/x55YMpmM3lz4X3707jozdWUVgq/BbbJIQ7HhpGdGwwrzy5iD07Ut2OiWsaykvvTq7QJkVRWTh7L0vm78dqcdCzbzzTLu9Bo0os+p5KbS/aevo2nH4Xqcw+zo2aNguYBc4snZqZVveYQgKJHlQ9Hfea0pCcPTirZk/Pp3c4VJKP53HkYHale4KqisqSee4VuDarwt+/7eS8Ua3x8zd67JcrhPMm4ymcVJBvJSermPDIyomoORwq38za6HIuh12lqNDGnF93cuWN/So4unyKkzMpTsr0+JpkMmAMDiC0QzN6PXctscN7VGsMT5w/90VW3/wGx/5cA5pKSNt4Bs26v8E7e4CDCZkcPZzjsviqKhrFRTbWrzzC0Ap0lNp3juaNT6eRllKA0Si71Ilcel0fnn9kQVnhmJAERqPE1Te76xidjixLTJjamQnV7ANRGbzh8E8Apz5HxgOnT0Uqs4/OOUbyiVyPs24hORexTnX4drtCfq6F4FA/t8dim03B7iFDCiAv14IkCaZf0YPvP9/kclMwGCRuumcwf/ywnZQkd/kNTdUw+1X+K5KWko/qIQ6rKCo7t1T/4y6bTeXosUBQ8xgu2v9Vtc9dEabQIEb8+CQOiw3VasMU6rsSBlXl2OEcj9fUanFwMCGzQocPzgSDmDj3ZIxmLRrx3JsXMO+PXRw6kEV8szAmTutMfHPf6CDmDYe/EWgrhGgJJAEzgctO22c2cEdpfL8/kHc2xe91qkebDo3ZuTXFTc1SUTSatXB+QTRNY/bPO5n7x240TUMgGDu5A1Mv7VEWqzf7GQhr5E92pru4XYvSxiojxrbDz9/IHz9uJyermLj4MGZe04uOXWMoLLDy45ebXW4GsizRsWtMldYSAoPMODw4fMCtA1hV8IsMJbJvezLW7UE75fxygJn2N3uW+PYmBj8TlCND0lCJjg0u+/ycisksE9e0Zimn0bHBXHvbwBqdo7aoscPXNM0hhLgDWAjIwOeapu0WQtxS+vpHwDxgApAIFAPX1nRcnYbP8PPbMP/P3SgOpawblskk06VnHDFNnLOnxfP2M/f33c5euKUsmL0Xs7+RC6Y5ZSuEEFx+Q18+fmPVf+EU4TzXjGt6lx03cGhLBg51T1cdMbYdxw7nsHrpIQxGCVXRiI0P4ZZ7h1Tp/YQ18qd9p8bs253uEqoymw2Mn3p64po7lhI7WZlFhEcE4B/g6mCHff8Y84ffhzUzD01V0VSNJmP70umuaVWysTJYMnLJ2LAP/+hGRPR2l6g+G+jYNYawiAAyUgv+03ESYDDIDBnRsJveVIReaatTr2RlFPHzN1vYsSkJk5+BkWPbMfGiLhhKuwPdfe2v5OaUuB0XGGTig29nuGzbuzOVv37aQWpKAS1ahzN1ZvcqtU7Mzizi6KFsIqICadayei0XCwusvP3iMg4fzMJgkHA4VCZP78LkS7qVe4ymafz8zVYW/70PSRYoisbQ0a254vq+LuX6mqqS8u9WCo+lE9WvA426eL/WYvOTn7P7tV+QTEY0VSUwPoqx/7x6VrT4VBWVndtSOHE0h+jYEFq3jeCrjzewY0sSmgYt20Zwwx2DajzDr290aQWdBsu1074tN3/5i9+v8PhY7gukpRSQl1NCfPOwM8o2zPtmI8s+XowFA3kRjUFImMwy46Z04qLLetSNwcDRv1az4ooXcRT9V9AlZIlG3VoxZfPH5R5XWGBl3640zH4GOnaNKbtZ+xJFhTZefGwhmWmF2OwKJpNMYKCZx18ZR3CIGU3VMFWQmXMSTdNYs/ww8//cTUG+lc7dY5l2aXef6p2gSyvoNFiaNAvj+BH3YqKYOM8xWF8hOja4UnLLu17/mZSHP6WtJAEaisHI9gFjKA5pxD9z9jHt0u51FlLZ8/bvLs4eQFNU8vYdJz8xiZA27t2ZFs3dx09fbUGWBSAwGJxCdpXNsCqPE0dzWDxvP1mZxXTrFcd5I1vXqI3hL99sITUpvyxJwFLiwGZV+OL9tdz/5KhK2/TDF5vZtyut7Dxrlx9m28YTvPDOpCqnT9YHvncr1tE5hcuu6+2WlWMyy2WtERsyaat2suWpL5FUBYPDjsHhwGQpodu6RaA5OyJVVJ3pbazZnhoFgWSQseUVuW0/nFjar7W0+5ilxE5hgZXXnllcbs1DZdi45ijPPDif5YsS2bE5iZ+/3sKT982luJyipsqwftURN5tUVWPXtpQz2qppGp+8s5qnH5jntr+qalgsDhb8uaeCM/gOusPX8Wk6dYvloWdH06lbDCFhfrTvHM39T46ie++67QVaG+z9cDZKyWlKp4DBYSckO53YuJA61exvPnUIktnDLFrgUZtp2T8HXPLYT+JwaOzd6V58VBkcDpXP31/r1DsqvdnZrArZmUX8M2dvtc4JoFXk088Q1t6w+igbVx/Dbvd8EsWhsm9XWrVtq0v0kI6Oz9O2Q2MefvZ8wCk7e+xwDsnH8xr84potp6BcZ+MnFK64sW6fYjrdfREHv1lEcUo2SokVIUlIfkYGfXSvxx4SxUW2cn1lSXHF/Vo1TWPNssPM/WMX+bkW2neOZvoVPbBZFY9PNXa7ysa1x7hwZvdqvbc+A5uxZvlhF70aIQk6dInGUIGKJThvbNZyOq2Bs3gvKqZhdEvTHb5Og0DTNH79disLZ+8r63/atHkj7n18RI1y3OuTFhcNJW3lTre4uYzGDW9eSvsecXVqjzksiClbZ5Hw2TyOz1tPYHwUne6cSkRPz1oufQY2Y/vmJDf1SIdDoWPXijXz//p5J3N/31VW+7B53TF2b0vhrv8NL1MyPZ2a9CyYeU1v9u9JIz/PgqXEgdnPgNnPwHW3nzlf/kwhH6NRZkIl0m59AT1LR6dBsHbFYb54f53LTEuWBe07R5fN/hsaitXGvKH3kLvnqNPpSwLZz0TfV2/2mqb9qeRkF/P9Z5vYuvEEkiToP6QFl17bu9qOVFFU/u/pxRw6kOXSr/Wiy3rQtmNjfvh8E4cPZhEUbGb8lE6MndwRIQSWEjt3Xv2Lm5yFJAmGjGzN0UNZHD+S6zLTN5sN3Hj3IPoOqr5wm8OhsmX9cY4dziamSQh9BzWvUDPnJMsXHeDbTze6SXcAhIT6cfUt/egz0HcE5fQsHZ0Gz4LZe90eqxVFI2FvOvm5JQ2qeclJZLOJCSve4tAP/3L0j1WYI0PocPPkWulHbLM6eObB+eTllJQ50jXLDnE4MZNn37igWhlPsizx4NOj2bT2GBtXH8U/0MTwMW0wmQw8+/D8MgeZm13Cb99vIy+nhBnX9CYtpaC0vsDVgaqqxoG96Tz49GhefWoROdklSJLAblcYNaEdfQY2q9E1MBgk+g1uTr/BVXPOg0e0Zt3KIxxMyMRqcWAwSggB19w6gEHDWvl0ttjp6A5fp0FQ5EH4DJxOp7jI3iAdPjidfttrxtH2mnG1Os6G1UcpLrK5zJodDpWM1EL27kytlgw0OK9//yEt6D+kRdm29/5vhZtchs2qsGjefibP6EajcH8c5WgfNY4JJiIqkJffn8LBhEzyckpo3T6q2kqj3sBgcN7Ydm1LZte2FELD/Bg0vFWDSMM8Hd3h6zQIuveOY+nCRLcmEUajTOOYui96OZyYxXefbeTwgSwCg0yMndyR8Rd29tnZ3tHD2R47NTkUlaRjudV2+B7HOpTtcTFXliUy0wqJaxpKSKifm/aR0SRxwfT/5DLatPed6l5JEnTr1YRuvRp2dpielqnTIJh0cTcCg01l3YaEcObjX3tbfxf5gbog+XgeLz3+Dwf2ZuBwqOTlWvjzpx1895nvrjc1aRbmUfnTYJDKdIu8NlbTUI+C6IpDJTwykLm/76Yw3/2JrU37KNp5sbuTjju6w9dpEIQ18ueldyYz6aIutOsYxaBhLXn8pXH1slg2+5edHkMWy/85QFGh59BTfTNgSAvMZoNL31RZFoQ1CqCLF2f3AJMv7uqxWG7IiFYEBpmcjWo89B84sC/DY5s/He+hh3R0GgxBIWYunNm92rnY3uLo4WyPueIGo0R6aiEt21StPeOZyM0pKZ0dB1RbZsHP38iTr47nq4/Ws2t7CpKAXv2bcvUt3n9CatU2knv+N4KvZ20gLTkfk9nA+RPbM61UF8hS4jlHX1U0HA611orNsjKK2LT2GA6HSs9+8cTFN+w6juqgO3ydBo3N6uCXb7eyYvFB7DYHHbvGcOWN/c4YpkhPLeCHLzaze3sKJrPMiLHtmHJx1zMW4YAzPJJyIs8tTu2wK0Q2rlx3rMqQkVbA+/+3kuNHcxBCEB4RwC33DaFV28hqnS8qOogHnhpVdrOqzfWGzt1jeeX9KaUOXLjcqDp2iWb75iS36xfXNLRSaZLVYdWSRL78aAOgoarwx4/bGT+lIxdd3rNWxvNV9JCOToPm7ZeWsXRBApYSO4qisXt7Cs88NI/8XHdJ5ZPk51l4+sF5bN14AqvFQUGelQV/7uGD11ZWasxJF3XBeFrIwmiUiI0P5dWnFvPyE/+wed0xalLj4nCovPDoQo4czMJhV7HbFNJSCnjlyUXk51nOfIIKkCRRZ4vLBoPk9lRy6bV98PM3lqlqSrLA7GfgmlvP3AawOuTnlvDlRxuw2xXsdhVFcV7PBX/t5cjBrFoZ01fRHb5Og+XEsVwS9qS7aJxoGthtCksXHij3uKULE7BZFJcWdzabwo6tyaQmexYQO5XmrcK57/GRTmmH0sVjo0km5UQexw7nsHdnGh+/uZrfv99W7fe2c0sSJSV2t1mwomisXnqw2uf1BWKahPDSe5MZM6kj7Ts3ZsSYtjz35kTadqidBdttm5I83uDsdoX1q47Uypi+ih7S0WmwpJzIQ5I9fZFVDiWWP3M7uD/To+iXQZY4cTTXY6/S0+nYNYaX3p2MoqgsmruP377b5nLjsVodzP9zD+df0JGQ0KpLP2RnFnuUGLDbFDLSi1BVjcICKwEBxrIw1PZNScz5bSc5mcW069SYC2d2r5REc33QKDyAGVf3qtaxqqIy+9dd/DNnL8VFNpq3CueKG/tW64bhw0IDtYI+w9dpkGiahn+gyaNTFAIOJ2by2/fbPKb/xTcP89ikQ1HVKjtIWZbYuSXZY9m9wShzKCHT43EZaQWs+vcgWzccx+Hh5tOqXaTH1EZnaqXG3df9yr03/Matl//Ed59tZMn8/bz3f8s5sDeDzIwi1q44zFP3zSUtpaBK76ch8M2nG5n7+y6KCp3ibUcOZvPqU4s99k0A6NGnicdFdqNJdikYOxfQHb5Og2PXtmTuu/F33np+KTabwumJK5oGeTkW5v+xm8fvmePm9EeNb498msM3GCSatwqnaWnz9KoQHhHgku54ElXVCAlznd1rmsZ3n27k0Tvm8PWsDXz05mruuf43N2fVsk0EHTpHYzL/t1ZgMEoEBplYufgg+bkWHHYVm01h6cIEvvtsk8tNR9PAarXz1087qvx+fJmiQisrFx90u8HabQqzf9np8ZiQMH+uvqUfRpOMwSghSc51jJi4YJKO5XpMET1b0R2+ToMi+Xgeb7+0jOzM4rKwTHlP5Xa7SkGBlQWzXZtTREQF8ujzY2jeKhxJEmUaK/c/MbJaNo2e2AGj0fWrJEmCRhEBbp2ftqw/zvJFidjtClaLs2lIQb6VN19Y6rbIe/f/RjDt0u7ExAUT2TiQcZM7EtbI381B2W2qS9P0k6gq7NvdMHTaK0tmepHHpzNNo9wZPsB5o9rwyvtTGDm2HZIkIcmCY4dz+XrWBh67a7bP1k94Gz2Gr9Og+OfvvThOb0ShgWwQGAyyu1SvXWX75iSmX+GafteyTQTPvjERm9WBbJBqlPvdvFU4190+kK8+Wo+maaiKRkyTEO753wi3DJWlCz1rqxcWWDlyMNvlBmEwSIy/sDPjL+xctu3ua3+tkm3hEQ1P76UiIhsHYvegwyMEZ3w6O3ooiyULElxujlaLg+zMYv78aQeXnwVd1M6E7vB1GhSpyfmei54MssdZLkBoBcJblWlcXRkGDm1J34HNOH40l4BAI9Gxnhd+y2ukIYRwq971RIs2EWzbdMLtsUYIkGTJ5RqYzHKZNo2vo2ka+3alsW1TEgEBRgYNb0lUdDAOu4LNpuAfYEQIgdEoE9U4iJQk12wqo0lm0sVdyz3/lg3H+eD1VR4/Iw6HysY1x3SHr6Pja3TsEkPiPvcsG0VRadIsjBNHc1BOWcg1mWXGT6mb5hQGo1xh826b1eFxgRacDrtl2zM3/r7osu7s2ZHicZH4ZJqp2WxAkgQXX9WLHn3iK2l9/aGqGh++vtLZTMXqQJYl5vy2i9btIkjcn4mmakREBXLNrQP4d0ECmemFLscLAVfc2JdmFczwT/beLY/TQ3JnK+fGu9Q5axg5vh1+AQaXvGqTWea8ka154MmRNG8dgckk4x9gxGSWufiKnl5VgqwJn767lmOHs922GwwSN9w1CGMlqnybtQznsRfH0rl7rMvCs6Y5HacsCzr3iOG9ry9m1Ph2XrW/tti28cR/nbM0p8ia3aawb1c6DruKomikpxby5gv/snXjCY+9ZXdsSa5wjPTU8rOVjEaJ4WM8d/U629Bn+FXAXliCo9iCX1RYtTVNdGpGcIgfz75xAX/8sJ0dm5PwDzAyZlIHho9phyQJnnp1PGkp+eTnWWjWohFmPw9NueuBwgIrm9cfw+FwD0c1bxVOnwGVb+7RonUEDz0zmhsu/p7T56yKorFza0qlJCLS0wp479UVHDucjRCCLt1jufWB8wgIqH4rweqwdsVhj9LNp2O3eQ7ZaRqknqi4YC4iKpD01EKPr3XuHsvYyQ2jRWFN0R1+JbDlFbLqhtc4PmctCEFAbASDP7mfuFHVKxzRqRnhEQFcf0f5vUijY0PKjaHXF3m5JRgMkvuCM1RbKkFVPTtAtRKKk4X5Fh657a+y8JeGxo4tyTxw8x+899Uldarr7ynrpqqcnv56OtMu68Hn7691CYXJBonxF3bi4ivOHT0dPaRTCRZPfoLjc9ah2hyoVjuFR1JZMuUJcvcerW/TdBoIUdHB5VZ1Vle1sWvPODfHLAR0rUSTjh+/2uyy1nGSogIbS+btq5Y91eW8Ua0rJZpW0UN1ZOOKm+AMHNqSq2/qR1i4cwE/JNSPy6/vw/TLe1TF1AaP7vDPQO6+Y2Ru2o9qc5V0Vaw2dr/1Wz1ZpeMLaJpWKtp25hm1ySQzbkpHj68l7EnHVk72TkVcdXN/goLNZY1NzH4GQkL9uOqmfmc8dt/u9HJf++fvunX4HbvGMHJ8O4wmpyaR2c+ALIuyZjfgdPZGo+xSiHYSo1GmVSUWvIeMasPbn0/ns18v592vLmbU+PbnXGhWD+mcgaKjaUgmA0qJa2GGpqjkJ5yoJ6t06pudW5P5+uP1ZGYUYZAlho5uw6XX9q4wdm40ykiycJOD0NDYuvFEtcr8Bw1vWSrxbKD/kBYMG90GP/8zr1uEhvqRUU5MOz+3ZmqcVUUIwcxrejN8TFt2bUvBz99Az77xrF56iAWznXo57TtHM/2KHrz5/FJysorLUnOFALOfzIChLSs9njdCSA0V3eGfgUbdWqFYbG7bJbOR6PPKz/vVOXs5nJjFOy8tK6t4tSkKyxcnUlxs4+Z7hpR7XH6exaP2j6JoFHjQ/KmIQwcyefmJRSgOFYdDxWiSSU8toM+AZpVy+Bdd1oNXnlrs8bVG4fXTMDwmLqRMuC4jrRCDUeaiy3rQq388/qULyY+/PI5P31nNvl1paECrNpHceNcg/CvxnnV0h39GAmIjaHvNWA5+swhHsfNLKWQJY5A/HW+fUs/W6dQHc37dic3uruWycfVRLr22T7nqmJ27x7J8UaJbRooAOnSumtLjZ++tdTmP3aagOBR++noLt91/3hmP79Q9lvjmYZw4muuy3WAUjJ/a2fNBdcTvP2xn3u+7EQKEJPjqo/Xc9egwuvSIIzwigIeeOR+b1YGmaT6ThZWVUcTqZQcpLLDRtWccnbvH+mRD+3P32aYKDHz/bnq/fCPBreMwR4bScuYIJm/6CP/o8Po2TaceSD6R51HAx2CUycooKve4bj3jaNkmwiUObTYb6Du4OfHNKy/aVlJid9pwGqoKOzcnVfo8/3thLG07RmEwCMx+MkajxMix7Rk6uk2lz+FtEvamM//P3dhLK2ytFgdWq4N3Xl7uUqVsMht8xtlv23iCR27/i79+2snC2Xt595XlvPHcvz7Zn1ef4VcCIUl0umMqne6YWt+m6PgArdpEkpZc4Cbx4HBULK8syRIPPjWKlf8eZPXSQ8gGiRFj29JvcIsqjf9fFykPevmlCpqnNxH3RGCQicdfGkdKUh7ZmcU0bR5GSFjNwzklxTbm/r6b9auOYDDKjBjTllET2ldKr2jVvwc9VsQKIdi1NZneVahXqAvsdoUP31jlImhntThI2JPOupVHGDy8VT1a547u8HV0qsiki7uwad0xl5CKySwzenx7AgIrLloyGJ39c0eMrX4VrNEo07NfPFvWHXe76SiKynefbuTa2wZU+nyxTUKJbVK11FBN07DbVYxG1xaGdrvCsw8vID21oKzm4Jdvt7Jvdxp3PTL8jOd1ONRy01c9pZHWN4n7Mjy1LcBqdbB66SGfc/g1CukIIcKFEIuEEAdK//f4XCqEOCKE2CmE2CaE2FSTMXV06pvYJqE8/tJYOnePwWw2EBEVyIyrenFJNTs4VYfrbhtQrgb/6qUHy9Xs8Qarlx7inut+46YZP3D7lT+z4K89ZdLOm9YcIyujyKXAzGZV2LklmWMVyBefpP/gFmVppqeiKCqdu8d47014CVmW0MoR6PZFfZ6azvAfAZZomvayEOKR0t8fLmffEZqmeW7/o6PTwGjWMpyHnjm/3sYPDDJjMAgUD+n7qqphsymVkleoKhvXHOXLj9aVVawWFdr44YvNbFh9lAeeGsW+3anlyiQc3J9RocAZQLfecfTsG+9sMG91IEsCSZa4+uZ+BAaZvf5+akqb9pEYjTKWEtf3bDYbGHa+7+nz1NThTwGGl/78FbCM8h2+js45S2Z6IQvn7OXooWyatQxn7KSOREVXXB16Jjp0jmH7liS3UH5EVCD+AbWzoPnb99s8KnUeTMjkxcf+oXX7SIQE2mnrlZLsbAhzJoQQ3HLfEPbvTmfL+mOY/Y0MHt6qUn2G6wNJlrjnsRG89vQSNE1zhp2Esz6iZz/fUyoVp3fZqdLBQuRqmhZ2yu85mqa53cKFEIeBHJwfzY81TZtVwTlvAm4CaNasWe+jR3X5Ap2GzbEjObzw6ALsdmdnKmcVqcxjL46leavqZ3olH8/jmYfmYbMpqIrmrEY1ydzzvxG1phB644zvPTp8cDp1SQgcp2nOC0kQFubH659Mq1GjGV/GarGzZcMJigptdOoaQ1zT6slleAMhxGZN0/p4eu2MM3whxGLAU/DssSrYMFjTtGQhRGNgkRBin6ZpKzztWHozmAXQp08f31ul0dGpIt/O2uDyyK8oGori4OtZG3ji5XHVPm9c01Cef+sC5v6+m4MJmcTGhzJxauca3UTORExcCMcOe47Fq4qG6iGeHdckhHsfH3HWOnsAs5+RgVWo9q0vzujwNU0bXd5rQog0IUSspmkpQohYwKNAh6ZpyaX/pwsh/gD6AR4dvo7O2caBfRketyfuyyAjrYCo6PJTOc9EVHQw19xacUZOSYmdlBN5hDXyJzwysNpjAVxyVS/efP7fSmfMyAan7ERN3qOO96jpLXc2cHXpz1cDf52+gxAiUAgRfPJnYAywq4bj6ug0GDxlnZzk7ZeW1+rYc37ZyV1X/8KrTy3moVv/4rVnllBS7C4VUlm69ozj9oeGeVTp9IQkiVpZPNapHjV1+C8D5wshDgDnl/6OECJOCDGvdJ9oYJUQYjuwAZiradqCGo6ro9NgGD6mbbkOMS05n7SUipt3VJf1q44w+9ed2GwKJcV27HaFvbtSmfX2mhqdt3f/prz64RQ6dY1BkgSSJOjQOdpF3fJU+gz0rWKpc5kaZelompYFjPKwPRmYUPrzIaB7TcbROffQNI3tm5JYtugADrvKwGEtGXBeiwYZB55+eQ+W/XOAkmK722uSLDxu9wbz/tzjtsDqsKvs2JJEUaG1RmmOUdHBPPzc+TjsCkISyLLEisWJfP3xBiTZeXdTVY3r7xhIWAVN5HXqFr3SVscn+faTjaxccrBMPyVhTxprlx/mvidG+qQoVUUYjM5G6rN/2emWwSJJUpV0dKpCfm6Jx+2SJFFYYPNKXvup4Zqho9vQo2882zclIQT06BNPUIjv5c6fyzS86ZLOWU9KUh7LFye6iGVZrQoJe9PZvT2lHi2rPmMmdSAiKrBMOE2SnHIM190+oNb02Tt386zYaDLJRDau2eJteYSE+nHeqNYMGdlad/Y+iD7D1/E59uxI9axPYnGwfXMSXXvG1blNNcU/wMRzb05k1dJD7NicRHhkIKPGt6u12T3AhTO7sWXDcSwljjLlRpNZ5oob+zbI0Fh52KwOVi87xLaNJwgL92fkuPa1mprakNEdvo7PERBoKosDn4rBIBEU3HBnjWY/I6PGt2fU+PZ1Ml5k4yCef+sC5v25h707U4lqHMSEaZ1p17Fq2vueyEwvJPlEHjFxITSOqb+US6vFzjMPziczvRCrVUGSBGuWH+aaWwf4nHCZL6A7fB2fo1e/eL760N3hS5JgyAj9S1wVwiMDueKGvl47n8Ou8NFbq9m28QQGg4TDodK5eyy3Pzi0UpLM3ubf+QmkpxWWSSqrqobNqvD1R+vpO6h5vdjky5w9z3U6Zw1mPyMPPD2K4BAzfv5G/P2NmP0M3HzfECIb10x/Rqdm/PHjDrZvPIH9ZKqnTWH39hR++nJzvdizce0xz/r5kuDIwax6sMi30Wf4Oj5Jm/ZRvP3FdBL3ZeBwqLTt2FifrfkASxcmuDT7AGd7xRWLE7nixr4u2vh1QXn9B1RF0/vcekCf4ev4LLIs0b5zNJ27x54Vzj4vt4S9O1MrbIPo61jKkT622ZVyG5fUJqMntndpGXkSu13h7992kZFWUPdG+TD6DF9HpxYoKbEjSwKT2YCqqHz98QZWLj2I0SjjsKt06RnLbfefh8lcu19BRVE5sC8DxUtPSe06NmbvzlS37a3aRNRLfUSPPvGMv7Azc3/biapqqKVlDqqqsX7VEXZsSeKFtyfVWEPobEF3+Do6XuT4kRw+fXcNx47kIIDOPWJp0TqC1csP4bCrZZ2gdm1L4dtPN3Ld7QNrzZbEfRm8+eJSHHYVIZzVyzfdPbhGfWGvuLEvzz+8AJtdcZF6vurm/l60vGrIskCDMmd/Ek1z1m/M+3OPVxeuGzI10sOvbfr06aNt2qR3RNRpGBTkW3jwlj9dpBIkWYCGW+9ZcPam/fjHmbWSE2+12Ln72t8oKXGVbTCZZF56b3KNFr+zMopY9PdeDiVmlTZz6VBvapiHE7N48bGF5Wr0AzRr0Yjn3rqgDq2qX2qkh6+jo1M5Vi056CadoFYgI6woKg67UisOf8uGEx57raqqxuplh5hySbdqnzsiKpCZ13r0J3XOmuWHPGbplCGgcawuzXwSfdFWR8dLJCfle04RLCe0HR0bjNmvdjJJigttHjXrHQ6VwgJrrYxZHyhKeS3EnZhMMhOmdqoze3wd3eHr6HiJ1u0iPGrfG4wyZrOMXFo9LJUu5p6pcUlN6NTdU5M6pzZ/t15Nam3cuqb/4PKLq4JDzNx8z2Bat4uqY6t8Fz2ko6PjJQYObclfP+/EYVfKZtdGo0yb9pHccOcgFszey8H9GTRpGsb4qZ1o0jSs1myJbRLK0FGtWfXvoTIROrNZpn2nxrXW77Y+aNepMUNGtGbV0oPYbU5pBSEJps7sxoSpXRqcsmptoy/a6uh4kbzcEn75eitbNhzHYJA4b1QbpszoVi91BKf3FBg0vCX9hzTMngJn4mBCJlvWH8dkkhkwtAXRsSH1bVK9UdGire7wdXR0dM4iKnL4Z9+tXkdHxyNpKQUcPZTtlkmkc+6gx/B1dM5ysjKKePulpaScyEeSBZIkcf0dA+gzsHl9m6ZTx+gOX0fnLEbTNF55chEZaYUuxV8fv7mamCahxDcLqz/jdOocPaSjo3MWc3B/Jrk5JW6Vvg6HwpJ5++vJKp36Qnf4OjpnMbm5JR4li1UVsjIbrmqnTvXQHb6OzllMm3aROBzu1b8ms0y3Xg2vN7BOzdAdvo7OWUxYeADnT+yA+RQZZqNRolF4AOeNbF2PlunUB/qirY7OWc6Mq3vRqm0ki+buo7jIRt+BzRgzqWOt6fjo+C66w9fROcsRQtBvcHP6DdbTMM919JCOjo6OzjmC7vB1dHR0zhH0kI6Ojk6dUZBvYdWSg6SmFNCmfRT9hzSv9b6+Ov+hX2kdHZ064djhbF587B8cDhW7TWHtisP8+dN2nn5tAsEhfvVt3jmBHtLR0dGpE2a9vYaSYntZVzCrxUFOdgm/fb+tfg07h9Advo6OTq1TVGgl+Xie23bFobJpzbF6sOjcRHf4Ojo6tY5UQdMVg7Hum8Ocq+gOX0dHp9bx9zfSvnNjt5aDRpPM0NF6xW9doTt8HR2dOuGmewYTERWIn78Bk0nGZJZp2yGKSdO71rdp5ww1ytIRQlwMPA10BPppmuaxH6EQYhzwNiADn2qa9nJNxtXR0Wl4NAoP4NUPprB7RyqZ6YU0bxVOq7aR9W3WOUVN0zJ3AdOAj8vbQQghA+8D5wMngI1CiNmapu2p4dg6OjoNDEmW6NpTV+msL2rk8DVN2wt41Ns+hX5AoqZph0r3/RGYAugOX0dHR6cOqYsYfhPg+Cm/nyjd5hEhxE1CiE1CiE0ZGRm1bpyOjo7OucIZZ/hCiMVAjIeXHtM07a9KjOFp+q952OZ8QdNmAbMA+vTpU+5+Ojo6OjpV44wOX9O00TUc4wTQ9JTf44HkGp5TR0dHR6eK1EVIZyPQVgjRUghhAmYCs+tgXB0dHR2dUxCaVv2oiRBiKvAuEAXkAts0TRsrhIjDmX45oXS/CcBbONMyP9c07YVKnj8DOFr6aySQWW1j6w7dTu+i2+lddDu9j6/Z2lzTtChPL9TI4dclQohNmqb1qW87zoRup3fR7fQuup3epyHZqlfa6ujo6Jwj6A5fR0dH5xyhITn8WfVtQCXR7fQuup3eRbfT+zQYWxtMDF9HR0dHp2Y0pBm+jo6Ojk4N0B2+jo6OzjmCTzp8IcTFQojdQghVCFFuupMQ4ogQYqcQYpsQwqM0c21TBVvHCSH2CyEShRCP1KWNpeOHCyEWCSEOlP7fqJz96uWanun6CCfvlL6+QwjRq65sq6Kdw4UQeaXXb5sQ4sl6sPFzIUS6EGJXOa/7xLUsteVMtvrC9WwqhFgqhNhb+l2/28M+PnNNK0TTNJ/7h1Nfvz2wDOhTwX5HgEhftxVnwdlBoBVgArYDnerYzleBR0p/fgR4xVeuaWWuDzABmI9Tm2kAsL4e/taVsXM48Hd9fBZPsWEo0AvYVc7r9X4tq2CrL1zPWKBX6c/BQIIvfj4r888nZ/iapu3VNG1/fdtRGSppa5lEtKZpNuCkRHRdMgX4qvTnr4AL63j8iqjM9ZkCfK05WQeECSFifdDOekfTtBVAdgW7+MK1BCpla72jaVqKpmlbSn8uAPbirvjrM9e0InzS4VcBDfhHCLFZCHFTfRtTAVWSiK4lojVNSwHnBxhoXM5+9XFNK3N9fOEaVtaGgUKI7UKI+UKIznVjWpXwhWtZFXzmegohWgA9gfWnvdQgrmlNO15VGy/ILgMM1jQtWQjRGFgkhNhXOmPwKnUtEV1dKrKzCqepk2t6GpW5PnVyDc9AZWzYglPLpLBUQ+pPoG1tG1ZFfOFaVhafuZ5CiCDgN+AeTdPyT3/ZwyE+d03rzeFrNZddRtO05NL/04UQf+B85Pa6c/KCrXUiEV2RnUKINCFErKZpKaWPmunlnKNOrulpVOb6+ILM9hltONURaJo2TwjxgRAiUtM0XxLX8oVrWSl85XoKIYw4nf13mqb97mGXBnFNG2xIRwgRKIQIPvkzMAZnj11fxBckomcDV5f+fDXg9mRSj9e0MtdnNnBVaTbEACDvZIiqDjmjnUKIGCGcPT+FEP1wfsey6tjOM+EL17JS+ML1LB3/M2CvpmlvlLNbw7im9b1q7OkfMBXnHdMKpAELS7fHAfNKf26FM0tiO7AbZ3jFJ23V/lvFT8CZ5VHntgIRwBLgQOn/4b50TT1dH+AW4JbSnwXwfunrO6kge6ue7byj9NptB9YBg+rBxh+AFMBe+tm83hevZSVt9YXrOQRneGYHsK303wRfvaYV/dOlFXR0dHTOERpsSEdHR0dHp2roDl9HR0fnHEF3+Do6OjrnCLrD19HR0TlH0B2+jo6OzjmC7vB1dHR0zhF0h6+jo6NzjvD/jJISKNZC6CsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -75,8 +58,14 @@ } ], "source": [ + "import torch\n", + "import numpy as np\n", + "from torch import nn\n", "from sklearn import datasets\n", "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", "# generate sample data\n", "np.random.seed(0)\n", "data_x, data_y = datasets.make_moons(200, noise=0.20)\n", @@ -88,211 +77,61 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def plot_decision_boundary(model, x, y):\n", - " # Set min and max values and give it some padding\n", - " x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1\n", - " y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1\n", - " h = 0.01\n", - " # Generate a grid of points with distance h between them\n", - " xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))\n", - " # Predict the function value for the whole grid .c_按行连接两个矩阵,左右相加。\n", - " Z = model(np.c_[xx.ravel(), yy.ravel()])\n", - " Z = Z.reshape(xx.shape)\n", - " # Plot the contour and training examples\n", - " plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)\n", - " plt.ylabel('x2')\n", - " plt.xlabel('x1')\n", - " plt.scatter(x[:, 0], x[:, 1], c=y.reshape(-1), s=40, cmap=plt.cm.Spectral)" - ] - }, - { - "cell_type": "markdown", + "execution_count": 2, "metadata": {}, - "source": [ - "这次我们仍然处理一个二分类问题,但是比前面的 logistic 回归更加复杂。我们可以先尝试用 logistic 回归来解决这个问题" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": true - }, "outputs": [], "source": [ "# 变量\n", "x = torch.from_numpy(data_x).float()\n", "y = torch.from_numpy(data_y).float().unsqueeze(1)\n", "\n", - "# 定义参数\n", - "w = nn.Parameter(torch.randn(2, 1))\n", - "b = nn.Parameter(torch.zeros(1))\n", - "\n", - "# 优化器\n", - "optimizer = torch.optim.SGD([w, b], 1e-1)\n", "\n", - "def logistic_regression(x):\n", - " return torch.mm(x, w) + b\n", - " \n", - "criterion = nn.BCEWithLogitsLoss()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 20, loss: 0.5933903455734253\n", - "epoch: 40, loss: 0.5228480696678162\n", - "epoch: 60, loss: 0.4789358973503113\n", - "epoch: 80, loss: 0.4493311941623688\n", - "epoch: 100, loss: 0.42803263664245605\n" - ] - } - ], - "source": [ - "for e in range(100):\n", - " #更新并自动计算\n", - " out = logistic_regression(Variable(x))\n", - " loss = criterion(out, Variable(y))\n", - " \n", - " optimizer.zero_grad()\n", - " loss.backward()\n", - " optimizer.step()\n", - " \n", - " if (e + 1) % 20 == 0:\n", - " print('epoch: {}, loss: {}'.format(e+1, loss.item()))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def plot_logistic(x):\n", - " x = Variable(torch.from_numpy(x).float())\n", - " out = F.sigmoid(logistic_regression(x))\n", - " out = (out > 0.5) * 1\n", - " return out.data.numpy()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/bushuhui/anaconda3/envs/test2/lib/python3.9/site-packages/torch/nn/functional.py:1805: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.\n", - " warnings.warn(\"nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.\")\n" - ] - }, - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'logistic regression')" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABbGklEQVR4nO39eXhseX3fib8+Z6lN+3alu+80dENz2Rq6wZjGYLobDD/adgw4xCT2kIT450nMPAnGGSf2k5mfk/Bz4hlnYhin4xgzNo4xobHBrG2zQzfQK71330Xb1dWu2s/ymT9OqaRSnSqVdCWVlu/refRc6dSpcz6nrnTe5/tZRVUxGAwGg6ERVrsNMBgMBsPuxgiFwWAwGJpihMJgMBgMTTFCYTAYDIamGKEwGAwGQ1OMUBgMBoOhKUYoDLsSEbkoIm/aguP8voj8r5t43wkRyYqIfb027HZE5PMi8gvttsOwexFTR2HYjYjIReCXVPXL+/F8BsNewqwoDIZtREScLT7evl/hGHYfRigMux4RSYrIfxSR8crXfxSR5KrX/7mITFRe+yURURE5V3ntD0Xk31S+HxSRvxSReRGZFZGvi4glIh8HTgCfrbib/rmInKocx6m8t19E/mvlHHMi8j8a2Po+EfmmiPwHEZkB/nXF/o+IyGURuVpxh6U3YP9/FpHPiUgOuF1EjojIp0Tkmog8LyK/supYt4jIAyKyWDnX71S2p0Tkj0VkpnL994vIcOW1vxGRX6p8b4nIvxSRSyIyJSJ/JCI9ldeWP5NfqFzLtIj8+pb9Rxt2LUYoDHuBXwdeA1wAXgrcAvxLABG5A/hV4E3AOeANTY7zQWAUGAKGgQ8DqqrvBS4DP6Wqnar672Le+3EgA9wEHAL+Q5PzvBp4rnKO/w34beAFFfvPAUeB39iA/e+pHKcL+BbwWeChynF+AvinIvKWyr6/C/yuqnYDZ4E/q2z/BaAHOA4MAP8IKMSc632Vr9uBM0An8Htr9nkdcEPl3L8hIi9q8lkY9gFGKAx7gZ8HfktVp1T1GvCbwHsrr/0d4L+q6mOqmgf+dZPjeMBh4KSqeqr6dW0hSCcih4E7gX+kqnOV9/5tk7eMq+r/qao+UATeD/wzVZ1V1SXgfwfetQH7P6Oq31TVEHgJMKSqv6WqZVV9Dvi/Vx3PA86JyKCqZlX1O6u2DwDnVDVQ1e+r6mLMuX4e+B1VfU5Vs8CvAe9a40L7TVUtqOpDRIL10iafhWEfYITCsBc4Alxa9fOlyrbl166sem3192v598AzwBdF5DkR+VCL5z8OzKrqXIv7r7ZhiGgl8v2Ky2ce+OvKdmjN/tXbTgJHlo9VOd6HiVYvAL9ItHp5ouJeeltl+8eBLwB/WnFx/TsRcWPOFfdZO6uODzC56vs80arDsI8xQmHYC4wT3SCXOVHZBjABHFv12vFGB1HVJVX9oKqeAd4O/KqI/MTyy03OfwXoF5HeFu1dfaxpIhfPTaraW/nqUdXlm2sr9q8+3hXg+VXH6lXVLlW9q3KNT6vqu4ncY/8W+HMR6aisgn5TVW8EbgPeBvy9mHPFfdY+cLXFazfsQ4xQGPYCfwL8SxEZEpFBIv/+H1de+zPg74vIi0QkAzSsmRCRt4nIORERYAEIgLDy8lUin3wdqjoBfB74v0SkT0RcEXl9K4ZX3EX/N/AfRORQxY6jq2IKLdtf4XvAkoj8CxFJi4gtIi8WkVdVjv13RWSoct75yntCEbldRF4iUdbUIpErKow5/p8A/0xETotIJ5Gb7JMVN5rhgGKEwrAX+DfAA8DDwCPADyrbUNXPA/8HcB+RW2nZJ1+KOc554MtAFvg28H+p6n2V1/5/RGI0LyL/S8x730t0c30CmAL+6Qbs/xfLtonIYsWGGzZhP6oaEK0GLgDPE61Y/oAoUA1wB/CYiGSJAtvvUtUCMAL8OZFIPA78LZE7ai33VLZ/rXL8IvD/3cC1GvYhpuDOsK+oZOA8CiT34lPwXrffsD8xKwrDnkdE3lmpVegj8st/di/dZPe6/Yb9jxEKw37gHxK5g54lijv84/aas2H2uv2GfY5xPRkMBoOhKWZFYTAYDIambGnDst1Cr5PQETfTbjMMBkOb6DyV5sl5Uwe4EbKTz0yr6lDca/tSKEbcDPece127zTAYDG3gtkc+yBs+VOAV7TZkj/G3//atlxq9ZlxPBoNhX/GGD8X1OjRcD/tyRWEwGA4eF+70ucv6lfV3NGwYs6IwGAz7AiMS24cRCoPBsOe57ZEPttuEfY0RCoPBsKf55EffY+IS24wRCoPBsGe5cKfPQ/f2ttuMfY8RCoPBsCe59Z6bTVxihzBCYTAY9iS3f8rUSu0URigMBsOe48Nv/UC7TThQGKEwGAx7CiMSO48RCoPBsGcwItEejFAYDIY9gamVaB9tEwoROS4i94nIj0TkMRH5n2P2ERH5P0TkGRF5WERe3g5bDQZDe7lwp29qJdpIO3s9+cAHVfUHItIFfF9EvqSqP1q1z53A+crXq4H/XPnXYDAcIEwabHtp24pCVSdU9QeV75eAx4Gja3Z7B/BHGvEdoFdEDu+wqQaDoY2YuET72RUxChE5BbwM+O6al44CV1b9PEq9mBgMhn2KEYndQduFQkQ6gU8B/1RVF6/jOO8XkQdE5IH5oLx1BhoMhraQuu/udptgqNDWeRQi4hKJxCdU9S9idhkDjq/6+VhlWx2q+jHgYwAvTPfqFptqMBh2kA+/9QPwkXZbYVimnVlPAvwX4HFV/Z0Gu90L/L1K9tNrgAVVndgxIw0Gw45z4U6/3SYY1tDOFcVrgfcCj4jIg5VtHwZOAKjq7wOfA+4CngHywN/feTMNBsNOsTzv2rC7aJtQqOo3AFlnHwX+yc5YZDAY2o0Rid1J24PZBoPBACbDaTdjhMJgMLQdIxK7GyMUBoOhrRiR2P0YoTAYDG3D1ErsDYxQGAyGtvGrHxlptwmGFmhrwZ3BYDiYXLjTN43+9hBmRWEwGHYcIxJ7CyMUBoNhRzHB672HEQqDwbBjfPKj72m3CYZNYGIUBoNhR/jwWz8QdW8z7DnMisJgMGw7t95zc7tNMFwHZkVhMBi2ldR9d3O7SYPd05gVhcFg2FZMrcTexwiFwWDYNkyG0/7ACIXBYNgWjEjsH4xQGAyGLcf0cNpfGKEwGAxbSuq+u01cYp/RVqEQkXtEZEpEHm3w+htEZEFEHqx8/cZO22gwGFrn1ntuNiKxD2l3euwfAr8H/FGTfb6uqm/bGXMMBsNmufWem7n9U69rtxmGbaCtKwpV/Row204bDAbD1mBEYv+yF2IUt4rIQyLyeRG5qdFOIvJ+EXlARB6YD8o7aZ/BcOAxGU77m90uFD8ATqrqS4H/E/gfjXZU1Y+p6itV9ZW9dmKn7DMYDjym0d/+Z1cLhaouqmq28v3nAFdEBttslsFgqJC6724eure33WYYtpl2B7ObIiIjwFVVVRG5hUjYZtpslsFgoBK8NhlOB4K2CoWI/AnwBmBQREaBfwW4AKr6+8DPAP9YRHygALxLVbVN5hp2EapKPheSXQqwbaG7xyaR3NUL5H2FyXA6WLRVKFT13eu8/ntE6bMGQxUNlSuXyhQLIcuPDbPTPkMjDn397racM/AjYRILMh0WliXbcp69ghGJg8Wudj0ZDHHMzfo1IgGgCtcmfTq7HFx3a2/is9Me01M+UjmsAkeOJejssrf0PHsFk+F08DBrdcOeY2E+IM4BqQrjV0osLQZslYcynwuYnvJRhTCMvjSE8StlPO/geUGNSBxMjFAY9hwaNn6tWFAmxspcfr5EIRcwfqXMpWeLXB0vUy43eWMD5mb8eFECFuf9DR9vL3PbIx9stwmGNmGEwrDn6Oq2oIl3ScNIMC5fLLO0GFAsKvNzARefLVEsbEws/EarBuVArSg++dH38IYPFdpthqFNGKEw7Dn6B10ch2rMoFU0hMnxjVXtZzri/0REGr+237hwp29qJQ44B+M33bCvsB3h1NkUA0MO9gbTMUpFJQxaXwn0DbhYMTFrxxW6DkAw+8KdPndZv9JuMwxtxgiFYU9i28LAkMvxk8kNryyaua3W4rjCyTNJOrssRMCyoKfP5uSZJHIAUmSNSBjApMca2kQYKuWS4jiCcx3prMmURU+fzcLcSiaUCLEBaNhcDUQiYXH0RLLh6xoqi4sBS4sBtiX09NlkOvb+asNkOBmWMUJhAKJK5/k5n7mZgMBXUmmLwUMu6czWLjpVlZlrPrPTfvWGns5YHDmewLY3JxiHRlw6Om0W5nyCADq7LZJJi/ErZVSjc4iAZcPIka0tyAtD5fLzJcolrYrT0mJAX7/N0Mj1N6fM5wJmrvmUS0oiKQwMOTsiQkYkDKsxQmEAYGrSq3kqz+dCrlwscfxUgnRm625M87ORSCzfwJfPNXqpxMkzqU0dU0To7LLrCuBOn0+xOO9TLivptEVXj73lFdXzs36NSEB0XXOzAd29IcnU5oV2ccFncsyrHtv3lUK+zMhRl+6e7fvTNSJhWIuJURjwPa0RiWVUIwHZSmam4+sSSkWlVNx4nUMzHEfoH3QZOZKgp8/ZlrYbi02K/5YWgzXblDBsLZCuqkxNePH/JxPelhUUrsXUShjiMCsKA4VC2NCvXyxs3Q1JVQka1KiJgFdWkhtcVJSKITPXfAr5AAQEwXagt8+hu9dGNhzpjm7w01Mevqe4CWHwkLupdh25bEB3j43jClOTXlVU3IRwaKT5MT1PCRvoZhhGn1UiufXCZ2olDHEYoTBgN7kHWlu45hSJAtdxRWyqbPjGV8gHXLlYXiNwiufB1aLH0mLA0ROJDYnF3IzHtasrq55SURm/Umb4iEtPb/2fS3evXW3xsZZiQbn4bAnHBd9bEWKvHB3z6IkEHZ3xH/56q5+tXh2ZNFhDM4zryUA6Y8UKggj09m1t4HRwyKlLZ10uXttom/Cr4/WumWVUo9hHPte6OysMNfamHzUcrHf3hKGSTFk4TeLjquCV61drqjA91dit5zhCKhUvBsnU9WWKxWFEwtAMIxQGRIRjJ5PYdrSCEIm+0hmLgUMbzxJq5ovv6XMYGnGw7JXzdHXbHDm+sQyhMFRKpeZuMVXIrokTNKNcVhodMQzBX+U2m5v1eOaJIuNXyvhe81VZI0rF5vYfPp7AcUEqf6VigeNEnWu3EhO8NqyHcT0ZgKge4ewNKXLZEN9TUhmL1AYzdsJQW/LF9/W79PY5+D4Vcdr403Gr3iTZwCXYttBQKVhxw+WyAdcmazO3gtb1qIrjNL8I17U4cz5FdimkXApJJK1K4d/WrSZS990NH9mywxn2Ke2ecHcP8DZgSlVfHPO6AL8L3AXkgfep6g921sqDw3Ka6WYZXTNMqJkvXkRw1yxWwlBZWggolaK00q7uxumsIkJXt12XWbSW7p7Wr8d1hWRaKObr1SKVlmqdx2yDzK2N0jewvootXydsfe3Eh9/6ASMShpZot+vpD4E7mrx+J3C+8vV+4D/vgE2GTVAshHXDhGB9X/wypVLIs08VuTrhMTcTcHXC47mnik1bgw8fjpoDNsNxN/YrfvRYMra3U7Gg1c6zXnlrMsEaZTWpKrlswNyMT3Zp62ZrrObCnQerRbrh+mirUKjq14DZJru8A/gjjfgO0Csih3fGOsNGaFYDsZ4vHqJBQGGw4srRMHLnTIw27vZqO8Lx041bayz3ZtoItkOs+0l1pfNsKt24o+xGmJupXw0FfpQpNXalzNSkx/iVMs88USSf24RvqwG3PfJBE7w2bIh2ryjW4yhwZdXPo5VtdYjI+0XkARF5YD7YWCtpw/XjuNKw2d56GTpeOWz4lF4sKKUmMyQSCYt0pv74ItDZxHXViGKxcUC7VFSCQBmIydyC6Do3IhZBQN1qYXK8HFV6Vy55ebLelYvlllZmrWBqJQwbZbcLRcuo6sdU9ZWq+spee2uzQgzrk+mwYns1iUD/QHP/+nqelYvPlRi7XGqYSXXkeJJkUqorCJHoqX/k8MYztkRoGtAWiQL/x04kajKdXBeOHk/QPxgvInG4rtQEpsNQyWYbi+LMNf+6VxYmw8mwGXZ71tMYcHzVz8cq2wy7DBHhxKkEo5fLeGWtVnr3DTj09NX+mgVB1ICwkAtxE0Jvn41lNc8cyi6FXHm+SLrDJgygo8uuZgA5jnDybJJiQfG8kGTS2nSPpUSTZ4zlzrOqysy0XxNj8Dwq/aqS+L6yOB9UP4Plf1cLoggMDtd+LmEYLcqa6eb8bLDppoBGJAybZbcLxb3AL4vInwKvBhZUdaLNNh04isWQ6asehXyI7Qh9/Tad3Ta5pSh43dEZFcu5CYvT51KUiiFBEBWjrV1leOWQS8+VCMOVG+fCXEBvv838bHzfpBU7oFiM1GRxISCRFE6cTmJZ0ZN5OiOkr3ORPDfd2Ibhw9GfSz4XUogJ3Ps+XHq+RFe3zfHTSTSM2qi7rjB1daXpom3D0LBT19jPtqO4S8Pxq0Qiuxk++dH3RH9NBsMmaHd67J8AbwAGRWQU+FeAC6Cqvw98jig19hmi9Ni/3x5LDy7FQsjl50vVm2JYVqYmfaYm/aqL5drVaJjPoREXEak+zQeBMnPNI58LcV2ht99hesqrWzmowvxcwPGTCWamfXJN3C+r31MuKbPTPoObKApsxNxso2ZUkRAkkpDPBtUYwlp8LwpSz88GHD+VqFabd3XbUX0J0crh2lUf27Fq0pFFhOHDLmNXyrHLChFIpoWrE9GqLZ2x6O1zsNepx0jddzcPfaS3has3GOJpq1Co6rvXeV2Bf7JD5hhiuHa1eZuMZRbmIpdIlPMPnhdy6dk1K4f5xr4lAUKFoycSPPNEsWHq6Nrzz06vtC3PdFgMH3Y33ApkNY3cXyJUGxpaLczNUIWJUY/T5y18P6oxqWZ0Vc4zfqXMqbPJGns7u2yOn4hceDWfu0TFg/Mzta3gZ2d8Tp5Jkkg0vuZf/cjIuvYaDM3YN8Fsw/ZQyLfWK0k1ms2wzNSkV8nq2dj5RIT+wdafX9bOtbj0XAmvietmPZIN+iuhUdEdREV8rQSsfV/xPWV+1o+NO6jC3Ez9CibTaXPuhhT9gw6OKzgOdHYJGtZ+nqoQBlHPqzgu3OmbuIRhSzBCcYBR1XWLueKKzxqx2n+eW9rYbAmF6jS9/kGHgaHNBWzDMOoAu1ki91nttuVUW7fy1O4mLA4dbl3MyuWwYYS63CAt2LKFoWGXM+eTpDIW2UVtKLr5XMjMtFctCFzG1EoYtordHsw2bAOqyvSUx9xs5Gt3XWFo2KErZmpab5/TUssKEaptOsql+kDv2n0jO1Z+HjniVmseRITBQwkc12NqYuPtMgob6Bi7lkyHzdETCa5d9SgVFduG3n6HgaGVzyaagbF+mqrjCm7CIp22qoH/GmRllRJHqRQyfrlEuYWyoOmrPjPik+mwOHo8wa//lPHYGrYOIxQHkIlRr9IaIvrZ85SJMS/q9dRd+yQ/MORQLIbklwPMQmwg17Khf8ChkI9GqDZjtUB099j0DzqxcYXevig4Pn3Vw/ej/R0nygyyLMjn4hXESVxf07yOTrvhnIgwVC5fLBG2UM6w3OW1p8+JJvuteY8lUYPEOLxyyOVKdlirLLdW/5sfu6n1NxkMLWCE4oDhlcMakVhGFaauejVCEQTKwpyPJUJ3r43rColkVAm9MBdU0j2Vzm6bgSEX2xEmL5ZaXgFEmUth0+BzT69Dd49drUdYLlDzPeW5p4t15xKJaje2i+xS44yn1TjuSqsP2xZOnk4yOe5VYz6ptDByJNGwan1tnUarqELP//MkfOANG3+zwdAAIxQHjGJxpRhuLV45ilmICOVSyKXnS9UAqgggcPxkAsexGBiyGBiqfRoOAqW8zoyIOHs8T3GbtPkQqW+N4bjC0RMJxq+UUSqFagpDIw6ZzNZ3Wl3G8xrHClazdsWRSFqcOJ2Mqst1/cypVpMI4nBb8VUZDBvACMUBw3Wl4Y3Otlee2CfGyjU3O1VAYXy0zJnzqdiZCJsZk6Ai/LDzPOmUcG7pMumwudtqNR2V7KB8PvL/ZzJWS6mrreKVQ+bngsp8DqGn1yGVshAr3v22migtWOs+p1Z7TzmObFh0AUJg8sTxdffbTmwvIJONakEKnQn8xPYJt2FnMEJxwEimBDdRfxMSgd6KyyYIlGIh/iYV+FGhW1waqWUJmU5rJZ7RAr7l8ODhC1iifK//Zt4y+XWOFaZafr9Y0jCecD0sLfiMj65kTy0uwOw1nxOnk7ju+jfx1aK7GfoHHQr5tfPAmxOK4LsOP/jxH9v0ea+XzrkCfVP56AeF3mt5lnpTzB/KbO5JYitZHRwzbAiTHnvAWB57uraJXnePzUAr9QvNh8BFfnentb/FwLZ57kWvQG2bwHLwLYcvDb+WoM2/ll45rBGJZXwfxsfKDB9x6eqxG3bLFaEmS6oVVKOai8CPPt2OTrvapdayVv6f4ggsi3xHhos3vIC/eu/fZWFgYEPn3iqckk/fVB5Lib6I/u2aL5LKbU3n283gFn1GLi5w4slZTjw5y+DoIpa/edfeQcSsKA4griucqvRk8v2oJ9PqsZyWBYlk/FOzJZBM1t+xioWoStgrh3R2RX2fPE/JZeNbiOe6enn+hS9j+vDJmu2KMJY5xIn85BZcaWuoKvlcZQRs2uLa1cY3tWJeGb1YJpEUzpxLIgJXJ7yo7Uilo1//oENvf+t/WrlswNVxD9+PWpyn0xaHj7oMDEUjY/P5EMuCdEa4OuGztBBEldrAUkcXX/w7P81inDioMjg5ycDEJIXOTkbPniHczHDvFulcKCExTxGWQtdckWLn9nZ1llBJ5cpYIRQzDoFr45QDRi4tYK2yK5P1SFxaYPx0b/QLbVgXIxQHmGTKYvXYn+xiwNRVL7qxx/z9iMDho4k6l8rivM/k+Eqrj2JBsayQ46eTHBoRFucD5ueieojuHpvefod7zv4UQWw1n+LLzv1alktROu/qViPruXtUo9kUY5fLnDyb5OiJJIGv+EEUlN/IDIxSMWRsTbuOQj5KJDhzPoXtSLUtCkSf/+BQSLGgvPSPf453/dVQ7FLD9jze9Od/wcDkVURDQssmtG2++HM/y9yhoZbt2whWoI0WWVgNWsRvFalcmaHRpapYC7DYl8IKwjrxEsD2QzLZMvnuxoOvDCsY15MBiNI+x0fLK0//lX9cN6qY7umzOXU2SceamdphqFydqO8HFYZwdbyMiNDT53DyTIpTZ1P0D0aFdUcKV2MjwqHYHNlAjOJ6UFVGL5XxfapCsZGYQLms1el9tiMkk9aGByXNXIsvKAwDGs4DdxMWn/vT9/Kuzx1q6I962de+weD4BK7n4fgBiXKZZKHAT/z5X2y8r0qLFDoThDHmhAL5zq1r3LgWKwgZGl2K3F1htIKRyiomlfNjxctSSBbMONhWMUJhABo3//M86OiyGDoU32xvbduI2te04bCh22YeJBH6WKuq0JzQ5xVzj5IKty+9s2AlebLrFE90nWbOS+Jvsm03RPdo37++m26pFP/5qUK5yXjZh+7tbXrc8488grOmw6EAbrnEobHtGelS6HQpJ+0asQgFAsci25valnMCZBbjf18i4YifWBgK+Bucp36QMa6nA0q5FDI1GbUAF6FpcdfMlM/MlM/QiFNXSSwiTYPbVKscaun1lviZ0S/wUM8NXLV7GLw2yon8JCcSS7CFKa6reazrLN8efBlCdLHh4Cs4E36fY8/+KHb/6sCh2CuIut3GxWs2QiImA2353HHCfOs9N3P7p15Xs832PE4//gSHL14i39XF0ze/BNdr9LQsJAvF67K5ISJcPdFD91yBzoUSKOS7EiwOpFF7+27Kdox7aRm1KnVAMe1Tcj3G7dQqRigOIKuHB0FrPnmAa5M+6YxNatX0uFRasAQadbR49qkSwyMu3b31v2pdfp4bn/weh6aim5on8KzC8BGXnpj9r4eZRC/fHrxQiYusuM+eu+HldM9cpXt+pmb/RAIGhlwelGNYnk//tTHsVWoaWDZObxo3cX2jSfuHXHLZ+mp2sYgyq1YRBMr/9K97uSl/P1PHjnLtyGGSxSJv/aNPkMrncT2PwBJe+MMHWeruonthse58VhBw7ciR67K5KZawOJBhcSCzfedYQyntolKoEwMlcoeVUg79V3NVtVcRpo51EW6jeO03jFDscbQyZ9n3lGRaSKetdfP3r6c9xPysz8iRlewVEeHI8cr8hJhjhgFMjns4CamrmC7kA6anVvnoK/9eHfdIp63qE3XgK76vuImNBYpX86PuMwRSf2MILYvxUy+k+8FvrromOHQ4QUenzXOnbqVkJxgcv8jZH32fVH6JwHGZOPkCbujJQun64inptMXIUZepCY+wUtToJoQjxxI115rPBTw3ptzy7FexgoDQtrl25AjZ7k4yS0tVEbNDhdCnI5vDt22sYCXZ2HMdnnjZyyh2ZEgUCpx/+FEOjY6x1NfLky97KUt9fdd1Le2imHEoJx0SJb+a3aSAWsLCQJrAtcl3J0nko3iNihiR2CBGKPYwpWKUsbM6CJtMCcdPJptWKF9Pe4g4n3ymw+bM+RRXJ8pkF+uPrRoVq2VO1grF3Ez82NFo4p3PwJDL5Fi5NvV0yGFg0KkTw5yd4tnOExTsJEcK1zhWmKxxFxXsVPSYvhbLgu4MjisEflRIODTsVudS37D4LI/1nGf6yCmmj5xCwhAVIRWUeOOl1meL+p4yOx2l0UbjZB06uyNR7+5x6Oq2KZcUsagbQhSGyrPjkPBW0nbtMOTQ2BiHRrVmpbNMYNs8fOurGbl8hcHJSQodHTx6y6t47qYb6Zxf4K0f/wSO5+H4PoFlccODD/G3b38bo+fOtnxNuwYRpk500zOdj1J0Q6XQ4bIwmEE0Spu1gpCBqRy2t/JZFTtcrh3pMimyLdDuUah3AL9L5Av4A1X97TWvvw/498By9O33VPUPdtTIXYqqMnq5XDeRrVRUpq56NU/9a2nUHmK5UMzzQhbn69tiR63E45/EnErWT5Z4ESoVQwJfa8Z2NgsEBz6MXy6TL1RmOVR2nb3mY1vQN7ASK3k+c4SvDN8avc9yeLTHo7+8wE+N/w1OJVh+Ij/BlcxhfKv2V94Jfc56k5x9QXyw9VVzj3EtNcC1ZD8hgk2IhMpdk1/DWic6s4xXDrn43KqOs2WlWCjTk7cZPhz9P0UjZONvWEf/3nEe+1eX6rY7fvxApGVy3d185Wd/um77a770ZRLFIlblP9gOQwhDXvdXn+eTv/yP0W2stdgu1BLmD3Uwf6gDVOmdyjNyaWHldRGssDZ9N5Xz6L2WY364c+cN3mO0TShExAb+E/BmYBS4X0TuVdW1kcVPquov77iBu5xiQWsGBS2jCovzAcOH6/sMLRO1A49vD9HT52AJ5LJF/DV1Z44jm44d+D48+1SRTIfF4WMJbFvo6LQoFuIFKZGUKD00psvtzLRfFYqyOHx1+FaCVQLgWy4ziV5+2PsiXjX3KADnspf5Ye+LyDoZwkr9hhUGpIIiNyxdbGi3owE/NX4fU8kBrqYGyAQFTuXGqwLUCtNTfl2TQNVofGzfQNh0jOltj3yQX3rr/dyi8TaGloWoVm/6y1hBwPipk3X7Sxhy+OKluv0haib43v//f8R3XZ55yU384PWvx09sX1rrdtE7ladrvlhTZKdaX+MRVY2XInExbT2a0k5H3S3AM6r6nKqWgT8F3tFGe/YUYdi4uGm94HRHV317CMuK5lU7jmDZwskzKbp7owZ4IlGK7InTiaYxglKh+c1TFXLZkNHLUeO/3j4ndoKeZYObaNKywqc6me9SxxHi8q4Cy+GJ7tPVnx0NuHvsS9y0+Axpv0DaL/KixWf56dEv4WrzfHoBhksz3LzwFOeyVzYkEhBVXjdivb5Yb/hQgcnjx7Fi3EsKlJNJipkMvhMJZSiC7zjcf/uPU06nN2SnVbmZup7H+Yce4c1/9t+3reZiu5BQ60QCGnZbiQLge+sS20I7XU9HgSurfh4FXh2z30+LyOuBp4B/pqpXYvZBRN4PvB9g2N3YH8heJJW2Gv4NR32cmj8hVdtD5EKk0h6iXFIK+ZBUWlBVCqsGA+WzIaOXyxw/lcSOiX/4npJtMEhoLaWCUiqGJFMWp86kmJwo14xODYIow6pRwN12VhruBWLTSDIDqVWhZOhx28yD3DbzYEt2bhWRrTGfjcSHTZZZnned7e0h291F99x8zZUK4JTLfPlnf5qhiQmOPH+JfFcnT7z8ZcwcHok9ZqJYJNvdTdfCQsObJ4ATBPRdm+bQ2BhTx46td4m7BturX4U2w3ctE6Nogd0ezP4s8CeqWhKRfwj8N+CNcTuq6seAjwG8MN27758RbFvoH6wfUxpl7NS6C1SjAUSzMwGBH/UzGhx2SactunpssosBzz0VPeUr0d+NZQueV/sxlorK1XGPI8fr4x/T17zW/0AlqmpOpqKbvrc2XqKRq8qy4us7Blc13DtauBorFKIhJ3LjLRq0vfT02fHjZBU6u+LjAcsisYxbKjeoMFYGpqZ47NW38Nirb2lqR8fCIm/7oz/GKZWWcwNq/q07dhAwODG5+4VClc75Ij3TBewmBZRrrzMUmDu0c2m8e5l2up7GgNWN84+xErQGQFVnVHV5QMEfAK/YIdv2BANDDiNHXZJJwbYh0xkNx1nO2FlmatJjatLHKythGI3LvPJ8iUI+iOYyj5apxDPRMHqij2vkB1Grj7hq62yDdhOxaFRoBpFgrBWkZeJEQoSaKXxdfp6bFp7CCVcCKlYYkAi9anyi3fQPOqTSK8OXokl9cPiYG7s6WysSAKUGbqTQthu+tpZX3XcfiWIRp/LBrvccHTg2+c7dH+jtnCvSN5XHqfSailu/hUApZeM7kaOynLC5drSLQpcpumuFdq4o7gfOi8hpIoF4F/Ce1TuIyGFVnaj8+Hbg8Z01cXeznFrZ3dP4v9H3tDKytHa7KoxeLrc0+3ktYRg97dfa0uKbJSrSS1aK9sJwpQK6VRYXAvoHVgx4zezDjBRneLTnPAU7yfH8JDcvPElHsE0VyBvEsoTjp5LkcyH5XIDtWHR327FjUFP33Q0fqT/G4698Oa/66t/gemsyDFS5euQotucRuG7N9tOPP8GLv/s9MtkcMyPDjFy+HBvEDmw7apS3JoVOxeLKbk+XVaV3uhAbk6iGHypV2LPDJmi9WdomFKrqi8gvA18gSo+9R1UfE5HfAh5Q1XuBXxGRtwM+MAu8r1327lUKhbDhjXgzImHb0ddaunttZmfi/cOr/zY7Oi1Gjq64rjbaAkM1inHUHB84nR/jdH57ehhtBSLRgKVmQ5Y+/NYPxIoEwNM3v4Sh8XFOP/4EiqCWIEFI4Lq8857/CsDl82f59lt+Ei+Z5MI3vsWNDzxQbeVx5PmLDc8bWhajZ89w8ulnCCr/ub7r8pWfeWet+OxCbD9EGjxlqMC1w12UOlx0m9rCHBTaGqNQ1c8Bn1uz7TdWff9rwK/ttF37ia1MiReBoRE3NlA+MOSSy4aUSyszpUWidhzd3TaeF9VQrHW1WJYwNOIwNRHfRTXOhsR19lfaLpacDD/sfRET6SE6/AIvnX+S44XW5mpcuHOdTqYifOvOO3jk1a9m5MoVOhYWuemB75MqFKq7nHj6WTrn/5wv/8w7uel799c0BWz2iQnwrTvfwvfe9EYOjY1TTqWYOnoEXbts3IU0q7AWoJxxjEhsAbs9mG24TtIZq2FQuBm2DYPDLnMzPr6nJJLC4CG34ROxZQknzyTJLgbMzfqUSpG/OJ8NSWesmgZ3YaiUShoNSEoIvX0urmsxMx3FUVIpoavHZnIspqOtsCV9oHJ2mod7XsB4eoguP8/NC08xUpze9PHm3G4+ffRN+JaNisV8ooerqUFePvcoL5t/ct3332X9SkvnWervY6m/j7s+/gkcv1Zc7CCgd2aGsz96nNCxqavGXIMSpdN+/W13Ergugety5fy5luzYLagl5LqTdCyWatxPIVDMuITO7he7vYARij1KPhcwO+3jeUo6Y9E/6MQWbi2PPr1ysVTtJbTek3umw2L4iEsiYdHb1/qviIiQy0ZDdZbPsbgQkF0KOHkmSSJpsTDnMzUZ+dlVwXGFo8cTsW4ZyxImxsqRzURxkSPHE7G+/fVQYDQ9zFRqABQe6r2BQGxCy2Za+7iSOcxrph/kpqVnN3xsgG8NXsCz7Jp8V99y+H7fS3jR4vNNW6fHBa/Xo2dmNna77Xu86qt/09IxBBg7c5or589v+Pw7jeWHdM4XSRZ8fNdmqT+Fn4h+X+aGO7CDkFTOQ0UQVUpph+kjuz8Qv1cwQrEHmZv1uDa54qoplwIWFwJOnE7WdHZdJpmyOHtDilyleWAYKNMNBuacOZ/EbVIp3IxyKWRxoT5wHoZwbcqjr9+pG3LklZXLF0ucfUGqrpivs8vm3A2paDiQtFYfUj2u2EwlB3DVp7e8yGeP3M58ogtfHASNUmqraUgWvlh8e/AC57OXSKxTgBfHePpQbFGEpQETqaGG8ZN/ecc/5OQTTzI4PkGuu4vnb7qxpSymQkeGRLlefGqqkWnucvJtm9nhQ+ueq9045YCRiwuVCnRQPDoXikwf7aLQmUCB+aEM0h/1dEqUAlI5j6GxLNneJPmuJtWbhpYwQrHHCAOtEYllNISpCY8Tp+PT/USkmrOvqnh+lA0VvQho9LS+WZGAKO224WvZkDCIFyfVaJpbnEtJREilN/ZH/ljXWb4zeAHRKKVKgRCr2rqjUYGepSET6SFO5idiX2+GrSGhxLnlBKeB8Pzm7e/jHf/lD0nncrieh+c4vPzr3+TLP3v3urUL5WRqXSFY71NTy+Lpl968zl7tp38yW9OnSYgqqgfGs8wPpumbzkcvrOpCvPxbnMx7DMjKPIpy0mJmpBMvvbuD9LsN48DbYyxnMcW+lg+rrS2aISIMH05w+lySQ4ddRo64nLsh1bD4q1Usm4Z3J8uShrUZGjau29goo+lDfGfwAr7l4NkJPMvFt9yqSDRHsON6pbfAuaVLWDFpZIJypHCtbvuH3/oBbvnKfXQsLlZTXl3fx/U8bv/0Z5B1gkp909PrCkEjFCik03zlp99Jvqtrk0fZIVRJ5ePHmYoqfdfy0fjTVSNQV9/ULCrbib4SpZDDlxZJZbdviuJ+xAjFHkOkSQH0Bu8cbiUG0d3jNG1L3iqNhEYEevvtht1RxaJaV3G9PNj7oroOsa0SAodjbuqrKVkuM4keSlbtE+mrZx+mx1vCrRT+2aGPE3q8ZfIb2Gs66qbuuxtUOfnUU7Etwq0gZGiseVW5tuhKiSkGJ9/ZyZ/9k3/E1RPH496yZxCl5Z5Oq18XYGB8ac/1sWonTf+iRKQbGFLVZ9dsv1lVH95WywyxpDNWw4lyXd12yz787cCyosD02OXoaU01EolMRxRsLxU1dpqbYwudXRsXCgWe6zjOIz0voGgnOJafZMHZQABz2cBlxGIm2cuhUn2gOED4xuDLebrrNJaGhGJxfukir5v+ATYhydDjZ0a/yOXMYa6mBujwC5zLXo4NYv/qR0YAxWowTxyoy2hay8UXvoAzjz0eKzRrCUWwVPFcB7Us7nvn21cqJlfnMu9GRChmnIaris1ihVHsw08a73srNPyUROTvAP8RmBIRF3ifqt5fefkPgZdvu3WGOlZPlFvOYBKJsocOjbTf79rRaXP2hhTZxYAgUNIZm3Qmuiml0sKxkwkmx72qq6mj02LkSGJTAvetgQs80X0Gv/J0v+h2IEi9ACyzenvMPoEIP+x9EW+5+s26t35z8OU803WKwLIJKqNUn+k6iaC8fvr7AFgop/LjnMrHrwYu3OmvpMGKcPXoEYZHx+rbX4chU0ebjyv9/o+/npHLo9URqCHx7gEBFvr6mD48zPCVMToWF7nrE3/KtcOHkTBgaPIqoQiXXnCe773pjZQyu6/30exI55pgdlRMFzgWrrc5VyGwe8VxF9JMTj8MvEJVJ0TkFuDjIvJrqvppNuzkMGwlmQ6bs+dTLMz7+JUmf11dNrJLumDattDTIK0202Fz+pxFGEQup82ONl1yMjzefa4yAztCxV43RpP2C1gaknM76l8Ui7lEd91mTxye6jpVM/MCovTXp7pO8ZqZh0ioT4gwmh6maCcZLs7Q42dr9l9bK/HdN/8Ed37iT7B9HztUFPAdhwdu/3H8ROPBUwClTIbP/INf4NSTTzFy6TJuucyR5y/irlmJ+I7DpfNnufEHD660/6hMx4PoD9lW5eRTTzM4OclnfvHvE+7U4CJV3FKA7YeUU07Dmgc/YTN+tpeO+SKpgo+XsMn2pnDLAYNjS3WZXmtZ+xumgJ+wqum1hvVpJhT2cp8lVf2eiNwO/KWIHMd0cG87tiP0D7Z/BbEZRAT7Olf8Y+nh2DkUiCBaGYYU88QYiM3L5x7juwMvra5Eqm/VkIHyfN17ck4KC41191koeSfNktj85eEfJ7DsaDStCKdzo9w+9T0sNLZWYn5oiM++7xe46Xv3c2hsjFx3N4/d8iquHm+tW2vgujz74pt49sU3YQUBb/1vf0z33Fy1IjuwLIrpNKliEWtN8d3aT8YOQ9K5PCeeepqLL3phS+dvRjLv0TUbdXMtdLhk+1I1VdR2OeDQ6CKOF42WtVRZ6k0y12CIUGhbLA1kWFq1zU/YzI500DeVRypZUYWMS7YnRSofufySBZ9EKahec1RkCNNHdnkQf5fR7M91SUTOLscnKiuLNwD/A7hp+00zbASvHEYV0cVo7nNfv1OX6prPBUxP+ZSKIY4rDAw6dPW0N66xWRz1G/b4SQUlypZDgLMmBiEEYpN1MiRCP5plsar2wdaQl83V953s8AuEDRbRPhYSBvzlsTdSdGrHqT7fcYyBnnme/HevgAbjtbO9PXz3J9+0ztWuT2jbfP7n381LvvNdzj72I0RDLt3wAh667Vbe9N//oqVYhut5DI5PXLdQdM0U6J3OR/OqgUTRp2emgErlht+bpGu+hONVPtXK/2PnfKlSTNf6PJlcT4pcdxLbDwktQStiVOheWZG5RZ+u+SLih5QyLrmeJHagDI4ukq4U6eW6k8wPpavvN9TSTCj+MWCJyI3L40lVdaky5/pdO2KdoSXyuYDRSyujTfM5mJ8LOH4yWY0P5LIBY5fLq4r0lMlxj3JZGTy091YmJ3MT6FD9zdsOfW5ceJa5RDfPdZ2oez2wbMbTw5xfep5nO0+QdzKIKumgyOuv3U86KPLt/pdyJTNCKijxkoWnOZUf48aFZ3i851x9RpUInzr+ltjajMBy+ObIyxm7t3erLrspfjLBD3/8x/jhj/9YzfbFvl76p6ZiO8fWvN9xyPXUu942guWH9FVEorptubJeo5VL77VCNfuo5r0K3bPFDQkFED0AuI3dSF7KYXZkJcnB9qICvmpthiqdC0VSBY+JUz0mdhFDQ/lU1YdU9Wngz0TkX0hEGvgdYOM9BwzbgqoyEdMTSUOYGCtXffZrK6Kj98LstB87e3u346rPm69+Cyf0sUMfVHFCj6HSLBcWHqfXW4yta0BDriX7eKT3BnJOBjTk7NIl3n35L+krL/Lnx+/g0Z7zzCV7mcgM89Xh1/Cd/pfymtmHecHis3UplSoWnuXWxEpWYwXXEWzdIn70qle2FHdQEZ678UXXda50zls3TtDsmd3egc+re7ZYU8AHkUg55YB01mv4voNMK+usVxMNGPoW0QyJceC122mUoXU8Twn8+Bu97ym+HzXha1TQJgKlYv0fZxBErT62ClWlWAwpFVsrCmyFE/kJ3nPps7xm5iFeMfcYd0x8g7eP34ejIS9afA6r0S1LLMKK2ym0HJ7rOsFoeoT7+19CaU1xnm85PNZznpyT5mhxGjeMSVsViV1RKFBKtz/9cubwCN+84ycpJxKUEwk816WUSODbdnVbMZ3myz9z93VnPWncUmEDlHcgwJzKew2mBUaxFUM9rfwWe0ABSAMp4HnVTZavGnYcYWWiWqP2GauL7YrFkKtjZYrFaOd0xmLkiFvT/XWj5LIBE6PlalNC24bDxxNkMtd/U0iHZV68+Ezd9s6gwFsmv8GXh28lFAtUCSyHuNluvuXwRPcZxtOHamIWywgho+kR0kGRRnkcgmKHQY1rSgXmh2Kyq7YRy/dJFQoUM5maVcTFG1/E5RecZ2DyKqFtMzMyjON5HBobx3ccrq1tK77J+opCh9tyqkvcaNL5LRpNKkFIx2IZxwsopxzynYnqbOzAsaBUv9oMBQIn2ieV8+icK2CFSqEzQbY3he6SrMJ20IpQ3A98BngVMAj8voj8tKr+7LZaZmgJ1xUcN749hpuQaqfVrh6bpZiGfa4r1eFBvqdceb5U05K8kA+59HyJM+dS2M7G/1DKpbAmNgLRPOzRS2XOnEttqhNsqxwrXOW9Fz/DVGqAEIvHu0/zbNepeDstF0cDSjGvCeBoEM3nblCf4YQBh4rXmE32knMzlNIO80MdlHdoRSFhyCvu+1tueCiqg1URHr3llTx8263Vm33oOFw7drT6Hj+RYPz0qZrjdM3Nc8tXvsqR5y+iIlw5d5b7f+L2llt9qG0xM9LBwGSuGsyO60mlAtmeFJ0LRUTBdy1mhzsodjRPC26FRNFn+PIiVOouQoE+22LyZDfJQuSmbNQnK9eToncqR9dcsWp/suDTNVdk4lTPgQ12t/Jb/Iuq+kDl+wngHSLy3q04eSUw/rtEE+7+QFV/e83rSeCPiGZlzwA/p6oXt+Lc+wUR4cixBFcuRhXPy3VkInB41SS54RGXcimMOrECCNgWHD2xUuw2N+sRVyysISzM+5tKx52bbTCQSGF+zt/2QLqNcrgyZ6Jku1zqOFqXFuuEPmeyV8g7aR7sfWFdvYQinMyN4WrA7VPf5auHXkOARM2tKh+4Z7tMpg+Ry6SYPtJJ6Fg79wSqyq1f+CKnfvREzbCiF383qo99+LW3tXSYZD7PWz/+CdxSKQp8q3Li6Wc4NDbOp/+nf7Bubccy+Z4U5bRLx3wR2w9xywGJYsDqCPbUsW5KGZe54coKYqsCyKoMjS7VVL1bCuKHHH5+vtr2o7K4jRY/VvTNtaNdWKHSNVesqc2wFPBDumcKLBza2RXibmFdoVglEqu3ffx6TywiNvCfgDcDo8D9InLvcoZVhV8E5lT1nIi8C/i3wM9d77n3G6m0xelzKebnotTXVNqip8/BWbUCsGzhxOkkxYJW02M7Oq2a1NhiQWPdBqpRM8LNUC41aASojV/bLoaKcyQCD19W5kbYoU+Xl+MF2UsAjKZHmEn24IuDrdFN91hunE8fexNO6HPj4nPcMvMw3x68EB101ecXWA7Jos+R5+ZBIN+VZHako7lgqJLM+2SyZUIL8t1JvFbbSqhy4wPf5+ZvfYdEqVT3hOz6Pi/+3gM8+ppXtxTMvuGHD2F7Xk12lKWKWy5z5rEf8dTLLrRmF1GNw+qbqlvySeZ9Qlui1uDLn8kGBaJ2LoXFUn+6pnDOLQWxCQRC1LZjdQdaiH7dZw91kO9OopbQNVuI/RuwFDqWykYo2sAtwDOq+hyAiPwp8A5gtVC8A/jXle//HPg9ERHdqmjoPsJxZd2ncxEhnZFqyuxaEgkhn4t7I7FDkVohlYo/pggbbh9+PSw4nfzFsTeviETlV+hI4SpvvvodnIoovGP8K1xJjzCRHsIJfX7UfY4rHUeqq4xvJnoqsyziP4/qQ7NCZqmEFYRcO94g5VSVobElUjmvmk7aPVtkYSDN4uD6vvoXf+d73Pyd71TnYsfao0oqn2/JdTRy5UrNimQZ1/MYvjK6IaFYi5d0WhfABjilgJFLta08OhdK1bkUEF1v1d+1htjfNgEr1Foxb/D+g0w7HW5HgSurfh6tbIvdR1V9YAEYiDuYiLxfRB4QkQfmA9NCeDP0DTixD3gC9PZv7o+8d8AlbvSyyNaMNG2Vbw++FM9yVjKaKv658fQIoQhzbhePdp/jqa5TDJdmePXsI6hYFO1kjSsqsJwoON4ClkYZNk45fiRpx2KZVM6raYNtKfTMFHBLzZsCWkHAS777vaYiAdH9rtjCICSApZ4ewrhqdssi29PT0jG2k4HKXIplt9Dy5zUwnq0Kf3mDYiRKTc1HvivevRYKZHviZ70cBPZNZEZVP6aqr1TVV/ba1x8QO4gkkhZHjyewKw/dYoHtwLGTCdxNBp1dVzh+Khm1GK8cIpUWTpxJbio4vllG04djM5osDfji8Gv51LGf5DsDL+Ubgy/n4yffzvOZIzzXcazFORaNUQG3gVB0zhfr2mRDdOPKLK4Jq6uSKHiksmUsPySdzUWDmZrgOQ5PXXgpodPCzVOVyRPHY4P1u2LAUagkCw3mUhC9BoAlzB7qIJSaOUaV4VX1qBBlRFUIXJv5oUzN+0MBL7mxivH9RjtdT2NE9RnLHKtsi9tnVEQcoIcoqG3YJjq6ou6vy0HvZKr18aONSKUtTp1NRfUeEjUN3GkswmrX19WEYjGZGqwThK8O30pvaaHB0ZazBqzVWxoM14kyeuJo1IIEQFbd1ZySz+nHLuP4PtmefkDId9hIgzblSrQKePbFN/H9N7y+4TmWSRQKvPnPPkXP7CxamQiogO+6IMLX33YX2d6eqIlfOUBCKKfsHatgziyW6JkuNN1HV5mS641aqXTPFLBDpZh2WBhIMzSeBT+s6UC71JvCT9b+3y/1pylmXDoXItdhoTNx4MeptlMo7gfOi8hpIkF4F/CeNfvcC/wC8G3gZ4CvmvjE9rOZ8aOtsJMriLWcW7rEk12n6wQhFCt2paFAv7fIfLKnrm2HpSE9Xo6ZVM/KY2elTsVac4xyqrFvPteVwC0V6lYVKlCouECGRsd446c/i1OOVhihbfPEy36M6ZFjXD73Ak48+3TN7IrAtrl67Ch/846fwkvV9p5qxOs+99f0XbtW0w9KRVjs7+PzP/9uQsfBLfoMjS1h+1FEWBFmhzPke1o4hyqZpTLds1EWVDHjsDCYaal7a/d0np6Z+s+o5vAilFPRZ5zKluifzOGsKkJN5zy8lMPE6agDbWapTGgL2b5Uw3RcL+Uwl2p/seRuoW2fhKr6IvLLwBeI0mPvUdXHROS3gAdU9V7gvxC1N38GmMX0mDJsklfPPsxE+hA5J41nudhh5MZIhGXyTn3gOBCLbm+Jk7lxLnUcwRcLSxVBuW36h/zxj72FZMHHLQd4rk0pbdMzU6R7tlANhpbSLtNHGw9Syval6VyIisKWb4ShQKEzQSntkMrmePN//9RKe3CAwOemB+7j+6//KZ5/0asQCTn+9DOEjoPl+4yfOsXXf+qt+InW0o4TxSJHLl6qaxpoqdI3PUOiVKYkFiOXF6sdWiNxVAYmc/gJm3LM/GnLD7H9ED9h0z1ToHt25WbfsVgms1Rm8mQPXpObsQRhU5FYXhVMH+kEkaj+YbZY10dKNFpdFDoTZPvTZA+wC2mztFUyVfVzwOfWbPuNVd8XAVPYZ7hukqHHz1z5ay51HGUiNUSHn+d89hI/7H0Rj/ecJZTap1sBOv08r5h/nKlkP5czI7hhwJncFYa+dAd//BGhlHEpZVZukgtDGRYH0jjlgNCxogrgJqglTJ7qoXO+SMdiCRVhqS9VdXOcf/iR2NnZEoQce+5HPPGy2/ja299GOpule26epd6e1grjQsVSJbSERLFIaFnYMdlOoWWRLBZwylGW2Nr1oGj0xD9zpCvKGhJBgpCh8SypvBe5g0Lqb9wACn1TeaZONG5CWK29iEvZBhb7kiz1pQkSNk45iOofGhxLFDoWStWVh2FjmE/NcGCwUc7kRjmTG61ue9n8EzzTdZKSZdX4oBXh60OvpMfLMlKaqY5Hve2RD/KGDzX2l6slTZ+S4/Zf6k/HBkp7Zmdj01UtlEx2oZrhU+jspNC5/ghYCZX+ySwdS9F0xMCxmBuszImIaXGkIiz19tI93SDoDmRyPpmn5/Adi7nhDrpnCyQqQeflbKJGTQJTheZ9lUJb4t9cOcD8qtkV6Wy5aUqrQMOYjmF99k3Wk8GwGTqCAm8f+yp1dxmRqE344MrE3wt3+k1FoiVUSeY90ktR9lIzpg+P4MVkLIVisdA7yPzQxvoiHRpdJLNUrramcPyQgat57r/9zfhrzuM5Dj94/esIbRsv5RDGdS5hZbXg+iGD40skCn7dTaVRZCouFbfGhqRN4NS3dgwFcl3J+uByk8Mtu/QMm8MIheHAk6sMMopjOtlXHVq0dpTpRnGLPkefmePQ6CKDE0sce3aO3qlcfLdG4NmbbiRwnLq0ztC2ePi1t9S4vVo5d6Lg160MLIVc5zBff9tdzA0O4DsO8wP9fPOuO3jy5S8DoqB7aNfPE1x7X16uB2mFluoSRJg63k1gC6EVvWc5VXV2uLZCulH9A1SSCtIOhc69N3dlt2BcT4YDTyL04pv9EU29kwajTDdEqAxfXsRe4/7omitSTjrkY26aXirF5/7ue3jt5/+awYlJAOYHB/jWHW9hdqQ/Ci5XYg3rpW4mYrqlLuOWAy7fcJ7LLzgfv4MlTJ7sYWAiR2pVG+6N5LAtB55Fo3+9pM1CCysiP2EzdraX7rkilqcUuipxoTXXG7g284OZmsl6y+ecH8yw1J860Omt14sRCsOB51BphkTg4Unt6FTREAU+evbnGLk4z9yhjrqneNsL6JvKRz5yIN+dYG6og3BNIDuTLcfWTVgKvdN5Cl2J2J5QS/19/PXPvxu3VEJUKadSWH7I4OgimcqQHd+1mB1p3nm1US0HsG7QHaIb8dSJbiRUUtkyg5PZmlqPZeJuxQrkOl2KnQnsQCmlHEoZp6UbdypXZnAsWzmu0rVYZGa4IzYtd2kgTbHD1D9sB8b1ZDjwCHDn5NdJhmXc0EM0qIiEEFp21Gq6GHDoyiKJVQFYKwg5fHGBzFIZq9KVtGOhHPUjWrNysP2wYbDV8UKOPT1L51yxoY1eMkk5lQKNViaZrLcSH/BChkaXamyDSoqqF4AqpbSD78b7+xcGWk8XVUsodCUIrPpjNQsVe2mXXG+KxYE0pY5VKwJVEkWfRNGvc8HZXsDQ6BJ2qFHrjjBq7DcwmcMtxrsKvZTD3HAHM0e6yHfHxDEMm8KsKAwGYKA8z9+99FkudhzlarKPH3Wfrx3kQ+Q2GZjIMnG6F0TonCuu1BYs70MkCpnFUrVCGKLCu2bN6kShbyqHl7SrqxYJlWQhcouV0tETeCrn4XhBbKrqodElygmbYsYhnfdJFv2odYUlzA53MHW8h6GxRdxSwPIkq8WBNLmN9jAS4eqJbg6NLUV9rCrHKidtksV621Sg2FEfH0jlygyOZ6OVlkYiNH2kq7pv53wp/vNS6J4tMHOktRkZhuvHCIXBUMHRgGRQ4qnO04QxnQwFcMshR5+dY/JkT7Wh31qWmwGuFopS2qGcckgU6wPK1eNXCsOuZVw65wr0TeWrvhwV4drRLhKloKaJ3Wrb7EBJF3xSlb5H1UaDgTI4kWXqeDeTp3pxylErbi/hoJtspxIkbCZO9+KUAuwgpJxykFA5/Pw8VqBVV0VY6aW0tn7BKUerhZrPIlCGRhcZP9NL4NpRIWLc50Q0nMiwcxjXk8FQYSbRyxdHXkfZSdIoVButGJSB8SxBjCsHKn2S1vr9Kxk82Z5ks9IAHC8gmffom8pH7qyKu8UOlENXFglsQdf5q11b4AaRCC33S1qupt6sSKzGr6yA1BJCx2LidC9L/Sk816KUirKTZkY66txKnZUJcnW2axTgh0hc49JyIRLsnmv567bf0BpmRWEwVPhh7wsJWmghHhWL+UwNdlXrElajQs1qorrdEuZGOillXAYmsvU9nojafnTP5GNvohDFRaLGffWV0uvZ7Ja3/yk8dCzmD3Uwf6iDRMGnfzLLwGQ0kKScsFge4m75Yaz9kZ1RhlY0ljQf23BRgJ7ZAkt9qbrEAcPWYz7hA4yqYnosrjCb7I1tEBiHCngJh7lDmWp+/3Ku//ThzqYN7/JdidhCMhXI9iZJ5+LbaVsarWYmT/bgJazqeVv9H/TW2OQUfQbHFhkaXSS1tLUzXJxSwPDlBZKloLrCSZRDkqWQZDHA8TXW7hAoLbupNHJhNRJEFUiuU91t2BrMiuIAEobK1KTH4nyAajTZ7tBhl47O65u9sNcZHRiKVggt7Bs4FoEjZPvS5LqTlfoCodjhrj8rW6K6hP6rOTKVG3Qp5TA30kF67RyKVYQSFY75CZuJM304pQC35DE4kWu4Aln93oVVU/P6xxbpXFq5yaazHr4jjJ/t25JMoZ6ZQp1Ndf2eYhAgW1mNJYt+tfYilkoA3LD9GKE4gIxeKlMshFW3cbmsjF0uc+xkgkzHwRSLW++5mcVPpElna11Jq+9Rq4u4ZkdW+gypbVHoajFzqDLTwQqUmcOdTB9ZPnh0rIHxbOxNdHlGxOoKZD9p4ydtFsohvZX4Q6P3zoys1ICkcmU6l7y6fR1fGRhbYuZY40Z9rZIo1h+/VZZdSaFtNV0uKVDcQHW6YfMYoThgFAthjUgsowrTUz4nTh88oUjddze3f2QEUjB9tIv+iWjkJkSB34X+NB2LJdxyQDlpszCY2VDjv2WccsCh0UVsL6ymlM4PZWoaAmqTu6uXjB8WtDiYAVV6Z+LrMMpJu6ZArftafL8qATqy3pZMBvNdG7ccH4doxurrL1d6PYlXe5zlX92pE92mTmKHMEJxwCgWGjeiKxWbN6nbr/zqR0aq3xc6E4yd68PxQlSiimQgtsXGhlBl+NICdrA80yG63fVey+O7dnVQUTHjRCmwa94e+fgbt+Gwgvj/OwUWBmsL6uyg+Q1cghC1ry98uTiQJpX31nWJrSYK5q96UBFh6ljXyiyMyrF8x2LyZA9hk2rz1SQKPt0z+UjoUw6L/elNCf1BxnxaBwzXlYaFX+2cQNcOLtzpxzf6E2lp+tpGSGfLWGF9ppKl0DOTrwpFOe3CXIM4RZNMqK6F+NiKUt81tdjh4s6XGotFC0/pthfQPVsklfcIHIvFvhTFVecpZVxmhzvov5qr9l6Ku5S1K4X5odp26X7SYfRcH+lsGceL6jWWiw9bIb1YYnAiW7XBLUdDk6aOdUcV4oaWMEJxwMh0WtgWrO1wLQL9gwfL7XS93WA3guM1b+GxTDHjxgq5El/dDOCWgshl06AQL1nwa3pUzR3K0DVfqks7VaCQtmsCxBKEdM0XSS+VCSrjQ/2Ew8jFhRXhK0W1HwsD6cgNViHXm8It+XQ3EL6w8sxSHa060kE5HXNLEmk9BrQaVQau5mrSkJer4Acms4yf6TWuqxZpi1CISD/wSeAUcBH4O6o6F7NfADxS+fGyqr59p2zcr4gIx08lGb1cxvd02VVOX79NT+/BeW647m6wG6ScjG/hocuvVQgdi6WeZNTYbtXgH7WEuaHa1trLBI7VdKZ0z3SeqRM9Kxssi8njXQxfWarZz7dh9uhKINvyQw5fnMfyozRVBTK5LKHUtxSPVkYFsr21dQ2O17heopR2mR/OIBrFI7b6pu2WgobDihw/xA6U4ICtojdLu+4MHwK+oqq/LSIfqvz8L2L2K6jqhR217ACQSFqcPpekVFSCQEmlrAPldvrkR98D9+7sOUuZKK3VKdW2pVCB+aEohiBh1MIiWWnBsZzplOtJsjCYrsZL1uInbHzHir0pC/EtxssdCUZf0E9msYTjBXhJp67Tas90HttfcZct/9tw7oRErUvy3StP/6WMSzqm1Uko0WfiJbfvFtQ0dVabJw4YamlXwd07gP9W+f6/Af+fNtlxYBERUmmLjk77QInEh9/6AR66t3fnTyzC5Ilu8l0JtFIk57kW1451RXEJoO9qjmRluNDyzViAZN5rKBLLzA/UV4IvE9hWtT14KleGylO2WkKuN8XCUEdsp9VGNSWNf1ukbq5HtieJWrVDj6IUY6nWS2wXfsKO7ZgbBc2dKP3W0BLtWlEMq+pE5ftJYLjBfikReQDwgd9W1f/R6IAi8n7g/QDDbuttkw0Hh1vvuRk+1b7zq20xc7SLGVUkpLbXkiodi6W6J28haiPeOZMnO9B40E++J0V4rYAV1AbMQ4luiseenq25w08f6Vp/NKg0CHw0RCmsiaOobTFxqof+yRzpXFTgV8y4zI7Uz+zYDqaPdjF8aRFRxdLlCnph+sj6M8YNK2ybUIjIl4GRmJd+ffUPqqoiDZPoTqrqmIicAb4qIo+o6rNxO6rqx4CPAbww3Wv6UhjquP1Tr6vdoErXbJHOhWgoUL4rwWJ/evtvYCLomgWCtSr9s253Kv7//nRjP/5y6+8rS1GqrAiiSq4rsSJAq44/OLbE+OlegibZXdmeZFRh3cIlKXDtSBfEuHsC1+ba8e6VxoA7GED2kg5j5/roWCzhlCMXW64rEWunoTHbJhSq+qZGr4nIVRE5rKoTInIYmGpwjLHKv8+JyN8ALwNihcJgaEZd8FqjbqzJVXOku2aLdCyWmTjds+NuidASQluwg3i1sMOoXXjYxE3oJR3GzvZG1xRGk+T6puLbe4hC53yRhUPxAXKIaiE6Fko4DRr4rcZ3rZr02FjWE4jllZbVwr4bQK3td3Ptd9rlpLsX+IXK978AfGbtDiLSJyLJyveDwGuBH+2YhYZ9Q1yGUyrv1YgERH8MVhA2nTS3bYgwP5Bq7OipuExaOU4p41LoTBA6FnaTrCNnbY70GtQSxs/2ku1yq4H1NQsTIHLnzDURnHVRpedanuNPz3H86VmOPTNH52yhrjW5oX20Syh+G3iziDwNvKnyMyLyShH5g8o+LwIeEJGHgPuIYhRGKAwbolEabCobXzVsKdVGfTtNtj+Dl4gZVwqbdpeUMm7sTIfl2EVTVOmeKdCR9VYC8E7kklruWuu5FtOHO6sFg5uhdypH92yhWpdhB0rftXx1LoWh/bQlmK2qM8BPxGx/APilyvffAl6yw6YZ9hHN0mCbDe0Jt2Cgz2a5eqKH4SuLOOUArcQZSmmH2ZHNBV+X+lJ0zRVRXQlyK9E15nqau2MyS2V6Zgo1qy7XByvnceV8pcvsdbqIooK++iC+pdBzLc9SX8oUxe0CTH6YYV/yyY++p2kabK47GZtHHwo77s+WQHGLPpYf4ngBgR2VLKslLAymmTrevel22qFjMXmqh2LaqelAO3mqd91j9kwXYrOwrDAklfe35AbulsOG+baWQve0mWK3Gzg4pbiGA8V6tRJ+wq72IoIouKsSFbflr8ONsiFU6Z3K0zVfBAGphAyqhW1hSM90NNdh9SyJjSCh0j+ZjWY7VMqrHS9oqdisYQxD149vtIrvWtXrXosAPbNF/KRTU8Rn2HmMUBj2Fbfec3N9GmwDcr0pih0JMtkSEkKh093WSuG1dM8U6Jov1qWursbSaL/FvtSmOrr2T2ZXgvaVcySKAYNj2ahNdxPKSZtUIX58ajm5NX3BQsciqGR7xWnX8vUboWgvxvVk2Fe0KhLLBK7FUl+axYH0jooEqnTPFpv2aKoikCw2bjHe8G2h0rFUjnUfpQoe9jqrgvmhTF0gPJRoLkZ5i9p0S6gNRWKZrVq9GDaPEQrDvmGnG/1dD6JUhyOtixLFLTaIFYQN021VBGudG3Ap43LtaBdepQ2GShTfuHq8Z8sCzBI2ahy1wlatXgybx7ieDPuCvSQSEN10mxXYVfcj6g7rbeJmGThW1Hsprh5BtaWZG8XOBOOdCSTUKK6xxRlIoS0EttVw1bB21rehPZgVhWHP88mPvqfdJmwcEeYH0nWuneVQQtSTKFpJTB3f5MhPEeaH4s/hO9a6rqea91jXnwobiwizh+pdXEp07deOdtXM0jC0B7OiMOxpbnvkg3z4Q/EzoHc72b4UUpnjIJWn/lx3gmxPkkQpJHCtqMneddygs31pFGFgObuLlUaDIxcXGD/TuyPN+ZpR6E5yzbbomc7jlgJ8R1gcSNfM+Ta0FyMUhj3LrffczBv2qEgAIMLSQJql/hS2HxLaVrW2obyF3hbRyG1UP+lN6Zwv1kylaxfFDpdiR8/6OxragnE9GfYsG81w2rWIELj2povq1iO1pqfVMpZGPa8MhvUwQmHYk+y14HU7iRveA5VYxToDkQwGMEJh2IMYkdgY2d5UbCW2StQLymBYDyMUhj1F6r67223CnsNP2Ewf6SK0WPkSmBnpwNuiwjmAVLbMocuLHH5unr7JHLa38SJBw+7EBLMNe4bUfXfzqx+JG5poWI9CV4IrHf2kClFMopR2tzQm0j2dr+k065YDOhdLTJzqaalew7C7MUJh2BNcuNPnLiMS14clFDu2vuGh5Yf0zhRq5nsIQKj0TeW4dqx5TynD7se4ngy7nlvvuZm7rF9ptxmGBqTyXmwMRIBUzmRV7QfaIhQi8rMi8piIhCLyyib73SEiT4rIMyLyoZ200bB72DdpsPuUZi4sNUOH9gXtWlE8CtwNfK3RDiJiA/8JuBO4EXi3iNy4M+YZdgsmw2n3U2jQYiOUqNLcsPdpi1Co6uOq+uQ6u90CPKOqz6lqGfhT4B3bb51ht2BEYo9gRT2ZQqHasymUKNtqfqj9Vd+G62c3B7OPAldW/TwKvLrRziLyfuD9AMNuenstM2w7t95zM3yq3VYYWqXYkWDsbB8diyVsP6SUdil0Xl+fKsPuYduEQkS+DMSlqfy6qn5mq8+nqh8DPgbwwnRvi43+DbuR1H13c7vJcNpzhI7FUr95SNuPbJtQqOqbrvMQY8DxVT8fq2wz7HNMrYTBsLvYza6n+4HzInKaSCDeBezBwQOGVrlwp2/SYA2GXUi70mPfKSKjwK3AX4nIFyrbj4jI5wBU1Qd+GfgC8DjwZ6r6WDvsNewMRiQMht1JW1YUqvpp4NMx28eBu1b9/DngcztomqFNmAwng2H3YiqzDW3HNPozGHY3uzlGYTgAfPitH4CPtNsKg8HQDLOiMLSNW++5ud0mGAyGFjBCYWgbpoeTwbA3MEJhaAsmeG0w7B2MUBh2HCMSBsPewgiFYUcxImEw7D2MUBh2jNse+WC7TTAYDJvACIVhR/jkR9/DGz5UaLcZBoNhExihMOwID93b224TDAbDJjEFd4Zt5dZ7bjZpsAbDHsesKAzbihEJg2HvY4TCsG2YDCeDYX9ghMKwLXzyo2Z0iMGwXzAxCsOW8+G3fgDubbcVBoNhqzArCsOWYmolDIb9hxEKw5ZiaiUMhv1Hu0ah/qyIPCYioYi8ssl+F0XkERF5UEQe2EkbDRvHBK8Nhv1Ju2IUjwJ3Ax9tYd/bVXV6m+0xXCdGJAyG/Uu7ZmY/DiAi7Ti9YYsxImEw7G92e4xCgS+KyPdF5P3NdhSR94vIAyLywHxQ3iHzDCZ4bTDsf7ZtRSEiXwZGYl76dVX9TIuHeZ2qjonIIeBLIvKEqn4tbkdV/RjwMYAXpnt1U0YbNsQnP/oePmyC1wbDvmfbhEJV37QFxxir/DslIp8GbgFihcKws1y40+fDptGfwXAg2LWuJxHpEJGu5e+BnyQKghvazG2PfJC7rF9ptxkGg2GHaFd67DtFZBS4FfgrEflCZfsREflcZbdh4Bsi8hDwPeCvVPWv22GvoRZTK2EwHCzalfX0aeDTMdvHgbsq3z8HvHSHTTOswyc/+h7TnsNgOGCYXk+GljE9nAyGg8mujVEYdhcmDdZgOLgYoTCsy22PfNDEJQyGA4wRCkNTLtzpG5EwGA44RigMDblwp2/SYA0GgxEKQ2OMSBgMBjBCYWiAafRnMBiWMUJhqCN1393tNsFgMOwiTB2FoQaT4WQwGNZiVhSGKrfec7MRCYPBUIcRCgMQZTjd/qnXtdsMg8GwCzFCYQBMhpPBYGiMEQqDyXAyGAxNMUJxwDEiYTAY1sMIxQHm1ntubrcJBoNhD2CE4oBy6z03m+C1wWBoCVHVdtuw5YjINeDSFh92EJje4mPuZg7S9R6kawVzvfudzV7vSVUdinthXwrFdiAiD6jqK9ttx05xkK73IF0rmOvd72zH9RrXk8FgMBiaYoTCYDAYDE0xQtE6H2u3ATvMQbreg3StYK53v7Pl12tiFAaDwWBoillRGAwGg6EpRigMBoPB0BQjFBtARP69iDwhIg+LyKdFpLfdNm0XIvKzIvKYiIQism9TC0XkDhF5UkSeEZEPtdue7URE7hGRKRF5tN22bDciclxE7hORH1V+j//ndtu0nYhISkS+JyIPVa73N7fy+EYoNsaXgBer6s3AU8Cvtdme7eRR4G7ga+02ZLsQERv4T8CdwI3Au0XkxvZata38IXBHu43YIXzgg6p6I/Aa4J/s8//bEvBGVX0pcAG4Q0Res1UHN0KxAVT1i6rqV378DnCsnfZsJ6r6uKo+2W47tplbgGdU9TlVLQN/CryjzTZtG6r6NWC23XbsBKo6oao/qHy/BDwOHG2vVduHRmQrP7qVry3LVDJCsXn+AfD5dhthuC6OAldW/TzKPr6ZHFRE5BTwMuC7bTZlWxERW0QeBKaAL6nqll2vmZm9BhH5MjAS89Kvq+pnKvv8OtHS9hM7adtW08q1Ggx7GRHpBD4F/FNVXWy3PduJqgbAhUrs9NMi8mJV3ZJ4lBGKNajqm5q9LiLvA94G/ITu8SKU9a71ADAGHF/187HKNsM+QERcIpH4hKr+Rbvt2SlUdV5E7iOKR22JUBjX0wYQkTuAfw68XVXz7bbHcN3cD5wXkdMikgDeBdzbZpsMW4CICPBfgMdV9Xfabc92IyJDy1mYIpIG3gw8sVXHN0KxMX4P6AK+JCIPisjvt9ug7UJE3ikio8CtwF+JyBfabdNWU0lM+GXgC0TBzj9T1cfaa9X2ISJ/AnwbuEFERkXkF9tt0zbyWuC9wBsrf6sPishd7TZqGzkM3CciDxM9AH1JVf9yqw5uWngYDAaDoSlmRWEwGAyGphihMBgMBkNTjFAYDAaDoSlGKAwGg8HQFCMUBoPBYGiKEQqDYQcRkb8WkXkR2bLURYNhuzFCYTDsLP+eKL/fYNgzGKEwGLYBEXlVZW5JSkQ6KjMCXqyqXwGW2m2fwbARTK8ng2EbUNX7ReRe4N8AaeCPt6pBm8Gw0xihMBi2j98iaqdQBH6lzbYYDJvGuJ4Mhu1jAOgk6g+WarMtBsOmMUJhMGwfHwX+V6K5Jf+2zbYYDJvGuJ4Mhm1ARP4e4Knq/1OZzf0tEXkj8JvAC4HOSnfeX1TVfdeZ17C/MN1jDQaDwdAU43oyGAwGQ1OMUBgMBoOhKUYoDAaDwdAUIxQGg8FgaIoRCoPBYDA0xQiFwWAwGJpihMJgMBgMTfl/AQcd+puBUxQvAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_decision_boundary(lambda x: plot_logistic(x), x.numpy(), y.numpy())\n", - "plt.title('logistic regression')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1.3 多层神经网络示例程序\n", - "\n", - "可以看到,logistic 回归并不能很好的区分开这个复杂的数据集,如果你还记得前面的内容,你就知道 logistic 回归是一个线性分类器。接下来我们用两层神经网络来对同样的数据进行处理,看看效果如何。" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ "# 定义两层神经网络的参数\n", - "w1 = nn.Parameter(torch.randn(2, 4) * 0.01) # 隐藏层神经元个数 2\n", + "w1 = nn.Parameter(torch.randn(2, 4) * 0.1) # 隐藏层神经元个数 4\n", "b1 = nn.Parameter(torch.zeros(4))\n", "\n", - "w2 = nn.Parameter(torch.randn(4, 1) * 0.01)\n", + "w2 = nn.Parameter(torch.randn(4, 1) * 0.1)\n", "b2 = nn.Parameter(torch.zeros(1))\n", "\n", "# 定义模型\n", - "def two_network(x):\n", + "def SimpNetwork(x):\n", " x1 = torch.mm(x, w1) + b1\n", - " x1 = torch.tanh(x1) # 使用 PyTorch 自带的 tanh 激活函数\n", + " x1 = torch.sigmoid(x1) # 使用 PyTorch 自带的 sigmoid 激活函数\n", " x2 = torch.mm(x1, w2) + b2\n", - " return x2\n", + " return x2 # BCEWithLogitsLoss 已经带了sigmoid,所以此处不需要\n", "\n", - "optimizer = torch.optim.SGD([w1, w2, b1, b2], 1.)\n", + "optimizer = torch.optim.SGD([w1, b1, w2, b2], 0.1)\n", "\n", "criterion = nn.BCEWithLogitsLoss()" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 100, loss: 0.3045365512371063\n", - "epoch: 200, loss: 0.3033600151538849\n", - "epoch: 300, loss: 0.302661269903183\n", - "epoch: 400, loss: 0.30217817425727844\n", - "epoch: 500, loss: 0.30179286003112793\n", - "epoch: 600, loss: 0.30145177245140076\n", - "epoch: 700, loss: 0.301126092672348\n", - "epoch: 800, loss: 0.3007963001728058\n", - "epoch: 900, loss: 0.30044662952423096\n", - "epoch: 1000, loss: 0.30006444454193115\n" + "epoch: 100, loss: 0.6914874315261841\n", + "epoch: 200, loss: 0.6847885251045227\n", + "epoch: 300, loss: 0.658918559551239\n", + "epoch: 400, loss: 0.588269054889679\n", + "epoch: 500, loss: 0.4917648732662201\n", + "epoch: 600, loss: 0.42251646518707275\n", + "epoch: 700, loss: 0.38259515166282654\n", + "epoch: 800, loss: 0.3581520915031433\n", + "epoch: 900, loss: 0.34184250235557556\n", + "epoch: 1000, loss: 0.330547571182251\n" ] } ], "source": [ - "# 我们训练 1000 次\n", + "# 训练 1000 次\n", "for e in range(1000):\n", - " out = two_network(Variable(x))\n", - " loss = criterion(out, Variable(y))\n", + " out = SimpNetwork(x)\n", + " loss = criterion(out, y)\n", " optimizer.zero_grad()\n", " loss.backward()\n", " optimizer.step()\n", @@ -302,48 +141,47 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, + "execution_count": 4, + "metadata": {}, "outputs": [], "source": [ - "def plot_network(x):\n", - " x = Variable(torch.from_numpy(x).float())\n", - " x1 = torch.mm(x, w1) + b1\n", - " x1 = F.tanh(x1)\n", - " x2 = torch.mm(x1, w2) + b2\n", - " out = F.sigmoid(x2)\n", - " out = (out > 0.5) * 1\n", - " return out.data.numpy()" + "def plot_decision_boundary(model, x, y):\n", + " # Set min and max values and give it some padding\n", + " x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1\n", + " y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1\n", + " h = 0.01\n", + " # Generate a grid of points with distance h between them\n", + " xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))\n", + " # Predict the function value for the whole grid .c_按行连接两个矩阵,左右相加。\n", + " Z = model(np.c_[xx.ravel(), yy.ravel()])\n", + " Z = Z.reshape(xx.shape)\n", + " # Plot the contour and training examples\n", + " plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)\n", + " plt.ylabel('x2')\n", + " plt.xlabel('x1')\n", + " plt.scatter(x[:, 0], x[:, 1], c=y.reshape(-1), s=40, cmap=plt.cm.Spectral)" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 5, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/bushuhui/anaconda3/envs/test2/lib/python3.9/site-packages/torch/nn/functional.py:1794: UserWarning: nn.functional.tanh is deprecated. Use torch.tanh instead.\n", - " warnings.warn(\"nn.functional.tanh is deprecated. Use torch.tanh instead.\")\n" - ] - }, { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAB960lEQVR4nO2ddXgU1/eH3ztr8YQIEdzdXYoXLVAoLdTd3dtv3eVXd3f3QrFCi7s7BJe4+9rM/f2xIWWzmxDPBuZ9Hh6S2Zm5Zye7Z+6ce87nCCklOjo6OjpnPkp9G6Cjo6OjUzfoDl9HR0fnLEF3+Do6OjpnCbrD19HR0TlL0B2+jo6OzlmC7vB1dHR0zhJ0h6+jUw2EEEuFENfV8ZhXCSFW1uWYOmcGusPX0aklhBBPCiG+qeY5WgohpBDCWFN26Zy96A5f54yiITlG4UL/DurUGfqHTcfnEUL0FkJsEULkCSF+FkL8KIR4tvi1EUKIE0KIB4UQycDnQgiLEOINIURi8b83hBCW4v09wiHFM+i2xT9/IYR4Vwgxt3i8dUKINqfse64QYq8QIkcI8Q4gyrB5PPA/YKYQIl8Isa14+1IhxHNCiFVAIdBaCHFECDHmlGNPfTJYXvx/dvF5Bp2y3ytCiCwhxGEhxITqXGOdswPd4ev4NEIIM/A78AUQDnwPTCu1W0zxay2AG4BHgIFAT6AH0B94tBLDXgw8BTQCDgDPFdsSCfxafK5I4CAwxNsJpJQLgOeBH6WUQVLKHqe8fHmxncHA0dPYMqz4/7Di86wp/n0AsK/YjpeBT4UQXm8+Ojon0R2+jq8zEDACb0kpHVLK34D1pfbRgCeklDYpZRFwKfC0lDJVSpmGy3lfXokxf5NSrpdSOoFvcd04ACYCu6WUv0gpHcAbQHIV3tMXUspdUkpn8XmqwlEp5cdSShX4EogFoqt4Lp2zBN3h6/g6cUCCdFf5O15qnzQppbXUMafOnI8Wb6sopzrxQiDolPOWjF1sU2lbKkJVjilNiY1SysLiH4PK2FdHB9Advo7vkwQ0KRWuaFZqn9KSr4m4wjsnaV68DaAACDj5ghAippK2lIxdbFNpW8qzq6ztbjbhClGd7hw6OpVGd/g6vs4aQAVuE0IYhRBTccXky+N74FEhRFRx3P1x4OQi6DagixCipxDCD3iyErbMLT52enE20B24O+fSpAAtK5CJsxWYJYQwCSH6AjNOeS0NV8iqdSXs1NHxiu7wdXwaKaUdmA5cC2QDlwF/AbZyDnsW2AhsB3YAm4u3IaWMB54GFgP7gQoXMEkp04ELgReBDKAdsKqcQ34u/j9DCLG5nP0eA9oAWbjWG747ZcxCXIvGq4QQ2UKIgRW1V0enNEJvgKLT0BBCrAM+kFJ+Xt+26Og0JPQZvo7PI4QYLoSIKQ7pXAl0BxbUt106Og2NBlOVqHNW0wH4CVcWykFghpQyqX5N0tFpeOghHR0dHZ2zBD2ko6Ojo3OW4NMhncjISNmyZcv6NkNHR0enwbBp06Z0KWWUt9d82uG3bNmSjRs31rcZOjo6Og0GIUSZ+kx6SEdHR0fnLEF3+Do6OjpnCbrD19HR0TlL0B2+jo6OzlmC7vB1qow9t4DkFdvJia8JtV8dHZ3axqezdHR8l+0vfc/Wp75CMZvQHE7Cu7dmzOxn8YsKq2/TdHR0ykCf4etUmmNzVrPtmW9QrXYcuQWoRTbSN8Xz74wn69s0AKSmkb3nKHmHdfUFHZ1T0Wf4OpVm1+u/4Cy0um2TTpX0DfvIP55KULPG9WQZJC3ZwrLLnseRW4jUJMFt4hj921OEtG1Sbzbp6PgK+gxfp9JYU7O9bldMRmwZuXVrzCkUnEhj8ZRHKUrKxFlgRS2ykb3rCPOG343mVOvNLh0dX0F3+DqVpunEAShmLw+HAvyiQsnYegBHflGd2xX/2XxPxy4lzvwiEv7WK7Z1dHSHr1Nput53EZaIEBSLybVBCBR/M2FdWvJru8uZP+Juvo++gM1PfE5dqrEWHEtFszk8tktNoygpo87s0NHxVfQYvk6l8W/ciPO3fcLut38jYcFGAptFoWkaiQs3oFodqFaX09312i8ENoumw3UTcRQUse+juRz9fQWW8BA633Y+cWP61KhdsaN6cfinJTjzS60vaJLGg7vU6Fg6Og0Rn9bD79u3r9TF03wf1e7g27ApqFa7x2vBbZtw/taPmDPgVvIOJaEWuVrRGgP86P7opfR46JIatWNOv5vJ3Z9QYoshwEKL84cy/Jv/1dg4Ojq+jBBik5Syr7fX9JCOTrVx5hchNc3ra9a0bPZ/+Td5h/9z9gDOQivbnv4aa0ZOjdlhMJuYtOptejxyKWGdWxDRux0D37yNYV89VGNj6Og0ZPSQjk61MTcKxj+6EQXH09xfEILoIV04Pns1aqHN4zjFbCRt7R6aTRpYY7aYgvzp8chl9Hjksho7p47OmYI+w9epNkIIBr5zBwZ/Cwjh2mZQMAb60ffFG/CPaQSK8DhOahJLREhdm6ujc9aiO3ydGqH55MGMX/x/NJ04gJD2TWl9yWimbHyfRl1b0fGWqRj8zO4HKAK/qFCiBnSqH4N1dM5C9EVbnTph36fzWH/nuwijAamqBMRFcu68FwhpE1ffpunonFGUt2irx/B16oQO106kzcWjSN+wD1NoIOE92iCEZ5hHR0en9tAdvk6dYQzwI2Z4j/o2wwPN4URTNYylw046OmcYusM/g8k/nkru/gRC2zclsKnXJvZnNdaMHFbf9DrHZ69BahqRfTsw5ON7adS1VX2bpqNTK+gOvwZIWb2LHS99T96hJGKG96Dbg7PqVTFStdlZdvkLnPhrDYrFjGZz0HzaUIZ98SCKSf+TA0gpWTD6PnL2HENzOAFIW7+XuefcyYz4r+pE119KSdI/m9n/5UKkU6X1xaNpdt5AhKLnUujUDvq3v5oc/mkpK655uSTPPCf+OIe++4cpG98nuHX9LEhu+t+nnJi71k3m4Ngfq9jy5Jf0ee7aerHJ10hdtZO8Q0klzh4AKdHsDuI/m0/3By+udRvW3/c+8R/NxVngkoI4Pnctzc4bxPBvH9HXN3RqBX0qUQ00VWXNbW+5FRVJh4o9t5DNT3xRb3bt+3guapG7zIFaZGPvB7PrySLfI/dAgtftapGd7F1Han387L3H2PfBnBJnD+DMt3J8zhpSV+2s9fF1zk50h18NCk+kezQCAUDTSFqytc7tAVeY4FQnciqOvLqXLPZVGnVvDV7kIAwBfkT271jr4yf+vRFvGdHOQivH566t9fF1zk50h18NzGGBSNW7hox/47C6NaYYIQSR/Tp4fa3xoM51bI3vEtm7PZEDOrkVhAmDgjnYn7ZXjK318U3BASgGz6+fYjJhCgms9fF1zk50h18NzKFBNJ886D9d+GKMAX50u39WPVkFg965A2OQH8JoAECYDBiD/Bn41u21Mp41I4e9789m23PfkrJmF4n/bmHvB3NIXrG91vTwbdn57HjlRxZN/h/r7nmvzBBNeZz71/N0un0alshQjMH+tJwxnMkb30ezO8k/muJhuyOvkPX3f8APTS7ix6YXsfF/n+AoqNpTU/NpQ71uFwaFNpeMrtI5dXROh15pW00c+UUsu+RZEhdvRjEb0Rwq3R+aRY9HL6/Xhbfcg4nsfPUnMrceJKJPO7recyHBrWJrfJykpVtZPPkRpJQl6wbCIFBMJoRBIbRjM8YvfgVzDc5ai1Iymd3nJmxZ+ahFNoTJgMFkYsycZ4kd2ata5116yXOkrt6FUBT8IkMY+vmDxI3qheZUmd33JnL2HS9psmLwM9OoWyvOW/NOlTJrEhdvcmv8Lp0qQz9/kFYXDq/ye9DRKa/SVnf4NURhYjoFCemEdWyOKTigvs2pEzSnyvcxF2DPzCtzH8Viou2V4xjywd01Nu7qm98g/rN5SId7O8OgltHMOPhtlW60Ukr+6HEdOXuPI09pk2gM8GPqto/J2nmY5Ze/gLNU60ZjkD+jfn2SJud6/X6dFqfVTvKSLWhOldiRvTAF+VfpPDo6J9H18OuAgLhIovp1PGucPUDauj1uztEbms3Boe/+qdFxj81Z7eHsAYqSsyhMSK/SOdPX7yX/SLLH+1EdTva+9yeZm/d7OHsA1WonY/P+Ko0JYPQz03TCAJpPHqw7e51aR3f4OrWOW657DVDWTVVqEmOgX7nHSikpTMrAluX+VFJwPNVrWEY6nOQeTCSoZYzXcxv8zQS1iK6E9To69Yfu8HWqTNSATiULw2UhDApNJw6o0XE733Y+hgCL+zhGAzHDe2BpFFzmcSkrd/Br+yv4pc1l/BA7g4VjH6AoJROAiL4d0OyeNyZjgIXYkT1peeFwV0bPqeEiRWAK8KP5+d4XYHV0fA3d4TcQNKeKw0tIoT5RjAZG/fIkxkA/FH/vwmPGIH8GvHFrjY7b8eYptLpoBAY/M6aQAIyBfjTq0pLh3zxc5jH5R1P4e8JD5B1MRLXa0exOkpZtZcGY+5FSEtwyhtYXj8IY8N8sXjEZMYeH0O7q8ZiC/Jm08i0i+7RHMRtRzEaiBnRi0qq3dNE1nQaDvmjr4zitdtbf/R4HvlyI5lQJbhXDoPfvJm5U1bNRahprRg7r7/2Aw9//6xG+MfibuTj1N0yBNR+fzjuSTOaWAwQ2iyKiT/tyF2s3Pvwxu17/xWMWbwzyZ9zCl2g8qAtS09j74Ry2PPkltvRcACzhwfT7vxtpd9X4kmNsmbkgRLlPEzo69YW+aNuAWX758xz4ciGq1Y50quTuT2DxlEfI3H6wvk0rwS8iFGtqltdYvWIykrqydqQCglvG0GLaUCL7djhtZk7u/gSvIRuEa/YPIBQFa1oOaoEVpAQpsWXksua2tzjy2wqklBybvZrlV77IkgufYv/nC2p8fUJHpzapEfE0IcRnwHlAqpSyq5fXBfAmMBEoBK6SUm6uibHPZAoT0znx11rU4rzvk2hWBzte/pHh3/yvyueWUpK6aicpq3biHxNOywuGVStLpMxjJR7x9prCabWz+81fOfDV3wghaHv1eDrfPg2D2eSxb8yw7pxYsN6jmbp0qET2dVUma6rKrld/xllqH7XQxpYnviB56Vb2f76gRLoibd0eDny9iHGLXkYxlL+WoaPjC9TUDP8LYHw5r08A2hX/uwF4v4bGPaPJO5KC4iU+LDWN7N1Hq3xezeFk0aSH+XvCQ2x+7HPW3v42PzWbScaWqqcXdrjhPLf490mMARYaD+5S5fOWhdQ0Fo65j61Pf0XOnmNk7z7Klie+YNGEh7xW97a9ahyW8GCE6T/HbAiw0Pz8IYS0bQK4tIZUm93jWID8I8nEfzLPXeyswEr6xn2cmLeuht+djk7tUCMOX0q5HMgsZ5epwFfSxVogTAhR82WfZxihHZqiWj0dkDAaqtX8e99Hf5G8fDvOAivSqeLML8KeU8C/FzxZZSmEuDF96HzPBRj8zBiD/DGFBGCJCOHceS/Uyuw3cdEmMrcfclMFVQttpK3fS8rKHR77m0MCmbLxAzpcNxH/2HCC2zahz7PXMOzrh0/ZJwBzaJDX8fwah4HiGTZy5hdxYv76CtkspeTEgvWsuuFV1t71LhlbD1ToOB2dmqKu9PCbAMdP+f1E8bak0jsKIW7A9RRA8+bN68Q4X8UvIpQO109i/2fz/wszCIHR30y3B2ZW+bzxn833CG0AWNOyydl3nLCOVbvufZ6+ho43TiZ5yVbMYUHEje3rNbxSE6Ss2eW9EMrmIHX1LmLO6e7xmn/jRgx69y4GvXuX13MKRaHPC9ex9o633a6PIcBCu6vGs/OVHyld7qWYjRVqliKlZOmsZzgxb53rKUFRiP94Ln2ev5Yud15w2uN1dGqCulq09bai5nUqKaX8SErZV0rZNypKb8s34I1b6f3sNQQ2i8IY5E+TsX2ZtPqd6unilDeLr2bWVmCTKNpcdi7NzhtUa84eIDAu0msIyeBnJiAussrnbX/NBIZ98SBhnVtgCvYnamAnxs57ka73z0R4eVIRBgPtrhp32vMmLNzwn7MH0DTUIhvr736P1Te/7nMptzpnJnU1wz8BNDvl96ZAYh2N3aARikKXu2bQ5a4ZNXbOtleOY1P8px6zfEtECKFVnN3XNa1mjmDDAx95bFdMRlpMr14hVMsZw2k5w1PAbNyi/2Px5EdwFhS5CrCk5JwvH6rQzffobyvK7FMQ/+l80jfsY/L69/T2hjq1Sl05/NnAbUKIH4ABQI6U0iOco1M3dLx5Csf+WEX6pnic+UUYAywIg4EW04byR/frkKpKm8vOpctdF3idRfsC5tAgxv/7CktnPVusnyMJahHNyJ+eOG3Of1FKJvbsAoLbxKGcplL4VCL7tGfmiR9JW78X1Wqn8aDOGCwVK7oyBvqBonhtuiKdKjnxJ0hcvJkmY6smwqajUxFqpPBKCPE9MAKIBFKAJwATgJTyg+K0zHdwZfIUAldLKU9bUaUXXtUeUtNI+ncLKSt34hfdiKO/LSd1ze6SWb/B30yjrq2YtPptn005dBbZSF6+HVt6DpH9OhLavmm5+9syc1l68XMkL9+GYnJVyw56905azxxZ67ZmbD3A3CF3oBZ5rp2AayG+z7PX0O2B+uujoHNmUF7hVY3M8KWU5XZ8lq67Ss3W1+ucFkdBEYWJGQQ28Yx3C0Uhbkwf4sb0IXXtbjY+8KFbiEctspO95xgn5q2j+eTBLr17qx2Dn9knGmwf+W0FK656CVGcOSOMBsb88QzRQ7uVecziqY+RvmEvmt1Zomm/8tr/I7hVLFG13NYwomdb+jx/LRse+NCr0qfB30xQLfQr0NE5FT1geAYiNY31973P942nM7vPTXwXNZ1Nj35WZspl2prdaF6ckDO/iN1v/sae9//kpxaz+CbkPL6LmMq2F7+rtU5WFSH/aEqJNr0jtxBHbiH2zDwWTXq4zMXP3AMJZGze71FtqxbZ2fnaT3VhNl3uvIDpe7/AGOTvlsbgaq0YQPOpg+vEDp2zF93h1xHH563jr8G380PTi/j3gifI3n2k5DVNVSkqQ5qgKmx7/jv2fjAHtciOM78ItcjG7jd+Zfebv3nd3z8uAsXi/WEvedk21t76FoUn0pGqhj27gO3Pfsu2Z7+uEVurwoFvFiFVzxuUlHDsz1VejylMzEAxe3mPUpKz7zi7Xv+Fna/9TN6h2s0lCGkVx5RNH9B4UBeEyYAwGYg+pxuTVr1dq1lNOjqgi6fVCfGfzXfP7RYCY6Af561+m+Rl29j82OeoVjvCoND57gvo/eRV1crW+DZ8KvbsfI/t/jHhzEr82WO702rnp+azsGXkVjgt0xjsz6UZf1Zq0bOmWHfv++x+/ReP7QZ/M/3+7yY63TLV4zVbdj4/xl3oWchmUBBCIAwKSBCKoPez19D1ngu9ji2l5Mgvy4n/ZC6aU6XtFWNpc+mYKl0HR14hCKE3PtGpUXTxtHpEc6psuN89Po6UOAusrLjqJTY8+BH27HxUqx1ngZVdr/3C1me/KfecUtPY/8UC/hp8O7P73sSuN37BWezIpKZ5dfYA1vQcr9uNfmYmLnudsM4twFCxj4Rmd5Y5Tm3TdHy/MhudxI3p7XW7JSyIbg/MdD/OqICqIZ0qms2BZnegWu1sfvQzcvaf8HqelVe/zMprXiZx0SaSl2xl7W1vsXjKo1UKcZmCA7w6+5z446y87hVm972JVTe8WqYtOjqVRXf4tUxhUoZXeQSkJHPbQY9ceLXQxq5Xf0Z6Sd87ybLLn2ft7W+TtnY3GZv3s+nRz1gw6h40p4pQXI3DvRHeo02Z5wzr1IJpOz6l402TvUoIlMYY4Ie5URC2zFx2vPoTy698kd1v/YY9p/ZvAnFj+hAzsqeb8zYG+tH+2omEtvf+3gF6PnElQz97gMj+HQluHUvjAZ1RLJ5hFKlqHP1thcf2zG0HOfzLMg89nZSV20n6d0s135WLtA17md3nJg58uZCMzfvZ//kCZve+kfSN+2rk/DpnN7rDr2Us4cFlhkmk5n27s8iGs4z0vcwdhzj2x2o3p6MW2sjaeYTjf60BYMCbt2HwP0WhUggMARb6v3bzae1tf+1EV2encjAG+NH76avIO5jIL+2vYMvjX3Dw60Vs+t8n/NL+CvKOJJ92nOoghGD0708z5JP7aDppIC2mD2XEj48z4M3bTntcqwuHM3ntu8w48A0tp5/jdT+J9FoHnrRkK1L1vBE7860kLt5UpfdSmrW3v+3SOCoeR6oazgIra+94u0bOr3N2ozv8WsYU6E+by8a4O2Bc+izBbeO8HuMXFVZmwVPKih1480bO/KKSWWaTc/syfvH/ETe2L4HNomg6oT8Tl77uVV+mNBE929LlnhkY/F3FWCe7OwU0i8LgZya4TRyD3ruTTreez+qb38CelV+SW+4stGHPzGPdXe+edpzqohgMtJ45knPnPMeoX56i2cQBlUoXtabncHzumpL0TLdzGw1eq3Ut4cEoJs+FX4OfGUtkaOXegBdUp7PMmXz6Bn2Gr1N96qrS9qxm4Dt3IKXk0Lf/IAyKq8jmuWtp1K0Vf49/yK0YxxBgof+rN5XpvPyjG6EYjai4h4kUi4mAJv9pyDQe1IVxC16qkr19nr6GNrNGcfSPVShGAy0vHO4hHyA1jeRl2zyeXqSqkbBwQ5XGrSuklCwYcx85e455vKZYTPR8/AqvoaEW04Z6nWkLRdDmktFVtif3QAKrb3qdpKVboYynvrIat+voVAbd4dcBBrOJoR/fx4DXbsGalk1gs8YlM8Vxf7/Mpkc+JWvHYYJbx9LryStpNmlgmedqdt5Ar+mFitFA2yvG1pjNYZ1bEta5Zdk7CIFiNHjtIuXr6YVpa3eTdyjJIw1WGBTaXzuB7g96ryM0BQcwdsFL/HP+Yy5ZZuE6ZsT3jxEQG1ElW+w5+fw16DZsWXllOnuDv4WON09Bc6pkbIoHIYjo085nK6B1fBfd4VcQW2YuB7/7l4LjqUQP6UrTSQMq/YUzBQd4zNSih3Rl4tLXK3wOze5k9J/PsOKKFylKzgJFYAzwY8T3j1TZ6VQFIQStZo7k8I9L0ez/hUUUi4k2V5xbZ3ZUlMKkDNbf9z7H56xFFmfmlEaqGtbU7HLP03hgZ2Ym/ET6hn1Ip0rUgE5ewzwVwZ6Tz5pb38SRW+jV2RsD/ZCqRssLziF2VC9+iLsQzeZAIjH6Wxj129NE10JzGZ0zF93hV4D0jftYMOY+NIeKWmRj7/uzCe3QjInLXq8zcbHC5ExWXPkiyUu3gYDQDs0458sHCG7ThEbdWqEYDGhOlRPz1pG95yhhnVvQdGLlb0qVYcCbt5G9+wg5+06UhHbCe7Sh7wvX19qYVcFZaGXOgFsoSs7y6uhPYgyw0HiIR4dODxSDgcYDO1fLpsR/t/DP1EdRbQ6vNil+ZjrcOJmu912EYjTwc6tL3LOD8opYNOFBLjr2Q5lNW3R0SqM7/NNwsnGFI7ewZJszv4jsXUfY9fov9Hjkstq3QdOYP/wu8g4nlziHrB2HWXntK1wQ/xVCUShKzWLu0DuxpmTiLLJj9DfjHxvBpJVv4VcDC4resIQFMXn9+6Su2U3uvuOEdWlJZL/TNxSvaw79sAR7Vn65zh5AmI0V0ravLk6rnX+nP16mXDIAUpL4z2YyNscT1Dzaa5qu1FxFYO2vnViL1uqcSegO/zTkH0mmMMmze6NqtXPg60V14vCTlm6jMDnTw2GpNgcLxtxPbvzx/+LRxZEBR14RqjWZdXe9w/BvHqk124QQRA/u4tOhhYwt+8t3rsVoNgcpK3bQ7LxBtWpP8tKt5e+gCDSHk6xtB12/moxeZTdUm6PMYjodHW/oaZmnwVVy730xzVsHpFPRHE6O/7WGvR/OIbP4y1sV8g8neY3xajYH2bsOuxZOJR7ZmprDydHfVlZ53DOFsE4tMFQg9KYW2dn8+Be1bk95TxpCUVyyGqf8vcvSWDKYTcSO7FXj9umcuegz/NMQ1Dya4LZxZO866ub4DQEW2l87oczjcg8mMm/YXTjzi9CcKghoMq4fI398vNK6KxF92petcXOain5f1kqqK9pcNoYtT3yBarWVmQlzktoWTwOIGdET6fQM0RgD/Wg6cQBHfl7meZAAxfjfTN8Y6EfTCf1rXdZZ58xCn+FXgJE/PYElMgRjsD+K2YQx0I/ood3ofPu0Mo9ZcuGTFKVk4sgrRC2yoRbaSFi4gb0fzK70+BE92xJ9Tnf34q0KiKsJo4Hmk2s3PNEQMIcEct6ad4gZ1r24DkIpM7MmtFPtt3g0Bfkz9PMHMPibUYpTWI2BfjSdNIDGg7p4FOmBKzWzzeXnEj2sOzEjejD4/bsY8cNjtW6rzpmFrpZZQZxWO8dnr6YwIZ2oQZ2JGtCpzMXJghNp/Nr+Cq8aOo26tuL87Z9UenzVZmf7Sz8Q/8k8NJuDiN5tSV65E7WM2LQxyB9LeDDnrX2XgJjwSo93pqI5nCAE+z76iw2lmr4Y/C2c+9dzdRYmyT+awsHv/sGRk0/TiQOJPqcbtvQcfm59qceagyk4gIuO/4A5JLBObNNpuJSnlqk7/Fog92Aif3S/zms7u5B2Tbhg31fVHkNTVX7vei35pxYQGRQsoYG0u24SET3a0GL6UAwWM5vWHuPPn3aQlVFImw6RzLi0J01bNKq2Db6Apqpsf+F7dr/5K/bsfCJ6t2PAm7dVKG3ywFcL2fL01xQmpBPWsTn9/u9G4sb0qQOryydpyRaWXPR0cVGbxBDgx+jfnqLxIN9dGK8sdpuTfxfEs3bFEcwWA6MndKD/kBY+l+HVENEdfh0jpeTn1pdScDTFbbvBz0y3B2bS68mramQca0YO6+5+j6O/LEdqGs2nDGbAm7e5FWD9M38fP3yxCbvNtVAoBJgtRh5/eQJNm4fViB31yeqb32D/F/PRbP8tbBoDLJy39l0adW1Vj5ZVj5KqWkUQ2ad9tfoj+BpOh8rTDy4g8UQODrvrc2mxGBkysjVX3jSgnq1r+Oh6+HWMEILh3z6CMci/RHnSGORPcNs4ut57UY2N4xcRyvCvHuaKwvlcaV3IyJ+ecHP2TqfGz19vKXH24Fr7tduc/Pbdthqzo77I3necfR/NcXP2AM4iO9ue/7aerKoZFKOBqAGdiOrX8Yxy9gAb1hwjOTG3xNkD2GxOVvx7kNTkvHq0rHoU5NvZuvEE8btT0U6THFBf6Fk6tUT04C5cEP8VB75aSP7hZGKG96DF9HPqVGcmK6MATfX84EkJB+PT6syO2mLNza97z1Iq7jWgqaqrm9UZ5jAbOju2JGKzeqaaKoogfncqjWOC68Gq6vH3nD389PUWjEYFKSX+AWbuf3I0TZqF1bdpbugOvxYJiAmn+wPehbgqwsnuVaaQwCq10AsO8UMro5FKRFTDXvzTVJWUlTvLfN2WmcdXfuNBCJpPHczg9+7CLyqszuyzpmWz641fSVi0icBmUXS99yKfLk6rSxqFB2AwKqilUlOFgODQupEqqUkO7E3j52+24LCrJU8tVquT/3vyH177eDpKBRoK1RW6w/dR9n+1kI0PfIQ9uwDFZKDTbdPo/ezVldLG8fM3MWh4a9YsP+z2+Gy2GJh64em18X2FjK0HSFi4AXNIIC0vHO6SipCU23/XmpZdknN/bPZqsnYcZtquz+pEYbIoJZM/e96ALTsfzeYgY1M8CQs3MPj9u2h7ec0pmpaFLTufg98uJmfvMaL6daTlRSMwnqapTV0y/Ny2/D1nD27lZ8IVx+/aM7asw+oNa5GDjWuOkZ1VRNuOUXTo3Nhtcfmf+fuw20sV00koKrRzYG8a7Ts3rmOLy0Z3+DVAYXImWx7/nGNz1mAM8KPjzZPpcteMKjf4PjZnNWtuebMkZVCzO9j99u8gNfq+eEOlznXljf1RFMGqJYcQAkxmAzOv7E2Pvk2qZFtdIqVk1Q2vcuj7f9HsThSzkfX3f8DoX5+iybh+xIzoSfKSrZ46MwYBp4SypEOlMCmDxEWbaDq+f63bvf2lH7Bl5p0idyFRC22sveMdWs0cWathvew9R5k75A5UuwO10MaBoL/Z8tSXTF73Xq1pKlWWxjHB3PrAMD58fRWapiE1SVh4AHc9MhJDBXsq1xXHDmfy4mOLcDo1HHYVk9lA63aR3Pf4KIwm1/c7P9/uNbQohKCw0Et703pEz9KpJvbcAn7vfDVFqdklJfOGAAvNzhvEyCoWxszuexMZm/d7bDcGWLgk4w8MlsrP1mxWBwX5dkIb+fvcl6osjs9dy9JZz3jNSZ+V8itFSRn8NfA2nIVWnAVWjEF+IATOvCKPcykWE31fvJ4ud15Q63b/2ukqcvcd99huCvZn4sq3CO/WutbGnjPgFtI3xrs9/SgmI22vHMuQj+6ttXGrgqpqHDuchclsoEmzUJ9LyZRS8uAtf5KS5L6QbLYYuOCSnoyf6kr9XbZoP998ssEtOQJck6s3P5tBYFDdPl3pWTq1yP7PF2DLdldiVAttHJ+zmpz9J6p0zvxS6ZwnkZrEnl21JuEWPxPhkYENxtkDHPhyoXfRM+ESIAtuFcuMg98w4I1b6XLPDAa/dxetHrgczeQ5g1ZMxjpL0/SP8j6T1hxO/CJCam1cR34RGVsOeIS6XJpKnk3Z6xuDQaFV2wiaNg/zOWcPkJqcT1Zmocd2u01lxT//aWMNHtGaJs1CMVtcM35X6rOBiy7vVefO/nToIZ1qkrx8u1u15kmE0UDGpnhC2zWt9DnDe7Qp6U97KgZ/S430Tm0olPv0WfyaKci/RB74wN40vv5jPj0NJsxOJ8rJ401GgtvEETuyZy1b7KLrfTPJ2HwAZ+F/NyvFZCRqYGcC4iLLObJ6CEUghPfEJVHFJi1nN2V//uQpr5lMBh55YTxrlh1mw5pjBAebGTW+A207RtWFkZWi4Uz3fJTQDs28thyUmoajwEr8Z/NJWbmjUiJmfZ6/DmOAu56KMcBCn2evOSPb2jkdKpvXHeffBfEcP5JVsr3t5WMxBnpmbUhNEjOip8f2n77ejNUp2DzsPNJiW6AaDDiNRtJatGP8v6/WWXpm8ymD6f7opRj8zZhCAzH4W4js14GRPz1Rq+MaA/yIGdkLUWrtSPEz12j7y7OFxjHBhIb5e2w3mw2cM7KN2zaTycCwMW2597FR3HDXUJ909qDH8CtF8vLt7P9sPk6rndYzR9J86mAKTqTxe9drcOafEnowKBgsJtdjqgQUCGnblPH/vIKlUcVyjFPX7mbjQx+Tue0ggU0i6fn4FbS6aEStvK/6JCkhh+cf+Ru7zVlSM9CzX1NuvmcoQhGsuOoljvy6HNXqwGA2ghCM/PExr5r1N13yA0WFDo/tRqPCm5/PICjYU5SsNrHnFpC1/RD+MeGEtK3ZRXKn1Q7S1erwVAqTMpg79E5s6TloDifCoBDesy3jFr5UZ93ZziSOHMzgxccWoaoadpuKxc9Ii1bhPPD0GEwm35x86dIKNcCmxz9j92u/4iyyub5oQX7EjenDqF+fInXNblZe/TL5x1JASvyjG1GUmo1mO6XXq9lIyxnDGf7N/6psQ/aeo2TvOUZYp+aEdWpR6eNT1+xi38dzceQU0PLC4bScMbzKmUQ1xcO3zybpRI5b2NlsMXDJNX0ZOa49AGkb9pKwYAPm0EBazRyBf7R3Mbj/3TGbhGOeDUEsfkbe+2YmRmPDf6AtSEhj5TWvkLTEFfJrPLgLQz+5z+2GoqkqiX9vJO9QEuE929J4cBefjJE3FAoL7KxbeYTsrCLadYyic/dYn8qtL43u8KtJ3pFkfu98tYf6pTHQj1G/PUWTc/sipcSalo3Bz8xPzWe5tUQ8iWI2ckXRgkp/+ZxFNv6Z9jgpK3agmAxoDpXoc7ox+venPWZ4ZbHjlR/Z8uSXqEXFM8NAPyL7d2TcwpfrzemnJufxyB1zPHOYgRatw3n6tUmVOt/6VUf5+K1VbtkSZouBsed14sLLG06jEFt2PopB8Wh4rzmc/NLucgoT0pFqcSqqIrBEhHDhoW8xBXqGH3TOPvQsnWqSuGiT1/ivs8DKsdmrAVfOrX/jRphDAsvsUKQ5Va+9SU/Hxgc/ci0OF9lw5Lr09ZOXb2fjgx9V6Pii1Cw2P/a5a3G5+AbvLLCSvn4vR3+vv45YTodW5s3PeZr+s97oP6QFl1zTl8AgMyaTgtli4NxJHbngkh7VNbVOyNp5mD/73MQP0RfwXeQ0Foy5j4KE/yQwjv+1FntW3n/OHkBz5fgf/nFp3Rus0+A4o5fu8w4nkbF5P0Etoono077Kj7WmYH9XMU8phNGAOTTIY3uT8f059udqONW5C0HMsO5VWnTd//kCtFJPF5rVzv7PFzDwrdtPe3zy0m0oZpNbiAlcTv/obytodeHwSttUE8Q0CcE/0IStlPiZyWxg4DlVS6EcOa49w8e0JT/PRkCguaQ4xtexZeUx75w7secUlGxLXraNeUPv5IIDX6MYDOQeTES1eq5ROAus5O5PqPSYqWt3s+edPyhMyqD5lMG0v3YipiD9KaG6SClJTc7DaDT4nITJGenwNVVlxdUvc/SX5ShmI1LVCGnXlHF/v1ylasNmkwchbvTcrpgMtL3iXI/tA16/hdRVO3HmW3EWWjEEWDBYzAz+4O6qvB2vjVTK214aU7A/3u51QlEwN/K8YaVt2MumRz4lc+tBglvG0PPJK2k2seZlaxVFcPO95/DaM/+iqRoOh4bFz0hMXAjjJle9dZ9iUAjxkl1RUzjyCsnadYSAuAiCmkfXyDkPfL0I1e5+45Oqhi0zj4SFG2k2cQDhPVqjWEweT5DGIH8ierWt1Hj7PpnLurveLQnxpa3bw973ZzNlw/seoSSdihO/J5X3X11Bfp4NKSEmLoTbHxxGdGzt1V9Uhhpx+EKI8cCbgAH4REr5YqnXRwB/AoeLN/0mpXy6Jsb2xp63f+fobytQrfYSp5i16zDLr3yRsXNfqPT5TIH+jJnzPIunPloSEtEcTgZ/cDeh7Zt57B/UPLpYKfNvMjbF06hba9pdNQ5LeNX+6NHndCN5qaeccfSwiunhxI7u7TVOr1hMtL9uotu2tHV7mD/63pLaAlt6DksueoohH95Dm0vHlDvOiWPZzPl5B0cPZdKkRRhTZnSjRevyu2117BLNy+9NZcW/B8lML6BTt1h6D2jmswus2577hm3Pf+daS7E7aTykC6N+edLrk15lyN1/wmvDHM3hJP9IMgBxo3sT0q4J2buPljytKSYj/jHhND9/SIXHchQUsf6ud93qR9RCGwXHU9n7wRy63T+zWu/lbCE3x4qmScIauSYX2VlFvPLUP25KoCeOZvH8//7m1Y+n+8RnutoOXwhhAN4FzgVOABuEELOllLtL7bpCSnledcerCHve/dOjGEo6VJL+2Yw9t6BKbeJihnXn4uRfSPp3C6rNQeyoXuWexxwSSOfbyu55Wxmih3b1dPhC0PuZqyt0vMFsYuyCl/h74sNodpej0OxO+v3fjUT2bu+274YHP/K4dmqhjQ33fUDri0eVmct+aH86Lz66CLtDRWqS5MRctm9K4J5HR9GpW0y59oWFBzB5RrcKvZf65Mgvy9j+wveuHsXF6g0pK3ay7PIXOHf2c9U6d1T/Tq7K4nz3ymJhUEpm70JRmLj0dTY9+hmHvvsHqWm0nDGcPs9fWyl9nozN+z1y9QHUIjtHf1+hO/zTkJqcx/uvruDY4SwQEB0TzI13D2XHlgQ01X2NTkqwWh3s2JxAr/6ek8O6piZm+P2BA1LKQwBCiB+AqUBph19nOPM9tVQAl85Koa3KfUENFjNNJ9RtRx5noZVdr//qsV0xGYsX8fLJjT9BWNeWxI3uXaZDjuzbgVkJP5G8bBuO/CJihvfwWhOQufWA1+NtWXnYs/PLfEr59pONbrF4V6MVla8/Ws/zb0+pyFv1eXa88pNb9Sy4hO0SF23Cmp5TLXGylhcOZ+tTX1JgTytubejqkBbRpz1Rp7RrNAUHMPDN2xj45m1VHsscFuS+8HsKJ99DYWI6zkIbwW3i9JTOU3A6VJ57eCE52UUlqcQJx3N44dG/6TuoGQ6H53XVNEl2Vhk+qY6pCYffBDhVKeoE4M0rDhJCbAMSgfuklLu8nUwIcQNwA0Dz5s2rZFDT8wZy4Mu/3fRtAAKbROIf3bB6uWbtOIzwon+j2R3seu0X9rz7B5rNiWIxEtwqlonLXi8zvKCYjKft2RrQJJKc3GNejy0vtnvkYIbX7QknclBVrUFp+JSFNTXL63bFaMCWmVsth2/0M3PeundZee0rnJi7FqlqSCmJHtoVqWmIGqywbtS1FYHNo8ndd9wta8wY4EermSOZM/BWMrcdRDEomBsFM+yrh+qssbuvs3VTAlarw0OZW1U1pHTVfHg0d5HQpoNvVN7WxLfQ2+2/dHL/ZqCFlLIH8DbwR1knk1J+JKXsK6XsGxVVtYvU++mr8YsKxVCcoy5MRoyBfgz97IEGN1vxiwotO83T4cCZV4Rmd/2fs/c4G+7/sFrj9XzscgylZB0MARY63TYNpRw9lrJEovwsRp8uUqkMcWP6eA2FKBYTwa3jqn3+/CMpJC7eVDL71mwOdr3xK+vvfq/a5z4VIQTnzn2e4LZxGIP8MYUEYvAz0+Oxy9j8+BdkbIpHszlwFtooTEhn8ZRHyxT0O9vITCvA6fScxdttKv4BZqKig9wqcM0WA937NKF5S9+YaNaEwz8BnBqcaoprFl+ClDJXSplf/PM8wCSEqDUVqYDYCKbt+pxeT11J0/MG0vn28zl/28fEVHCRs6awZeez//MF7H7rN3K8yOVWhNR1e8p8/C59W9XsjgrlY+cdSmTTY5+x6qbXOPrHSjT1vyeh1rNG0e+lGzCHuTRgDAEWOt4yld7Plr9eMG5KpxK1wJOYLQbGTOrQ4G6yZdHz8Sswhwb+p50kBIYACwPfvr1Gite2PvO1K2vmFNRCG/GfzMOeUzWV1LIIbhnD9D1fMGHJa4z88TFmJvxEVP+OWNOzPT5vmsPJvo/n1uj4DZVW7SIweAmbWvyMdOjcmMdeHM+kC7oQExdC0xZhzLqqD7fed049WOqdmgjpbADaCSFaAQnALOCSU3cQQsQAKVJKKYToj+tG4z0GUENYwoLodt9Mut1XPwtQiYs38c+0x0GA5tTY+PDHdLhpMv1fubnCDvDIr8tZdf2rJTHdEoyKq8GHlyrpMm8OJ8/5+0qWX/480qGiOZwc+u5fInq1Zdyi/ytZ+Ot06/l0uHEy1tQszOEhFeqWNOH8LmRnFrFk4X6MRgWnU2PgOa2YfknPCr3XhkBg0yjO3/4JO1/9iaR/thDUMoau98+ssdaF2buOeP2bKiYjBcfTqp0JdJLCxHRyDyQS0jaOyD7/LdoXJqR7FYjU7E7yDyfVyNgNnbYdomjdPoID+9JLusgZTQqRUYH06u/KLps2qwfTZvlmsV+1Hb6U0imEuA1YiCst8zMp5S4hxE3Fr38AzABuFkI4gSJglvRlTYcKotrsHP1jFXkHEmnUvRVNJw5AMRhwWu38O+NJDy33+I/m0mzCgNPG0U+y6dFPvUovW0KDCO/VjuR/t7jFYIXRQLOpnqJip9q78qqX3M7pzC8iY9N+Dn71N+2vc0kZSCnJO5QIEvxjIypkq6IILr2uH+fP6kF6aj4RUYF1LlZWFwTERtD/lZtr5dzh3VuTdyjJq559UIvq5/trDicrrimuT/Ezo1nttLhgGOd8/gCKyUjkgE4e617gkhCJHXX2xvCdDpWCAjtBwRYMBoV7Hx/N/D92s3zxAVRVY9CwVkye0dUn0i5PR43k4ReHaeaV2vbBKT+/A7xTE2PVNlk7D7Ppf5+QumY3/jHhdH/4EtpcMtpjv/zjqcwdfDv2nAKchTaMARYCm0UxaeVbpK7xnqDkLLCy/8uFFXb4BUdTvW63Z+Uz8O3bmD/8bpwFJ7s9+WMJD6b/q7eUeb60dXu9rrg4C60c/O4f2l83iYwt+/l3xlMUpWQiAL+oMEb+/ASRfTtUyObAIDOBQeXn3ut4p8djl5OwcKNbJpAxwEKHGyfXSDHU5ie+4OhvK1FtDtTiPP6jv68kqHlj+jx/HaHtmtJixjCO/bayxAbFYsI/NoLWXr4DZzqaJvnjh20s+HMPmiYxmV2z97GTOzHlwm5MudD3U4lL4/u3pDoke+8x/hp8O8fnrsOWkUv2riOsvuFVtv/fjx77rrr+VYqSM10poJqGM7+IvIOJbHz4Y6Ratg6MtxlUWQS38b4QaIkKJbR9M1e3pzdvo8u9FzL4vTuZvvdLAmLKdrYGi6lMXX5jgB+OvEIWjLqX/MNJqIU2nIU28o+msGDMfTUeQ9bxJKJnW8YufImIvu0RRgN+UWH0ePwK+v2flzLvKrD3/dkexV1qkY09788u+X3YFw/S79WbaNStFcFt4uhy9wwmr3+vwiJ9ZxJzftnB/D93Y7M5cThUCgsc/PzNFlYuOXj6g32UM1JaoapsfepLN4ExAGehjW3PfEXn26eVxLJVu4Okfzd7Lm7ZnRz5cSn9X7m5zEfj1hdXfKbU98XrWXLR025fUkOAhT7PXYsQAlOgP+2vmVDh80X264A5OMCj56sx0I/210/iyK/L0bzYLVWNwz8to8P1lVOv1Kk80UO6MmX9+7Vybkeep4Jr6e1CUeh442Q63ji5VmxoKGiaZP4fuz361NptKn/+uJ2hpRqgNBT0Gf4ppK3b413NUgjyjyRTmJjOnnf/YPdbv5fZ/Uziars39LMHMPhbUIoXQo2BfjSbPIhm5w2ssD3NJg1k5I+PEdqpBYrJSHDrWIZ8eE+lnLzb21AUxsx5Dkt4MKbgAIyBfhj8zLS7ejzNpwymKCnTqz6Ps9BKUVKtrrHr1CBFKZnEfzKX+E/nUXRK7UBUf+/6RGVtP5txOFTPfPpisjN9o4iqKugz/FMIahVL/hHPfGPpUElasoUN934AwtViT2rS1a34lKcBxWwsUZ5sddEIogZ04uB3/+DILaDZpIE0HtK10imKzc4b5LW7U1WJ6NWOmQk/cWLeemyZucSM6ElIceio8ZCuGPzMHovNxkB/Gg/pWmM26FQNp9WOs6AIS3hImZ+j+M/ns/bWt0qK9dbe/jYD372D9ldPoP9rt7BgzH1odifSqSKMBgwWU4UUV882zGYDoY38ycrwfCpq2iKs7g2qIfQGKKeQtGQLiyY/4pbFYvC30HzKII79udrr7NcQYEEttGEM8iewSSSTVr1VZZG0+kZKyd/jHiRl9c6Sa2DwtxDVv6OrJ+wZkk/f0HAWWll9yxuuGgspCYiLYPD7d9NkXD+3/fKPpfBbx6s8PqeKxeQS4Fu2DTSJJSIEv6gwGg/uQtf7LiK0XdM6fDcNh/WrjvDxm6vdGvSYzQbufWI0HbvUjEpqbaB3vKoEh35cwrq73sVRrEve5opzCe/eho0PfOSho4IiaD55MBG92tKoe2uanTeo3lsGVhfV7mDfh3PY/9kCpJS0u3o8HW+ajMFy+lx8ndph8dRHSVy0yc2RGwMsTFz5FhE9/5NF3vnaz2x65FOPvgcAKAK04u+6EJjDgphx8BssYTWT23+msm1TAr9/v43U5DyatghjxmW9aN+pcX2bVS7lOXw9pFOK1jNH0urC4VjTsjGFBGL0t7D3wzlIr0F7QVjnFvR8/Io6t7O2MJhNdL59Op1vn17fptQpyQm5/PrdVuL3pBLWyJ/JM7rRd1DVtJxqkvzjqR7OHlzhnR3/9yMjvn2kZJvmcJbdUU075fMrJarNzsFvFtWYouuZSo8+TejRp2Yb0Ncn+qKtF4Si4B8dXpKK1nzyIPcvTDEGi4mWM4bVmV3WjBySlm4l92Di6Xdu4NhsTqxFXmaqtUByYi5P3DeXDauPkp1ZxJGDmXz4xkoWzq43wdcSCo6moFi8SB9rktxSch3Npwyu8BOmWmgje/fRmjBRpwGhz/ArQEBcJP1euYkN933gUjHUNBSzic53TieiV7taH19KyYYHP2LP279j8DOj2RxEDezE6N+fLrPcviglk6KULELaNW1QOdSZ6QV8/NZq9u1KQQKt20Zy/R2DiWlSe+sif/ywHbtNdStwtdtUfvtuGyPHd8Bsrr8wXWin5l5DNMJkpHEpSYewTi3ocu+F7Hr1F6/NVE7FGOhX4WI6nTOHM87h5x5IIGnJViyNgmg6aWCNObtOt0ylybh+HPl5GZrTSfOpQwjv1rpGzn069n+xkH3vz0azOUq+/Kmrd7Pi6pcZ/Zt74zBHfhHLL3+eEws2uAqtVI1eT11F13surBNbq4PTqfHMQwvIzixCK36iOhifxjMPLeCVj6bh71/xJh+VYf/e1JLx3BCQnppPXNOqyx5XF7+IUDrcNJm9H85BK3KP4Xe8ZQrbXviWwz8uxRjgR6dbptD7qasJah7NmlveLLPITxgNWMKDaT1rZF29DZ8jJSmXvBwbzVqGYfGrnc+VL3LGOHwpJevvfo99H/0FikAxGBCKYOzfLxPVr2byjEPaxNH9oYtr5FyVYddrP3ukSmp2Byfmr8eek+82y19x9cucWLjB7eaw5fHPCW4dS4vzh9ap3adj9bJD/P79drIyColtGkLv/k0pLLC7OV8pXTnR61YcYcTY2nmaimwcRHpqgcd2p1MjJNSvVsasDO2umVDcyN7huiCKQocbz2PpzGfI3Z/wXxvPHYdIWraNghNpZTp7Y3AALc4fQr+Xb8AYUP/vra7JzS7ijeeXcvxIFgajgqpqXHhZL8ZO7lTfptUJZ4zDPzFvHfGfziv58J/8uC+e/AgzE35CqcEGEnWNLSvP63ahKNhzC0scvi0rj+N/rfEIATgLbWx/6QefcvhLFsbz3WcbSyoZjx3OIuFYtjexSGxWJylJubVmy+QZXTm0P92tqtJkUugzsHmVBOCchVaSl21DGAzEDO9erQwnTVVZNOGhkqwx10aNXW/8imJQ3BZznQVWDn37D/5lyGuYggOYuOINwrs3zCrRmuDNF5Zy5GAGqiqhON3y52+2ENcslK49y+9poKoam9cdZ9O64wQGmRl+bjuf0bmvKGeMw9/30V8es2Bw9elMW7uH6AZcONRkTB8OfrvYQ8rBHBZEYJP/2grYMnJRjAavMd/6qpQ9fiSL377bxqH96UQ0DmTqhd3p1juOX7/d6lG2rqoSb6n+Fj8jLdtUTLWzKnTtGceVN/Tnu8834XCoaJqk/5CWXHVz5dtZHvltBSuufLGk8EkIwajfnqpyx6jU1btw5Ho+fUi7E29zeGFQCGwWRcHxVE/pD1UlpO2Zk3FSWVKT8zh6OMvl7E/BblNZ8OeeEofvdGqsXnaINcsOY7EYGTG2HV17xfLKU/9waH8GNqsTIWD5ogNcel0/+g9pwa5tSQgh6NozFr9aCj3WBGeMwy/dOKIEgdeCqYZEr6ev4vjctTiKu1uhCAx+ZoZ8eLdbD9ugFtFeu1IJg0LsiJ51aLGLY0eyePbBBdjtTqSE7Kwi3vm/Zcy6qjeFBWX/TYwmBWdxb1CjUSGskT99BtRuA+iho9syaERrsjIKCQy2VGm9IP94Kssvf97js7h46mPMPP5DlfTsHTkFeL0Lgkv5tNQTkVAU2l0zgcxtB3HmW0vSNI2BfvR47PKzMoxzkrxcGwaDgsPLrTIn2yWXoKka//fkYg7vzyjp0bx7ezLtOzcucfZQ3LPZrvLlh+v45pMNSClLPrMxcSHccNcQ2rSvtR5PVeaMSctsc9kYjIGeH2YpZYOXBQhqHs35Oz6ly90XEDWgE61njWLSijc9JBcUk5H+r9/i1qJQGA2YggPo+UTd1wr8/PVmbMXO/iR2m8qv327DbPE+14htEsqYiR0IDrUQFGzmnNFtePzlCRhNtR+SMxgUIhsHVXlx+NC3i12SG6WRkqO/r6zSORsP7ebZAAcw+Ju9tltUHU5azRrJlI0f0HLmcPxjwwnv1Zahn95P9wdmVcmGM4VmLcK8/n2MJoXuxbn2WzcmcPjAf84eXCnCO7cmetXW0VSJw66WOHtwpfm+8OhCjh/x3gO5PjljZvitLxnNgW8WkbZ2N858K4rJiDAaOOezByrUscnXCYgJp+8L1592v3ZXjiOwWWN2vPQ9+UdTiBnRgx4PX1ojDTQqy+H9GV5F5goL7Ew4vzP/zIt3+2KZzQZmXNaTPgObc94FXTl8IIPQMP8y++X6GvacAq/hNM2p4sj1rlR5OixhQfR98Xo2/u8T15ODlBgD/Qjr3AJreg75h5Pd9hcC4j+eS+fbpjHi20erNOaZitliZOZVvfnhi00l4USTSSEw2ML4Ka5F222bErw6diFEmdLi3nDYNWb/vINb76+7Op2KcMY4fMVoYOz8F0mYv57j89bhFxVGuyvH1khz6YZG3KhexPlAh6JG4QHk5Xrmg0sJeTlWpl3cnTm/7KSwwEFYIz8uurI3vQc049dvtzD/jz0YTQqaKomKCeL+J0YTFl79JiC1SdPx/dnzzh8ea0lCEcSN9VrpXiE63zGdyH4d2PvBHGyZubScPozoYd34o9t1HvuqRXbiP5qrV9CWwegJHYhrGsqC2bvJyiiiR98mjD2vI8EhruhAcIgFg0F4xPlPfha9NTAvi6OHMmvU9prgjHH4AIrBUOPqkjpVZ8pF3Xjn5eVeX1u74ggffH8x46d2xunUMBoVhBBsXHOMhbP34HCoOByuWVji8RzeenEZj79cOVnoxOM5rFxykKIiB737N6Nrz9haFYCLHtadJuP7k7BgfYnTNwb60e7q8YR1rJ5MQ+NBXWg86L9Cq9yDiWXG9p0NfM2qtunULYZO3WK8vnbO6DYsmL0HtVQTI5PJwNjpHfnrl50YjAonF1BUp4bD4f0m0KR5WM0aXgOcUQ5fp+45djiT7z/fxIF9aQQFW5gwtTPnntcRIQT9BrfAZFK8fiE0TWK3OQkINGM6JT6/cM4ebKWydzRNcuxIFump+UQ2rtjC5/JF+/nq4w2oTg1Nk6xacoiuPWO57YHhKErtOH0hBCN/fIyjf6zi0HeLUUxG2l45zkPVsiYIbh2LX1QoBcfc22Aa/My0vvjsLaiqLtGxIdx41xA+fms1ihBIJBaLkbsfHUWrthGMGNuePTuS8Q8w0aV7DF99uJ6VSw+hlXoiMFsMPtkCUXf4OlUmOSGXZx9eWBLzzLQV8vM3W8hIL+Diq10hjE7dY9i+OdEjlh8eGYh/gOfiaH6ed0kAgyLKzew5lYJ8O199vAHHKbK2NquTnVuT2LrhBL1rMeNHKAotp59Dy+nn1NoY4Lq5DP/uUf4e/yDSqaJa7RiD/AlqGU23+2a67Sul5MT89Rz46m+QkraXn0vTSQNRi2wc+mEJKSt3ENKuKe2vGY9/tN6PuN/gFvTo25QDe1MxmQ20aReJUpxmG9bIn0HDWpXse81tg+g3pAU/frmZxBM5aKokrlkoV9zQn1Ztay+VuKroDl+nysz+ZYebUwVXFs4/8+OZelF3AgLNzLqqD/G7U7HbXPntQoDJbODKmwZ4Da/07t+M1KQ8j1ipYlCIaxZWIbt2b0/CYBCUXj61WZ2sXXGkVh1+XRI9uAsXxH/FgS8Xkn8kmZjhPWgx/RwMZvcb6aobXuXwD0tKwkwn5q2j2eRBpK3dgzUtG2eBFYOfmR0vfs/4f18lsk/7+ng7PoXZbKBz99jT7ieEoHvvJnTv3QQpJZomMRh8N/nRdy3T8XkO78/wqkFjNCqkJLmqg5s0C+OZ189j2Jg2RMcGExLmh6IIvv5oPUsWxntkPkw4vzOhYf6YigXLhCIwWwxcdfMAjMaKfVxdx3reTIQAi6XhVlx7IyAmnO4PXszg9++m9axRHs4+fXM8h77/120h2Vlg5fDPyyg4kVayXbXaceQVsvyKF+vU/jMJIYRPO3vQZ/g61SC2aQhJCTkecghOh0pk48CS3xvHBDPh/C6sWX7ElYYpwVqUx3efbSIzvYALLv0voygo2MKzb57Hkr/3s2NzAhGRgYyd3IkWrSseaujcPdbreqbJbOCcMW09tmuaZPXSQ/wzfx92u8qAoS0Ze15Hn66YrCiJf2/ymsePqnnt8JB3KJGi1Cz8G/uuZEBKUi7/LognPTWfzt1jGTqy9VklgFYddIevU2Umz+jGji2JbhIJZrOBvoObl6S5nWTOLztw2J1usXy7zcn8P/cwcXpXt2KngEAzk6Z1YdI0d/nfimI2G7jrkZG8/uy/gKsHsaZJJk3r4rVb0WfvrGHdqiMl7yMlaQfrVh7hyVcmui0oN0RMwf4oJiNqaTE1L1W6AEiJYq4755mXa+XfBfHs35tGk6ahjJnUkajoshfmd2xJ5K0Xl6I6NVRVsn1zIgv+3M2Tr0wkMKjhyIDXF7rDL4f8oynkHkggtEMzAptG1bc5PkerthHc+fAIvvpwPWkp+RhNCiPObcfMK3t77HtwXzremjEZDQqpSXmVmsFXhI5donnr8xls3egqpOnSI5aIqECP/ZITclm78ojbWoTDrpKWks+G1UcZPLxuJLBri1YXjWDDgx95bBcGA4rR4CY7IgwKjYd0rbO2h+mp+Txx7zxsVicOh8ru7cks+Xs/Dzw1hqjoIJITcomODS6pv9A0yUdvrnKbYNhtKpnphcz7fRcXXu75ufMV8nNt7NmZjNlipEv3mDqpHPfGWeHw0zfuY+PDH5Ox+QCBTSPp+fgVtLyg7Ao4p9XOskueJWHBBhSLCc1qp8UFwzjn8we8atWczXTtGcfL75+PzerAZDKUZDOUJqZJCEmJuR6zSodTpVFE7RRUWfxMDBjakoPxabz3ynKOHMokKNjCxGldGFucOrp/bxresjRtVie7tiY1eIfvFxXGqJ+fYMnMZxDFb1RqkmFfPUT8J/NIWroVgUAYBH6NGzH864frzLYfv9xMQb6tJCSoOjVUp8arT/+D3a5iMhlwOlR6D2zODXcMJi01H1uRZ3jK6dTYsPqYzzr8RXP38uMXm4vz98FgENz7+CjatK/7SeQZ773SN8Uzf8TdOAtd6X72rDyWX/ki1oxcOt5wntdjNj7wIQkLNqBa7SUzoKO/ryS4TRy9n7qqrkxvUJwuhnreBV3ZtS3JXYLYbKDPgGZV0pxPTszl8IEMIqICadcxqsyCqmOHM3nxsUUl42ZnFvHLN1vIyS7iost7E9rIr8QRnorRqBDu5YmgIdJ0wgAuTvmV5KVbkRJiR/bE6G+hxflDydh6gIxN8QS1iCZ2VC83Mb7aZufWRK9y2IUFrvyqk/o0m9cd55dvtzJ2cifvjWrAZ9dbjhzM4KcvN7sVEgK8+vS/vPX5jDqf6Z/xDn/TI5+WOPuTqIU2Nj38Ce2vmeDRA1RKSfyn8z0UNtUiG3vf+1N3+FWkbYcobr1vGF9+uI7cbCtCEQwd2ZpLrnUVJSUn5vLTV5vZuzOFgCAzE6Z2ZtT49h6OXFM1PnhjFZvXHcdgEEgJEZEBPPjMWMIa+XuM++dP3lNHF83Zy5QZ3ejSwyVna7O6i7wpBsFwLwu8DRWjv4WmEzzlniN6tiWiZ/28T4ufqcS5l4fDrrJkQTyzrupDs1aNOHLAPTvMbDEwZpJvtmtctugADi9yDKoq2bUtmR5961au2rdziGqAjE3xXrerVhvWtGyP7VLTypRTduRVTQBLx0XPfk157ePpvPn5DN7/diZX3TwQs9lARloBT943j83rjlOQbyctOZ8fvtjEd59t9DjHorl72bL+OA67irXIic3qJDkxjw9f865GefRQptdZpGIQpKcVYDAoPPzsWOKahWI2G7D4GQkJ9ePOh0dUuKpXp2qMGt++wv2CrTYnmia5/YFhREUH4ednxM/fiMlkYNCwVgwd6ZtNXYoKHd4VVJFYrae/2dU0Z/wMP6hFNLYMb92SBOZGwR5bFYOBiN5tydi03+O16KG+Vyrd0BBCeHSRmv/nbuw2TxnlJQv2M/XC7gSF/Lf/P/PjPRqnaJokfk8q+Xk2j3PHNQ0lLSXfww5VlYQXrx3ExIXw/FtTSEnKw2F3Etc0tMy1CJ2aY9L0Lpw4msXmdScwmlztBhVFYPUSp2/RKhxFEYRHBvLSe1PZvyeNrMxCWreLLDerp77pM7AZm9cf91DgVJ2yTD2f2uSMd/g9n7iCpRc/i3pKWMcQYKHjTZPLlE0e9O5dLBh9L6rNgXSqCJMRo5+Z/q/fUldmn1Xs35PqoU4ILoXCxBM5tO/8Xyql3eYlpxzXjcRu92xsMXVmN/bsSHZ7zWwxcM6oNgQEuv/9o2M9JwA6tYfBoHDLfcNIS8nj+JFsoqKD0DTJc/9biMPuqsxWFIHJZOCKG/uXHCeEcPtM+DJ9BjRjSYcoDuxLK+mUZTIbmH5Jz3rplywqo/Fc1/Tt21du3Oj5WF9Z9n+xgA0PfIgjrwjFoNDh5in0feF6j/j9qeQeSGDnaz+Ttf0QkX070OXuGafVlC9MzmTXaz+T9M8WAls0puu9F9V6a0VNVdnx0g/sfvNXbFn5RPZtz4A3biOqf800bq8LPnhtJWtXHPYIvZhMBl56b6pbOuVXH65j6aIDqKXioo1jgnj5/fO9Lt7u2JLIN59sICUxF4ufkXMndWTaxT18virybCUlKZd5v+/myMEMmrcKZ+K0zsQ2Ca1vs6qMpmpsWnec9auOEhBoYtiYduV2w7IWObDbVYJDLFVSdxVCbJJSetXjPiscPrgcoy0jF3NYkEf5eU1QmJjOHz1vwJFb6GpDKAQGfzNDPryHNpeOqfHxTrL2jreJ/2y+2xOMMcCPyevfJaxzy1obtyY5djiTZx5a4NFEvHOPWO55dJTbvrk5Vp64dy75eTbsNhWjUcFgULjvidGnnfU5nRoGg6hVieS6RnM4sabn4BcZqqcM1xFFRQ7m/7GLdSuOYjIrjBzXnpFj21U7DJifa+Ojt1axc2sSAohsHMh1dwymXcfKPc3oDr8OWHPrG+z7eB6yVEWjOSyIi1N+rZUvoy0rjx+bXOSxyCwUhVazRjL8m//V+Ji1xY4tiXzx/jqyMwsRAvoPacmVN/X3mu5ZVORg1ZKD7N2ZQnRcCCPHtqvUAmtyQi6L5+8jJSmPzl2jGT62nUd4x9eRUrL9+W/Z/tIPSFVFMRrp/r9L6PbArBq7oWlOlZ2v/MSe9/7EmV9Ek3H96Pvi9fXSPc1XcDpUnrh3nmu9pzjN0mwx0LNvU7fuVnm5VpITc4lqHFShxj1SSp64dx4njmajntJ83mIx8txbkyu1TlGew9enBDVEwsKNHs4eXF+a3AMJhHVqUeNj5h1KQjEbPRy+1DQytnguOvsy3XrF8cqH51OQZ8fsZyw3e8Pf38SYiR0ZM7HyYasdWxJ564WlOFUNTZXs3ZHMwjl7ePq1SYSEeaZ1+iq73viF7S98j7OwWPwMO9ue/QZTcACdbplaI2Msv+IFjs1eXfL0ePjnZSQu3sT0PV/gF9lwQyzVYcOaY6Sl5rvl1NttKls3nODEsWzimoTw9ccbWPHPAYzFhWO9+jfjhruGlCvTceRgJskJuW7OHkBVNf5dEO+1er0q1EgQUwgxXgixTwhxQAjxkJfXhRDireLXtwshfLMkrhr4NQ7zul1zOLFEhNTKmEEto70LYymCRt1aeW73cYQQBIVYKpyqVxmklMz+eTuvFFdxnmxYYber5ObY+POn7TU+Zm2y48X/nP1JnAVWtj33bY2cP+9wEsf+WOUWKkTTcBZY2fv+7BoZoyGyZ0ey1563CDiwN435f+5h5ZKDOBwaRYUOHA6NLRtO8MMXm8o9b1pKvtcCQKdTIykhp6bMr77DF0IYgHeBCUBn4GIhROdSu00A2hX/uwF4v7rj+hpd75uJMdB91V0xG4kd0aPWlAf9IkJpc9kYDAHuqYhGPzM9Hr60VsasLYqKF6qqi7XIQUpSrse5Zv+8g9k/7/AqGKYWL6rN+WUHLz+5mK8+XFejX7KaojApg23PfcOKq17CmubdPmtqVo2Mlbn9kFcRNdVqJ3XNrhoZoyESERWI0eTpNhVFISzcn4Vz9nikDTvsKssXHSizShigRetwj9k9uIQAO3gR/KsqNRHS6Q8ckFIeAhBC/ABMBXafss9U4CvpWjBYK4QIE0LESimTamB8n6Dl9HPI2XuMbc99i2I2otkdRA3oxPDvHq3VcQe9dxd+jcPY8/YfOPIKadS9NQPfup3wHr5ZiFKawwcy+PSd1SQezwEh6NW/KdfcMrDSyoeqqvHdpxtZtvhASQvDyTO6ct4FXZGaZN7vu3HYy25AnZNlLanK3bM9mRX/HuSu/42kS4/TN8EojWumt5uMtAK69Ihh3ORO1Q4Xpa7dzcKxD6A5VTSr3SXu72X9LbRjzTR3CW4di+b0nMkKk7FWwpP1gc3m5PfvtrJiySFUp0bvAc2YeWVvQsv5Ww0b05a5v+0qkX0A15/Cz99It15xFJXRlc3h0HA6tTKfXqNjg+k9oBlb1h8vuWEoisA/wMSwc9tV4126U+1FWyHEDGC8lPK64t8vBwZIKW87ZZ+/gBellCuLf/8HeFBK6bEiK4S4AddTAM2bN+9z9OjRatlX19hzC8jaeYSA2HCCW1XeWVQHqWl1qoVSXTLTC3jottluj8hGo0Kzlo144v8mVGrx8ccvN7F43j53qWaLgcuu60/fQc2446pfPLponURRBFJKD/8ZHhnAax9Pr5Qdq5cd4vN312J3qCBdtQQBAWaeeeM8r9IPFUFKya/tryDvYGK5+xn8LYz+/WmajPW6Xldp5g69g/SN8a6ss2KMgX6cv/2TOv9s1zRSSp7/30IOH8gsiccrBkFomD8vvTcVi6XsufC+XSl88NpK8ouF32KbhHDbA8OJjg3mpccXsXt7sscxcc1CeeHtKeXapKoaC2fv4Z/5+7BZnfTq15Tpl/akUQUWfU+lthdtvX0bSt9FKrKPa6OUHwEfgStLp3qm1T3mkECiB1dNx726NCRnD66q2dL59E6nRuLxHI4czKxwT1BN1fhnnmcFrt2m8tevOzhndBv8/E1e++UK4brJeAsn5eXayMooJDyyYiJqTqfG1x9tcDuX06FRkG9nzi87uPz6/uUcXTaFiekUJqR7fU0xGzEFBxDasTm9n7ma2BE9qzSGN86d+zyrbnyNY3+sBqkR0q4pgz+6t8E7e4CD8ekcPZzltviqqZLCAjvrVhxhWDk6Sh26RPPaJ9NJScrDZDK41YlcfE1fnn1oQUnhmFAEJpPClTd66hiVxmBQmDitCxOr2AeiItSEwz8BnPoc2RQoPRWpyD46ZxmJJ7K9zrqF4lrEOtXhOxwqudlWgkP9PB6L7XYVh5cMKYCcbCuKIphxWU+++2yj203BaFS44a4h/P79NpISPOU3pCax+FX8K5KSlIvmJQ6rqho7Nlf9426wmMvQY4GgFjFcsO/LKp+7PMyhQYz84XGcVjuazY451HclDCrLscNZXq+pzerkYHx6uQ4fXAkGMXGeyRjNWzbimdfPY97vOzm0P4OmzcOYNL0LTVv4RgexmnD4G4B2QohWQAIwC7ik1D6zgduK4/sDgJwzKX6vUzXadmzMji1JHmqWqipp3tL1BZFSMvunHcz9fRdSSgSCcVM6Mu3iniWxeoufkbBG/mSme4rbtSxurDJyXHv8/E38/sM2sjIKiWsaxqyretOpWwz5eTZ++GKT283AYFDo1C2mUmsJgUEWnF4cPuDRAawy+EWGEtmvA2lrdyNPOb8hwEKHG71LfNckRj8zlCFD0lCJjg0u+fycitliIK5Z9VJOo2ODufqWQdU6R21RbYcvpXQKIW4DFgIG4DMp5S4hxE3Fr38AzAMmAgeAQuDq6o6r0/AZcW5b5v+xC9WplnTDMpsNdO0VR0wT1+xp8bx9zP1tl6sXbjELZu/B4m/ivOku2QohBJde148PX1v5XzhFuM4186o+JccNGtaKQcM801VHjmvPscNZrFpyCKNJQVMlsU1DuOnuoZV6P2GN/OnQuTF7d6W6haosFiMTppVOXPPEWuQgI72A8IgA/APcHezw7x5h/oh7sKXnIDUNqUmajOtH5zumV8rGimBNyyZt/V78oxsR0cdTovpMoFO3GMIiAkhLzvtPx0mA0Whg6MiG3fSmPPRKW516JSOtgJ++3sz2jQmY/YyMGteeSRd0xVjcHejOq38hO6vI47jAIDPvfTPTbdueHcn8+eN2kpPyaNkmnGmzelSqdWJmegFHD2USERVI81ZVa7mYn2fjzeeXcvhgBkajgtOpMWVGV6Zc1L3MY6SU/PT1Fhb/tRfFIFBVybAxbbjs2n5u5fpS00j6dwv5x1KJ6t+RRl1rvtZi0+OfseuVn1HMJqSmEdg0inF/v3xGtPjUVI0dW5M4cTSL6NgQ2rSL4MsP17N9cwJSQqt2EVx32+Bqz/DrG11aQafBcvX0b8rMX/78t8u8Ppb7AilJeeRkFdG0RdhpZRvmfb2BpR8uxoqRnIjGIBTMFgPjp3bmgkt61o3BwNE/V7H8sudxFvxX0CUMCo26t2bqpg/LPC4/z8benSlY/Ix06hZTcrP2JQry7Tz/yELSU/KxO1TMZgOBgRYefWk8wSEWpCYxl5OZcxIpJauXHWb+H7vIy7XRpUcs0y/u4VO9E3RpBZ0GS5PmYRw/4llMFBPnPQbrK0THBldIbnnnqz+R9OAntFMUQKIaTWwbOJbCkEb8PWcv0y/uUWchld1v/ubm7AGkqpGz9zi5BxIIaevZnWnR3L38+OVmDAYBCIxGl5BdRTOsyuLE0SwWz9tHRnoh3XvHcc6oNtVqY/jz15tJTsgtSRKwFjmx21Q+f3cN9z4+usI2ff/5JvbuTCk5z5plh9m64QTPvTW50umT9YHv3Yp1dE7hkmv6eGTlmC2GktaIDZmUlTvY/MQXKJqK0enA6HRithbRfe0ikK6OSOVVZ9Y0tkxvjYJAMRqw5xR4bD98oLhfa3H3MWuRg/w8G688tbjMmoeKsGH1UZ66fz7LFh1g+6YEfvpqM4/fM5fCMoqaKsK6lUc8bNI0yc6tSae1VUrJx2+t4sn75nnsr2kSq9XJgj92l3MG30F3+Do+TefusTzw9Bg6d48hJMyPDl2iuffx0fToU7e9QGuDPe/PRi0qpXQKGJ0OQjJTiY0LqVPN/hbThqJYvMyiBV61mZb+vd8tj/0kTqdkzw7P4qOK4HRqfPbuGpfeUfHNzm5TyUwv4O85e6p0TgBZnk8/TVh7/aqjbFh1DIfD+0lUp8benSlVtq0u0UM6Oj5Pu46NefDpcwGX7Oyxw1kkHs9p8Itr9qy8Mp2Nn1C57Pq6fYrpfOcFHPx6EYVJmahFNoSioPiZGPzB3V57SBQW2Mv0lUWF5fdrlVKyeulh5v6+k9xsKx26RDPjsp7YbarXpxqHQ2PDmmOcP6tHld5b30HNWb3ssJtejVAEHbtGYyxHxRJcNzZbGZ3WwFW8FxXTMLql6Q5fp0EgpeSXb7awcPbekv6nzVo04u5HR1Yrx70+aXnBMFJW7PCImxuQXPf6xXToGVen9ljCgpi65SPiP53H8XnrCGwaRefbpxHRy7uWS99Bzdm2KcFDPdLpVOnUrXzN/D9/2sHc33aW1D5sWnuMXVuTuON/I0qUTEtTnZ4Fs67qw77dKeTmWLEWObH4GbH4Gbnm1tPny58u5GMyGZhYgbRbX0DP0tFpEKxZfpjP313rNtMyGAQdukSXzP4bGqrNzrxhd5G9+6jL6SsCg5+Zfi/fWGOa9qeSlVnId59uZMuGEyiKYMDQllx8dZ8qO1JV1fi/JxdzaH+GW7/WCy7pSbtOjfn+s40cPphBULCFCVM7M25KJ4QQWIsc3H7lzx5yFooiGDqqDUcPZXD8SLbbTN9iMXL9nYPpN7jqwm1Op8bmdcc5djiTmCYh9BvcolzNnJMsW7Sfbz7Z4CHdARAS6seVN/Wn7yDfEZTTs3R0GjwLZu/xeKxWVUn8nlRys4saVPOSkxgsZiYuf4ND3//L0d9XYokMoeONU2qlH7Hd5uSp++eTk1VU4khXLz3E4QPpPP3aeVXKeDIYFO5/cgwb1xxjw6qj+AeaGTG2LWazkacfnF/iILMzi/j1u63kZBUx86o+pCTlFdcXuDtQTZPs35PK/U+O4eUnFpGVWYSiCBwOldET29N3UPNqXQOjUaH/kBb0H1I55zxkZBvWrjjCwfh0bFYnRpOCEHDVzQMZPLy1T2eLlUZ3+DoNggIvwmfgcjqFBY4G6fDB5fTbXTWedleNr9Vx1q86SmGB3W3W7HRqpCXns2dHcpVkoMF1/QcMbcmAoS1Ltr3zf8s95DLsNpVF8/YxZWZ3GoX74yxD+6hxTDARUYG8+O5UDsank5NVRJsOUVVWGq0JjEbXjW3n1kR2bk0iNMyPwSNaN4g0zNLoDl+nQdCjTxxLFh7waBJhMhloHFP3RS+HD2Tw7acbOLw/g8AgM+OmdGLC+V18drZ39HCm105NTlUj4Vh2lR2+17EOZXpdzDUYFNJT8olrFkpIqJ+H9pHJrHDejP/kMtp28J3qXkURdO/dhO69G3Z2mJ6WqdMgmHxhdwKDzSXdhoRw5eNffcsAN/mBuiDxeA4vPPo3+/ek4XRq5GRb+ePH7Xz7qe+uNzVpHuZV+dNoVEp0i2psrGahXgXRVadGeGQgc3/bRX6u5xNb2w5RtK/B7k46nugOX6dBENbInxfemsLkC7rSvlMUg4e34tEXxtfLYtnsn3d4DVks+3s/BfneQ0/1zcChLbFYjG59Uw0GQVijALrW4OweYMqF3bwWyw0d2ZrAILOrUY2X/gP796Z5bfOnU3PoIR2dBkNQiIXzZ/Woci52TXH0cKbXXHGjSSE1OZ9WbSvXnvF0ZGcVFc+OA6oss+Dnb+Lxlyfw5Qfr2LktCUVA7wHNuPKmmn9Cat0ukrv+N5KvPlpPSmIuZouRcyd1YHqxLpC1yHuOvqZKnE6t1orNMtIK2LjmGE6nRq/+TYlr2rDrOKqC7vB1GjR2m5Ofv9nC8sUHcdiddOoWw+XX9z9tmCI1OY/vP9/Erm1JmC0GRo5rz9QLu522CAdc4ZGkEzkecWqnQyWyccW6Y1WEtJQ83v2/FRw/moUQgvCIAG66Zyit20VW6XxR0UHc98TokptVba43dOkRy0vvTi124MLtRtWpazTbNiV4XL+4ZqEVSpOsCiv/OcAXH6wHJJoGv/+wjQlTO3HBpb1qZTxfRQ/p6DRo3nxhKUsWxGMtcqCqkl3bknjqgXnkZntKKp8kN8fKk/fPY8uGE9isTvJybCz4YzfvvbKiQmNOvqArplIhC5NJIbZpKC8/sZgXH/ubTWuPUZ0aF6dT47mHF3LkYAZOh4bDrpKSlMdLjy8iN8d6+hOUg6KIOltcNhoVj6eSi6/ui5+/qURVUzEILH5Grrr59G0Aq0JudhFffLAeh0PF4dBQVdf1XPDnHo4czKiVMX0V3eHrNFhOHMsmfneqm8aJlOCwqyxZuL/M45YsjMduVd1a3NntKtu3JJKc6F1A7FRatA7nnkdHuaQdihePTWYDSSdyOHY4iz07Uvjw9VX89t3WKr+3HZsTKCpyeMyCVVWyasnBKp/XF4hpEsIL70xh7OROdOjSmJFj2/HM65No17F2Fmy3bkzweoNzOFTWrTxSK2P6KnpIR6fBknQiB8Xg7YuscehA2TO3g/vSvYp+GQ0KJ45me+1VWppO3WJ44e0pqKrGorl7+fXbrW43HpvNyfw/dnPueZ0ICa289ENmeqFXiQGHXSUttQBNk+Tn2QgIMJWEobZtTGDOrzvISi+kfefGnD+rR4UkmuuDRuEBzLyyd5WO1VSN2b/s5O85eygssNOidTiXXd+vSjcMHxYaqBX0Gb5Og0RKiX+g2atTFAIOH0jn1++2ek3/a9oizGuTDlXTKu0gDQaFHZsTvZbdG00GDsWnez0uLSWPlf8eZMv64zi93Hxat4/0mtroSq2U3HnNL9x93a/cfOmPfPvpBv6Zv493/m8Z+/ekkZ5WwJrlh3ninrmkJOVV6v00BL7+ZANzf9tJQb5LvO3IwUxefmKx174JAD37NvG6yG4yG9wKxs4GdIev0+DYuTWRe67/jTeeXYLdrlI6cUVKyMmyMv/3XTx61xwPpz96QgcMpRy+0ajQonU4zYqbp1eG8IgAt3THk2iaJCTMfXYvpeTbTzbw8G1z+Oqj9Xzw+iruuvZXD2fVqm0EHbtEY7b8t1ZgNCkEBplZsfggudlWnA4Nu11lycJ4vv10o9tNR0qw2Rz8+eP2Sr8fX6Yg38aKxQc9brAOu8rsn3d4PSYkzJ8rb+qPyWzAaFJQFNc6RkxcMAnHsr2miJ6p6A5fp0GReDyHN19YSmZ6YUlYpqyncodDIy/PxoLZ7s0pIqICefjZsbRoHY6iiBKNlXsfG1Ulm8ZM6ojJ5P5VUhRBo4gAj85Pm9cdZ9miAzgcKjarq2lIXq6N159b4rHIe+f/RjJ9Vg9i4oKJbBzI+CmdCGvk7+GgHHbNrWn6STQN9u5qGDrtFSU9tcDr05mUlDnDBzhndFteencqo8a1R1EUFIPg2OFsvvpoPY/cMdtn6ydqGj2Gr9Og+PuvPThLN6KQYDAKjEaDp1SvQ2PbpgRmXOaefteqbQRPvzYJu82JwahUK/e7Retwrrl1EF9+sA4pJZoqiWkSwl3/G+mRobJkoXdt9fw8G0cOZrrdIIxGhQnTujBhWpeSbXde/UulbAuPaHh6L+UR2TgQhxcdHiE47dPZ0UMZ/LMg3u3maLM6yUwv5I8ft3PpGdBF7XToDl+nQZGcmOu96Mlo8DrLBQgtR3irIo2rK8KgYa3oN6g5x49mExBoIjrW+8JvWY00hBAe1bveaNk2gq0bT3g81ggBikFxuwZmi6FEm8bXkVKyd2cKWzcmEBBgYvCIVkRFB+N0qNjtKv4BJoQQmEwGohoHkZTgnk1lMhuYfGG3Ms+/ef1x3nt1pdfPiNOpsWH1Md3h6+j4Gp26xnBgr2eWjapqNGkexomjWainLOSaLQYmTK2b5hRGk6Hc5t12m9PrAi24HHardqdv/H3BJT3YvT3J6yLxyTRTi8WIogguvKI3Pfs2raD19YemSd5/dYWrmYrNicGgMOfXnbRpH8GBfelITRIRFchVNw/k3wXxpKfmux0vBFx2fT+alzPDP9l7tyxKh+TOVM6Od6lzxjBqQnv8AoxuedVmi4FzRrXhvsdH0aJNBGazAf8AE2aLgQsv61WjSpDV4ZO313DscKbHdqNR4bo7BmOqQJVv81bhPPL8OLr0iHVbeJbS5TgNBkGXnjG889WFjJ7Qvkbtry22bjjxX+cs6RJZc9hV9u5MxenQUFVJanI+rz/3L1s2nPDaW3b75sRyx0hNLjtbyWRSGDHWe1evMw19hl8JHPlFOAut+EWFVVnTRKd6BIf48fRr5/H799vYvikB/wATYyd3ZMTY9iiK4ImXJ5CSlEtujpXmLRth8fPSlLseyM+zsWndMZxOz3BUi9bh9B1Y8eYeLdtE8MBTY7juwu8oPWdVVcmOLUkVkohITcnjnZeXc+xwJkIIuvaI5eb7ziEgoOqtBKvCmuWHvUo3l8Zh9x6ykxKST5RfMBcRFUhqcr7X17r0iGXclIbRorC66A6/Athz8ll53Sscn7MGhCAgNoIhH99L3OiqFY7oVI/wiACuva3sXqTRsSFlxtDri5zsIoxGxXPBGaoslaBp3h2gVgHFyfxcKw/d8mdJ+Esi2b45kftu/J13vryoTnX9vWXdVJbS6a+lmX5JTz57d41bKMxgVJhwfmcuvOzs0dPRQzoVYPGUxzg+Zy2a3Ylmc5B/JJl/pj5G9p6j9W2aTgMhKjq4zKrOqqo2dusV5+GYhYBuFWjS8cOXm9zWOk5SkGfnn3l7q2RPVTlndJsKiaaV91Ad2bj8JjiDhrXiyhv6ExbuWsAPCfXj0mv7MuPSnpUxtcGjO/zTkL33GOkb96HZ3SVdVZudXW/8Wk9W6fgCUspi0bbTz6jNZgPjp3by+lr87lTsZWTvlMcVNw4gKNhS0tjE4mckJNSPK27of9pj9+5KLfO1v+fUrcPv1C2GURPaYzK7NIksfkYMBlHS7AZczt5kMrgVop3EZDLQugIL3kNHt+XNz2bw6S+X8vaXFzJ6QoezLjSrh3ROQ8HRFBSzEbXIvTBDqhq58SfqySqd+mbHlkS++nAd6WkFGA0Kw8a05eKr+5QbOzeZDCgG4SEHIZFs2XCiSmX+g0e0KpZ4NjJgaEuGj2mLn//p1y1CQ/1IKyOmXV01zsoihGDWVX0YMbYdO7cm4edvpFe/pqxacogFs116OR26RDPjsp68/uwSsjIKS1JzhQCLn4GBw1pVeLyaCCE1VHSHfxoadW+NarV7bFcsJqLPKTvvV+fM5fCBDN56YWlJxatdVVm2+ACFhXZuvGtomcfl5li9av+oqiTPi+ZPeRzan86Ljy1CdWo4nRoms4HU5Dz6DmxeIYd/wSU9eemJxV5faxRePw3DY+JCSoTr0lLyMZoMXHBJT3oPaIp/8ULyoy+O55O3VrF3ZwoSaN02kuvvGIx/Bd6zju7wT0tAbATtrhrHwa8X4Sx0fSmFQcEU5E+nW6fWs3U69cGcX3Zgd3hquWxYdZSLr+5bpjpmlx6xLFt0wCMjRQAdu1RO6fHTd9a4ncdhV1GdKj9+tZlb7j3ntMd37hFL0xZhnDia7bbdaBJulb31wW/fb2Peb7sQAoQi+PKDddzx8HC69owjPCKAB546F7vNiZTSZ7KwMtIKWLX0IPl5drr1iqNLj1ifbGh/9j7bVIJB795JnxevJ7hNHJbIUFrNGsmUjR/gHx1e36bp1AOJJ3K8CvgYTQYy0grKPK57rzhatY1wi0NbLEb6DWlB0xYVF20rKnK4bCiFpsGOTQkVPs//nhtHu05RGI0Ci58Bk0lh1LgODBvTtsLnqGni96Qy/49dOIorbG1WJzabk7deXOZWpWy2GH3G2W/dcIKHbv2TP3/cwcLZe3j7pWW89sy/PtmfV5/hVwChKHS+bRqdb5tW36bo+ACt20aSkpjnIfHgdJYvr6wYFO5/YjQr/j3IqiWHMBgVRo5rR/8hLSs1/n9dpLzo5RcraJZuIu6NwCAzj74wnqSEHDLTC2nWIoyQsOqHc4oK7cz9bRfrVh7BaDIwcmw7Rk/sUCG9opX/HvRaESuEYOeWRPpUol6hLnA4VN5/baWboJ3N6iR+dyprVxxhyIjW9WidJ7rD19GpJJMv7MrGtcfcQipmi4ExEzoQEFh+0ZLR5OqfO3Jc1atgTSYDvfo3ZfPa4x43HVXV+PaTDVx9y8AKny+2SSixTSqXGiqlxOHQMJncWxg6HCpPP7iA1OS8kpqDn7/Zwt5dKdzx0IjTntfp1MpMX/WWRlrfHNib5q1tATabk1VLDvmcw69WSEcIES6EWCSE2F/8v9fnUiHEESHEDiHEViHExuqMqaNT38Q2CeXRF8bRpUcMFouRiKhAZl7Rm4uq2MGpKlxzy8AyNfhXLTlYpmZPTbBqySHuuuZXbpj5Pbde/hML/txdIu28cfUxMtIK3ArM7DaVHZsTOVaOfPFJBgxpWZJmeiqqqtGlR0zNvYkawmBQkGUIdPuiPk91Z/gPAf9IKV8UQjxU/PuDZew7Ukrpvf2Pjk4Do3mrcB546tx6Gz8wyILRKFC9pO9rmsRuVyskr1BZNqw+yhcfrC2pWC3It/P955tYv+oo9z0xmr27ksuUSTi4L61cgTOA7n3i6NWvqavBvM2JQREoBoUrb+xPYJClxt9PdWnbIRKTyYC1yP09WyxGhp/re/o81XX4U4ERxT9/CSylbIevo3PWkp6az8I5ezh6KJPmrcIZN7kTUdHlV4eejo5dYti2OcEjlB8RFYh/QO0saP763VavSp0H49N5/pG/adMhEqGALLVeqRhcDWFOhxCCm+4Zyr5dqWxedwyLv4khI1pXqM9wfaAYFO56ZCSvPPkPUkpX2Em46iN69fc9pVJRustOpQ4WIltKGXbK71lSSo9buBDiMJCF66P5oZTyo3LOeQNwA0Dz5s37HD2qyxfoNGyOHcniuYcX4HC4OlO5qkgNPPL8OFq0rnqmV+LxHJ56YB52u4qmSlc1qtnAXf8bWWsKodfP/M6rwweXU1eEwFlKc14ogrAwP179eHq1Gs34Mjarg83rT1CQb6dztxjimlVNLqMmEEJsklL29fbaaWf4QojFgLfg2SOVsGGIlDJRCNEYWCSE2CulXO5tx+KbwUcAffv29b1VGh2dSvLNR+vdHvlVVaKqTr76aD2PvTi+yueNaxbKs2+cx9zfdnEwPp3YpqFMmtalWjeR0xETF8Kxw95j8Zoq0bzEs+OahHD3oyPPWGcPYPEzMagS1b71xWkdvpRyTFmvCSFShBCxUsokIUQs4FWgQ0qZWPx/qhDid6A/4NXh6+icaezfm+Z1+4G9aaSl5BEVXXYq5+mIig7mqpvLz8gpKnKQdCKHsEb+hEcGVnksgIuu6M3rz/5b4YwZg9ElO1Gd96hTc1T3ljsbuLL45yuBP0vvIIQIFEIEn/wZGAvsrOa4OjoNBm9ZJyd584VltTr2nJ93cMeVP/PyE4t54OY/eeWpfygq9JQKqSjdesVx6wPDvap0ekNRRK0sHutUjeo6/BeBc4UQ+4Fzi39HCBEnhJhXvE80sFIIsQ1YD8yVUi6o5rg6Og2GEWPblekQUxJzSUkqv3lHVVm38gizf9mB3a5SVOjA4VDZszOZj95cXa3z9hnQjJffn0rnbjEoikBRBB27RLupW55K30G+VSx1NlOtLB0pZQYw2sv2RGBi8c+HgB7VGUfn7ENKybaNCSxdtB+nQ2PQ8FYMPKdlg4wDz7i0J0v/3k9RocPjNcUgvG6vCeb9sdtjgdXp0Ni+OYGCfFu10hyjooN58JlzcTpUhCIwGBSWLz7AVx+uRzG47m6aJrn2tkGEldNEXqdu0SttdXySbz7ewIp/Dpbop8TvTmHNssPc89gonxSlKg+jydVIffbPOzwyWBRFqZSOTmXIzS7yul1RFPLz7DWS135quGbYmLb07NeUbRsTEAJ69m1KUIjv5c6fzTS86ZLOGU9SQg7LFh9wE8uy2VTi96Sya1tSPVpWdcZO7khEVGCJcJqiuOQYrrl1YK3ps3fp7l2x0Ww2ENm4eou3ZRES6sc5o9swdFQb3dn7IPoMX8fn2L092bs+idXJtk0JdOsVV+c2VRf/ADPPvD6JlUsOsX1TAuGRgYye0L7WZvcA58/qzub1x7EWOUuUG80WA5dd369BhsbKwm5zsmrpIbZuOEFYuD+jxneo1dTUhozu8HV8joBAc0kc+FSMRoWg4IY7a7T4mRg9oQOjJ3Sok/EiGwfx7BvnMe+P3ezZkUxU4yAmTu9C+06V0973RnpqPokncoiJC6FxTP2lXNqsDp66fz7pqfnYbCqKIli97DBX3TzQ54TLfAHd4ev4HL37N+XL9z0dvqIIho7Uv8SVITwykMuu61dj53M6VD54YxVbN5zAaFRwOjW69Ijl1vuHVUiSuab5d348qSn5JZLKmiax21S++mAd/Qa3qBebfJkz57lO54zB4mfividHExxiwc/fhL+/CYufkRvvGUpk4+rpz+hUj99/2M62DSdwnEz1tKvs2pbEj19sqhd7Nqw55l0/XxEcOZhRDxb5NvoMX8cnadshijc/n8GBvWk4nRrtOjXWZ2s+wJKF8W7NPsDVXnH54gNcdn0/N238uqCs/gOaKvU+t17QZ/g6PovBoNChSzRdesSeEc4+J7uIPTuSy22D6OtYy5A+tjvUMhuX1CZjJnVwaxl5EodD5a9fd5KWklf3Rvkw+gxfR6cWKCpyYFAEZosRTdX46sP1rFhyEJPJgNOh0bVXLLfcew5mS+1+BVVVY//eNNQaekpq36kxe3Yke2xv3TaiXuojevZtyoTzuzD31x1omkQrLnPQNMm6lUfYvjmB596cXG0NoTMF3eHr6NQgx49k8cnbqzl2JAsBdOkZS8s2EaxadginQyvpBLVzaxLffLKBa24dVGu2HNibxuvPL8Hp0BDCVb18w51DqtUX9rLr+/HsgwuwO1Q3qecrbhxQg5ZXDoMikFDi7E8ipat+Y94fu2t04bohUy09/Nqmb9++cuNGvSOiTsMgL9fK/Tf94SaVoBgESDx6z4KrN+2HP8yqlZx4m9XBnVf/SlGRu2yD2WzghXemVGvxOyOtgEV/7eHQgYziZi4d600N8/CBDJ5/ZGGZGv0AzVs24pk3zqtDq+qXaunh6+joVIyV/xz0kE7QypERVlUNp0OtFYe/ef0Jr71WNU2yaukhpl7UvcrnjogKZNbVXv1JnbN62SGvWTolCGgcq0szn0RftNXRqSESE3K9pwiWEdqOjg3G4lc7mSSF+XavmvVOp0Z+nq1WxqwPVLWsFuIuzGYDE6d1rjN7fB3d4evo1BBt2kd41b43mgxYLAYMxdXDSvFi7ukal1SHzj28NalzafN3792k1satawYMKbu4KjjEwo13DaFN+6g6tsp30UM6Ojo1xKBhrfjzpx04HWrJ7NpkMtC2QyTX3T6YBbP3cHBfGk2ahTFhWmeaNAurNVtim4QybHQbVv57qESEzmIx0KFz41rrd1sftO/cmKEj27ByyUEcdpe0glAE02Z1Z+K0rg1OWbW20RdtdXRqkJzsIn7+agub1x/HaFQ4Z3Rbps7sXi91BKV7Cgwe0YoBQxtmT4HTcTA+nc3rjmM2Gxg4rCXRsSH1bVK9Ud6ire7wdXR0dM4gynP4Z96tXkdHxyspSXkcPZTpkUmkc/agx/B1dM5wMtIKePOFJSSdyEUxCBRF4drbBtJ3UIv6Nk2njtEdvo7OGYyUkpceX0RaSr5b8deHr68ipkkoTZuH1Z9xOnWOHtLR0TmDObgvneysIo9KX6dT5Z95++rJKp36Qnf4OjpnMNnZRV4lizUNMtIbrmqnTtXQHb6OzhlM2/aROJ2e1b9mi4HuvRteb2Cd6qE7fB2dM5iw8ADOndQRyykyzCaTQqPwAM4Z1aYeLdOpD/RFWx2dM5yZV/amdbtIFs3dS2GBnX6DmjN2cqda0/HR8V10h6+jc4YjhKD/kBb0H6KnYZ7t6CEdHR0dnbME3eHr6OjonCXoIR0dHZ06Iy/Xysp/DpKclEfbDlEMGNqi1vv66vyHfqV1dHTqhGOHM3n+kb9xOjUcdpU1yw/zx4/bePKViQSH+NW3eWcFekhHR0enTvjozdUUFTpKuoLZrE6yMov49but9WvYWYTu8HV0dGqdgnwbicdzPLarTo2Nq4/Vg0VnJ7rD19HRqXWUcpquGE113xzmbEV3+Do6OrWOv7+JDl0ae7QcNJkNDBujV/zWFbrD19HRqRNuuGsIEVGB+PkbMZsNmC0G2nWMYvKMbvVt2llDtbJ0hBAXAk8CnYD+Ukqv/QiFEOOBNwED8ImU8sXqjKujo9PwaBQewMvvTWXX9mTSU/Np0Tqc1u0i69uss4rqpmXuBKYDH5a1gxDCALwLnAucADYIIWZLKXdXc2wdHZ0GhmJQ6NZLV+msL6rl8KWUewCvetun0B84IKU8VLzvD8BUQHf4Ojo6OnVIXcTwmwDHT/n9RPE2rwghbhBCbBRCbExLS6t143R0dHTOFk47wxdCLAZivLz0iJTyzwqM4W36L71sc70g5UfARwB9+/Ytcz8dHR0dncpxWocvpRxTzTFOAM1O+b0pkFjNc+ro6OjoVJK6COlsANoJIVoJIczALGB2HYyro6Ojo3MKQsqqR02EENOAt4EoIBvYKqUcJ4SIw5V+ObF4v4nAG7jSMj+TUj5XwfOnAUeLf40E0qtsbN2h21mz6HbWLLqdNY+v2dpCShnl7YVqOfy6RAixUUrZt77tOB26nTWLbmfNottZ8zQkW/VKWx0dHZ2zBN3h6+jo6JwlNCSH/1F9G1BBdDtrFt3OmkW3s+ZpMLY2mBi+jo6Ojk71aEgzfB0dHR2daqA7fB0dHZ2zBJ90+EKIC4UQu4QQmhCizHQnIcQRIcQOIcRWIYRXaebaphK2jhdC7BNCHBBCPFSXNhaPHy6EWCSE2F/8f6My9quXa3q66yNcvFX8+nYhRO+6sq2Sdo4QQuQUX7+tQojH68HGz4QQqUKInWW87hPXstiW09nqC9ezmRBiiRBiT/F3/U4v+/jMNS0XKaXP/cOlr98BWAr0LWe/I0Ckr9uKq+DsINAaMAPbgM51bOfLwEPFPz8EvOQr17Qi1weYCMzHpc00EFhXD3/ritg5AvirPj6Lp9gwDOgN7Czj9Xq/lpWw1ReuZyzQu/jnYCDeFz+fFfnnkzN8KeUeKeW++rajIlTQ1hKJaCmlHTgpEV2XTAW+LP75S+D8Oh6/PCpyfaYCX0kXa4EwIUSsD9pZ70gplwOZ5eziC9cSqJCt9Y6UMklKubn45zxgD56Kvz5zTcvDJx1+JZDA30KITUKIG+rbmHKolER0LREtpUwC1wcYaFzGfvVxTStyfXzhGlbUhkFCiG1CiPlCiC51Y1ql8IVrWRl85noKIVoCvYB1pV5qENe0uh2vqkwNyC4DDJFSJgohGgOLhBB7i2cMNUpdS0RXlfLsrMRp6uSalqIi16dOruFpqIgNm3FpmeQXa0j9AbSrbcMqiS9cy4riM9dTCBEE/ArcJaXMLf2yl0N87prWm8OX1ZddRkqZWPx/qhDid1yP3DXunGrA1jqRiC7PTiFEihAiVkqZVPyomVrGOerkmpaiItfHF2S2T2vDqY5ASjlPCPGeECJSSulL4lq+cC0rhK9cTyGECZez/1ZK+ZuXXRrENW2wIR0hRKAQIvjkz8BYXD12fRFfkIieDVxZ/POVgMeTST1e04pcn9nAFcXZEAOBnJMhqjrktHYKIWKEcPX8FEL0x/Udy6hjO0+HL1zLCuEL17N4/E+BPVLK18rYrWFc0/peNfb2D5iG645pA1KAhcXb44B5xT+3xpUlsQ3YhSu84pO2yv9W8eNxZXnUua1ABPAPsL/4/3Bfuqberg9wE3BT8c8CeLf49R2Uk71Vz3beVnzttgFrgcH1YOP3QBLgKP5sXuuL17KCtvrC9RyKKzyzHdha/G+ir17T8v7p0go6Ojo6ZwkNNqSjo6Ojo1M5dIevo6Ojc5agO3wdHR2dswTd4evo6OicJegOX0dHR+csQXf4Ojo6OmcJusPX0dHROUv4f0vZB7f6MGPuAAAAAElFTkSuQmCC\n", "text/plain": [ - "Text(0.5, 1.0, '2 layer network')" + "
" ] }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABXC0lEQVR4nO29eZQs6Vmf+byx5FL7eqvuvnRftdQSUmtFLQm0IBm1QMiIxQIMyOCRxwaDZ5iDBcwwMz72GTz28TEeOAYd0BgwBssjBI2REAKEhCSE1JJaUrfU6vWute9VuUfEO39EZlZmZWRWVt2qyntvvc85dSozIjLyi6ys7xffu4qqYhiGYRjtcHo9AMMwDOP2xoTCMAzD6IgJhWEYhtEREwrDMAyjIyYUhmEYRkdMKAzDMIyOmFAYdz0i8m4R+VSvx3GnICJvEJEbvR6HcftgQmHccYhIWkR+U0SuisimiDwqIg/1elyHiYhcEBEVEa/XYzGOHyYUxp2IB1wHXg8MA/8r8AERudDLQTVyp07od+q4jcPFhMK441DVnKr+H6p6RVUjVf3vwHPAy7t5vYj8sohcF5ENEfmCiHxLdfu0iORFZLzh2JeJyKKI+NXnPyYiXxeRVRH5qIicbzhWReQnROQp4KmE962tCn5URK6JyJKI/ELDfkdE3isiz4jIsoh8QETGqrs/Wf29JiJbIvJgdUX18uprf6h67hdWn/+4iPxh9XFaRP69iMxUf/69iKSr+94gIjdE5J+LyBzw/yaM+6dE5Gsicqabz9e4+zChMO54RGQKeB7weJcv+TzwADAG/Bfgv4lIRlXngL8Cvr/h2B8Gfl9VKyLyDuDngXcCk8BfA7+349x/F/hm4P4O7/864D7g24BfFJEXVLf/0+rrXw+cAlaBX63u+9bq7xFVHVDVvwE+Abyhuv31wLMNx72+uh/gF4BXV6/5JcCriFdhNaarn8V54D2NAxWRXwTeDbxeVc1vcVxRVfuxnzv2B/CBPwd+vcMx7wY+1WH/KvCS6uO/B3y6+tgF5oBXVZ9/BPjxhtc5QB44X32uwJs6vM+F6jFnGrZ9DnhX9fHXgW9r2HcSqBCb2mqv9Rr2/zjwcMNr/yGxqAFcBV5WffwM8LaG1307cKX6+A1AGcg07H8DcBP4d8CngOFe/53tp7c/tqIw7lhExAF+h3ii+8k9vO5/qZqP1kVkjdjPMVHd/UfA/SJyEXgLsK6qn6vuOw/8soisVV+3AghwuuH017sYwlzD4zww0HD+DzWc/+tACEy1Oc8ngG8RkZPEovYB4LVVX80w8Gj1uFPEwlHjanVbjUVVLe449wjx6uL/UtX1Lq7JuIsxoTDuSEREgN8knkS/R1UrXb7uW4CfJTYvjarqCLBOPOFTnTA/APx9YrPT7zS8/Drwj1R1pOEnq6qfaTjmVsoxXwce2nH+jKreTDqvqj5NLDT/FPikqm4Qi9B7iFdQUfXQGWIRqnGuuq3TmFeB7wT+XxF57S1ck3EXYEJh3Kn8R+AFwNtVtbCH1w0CAbAIeFUb/NCOY36b2Fz1XTQLxa8BP9fgMB4Wke/b3/AT+TXgX9Uc5CIyWfWLUB1vBFza8ZpPEK+mav6Iv9rxHGI/yv9aPd8E8IvAf95tMKr6V8APAX8gIq/azwUZdwcmFMYdR3Ui/UfEztm5ahTQloj8UBcv/yjwp8CTxCaYIjvMRar6aeJJ+YuqerVh+4eAfw38vohsAI8BB5m/8cvAw8Cficgm8Flixziqmgf+FfDpqmnq1dXXfIJY/D7Z5jnAvwQeAb4CfBX4YnXbrqjqx4AfA/5YRF62/0sz7mRE1RoXGcZOROQvgf+iqr/R67EYRq8xoTCMHYjIK4GPAWdVdbPX4zGMXmOmJ8NoQER+izjc9p+ZSBhGjK0oDMMwjI7YisIwDMPoyF1ZAGzES+m039frYRiGYdwxfKO4vqSqk0n77kqhmPb7eP+9r+v1MAzDMO4YXvvYn1xtt89MT4ZhGEZHTCgMwzCMjphQGIZhGB0xoTAMwzA6YkJhGIZhdMSEwjAMw+iICYVhGIbRERMKwzAMoyMmFIZhGEZHTCgMwzCMjphQGIZhGB0xoTAMwzA60jOhEJGzIvJxEfmaiDwuIj+dcIyIyH8QkadF5CvWs9cwDOPo6WX12AD4GVX9oogMAl8QkY+p6tcajnkIuFz9+WbgP1Z/G4ZhGEdEz1YUqjqrql+sPt4Evg6c3nHYO4Df1pjPAiMicvKIh2oYhnGsuS18FCJyAXgp8Lc7dp0Grjc8v0GrmBiGYRiHSM+FQkQGgA8SN7PfuIXzvEdEHhGRR9bC8sEN0DAM45jTU6EQEZ9YJH5XVf8g4ZCbwNmG52eq21pQ1fep6itU9RUjburgB2sYhnFM6WXUkwC/CXxdVf9dm8MeBn6kGv30amBdVWePbJCGYRhGT6OeXgv8MPBVEXm0uu3ngXMAqvprwIeBtwFPA3ngHxz9MA3DMI43PRMKVf0UILsco8BPHM2IDMMwjCR67sw2DMMwbm9MKAzDMIyOmFAYhmEYHTGhMAzDMDpiQmEYhmF0xITCMAzD6IgJhWEYhtEREwrDMAyjIyYUhmEYRkdMKAzDMIyOmFAYhmEYHTGhMAzDMDpiQmEYhmF0xITCMAzD6IgJhWEYhtEREwrDMAyjIyYUhmEYRkd6KhQi8n4RWRCRx9rsf4OIrIvIo9WfXzzqMRqGYRx3etkzG+A/Ab8C/HaHY/5aVb/zaIZjGIZh7KSnKwpV/SSw0ssxGIZhGJ25E3wUD4rIl0XkIyLywnYHich7ROQREXlkLSwf5fgMwzDuam53ofgicF5VXwL8P8AftjtQVd+nqq9Q1VeMuKmjGp9hGMZdz20tFKq6oapb1ccfBnwRmejxsAzDMI4Vt7VQiMi0iEj18auIx7vc21EZhmEcL3oa9SQivwe8AZgQkRvA/w74AKr6a8D3Av9YRAKgALxLVbVHwzVuI1SVfC5iazPEdYWhYZdU+ra+7zGMO5aeCoWq/sAu+3+FOHzWMOpopFy/WqZYiKjdNqwsBUxOe4yO+YfynmEQC5M40Nfv4DhyKO9jGLcjvc6jMIw9s7oSNIkEgCoszgUMDHr4/sFO4itLFZYWAqR6WgVOnUkxMOge6PsYxu2KrdWNO471tZAkA6QqzFwvsbkRclAWynwuZGkhQBWiKP7RCGaul6lUzApqHA9sRWHccWjUfl+xoMzeLJNOCyemfFZXQirliEzWYXTCI5Xa273R6nKQLErAxlrA+OThmLoM43bCVhTGHcfgkAMdrEsaxYJx7UqZzY2QYlFZWw258kyJYqGDyiQQtFs1KLaiMI4NJhTGHcfYhI/nUfcZdItGMDezt6z9vv7kfxGR9vsM427DvunGHYfrCRfuyTA+6eHu0XhaKipR2P1KYHTcx0nwWXu+MGjObOOYYEJh3JG4rjA+6XP2fHrPK4tOZqudeL5w/lKagUEHEXAcGB51OX8pjViIrHFMMGe20ROiSCmXFM8TvFsIZ01nHIZHXdZXtyOhREh0QMP+ciBSKYfT59Jt92ukbGyEbG6EuI4wPOrS12+rDePuwYTCAOJM57XVgNXlkDBQMlmHiRM+2b6DXXSqKsuLAStLQX1Cz/Y5nDqbwnX3Jxgnpn36B1zWVwPCEAaGHNJph5nrZVTj9xABx4XpUwcbpRRFyrXnSpRLWhenzY2Q0TGXyelbL06Zz4UsLwaUS0oqLYxPeiZCxpFjQmEAsDBXaborz+cirl8pcfZCimzfwU1MayuxSNQm8Np73bha4vylzL7OKSIMDLotCXAXL2fYWAsol5Vs1mFw2D3wjOq1laBJJCC+rtWVkKGRiHRm/0K7sR4wd7NSP3cQKIV8menTPkPD9q9rHB3mozAIKtokEjVUYwE5SJaXkvMSSkWlVNxb6OpueJ4wNuEzfSrF8Kh3KGU3Njok/21uhDu2KVHUnSNdVVmYrST/TWYrB5ZQaBjdYLclBoVC1NauXywc3ISkqoRB8j4RqJSV9B4XFaVixPJiQCEfgoAguB6MjHoMjbjInj3d8QS/tFAhqCh+Spg44e+rXEduK2Ro2MXzhYW5Sl1U/JRwYrrzOSsVJWqjm1EUf1aptDnTjaPBVhQGboc50DnAb4hIe8e1Knue+Ar5kKvPxiU7ggCCSjzBFgvK/GyFm9fKe77zXl2uMHujTLkUT9SlojJzvcz6WrLCxWKUfK5iQbnyTIkrzxSbVh6VcnzO3FaY/ELYdfVjRQmNo8SEwiDb5yQKggiMjB6s43Ri0muZWGvJa3stEz4/02qaqaEa+z7yue7NWVGk9bpOO8+1ONdq7okiJZ1x8Dr4x1WhUm5dranC0kJ7s57nCZlMshikM7cWKWYYe8WEwkBEOHM+jevGKwiR+Cfb5zB+Yu9RQp1s8cOjHpPTHo67/T6DQy6nzu4tQiiKlFKp82pBFbY22t+176RcVtqdMYogaFhUrK5UePqJIjPXywSVzquydpSKncd/8mwKzwep/peKA54XV641jKPEfBQGEOcj3HNfhtxWRFBRMn0OmT1G7ESRdmWLHx3zGRn1CAKq4rT3u+NuXQ+yh0twXaGtUrBthstthSzONUduhd3rUR3P63wRvu9w6XKGrc2IcikilXaqiX+2mjCOlp6uKETk/SKyICKPtdkvIvIfRORpEfmKiLzsqMd4nKiFmY6MeXsWCYAbV8td2+JFBN+XJpGIImV9NWBhLvYJdIoQEhEGh3a/jR8a7v5W3/eFdDZ5Es5kpZ7nsdImcmuvjI7v/hnXrnN80mdwaH/OecO4VXptevpPwFs77H8IuFz9eQ/wH49gTMY+KBailmZCsLstvkapFPHMk0XmZyusLofMz1Z49ski5XJ7H8PUybg4YCc8f29f8dNn0om1nYoFrVeerZQPJhKsXVSTqpLbClldDtjaPLjeGoaxX3oqFKr6SWClwyHvAH5bYz4LjIjIyaMZnbEXOuVA7GaLh7gRUBRum3I0is05szfaV3t1PeHsxfalNWq1mfaC65FoflLdrjybybavKLsXVpdbV1phEEdK3bxeZmGuwsz1Mk8/USSf24dtyzAOiF6vKHbjNHC94fmN6rYWROQ9IvKIiDyyFu6tlLRx63i+tC22t1uETqUctb1LLxaUUoceEqmUQ7av9fwiMDC090zsYrG9Q7tUVMJQGU+I3IL4OvciFmFIy2phbiYOza01Z6p11rt+pdzVyswwDoPbXSi6RlXfp6qvUNVXjLgWFXLU9PU7ibWaRGBsvLOfYDfLypVnS9y8Vmrrszh1Nk06LfUVhEh81z99cu8RWyJ0dGiLxI7/M+dSTZFOvg+nz6YYm0gWkSR8X5p8DlGkbG21F8XlxcBWFkZPuN2jnm4CZxuen6luM24zRIRzF1LcuFamUtZ6pvfouMfwaPPXLAzjAoSFXISfEkZGXRync+TQ1mbE9eeKZPtdohD6B916BJDnCefvSVMsKJVKRDrt7LvGUqrDPUat8qyqsrwUNPkYKhWq9arSBIGysRbWP4Pa70ZBFIGJqebPJYriRVkn3VxbCa0ooHHk3O5C8TDwkyLy+8A3A+uqOtvjMR07isWIpfkKhXyE6wmjYy4DQy65zdh53T8QJ8v5KYeL92YoFSPCME5G27nKqJQjrj5bIoq2J8711ZCRMZe1leS6SdvjgGIxVpON9ZBUWjh3MY3jxHfm2T4he4uL5NWl9mOYOhn/u+RzEYUEx30QwNXnSgwOuZy9mEajuIy67wsL89tFF10XJqe8lsJ+rhv7Xdq2XyUWWcO4VR54KOCJn/1+AP7nfzsdb3zsT9oe31OhEJHfA94ATIjIDeB/B3wAVf014MPA24CngTzwD3oz0uNLsRBx7blSfVKMysrCXMDCXFA3sSzOx818Tkz7iEj9bj4MleXFCvlchO8LI2MeSwuVlpWDKqythpw9n2J5KSDXwfzS+JpySVlZCpjYR1JgO1ZX2hWjioUglYb8Vlj3IewkqMRO6rWVkLMXUvVs88EhNw4dJl45LM4HuJ7TlGMiIkyd9Ll5vZy4rBCBdFaYn41Xbdk+h5FRD3eXfAzDyHz8nUCDKAD82+5f31OhUNUf2GW/Aj9xRMMxElic71wmo8b6amwSqeU2VCoRV5/ZsXJYa29bEiBSOH0uxdNPFNuGju58/5Wl7bLlff0OUyf9PZcCaaSd+UuEekFDp4u+Gaowe6PCxcsOQRDnmNQjuqrvM3O9zIV70k3jHRh0OXsuNuE1fe4SJw+uLTeXgl9ZDjh/KU0qdde4G41b4MH3vxh55Vv46c/M8uWHR7Z37EEUkrjdTU9Gjynku6uVpBr3ZqgJxcJc68qhG0SEsQmPpYU2d/YJ71sjn4vNWhfuzeDvsxZSOiPJ4bwaJ91BnMS3vLh70l0QKEFFWVsNE/0OqrC6HDB1qtkx0jfgcu99GZaXAjbW45jhTJ+Q22zte6FhXPPq7IX2YcLG3ctrvvozALzhvYV4wweBDxaAkQN9HxOKY0wtNLNTtq/j0rY0+E4a7ee5zb31llCod9Mbm/CqnfD2rjRRFFeAPbHP7nInpv2mu3/YDrX1q3ftfsrhxEmP+ZnuPphyOWrroS63CQt2XGFyymfihMfMjTJbG+0/z3wuYnmpQn+/2zbHw7jzaREFgMbHh4gJxTFEVVlaqLC6EtvafV+YnPIYTOiaNjLqdVWyQgT6B+LVRLnU6ujdeWw8ju3n06f8es6DiDBxIoXnV1iY3Xu5jMIeKsbupK/f5fS5FIvzFUpFxXVhZMxjfHL7s4l7YOwuYp4v+CmHbNapO/6bkO1VShKlUsTMtRLlLtKCluYDliWgr9/h9NkUYmXI72h6KQpJmFAcQ2ZvVKqlIeLnlYoye7MS13raUT9pfNKjWIzI1xzMQqIj13FhbNyjkI9bqHaiUSCGhl3GJrxEv8LIaOwcX5qvEATx8Z4XRwY5DuRzyQripW5tkuwfcOuit5MoUq5dKRF1sdipVXkdHvXizn47XuNIXCAxiUo54lo1OqxbaqXVV5YDxicPtje4cXgk+hV6KApJmFAcMyrlqEkkaqjCwnylSSjCMC7S54gwNOLi+0IqHWdCr6+G1XBPZaBatM71hLkrpa5XAHHkUtTR+Tw84jE07NbzEWpmsqCiPPtUseW9ROLcjcNia7N9xFMjnr9d6sN1hfMX08zNVOo+n0xWmD6Vapu1vjNPo1tqviITituXB9//YgDe+MHXxRsOya9wkJhQHDOKxe1kuJ1UyoqqIiKUSxFXnyuh0XbSGAJnz6fwPIfxSadlMgpDpbxLj4ik8VQq2tH5LNJaGsPzhdPnUsxcL6NUE9UUJqc9+voOLyGtUtGuhHDniiOVdjh3MR1nl+vukVPdBhEkvvfBth439kmLINT4YA8Gc4uYUBwzfF/aTnSuu33HPnuz3DTZqQIKMzfKXLqcSXSA76cCtorwpYHLZDPCvZvXyEadzVaN9Fejg/L52P7f1+d0FbraLZVyxNpqWO3PIQyPxOXXxUk2vzUShwVry+fUbe0pz5M9i26NWlBAr9hys1zpP00kDufyM4xUtno6nqPggYcCst/3Mr508d7tXIU7UBDaYUJxzEhnBD/VOgmJwEjVZBOGcd/pJMIgTnRLJ7TpdByhb8DZ9md0QeB4PHryARxRPjf2Yr597q85U1jo+vXiSFt/wq2wuR4wc2O7CN/GOqwsBpy7mMb3d5/EG0V3P4xNeBTy5T078sWByenemZ0eG7qXz44/ACiK8Lmxb+L+9ad5cOXL7WpGHhkhDoLidCyS0h2Jq4W7SBh2YkJxzKi1Pb15tUS5oSbT0LDL+EQXX4fOTeCYPpXi2rPFamXUzqcKXZdnX/By1HWpLV4+NvVafuTKH+HSO/tJpRw1iUSNIICZm2WmTvmsrYRsboRtM6gbo6S6QVUJqw5714vFb3zSY3kxaIoS67Qa7Ot3mTiRHBhwFKz6g3x2/CWEOxp6fH34Hs4UFziX7031naXUCH89+XIW02MIcC53k29Z+gJ9YXer1wceisOg3+b81PbGu1gUkjChOIb4vnChWpMpCOKaTI1tOR0HUunku2ZHIJ1uvTcsFuJom0o5YmAwrvtUqSi5reQS4rnBEZ57/ktZOnm+absi3Ow7wbn83AFcaXeoKvlctQVs1mFxvn0572JeuXGlTCotXLo3jQjMz1bisiPVin5jEx4jY93/a+W2QuZnKgRBXOI8m3U4edpnfDJuGZvPRzgOZPuE+dmAzfUwztQm/luduZAmnSAOqlpvuOT5wsCAc6hhs98YvEiU0Hs2cHweH7rn0IWiIi43+qapiMepwgIDYYF1r5+HT7+JihOvshS42n+apfQo77r2kZYbkkRRMEwojjPpjENjPu/WRsjCfCWe2BPmExE4eTrVYlLZWAuYm9ku9VEsKI4TcfZimhPTwsZayNpqUF+5jIx5vP+et7fcecYogRzd17JcisN5G0uN7LYSUo17U9y8Vub8PWlOn0sTBkoQakt7190oFSNu7ijXUcjHgQSXLmdwveaWrydPp5iYjCgWFNeL/RFJJq4oUm5cLde78sURY7Go7KfNbTeUHR9t06S85Bxu6f8b2Sn+bPq19RVeJA4vWn+SkuMTSPP3TMWh5KaJXnuSlw9d5Ymf/f7mGkhGCyYUBhCHfc7caJiwqr99P24nmkoLY+OtZo0oUuZnW+tBRRHMz5Q5fynD8GhrqfFThXmu903HRvXG14nLqT34KG4F1XgyDbrMPN9JuayUihr30/ZkX8X52pUCiULY3AgZHmn9F/VTDv4u8+7SfIVCYTsjvPYeN6+WuPS85GCEW+VcfpanB8/X795ruFHAhdzhdQcoOik+Ov06Aqf5s3p8+F4yYTlRvCqOz78vvZlVp/+W6yAdByzf3wDaF/+rVKB/0GHyRHKxvWKH7nPFgrZtNvSa5UdJRQFOQxaaFwW8fPUxMtHhdSgsOGm+MXiBJwYvslpJE9xC2W6RuJ7TrVAqJX9+qlDu0F52N9bWkv0nYXRrobedOJefZbS8jhttK68bhfSFRe7feOZQ3hPgmYGzidsDx2c9PZDoU4sEgj32Uz/O2IrimFIuRSzMxSXARTrH3i8vBCwvBExOey2ZxCKySwxJLcuhmZHKJt9746N8efg+5t1hJhZvcC4/x7nUJhxgiGsjjw/ew99MvBSp2qWjiZdzKfoCZ575WuLx9YZDiVcQV7tN8tfshVRCBFrtvbt1SkeRsrkektuK8Py47Eq78F2hNcfjoHBQ3j7zcR4beh5PDMX+inu2rvHA2hOkdJ/Lti4ouumW1UQNdap5QAnlU3LDVkixW0wojiGNzYOgO5s8wOJcQLbPbbJxZ7KCI9Bu7nnmyRJT0z5DCSaUwSDP/d/4HCeqlWIrAs8oTJ3yE00ut8JyaoS/mXig6hfZtlk/e9/LGFqeZ2htuen4VArGJ30elTM4lYCxxZu4DWoaOi7eSBY/dWuz7tikT26rNZtdHBgcbrath6GytREShnEvikzWIQrh6rMlgnC7z/baSojnx70xdqIKmUPMs/A04oH1J3hg/YlDew+An/+Of1J/nMlVmLyxgbOz2gBQGEhRyniMzefqaq8iLJwZJHJtRdEtJhR3OFrtsxxUlHRWyGaTnZuN3Gp5iOmGstgiwqmz1f4JCeeMQpibqeClpCVjupAPWVoIWvwi8zMVslmnfkcdBkoQKH5qb47iRr42dIkwwVYdOQ4zF57P0KOfbrgmOHEyRf+Ay7MXHqTkppiYucI9X/sCmfwmoecze/553De8BaVb86dksw7Tp30WZitE1aRGPyWcOpNqutZ8LuTG1dgkV8uUz/Y5eH6cLd6IanLFXxEYHXPxPCEMlLW1gEI+IpUSRkZ7F1a7G42ikESxz6Oc9kiVgrpYKKCOsD6eJfRd8kNpUvkKXhCiIiYSe8SE4g6mVIwjdhrj69MZ4ez5dMcM5VuxUSfZ5Pv6XS5dzjA/m1wOWzVOVus73ywUq8vJbUfjjndxvaK5m+Xm0NNJj/EJr0UMc26GZwbOUXDTnCoscqYw12QuKriZFsc5EMeXDvXh+fHkmc7E5b1rfanv23iGx4cvs3TqAkunLiBRhIqQCUu86erDu35eNYKKsrIUh9HG7WQ9BoZiUR8a9hgccimXFHFoaUIURdoSGaUa/x3brQZruRz5fBSHx3pxn4+hYZdyQ8FBVcgRr0JOnU01ddzrBbuJQiIiLJwbYngpz8B6CYmUQr/P+kQfoiCR4oQR4ws53Mr297PY77N4ajCO+TY60utWqG8FfpnYFvAbqvpLO/a/G/g3QC1k4ldU9TeOdJC3KarKjWvlluZApaKyMF9puuvfSbvyELXJpVKJ2FhrnYTiUuLJd2KeJ6TTDlttEuVKxYgw0KbIoE6O4DCAmWtl8rXIneqhK4sBrgOj49u+kuf6TvEXUw/Gr3M8HhuuMFZe5+0zf4VXdZafy89yve9kiy3biwLuqcxxz/MyieN45erjLGbGWUyPESG4REikvG3uk11n+FbKEVeebag4W1aKhTLDeZepk/HfKW4hmzxh5baito2P2qHEK5Ozk612+PnZ1u9N3JGvzL3PP5yIqCRe89WfaS6jfQuoI6yd6GftRD+oMrKQZ/rq+vZ+EZxIm24eMrkKI4s51qYGDmQMdzM9EwoRcYFfBd4C3AA+LyIPq+pOz+J/VdWfPPIB3uYUC9rUKKiGKmyshUydbK0zVCMuB55cHmJ41MMRyG0VW2zcnif79h0EATzzZJG+foeTZ1K4rtA/4FAsJAtSKi2Jmc+qsemsJhRl8fjLqQcJGwQgcHyWUyN8aeQFvHL1MQDu3brGl0ZewJbXR1TN33CikExY5L7NK23H7WnI22c+zkJ6nPnMOH1hgQu5mboAdcPSQtDiQFaN28eOjke7tjGNQu2cDp+EQn9/6+pAVduWWIkiePJrRcSB4RGXySl/36a+nTzwUNCaxHZIpbRHFvIMrhWbfBaq2hKQ4CgMrpVicTkicbxT6eWK4lXA06r6LICI/D7wDiA5BMVoIqreHe31ThOgf7C1PATAqbOpeob2+UsZFufLbG7Ed/R9Aw7TJztPHKVC58lTNb47vnGtxPmLGUZGPVZXghZ7uuOCn9qOOtpJGGwX3Lvaf4qkuKvQ8Xhi6GJdKDwNeefNj/GF0Rfy9MA5QLi0dY1XrD6Ov0tEjgBTpWWmSssdj2tHbqv955LfikiNdRaKbH/7/Y4TW9SihpIpInEV3f3kdUBc8HB9NaRYiDh3Mb2vFcZ//fUfBGju23wESKQtIgHJUWtQjYZqF9Zm1OmlUJwGrjc8vwF8c8Jx3yMi3wo8CfxPqno94RhE5D3AewCm/OwBD/X2I5N12gpCOi27/nPXy0PkIqRaHqJcUgr5iExWUFUKDY2B8lsRN66VOXshjZvg/wgqylabRkI7KRWUUjEinXG4cCnD3Gy5qXVqGMYRVu0c7q63XXAvFJfWe0Xq+xpJRxVes/wor1l+tKtxHhTxWJOKQiW7TXaSSlWd1gnpJVEEZ8+mKBQi8rnYFzEy7pFt0xI1DOMkykr7KiVANfu8+n3oS1iZNJIoCt27bw4Ut5KcP9KOwHfMR9EFt7sz+4+B31PVkoj8I+C3gDclHaiq7wPeB/D87Mitl4e8zXHd2Dm5s01pHLHTnOugGjcgWlkOCYO4ntHElE826zA47LK1EfLsk3GBNCX+v3FcaYmmKRWV+ZkKp862+j+WFivd/4NKnNWczsSTfmWnv0RjU5XjJOd3TDQU3DtdmE8UCtGIc7mZLgd0uAyPusntZJWuncc7fQqNFEvK+KTP+GTnc9TCojudq2l4UZxQ2SgUt5Mo1FFlYK3I8FIBt0MC5c6FQySweqLv0Id3N9BLobgJNKZUnmHbaQ2Aqjau9X8D+L+PYFx3DOOTHqm0sLIYxMX9snEGdWbH3eTCXKXajS5+ns9FXH+uxNkLKRxXmkt3EOdEJPk/IC71EUXaYoLa2thDPoHGiWYQC8ZOQaqRJBIiNHXhGwzyvHD9Sb42fC9BtXSEE4X4GtTNTr1mbMIjnwspFnS7CRRw8oyfuDpLwvOEcsLfRCSuHNsNC3OVrkUCIOzz+fw/fi2fyL98e2OvRSGBgdUio4v5Zp8EO0QBKGdcvCDCDZRKymX1RB/FgcOtQXW30Euh+DxwWUQuEgvEu4AfbDxARE6qaq3k5HcBXz/aId7e1EIrh4bb/xmDijaJRA1VuHGtvK8s3SiK7/abx9LliyVO0ktXk/aiqL0voh0b6yFj49sDePXKV5guLvPY8GUKbpqz+TlevP4N+sNi9yc9RBxHOHshTT4Xkc+FuJ7D0JDbtg1qEqNjLgtzrauSWrXZneKtqmxuhCwvBnHYb9Yhn0u25YkAvoOWm/cHocOn1l8Mt3NXVVVGlgqJPol6sFw1C3tlypzW+6VnQqGqgYj8JPBR4vDY96vq4yLyL4BHVPVh4KdE5LuAAFgB3t2r8d6pFApR24l4PyLhusl3sEMjLivL7fsz1OgfcJg+vX0Xt9cSGKqxj6Pp/MDF/E0u5g+v8NytIhL3mNhvk6XhUY9CIS7VEZ8wNg25Dlx5JjYbDgy6TJ2KVynLi0GTuatTM6mS53Pj0iXOP/U0YfWPG/g+f/G9303o384qAW4QIW3uMlRg8eQgpX4fPaSyMMeFnvooVPXDwId3bPvFhsc/B/zcUY/rbqJbs0Q3xNE0fqKjfHzSJ7cVUS5pU/TN1CmfoSGXSiXOodhpanEcYXLaY2E2uYpq0hhSt1hf6bDY9Pr40sgLmM1O0h8UeMnaNzhbOJi+GiLCydMpxidip3WloqwuB02mpM3NkMqViNPnUsk+kXbnBj7z0LfzuTe/iRM3ZyhnMiycPoXuXDbehnTKsBag3OeZSBwAt7sz27hFsn1OW6dwJ1wXJqZ8VpcDgoqSSgsTJ/y2d8SOI5y/lGZrI2R1JaBUil3M+a2IbJ/TVB4iipRSSeMGSSlhZNTH9x2WlwIqZSWTEQaHXeZuJlS0FQ6kDlTOzfKV4ecxk51kMMjz4vUnmS4u7ft8q/4QHzr9ZgLHRcVhLTXMfGaCl60+xkvXvnHL462RSsef5dVni4nO8bLjkv/hF1L6l4+RKnWuwqtAJMJff+dDhL5P6Ptcv3zvgY31KFBHyA2l6d8oNZmfIqDY5xN5t7/Y3QmYUNyh5HMhK0sBlUpcIG5swktM3Kq1Pr1+pVSvJbTbnWZfv8PUKZ9UymFktPuviIiQ24rqTluI/QlbmyHnL6VJpR3WVwMW5uLYTFXwfOH02VSiWcZxhNmb5XjMxH6RU2dTe7Lt11Di5jYLmXFQ+PLIfYTiEjkuSzrK9b6TvHrpUV64ub9y2J+ZeICK4zbFuwaOxxdGv4kXbDx34KXT2/XsDgoBM//bF7tyKwhw89JFrl++fKBjOwycIGJgrUi6EBD4LptjGYJU/H1ZnerHDSMyuQoqgqhSynosnbKM64PChOIOZHWlwmKDY7NcCtlYDzl3Mbl7WTrjcM99GXLV4oFRqCy1aZhz6XIaf5dM4XaUSxEb662O8yiCxYUKo2NeS5OjSlm5dqXEPc/LtERSDQy63HtfhlJRQbrLD6mfV1wW0uP4GjBS3uCPT72RtdQggXgIGofU1s4lDoE4/M3EA1zeurqvktgz2ROJSRGOhsxmJtv6TzRSNjfDej2m4ZHkRLnXfPVnAPjpz8zy5YdH+Lszv8nw6lrC+zWcm855ZIHrsjJ1otNl3RZ45ZDpK+uIKo6CUmFgvcjS6UEKAykUWJvsQ8bimk6pUhhXlL25xdZImvxgypzYt4gJxR1GFGqTSNTQCBZmK5y7mFxjX0TqMfuqSiWIo6HinYDGd+v7FQmgbVQNxCaoKEwWJ9X23dxEhEx2b//kjw/ew2cnHkA0DqlSIMKpl+5ol6DnaMRsdpLz++jt7GpEJElmOcFrIzxBoFx7rkRQ2Q6bXVoMOHMuxZuf/VmA7VpI9XIXIwCU05ldhWC3T00dh6de8uJdjuo9Y3NbTXWahDijenxmi7WJLKNL+XhH7bul2x3Z0vkK47Ldj6KcdlieHqCSvb2d9LcbJhR3GJ2imOJqou1rPNUQEaZOphgbj8jlIhwHBgbcjhVnu8Fx2Y5L3LnPkbgXdwIa0XbfXrmRPcFnJx5o28imM4LbruPPLty7eZVvDF6si9H2GZVThcXE1yzMVpquW6umwafmHf7Vz+Y6OpNHl5b2XXVCgWI2yyfe8Xbyg4P7PMsRoUomHyReq6jumj/h1DZWSZUiTl7dYOHMoOVQ7AHz9NxhiHRIgN7jzOFXfRBDw94tiwS0zzIWgZExt211VHGo51XcKo+OvGCfIhE7QE+2mdRrlByf5dQwpR19ob955SsMVzbxo9j/4kYBXlTh2+c+hdtQUffB97+YB9//Yn7+bf+YtTYlT5wwYvJm56xy7dKUkuDvJj8wwAd+4n9k/lxyC9E7BVG6runUuF+A8ZnNvSXvHHM6/keJyBAwqarP7Nj+YlX9yqGOzEgk2+e07Sg3OOQeWYnoJBwndkzfvNbcYKevP3a2l4qa2M3Nc4WBwb0LhQLP9p/lq8PPo+imOJOfY93bgwOzMU0aQByW0yOcKK20HBoifGriZTw1eBFHIyJxuLx5hdctfRGXiHRU4Xtv/BnX+k4ynxmnPyjwA//XAAPZk7zxg9+3faIPbo/eadNPHMALOvtJrjz/eVx6/OtNXffaEYngqFLxPdRx+Ph3f9d2xmRjLPPtiAjFPq/tqmK/OFHs+wjSZlTphrafkoh8P/DvgQUR8YF3q+rnq7v/E/CyQx+d0UJjR7laBJNIHD10Yrr3dtf+AZd77ss0tOx0yVZbb2aywpnzKeZmtk0u/QMO06dS+xK4z4w/wBNDl+qlOzb8fgRpFYAajdsTjglF+NLIC/j2+U+3vPTTEy/j6cELhI5LWG2l+vTgeQTlW5e+wAMPBWS/72W87pVvqfsV/suHW06zjQjzp08xdeNma/nrKGLh9KmO1/6F138r09dukMnn8SsVIpLNAwKsj46ydHKKqes36d/Y4G2/+/ssnjyJRCGTc/NEIlx93mU+9+Y3Ueq7/WofrUwP7HBmx8l0oefgV/ZnKgRuX3G8DRFts/wSkUeBh1R1VkReBfw28HOq+iER+ZKqvvQIx7knnp8d0fff+7peD+NQCQNlfS2u8ZTJOgwOusgdUgVTVYnC2OS0334Hm14f//Xs26o9sJtOHv9uIxTZsIijETm/P/G8w+UN3nX9I03bKuLxWxfe0dTzokYkcOPesTipS5VMroIbxuGZtfDNdowsLvLQ7/4ebhDgRooCgefxyBtfz5MvfaDjawHcSoUL33iS6avX8MtlTj13BX/HSiTwPB5/+Uu5/4uP4jeUjK3919c+pdBxyA0N8kc//g+IDjJLsxOq+KUQN4goZ7yOOQ9OGNG/ViRTCKikXLZGMvjlkImbmy0+ip3s/CYoUEk5zF4aPYiruGv4xL/+ji+o6iuS9nVad7m1Okuq+jkReSPw30XkLHtvo2IcMK4njE30fgWxH0QE9xZX/DezU4l9KBBBtNoMKUEsQnF52erj/O34S+orkfpLNWK8vNbymnNv8vFmhDApFUKqZSQqytT1DaTBnJQfTLF8cqDtneva5CR//O4f5YWf+zwnbt4kNzTE4696JfNnz3S69O1r8X2eedELeeZFL8QJQ77jt/4zQ6ureNV07dBxKGazZIpFnB3VAHeOyI0isrk85558iisveH5X79+JdL7C4EpczbXQ77M1mmnKonbLISdubOBV4tayjiqbI2lW2zQRilyHzfE+Nhu2BSmXlel+RhfySDUqqtDnszWcIZOP/1jpQkCqFNavOU4yhKVTt7kT/zaj07/rpojcU/NPVFcWbwD+EHjh4Q/N2AuVchRnRBfjvs+jY15LqGs+F7K0EFAqRni+MD7hMTjcW7/GfvE0aFvjJxOWKDseId4OH4QQisuW10cqCuJeFg25D65GvOv+xzj7suZubBIpZyoryZEfESjK9PWNlhLXfZtlyukCm+PtzTlbI8P87d95c1fX3InIdfnID/0A3/TZv+Wex7+GaMTV+57Hl1/zIG/+b3/QlS/Dr1SYmJm9ZaEYXC4wspSP+1UDqWLA8HIBleqEP5JmcK2EV4liwar+HQfWStVkuu77yeSGM+SG0rhBROQIWhWjwtB2RJNfDBhcKyJBRKnPJzecxg2ViRsbZKtJermhNGuT2frrjWY6CcU/BhwRub/WnlRVN6t9rt91JKMzuiKfC7lxdbtUeD4Ha6shZ8+n6/6B3FbIzWvbx5RLytxMhXJZmThx561Mzudm0clWgXOjgPvXn2E1NcSzg+da9oeOy0x2isubz3F98hzrQRZ8h5K6zJ8c5Z+kfojBxQInc2tEnrAxmqUw4LM5kmnbOe3U1fXkkGCFodVSR6E4SIJ0ii+9/lv40uu/pWn7xugIYwsLOLtE+QSeR2546JbG4AQRo1WRqG+rZdZrvHIZWSzUo4+aXqswtFLck1AA8Q2A395cVsl4rExvBzm4lTiBr56bocrAepFMocLshWHzXSTQVj5V9cuq+hTwARH55xKTBf4d8E+ObIRGR1SV2YSaSBrB7M0yNR/Uzozo+LWwshS07T1xO+NrwFvmP4MXBbhRAKp4UYXJ0goPrH+dkcoGTkJ5XCFiITPOo6P3sxwMUMFlLZvm5qVhKimXk8+tMbRaJFUOyeQDJmY2GVnIs3aij82hdIseCCARTRNjI054C87WA+Jrr3xFV34HFeHZ+19wS++VzVV29RN0umd3j+DzGlopNiXwQSxSXjkku7VL679jSjfrrG8mbjD0GeIeEjPAaw9zUEb3VCpKGLSp+1NRgiAuwtcuoU0ESsXWf84wjEt9HBSqSrEYUSpGtAug2Cvn8rP84NU/5tXLX+blq4/z1tlP8V0zH8fTiO95+VN4buv7RDj1u1kh/gfo3yyTyQeMLOZxwtYJZHCtGDtc+3004T+m3f2nAqVs78Mvl09O8+m3/h3KqRTlVIqK71NKpQhct76tmM3y59/7zluOetKkpcIeKO8SAHAQZPKVxCE6GvtWjFa6+RZXgAKQBTLAc6r7TF81jhwhFoN22dyqNCXbFYsR8zfLFIvxwdk+h+lTflP1172S2wqZvVGuFyV0XTh5NkVf361PCtmozIs2ngbg57+jeaGbOVNm4uZW3ektbb61jsJANaKm3RyXzVUId7FfR7Kj1pLA2mRydNVh4QQBmUKBYl9f0yriyv0v4NrzLjM+N0/kuixPT+FVKpy4OUPgeSzuLCu+z/yKQr/fdajLzizqSGDtgFqTShjRv1HGq4SUMx75gVS9N3boOVBqXW1GAmG1zlYmV2FgtYATKYWBFFsjGfQOiSo8DLoRis8DfwS8EpgAfk1EvkdVv6/zy4yjwPcFz08uj+GnpF5pdXDYZTOhYJ/vS715UFBRrj9XaipJXshHXH2uxKV7M4nF6najXIqafCMQ98O+cbXMpXsz+6oEC5D5+Dv5n//tdMdjiv0pblweJV0I4v7UawUGNpPvGJ1I47vhNqgIxTaTYC2uv5j1SJUCnCheSaxN9lM+ohWFRBEv//gnuO/LX6mP97FXvYKvvObB+mQfeR6LZ07XXxOkUsxcvNB0nsHVNV71F3/JqeeuoCJcv/cePv9tb+y61Ie6DsvT/YzP5erO7KSaVCqwNZxhYL2IKAS+w8pUP8X+Wy+rkSoGTF3bgGreRSQw6jrMnR+qfhe0bZ2s3HCGkYUcg6vF+vjThYDB1SKzF4aPrbO7m2/xj6vqI9XHs8A7ROSHD+LNq47xXybucPcbqvpLO/anifM3Xg4sA39PVa8cxHvfLYgIp86kuH4lzniu5ZGJwMmGTnJT0z7lUhRXYoU4rNOB0+e2k91WVyokJQtrBOtrwb7CcVdX2jTQUVhbDbpypD/4/hfzxg/uyIv5t10OQIRSX62XdkTfVqXFIR1JHMrqBsrQSmtbTYD8gI86wtLJASZmt1omQVHIFALK6bi8deQ5R3cHqsqDH/0zLnztiXpoLMCL/jbOj/3Ka1/T1WnS+Tzf8Tu/i18qxY5vVc499TQnbs7wof/hxwhS3U3i+eEM5axPf9Vk55dDUsWQRg/2wpkhSn0+q1PVFcRBOZBVmbyx2ZT17ihIEHHyubV62Y/q4jbWfSd+sHh6ECdSBlebgxYcBYKIoeUC6yeOdoV4u7CrUDSIROO237nVNxYRF/hV4C3ADeDzIvJwLcKqyo8Dq6p6r4i8C/jXwN+71fe+28hkHS7em2FtNQ59zWQdhkc9vIYVgOMK5y6mKRa0Hh7bP+A0hcYWC5p8x6xxMcL90K5vgmr7fTtNSNtlL26NctojcgRp8ENEAoHvkhvOALHJIVUKEKW+wij0eUxfXUcdYWskw+pElrHFOPt6pz8jXQw49ewaCOQH06xM93cWDFXS+YC+rTKRA/mhNJVuy0qocv8jX+DFn/ksqVKp5Q7ZDwJe9LlHeOzV39yVM/u+L30Zt1Jpio5yVPHLZS49/rWukgBrBCm3aVL1SwHpfEDkSlwavPaZ7FEgmvtSOGyOZZsSG/1SmBhAIMRlO6ThOcRf95UT/eSH0qgjDK4U2kaw9W+WTSh6wKuAp1X1WQAR+X3gHUCjULwD+D+qj/8/4FdERPSgvKF3EZ4vu96diwjZPqmHzO4klRLyuaQXktgUqRsymeRzisQlPVpE4ZCo9TSoRbvUvkDFrMfSmaH6xDV/fohMrkImX0EdYWC1SDYf1O8w/blcvGJr8z71m2aFvs0SThixeLZNyKkqkzc3yeQq9aipoZUi6+NZNiZ2t9W/6LOf48Wf/Sx+pX1dKFElk893ZTqavn69aUVSw69UmLp+Y09CsZNK2uteANvglUKmrzaX8hhYL9X7UkB8ve0qGCf+zaRqdmwU8zavP8700uB2Grje8PxGdVviMaoaAOvAeNLJROQ9IvKIiDyylphCa+zG6LiXeIMnwMjY/v7JR8Z9dlbLjoBiKs1/+P737Ouc+2F0Idfa04DYXCSqeKWQwdUC/eul2L9woj/uaxBpsxkCup5EHI0jbLxyUglH6N8ok8nFprB6FJbC8HIBv9S5KKAThnzT336uo0jUhlrMdpeXsDk8TJSUze44bA0Pd3WOw2S82pei9veofV7jM1t153t5j2Ik2hzanB9MNq9FAlvDyb1ejgO9j907IFT1fcD7IK711OPh3JGk0g6nz6aYvVmu+yocB06dSeHv0en84PtfzD+rvIgvPzzC2Pw8r/nIRxlZWgZgZeoEn3rbWyl3OYEdBJlcckgkAhM3N2MnZ5Wx+RxLJwfo2ywn+iv2ggr45TCx7tNAQgIfxBNX30aJ9cmGf09VUsUAJ1TKGY9sLhc3ZupAxfN48oGXEHld/JurMnfuLPc8/rWW8LjbosFRpKTbRKUJ8b5Snw+OsHKin7H5Zmc61d8774xViCOiqoS+y9pkHyOL25nlkUAlvbeM8buNXgrFTeL8jBpnqtuSjrkhIh4wTOzUNg6J/sG4+mvN6Z3OdNd+9L/++g8C8OWHR+INDX6Flakp/vu7f4RUoYCKUMlkDnrYu9POnKCQzgctE8jE7BaVDjH9O6Nm2kXR1CJ6EofUwYLaGMrrlQIuPn4NLwjYGh4DhHy/21RXaufYQsfhmRe9kC+84VvbvkeNVKHAWz7wQYZXVtBqR0AFAt8HEf76O9/G1shwXMSvHCIRlDPukWUw922UGF4qdDymMWItNxJ/v4aWC7iRUsx6rI9nmZzZgiBqqkC7OZIhSDf/nTfHshT7fAbWY9NhYSB17Nup9lIoPg9cFpGLxILwLuAHdxzzMPCjwN8A3wv8pfknDp/d2o+2iALEf6ldOMoVxE5yQ2n610otglC7a0yikvbwy2HLXb8CQcrBq0RNZVhVm+9YFShn2tvmc4Mp/FJrlJUKFKomkMkbN3nTh/4Yr1wC4ppOT7z0W1iaPsO1e5/HuWeeaupdEbou82dO81fveHvXgvy6D/8po4uLTfWgVISNsVE+8kM/QOR5+MWAyZubuEHsEVaElak+8sNdvIcqfZtlhlbiKKhin8f6RN+u1XUBhpbyDC8nR6I1jrWciT/jzFaJsbkcXkMSajZXoZLxmL04Qv9akb7NMpErbI1m2objVjIeq5m7xuByy/Tsk1DVQER+EvgocXjs+1X1cRH5F8Ajqvow8JvA74jI08AKVmPqyMl8/J381pOZPYvC7cbaZB/pfAWvEtVj6wEiR/ASMtBF41LUhYEU2a1yHAUFILB6oo+tkQzpQoBfDqn4LqWsy/BykaGVQn31Usr6LJ1u30hpazTLwHqcFFabCCOBwkCKUtYjs5XjLf/tg03lwQkDXvjIx/nCt76d517wSkQizj71NJHn4QQBMxcu8Ndv/w6CVHehzKlikVNXrrYUDXRUGV1aJlUqUxKH6Wsb9Qqt8QehjM/lCFIu5YT+004Q4QYRQcplaLnQFHbcv1Gmb7PM3PlhKh0mYwmjjiJRWxUsnYor9I4s5BhcKbbUkRKNVxeFgRRbY1m2jrEJab/0VDJV9cPAh3ds+8WGx0XAEvuOiNd89Wf46c/MAg2rhW7zFW5zItdh9uIIfZtl0oWA0BNywxmGlvIMrrWGlkKcwbs00UeqUCG7FUdB5YZS9QJ0pT6/nqMBsD7Zx8Z4Fq8cEnlOnAHcAXWEuQvDDKwV6d8ooSJsjmbqZo7LX/kqklD1VcKIM89+jSde+ho++V3fSXZri6HVNTZHhrtLjIsUR5XIEVLFIpHj4CZEO0WOQ7pYwCs7oNryGYnGd/zLpwbjqCERJIyYnNmKo8YEiGiduAEURhfyLJxrX4SwnnvRJslxYzTN5miWMOXilcM4/6HNuUShf71UX3kYe8M+tWNM5uPvBNjOcH5vARjp2XgOHRHyQ2nyQ9vRKxvjWfo3yi1F4gDG5nJU0vEdc9JdcxLqSMe75KTjN8eyiY7S4ZWVxHBVB6Vva70e4VMYGKAwsHsLWImUsbkt+jfj7oih57A6Ue0TkZCwriJsjowwtNTG6Q705QL6nlol8BxWp/oZWimQqjqda9FESQuCOOKsc12lyJX2EWZCHJlW9Rtkt8odo9EE2vp0jN0xoTgmtIgC3DWrhVsh9F3mzg1x6sp60/baXfDYfI65CyMH94YaR+g41S54nbq6LZ2c5tyTT7V0rYvEYX1kgrXJvdVFOnFjI57Eq/OlF0SMz+f5/Bvfwqs/9qdNvo6K5/HFb30dketSyXgtdayg2YHvBxETM5txSPGO923nA0oKxW2kknYJPQep9a2ovy5OZmxxLnfIf6iZ9Iz9YUJxF2KisDe8atMbN+GOM1UMt+ui3CJ+MeDE9Y165rMobIxm4gk/4fzPvPB+XvLpv8ENmqOyItfhK699VZPZq5v3ThWClsneUcgNTPHX3/k2HvjUpxlcW2dreIhHX/sarj7/PiB2uo8sChJoqwlpx7m6vWfvKi9BhIWzQ0xdXa+WFIk3V9IuK1PNGdL5wRQji/nE0yhQznoUBu68viu3CyYUdziv+erP8MWl55odziYKeyJyJbmtKtxSyezmN1Gmrm20iNHgapFy2iOfMGlWMhk+/Pd/kNd+5E+ZmJ0DYG1inM+89dtZmR6LnctVX8NuQpZKqJZawy+HXLvvMteedzn5AEeYOz/M+GyOTEMZ7r18NDXHc600SiXtst7FiihIudy8Z4Sh1SJORSkMVv1CO6439F3WJvqaOuvV3nNtoo/NscyxDm+9VUwo7jBe89WfAeAN763Glb+3AHSuomp0ppzxiBwHiZpNHEq8mDj3jRXKGZfVE/0td/FuJWR0IR/byIH8UIrVyf4Wk1LfVjkxb8JRGFnKUxhMJdaE2hwb5U9/6AfwSyVElXImgxNETNzYoK/aZCfwHVamO1debZfLAezqdId4Il44N4RESmarzMTcVmLZ9qSpWIHcgE9xIIUbKqWMR6nP62rizuRqpeLjMw1uFFme6k8My90cz1Lst/yHw8CE4jamRRSgKgzGgSLCwplBpq5tIKrNbTyrv9PFkBPXN5g/N1R3bDthxMkr603NjvrXy6TzAbMXR5omfjeI2tplvErEmadWWD3Rz9Zocl5CJV1dcWi8MvHL4bZ/oBIxeWOzaWwQh6iKKqHnUMp6BL6DX26196+Pdx8uqo5QGEwRLiQLa9uclKxfT4RrPqHWVzvldHMSn1sJ40qwOz638blcXDsqIWjA8h8OB/tEbyOSVwvGUVDJeNy8d5TsVplUvsJgm+S88dktZi+OgMQFAyVqtdu7QUTfRqlpYixnvI7F6kTjelSVtFtftUikpAsVVCTulCdCJlfBq4QtE7IonLixSTnlUuzzyOYD0sUAJc4VWZnqZ+HsMJM3N/BLIbVOVhvjWXJ7rWEkwvy5IU7c3IzrWFXPVU67pIutY1Mh7uWxg0yuzMTMVrzS0liElk4N1o8dWCslf14KQysFlk911yPDuHVMKHqErRZuP9QRIlcY2Ci3qSkEfjni9DOrzJ0frhf020mtGGCjUJSyHuWMF9draucOqSaGLfb5DKwWGF3I12/RVYTF04OkSmFif24B3FDJFgIy1bpV9UKDoTIxu8XC2SHmLozgleNS3JWUh7r7M8uEKZfZiyN4pRA3jChnPCRSTj63hhNqXWSjai2lnfkLXjlhtRAqkzc2mLk0Qui7cSJi0udE3JzIODpMKI6AB98fF1Rrar5jonDb4ReDRFNHI/GKQRmf2SL0HbTQam5RINhp969G8Iws5Nom+AngVULS+QqjC/l4HPWxKCeub7Ay1Y86tG3rWjtPyzaF4aUCC+f8aumMg+lNHaRdguq51BFmL44wtFKol8nYHMmQG0y1RI4NVDvIJY1zcLXI2ol+SlmvbWFGvxwxvJjvyiFu3DomFAdMTRRqlVOBA2u8Yxwuw8uFxMlrJ7Xy5AsTg/Rtllteo0KiPV4dYXV6gFKfz/jsVmJeQinrM7ScbzsOJ4yqhftaEwR3G7NfPvy78MhzWDvRz9qJflKFgLG5Lcbn4oYk5ZRDrYm7E0QdVm2xzyJuS5pP9H0IMLxSYHM00zEXxTgYTChukZbVwp0kCqpIFKFddD87Dvil5DLWSahAJeWxeqIvNhFB3QexdHKgY8G7OOa/NZFMBbZG0kxf3Ugch6Pxambu/DCTNzbiooR0LmzYyM5quF4xYKQqSpvDGYptejHsB68UMnVtvUkMUw2O9Npiaee4I6BUM1NpbMJqd20qkC5UKAwe3z4RR4UJxR5INCHdScJQxa1UeMXHP8G9jz2OGwSsj4/xuW97E7MXzvd6aD0lrhab7J/YSeg5hJ6wNZolN5Su5hcIxX5/917ZEucljM3n6NuMw2pLGY/V6X6yG6W2L4skThwLUi6zl0bxSiF+qcLEbG7XlVAksN7QNW/s5gYDm9s5EdmtCoEnzNwzeiDhpEmrs07Jeo3bt6qrsXQxqOdeJFJ1gBuHjwlFGx54KF6mv835qe2Nd6AoJPFt/9+HmJyZqdcRGlle4U1/8Id87Pu/h4UzZ3o8ut6xMZ6tV4qt0ThHNSZxrUxv1xlS1+n+rrba08EJleWTAyydqp08Ptf4zFbiJFq7A2/swBakXYK0y3o5YmSptYd342uXp7dzQDK5MgObrY2cvEAZv7nJ8pn2hfq6JVVs0yiqC2qmpMh1OqZ6K1DcQ3a6sX9MKNgWhZ/7uz/SXE77LmRsbp6J2dmWYnNeEPDST36aj/7g3+vRyHpPOeOxdHqQsdm45SbEmcHrY1n6N0r45ZBy2mV9om9Phf9qeOWQEzc2cCtRPaR0bbKvqSCgdphdK+nkZkEbE32gyshyMfm60m5TgtrQYnIghQD9W5UD6QwW+G5LzkY3NF5/uU2tp5p2LJwbsmS6I+JYCsUDDwX0/d//vDk0Fe7IPgt7ZXx+vu2+sYWFIxzJ7UlhIMXNe0fxKhEq1EuKJ5XY2BOqTF1dx60l51WztEcW8wS+W29UVOzz4hDYHS8XINWm9zbETu7EtwXWJ5oT6tyw8wQuYYS6t+Yg3hjPkslXugoOqBE78xv8KNVEyHovjOq5As9h7vwwUYds80ZShYCh5Xws9BmPjbHsvoT+OHMsPq0HHgpaVwvHNDw1NzjY1q5b6O9P3H7sEOmq+9peyG4llzJ3FIaX83WhKGd9WG3jp+gQCTW4nuxbUVqrphb7ffw2IbpAV3fpbiVkaKVIJl8h9Bw2RjMUG96n1OezMtXcuzrpUnauFNYmm8ulB2mPG9VESK8S52vUkg+7IbtRYmJ2qz4Gvxw3TVo4M0QpIQnQSOauFIqBC1l+/jv+SfPGY7Ba6IbZC+eppNJ45UpTMlPF9/jqq1/Vs3Hd7TS1TU3aV6XY5ydmcCvJ2c0AfimMTTZtEvHShaCpRtXqiT4G10qJfb8LWbfpRkLCiMG1ItnNMmG1fWiQ8pi+sr4tfKU492N9PBubwarkRjL4pYChNsIXSfX9pdpadbqfcjZhShLZX2STKuPzuabIq1oW/PjcFjOXRsx01SU9CUAWkTER+ZiIPFX9PdrmuFBEHq3+dD3Vf2Nt9yYuxxV1HD76ru9na3SEiu9TTqUIXJevv+xlPPOiF/Z6eHct5bSX6GnW2r4qkeewOZyut2qtHaOOsDqZvOILPadjkuDw0o7y247D3NnBuoO89hO4sHJ625HtBBGnnltjeLFAphjSlws4cWOL6efWWlZH8cqogBM0m8C8Svt8iVLWZ+7CMPPnhrlxebSpodRB4JfCts2KvCDCTWiBayTTqxXFe4G/UNVfEpH3Vp//84TjCqr6wJGO7BiwOTbKh/7hjzE2v0C6WGB5aopy1voIHyalvjis1Ss1l6VQgbXJ+LOXKC5hka6W4KhN4LnhNOsT2bq/ZCdByiXwnMRJWUguMV7uT3HjeWP0bZTwKiGVtNdSaXV4KY/b0IOi9ttpl7chcemSxgm/1OeTTSh1Ekn8mVTShzcFdQyd1c6BA0YzvUppfAfwW9XHvwX83R6N4/giwsr0FLMXLphIHAUizJ0bIj+YQiUWgIrvsHhmsF7xdXQ+F3e/0+3JWIB0vtJWJGqsjSdXnQUIXadeHjyTK0P1LlsdITeSYX2yP57cd5hh+jbb17xqc5HojnNsDadRp7nbRxxiLPV8icMiSLkEvtNikYud5l4cfmt0Ra9WFFOqOlt9PAdMtTkuIyKPAAHwS6r6h+1OKCLvAd4DkB6aPMChGsbBoK7D8ulBllWRiOaCfKr0b5Ra7ryFuIz4wHKerfH2dY3ywxmixUJTyXOo3rlnPc48tdI0wy+dGty9Nai0cXy0RSns8KOo6zB7YZixuRzZXJzgV+zzWZlu7dlxGCydHmTqalw+3tH484gcYemUmaf3wqEJhYj8OckddX6h8YmqqkjbILrzqnpTRC4BfykiX1XVZ5IOVNX3Ae8DGDx52YyPxu6oMrhSZGA9bgqUH0yxMZY9/AlMBN2xQHAibRtKKsT2/62xbHvna6309/XNOFRWBFElN5jaFqCG80/c3GTm4ghhh+iureF0nGHdxSUpsHhqEBLMPaHvsnh2qB4SfJQO5Eo6Lh/fv1HCK8cmttxgKnGcRnsOTShU9c3t9onIvIicVNVZETkJJAbwq+rN6u9nReSvgJcCiUJhGHtC42qs6YY+0oMrRfo3ysxeHD5ys0RULXHezsHqRnG58MhrP8FV0h437xmJrymKO8mNLiSX9xCFgbUi6yfah0RvjGfpXy/htSng10jgO03hsYnsJhC1lZbTxbF7QJ3DN3Pd7fTKSPcw8KPVxz8K/NHOA0RkVETS1ccTwGuBrx3ZCI27mky+0iQSEP8zOGHEwGpyhvOhIsLaeKa9oadqMunmPKU+n8JAishzcDtEHXlBh1rlxBPszD0jbA36LRFSjUQCqx0EZ1dUGV7Mc/apVc4+tcKZp1cZWClsr0CMntMrofgl4C0i8hTw5upzROQVIvIb1WNeADwiIl8GPk7sozChMA6EzFZy1rCj1Av1HTVbY31UUq3O1wj2bS4p9flNobb1c1Z9Fx1RZWi5QP9WZdsB78UmqajBIb90cqCeMLgfRhZyDK0U6iG3bqiMLuYZ7IVgG4n0xJmtqsvAtyVsfwT4h9XHnwG+6YiHZhwTOnV2i/bZ9e0gmD83zNT1DbxyiFb9DKWsx8r0/pyvm6MZBleLqG47uZX4GnPDnc0xfZvlODeiQbn8AJxcheuXq1Vmb9FEFCf0tTrxHYXhxTyboxlLirsNsPgw41iSG0onxtFHwpHbsyVU/GKAE0R4lZDQjVOW1RHWJ7IsnB3adzntyHOYuzBMMes1VaCduzCy6zmHlwqJUVhOFJHJBwcygfvlqG28raMwtDNZ0OgJd2UJD8PYjSDl1msRQezcVYmT2/IH2MCnI6qMLOQZXCuCbLc3rSe2RRHDS3Ffh8ZeEntBImVsbivu7eAAGrdb7SbZrK0PQ3f3b3RL4Dtt27oKMLxSJEh7B561bewNEwrj2JIbyVDsT9G3VUIiKAz4h5opvJOh5QKDa8WW0NVGHI2P2xjN7Kui69jc1rbTvvoeqWLIxM2tuEx3B8ppl0whuX1qOX0wRRMjzyGsRnslaVft+k0oeouZnoxjTeg7bI5m2RjPHqlIoMrQSrFjjaY6Auli+xLjbV8WKf2b5UTzUaZQwd1lVbA22dfiCI8k7otRPqAy3RJpW5GocVCrF2P/mFAYRg8Qpd4caVeU2G+xR5wwahtuqyItBfx2UurzWTw9SKVaBkMl9m/Mnx0+MAezRLs3/D6o1Yuxf8z0ZBg9QIWOCXb144irw1b2MVmGnhPXXkrKR1DtqudGcSDFzEAKiTT2axxwBFLkCqHrtF017Oz1bfQGW1EYRi8QYW0822LaqbkS4ppE8Upi4ew+W36KsDaZ/B6B5+xqemp6jXProbCJiLByotXEpcTXvnh6sKmXhtEbbEVhGD1iazSDVPs4SPWuPzeUYms4TaoUEfpOXGTvFibordEsijBei+5iu9Dg9JV1Zi6NHElxvk4UhtIsug7DS3n8UkjgCRvj2aY+30ZvMaEwjF4hwuZ4ls2xDG4QEblOPbehfIDWFtHYbNTa6U0ZWCs2daXrFcV+n2L/cK+HYbTBTE+G0WtECH1330l1u5HZUdOqhqNxzSvD2A0TCsO4y0lq3gNVX8UuDZEMA0woDOOuZ2skk5iJrRLXgjKM3TAfhWHc5QQpl6VTg0zMbm5vVFie7qdyQIlzAJmtMkMrRdwgotjnszGe2bWFq3FnYEJhGMeAwmCK6/1jZAqxT6KU9Q/UJzK0lG+qNOuXQwY2SsxeGO4qX8O4vTHTk2EcFxyh2J+i2J86UJFwgoiRHeXIhTjrenQhd2DvY/QOEwrDMG6JTL6S6AMRIJOzqKq7gZ4IhYh8n4g8LiKRiLyiw3FvFZFviMjTIvLeoxyjYRjd0Wl1otZ06K6gVyuKx4B3Ap9sd4CIuMCvAg8B9wM/ICL3H83wDMPolkKbEhuRxJnmxp1PT4RCVb+uqt/Y5bBXAU+r6rOqWgZ+H3jH4Y/OMIw94cQ1mSKhXrMpkjjaam2y91nfxq1zO0c9nQauNzy/AXxzu4NF5D3AewDSQ5OHOzLDMJoo9qe4ec8o/Rsl3CCilPUpDNxanSrj9uHQhEJE/hyYTtj1C6r6Rwf9fqr6PuB9AIMnL3dZ6N8wjIMi8hw2x7K9HoZxCByaUKjqm2/xFDeBsw3Pz1S3GYZhGEfI7Rwe+3ngsohcFJEU8C7g4R6PyTAM49jRq/DY7xaRG8CDwJ+IyEer20+JyIcBVDUAfhL4KPB14AOq+ngvxmsYhnGc6YkzW1U/BHwoYfsM8LaG5x8GPnyEQzMMwzB2cDubngzDMIzbABMKwzAMoyMmFIZhGEZHTCgMwzCMjphQGIZhGB0xoTAMwzA6YkJhGIZhdMSEwjAMw+iICYVhGIbRERMKwzAMoyMmFIZhGEZHTCgMwzCMjphQGIZhGB0xoTAMwzA6YkJhGIZhdMSEwjAMw+iICYVhGIbRkV61Qv0+EXlcRCIReUWH466IyFdF5FEReeQox2gYhmHE9KQVKvAY8E7g17s49o2qunTI4zEMwzDa0Kue2V8HEJFevL1hGIaxB253H4UCfyYiXxCR93Q6UETeIyKPiMgjlfz6EQ3PMAzj7ufQVhQi8ufAdMKuX1DVP+ryNK9T1ZsicgL4mIg8oaqfTDpQVd8HvA9g8ORl3degDcMwjBYOTShU9c0HcI6b1d8LIvIh4FVAolAYhmEYh8Nta3oSkX4RGaw9Bv4OsRPcMAzDOEJ6FR773SJyA3gQ+BMR+Wh1+ykR+XD1sCngUyLyZeBzwJ+o6p/2YryGYRjHmV5FPX0I+FDC9hngbdXHzwIvOeKhGYZhGDu4bU1PhmEYxu2BCYVhGIbRERMKwzAMoyMmFIZhGEZHTCgMwzCMjphQGIZhGB0xoTAMwzA6YkJhGIZhdMSEwjAMw+iICYVhGIbRERMKwzAMoyMmFIZhGEZHTCgMwzCMjphQGIZhGB0xoTAMwzA6YkJhGIZhdERUtddjOHBEZBG4esCnnQCWDvictzPH6XqP07WCXe/dzn6v97yqTibtuCuF4jAQkUdU9RW9HsdRcZyu9zhdK9j13u0cxvWa6ckwDMPoiAmFYRiG0RETiu55X68HcMQcp+s9TtcKdr13Owd+veajMAzDMDpiKwrDMAyjIyYUhmEYRkdMKPaAiPwbEXlCRL4iIh8SkZFej+mwEJHvE5HHRSQSkbs2tFBE3ioi3xCRp0Xkvb0ez2EiIu8XkQUReazXYzlsROSsiHxcRL5W/R7/dK/HdJiISEZEPiciX65e7/95kOc3odgbHwNepKovBp4Efq7H4zlMHgPeCXyy1wM5LETEBX4VeAi4H/gBEbm/t6M6VP4T8NZeD+KICICfUdX7gVcDP3GX/21LwJtU9SXAA8BbReTVB3VyE4o9oKp/pqpB9elngTO9HM9hoqpfV9Vv9Hoch8yrgKdV9VlVLQO/D7yjx2M6NFT1k8BKr8dxFKjqrKp+sfp4E/g6cLq3ozo8NGar+tSv/hxYpJIJxf75MeAjvR6EcUucBq43PL/BXTyZHFdE5ALwUuBvezyUQ0VEXBF5FFgAPqaqB3a93kGd6G5BRP4cmE7Y9Quq+kfVY36BeGn7u0c5toOmm2s1jDsZERkAPgj8M1Xd6PV4DhNVDYEHqr7TD4nIi1T1QPxRJhQ7UNU3d9ovIu8GvhP4Nr3Dk1B2u9ZjwE3gbMPzM9Vtxl2AiPjEIvG7qvoHvR7PUaGqayLycWJ/1IEIhZme9oCIvBX4WeC7VDXf6/EYt8zngcsiclFEUsC7gId7PCbjABARAX4T+Lqq/rtej+ewEZHJWhSmiGSBtwBPHNT5TSj2xq8Ag8DHRORREfm1Xg/osBCR7xaRG8CDwJ+IyEd7PaaDphqY8JPAR4mdnR9Q1cd7O6rDQ0R+D/gb4D4RuSEiP97rMR0irwV+GHhT9X/1URF5W68HdYicBD4uIl8hvgH6mKr+94M6uZXwMAzDMDpiKwrDMAyjIyYUhmEYRkdMKAzDMIyOmFAYhmEYHTGhMAzDMDpiQmEYR4iI/KmIrInIgYUuGsZhY0JhGEfLvyGO7zeMOwYTCsM4BETkldW+JRkR6a/2CHiRqv4FsNnr8RnGXrBaT4ZxCKjq50XkYeBfAlngPx9UgTbDOGpMKAzj8PgXxOUUisBP9XgshrFvzPRkGIfHODBAXB8s0+OxGMa+MaEwjMPj14H/jbhvyb/u8VgMY9+Y6ckwDgER+RGgoqr/pdqb+zMi8ibg/wSeDwxUq/P+uKredZV5jbsLqx5rGIZhdMRMT4ZhGEZHTCgMwzCMjphQGIZhGB0xoTAMwzA6YkJhGIZhdMSEwjAMw+iICYVhGIbRkf8f6/b2Hn5Ile4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAB8hUlEQVR4nO2ddXQUWdOHn9tj8YSEEMHd3WVx12WXdXd3d/nW3/Vd1t1dYHF3d4cEAglx95Hu+/0xITCZSYgL9HMOh9B2a5pM9e26Vb8SUkp0dHR0dM59lLo2QEdHR0endtAdvo6Ojs55gu7wdXR0dM4TdIevo6Ojc56gO3wdHR2d8wTd4evo6OicJ+gOX0enHAghYoQQY4t+flII8UUtjDlSCBFX0+PonD8Y69oAHZ2GhpTylfIcJ4T4BoiTUj5dsxbp6JQPfYavc94hhNAnOjrnJbrD1zlnKAq7PCGE2C+EyBBCfC2E8DoVGhFCPCaESAS+FkIoQojHhRDRQog0IcRvQojgM651jRDieNG+p0qM87wQ4ocz/j1MCLFeCJEphIgVQlwvhLgVuAp4VAiRK4SYW3RspBDiTyFEihDimBDi3jOu4y2E+KbI9v1A/5q+ZzrnF7rD1znXuAqYALQFOgCnwinhQDDQErgVuBe4EBgBRAIZwGwAIUQX4GPgmqJ9IUAzT4MJIVoAC4APgFCgF7BTSvkZ8CPwhpTST0o5TQihAHOBXUBTYAxwvxBiQtHlniuyu23RZ7iuqjdDR+dMdIevc67xoZQyVkqZDrwMXFG0XQOek1JapZQFwG3AU1LKOCmlFXgemFUU7pkF/CelXF2075mi8z1xFbBUSvmzlNIupUyTUu4s5dj+QKiU8kUppU1KeRT4HLi8aP+lwMtSynQpZSzwfhXug46OG3osU+dcI/aMn4/jnKEDpEgpC8/Y1xL4WwhxpiNXgbCic4qvI6XME0KklTJecyC6nLa1BCKFEJlnbDMAa4p+dhm3yH4dnWpDd/g65xrNz/i5BRBf9HNJWdhY4EYp5bqSFxBCJACdz/i3D86wjidigQGl7PM05jEpZftSjk/Aaf++M+zX0ak29JCOzrnGXUKIZkULsE8Cv5Zy3CfAy0KIlgBCiFAhxIyifX8AU4sWY83Ai5T+XfkRGCuEuFQIYRRChAghehXtSwLanHHsZiC7aPHYWwhhEEJ0E0KcWpz9DXhCCNFICNEMuKfiH19Hp3R0h69zrvETsBg4WvTnpVKOew+YAywWQuQAG4GBAFLKfcBdRddKwLmg67EASkp5ApgMPASkAzuBnkW7vwS6FGXv/COlVIFpOBd2jwGpwBdAYNHxL+AM4xwr+gzfV/TD6+iUhdAboOicKwghYoCbpZRL69oWHZ36iD7D19HR0TlP0B2+jo6OznmCHtLR0dHROU/QZ/g6Ojo65wn1Og+/cePGslWrVnVtho6Ojk6DYdu2balSylBP++q1w2/VqhVbt26tazN0dHR0GgxCiFIrtPWQjo6Ojs55gu7wdXR0dM4TdIevo6Ojc56gO3wdHR2d8wTd4etUGlt2HolrdpN1OPbsB+vo6NQ59TpLR6f+svv1n9n5wncoZhOa3UFwjzaMnfMSXqFBdW2ajo5OKegzfJ0Kc2Luenb93w+ohTbs2XmoBVZStx1m+azn69o0AKSmkXngODnHEuraFB2deoU+w9epMPve+QNHfqHLNulQSd1yiNzYZPyaN6kjyyBhxQ5WXf0K9ux8pCbxbxvJmL9eIKBd0zqzSUenvqDP8HUqTGFypsftismINS27do05g7y4FJZOf5qChHQceYWoBVYy98Uwf8QDaA61zuzS0akv6A5fp8I0mzwQxezh5VCAV2ggaTujsOcW1Lpdh79a4O7YpcSRW8DJxXrFto6O7vB1Kky3hy/FEhKAYjE5NwiB4m0mqGsr/mx/DQtGPsDPYRez/bmvqU011rwTyWhWu9t2qWkUJJTWg1xH5/xBj+HrVBjvJo24cNcX7P/gL04u3Ipv81A0TSN+0RbUQjtqodPp7nv7D3ybh9Hx5snY8wo49Nk8jv+9BktwAF3uvpDIsX2r1a6I0b059tsKHLkl1hc0SZMhXat1LB2dhki91sPv16+f1MXT6j+qzc6PQdNRC21u+/zbNeXCnZ8xd+Bd5BxNQC2wAmD08aLH01fR8/Erq9WOuf3vIPvIyWJbDD4WWl44jBE/PFlt4+jo1GeEENuklP087dNDOjpVxpFbgNQ0j/sKUzI58u1ico6ddvYAjvxCdr34PYVpWdVmh8FsYsq6D+j51FUEdWlJSJ/2DHrvboZ/93i1jaGj05DRQzo6VcbcyB/vsEbkxaa47hCCsKFdiZ2zHjXf6naeYjaSsvEAzacMqjZbTH7e9Hzqano+dXW1XVNH51xBn+HrVBkhBIM+vBeDtwWEcG4zKBh9vej32q14hzcCRbidJzWJJSSgts3V0Tlv0R2+TrXQYtoQJi79H80mDySgQzPaXDmG6Vs/plG31nS6cwYGL7PrCYrAKzSQ0IGd68ZgHZ3zEH3RVqdWOPTlfDbfNxthNCBVFZ/Ixoyb/yoBbSPr2jQdnXOKshZt9Ri+Tq3Q8abJtL1iNKlbDmEK9CW4Z1uEcA/z6Ojo1By6w9epNYw+XoSP6FnXZrih2R1oqoaxZNhJR+ccQ3f45zC5sclkHzlJYIdm+Dbz2MT+vKYwLYv1t79D7JwNSE2jcb+ODP38IRp1a13Xpuno1Ai6w68GktbvY8/rP5NzNIHwET3p/tjldaoYqVptrLrmVeL+24BiMaNZ7bSYOYzh3zyGYtL/ywGklCwc8zBZB06g2R0ApGw+yLwL7mPW4e9qRddfSknCsu0c+XYR0qHS5ooxNJ86CKHouRQ6NYP+7a8ix35byZob3yjOM886HMvRn5YxfevH+LepmwXJbU9+Sdy8jS4yByf+WceO57+l78s31YlN9Y3kdXvJOZpQ7OwBkBLNZufwVwvo8dgVNW7D5oc/5vBn83DkOaUgYudtpPnUwYz48Sl9fUOnRtCnElVAU1U23P2+S1GRtKvYsvPZ/tw3dWbXoc/noRa4yhyoBVYOfjKnjiyqf2RHnfS4XS2wkbkvpsbHzzx4gkOfzC129gCO3EJi524ged3eGh9f5/xEd/hVID8u1a0RCACaRsKKnbVuDzjDBGc6kTOx59S+ZHF9pVGPNuBBDsLg40XjAZ1qfPz4xVvxlBHtyC8kdt7GGh9f5/xEd/hVwBzki1Q9a8h4NwmqXWOKEELQuH9Hj/uaDO5Sy9bUXxr36UDjgZ1dCsKEQcHs7027a8fX+Pgmfx8Ug/vXTzGZMAX41vj4OucnusOvAuZAP1pMG3xaF74Io48X3R+5vI6sgsEf3ovRzwthNAAgTAaMft4Mev+eGhmvMC2Lgx/PYdfLP5K0YR/xy3dw8JO5JK7ZXWN6+NbMXPa8+StLpj3Jpgc/KjVEUxbj/nuFzvfMxNI4EKO/N61mjWDa1o/RbA5yjye52W7PyWfzI5/wS9NL+bXZpWx98gvseZV7a2oxc5jH7cKg0PbKMZW6po7O2dArbauIPbeAVVe+RPzS7ShmI5pdpcfjl9Pz6WvqdOEtOzqevW/9RvrOaEL6tqfbg5fg3zqi2sdJWLmTpdOeQkpZvG4gDALFZEIYFAI7NWfi0jcxV+OstSApnTl9b8eakYtaYEWYDBhMJsbOfYmIUb2rdN2VV75M8vp9CEXBq3EAw75+jMjRvdEcKnP63U7WodjiJisGLzONurdm6oYPK5VZE790m0vjd+lQGfb1Y7S+ZESlP4OOTlmVtrrDryby41PJO5lKUKcWmPx96tqcWkFzqPwcfjG29JxSj1EsJtpdN4GhnzxQbeOuv+NdDn81H2l3bWfo1yqMWdE/VupBK6Xkn543k3UwFnlGm0Sjjxczdn1Oxt5jrL7mVRwlWjca/bwZ/efzNB3n8ft1VhyFNhJX7EBzqESM6o3Jz7tS19HROYWuh18L+EQ2JrR/p/PG2QOkbDrg4hw9oVntHP1pWbWOe2LuejdnD1CQmEH+ydRKXTN180FyYxLdPo9qd3Dwo39J337EzdkDqIU20rYfqdSYAEYvM80mDaTFtCG6s9epcXSHr1PjuOS6VwOlPVSlJjH6epV5rpSS/IQ0rBmubyV5sckewzLS7iA7Oh6/VuEer23wNuPXMqwC1uvo1B26w9epNKEDOxcvDJeGMCg0mzywWsftcveFGHwsruMYDYSP6ImlkX+p5yWt3cOfHa7lj7ZX80vELBaNf5SCpHQAQvp1RLO5P5iMPhYiRvWi1SUjnBk9Z4aLFIHJx4sWF3pegNXRqW/oDr+BoDlU7B5CCnWJYjQw+o/nMfp6oXh7Fh4z+nkz8N27qnXcTndMp/WlIzF4mTEF+GD09aJR11aM+OGJUs/JPZ7E4kmPkxMdj1poQ7M5SFi1k4VjH0FKiX+rcNpcMRqjz+lZvGIyYg4OoP0NEzH5eTNl7fs07tsBxWxEMRsJHdiZKeve10XXdBoM+qJtPcdRaGPzAx8R9e0iNIeKf+twBn/8AJGjK5+NUt0UpmWx+aFPOPbzcrfwjcHbzBXJf2Hyrf74dE5MIuk7ovBtHkpI3w5lLtZufeJz9r3zh9ss3ujnzYRFr9NkcFekpnHw07nseP5brKnZAFiC/en/v9tof/3E4nOs6dkgRJlvEzo6dYW+aNuAWX3NK0R9uwi10IZ0qGQfOcnS6U+Rvju6rk0rxiskkMLkDI+xesVkJHltzUgF+LcKp+XMYTTu1/GsmTnZR056DNkgnLN/AKEoFKZkoeYVgpQgJda0bDbc/T4xf61BSsmJOetZfd1rrLjkBY58vbDa1yd0dGqSahFPE0J8BUwFkqWU3TzsF8B7wGQgH7heSrm9OsY+l8mPTyXuv42oRXnfp9AK7ex541dG/PBkpa8tpSR53V6S1u3FOzyYVhcPr1KWSKnnStzi7dWFo9DG/vf+JOq7xQghaHfDRLrcMxOD2eR2bPjwHsQt3OzWTF3aVRr3c1Yma6rKvrd+x1HiGDXfyo7nviFx5U6OfL2wWLoiZdMBor5fwoQlb6AYyl7L0NGpD1TXDP8bYGIZ+ycB7Yv+3Ap8XE3jntPkxCSheIgPS00jc//xSl9XsztYMuUJFk96nO3PfM3Gez7gt+aXkbaj8umFHW+d6hL/PoXRx0KTIV0rfd3SkJrGorEPs/PF78g6cILM/cfZ8dw3LJn0uMfq3nbXT8AS7I8wnXbMBh8LLS4cSkC7poBTa0i12tzOBciNSeTwF/Ndxc7yCkndeoi4+Zuq+dPp6NQM1eLwpZSrgfQyDpkBfCedbASChBDVX/Z5jhHYsRlqobsDEkZDlZp/H/rsPxJX78aRV4h0qDhyC7Bl5bH84ucrLYUQObYvXR68GIOXGaOfN6YAHywhAYyb/2qNzH7jl2wjffdRF1VQNd9KyuaDJK3d43a8OcCX6Vs/oePNk/GOCMa/XVP6vnQjw79/4oxjfDAH+nkcz6tJECjuYSNHbgFxCzaXy2YpJXELN7Pu1rfYeP9s0nZGles8HZ3qorb08JsCsWf8O65oW0LJA4UQt+J8C6BFixa1Ylx9xSskkI63TOHIVwtOhxmEwOhtpvujl1X6uoe/WuAW2gAoTMkk61AsQZ0qd9/7vngjnW6bRuKKnZiD/Igc389jeKU6SNqwz3MhlNVO8vp9hF/Qw22fd5NGDJ59P4Nn3+/xmkJR6PvqzWy89wOX+2PwsdD++onsffNXSpZ7KWZjuZqlSClZefn/ETd/k/MtQVE4/Pk8+r5yE13vu/is5+voVAe1tWjraUXN41RSSvmZlLKflLJfaKjelm/gu3fR56Ub8W0eitHPm6bj+zFl/YdV08UpaxZfxawt36ahtL16HM2nDq4xZw/gG9nYYwjJ4GXGJ7Jxpa/b4cZJDP/mMYK6tMTk703ooM6Mn/8a3R65DOHhTUUYDLS/fsJZr3ty0ZbTzh5A01ALrGx+4CPW3/FOvUu51Tk3qa0ZfhzQ/Ix/NwPia2nsBo1QFLreP4uu98+qtmu2u24C2w5/6TbLt4QEEFjJ2X1t0/qykWx59DO37YrJSMuLqlYI1WrWCFrNchcwm7Dkfyyd9hSOvAJnAZaUXPDt4+V6+B7/a02pfQoOf7mA1C2HmLb5I729oU6NUlsOfw5wtxDiF2AgkCWldAvn6NQOne6Yzol/1pG67TCO3AKMPhaEwUDLmcP4p8fNSFWl7dXj6Hr/xR5n0fUBc6AfE5e/ycrLXyrSz5H4tQxj1G/PnTXnvyApHVtmHv5tI1HOUil8Jo37duCyuF9J2XwQtdBGk8FdMFjKV3Rl9PUCRfHYdEU6VLIOxxG/dDtNx1dOhE1HpzxUS+GVEOJnYCTQGEgCngNMAFLKT4rSMj/EmcmTD9wgpTxrRZVeeFVzSE0jYfkOktbuxSusEcf/Wk3yhv3Fs36Dt5lG3VozZf0H9Tbl0FFgJXH1bqypWTTu34nADs3KPN6ans3KK14mcfUuFJOzWnbw7Ptoc9moGrc1bWcU84bei1rgvnYCzoX4vi/dSPdH666Pgs65QVmFV9Uyw5dSltnxWTqfKtVbX69zVux5BeTHp+Hb1D3eLRSFyLF9iRzbl+SN+9n66KcuIR61wEbmgRPEzd9Ei2lDnHr3hTYMXuZ60WA75q81rLn+dURR5owwGhj7z/8RNqx7qecsnfEMqVsOotkcxZr2a2/6H/6tIwit4baGIb3a0feVm9jy6KcelT4N3mb8aqBfgY7OmegBw3MQqWlsfvhjfm5yEXP63s5PoRex7emvSk25TNmwH82DE3LkFrD/vb848PG//Nbycn4ImMpPITPY9dpPNdbJqjzkHk8q1qa3Z+djz87Hlp7DkilPlLr4mR11krTtR9yqbdUCG3vf/q02zKbrfRdz0cFvMPp5u6QxOFsr+tBixpBasUPn/EV3+LVE7PxN/DfkHn5pdinLL36OzP0xxfs0VaWgFGmCyrDrlZ84+Mlc1AIbjtwC1AIr+9/9k/3v/eXxeO/IEBSL55e9xFW72HjX++THpSJVDVtmHrtf+pFdL31fLbZWhqgfliBV9weUlHDi33Uez8mPT0Mxe/iMUpJ1KJZ97/zB3rd/J+dozeYSBLSOZPq2T2gyuCvCZECYDIRd0J0p6z6o0awmHR3QxdNqhcNfLXDN7RYCo68XU9d/QOKqXWx/5mvUQhvCoNDlgYvp8/z1VcrW+DF4BrbMXLft3uHBXB7/u9t2R6GN31pcjjUtu9xpmUZ/b65K+7dCi57VxaaHPmb/O3+4bTd4m+n/v9vpfOcMt33WzFx+jbzEvZDNoCCEQBgUkCAUQZ+XbqTbg5d4HFtKScwfqzn8xTw0h0q7a8fT9qqxlboP9px8EEJvfKJTrejiaXWI5lDZ8ohrfBwpceQVsub619ny2GfYMnNRC2048grZ9/Yf7HzphzKvKTWNI98s5L8h9zCn3+3se/cPHEWOTGqaR2cPUJia5XG70cvM5FXvENSlJRjK9yuh2RyljlPTNJvYv9RGJ5Fj+3jcbgnyo/ujl7meZ1RA1ZAOFc1qR7PZUQttbH/6K7KOxHm8ztob3mDtjW8Qv2QbiSt2svHu91k6/elKhbhM/j4enX3W4VjW3vwmc/rdzrpb3yrVFh2diqI7/BomPyHNozwCUpK+K9otF17Nt7Lvrd+RHtL3TrHqmlfYeM8HpGzcT9r2I2x7+isWjn4QzaEiFGfjcE8E92xb6jWDOrdk5p4v6XT7NI8SAiUx+nhhbuSHNT2bPW/9xurrXmP/+39hy6r5h0Dk2L6Ej+rl4ryNvl50uGkygR08f3aAXs9dx7CvHqXxgE74t4mgycAuKBb3MIpUNY7/tcZte/quaI79scpNTydp7W4Slu+o4qdykrLlIHP63k7Ut4tI236EI18vZE6f20jdeqharq9zfqM7/BrGEuxfaphEap63OwqsOEpJ30vfc5QT/6x3cTpqvpWMvTHE/rcBgIHv3Y3B+wyFSiEw+FgY8PYdZ7W3w02TnZ2dysDo40WfF68nJzqePzpcy45nvyH6+yVse/IL/uhwLTkxiWcdpyoIIRjz94sM/eJhmk0ZRMuLhjHy12cZ+N7dZz2v9SUjmLZxNrOifqDVRRd4PE4iPdaBJ6zYiVTdH8SO3ELil26r1GcpycZ7PnBqHBWNI1UNR14hG+/9oFqur3N+ozv8Gsbk603bq8e6OmCc+iz+7SI9nuMVGlRqwVPSmj148kaO3ILiWWbTcf2YuPR/RI7vh2/zUJpNGsDkle941JcpSUivdnR9cBYGb2cx1qnuTj7NQzF4mfFvG8ngj+6j810Xsv6Od7Fl5BbnljvyrdjSc9h0/+yzjlNVFIOBNpeNYtzclxn9xws0nzywQumihalZxM7bUJye6XJto8Fjta4l2B/F5L7wa/AyY2kcWLEP4AHV4Sh1Jp+6RZ/h61Sd2qq0Pa8Z9OG9SCk5+uMyhEFxFtm8fBONurdm8cTHXYpxDD4WBrx1e6nOyzusEYrRiIprmEixmPBpelpDpsngrkxY+Hql7O374o20vXw0x/9Zh2I00OqSEW7yAVLTSFy1y+3tRaoaJxdtqdS4tYWUkoVjHybrwAm3fYrFRK9nr/UYGmo5c5jHmbZQBG2vHFNpe7KjTrL+9ndIWLkTSnnrK61xu45ORdAdfi1gMJsY9vnDDHz7TgpTMvFt3qR4pjhh8Rtse+pLMvYcw79NBL2fv47mUwaVeq3mUwd5TC9UjAbaXTu+2mwO6tKKoC6tSj9ACBSjwWMXqfqeXpiycT85RxPc0mCFQaHDTZPo8ZjnOkKTvw/jF77OsgufccoyC+c5I39+Bp+IkErZYsvK5b/Bd2PNyCnV2Ru8LXS6YzqaQyVt22EQgpC+7ettBbRO/UV3+OXEmp5N9E/LyYtNJmxoN5pNGVjhL5zJ38dtphY2tBuTV75T7mtoNgdj/v0/1lz7GgWJGaAIjD5ejPz5qUo7ncoghKD1ZaM49utKNNvpsIhiMdH22nG1Zkd5yU9IY/PDHxM7dyOyKDOnJFLVKEzOLPM6TQZ14bKTv5G65RDSoRI6sLPHME95sGXlsuGu97Bn53t09kZfL6Sq0eriC4gY3ZtfIi9Bs9qRSIzeFkb/9SJhNdBcRufcRXf45SB16yEWjn0Yza6iFlg5+PEcAjs2Z/Kqd2pNXCw/MZ01171G4spdICCwY3Mu+PZR/Ns2pVH31igGA5pDJW7+JjIPHCeoS0uaTa74Q6kiDHzvbjL3x5B1KK44tBPcsy39Xr2lxsasDI78QuYOvJOCxAyPjv4URh8LTYa6deh0QzEYaDKoS5Vsil++g2Uznka12j3apHiZ6XjbNLo9fCmK0cDvra90zQ7KKWDJpMe49MQvpTZt0dEpie7wz8KpxhX27PzibY7cAjL3xbDvnT/o+dTVNW+DprFgxP3kHEssdg4Ze46x9qY3ufjwdwhFoSA5g3nD7qMwKR1HgQ2jtxnviBCmrH0fr2pYUPSEJciPaZs/JnnDfrIPxRLUtRWN+5+9oXhtc/SXFdgycst09gDCbCyXtn1VcRTaWH7Rs6XKJQMgJfHLtpO2/TB+LcI8pulKzVkE1uGmyTVorc65hO7wz0JuTCL5Ce7dG9VCG1HfL6kVh5+wchf5ieluDku12lk49hGyD8eejkcXRQbsOQWohYlsuv9DRvzwVI3ZJoQgbEjXeh1aSNtxpGznWoRmtZO0Zg/Npw6uUXsSV+4s+wBFoNkdZOyKdv7TZPQou6Fa7aUW0+noeEJPyzwLzpJ7z4tpnjognYlmdxD73wYOfjqX9KIvb2XIPZbgMcarWe1k7jvmXDiVuGVranYHx/9aW+lxzxWCOrfEUI7Qm1pgY/uz39S4PWW9aQhFccpqnPH/XZrGksFsImJU72q3T+fcRZ/hnwW/FmH4t4skc99xF8dv8LHQ4aZJpZ6XHR3P/OH348gtQHOoIKDphP6M+vXZCuuuhPTtULrGzVkq+uuzVlJt0fbqsex47hvUQmupmTCnqGnxNIDwkb2QDvcQjdHXi2aTBxLz+yr3kwQoxtMzfaOvF80mDahxWWedcwt9hl8ORv32HJbGARj9vVHMJoy+XoQN606Xe2aWes6KS56nICkde04+aoEVNd/KyUVbOPjJnAqPH9KrHWEX9HAt3iqHuJowGmgxrWbDEw0Bc4AvUzd8SPjwHkV1EEqpmTWBnWu+xaPJz5thXz+KwduMUpTCavT1otmUgTQZ3NWtSA+cqZltrxlH2PAehI/syZCP72fkL8/UuK065xa6WmY5cRTaiJ2znvyTqYQO7kLowM6lLk7mxaXwZ4drPWroNOrWmgt3f1Hh8VWrjd2v/8LhL+ajWe2E9GlH4tq9qKXEpo1+3liC/Zm6cTY+4cEVHu9cRbM7QAgOffYfW0o0fTF4Wxj338u1FibJPZ5E9E/LsGfl0mzyIMIu6I41NYvf21zltuZg8vfh0thfMAf41optOg2XstQydYdfA2RHx/NPj5s9trMLaN+Uiw99V+UxNFXl7243kXtmAZFBwRLoS/ubpxDSsy0tLxqGwWLm+D9r2fXSD+TFpRI6qDN9X7qRRt1aV9mG+oCmqux+9Wf2v/cntsxcQvq0Z+B7d5crbTLqu0XsePF78k+mEtSpBf3/dxuRY/vWgtVlk7BiBysufbGoqE1i8PFizF8v0GRw/V0YryiOovTmo78sx+jjRac7ptP60pH1LsOrIaI7/FpGSsnvba4i73iSy3aDl5nuj15G7+evr5ZxCtOy2PTARxz/YzVS02gxfQgD37vbpQDr4Mdz2PzIJyW0+C1M3TCbRl1bVYsddcn6O97lyDcL0KynFzaNPhambpzdoB9qxVW1iqBx3w5V6o9Q31BtduYNuYfMAyeKJ0VGXy/aXjueIbPvq2PrGj66w68DktbvY/HEx5AOFbXQhtHPG79WYUxd90Gt6aJodgc/NbkIe1ae6w4haDlzKKP/eKFW7KgpMg/F8neX690XroWg9WUjGfnT03Vhls5ZOPrzctbd9haOXNewlcHLzMy9X+LfxrOoYH0nL9fGkYPJ+PiYadcpFKUcMuM1QY03MddxJ2xIVy4+/B1R3y0i91gi4SN60vKiC2pVZyYvLsVzCqCUJG88UGt21BQb7njHc5ZSUa8BTVWd3azOodnxucDJRVvcnD2AMCokrtnTIB3+4rkH+O37HRiNClJKvH3MPPL8GJo2D6pr01zQHX4N4hMeTI9HPQtxlYdT3atMAb6VaqHnFRrkUb8dnOmmDRlNVUlau7fU/db0HL7zmghC0GLGEIZ8dD9eoUG1Zl9hSib73v2Tk0u24ds8lG4PXVqvi9NqE+/IEI/FZEIoeDcJqhujqkDUwRR+/2EHdpuK3eacYBUWOvjf88t4+/OL6mym7wl96lNPOfLdIn6JvIRfIi/lx0bT2frEF2geGneXhcnPmzZXjfGoxd/z6ZqvEK4u0nZGsfv1nzn48ZzTlaWSMvvvFqZkFouknZiznnkX3Ffh+1dZCpLS+afHzex9+3fSth7ixD/rWDT+EaK+X1wr41szc9k/+x823PM+Ud8tLm5/WV/oePNkRMkJTFGf58hxHiMRdUphgZ21y6P578+9HNyX5FbbsmzBIWy2Er9bEgrybUQdTKlFS8+OPsOvBvIT09nx7NecmLuhKONgGl3vn1XpBt8n5q5nw53vFS+0ajY7+z/4G6RGv9durdC1Bs++D6EoRH+/BBSBwctM/zduo/nkgZWyrTaRUrLu1rc4+vNyNJsDxWxk8yOfMObPF2g6oT/hI3uRuGKnu86MQYB6+ksp7Sr5CWnEL9lGs4kDatzu3a//gjU95wy5C4mab2XjvR/S+rJRNRrWyzxwnHlD70W12VHzrUT5LWbHC98ybdNHNaapVFH820Qy6rdnWX3tq0iHhtQ0vCNCGDvnpUp/Z2qKE8fSee2ZJTgcGnabislsoE37xjz87GiMJqetubk2j6FFIQT5+fXrYasv2lYRW3Yef3e5gYLkzOJ4ucHHQvOpgxlVycKYOf1uJ237EbftRh8LV6b9g8FSdgtCT9jzCrBl5OIdHlzvvlSlETtvIysv/z+POemXJ/1JQUIa/w26G0d+IY68Qox+XiAEjpwCt2spFhP9XruFrvddXON2/9n5erIPxbptN/l7M3nt+wR3b1NjY88deCepWw+7vP0oJiPtrhvP0M8eqrFxK4PmUEnfGYXB20JQl5b1LiVTSsljd/5LUkKOy3azxcDFV/Zi4gxn6u+qJUf44Yst2Kyus3yT2cB7X83C16/i39eqUNairR7SqSJHvl6INdNViVHNtxI7dz1ZR+Iqdc3cEumcp5CaxJZZuSbhJl9vfJuFNhhnDxD17SLPomfCKUDm3zqCWdE/MPDdu+j64CyGfHQ/Xe6e6dQ/KoFiMtZamqZ3qOeZtGZ34BUSUGPj2nMLSNsR5RbqcmoquTdlr2sUo4HG/TrSqGureufsAZITc8lIz3fbbrOqrFl2WhtryMg2NG0eiNni/G4J4XwoXHpN71p39mdDD+lUkcTVu12qNU8hjAbSth0msH2zCl8zuGfb4v60Z2LwtlRL79SGQplvn0X7TH7exfLAyRv2sfa2t90WqoXRgH/bSCJG9aopU13o9vBlpG2PwpF/+mGlmIyEDuqCT2TjMs6sGkIRCOE5cUlUsknL+U3pv3/yjH0mk4GnXp3IhlXH2LLhBP7+ZkZP7Ei7TqG1YWSF0Gf4VSSwY3OPLQelpmHPK+TwVwtIWrunQiJmfV+5GaOP60Kr0cdC35duPCfb2qk2O8f/XcfBT+aSvudo8fZ214zH6Ouucik1SfjIXm7btz7xBVqBe8xUMRqYtPytWkvPbDF9CD2evgqDtxlToC8GbwuN+3dk1G/P1ei4Rh8vwkf1dlsQVbzM1dr+8nyhSbg/gUHebtvNZgMXjGrrss1kMjB8bDseemY0t94/rF46e9Bj+BUicfVujny1AEehjTaXjaLFjCHkxaXwd7cbXfOKDQoGi8n5mioBBQLaNWPisjexNPIv11jJG/ez9fHPSd8VjW/TxvR69lpaXzqyRj5XXZJ1KJYFIx/AkW8tVhVtPmUQI356CqEorLn+dWL+XI1aaMdgNoIQjPr1GY+a9T8ETceenee2XTGbuDz+NyzBNRdO8YQtO4+M3UfxDg8moF3Tar22o9AG0tnq8EzyE9KYN+w+rKlZaHYHwqAQ3KsdExa9Xmvd2c4lYqLTeO2ZJaiqhs2qYvEy0rJ1MI++OBaTqX5OvvRK22pg27Nfsf/tP3EUWJ1fND8vIsf2ZfSfL5C8YT9rb3iD3BNJICXeYY0oSM5Es57R69VspNWsEYz44clK25B54DiZB04Q1LkFQZ1bVvj85A37OPT5POxZebS6ZAStZo2o85j+391uJPPACZe4s9HHiwFv30HHW6cCkLLlICcXbsEc6Evry0biHeZZDO7v7jeRuS/GbbvR14ur0v+tdO/Z+kTeyRTW3vgmCSucIb8mQ7oy7IuHXR4omqoSv3grOUcTCO7VjiZDutbLGHlDIT/Pxqa1MWRmFNC+UyhdekTUq9z6kugOv4rkxCTyd5cb3NQvjb5ejP7rBZqO64eUksKUTAxeZn5rcblLS8RTKGYj1xYsrPCXz1FgZdnMZ0laswfFZECzq4Rd0J0xf7/oNsMrjT1v/sqO579FLSiaGfp60XhAJyYseqPOnH7O0Xj+7u5ZZC64dztmbPu0Qtc79vsq1tzwuqsCpo+FrvddTN+Xb6qyvbWFNTMXxaC4SXBodgd/tL+G/JOpp9cpFIElJIBLjv6Iydc9/KBz/qFn6VSR+CXbPMZ/HXmFnJizHnDm3Ho3aYQ5wLfUDkWaQ/XYm/RsbH3sM+ficIEVe7ZTXz9x9W62PvZZuc4vSM5g+zNfOx1h0QPekVdI6uaDHP+77jpiqVY7opSZklMpsmK0vmQEA9+5E3OwPwYvM0YfL7rccxG9X7y+ipbWDhl7j/Fv39v5Jexifmo8k4VjHybv5OnCndj/NmLLyHFdlNacOf7Hfl1Z+wbrNDjOaYefcyyBmD9Xk7r1UJU6P5n8vZ3FPCUQRgPmQD+37U0nDnBvUCIE4cN7VGrR9cjXC9FKvF1ohTaOfL2wXOcnrtxV3GjjTBx5hXWarhfYsTnmQHd9d4OXmTZXjq7UNTveMpUrkv7kkpifuDL9H/q9enODWOi2ZuQw/4L7SN9xBM3uQLM7SFy1i/nDTlcIZ0fHoxba3c515BWSfeRkhcdM3rifVVe/woIxD7HvvT+x57rXL+hUHCklSQnZpKW4ryfVNQ0/qOkBTVVZc8MbHP9jNYrZiFQ1Ato3Y8LiNypVbdh82mDEbe7bFZOBdteOc9s+8J07SV63F0duIY78Qgw+FgwWM0M+eaAyH8djI5WytpfE5O+NpyiSUBTMjdwfWClbDrLtqS9J3xmNf6twej1/XY1U5gpFYcRPT7NkyhNoqoZWpCoa0L4pXe69qNLXVQwGvJs0qkZLXbHn5JOxLwafyJBq0ySK+n4Jaom3GqlqWNNzOLloK80nDyS4ZxsUi8ntDdLo501I73YVGu/QF/PYdP/s4hBfyqYDHPx4DtO3fFxraq7nIocPJPPxW2vIzbEiJYRHBnDPY8MJi6jdhIHSqJYZvhBiohDikBAiSgjxuIf9I4UQWUKInUV/nq2OcUvjwAd/c/yvNaiFNuzZ+TjyCsnYd4zV171WqeuZfL0ZO/cVTIG+mAJ8MAX4YPB2OvDADs3djvdrEcbFh7+j72s30+668fR58QZmHfnO47HlIeyC7p63D+9RrvMjxvTxGKdXLCY63DzZZVvKpgMsGPUgCUu3Y03NInXrIVZc+gLRPy496zgZ+2JYedXL/NX5epZf+gJpO9yrhUsSPrwHFx/+jl7PXkPH26cx7MtHmLZxdr2NR+96+Qd+Dp/F4omP8Ven61k47mFsWZUrhjuT7CNxHtcyNLuD3JhEACLH9CGgfVMUy+m3NcVkxDs8mBYXDi33WPa8AjbfP9slxKfmW8mLTebgJ3Or+EnOH7KzCsnMOP1WlJlRwJsvLCM9NR+b1SmkFnc8g1eeXIzDQw/juqDKM3whhAGYDYwD4oAtQog5Usr9JQ5dI6WcWtXxysOB2f+6FUNJu0rCsu3YsvMq1SYufHgPrkj8g4TlO1CtdiJG9y7zOuYAX7rcXXrP24oQNqwbiSt3uW4Ugj7/d0O5zjeYTYxf+DqLJz+BZnOGBDSbg/7/u43GfTq4HLvlsc/c7p2ab2XLw5/Q5orRpeayp2w5yMLRD6EW2JCaRtbhOOLmb2Lcf68Q4SFn/kx8IkLo+fiV5fosdUnMH6vY/erPzh7FRd/zpDV7WXXNq4yb83KVrh06oLOzsriEbLAwKMWzd6EoTF75Dtue/oqjPy1DahqtZo2g7ys3VUifJ237EXfxMkAtsHH87zV0f+SyKn2Wc53kxBw+fmsNJ45lgICwcH9ue2AYe3acRCtR9CclFBba2bP9JL0HVG7CV51UR0hnABAlpTwKIIT4BZgBlHT4tYajtFikEDjyrZXuC2qwmGk2qXZFxxz5hex750+37YrJWLSIl0v24TiCurUickyfUh1y434dufzkbySu2oU9t4DwET091gSk74zyeL41IwdbZm6pueyb7p/tKoNwSjDsnveZueercnzS+s+eN39zqZ4Fp7Bd/JJtFKZmVUmcrNUlI9j5wrfk2VKKF6wNXmZC+nYg9Ix2jSZ/Hwa9dzeD3ru70mOZg/xKlc0+9Rky0vOxWR00CffXUzrPwGFXefmJRWRlFhRnEp+MzeLVpxfTb3Bz7Hb3+6pp0uVNoC6pDoffFDhTKSoO8OQVBwshdgHxwMNSyn2eLiaEuBW4FaBFixaVMqjZ1EFEfbvYrfmHb9PGeIfVXGy3JsjYc8yjNoxms7Pv7T84MPsfNKsDxWLEv3UEk1e943EhGZwPibP1bPVp2pis7BMezy0rtpu27bDH7Zn7T6A51DrP968OCpMzPG5XjAas6dlVcvhGLzNTN81m7U1vEjdvo1PaWUrChnVDahqiGheeG3VrjW+LMLIPxbpkjRl9vGh67SReeGQ+J2IyUBSBr5+F2+4fSufu4dU2fkNm57aTFBba3ZS5VVVDSrB4GbEWlsgwk9C2Y/2ovK2OGL6nx3/JlJjtQEspZU/gA+Cf0i4mpfxMStlPStkvNLRyN6nPizfgFRpYrAMvTEaMvl4M++rRBjdb8QoNLD3N027HkVOAZnP+nXUwli2PVCx3vSS9nrkGg4+7fn7nu2eWWbhUWgWx0dfL4wOrIRI5tq/HUIhiMVVLl6bcmCTil24rnn1rVjv73v2TzQ98VOVrn4kQgnHzXsG/XSRGP29MAb4YvMz0eOZqvlySQkx0Og67s7I0Iy2fd15aQWpy1dcpzgXSU/I8xuNtVhVvHzOhYX4uFbhmi4EefZvSolX9mGhWxzcxDjgzONUM5yy+GClltpQyt+jn+YBJCFFjKlI+ESHM3Pc1vV+4jmZTB9Hlngu5cNfnhJdzkbO6sGbmcuTrhex//y+yPMjllofkTQdKff0u+VjVbPZy5WPnHI1n2zNfse72tzn+z1qXxiBtLh9N/9dvxRzk1IAx+FjodOcM+rxU9npBlwdmlfKguLDBPWRLo9ez12IO9D2tnSQEBh8Lgz64p1reYHb+3/fOrJkzUPOtHP5ifrUsDJ+Jf6twLjrwDZNWvM2oX5/hspO/YZ48ipzsQjTN9RdLVTVWLj77Avz5QOv2IRg8hE0tXkY6dmnCM69NZMrFXQmPDKBZyyAuv74vdz18QR1Y6pnqCOlsAdoLIVoDJ4HLAZcVOCFEOJAkpZRCiAE4HzRp1TB2qViC/Oj+8GV0f7huFqDil25j2cxnQYDm0Nj6xOd0vH0aA968o9wOMObP1ay75S33IiSj4mzw4aG2oNSHw6lr/r2W1de8grSraHYHR39aTkjvdkxY8r/ihb/Od11Ix9umUZicgTk4AKPX2SVeuz98KQUJaRz69D8UsxHN5qDNFaPp82L5FpYbAr7NQrlw9xfsfes3EpbtwK9VON0euazaWhdm7ovx+H+qmIzkxaaUGqqrKBnp+SQl5BAW4U/jvqcX7dN3pXhsIuZwaKToM3wA2nUMpU2HEKIOpRa3MzSaFBqH+tJ7QHOMRoWZl/dk5uU969hSz1TZ4UspHUKIu4FFgAH4Skq5Twhxe9H+T4BZwB1CCAdQAFwu67OmQzlRrTaO/7OOnKh4GvVoTbPJA1EMBhyFNpbPet5Ny/3wZ/NoPmngWePop9j29JcepZctgX4E925P4vIdLjFYYTTQfIa7qNiZ9q693lV6wJFbQNq2I0R/t5gON08BnIUjOUfjQYJ3REi5bBWKwsB37qLXc9eReywBv5ZhtS5WVhv4RIQw4M07auTawT3akHM0waOevV/Lquf7OxwaX3ywnq3rj2M0GXDYVfoNbsnN9w7BaFRo26Exmur+tbRYDHQ5j2P4DrtKXp4NP38LBoPCQ8+OYcE/+1m9NApV1Rg8vDXTZnXDaKz/octqKbwqCtPML7HtkzN+/hD4sDrGqmky9h5j25NfkLxhP97hwfR44kraXjnG7bjc2GTmDbkHW1YejnwrRh8Lvs1DmbL2fZI3eE5QcuQVcuTbReV2+HnHkz1ut2XkMuiDu1kw4gEceae6PXljCfZnwFt3lnq9lE0HPa64OPILif5pGR1unkLajiMsn/UCBUnpCJyN0Ef9/hyN+3Usl82WID8svduX61gdV3o+cw0nF211yQQy+ljoeNu0aimG+vvnnWzdcAK7XSvOJtm68QQhob5cck1vwiMD6D+kBVs3niju3mQ0KQQF+zB4eO00j6lPaJrkn192sfDfA2iaxGR2zt7HT+vM9Eu6M/0Sz/Ux9ZlzstK2smQePMF/Q+5xzsylxJqWzfpb3yLvZCo9SuQmr7vlLQoS04tDKI7cAnKi49n6xOc0nzKo1DFKZg6VhX/bSI/qj5bQQAI7NGdW9A8c+3UlmQeOE9KzLS1njSgz/GKwmEqVmDD6eGHPyWfh6IewZZ0uCc89nsTCsQ9z6fGfqy2koOOZkF7tGL/odTY9MJv0ndFYGvnT9aFL6P7wpdVy/WULDheHIU5ht6ksW3CIS67pDcAt9w2lQ5cmLJ1/CJtVZcDQFkye2Q2z5fxzFXP/2MOCf/cXP/zsdpXff9iBj5+ZYSX08BsK59//YhnsfOFbl+pDAEe+lV3/9x1d7plZ7ExVm52E5dvd4uWazUHMrysZ8OYdHh270deLNle4vy2URr/XbmHFpS+6VGAafCz0ffkmhBCYfL3pcOOkcl+vcf+OmP193Hq+Gn296HDLFGL+XO3UpC+BVDWO/baKjrdMKfdYOpUjbGg3pm/+uEauXVjgrsNTcruiCEZN6MCoCR08Hnu+oGmSBf/sd+tTa7Oq/Pvr7gbr8Ot/0KkWSdl0wLOapRDkxiSSH5/Kgdn/sP/9v0vtfiZxtt0b9tWjGLwtxaJlRl8vmk8bTPOppc/+S9J8yiBG/foMgZ1bopiM+LeJYOinD1bIybt8DEVh7NyXsQT7Y/L3wejrhcHLTPsbJtJi+hAKEtI96vM48gspSKjRNXadaiQrs4CVS46waskRsjNPP9zbtPecGFfa9vMZu111z6cvIjO9fhRRVQZ9hn8Gfq0jyI1xbyAu7SoJK3aw5aFPQDhb7ElNOrsVn/E2oJiNtL5kBACtLx1J6MDORP+0DHt2Hs2nDKLJ0G4VTlFsPnWwx+5OlSWkd3suO/kbcfM3Y03PJnxkLwLaOnPImwzthsHL7LbYbPT1psnQbtVmg07lsNlUbIUOfP3Npf4erV4axXefbi4Wa/3+sy1ce9sAho9txxU39uON55bgsGtomkRRBCaTgWtuHVCLn6JhYDYbCGzkTUaae1+LZi2Dat+gakJvgHIGCSt2sGTaU64NNLwttJg+mBP/rvc4+zX4WFDzrRj9vPFt2pgp695vsNkpUkoWT3iMpPV7i++BwdtC6IBOTFz+1jmTT9/QsFodfPvxJjatiwEJQcHeXH/HILr3di32SkvJ47G7/nWL0xtNCh26NOHQ3iSkBD9/C/6BXrTv1JhJFzpzxnXc2bwuhs/fW4/tjPtpNht46LkxdOpaPSqpNYHe8aoCHP11BZvun429aOGy7bXjCO7Rlq2Pfuamo4IiaDFtCCG929GoRxuaTx3c4CUEVJudQ5/O5chXC5FS0v6GiXS6fRoGy9lz8XVqhndeXsG+nQnY7Wc4HouBp1+dSMs2p9s9Lvx3P7//sAOHBz2XM19GhQAfXzP/+2Qmvn76/2tZ7Np2kr9/3kVyYg7NWgYx6+redOjcpK7NKpOyHL4e0ilBm8tG0fqSERSmZGIK8MXobeHgp3ORHoP2gqAuLen17LW1bmdNYTCb6HLPRXS5p/J69A2RrMOxbH/2G5LW7sEnIoQeT1xJq4vqvkIyLSXPzdmDM7tm/t/7uOOh0zaqquYMNXrgzHmdlM4Y9fpVRxk3pVON2H2u0LNvU3r2rd4G9HWJvmjrAaEoeIcFF/eLbTFtMHj4IhksJlrNGl5rdhWmZZGwcifZ0fFnP7iB48gvrLUOTFlH4pjb/05i/lhFQXwaadsOs+baV9n3nrtKaW2TlpKH0eT+NZUSEk9mu2zr3b85Sjl1i2xWlfjYzOowUacBoTv8cuAT2Zj+b96OwcuMYjIiDAoGbwtd7ruIkFooMpJSsvnRT/m12WUsm/ks/3S/iQWjHyxTX6UgKZ303dE4PDTVqM/kxaWwcNwj/NhoOj8Gz+C/ofeQdbhyOkTlZeeL3znDdZprOu72Z77GUc6uYjVFZLNAjyEag0HQrrOruGBk80AmzeiM2Xz2sKLFy0jrdnp2zvnGORfSyY46ScKKnVga+dFsyqDiWXpV6XznDJpO6E/M76vQHA5azBhKcPc21XLts3Hkm0Uc+ngOmtWOZnXmTCev38+aG95gzF8vuhxrzy1g9TWvELdwi7PQStXo/cL1dHvwklqxtSpodgfzht1L/snU4hqHlI0HmDf0Xi45+mONtd5LXrfPswaRgNyYRII6VU6muzrwC7AwemIHli86hN122kazxciYSR2Z8/seNq+Nwezl/PdFV/YiJNSPbz/d5FEmAUAxCHz9zAy8oFUtfYr6R1JCNjlZVpq3CsLiVf7mMQ2dc8bhSynZ/MBHHPrsP1AEisGAUATjF79BaP/qiVMGtI2kx+NXVMu1KsK+t393S5XUbHbiFmzGlpXrUgG75oY3iFu0xeXhsOPZr/FvE0HLC4fVqt1nI/rHpex44Vvy41IJ7NicFjOGYs3IcXW+UqIW2jj6y4oaK/zyaxlW3EbwTDSbA+8mQTUyZkUYPrYtq5dF4bA7NdeFgFET2jP7f6tJSsgpzsqJi8nk0N4k0tLySnX2Xt5G+g5qwWXX9cFyHlbPZmcW8O4rK4mNycBgVFBVjUuu7s34aZ3r2rRa4Zz5H4+bv4nDX84vTp08tcS1dNpTXHbyN5RqbCBR21gzcjxuF4qCLTu/2OFbM3KI/W9DsaM/hSPfyu7Xf6lXDv/Q5/+x6YGPitM/03dFk7E/xqNapCOvkOyokzVmS48nryRly0HXdFwvMy1mDqtUiq3V6uDg3iQURdCpW5iLPnpF0VSNN19YRkH+6f9TKWHR3AMoiuKSgmm1Oli/+hiBQV4er+XlbeSpVyfWG232uuC9V1cSE52Gqkooune//7CDyOaBdOtVdk8DVdXYvimWbZti8fUzM2Jc+wZ3L88Zh3/os//cZsHg7NOZsvEAYQ24cKjp2L5E/7jULexgDvLDt+npOKw1LRvFaHBz+ECdVcqm7znKjme/JmXzQfxahtPz6atpNrE/2576ymPfYRT3XH+jnzchfWpuraTpuH4Mnn0fmx/6GK3QhqZqtLpkBEM+eaDC19q64Tifvbce5YzPcd8TIyvdMerIwRQKPEgiqA6JirsMhqIIQhr7kp6a76Zrr2mSsAjPjWrOB5ITczh+LMPp7M/AZlVZ+O+BYofvcGisX3WUDauOYbEYGTm+Pd16R/DmC8s4eiQNa6EDIWD1kiiuurk/A4a2ZN+uBIQQdOsVgZd3/Q0RnTMOv2TjiGIEHgumGhK9X7ye2HkbsRd1t0IRGLzMDP30AZcetn4twzx2pRIG5ayNxGuC9N3RzBt6L44ifaKChHRWXPoC/f93G/YyFpwVi6n4oaWYjXiHB9NyZs2+nbS/bgJtrxpL/snUYumJipKWkscn76xzK3x65+UVvPvlxfj4VjznvSDfXqGCNyGcIaATMRkUFjqK0zQtFgPTL+txXoZxTpGTbcVgULB7eFBmFUlQaKrG/55fyrEjaVitTmmF/bsT6dClSbGzB+dbls2m8u2nm/jhiy1IKYsX18MjA7j1/qG07VD/FsXPmSydtlePxejr/iorpWzwsgB+LcK4cM+XdH3gYkIHdqbN5aOZsuY9N8kFxWRkwDt3unSeEkYDJn8fej1X+7UC2578otjZn0Ityn4x+HgOOwR2bE7nu2bgFRqEJSSA9jdMYtrGD4ubs9QkitGAX8uwSi8Or191rNQ8+G0bK5dp1L5zE48t9cxmBYPB/UGgOjQGDmvFC29NZuDQlgQ18qZlm0bcdM8Qpl7UsL8HVaV5yyCP/z9Gk0KPolz7nVtPcizqtLMHZ6hs7854j9o6miqx21SXTKrE+GxefXoRsTGeeyDXJefM477NlWOI+mEJKRv348gtdKZPGg1c8NWj5erYVN/xCQ+m36u3nPW49tdNwLd5E/a8/jO5x5MIH9mTnk9cVS0NNCpKyuZDHmPytsxcuj18KQdn/+sShjulBNrywmH0ePxKUrcewjs8GHMp/XLrGwX5No/OWVU1Ckp7Az0Lvn5mLr2mN7//sAO7TXU2yrYYiGweRG6OlZSkEm9KQrBySRTjpnRyKcrScWY2XXZ9H375ZluxCqbJpODrb2HidOei7a5tJz06diFEqdLinrDbNOb8voe7Hqm9Op3ycM44fMVoYPyC1zi5YDOx8zfhFRpE++vGV0tz6YZG5OjeRI7uXddm4Nu0MdbULPcdmqQwJYtez1/H7ld/wp6Zh3dEMP1ev4UWM4ay7Zmv2PfW7ygWE9Kh4t8mkvELX8OnnN236ooefZqydN4hl9khUBTbrfzv4fhpnWnTvjHLFx4iN9dGv8Et6Ng1jKfumet2rN2msnLREb2CthTGTOpIZLNAFs7ZT0ZaAT37NWX81E74BzjfOP0DLBgMwi3ObzQpaKr0+EAvjeNH06vV9urgnHH4AIrBUO3qkjqVp+fTV7Pi0hc8Skkf+3k5V2fNpduDl6DZ7ChmE0IIYv5aw/53/0QttBWvvWTuj2H5xc8xdX3FmqZlHjhO1HeLsefk02LaECLH96tRAbiOXZvQo08ku3ecfv23WIxcMKYtkc0Cq3Ttdp1CadfpdKFVUkIOpX2UkjIMOq507h5e6iL6BWPasnDOAVTV9R6aTAbGX9SJ//7Yi8Go4GwdJ1Edp7uHlaRpi6DqNbwaOKccvk7tk74rms0Pf0zKhgNYQvzp+tCldLlnJkIIWl08HIPF7HHRXKoqjvxCzIF+LsJs+9/9wy3bSqoa6TujyT2eVO7Q1OGvFrDxng/Q7A6kQyXq28VEjuvL6D+ed1nork6EENz5yHC2b4plw6pjKEbBBaPbuqlaVgdNwv3wD/QiLSXPZbvJZGDQeVxQVVXCIgK47f6hfP7+ehQhkEgsFiMPPD2a1u1CGDm+Awf2JOLtY6Jrj3C++3Qza1cedat7MFsM9bIFou7wdSpN1uFY5l1wH44izRtHfiHbn/ySvNhkBvzvdgAiRvcibsEWt1i+T7MmmAJ83a5pTS+l5sBkwJaZC+Vw+NbMXDbe/b7Lg8aRV0j80m2cmLuBljOGlvszVhRFEfQb3IJ+g2u2OlcIwR0PDeN/zy9DU52zTIuXkdAmfkya2dXlWCklu7fFs3ZFNABDR7ahZ7+m2Gwqm9bEcHh/MmGR/gwf247AIO8atbsh0H9IS3r2a0bUwWRMZgNt2zcu1igKauTt0t/3xrsH039oS379djvxcVloqiSyeSDX3jqA1u3qXwhSd/g6lWb3Kz+5tF8Ep9M/OPtfej19NeZAP/q/cRtJa/bgKLA52z4KgcHbzJCP7/cYXmkxYyjZ0fFutQSKwUBQl5blsith2XYUs9HtzcKRW8ixX1fUqMOvTdp3asIbH1/I2uVRpCbn0albGP0GtcBYotDr69kb2bg2pjjMtGvbSXr3b0bUoRRysq1YCx2YTAb++3Mvj//f+HrpqGobs9lAlx4RZz1OCEGPPk3p0acpUko0TWIop4BdXVB/LdOp96RsOehRg0Yxm8iOcip6BnVpxYwdn9H+hokEtG+Kd1gjhEFhw93vc+jz/9wyH7o9dAneYY0weDvDPEJRMPhYGPzx/R5rDDxhKC0rSwiMPtWjrVRfCGrkzdSLu3P9HYMYdEFrN2cfE53GhjXHXDJPrIUONq+LIT0tv3i73a5SWODgs3fX1ar95xJCiHrt7EGf4etUgcBOLcg6GOsWrtFsNpdYu3+bSLo9fClHf17ujM9LSU7OSTY/8DG5J5Lp+383Fh9rCQ7gwl2fc+izecQt3IxfiyZ0ubdiqqQRY/rgaUXT6G2m/Q3u/YA1TbJ+5VGWLTiEzaYycFgrxk/tVK8rJsvL3p0JHjNLnK2b3VfTkxNzyM4sIKAeh3aSErJZvvAwqcm5dOkRwbBRbc4rAbSqoDt8nUrT88mrOLloi1tLyFYXX4BXY9eslOLwjzxTgriQfW/9To9HL3cpdjIH+tH9kcvo/shllbLL6GVm7L8vsXTak06XpkmkQ6Xbo5d7lNj46sMNbFoXU5ybnZSwh01rY3j+zclV0sGpD3h5mzAaFGxq+TN3DLXYtS0nu5DlCw9z5GAKTZsFMnZKJ0LD/Eo9fs+OeN5/bSWqQ0NVJbu3x7Pw3/08/+ZkfP3Orbe3mqB+v3/UMbnHk4hftp28uJS6NqVe0rhvB8b8/SL+7ZoijAYMPhY63jKFoV887HZsysb9pYR/jDXS0CV8eA8ui/+dYZ8/zMD37uaiw9/R20NnssST2Wxce9rZgzOXPSUply3rj1e7XbXNgKEtnRmEJTjVwLzktvadQ2ut7WFqci6P3zWHub/vZc/2eJbMP8RT980l6lAKWZkFHNqXRGb66Sbimib57L112KxqcZ68zaqSnprP/L/31YrNlSU328qW9cfZte0kjjpMmz0vZvipWw+x9YnPSdsehW+zxvR69lpaXVx6BZyj0MaqK1/i5MItTl2XQhstLx7OBV8/Wu448vlC03H9mHX4O+x5Bc4GMaWokgZ0bE7W4Ti38I9qtbsIwFUnJl9vWl86kujDKbzz4VZijqbj529h8syujJ/aCSEERw6meNJrw1roYN/OBIaMqJ2eBzVFQKAXdz86go/+txqhCKR0Zu3c9sBQVi2O4sCeRBBOZx8Q6MVtD9Seouqv324nL9da/CuhOjRUh8ZbLy7DZlMxmQw47Cp9BrXg1nuHkJKci7XAvQrW4dDYsv4El1zTp9ZsrwhL5h3k12+2F+XvO5vXPPTsaNp2CD3LmdXPOe+9UrcdZsHIB5yaLoAtI4fV171GYVo2nW6d6vGcrY9+ysmFW1yKf47/vRb/tpH0eeH62jK9QWHyLTvm2+PxK4hfuq1E+MdMiwuH4RUaVOHxso7Ekbb1ML4tmtBkSNdSC6pOHEvntWeWFM/gM9ML+OOHHWRlFnDpNX0IbOSF8KTQaVQIDnVPG22I9OzblA++vYQDe5NAQufuYZgtRvoObMHxo+nERKfRuIkfnbuHu6h81jR7d8Z7Ut4gP8+ZoXVKn2b7plj++HEn46d1dlMAPUV9XW+JiU7jt2+3Y7erLgVxb724nPe/nuW2yF7TnPMhnW1PfVns7E+h5lvZ9sQXaA73VyspJYe/XOCW0qcWWDn40b81auu5TJNBXRj1yzP4Ng9FMRsxeJlpd+14hn35COB04Msvfo4fQy7kj3ZXc+Djfz1ql2iqysorX+Lfnrew/va3WTzpcf7udiP5iZ7L2P/9bY+beqXNqrJk7kEKC+x07emUsy35vFAMghFj21XPh68HmC1GZ0Pufk0xn6GY2bJNMCPGtadrz4hadfZAuRda7TaVFQsPExziQ/PWjdzsNFsMjJ3SsSZMrDKrlkRh96ivJNm3y73pTk1zzjv8tG2HPW5XC60UpmS6bZeaVqqcsj0n3+N2nfLRfOpgLon5mcvjf+eqjH8Z8vEDGL3M5MYmM3fAnRz/dx22jBxyjiaw5ZFP2fzgR27XOPDB35yYsx610IY9pwBHbgHZR06y+upXPI55/Gi6x1mkYhCkpuRhMCg88dJ4IpsHYjYbsHgZCQj04r4nRtK4SemLhzpVZ/TEDuXqvwtQaHWgaZJ7Hh1OaJgfXl5GvLyNmEwGBg9vzbBRbWvY2spRkG8vRUFVUljo3uegpjnnQzp+LcOwpmV72CM8qjAqBgMhfdqRtu2I276wYfWvVLqhIYRw6yK1983fnG9hmquM8qFP/6Pn01fjFXI64+fgx3PcG6c4VJLW7sWanu127chmge6KkjhnWMEhzsyg8MgAXnl/elG7QAeRzQKLKyt1ao4pF3Ul7ngG2zfFYTQ52w0qiqDQQ5y+ZetgFEUQ3NiX1z+awZEDKWSk59OmfeMys3rqmr6DmrN9c6ybAqfqkJVuilMVznmH3+u5a1l5xUuusWMfC51un1aqbPLg2fezcMxDqFY70qEiTEaMXmYGvHNnbZl9XpG8bi/S7v4lVywmsg6cwOuMB23J8NwphCJwFFgpmZg347LuHNiTiO2MsI7ZYuCC0W3dGpKcz92g6gKDQeHOh4eTkpRDbEwmoWF+aJrk5ScXYbepaJoszia69rYBxecJIejQpUkdWl5++g5szoqOoUQdSinulGUyG7joyl4EBHruCVGTiIpoPNc2/fr1k1u3bq3ydY58s5Atj36KPacAxaDQ8Y7p9Hv1FpQy8o2zo06y9+3fydh9lMb9OtL1gVlnFe7KT0xn39u/k7BsB74tm9DtoUtrvLWipqrsef0X9r/3J9aMXBr368DAd+8mdEDDkcdddfUrHP1lucsMH5wVsxcd/Aa/Fqfv+4a73+fw5/PQSjwg/NtEcPGR7z0u3u7ZEc8PX2whKT4bi5eRcVM6MfOKnvW+KvJ8JSkhm/l/7ycmOo0WrYOZPLMLEU2rpjZal2iqxrZNsWxedxwfXxPDx7YvsxtWYYEdm03FP8BSKXVXIcQ2KWU/j/vOB4cPTsdoTcvGHORXI92T8uNT+afXrdiz851tCIs0Y4Z++iBtrxpb7eOdYuO9H3D4qwUubzBGHy+mbZ5NUJdWNTZudZK+K5r/ht5Toom4iYgxfRk392WXYwtTMpnT/w6sqVk48q0oZiOKycj4Ba+dNeTmcGgYDKJGJZJrG4dDIze7EL8AL4xG/QFWGxQU2Fnwzz42rTmOyawwakIHRo1vX+UwYG62lc/eX8fenQkIoHETX26+dwjtO1XsbUZ3+LXAhrve5dDn850CYWdgDvLjiqQ/ayR/35qRw69NL3VbZBaKQuvLRzHihyerfcya4uTiray//R3y49NAQOvLRjJ49n0e0z3tOflEfb+YxJW7CGjfjI63Tq1QR6/Ek9ksXXCIpIQcunQLY8T49pXqN1uXSCmZ+/se5v21D7VIsGvarG5Muaj0FNWKoqoaC/7Zz9L5h7AW2uneuymXXtv7vF7MdthVnntovnO9pyjN0mwx0KtfM5fuVjnZhSTGZxPaxI+g4LO3zJRS8txD84k7nol6RoGixWLk5fenVWidoiyHf87H8GuLk4u2ujl7AM2hkh11kqDO5VN6rAg5RxM8qkJKTSNth/uic32m6fh+zIr+AWt6NkZf7zLbUpr8feh854V0vvPCCo+zZ0c877+6EoeqoamSg3sSWTT3AC++PaVe68eUZNGcA8z9c29xfYEdlX9/242Xt5Gxk6snnPfpu+vYsTm2eIzN62LYtyuB12ZPL+4Qdb6xZcMJUpJzXXLqbVaVnVviiDuRSWTTAL7/fAtrlkVhLCoc6z2gObfeP7RMmY6Y6HQST2a7OHtwPnSXLzzMZddVT1FZtbwDCiEmCiEOCSGihBCPe9gvhBDvF+3fLYSonyVxVcCrSZDH7ZrdgSUkwOO+quLXKgzN5r7YiSJo1L21+/Z6jhACr5DAGulBLKVkzu+7ebOoivNUwwqbTSU7y8q/v+2u9jFrkv/OcPansFlV5v6+t1qun5KUw/aNsS5jSOmsQF6+wHOq8/nAgT2JHnveIiDqYAoL/j3A2hXR2O0aBfl27HaNHVvi+OWbbWVeNyUp12MBoMOhkXDSQ5vQSlJlhy+EMACzgUlAF+AKIUSXEodNAtoX/bkV+Liq49Y3uj18GUZf11mPYjYSMbIn3k0a1ciYXiGBtL16LIYSkr9GLzM9n7iqRsasKQqKFqqqSmGBnaSEbLdrzfl9D3N+3+Ox3aJatKg29489vPH8Ur77dFO1fsmqi8z0fP79bTefvbeOnGzP2UrZWYUet1eU2JhMjCZ392C3qxw5eP5qS4WE+nq8L4qiEBTszaK5B9wexHabyuolUaVWCYOzAK7k7B6cuvwdO1dfRlJ1hHQGAFFSyqMAQohfgBnA/jOOmQF8J50LBhuFEEFCiAgpZUI1jF8vaHXRBWQdPMGul39EMRvRbHZCB3ZmxE9P1+i4gz+6H68mQRz44B/sOfk06tGGQe/fQ3DP+lmIUpJjUWl8+eF64mOzQAh6D2jGjXcOqrDyoapq/PTlVlYtjSquxJw2qxtTL+6G1CTz/96P3VZ6A+qsjMLiqtwDuxNZszya+58cRdeeZ2+CURLnTG8/aSl5dO0ZzoRpnascLoo6lMIbzy0t7m5V1FLVjYim1fM2GRrm59EBGQyCyOYNN2PmTKxWB3//tJM1K46iOjT6DGzOZdf1KbPr1/Cx7Zj3175i2QdwKnF7eRvp3juSgrxSijbtGg6HVmqhWViEP30GNncJoSmKwNvHxPBx5ZcGPxvV4fCbArFn/DsOGFiOY5oCbg5fCHErzrcAWrSo2TZx1U3PJ6+i890XkrE3Bp+IYPxbV9xZVBTFaKDvSzfR96WbkJpWY/1aa4L01DxefXrxGa/Ikp2b4/hf8jKe+9+kCi0+/vHDDlYvi3KRUZjz+x4CAr3pN7h5mQqFiiKQUhafq2kSm1Xliw/W8/bnF1XIjvWrjvL17I3Y7CpIiD2eweql0fzfu1MJalQ5py+l5NN31rqGEjw4e7PZwBU3elyrqzDNWzWiRetgYqLSXPT0jSYD4+qpjEFFkFLy5vNLORaVXhyP37D6GPt3J/L6RzOwWDy7xkbBPjz0zGg+eXstuUXCbxFNA7j70REYDArtOoWyf7e7ZEJEs4CzVhXfdv9QFs05wLIFh7AWOujdvxkXXdWrWtVLq8Phe/o2lPx1LM8xzo1SfgZ8Bs4snaqZVvuYA3wJG9L17AfWAA3J2QMsW3AYtYTOiMOhER+bRUx0erlb7WmqxrL5hz3GtP/7cw8XjGmLl7eJ3Bz3MIgQTqE0T+GknGwrGWn5BDcun4iaw6Hx/WdbXK7lsGvk5dqY+8cerrllQBlnl05GegEZaQUe9xmNCl7eRiKaBnLxVb2qtXrzoWdG8/VHG9m+KRYpJWGRAdx41yBCwxp+gVr04VSOH8twWXzVVEl+no1Na2IYXoaOUseuYbz9xUUkJeRgMhkIOUNk74ob+/HS4wuLC8eEIjCZFK67reQc2B2DQWHyzK5Mnllz/qM6HH4c0PyMfzcDSgqcl+cYnfOM+LhMj92YhOJcxDrT4dvtKtmZhfgHernNlGw2FbuHDCmArMxCFEUw6+pe/PTVVpeHgtGocOv9Q/n7510knHSX35CaxOJV/q9IUkI2mocwiKpq7Nle+V93k0nxKCQHENLElzc+urDS1y4LH18zdz0yHJtNxWFXG1zqalmcOJbhUePGWugg+nBqmQ4fnAkG4ZHu4bMWrRrxf+9MZf7fezl6JI1mLYKYclFXmrWsmXW8ilIdDn8L0F4I0Ro4CVwOXFnimDnA3UXx/YFA1rkUv9epHO06NWHPjgQ3NUtVlbRo5fyCSCmZ89se5v29DyklAsGE6Z2YeUWv4li9xctIUCNv0lPdxe1atQkGYNSEDnh5m/j7l11kpOUT2SyIy6/vQ+fu4eTmWPnlm20uDwODQaFz9/AKrSX4+llweHD4QJXSGP0DvGjdLoTow6kuC39mi4HREzpU+rrlxWw2lFvkrKEQFuHvUR3UbDFUeY0iLMKfG+4cXKVr1BRVdvhSSocQ4m5gEWAAvpJS7hNC3F60/xNgPjAZiALygRuqOq5Ow2fkuHYs+GcfqkMt6rHqdC7dekcSXrT4uHT+Ieb9tQ+r9XT8euGcA1i8TUy9yClbIYTgqpv78+nba0+HU4TzWpdd37f4vMHDWzN4uHu66qgJHThxLIN1K45iNCloqiSiWQC3V7AZSFAjbzp2acLBfckuoSqLxcikmSUT19wpLLCTlppHcIgP3j6us+k7HrqAV59eTE52IVJzPgi794pk3NTql9DIzirk6JFUAoO8adU2+JyqTD5F5+7hBIX4kJKYU9w9CwFGo4Fhoxp205uy0CttdeqUtJQ8fvt+O7u3nsTsZWT0hA5MubhbsUzAfTf8QWaGe/za18/MRz+49rw9sCeRf3/dTWJCDq3aBjPz8p60LJrhl4f01DyOH00nJNSXFq3Lf96Z5OZYee+VlRyLTsNoVHA4NKbP6sb0S3uUeo6Ukt++38HS/w6iGASqKhk+ti1X39TfpVxf0yQH9iSSlpJHm/YhNRIm+PPHHSz4Zz9GkwFNkwQ39uHR58eWex2jPqOpGnt2JhB3PIOwiADatg/h2083s3v7SaSE1u1DuPnuIQ0+C0mXVtBpsNxw0Q+l5i9//dfVtd60o7wkJeSQlVFAs5ZBZ419//vrbub8vsdlPcNsMTBxRhcuvrJXDVt6mu2bYvnk7bUub1OKImjeqhEvvj2l1PNyc6wc3JuExctI5+7h9VLTJy/XxitPLSI1KRebXcVsNuDra+Hp1yfiH2BBatKlMUxpSClZv+oYC/7ZR062la49I7joip71Sm5Cl1bQabA0bRFEbEyG2/bwSM8x2PpCWIR/ueSWF/yzj79+3uW23WZVWTz3IBdd0bPWQiqL5h5wcfbgfKtIiMsiKSGbsAj3Rcol8w7y67fbMRgEIDAaFR5+bky5M6xKI+54BkvnHyItNZ8efSK5YHTbKrUx/P377SSezC5+qBYWOLBZVb6evYGHnh1Tbpt+/nobB/cmFV9nw6pj7NwSx8vvT6NROTRz6pr69yjW0TmDK2/s67ZgaLYYuPKm/nVkUfVxeH+yR2d/isJCe5nVmdVNXq7noiHFoBT3mT2TY1FF/VptKoUFDgoL7OTmWHnzhaUes6/Ky5b1x3nhkQWsWhLF7m0n+e277Tz74DzySylqKg+b1sa42aRpkr07E85qq5SSz99fx/MPz3c7XtMkhYUOFv6zv4wr1B90h69Tr+nSI4JHXxxLlx7hBAR50bFrGA89O4aefZvWtWlVZtmCQ2XKSUREBtSqZn/fQc0xeZANEAKatwxy275y8RGXPPZTOBzOtYbK4HBofDV7g1PvqOhhZ7OqpKfmsXjugUpdE0CW5dPPEtbevO44W9adcFY4e0B1aBzcm1Rp22oTPaSjU+9p36kJj704DnDKzp44lkF8bFaDX1zLy7WVUn7orBG4+pbafYsZP7Uz61ceJTO9AJtNLS4auv6OgRg9KD3m59lK9ZUF+WX3a5VSsn7lMeb9vZfszEI6dg1j1tW9sFlVj281drvGlg0nuPDynpX6bP0Gt2D9qmMuchFCEXTqFubxs53JysVH3EJdZyIEhIY3jGI03eHrNAiklPzxww4WzTlY3P+0ectGPPD0qAYr1dt/SAsO7U9yqxAWAh58ZnSldHyqgq+fmRffmVoUSokjOMSXcVM7lZrp1G9wC3ZtO+mmHulwqHTuXnZ/gn9/28O8v04rfm7beIJ9OxO498mRxUqmJalK4dfl1/fl0P4ksrMKKSxwYPEyYvEycuNdZ8+XP1vIx2QyMLkcabf1Ad3h6zQINq6JYcl/h7Db1eIwQkx0Gh+9uaZ49t/QGDKyDSsWHSE+Ngur9XS/08uu61sjzj4jPZ+fvtzKji1xKIpg4LBWXHFDXxdH6u1tYuL0zkyc3vms1+s3uAUrFh3m6JE0l36tF1/Zi+TE3OL0VD9/C5NmdGHC9M4IISgssDPvz70u4SwpnWJmG1YdI6JZALExmS4zfYvFyPgq1Bz4BVh49cMZbN8Uy4lj6YQ3DaD/kJalauacybBRbYiJTnN7MAMEBHpx3e0DaNO+9JaF9Qk9LVOnQfDcw/OJiUpz2240Kbzz+UUNqnnJmdjtKhtXx7B14wn8/S2MmtihzH6nlcVmdfDonf+SlVFQ7EiNRoWIZgG8+PbUSmc8qarG1g0n2LLuON6+ZkaOb4fZbOTFxxa4OEizxcDYSR257Pq+HD+azitPLaawwD3sE9E0gEeeH8sbzy0hI70ARRHY7Srjp3bi0mv71EkRmMOh8daLy4g+nIq10IHRpCAEXH/HIIaMaFPvssX0tEydBk+eB+EzcEog5OfZG6zDN5kMXDCmLReMqVk5683rjpOfZ3OZNTscGimJuRzYk1jpNwqDQWHgsFYMHNaqeNuH/1vtJpdhs6osmX+I6Zf1oFGwN45StI+ahPsTEurLa7NnEH04layMAtp2DK200mh1YDQqPPL8WPbujGfvzgQCg7wYMrJNg0jDLInu8HUaBD37RrJiUZSbRrvJZKBJeO0XvRyLSuPHL7dw7Egavn5mJkzvzKQLu9a72d4pjh9L99ipyaFqnDyRWa0hpONH0z0u5hoMCqlJuUQ2DyQg0MtN+8hkVpg667RcRruOodVmU1VRFEGPPk3p0adhZ4fpaZk6DYJpl/TA199c3G1ICGeY4IY7B7rID9QG8bFZvPr0Yo4cSMHh0MjKLOSfX3fz45f1N/zYtEWQR+VPo1Ep1i2qtrGaB3oURFcdGsGNfZn31z5yPXTsatcxlA7V2N1Jxx3d4es0CIIaefPq+9OZdnE3OnQOZciI1jz96kT6Da7+5vBnY87vezyGLFYtPkJerufQU10zaFgrLBajS99Ug0EQ1MiHbtW8QDz9ku4ei+WGjWqDr5+ZpfM91x8cOZjiscuWTvWhh3R0Ggx+ARYuvLxnpXOxq4vjx9I95oobTQrJibm0blex9oxnIzOjoGh27FPpRUsvbxPPvjGJbz/ZxN5dCSgC+gxsznW3V/8bUpv2jbn/yVF899lmkuKzMVuMjJvSkYuKdIE8LdaCswGJw6HVWLFZWkoeWzecwOHQ6D2gGZHNGnYdR2XQHb5Og8ZmdfD7DztYvTQau81B5+7hXHPLgLOGKZITc/j5623s25WA2WJg1IQOzLik+1mLcMAZHkmIy3KLUzvsKo2bVJ+qZEpSDrP/t4bY4xkIIQgO8eH2B4dVOgUwNMyPh58bU/ywqsn1hq49I3h99owiBy5cHlSdu4Wxa9tJt/sX2TywXGmSlWHtsii++WQzINE0+PuXXUya0ZmLr+pdI+PVV/SQjk6D5r1XV7Ji4WEKC+yoqmTfrgReeHQ+2ZmeWwKCU+/9+Ufms2NLHNZCBzlZVhb+s5+P3lxTrjGnXdwNU4mQhcmkENEskDeeW8przyxm28YTpXapKg8Oh8bLTywiJjoNh13DblNJSsjh9WeXkJ1VWOnrgtPR19bistGouL2VXHFDP7y8TcWqmopBYPEycv0dZ28DWBmyMwv45pPNRTUcGqrqvJ8L/z1ATLR7qu+5jO7wdRoscScyObw/2UXjREqw21RWLDpS6nkrFh3GVqi6tLiz2VR274gnMd691WFJWrYJ5sGnRzulHYoWj01mAwlxWZw4lsGBPUl8+s46/vppZ6U/257tJykosLvNglVVsm5FdKWvWx8IbxrAqx9OZ/y0znTs2oRR49vzf+9MoX2nmlmw3bn1pMcHnN2usmltTI2MWV/RQzo6DZaEuCwUg6cvssZRD0Vap4g+lOpR9MtoUIg7numxV2lJOncP59UPpqOqGkvmHeTPH3e6PHisVgcL/tnPuKmdCQisuPRDemq+R4kBu00lJTkPTZPk5ljx8TEVh6F2bT3J3D/3kJGaT4cuTbjw8p7lkmiuCxoF+3DZdX0qda6masz5Yy+L5x4gP89GyzbBXH1L/0o9MOpx3WmNoM/wdRokUkq8fc0enaIQcCwqlT9/2ukx/a9ZyyCPTTpUTauwgzQYFPZsj/dYdm80GTh6ONXjeSlJOaxdHs2OzbE4PDx82nRo7DG10ZlaKbnvxj944OY/ueOqX/nxyy0sW3CID/+3iiMHUkhNyWPD6mM89+A8khJyKvR5GgLff7GFeX/tJS/XKd4WE53OG88t9dg3AaBXv6YeF9lNZoNLwdj5gO7wdRoce3fG8+Atf/HuSyucqo4lHKOUkJVRyIK/9/H0/XPdnP6YSR0xlHD4RqNCyzbBNG9V8baBwSE+LumOp9A0SUCQ6+xeSsmPX2zhibvn8t1nm/nknXXcf9Ofbs6qdbsQOnUNw2w5vVZgNCn4+plZszSa7MxCHHYNm01lxaLD/PjlVpeHjlObxs6/v+6u8Oepz+TlWlmzNNrtAWu3qcz5fY/HcwKCvLnu9gGYzAaMJgVFca5jhEf6c/JEZpkS1ecausPXaVDEx2bx3qsrSU/NLw7LlPZWbrdr5ORYWTjHtTlFSKgvT7w0npZtglEUZ5emAUNb8tAzoytl09gpndx05BVF0CjEx63z0/ZNsaxaEoXdrmItdDYNycm28s7LK9wWee97chQXXd6T8Eh/GjfxZeL0zgQ18nZzUHab5tI0/RSaBgf3NQyd9vKSmpzn8e1MSkqd4QNcMKYdr8+ewegJHVAUBcUgOHEsk+8+28xT986pt/UT1Y0ew9dpUCz+7wCOko0oJBiMAqPR4C7Va9fYte0ks652Tb9r3S6EF9+egs3qwGBUqpT73bJNMDfeNZhvP9mElBJNlYQ3DeD+J0e5ZaisWORZWz03x0pMdLrLA8JoVJg0syuTZnYt3nbfDX9UyLbgkIan91IWjZv4YvegwyMEZ307O340jWULD7s8HK2FDtJT8/nn191cdQ50UTsbusPXaVAkxmd7LnoyGjzOcgECyxDeKk/j6vIweHhr+g9uQezxTHx8TR77vwKlNtIQQrhV73qiVbsQdm6Nc3utEcLZilAt0Qj9lDZNfUdKycG9SezcehIfHxNDRrYmNMwfh13FZlPx9jEhhMBkMhDaxI+Ek67ZVCazgWmXdC/1+ts3x/LRW2s9/o44HBpb1p/QHb6OTn2jc7dwog66Z9moqkbTFkHEHc9APWMh12wxMGlG7TSnMJoMZTbvtlkdHhdowemwW7c/e+Pvi6/syf7dCR4XiU+lmVosRhRFcMm1fejVr1k5ra87NE3y8VtrnM1UrA4MBoW5f+6lbYcQog6lIjVJSKgv198xiOULD5OanOtyvhBw9S39aVHGDP9U793S8NTa8Vzk/PiUOucMoyd1wMvH6JJXbbYYuGB0Wx5+djQt24ZgNhvw9jFhthi45Oretd45qjS++GADJ46lu203GhVuvncIpnJU+bZoHcxTr0yga88Il4VnKZ2O02AQdO0VzoffXcKYSR2q1f6aYueWuNOds6RTZM1uUzm4NxmHXUNVJcmJubzz8nJ2bInz2Ft29/b4MsdITiw9W8lkUhg5vn2VP0dDQJ/hVwB7bgGO/EK8QoPqpBGDDvgHePHi21P5++dd7N52Em8fE+OndWLk+A4oiuC5NyaRlJBNdlYhLVo1wuJlqmuTAWeMftumEzgc7uGolm2C6TeoRbmv1aptCI++MJabL/mJknNWVZXs2ZFQLomI5KQcPnxjNSeOpSOEoFvPCO54+AJ8fCrfSrAybFh9zKN0c0nsNs8hOykhMa7sgrmQUF+SE3M97uvaM4IJ0xtGi8Kqojv8cmDLymXtzW8SO3cDCIFPRAhDP3+IyDGVKxzRqRrBIT7cdHfpvUjDIgJKjaHXFVmZBRiNivuCM1RaKkHTPDtArRyKk7nZhTx+57/F4S+JZPf2eB6+7W8+/PbSWtX195R1U1FKpr+W5KIre/HV7A0uoTCDUWHShV245OrzR09HD+mUg6XTnyF27kY0mwPNaic3JpFlM54h88DxujZNp4EQGuZfalVnZVUbu/eOdHPMQkD3cjTp+OXbbS5rHafIy7GxbP7BStlTWS4Y07ZcomllvVQ3blJ2E5zBw1tz3a0DCAp2LuAHBHpx1U39mHVVr4qY2uDRHf5ZyDx4gtSth9BsrpKuqtXGvnf/rCOrdOoDUsoi0bazz6jNZgMTZ3huDH54fzK2UrJ3yuLa2wbi528pbmxi8TISEOjFtbcOOOu5B/cll7pv8dzadfidu4czelIHTGanJpHFy4jBIIqb3YDT2ZtMBpdCtFOYTAbalGPBe9iYdrz31Sy+/OMqPvj2EsZM6njehWb1kM5ZyDuehGI2oha4FmZIVSP7cFwdWaVT1+zZEc93n24iNSUPo0Fh+Nh2XHFD3zJj5yaTAcUg3OQgJJIdW+IqVeY/ZGTrIolnIwOHtWLE2HZ4eZ993SIw0IuUUmLaVVXjrChCCC6/vi8jx7dn784EvLyN9O7fjHUrjrJwjlMvp2PXMGZd3Yt3XlpBRlp+cWquEGDxMjBoeOtyj1cdIaSGiu7wz0KjHm1QC21u2xWLibALSs/71Tl3ORaVxvuvriyueLWpKquWRpGfb+O2+4eVel52VqFH7R9VleR40Pwpi6NHUnntmSWoDg2HQ8NkNpCcmEO/QS3K5fAvvrIXrz+31OO+RsF10zA8PDKgWLguJSkXo8nAxVf2os/AZngXLSQ//dpEvnh/HQf3JiGBNu0ac8u9Q/Aux2fW0R3+WfGJCKH99ROI/n4Jjnznl1IYFEx+3nS+a0YdW6dTF8z9Yw82u7uWy5Z1x7nihn6lqmN27RnBqiVRbhkpAujUtWJKj19+uMHlOnabiupQ+fW77dz50AVnPb9LzwiatQwi7nimy3ajSbhU9tYFf/28i/l/7UMIEIrg2082ce8TI+jWK5LgEB8efWEcNqsDKWW9ycJKS8lj3cpocnNsdO8dSdeeEfWyof35+25TAQbPvo++r92Cf9tILI0DaX35KKZv/QTvsOC6Nk2nDoiPy/Io4GM0GUhLySv1vB69I2ndLsQlDm2xGOk/tCXNWpZftK2gwO60oQSaBnu2nSz3dZ58eQLtO4diNAosXgZMJoXREzoyfGy7cl+jujl8IJkF/+zDXlRhay10YLU6eP+1VS5VymaLsd44+51b4nj8rn/599c9LJpzgA9eX8Xb/7e8Xvbn1Wf45UAoCl3unkmXu2fWtSk69YA27RqTFJ/jJvHgcJQtr6wYFB55bgxrlkezbsVRDEaFURPaM2BoqwqNf7qLlAe9/CIFzZJNxD3h62fm6VcnknAyi/TUfJq3DCIgqOrhnIJ8G/P+2semtTEYTQZGjW/PmMkdy6VXtHZ5tMeKWCEEe3fE07cC9Qq1gd2u8vHba10E7ayFDg7vT2bjmhiGjmxTh9a5ozt8HZ0KMu2SbmzdeMIlpGK2GBg7qSM+vmUXLRlNzv65oyZUvgrWZDLQe0Aztm+MdXvoqKrGj19s4YY7B5X7ehFNA4loWrHUUCkldruGyeTawtBuV3nxsYUkJ+YU1xz8/sMODu5L4t7HR571ug6HVmr6qqc00rom6mCKp7YFWK0O1q04Wu8cfpVCOkKIYCHEEiHEkaK/Pb6XCiFihBB7hBA7hRBbqzKmjk5dE9E0kKdfnUDXnuFYLEZCQn257No+XFrJDk6V4cY7B5Wqwb9uRXSpmj3VwboVR7n/xj+59bKfueua31j47/5iaeet60+QlpLnUmBms6rs2R7PiTLki08xcGir4jTTM1FVja49w6vvQ1QTBoOCLEWguz7q81R1hv84sExK+ZoQ4vGifz9WyrGjpJSe2//o6DQwWrQO5tEXxtXZ+L5+FoxGgeohfV/TJDabWi55hYqyZf1xvvlkY3HFal6ujZ+/3sbmdcd5+LkxHNyXWKpMQvShlDIFzgB69I2kd/9mzgbzVgcGRaAYFK67bQC+fpZq/zxVpV3HxphMBgoLXD+zxWJkxLj6p89TVYc/AxhZ9PO3wEpKd/g6Ouctqcm5LJp7gONH02nROpgJ0zoTGlZ2dejZ6NQ1nF3bT7qF8kNCffH2qZkFzT9/2ulRqTP6cCqvPLWYth0bIxSQJdYrFYOzIczZEEJw+4PDOLQvme2bTmDxNjF0ZJty9RmuCxSDwv1PjeLN55chpXSGnYSzPqL3gPqnVCpKdtmp0MlCZEopg874d4aU0u0RLoQ4BmTg/NX8VEr5WRnXvBW4FaBFixZ9jx/X5Qt0GjYnYjJ4+YmF2O3OzlTOKlIDT70ygZZtKp/pFR+bxQuPzsdmU9FU6axGNRu4/8lRNaYQestlP3l0+OB06ooQOEpozgtFEBTkxVufX1SlRjP1GWuhne2b48jLtdGleziRzSsnl1EdCCG2SSn7edp31hm+EGIp4Cl49lQFbBgqpYwXQjQBlgghDkopV3s6sOhh8BlAv3796t8qjY5OBfnhs80ur/yqKlFVB999tplnXptY6etGNg/kpXenMu+vfUQfTiWiWSBTZnat0kPkbIRHBnDimOdYvKZKNA/x7MimATzw9Khz1tkDWLxMDK5AtW9dcVaHL6UcW9o+IUSSECJCSpkghIgAPAp0SCnji/5OFkL8DQwAPDp8HZ1zjSMHUzxujzqYQkpSDqFhpadyno3QMH+uv6PsjJyCAjsJcVkENfImuLFvpccCuPTaPrzz0vJyZ8wYjE7Ziap8Rp3qo6qP3DnAdUU/Xwf8W/IAIYSvEML/1M/AeGBvFcfV0WkweMo6OcV7r66q0bHn/r6He6/7nTeeW8qjd/zLmy8soyDfXSqkvHTvHcldj47wqNLpCUURNbJ4rFM5qurwXwPGCSGOAOOK/o0QIlIIMb/omDBgrRBiF7AZmCelXFjFcXV0Ggwjx7cv1SEmxWeTlFB2847KsmltDHP+2IPNplKQb8duVzmwN5HP3ltfpev2HdicNz6eQZfu4SiKQFEEnbqGuahbnkm/wfWrWOp8pkpZOlLKNGCMh+3xwOSin48CPasyjs75h5SSXVtPsnLJERx2jcEjWjPoglYNMg4866perFx8hIJ8u9s+xSA8bq8O5v+z322B1WHX2L39JHm51iqlOYaG+fPY/43DYVcRisBgUFi9NIrvPt2MYnA+3TRNctPdgwkqo4m8Tu2iV9rq1Et++HwLa5ZFF+unHN6fxIZVx3jwmdH1UpSqLIwmZyP1Ob/vcctgURSlQjo6FSE7s8DjdkVRyM2xVUte+5nhmuFj29GrfzN2bT2JENCrXzP8Aupf7vz5TMObLumc8ySczGLV0igXsSyrVeXwgWT27UqoQ8sqz/hpnQgJ9S0WTlMUpxzDjXcNqjF99q49PCs2ms0GGjep2uJtaQQEenHBmLYMG91Wd/b1EH2Gr1Pv2L870bM+SaGDXdtO0r13ZK3bVFW8fcz83ztTWLviKLu3nSS4sS9jJnWosdk9wIWX92D75lgKCxzFyo1mi4Grb+nfIENjpWGzOli38ig7t8QRFOzN6IkdazQ1tSGjO3ydeoePr7k4DnwmRqOCn3/DnTVavEyMmdSRMZM61sp4jZv48dK7U5n/z34O7EkktIkfky/qSofOFdPe90Rqci7xcVmERwbQJLzuUi6thXZeeGQBqcm5WK0qiiJYv+oY198xqN4Jl9UHdIevU+/oM6AZ337s7vAVRTBslP4lrgjBjX25+ub+1XY9h13lk3fXsXNLHEajgsOh0bVnBHc9MrxckszVzfIFh0lOyi2WVNY0ic2q8t0nm+g/pGWd2FSfOXfe63TOGSxeJh5+fgz+ARa8vE14e5uweBm57cFhNG5SNf0Znarx9y+72bUlDvupVE+byr5dCfz6zbY6sWfLhhOe9fMVQUx0Wh1YVL/RZ/g69ZJ2HUN57+tZRB1MweHQaN+5iT5bqwesWHTYpdkHONsrrl4axdW39HfRxq8NSus/oKlS73PrAX2Gr1NvMRgUOnYNo2vPiHPC2WdlFnBgT2KZbRDrO4WlSB/b7GqpjUtqkrFTOrq0jDyF3a7y3597SUnKqX2j6jH6DF9HpwYoKLBjUARmixFN1fju082sWRGNyWTAYdfo1juCOx+6ALOlZr+Cqqpx5GAKajW9JXXo3IQDexLdtrdpF1In9RG9+jVj0oVdmffnHjRNohWVOWiaZNPaGHZvP8nL702rsobQuYLu8HV0qpHYmAy++GA9J2IyEEDXXhG0ahvCulVHcdi14k5Qe3cm8MMXW7jxrsE1ZkvUwRTeeWUFDruGEM7q5VvvG1qlvrBX39Kflx5biM2uukg9X3vbwGq0vGIYFIGEYmd/Cimd9Rvz/9lfrQvXDZkq6eHXNP369ZNbt+odEXUaBjnZhTxy+z8uUgmKQYDErfcsOHvTfvrL5TWSE28ttHPfDX9SUOAq22A2G3j1w+lVWvxOS8ljyX8HOBqVVtTMpVOdqWEei0rjlacWlarRD9CiVSP+792ptWhV3VIlPXwdHZ3ysXZZtJt0glaGjLCqajjsao04/O2b4zz2WtU0ybqVR5lxaY9KXzsk1JfLb/DoT2qd9auOeszSKUZAkwhdmvkU+qKtjk41EX8y23OKYCmh7bAIfyxeNZNJkp9r86hZ73Bo5OZYa2TMukBVS2sh7sRsNjB5Zpdas6e+ozt8HZ1qom2HEI/a90aTAYvFgKGoelgpWsw9W+OSqtClp6cmdU5t/h59mtbYuLXNwKGlF1f5B1i47f6htO0QWstW1V/0kI6OTjUxeHhr/v1tDw67Wjy7NpkMtOvYmJvvGcLCOQeIPpRC0+ZBTJrZhabNg2rMloimgQwf05a1y48Wi9BZLAY6dmlSY/1u64IOXZowbFRb1q6Ixm5zSisIRTDz8h5MntmtwSmr1jT6oq2OTjWSlVnA79/tYPvmWIxGhQvGtGPGZT3qpI6gZE+BISNbM3BYw+wpcDaiD6eyfVMsZrOBQcNbERYRUNcm1RllLdrqDl9HR0fnHKIsh3/uPep1dHQ8kpSQw/Gj6W6ZRDrnD3oMX0fnHCctJY/3Xl1BQlw2ikGgKAo33T2IfoNb1rVpOrWM7vB1dM5hpJS8/uwSUpJyXYq/Pn1nHeFNA2nWIqjujNOpdfSQjo7OOUz0oVQyMwrcKn0dDpVl8w/VkVU6dYXu8HV0zmEyMws8ShZrGqSlNlzVTp3KoTt8HZ1zmHYdGuNwuFf/mi0GevRpeL2BdaqG7vB1dM5hgoJ9GDelE5YzZJhNJoVGwT5cMLptHVqmUxfoi7Y6Ouc4l13XhzbtG7Nk3kHy82z0H9yC8dM615iOj079RXf4OjrnOEIIBgxtyYChehrm+Y4e0tHR0dE5T9Advo6Ojs55gh7S0dHRqTVysgtZuyyaxIQc2nUMZeCwljXe11fnNPqd1tHRqRVOHEvnlacW43Bo2G0qG1Yf459fd/H8m5PxD/Cqa/POC/SQjo6OTq3w2XvrKci3F3cFsxY6yEgv4M+fdtatYecRusPX0dGpcfJyrcTHZrltVx0aW9efqAOLzk90h6+jo1PjKGU0XTGaar85zPmK7vB1dHRqHG9vEx27NnFrOWgyGxg+Vq/4rS10h6+jo1Mr3Hr/UEJCffHyNmI2GzBbDLTvFMq0Wd3r2rTzhipl6QghLgGeBzoDA6SUHvsRCiEmAu8BBuALKeVrVRlXR0en4dEo2Ic3PprBvt2JpCbn0rJNMG3aN65rs84rqpqWuRe4CPi0tAOEEAZgNjAOiAO2CCHmSCn3V3FsHR2dBoZiUOjeW1fprCuq5PCllAcAj3rbZzAAiJJSHi069hdgBqA7fB0dHZ1apDZi+E2B2DP+HVe0zSNCiFuFEFuFEFtTUlJq3DgdHR2d84WzzvCFEEuBcA+7npJS/luOMTxN/6WHbc4dUn4GfAbQr1+/Uo/T0dHR0akYZ3X4UsqxVRwjDmh+xr+bAfFVvKaOjo6OTgWpjZDOFqC9EKK1EMIMXA7MqYVxdXR0dHTOQEhZ+aiJEGIm8AEQCmQCO6WUE4QQkTjTLycXHTcZeBdnWuZXUsqXy3n9FOB40T8bA6mVNrb20O2sXnQ7qxfdzuqnvtnaUkoZ6mlHlRx+bSKE2Cql7FfXdpwN3c7qRbezetHtrH4akq16pa2Ojo7OeYLu8HV0dHTOExqSw/+srg0oJ7qd1YtuZ/Wi21n9NBhbG0wMX0dHR0enajSkGb6Ojo6OThXQHb6Ojo7OeUK9dPhCiEuEEPuEEJoQotR0JyFEjBBijxBipxDCozRzTVMBWycKIQ4JIaKEEI/Xpo1F4wcLIZYIIY4U/d2olOPq5J6e7f4IJ+8X7d8thOhTW7ZV0M6RQoisovu3UwjxbB3Y+JUQIlkIsbeU/fXiXhbZcjZb68P9bC6EWCGEOFD0Xb/PwzH15p6WiZSy3v3Bqa/fEVgJ9CvjuBigcX23FWfBWTTQBjADu4AutWznG8DjRT8/DrxeX+5pee4PMBlYgFObaRCwqQ7+r8tj50jgv7r4XTzDhuFAH2BvKfvr/F5WwNb6cD8jgD5FP/sDh+vj72d5/tTLGb6U8oCU8lBd21EeymlrsUS0lNIGnJKIrk1mAN8W/fwtcGEtj18W5bk/M4DvpJONQJAQIqIe2lnnSClXA+llHFIf7iVQLlvrHCllgpRye9HPOcAB3BV/6809LYt66fArgAQWCyG2CSFurWtjyqBCEtE1RJiUMgGcv8BAk1KOq4t7Wp77Ux/uYXltGCyE2CWEWCCE6Fo7plWI+nAvK0K9uZ9CiFZAb2BTiV0N4p5WteNVpakG2WWAoVLKeCFEE2CJEOJg0YyhWqltiejKUpadFbhMrdzTEpTn/tTKPTwL5bFhO04tk9wiDal/gPY1bVgFqQ/3srzUm/sphPAD/gTul1Jml9zt4ZR6d0/rzOHLqssuI6WML/o7WQjxN85X7mp3TtVga61IRJdlpxAiSQgRIaVMKHrVTC7lGrVyT0tQnvtTH2S2z2rDmY5ASjlfCPGREKKxlLI+iWvVh3tZLurL/RRCmHA6+x+llH95OKRB3NMGG9IRQvgKIfxP/QyMx9ljtz5SHySi5wDXFf18HeD2ZlKH97Q892cOcG1RNsQgIOtUiKoWOaudQohwIZw9P4UQA3B+x9Jq2c6zUR/uZbmoD/ezaPwvgQNSyrdLOaxh3NO6XjX29AeYifOJaQWSgEVF2yOB+UU/t8GZJbEL2IczvFIvbZWnV/EP48zyqHVbgRBgGXCk6O/g+nRPPd0f4Hbg9qKfBTC7aP8eysjeqmM77y66d7uAjcCQOrDxZyABsBf9bt5UH+9lOW2tD/dzGM7wzG5gZ9GfyfX1npb1R5dW0NHR0TlPaLAhHR0dHR2diqE7fB0dHZ3zBN3h6+jo6Jwn6A5fR0dH5zxBd/g6Ojo65wm6w9fR0dE5T9Advo6Ojs55wv8DYurAVu4JgYgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -355,15 +193,18 @@ } ], "source": [ - "plot_decision_boundary(lambda x: plot_network(x), x.numpy(), y.numpy())\n", - "plt.title('2 layer network')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "可以看到神经网络能够非常好地分类这个复杂的数据,和前面的 logistic 回归相比,神经网络因为有了激活函数的存在,成了一个非线性分类器,所以神经网络分类的边界更加复杂。" + "y_res = torch.sigmoid(SimpNetwork(x))\n", + "#y_pred = np.argmax(y_res, axis=1)\n", + "y_pred = (y_res > 0.5)*1\n", + "\n", + "# plot data\n", + "plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Spectral)\n", + "plt.title(\"ground truth\")\n", + "plt.show()\n", + "\n", + "plt.scatter(x[:, 0], x[:, 1], c=y_pred, cmap=plt.cm.Spectral)\n", + "plt.title(\"predicted\")\n", + "plt.show()" ] }, { @@ -373,13 +214,6 @@ "## 2. Sequential 和 Module" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "前面讲了数据处理,模型构建,loss 函数设计等等内容,但是目前为止我们还没有准备好构建一个完整的机器学习系统,一个完整的机器学习系统需要我们不断地读写模型。在现实应用中,一般我们会将模型在本地进行训练,然后保存模型,接着我们会将模型部署到不同的地方进行应用。" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -387,7 +221,7 @@ "\n", "对于前面的线性回归模型、 Logistic回归模型和神经网络,在构建的时候定义了需要的参数。这对于比较小的模型是可行的,但是对于大的模型,比如100 层的神经网络,这个时候再去手动定义参数就显得非常麻烦,所以 PyTorch 提供了两个模块来帮助我们构建模型,一个是Sequential,一个是 Module。\n", "\n", - "Sequential 允许我们构建序列化的模块,而 Module 是一种更加灵活的模型定义方式,我们下面分别用 Sequential 和 Module 来定义上面的神经网络。" + "Sequential 允许我们构建序列化的模块,而 Module 是一种更加灵活的模型定义方式,下面分别用 `Sequential` 和 `Module` 来定义上面的神经网络。" ] }, { @@ -399,10 +233,8 @@ }, { "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": true - }, + "execution_count": 6, + "metadata": {}, "outputs": [], "source": [ "# Sequential\n", @@ -415,7 +247,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -424,20 +256,19 @@ "Linear(in_features=2, out_features=4, bias=True)" ] }, - "execution_count": 14, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 序列模块可以通过索引访问每一层\n", - "\n", "seq_net[0] # 第一层" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -445,10 +276,10 @@ "output_type": "stream", "text": [ "Parameter containing:\n", - "tensor([[-0.4644, -0.4195],\n", - " [-0.3199, 0.1816],\n", - " [ 0.3588, 0.1743],\n", - " [-0.5447, -0.6158]], requires_grad=True)\n" + "tensor([[ 0.3485, 0.5085],\n", + " [-0.6388, -0.1725],\n", + " [ 0.4717, -0.2461],\n", + " [-0.1726, 0.4927]], requires_grad=True)\n" ] } ], @@ -461,46 +292,45 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# 通过 parameters 可以取得模型的参数\n", - "param = seq_net.parameters()\n", - "\n", - "# 定义优化器\n", - "optim = torch.optim.SGD(param, 1.)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1000, loss: 0.07597314566373825\n", - "epoch: 2000, loss: 0.06681923568248749\n", - "epoch: 3000, loss: 0.06246059015393257\n", - "epoch: 4000, loss: 0.05549143627285957\n", - "epoch: 5000, loss: 0.050142571330070496\n", - "epoch: 6000, loss: 0.04679693281650543\n", - "epoch: 7000, loss: 0.04454003646969795\n", - "epoch: 8000, loss: 0.04290143400430679\n", - "epoch: 9000, loss: 0.041652847081422806\n", - "epoch: 10000, loss: 0.04066724702715874\n" + "epoch: 1000, loss: 0.3075895607471466\n", + "epoch: 2000, loss: 0.3041735887527466\n", + "epoch: 3000, loss: 0.30135470628738403\n", + "epoch: 4000, loss: 0.25870421528816223\n", + "epoch: 5000, loss: 0.14440153539180756\n", + "epoch: 6000, loss: 0.10606899112462997\n", + "epoch: 7000, loss: 0.09030225872993469\n", + "epoch: 8000, loss: 0.08221166580915451\n", + "epoch: 9000, loss: 0.0778866782784462\n", + "epoch: 10000, loss: 0.07527764141559601\n" ] } ], "source": [ + "# generate sample data\n", + "np.random.seed(0)\n", + "data_x, data_y = datasets.make_moons(200, noise=0.20)\n", + "\n", + "# 变量\n", + "x = torch.from_numpy(data_x).float()\n", + "y = torch.from_numpy(data_y).float().unsqueeze(1)\n", + "\n", + "# 通过 parameters 可以取得模型的参数\n", + "param = seq_net.parameters()\n", + "\n", + "# 定义优化器\n", + "optim = torch.optim.SGD(param, 0.1)\n", + "\n", "# 我们训练 10000 次\n", "for e in range(10000):\n", - " out = seq_net(Variable(x))\n", - " loss = criterion(out, Variable(y))\n", + " out = seq_net(x)\n", + " loss = criterion(out, y)\n", " optim.zero_grad()\n", " loss.backward()\n", " optim.step()\n", @@ -517,21 +347,19 @@ }, { "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": true - }, + "execution_count": 10, + "metadata": {}, "outputs": [], "source": [ "def plot_seq(x):\n", - " out = F.sigmoid(seq_net(Variable(torch.from_numpy(x).float()))).data.numpy()\n", + " out = torch.sigmoid(seq_net(torch.from_numpy(x).float())).data.numpy()\n", " out = (out > 0.5) * 1\n", " return out" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -540,13 +368,13 @@ "Text(0.5, 1.0, 'sequential')" ] }, - "execution_count": 19, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABVRklEQVR4nO29eZQs+VXf+bkRkXtl1v5evf29XtSyBKIBIaEFLAlh1N0YGQE2aAYDg0973GCZkXxs0RqDrWNjGDTMGIONNFgHwxgQYyHTGIEAu43AbGqw9rWXt9R7r17tS+6x3Pnjl5mVWRmZlbVmLb/POXWqMiMy4heZWb8bv7t8r6gqFovFYrH0whn2ACwWi8VytLGGwmKxWCx9sYbCYrFYLH2xhsJisVgsfbGGwmKxWCx9sYbCYrFYLH2xhsJiOWaIyGURKYqIO8C+rxOR2cMYl+XkYg2FxXLEEZHrIvLG5mNVvamqI6oaDnNcltODNRQWi8Vi6Ys1FJZTiYj8YxG5LSIbIvIFEfkGEXFE5J0i8pyILInIr4nIRNtrvltEbjS2vav9Tl9EfkFE/nnbvh0uHxE5LyIfFJEFEXlBRN7Wtu2fNs71i43xfEZEXt7Y9kvAZeA3G+6mfyQiV0VERcRr7PN9IvK5xmufF5G/e/DvoOU0YQ2F5dQhIg8BPwh8jarmgW8CrgN/H/gbwF8FzgMrwM82XvMS4N8C393YNglcHPB8DvCbwCeAC8A3AD8kIt/Uttu3AL8KjAFPAT8DoKrfDdwE/nrD3fR/xJxiHvhmoAB8H/B/ichXDTI2i2UQrKGwnEZCIAW8REQSqnpdVZ8D/lfgXao6q6o14J8C3964c/924D+r6kcb2/4JEA14vq8BplX13apaV9Xngf8H+M62ff5IVT/ciDv8EvAVg16Mqv6Wqj6nhj8Afhf4ukFfb7FshzfsAVgsh42qPisiP4QxBC8VkY8AbweuAB8SkXYDEAJnMauIW23HKInI0oCnvAKcF5HVtudc4A/bHs+1/V0G0iLiqWqw3cFF5BHgR4EXYW7+ssCnBhybxbItdkVhOZWo6i+r6msxk7gCP4ExBI+o6ljbT1pVbwN3gUvN14tIFuN+alLCTNBNZtr+vgW8sOW4eVV9dNDh9togIingg8B7gLOqOgZ8GJABj22xbIs1FJZTh4g8JCJvaEyyVaCCcSP9HPAvRORKY79pEXlz42X/EfhmEXmtiCSBd9P5//Nx4FERmRCRGeCH2rb9ObDRCKBnRMQVkS8Tka8ZcMj3gPt6bEti3GgLQNBYXfy1AY9rsQyENRSW00gK+HFgEePyOQP8MPCvMIHk3xWRDeBPgVcCqOpngB8AfhmzulgB2gvZfgkTrL6OiRF8oLmhEXf4ZuBh4IXGeX8eGB1wvP8S+N9FZFVE/mH7BlXdAN4G/FpjTG9tXIPFsm+IbVxksewOEbkO/B1V/f1hj8ViOUjsisJisVgsfbGGwmKxWCx9sa4ni8VisfTFrigsFovF0pcTWXA35iV1JpHdfkeLxWIBsqPKl+TMsIcxVIpzzy6q6nTcthNpKGYSWd7/wGuHPQyLxXJMePKxJ/jqYQ9iyPzBTzx2o9c263qyWCynmvTTbxn2EI481lBYLJZTzdvfM7P9TqccaygsFsup5cnHnhj2EI4F1lBYLJZTycOPbCvMa2lgDYXFYjl1vPpT7+BR523b72gBrKGwWCynkNe9szLsIRwrrKGwWCynig+8963DHsKxwxoKi8VyqvjEU2PDHsKxwxoKi8VyarBZTrvDGgqLxXIqeNX7XzbsIRxbrKGwWCyngtd/0Mr67BZrKCwWy4nn1Z96x7CHcKwZmqEQkUsi8rSIfFZEPiMi/yBmHxGRnxaRZ0XkkyLyVcMYq8ViOd7YdNi9MUz12AB4h6r+pYjkgb8Qkd9T1c+27fMI8GDj55XAv238tlgsloGwAey9M7QVhareVdW/bPy9AXwOuLBltzcDv6iGPwXGROTcIQ/VYrEcU6zLaX84EjEKEbkKfCXwZ1s2XQButT2epduYWCwWSyzW5bQ/DN1QiMgI8EHgh1R1fQ/HeVxEnhGRZ1bD+v4N0GKxHEusy2n/GKqhEJEExkj8B1X99ZhdbgOX2h5fbDzXhaq+T1VfrqovH3OT+z9Yi8VybLDKsPvLMLOeBPh3wOdU9ad67PYU8Lcb2U9fC6yp6t1DG6TFYjmWWGXY/WWYWU+vAb4b+JSIfLzx3JPAZQBV/Tngw8CjwLNAGfi+wx+mxWI5Trz6U+8AG5vYV4ZmKFT1jwDZZh8FfuBwRmSxWE4CNoC9/ww9mG2xWCz7hZUQPxisobBYLCeChx8JrIT4AWENhcViORFkvsMq/BwU1lBYLJYTgVWHPTisobBYLMee9NNvGfYQTjTWUFgslmPP298zM+whnGisobBYLMcaK9Vx8FhDYbFYji1WquNwsIbCYrEcW6xUx+FgDYXFYjmW2F4Th4c1FBaL5VhipToOD2soLBbLscNKdRwu1lBYLJZjhZXqOHysobBYLMcKG8A+fKyhsFgsxwYbwB4O1lBYLJZjgw1gDwdrKCwWy7HABrCHx1ANhYi8X0TmReTTPba/TkTWROTjjZ8fOewxWiyW4WMD2MNlmD2zAX4B+BngF/vs84eq+s2HMxyLxXIUsQHs4TLUFYWqfhRYHuYYLBbL0cYGsIfPcYhRvEpEPiEivy0iL+21k4g8LiLPiMgzq2H9MMdnsVgOEBvAHj5H3VD8JXBFVb8C+NfAf+q1o6q+T1VfrqovH3OThzU+i8VygLzq/S8b9hAsHHFDoarrqlps/P1hICEiU0MelsViOSRse9OjwZE2FCIyIyLS+PsVmPEuDXdUFovlMLCxiaPDULOeRORXgNcBUyIyC/wokABQ1Z8Dvh34eyISABXgO1VVhzRcyxFCVSmXIoobIa4rFEZdkqkjfd9j2SE2NnF0GKqhUNXv2mb7z2DSZy2WFhopt27UqVYimrcNy4sB0zMe4xOJAzlnGBjDJA5kcw6OIwdyHovhA+99Kzw17FFYmgy7jsJi2TEry0GHkQBQhYW5gJG8RyKxv5P48qLP4nyANA6rwPmLSUby7r6ex7KJLa47Wti1uuXYsbYaEueAVIU7t2psrIfsl4eyXApZnA9QhSgyPxrBnVt1fN96QQ+CJx97YthDsGzBGgrLsUOj3tuqFeXu7To3X6hRKYXcuVXnxnNV7t2pU6/3eWEPVpaCeKMErK8GOz6epT82HfZoYg2F5diRLzjQx7ukkTEYN6/X2VgPqVaV1ZWQ68/VqFZ2ZiyCXqsGxa4oDgCbDns0sYbCcuyYmErgebRiBoOiEczd2VnVfjYX/y8i0nubZXekn37LsIdg6YH9pluOHa4nXL0/zeS0h7vDdIxaVYnCwVcC45MJnJiYtZcQ8jaYva+8/T0zwx6CpQfWUFiOJa4rTE4nuHQlteOVRT+31Va8hHDlvhQjeQcRcBwYHXe5cl8KsSmy+4btNXG0semxlqEQRUq9pnie4O0hnTWVdhgdd1lb2cyEEiE2AA27q4FIJh0uXE713K6Rsr4esrEe4jrC6LhLNmdXGzvBpsMebayhsACm0nl1JWBlKSQMlHTGYepMgkx2fxedqsrSQsDyYtCa0DNZh/OXkrju7gzGmZkEuRGXtZWAMISRgkMq5XDnVh1Vcw4RcFyYOb+/BXlRpNx8oUa9pi3jtLEeMj7hMj2zd3HKcilkaSGgXlOSKWFy2jtxRsimwx59rKGwADA/53fclZdLEbeu17h0NUkmu38T0+qyMRLNCbx5rtkbNa7cl97VMUWEkbzbVQB37cE066sB9bqSyTjkR919r6heXQ46jASY61pZDimMRaTSuze062sBc7f91rGDQKmU68xcSFAYPRn/uq96/8vgg8MehWU7bIzCQuBrh5FoomoMyH6ytBhfl1CrKrXqzusc+uF5wsRUgpnzSUbHvQOR3VjvU/y3sR5ueU6JosEC6arK/F0//jO56+9bQeGwsemwx4OTcVti2ROVStTTr1+t7N+EpKqEPWrURMCvK6kdLipq1YilhYBKOQQBQXA9GBv3KIy5yI4j3WaCX5z3CXwlkRSmziR2JddRKoYURl28hDA/57eMSiIpnJnpf0zfV6IedjOKzHuVTB3vYHr66bfAe4Y9Cssg2BWFBbfPHOjs4zdEpHfgWpUdT3yVcsiN541kRxBA4JsJtlpR7t31uX2zvuM775Uln7uzdeo1M1HXqsqdW3XWelRhG2MUf6xqRbn+XI3rz1U7Vh5+3RyzVAzjXwjbrn5OgiihTYc9PlhDYSGTdWINggiMje9v4HRq2uuaWJvFazuVCb93p9s100TVxD7KpcHdWVGkLV2nrcdamOt290SRkko7eH3i46rg17tXa6qwON/bred5QjodbwxS6b1lih0FbAD7eGENhQUR4eKVFK5rVhAi5ieTdZg8s/MsoX6++NFxj+kZD8fdPE++4HL+0s4yhKJIqdX6rxZUobje+659K/W60uuIUQRB26JiZdnn2c9XuXOrTuD3X5X1olbtP/5zl5J4CZDGf6k44HlGufY48/AjViPruGFjFBbA1CPc/1CaUjEi8JV01iG9w4ydKNKBfPHjEwnGxj2CgIZx2vnd8aChB9nBJbiu0NNSsOmGKxVDFuY6M7fCwe1RC8/rfxGJhMN9D6YpbkTUaxHJlNMo/Dveq4lHnbcNewiWHTLUFYWIvF9E5kXk0z22i4j8tIg8KyKfFJGvOuwxniaaaaZjE96OjQTA7I36wL54ESGRkA4jEUXK2krA/JyJCfTLEBIR8oXtb+MLo4Pf6icSQioTPwmnM9Kq81jukbm1U8Ynt3+Pm9c5OZ0gX9hdcP4oYdubHk+G7Xr6BeBNfbY/AjzY+Hkc+LeHMCbLLqhWoq5mQrC9L75JrRbx3Ber3Lvrs7IUcu+uz/NfrPaVBj97zogD9sNL7OwrfuFiKlbbqVrRlvKsX9+fTLBeWU2qSqkYsrIUUNzYv94aRwHb3vR4MlRDoaofBZb77PJm4BfV8KfAmIicO5zRWXZCvxqI7XzxYBoBReGmK0cj4865O9tb7dX1hEvXektrNLWZdoLrEet+Ut1Unk1neivK7oSVpe6VVhiYTKnbt+rMz/ncuVXn2c9XKZd24ds6Ylg9p+PLsFcU23EBuNX2eLbxXBci8riIPCMiz6yGO5OStuwdLyE9xfa2y9Dx61HPu/RqRan16SGRTDpkst3HF4GRws4rsavV3gHtWlUJQ2UyJnMLzHXuxFiEIV2rhbk7JjW32Zyp2Vnv1vX6QCuzo4zVczq+HHVDMTCq+j5VfbmqvnzMPd5ZIceRbM6J1WoSgYnJ/nGC7Twr15+vcftmrWfM4vylFKmUtFYQIuauf+bczjO2ROgb0BYxgf+Ll5MdmU6JBFy4lGRiKt6IxJFISEfMIYqUYrG3UVxaCI7tysJ2rjveHPWsp9vApbbHFxvPWY4YIsLlq0lmb9bx69qq9B6f9Bgd7/yahaERIKyUIhJJYWzcxXH6Zw4VNyJuvVAlk3OJQsjl3VYGkOcJV+5PUa0ovh+RSjm71lhK9rnHaCrPqipLi0FHjMH3aehVpQgCZX01bL0Hzd/tBlEEps52vi9RZBZl/ezm6nJ4LEUBrVTH8eaoG4qngB8UkV8FXgmsqerdIY/p1FGtRize86mUI1xPGJ9wGSm4lDZM8Do3YorlEkmHaw+kqVUjwtAUo21dZfj1iBvP14iizYlzbSVkbMJldTleN2lzHFCtGmuyvhaSTAmXr6VwHHNnnskKmT0uklcWe4/h7Dnz71IuRVRiAvdBADdeqJEvuFy6lkIjI6OeSAjz9zZFF10Xps96XcJ+rmviLj3br2KM7HHDSnUcf4ZqKETkV4DXAVMiMgv8KJAAUNWfAz4MPAo8C5SB7xvOSE8v1UrEzRdqrUkxqivzcwHzc0HLxbJwzzTzOTOTQERad/NhqCwt+JRLEYmEMDbhsTjvd60cVGF1JeTSlSRLiwGlPu6X9tfUa8ryYsDULooCe7Gy3EuMyhiCZArKxbAVQ9hK4Jsg9epyyKWryVa1eb7gmtRhzMph4V6A6zkdNSYiwtlzCW7fqscuK0QglRHu3TWrtkzWYWzcw92mHmPYWKmO489QDYWqftc22xX4gUMajiWGhXv9ZTKarK0Yl0iztsH3I248t2XlsNrbtyRApHDhcpJnP1/tmTq69fzLi5uy5dmcw9lziR1LgbTTy/0lQkvQ0Bmgb4Yq3J31ufagQxCYGpNWRlfjPHdu1bl6f6pjvCN5l0uXjQuv430XUzy4utQpBb+8FHDlvhTJ5NEMN1qpjpPB0fx2WY4MlfJgWkmqpjdDk/k5v5HVs7PziQgTU4Pfv2zta3Hj+Rp+H9fNdqR66CuhpugOTBHfIAHrIFACX1ldDmLjDqqwstS9gsmOuDzwUJqJKQ8vIXgejOQFjTrfT1WIQqN5dRSxAeyTgzUUpxhV3baYK674rBft/vPSxs56Syi0uulNTHlMTu8uYBtFRgF2txj3WedzzVTbROOuPZF0OHNucGNWr0c9I9T1HmnBjitMn01w34Mp0lmH4rr2NLrlUsTSot8qCDwq2AD2ycEailOIqrJwr86XPl/li5+t8vwXq2ysxfvmx8YHS/cUgdyImdzrte5A79Z9248pYlqUNmseRISpM0nOnh881bSdyg4UY7eSzblcuJxsrSxc1xiucxc24yCmB8b2aapeQkgkHTIZJ/46ZHOVEketFnH92SrF9e2vZ/FewM0XaszeqKEDNkc6SNJPv2XYQ7DsI0c968lyANyd9RvSEOax7yt3b/tG62mLftLktEe1GlFuBpiF2ECu48LEpEelbFqo9qN5XhHjxpmY8mLjCmPjJji+eM8nCMz+nmcygxwHyqX4CdFL7i24mxtxW0ZvK1Gk3LxeIxqgnKGp8jo67pnOflte44gRSIzDr0fcbGSHDUpTWn15KWByen97g+8UG8A+WVhDccrw61GHkWiiCvP3/A5DEYZGpM8RoTDmkkgIyZSphF5bCRvpnspIQ7TO9YS567WB4xImcynqG3weHfMojLqteoRmgVrgK89/qdp1LhFTu3FQFDd6Zzy14yU2pT5cV7hyLcXcHb8V80lnhJnzyZ5V61vrNAalGSsapqGwAeyThzUUp4xqdbMYbit+3cQsRIR6LeLGC7VWAFUEELh0JYnnOUxOO12TURgq9W16RMSNx/eVRB+ZD5FuaQwvIVy4nOTOrTpKo1BNYXrGI5s9uII03+8dK2hn64ojmXK4fC1lqst1+8ypQZMIYs89xFDFq97/Mvjg8M5vORisoThlJBLSc6Jz3c079ru36x2TnSqgcGe2zn0PpmPlrncTT1AR/sfIg2TSwgMbN8lE/d1W7eQa2UHlsomJZLPOQKmrg+LXI1ZXwkZ/DmF0zMivixPvfmvHpAVr1/s0qPaU58mOjW6TZlLAMHj9B1+L64dki6YWpDKSJEgev0pySyfWUJwyUmkhkeyehERgrOGyCUPTdzqOMDCFbnFppI4jZEeczXjGAASOx8fPPYwjyp9PvIxvmvtDLlbmB369ONIznrAXNtYC7sxuZk+tr8HyQsDlaykSie0n8Xajuxsmpjwq5frO04sdmJ4ZnttpZKXC+HzZPFAYWyizMZZm9Ux2d3cS+0l7cMyyI2zW0ymj2fZ0q4heYdRlcpD6hf5N4Izf3RvsfzF0XZ7/K1+Nui6h4xE4Hr939jWEQ/5a+vWow0g0CQK4c7vO2fMJ8qNuT7VcEZMEsBNUTc1FGJh3NzfitlRqHWfzc+qF65rq76v3pUjtoeBwL/zyj30X4/NlHMX8YH7nV6ukS8Or9UhUA2aur3H5C8tc/sIyU7PrOMHRSiU+6tgVxSkkkRCuNjSZgsBoMrW35XQcSKbi75odgVSqe8aqVky2jV+PGMkb3SffV0rFeAnxUn6MF178lSyeu9LxvCLczp7hcnluH650MFSVcqnRAjbjsHCv96RWLSuz1+skU8J9D6QQgXt3fSM70lD0m5jyGJsY/F+rVAy5d8cnCIzEeSbjcO5Cgslp0zK2XI5wHMhkhXt3AzbWQlOpjfmsLl6NNw6q2mq45CWEkREH2UXb2UGZ/VCSgla7nncU8itVqiMHq+oskZIu1XEiqGY9woSLVw+ZubGG0/YVzBZ9kjfWuHNtzHyhLdtiDcUpJpV2aG/7U1wPmb/nm4k95v9HBM5dSHa5VNZXA+bubEp9VCuK40RcupbizIywvhqyumJkNgqjptXq++//64Sx1XxKIIf3tazXTDpvu9TIdu4eVdOb4vbNOlfuT3HhcoowUIJQu9q7bketGnF7i1xHpWwSCe57MI3rdbZ8PXchydR0RLWiuJ6JR8S5uKJImb1RbxXhNWtXLl5N7arN7XY8+dgTTNwt9lpk4RxwbUe6VGd6dqNlrAVYH0/jhBGyNTMOcIOIbLFOudC78ZVlE+t6sgAm7fPObH3z7r/xK5Ewk9HouMvV+1Pk8p2TexQp9+5260FFEdy7U0dEGB33uHJfmqv3p5mYMoV15yv3YiPCkbic30GMYi+omsk0CGgZip3EBOp1bXXvcz0hlXJ23ChpaSG+/3YUwsZ6fLFGIumQH3XJ5nr30F6857cUbpvNj8IQbt+o7Xtr1aZUR2UkSRQznEigPHJwcRMnjJie3TDursisYKSxikmXgljj5SikKj0EIC1dWENhAXqL//k+5PIO02fixfb6yUZUK9qz2dCrlz5OMgpw2qrQvCjgq1c+TTo6uA6FFSfFF/JX+Xz+Git+imAPst0iRs9pL9Rq8e+fKtT7tJfdjtXVMDaYFEZ7S72NoynVURlJUE+5HcYiEgg9h+JYel/P2U52Pf77YgxHfMfCSCDYYT/104x1PZ1S6rWI+TkjAS7SP/d+aT5gaT5gesbrqiQWkb7BbVpVDp2M+Rt8++xH+MToQ9xzR5lamOVyeY7LyQ3YxxTXdj6Tv58/mfpKBHOx0dRXc1/0F1x87rOxow49Dy8IelyBUbuNi9fshGRMBhoYIzSoCm4UKRtrIaVihJcwsiu90neF7hqPvdDRa0KEe5dHKaxUGFmrgUI5n2R9MoO6BzcpuzHupSbqNOqAtm4XKI1at9OgWENxCmlvHgSD+eQBFuYCMlm3w8edzgiOQK+557kv1jg7k6Aw1v1VywdlXvKFP+fMvHEB+ALPKZw9n2A0Zv+9sPGLb+Gj7040gpqb7rPnH/oqCkv3KKwudey/MjXJp7/2lTz48c/j+T4TC7dx26xp6Lp4oxkSyb3NuhPTCUrF7mp2cTCZVW2EoVJcDwlD04sinXGIQrjxfI0g3Oyzvboc4iVMb4ytqEJ6H+ssuqQ6HGF9Msv6ZHbfzrEdtUwClUqXMVCMO6yW9pi4V2pZexVh/mKe6ACN10nDGopjjjb6LAe+kspIQ4Cu/13uXuUhZs5vZq+ICOcvNfonxBwzCmHujo+XlK6K6Uo5ZHG+zUff+H3vjk8m47TuqMNACQIlkdxZoLhdSmL8XxXJa3cxX+S6zF77K7zkf/xR67nA8/jYN7yBuSuX8b2zuJEydec693/2L0iXNwi9BLPXXsyff8PXUSlk+HD003z8t3f3r5TJOMxcSDB/1ydqFDUmksL5i8mOay2XQmZvGBdLs1I+k3XwEnTJqqtu9s5oRwTGJ1w8TwgDZXU1oFKOSCaFsfF4va1+HBWpjmrWo57ySNaCVnaTAuoIa5MZwoRLuZAiWfbxghAVsUZih1hDcYypVU3GTnsQNpUWLl1J9a1Q3ouPOs4nn8253Pdgmnt367FKp6qmWC17pdNQrCzFtx01He+MXtHc7Xpn6um0x+SU12UMS26a50YuU3FTfOTLX0k11+kic8MoPiNHhIXzF9h4fpR0uczymWn+8uu/jvlLFwEojqXIr1RZPH+VxfNXkShCRQg9h0re+N0fdd4Gj8GP/da/6f2++cryokmjNe1kPUYKxqgXRj3yBZd6TRGHriZEUaRdmVGq5nPstRps1nKUy5FJj/VMn4/CqEu9TXBQFUqYVcj5S8mOjnv9OFJSHSLMXy4wulhmZK2GREoll2BtKouoSZt1wojJ+RKuv/n9rOYSLJzP2xTZARh2K9Q3Af8K4wv4eVX98S3bvxf4SeB246mfUdWfP9RBHlFUldmb9a6ObLWqMn/P77jr30oveYjm5OL7Eeur3ZOQkRKPvxPzGlk/ReKNUK0aEQba0bazXyA4DODOzTrlSqOXQ2PX5YUA14HxyU1D8EL2PP/l7KvwXQ9HYfr2BvWUy/zlUbQxCVRzSTJFvyOfHkxQc+XcJL/+d/9O7DjWprKkKgHJamDG4DoN10WhqwKueYe91WD49Yjrz7cpztaVaqXOaNnl7DnzOZkWsvETVqkY9Wx81AvFrEwuTXf74e/d7f7emI58dR54cbw8y1aOWq8JdYTVMzlWz+RAlbH5MjM31ja3i+BE2nGzkC75jC2UWD07cvgDPmYMbf0lIi7ws8AjwEuA7xKRl8Ts+gFVfbjxY41Eg2pFOxoFNVHF9GbuM4tMTPbu8zA67nHmbBI35hbC82TXsYMggOe+WGX2Rq017txIfJ8GE8gVKk0j0YaqcZ01qYvHfz37KkLHaxkBRyFZCyksVVr7lQopQs/pMGMmYO1Q6pORo45w73KBe5cLrJ7JsnRuhNsPjFPP9H4ftrpkFueDrgCyqmkfW69vv7qLQu1fDh87cMjlulcHqtpTYiWK4IufrfLFz1W4d7feM2PtqHeuG5svk1+tblaIN7Kftn7VTNV4bedtGE8hw3TUvQJ4VlWfV9U68KvAm4c4nmNFFPPFb7Ld9z6X75aHcBzTr9rzBMcVrtyXpjBmBPBETIrs5WvJvjGCWqV/YFfV3B3P3jSxgrFxL7aDnuNCItlbsiIMaBnCG7nz1GOsmqMwsrZZJayOMHd1lOJ4mtAVQlfYGEszd3Vz1dETEeqZBBsTGcqF1Pb702ksSsXe78sguliZXO9/U8cBd4tkiohR0W1fve0EjYwRM27N7i/TUVtNtCORtoxEx/O99m9brVp6M0xDcQG41fZ4tvHcVr5NRD4pIv9RRC71OpiIPC4iz4jIM6vhweXhHxXSGaenQTA6Tv0nicnpBPe/KM3M+STnLia570UpHKfp9zZy45W2xkDlYtRwdcWfNPCVYo9GQlupVZRa1fjqr96XJpfv/BqGocmw6hVwNxOjub4/+Z5X9zyPbHl95DqsnM0x++AEsw9OsDKTO9Cg5pOPPcGr3v+y3p+FmOym7UgmTdA6jiiC8xeSTE57ZHMOhVGXS9dSPRsihaEpotwOVajVdN9rLg4a14+vH+lFkHBsjGIAjnow+zeBX1HVmoj8XeDfA2+I21FV3we8D+DFmbETf4/guiY4ubzYWdkrAmfOdc4EqqYB0fJSSBgYPaOpswkyGVPhW1wPef6L5i5fMf83jitd2TS1qnLvjs/5S93xj8UFf/B/UDFVzam0mfT9rfESNa4qx4mv75hqE9z70pdGucBq1z4mNXK4Xd7A3H3/o7eXmf/JT3UbdmXg4PHWmEI71ZoyOZ1gcrr/MZpp0f2O1TG8yBRUZttcWEcl06kDVUZWq4wuVnD7FFBurYeJBFbOHF4a73FmmCuK20D7CuEim0FrAFR1SbWV0/jzwFcf0tiOBZPTHjMXEqRSgutCdsQ0x8lu8U3Pz/nMzwX4dSWKTLvMWy/UqJRDarWIO7N1oqghY9GQeogT8gMj9RHnuy72kJuIRU2hGRiDsdUgNYkzEiK0uvC96v0vI0y4rI+lO6qBFYgcYXX6aEwC7wneQDqz2Xypqbt07mICd8DiQq+HG0nEKMcOwvycP7CRALPaae/Ad1RjEyMrVcbny3ihccc2EuQ6iIBa2iXwTIFoPemycCFPJW+L7gZhmCuKjwEPisg1jIH4TuCt7TuIyDlVvdt4+C3A5w53iEebZmplYbT3xxj42mhZ2vm8KszerO+qSjeKzN1+51gGfLGYIr1Uo2gviujZca8X62shE5NOy1e+eiZLLZsgv1LBDUxq5MZkhtA7Grnykefxcz/wv/GuX/sZyqUQ13MoFNyebVDjGJ9wmZ/r1oVSTC1GFGlH/EhV2VgPWVoICAMllXEol+LdSM3PrivLjc4Vz5GMTagytliJjUm0wg+NKuzlsznbi2KXDM1QqGogIj8IfASTHvt+Vf2MiLwbeEZVnwLeJiLfAgTAMvC9wxrvcaVSiXpOxLsxEq4bfwdbGHNZXor3D7f/b+ZGHGYubLqudiqBoWpiHFtPUMknqeQPVsZ6T4jwL/7W3+9ba9GP0XGPSsVIdZjjmdWf68D158yieyTvcva8WaUsLQQdbsntgua5vENpI9pc9Thw8XJqxyKHh40bREiPuwwVWDiXp5ZLoAckC3NaGGqMQlU/DHx4y3M/0vb3DwM/fNjjOkkM6pYYBJNNk4gNzk5OJygVI+q1zZ7SIkaOo1Bw8X1TQ7HV1eI4wvSMx/zdeBXVuDEk96ivdFC49ZDCcoV02Sf0XNYn0l09GF79qXfwx1/+f+742CLCuQtJJqciyqUI31dWloIOV9LGRoh/PeLC5WRX7Kr/wY18eRRBtRzhuN3y5R2aTkeIfskIAtSznjUS+8DRWJtbDoxM1ulyEw2C65pJPpkSHMe4iy5cTvZ0czmOcOW+FOcuJMhkBcc17qlyMcIPlGTKaRmJKFIqlYhazWRYjY0nuHA5SSbnmAY7eYdzFxPxXgKB0TGPhx/Zm0S064eMzZeYeWGVqdl1UuW9dWBL1ALOX18jv1ojWY/IlH2mb2+QXyp37Pe6d1Z6HGEwkimHsQmPcimmqr2RqbS+Hu7Iw3Lugkl79jxhpNBfvvyooY5QKqS65M0joJJNEB0R9+Nx56hnPVl6UC6FLC8G+L4RiJuY8rqkH2Cz9emt67WWltB2d5rZnGOMRNJhbHzwr4iIUCqapjrNc6yvhRQ3Qq7clyKZclhbCZifM5OyqgmWXriUJDfidvW+dhzh7u26GTPG8Jy/lMRLCD/8N/42PDXw0ECVdNknVWk0UFo2fm3BFOdlSj4rZ7IUxzM7OOgm4/fKyJbaFkdhfLFCaSzdcef78CPBrrWhmvTq2a1qUosHJTfidDRG6kWX+N8h4wQRI6tVUpWAIOGyMZEmSJpxr5zN4YYR6ZKPiiCq1DIei+dtxfV+YQ3FMWRl2WehLbBZr4Wsr4VcvhbfvSyVdrj/oTSlhnhgFCqLPRrm3PdgikSMwRmEei1ifa37TjeKYGHeZ3zC62py5NeVm9dr3P+idJc/fCTv8sBDadMcSAarD2kikZKsBKgj+EmHszfXSdTDDoVRafstCuPzZUqF9K5cFemyHy9FLpAqBz3jJxopGxthS49pdGywQjnXgz237RBaSQVHGa8eMnN9DVHFUVB8RtaqLF7IUxlJosDqdBaZMJpOyVpIuuQzfbtIcSxFOd+netMyENZQHDOiUDuMRBONYP6uz+Vr8el+ItLKYFFV/MBkQ5mNgJq79d0aCaBnVg0YF1QUxhsnVdPNLU4eRERIZ7r/yT/x1FjPc42sVBifL3fmSeoAflYR0hWfyi56O6vE9DygMYQtJ37UeRs/xr8hCJSbL9QIfG0pwi4uBFy8nOxKcd6K6wr+HkuKBXbU23tYTMwVOyQ4moZ98k6R1akM44sN917MZ50q+0y2fTb1lMPSzAh+Zvg1NseJo387YemgmcUUu61RVb0dIsLZc0muPZDizLkEM+cTPPBQeuDir144Lj21EhxHetZmaNS7biOOfvn86ZLP+Hy5oy2mM4iRMCNBd3njWSqkYuUQFaGajZ+U5u+a/uTtvbo1gju36tt+js0WrLvFceHilSSJHaToDgVV0uX4dqaiyvhC2XzObS1Q2z9rB1ouRuNmjDh3Y5108eSrN+wn1lAcM0T6FEDv8H8+0YhBFEa9vrLkg9LL0IjA2ITbUx1VnJ25QPrl8xeWunPqByai56TeRMKIRDVAwk6zsHImS5DcbAMaiflZuJCPdXuoGpdT7DB0ACn4PXxcngf3v6i7MPO4IY2bgI7ntntN42fyzoYVA9wBfdedIlIAplX1uS3Pv0xVP3mgI7PEksk6PTvK5QvDzVZxHBOYvn2zs8FONmeC7bWqxnZz81yT6TQIHWmaqmQ36uSXq7hhRCWXwKsPHsjdKukgAslqQD3OLaHKxFyJkfVaK2BaLKRYnjFFXOo63L02Sqbok6r4hAnHrDL6aUn1mKeE7eewfMFlfXVnhTDNivDzl5I4jVS45srlyGY5iVDNej1XFbvFiUzsI0gdfdfbUaDnuyQifxP4v4F5EUkA36uqH2ts/gXgqw58dJYu2jvKNTOYREz20JmZ4ftdcyMu9z+UbmvZ6ZJptN5MZ4SLV5LM3fFbrqbciMPM+eTAE1V79s3YfIn8aq11V+mtbupVxR2t/fnYfdSsSBYvdr+PE/dK5NZrphFOY3LNrddAYHmmkV2zg8K/zH/7NjJXfyV25aBqqq37MX02QaUUEQS6rVFJJk2cp1yKCAK4+UK9FfepNooX8wWXM+cSPaVChsnyzMiWYLaJCYWeQ8LfZuXVj6NqHI8g/czpk8BXq+pdEXkF8Esi8sOq+iH2tPC17JVszuX+B9OsrQYEDZG/fN5FjkgVresKoz3SarM5l2sPmF7P4rDr1qZuPewwEhCv8bOVwBVUIBHTNKmZKtv1fKTk1mpdbg5HIbdWY2U6ZzKlVEmXfNzQpGc20zd7cfZcghsv1DpayDYlwrdzBXqecPWBFBvrIeViRBiZPhNxzaZG8g4rK2HHeapbqts31k3m1bUHUrHfo5/6h3P7nyKrSqIW4gYR9bTXs+YhSLrcuX+M3GqVdCXAT7oUx9Ik6iFTtzc6Ppe4z3/r1SgQJJ1tPx/LJv0MhdvUWVLVPxeR1wP/uSH1bZ17Q8b1hImp4a8gdoOIxDZG6sdW1dJMjwK5do2f+AAorE5mmFgod038CtTT3QNzgz53rdKQkfCVs7fWkTbBxHI+ydK5kdg717e/Z4YfSztcvT/F8mJAtRzhJYwi8KCxA8cx6bSjYybN9vrztY7gOJjCyTDU2H7mWwkCEzfppx02KKmyT37ZqLlWcgmK4521JG495MzsOp5vWss6qmyMpVg5E6/HFLkOG5NZNtrHm3RZnskxPr9Zw1LJJiiOpkmXjfszVQlaxr/53YgEFs/n93yNp4l+34gNEbm/GZ9orCxeB/wn4KUHPzTLTvDrESvLAbWqkkqbnsxbU13LpZDF+YBa1UxKk1Me+dGjX4X76k+9A7ZUNEeO9FxChK7gNOSmO2IQGLeRF0REjiBhZ4GcCqxNdhfc9RUXjEBRZm6td0lcZzfq1FMVNiZ7q9gmk07ftrWDIo5w5VqKpUXfdDjEuJMmpxPM3qht+3owLq9qOaIw2r2t+vpfhwElxvNLFcYWy8ZNh4n7jC5VUGlM+GMp8qs1PL/Rx7xh2UZWa41iusGLHkujaUqFFG7jM9WGMaoUNt/TRDUgv1pFgohaNkFpNIUbKlOz62QaRXqlQorV6Uzr9ZZO+r0rfw9w2tuTquoG8CYgvsGwZSiUSyEvPFtjZSmkXIpYWQp54blah/+7VAyZvVGnUo6IIlPZO3fHZ2lhb1IYB80H3vvWWNmLykgy1khEAsWxNOWRROyKwlGzGimNplqS05FA4DksXMwTeQ5j90qce36VszfXyGzUUYGNLVLmTQQ4f2OtYyXRfq7CSu9Jer97OziuMH02yf0PZXjgoQxnz5mOhXEV+3E0Y117GkMQMb5YbqWkwmbaqhtBwo8YW6hsGon21yoUlqtbDznQwMOE23OS99MeyzMjLF0sUJzI4ETKzPU1so0e6m6kjKxVmbm5bjOhetDzG6Sqn1DVLwG/JiL/WAwZ4KeAI9i95HSiqty97Xd9vzWCu7c38/G3VkSb18LyYtCza92wefKxJ3oW1qkjLFzIt9JQmxN+Pe2xNpkhSHk96hogWQ0pLFfxAkWBUj7J7ftG8ZMu515YpbBSJVkPSZcDpu5sMDZfZvVMlo1Cqss2CaaTXlyxHYAT9vf5HEaPh4mp3j3SOxAo7LInepNMKb4MsEPapM/r3W3er/2gsFzt6qHtqMmCyhT3pvl1UhnkVuOVmAZDf4zpIXEHeM1BDsoyOL6vhDGBWTC9KILAiPD1KmgTgVq1+58zDI3Ux36hqlSrEbXqYEWBg9xtV0eS3L5/nNUzWdamMsxfLHDvcgEcoTiW6plyIW0/DpDbqJMuB4wtlHHC7gkkv1o1AddcoqvKunm8OBSoZfpPvIfR4yGdMdpdzd7ozT7ozZ7p4phYxsVGz/RePP1tf7TtubT5xu6S+iEEmHvJrTjKnsUhTyqD3D74QAXIAGngBdVBQmOWo4CwOSn0ks9oz7CpViPu3a5TbVT+ZrIOM+cTJFO7992WiiF3Z+stUULXhXOXkmSz8ZPCTlwykeewESPkFyZcFi7mmbpdRBr3uFt7aDdxFEYaGTW95rhMySfcxn8dSWcBmAqsTue2vYYnH3ti130qusYQKWEInktH9tLomEe+4FKtRjgipNKCRpuV/ltlxXdbX1HJJQZOddmacBCJaUK1H0gYkVuv4/kh9bRHeSTZ6o0deg7EZLdFAmHDUKZLPiMrFZxIqYwkKY6l0SOSVTgMBjEUHwN+A/gaYAr4ORH5NlX9jgMdmWUgEgnBS8TLYySS0vI550ddNmIE+xIJaTUPCnzl1gu1jhaklXLEjRdq3PdAeiCxuq3UaxG3b9Y7zhsEMHujzn0PpLtabe7nHXY1l2T2wXFSlcD0p16tMLIRf8foRP3lO1SEao9JsJnXX814JGsBTmRWEqvTOerbrCia7NVYqCrzc36HftfEpMfktNea7B1HOoyzuHQp9tbrEfN3fUqNRkcjeYcz5waX+lDXYWkmx+RcqRXMjstAU4HiaJqRtSqiECQcls/mqOb2HthPVgPONuINjhoDMO46zF0pNL4L2jMrrjSaNvU5K9XW+FOVgPxKlbtXR09tsHuQq/5+Vf0RVfVV9a6qvpmdCTz3RETeJCJfEJFnReSdMdtTIvKBxvY/E5Gr+3Hek4SIcP5i0rgQpPmccSmca+skd3YmQSotrdWFOEbK4cLlzWK3lWWfmJgsGsHa6u6C3ivLPRroKKyubB7z1Z96x8G4YUSoZRPUcgnKMX0LwEwk5XyS4mh8wBqgPJJAHWHx3EgrJtK4DOPCUkhXAoKEx51rYyxcLAxsJJrsNritqszdqbO6bG4EmppRy4vBjpIVgkC58XytZSQAihsRN56v7sgNWR5Nc/faGGsTaTYKSWppl4iGrIljfuYvFViZyXHrRRPcfGiCO/ePdzV52hWqTM9u4ETaWt05alKYz72wyuTdIpmyeU8U07cicjblVpxIya9Uu4LxbhBRWNpbL5HjzLbfZFV9Jua5X9rriUXEBX4W+EZgFviYiDylqp9t2+37gRVVfUBEvhP4CeBv7fXcJ410xuHaA2lWV0zqazrjMDrudfibHVe4fC1FtaKt9NjcSKe7oVrR+DtmNS6K3dCvb0Jz2wfe+1ae3GNDn4HGkvK60mIjgSDhUhpNA8blkKwFiNJaYVSyHjM31lBHKI6lWZnKMLFgxrs1npGqBpx/fhUEynkj8dHXZaFKqhyQLdaJHPjRNz7OP/v99w10Paqmy93SQtCxCmw7NMtLAZNT3kDFmKvLQWy9RRTu/EYhSLqsndl0uyVqAalyQOSKkQZ32u5qdkBnXwqHjYlMR+FcohbGJhAIRrZD2h6D+bovn8lRLqRQR8gvV2L/Bxw1saz2azpNDFPo5BXAs6r6PICI/CrwZqDdULwZ+KeNv/8j8DMiIjpINPSU4SWEqTPbCNqJkMlKS1JjK8mkUC7FvZCBUyy3kk7HH1PESHo8+dgT+7Q+7U+zp0Ez26X5BapmPBYvFloT170rBdIln3TZRx1hZKVKphy07k4TcyWzIutxnlYsVyG7UcMJIxYuFeJ3VmX69gbpkt/KmiosV/nxV34v7/yzX9j2mporhr7/DQpBCIkBPr5yubuyuzFMKmXd04rPT3n4e9RV8mohMzc6pTxG1mqtvhTQkFfpUV8T+5lJw+3Ybkh7vP40M0yH2wXgVtvj2cZzsfuoagCsAZNxBxORx0XkGRF5ZjW0EsK7YXwyPo1S2H3fgrHJRGwrVhH46b/5+K6OuRvG50vdPQ0w7iJRxauF5Fcq5NZqJr5wJmf6GrS5MKDxDzPgJOKoybDx6vHifbn1OumS3yGD7SiMLlX40Tc+3jd1ViMduC/2oH3Tk33iEFe/9exgBzlAJht9KZqfR/P9mrxTbGVq1HdojEQ7U5vLPXS6IoHiaHyvl9PAiYnMqOr7VPXlqvryMXcffJ2nkGTK4cKlJK7bSKF0TCe1vfQtSCSES1dTRmK8cYh0Rvjg930v9czu2o7uhnQpPiUSganbG5y7vsrYfJmJeyUuPrtCZr1GdqO+e8nyBiqQ6GEoRlarsccXhex6jdd/8LVGLRdjm+ZTE9zMnqPipAYSA2zKuw+ip6WqZHLx04EI/NPUo9se40CJlFSPrDTBbAPAEZbP5LriSM14xFZUMBlRDcKEy+p0tuP1kYCf2lnF+EljmK6n25j6jCYXG8/F7TMrIh4wCiwdzvBOJ7m8UX9tNsYxAfC9pQWmMw5X708TBsrX/OxLedPvvm4fRrpDerkT1LQq3TpFTt0t4vfJ6d+aNdMri6aZ0RM7pD4zfTOV9+3vmcF74+M8/BefpS4e5fwokZPgpcufZ/LZj/V8PUBhzGX67PZ6YGGg3LpRo17TjjTqZuLDlV/8qxQ/OWpE/OohEkE97R6a+mp2vcboYv8YVnvGWmnMxJsKSxXcSKlmTBHm9J0iBFGHAu3GWJog1fk5b0xkqGYTjKwZ12FlJHnq26kO01B8DHhQRK5hDMJ3Am/dss9TwPcAfwJ8O/BfbXzi4OnVfnSv/JM3/wD87r4fdiBKhRS51VqXQWimQMbhpzwS9TBWPDBIOnh+tGl8GhOss2W/erq3b76UT5KodTdaUqElVT49e5s3fOg38epGCiRyXT7/lV/HZ6cf4jVTX8JZXO1YWYhAOttcGQ72Gd69XY/tmJdMCT//xNuIPumRqAZM394wAokCirB8Nku5kQTQl0bfkMKyKVysZj3WprIDqbcWFsuMbtOMSkVaYo7pYo2JuRJeWxFqpuTjpz3uXjMKtNmNOpErFMfTPdNx/bTHSoxA5GllaO+EqgYi8oPARwAXeL+qfkZE3g08o6pPAf8OI2/+LLCMMSaWY8bDjwQ86rxtqGNYnc6SKvt4ftTKrQcjLujFpH6Kgp90qIwkyRTrJgsKQEw3u+JYmlQlIFEP8RMutYzL6FKVwnKltXqpZRIsXhjpOabieIaRNVMU1pwIIzE6VrWMR7pY4hv/vw+S8NtqP8KAlz7zNH/x9X+djz/8Or7+z36T4kbYWglkc06jMdFgRiIMtWev87LvkKzVqYnDzM31lkKreSOUybkSQdKNbfTkBBFuEBEkXQpLFQrLm5N9br1OdqPO3JVR/D6TsYRRXyPRXBUsnjcKvWPzJfLL1c2EguZx1KwuKiNJihMZiqfYhbRbhmoyVfXDwIe3PPcjbX9XAVvYd4x59afeESvqd9hErsPda2NkN+qkKgGhJ5RG0xQWy+RXa7GritBzWJzKkqz4ZIomC6pUSBImzJ1wLZug1tY6dW06y/pkBq8eEnlOf9VZjF7V3NVRRlar5Bqd8zbG0y03x4Of/BQSk/cqYcTF5z/LC1/+NZy/lCTwlXo9IpF0BoolhTj4jkcqqvfV+Yoch1S1gld3QLXrPRI1d/xL5/Mma0gECSOm7xRN1pgAEd0TN4DC+HyZ+cs9MsIwmly9XIYKrI+n2BjPECZdvHpo6h96HEvU9A6Jk5G3bI991ywHxmHVRwyMCOVCinJhM3tlfTJDbr3eJRIHMDFXwk+ZO+bY9qgxqCN975Lj9t+YyMQGSkeXl/HC7kC4g5ItrrGRy5B++i1UX//reInt3Ti+ePzR1Ffx3MhlVCAT1vjahb9E5Nn4tFgRNsbGKCz2CLoD2VJA9ksrBJ7DytkcheUKyUbQuZlNFGeKTMZZf12lyJX4FzcOsNrWuyJTrPfNRhOIVfi1DMaJyXqyHC36Kb8eJcKEy1zMXa1g/jkm7sUVluwBVVJln8xGHadfQyRg8dwMvtdtdCJxWBubYnU6y9vfM8OTjz3Bk4890cqQ6sVvn3stz45cJnRcInEpeVn+4PJr+Og3fTPBlvP4nsdffv1riVwXP+3FVqw3A/gCJIKIqTsbJCvdiQG91jjRNsFhP+USek7X/B8JlPKp7uByn8M1XXqW3WFXFJZ9Z7/7LBw0zUZGbswdZ7Ia0mpMvkcS1YAzt9ZxmoJ7CuvjaVans7HHf+6lL+Er/vuf4Aadk2/kOnzyNa/ocHtBo59423v/U/9wrvX3wi1Y+JceUb3zPIEv1EbO8off/CgP/9F/J7+6RnG0wMdf82puvPghwATdxxYECbTbhdRGM5toEAaqSxBh/lKBszfWzHvWOLifclk+21khXc4nGVsoxx5GgXrGozJyPDtCHgWsobDsG8fNQDSJXGkpzHaxX8lfkXL25nqXMcqvVKmnPMoxk6afTvPh//mtvOa3f4epu2bSX52a5I/f9E0sz0yY4LJqo9tf90Dbe1zn1mpM+MVYF0KiHnLzoQe5+aIH48fuCHNXRpm8WyLdJsO9k7emGXhuSqP4KZe16e2VYoOky+37xyisVHF8pZJvxIW2XG+YcFmdynZ01muec3Uqy8ZE+lSnt+4Vaygs+8JxNRJgUlgjx0Gizq5rillMXP7CMvW0y8qZXNddvOuHjM+XjY8cKBeSrEzniLYEsrPFemzdhKMwtlimkk/GakJtTIzzO//Td5Go1RBV6uk0ThAxNbtOttFkJ0g4LM/0V17tVcsB27R6be6TcJm/XEAiJV2sMzVXjJVtj5uKFSiNJKiOJHFDpZb2qGW9gSbudKnekIo3R8qvV1k6m4tNy92YzFDN2fqHg8DGKCx75jgbCcC4OC7miRxpVeQ2p3SHhtR0NeTMrXWSbQFYJ4w4d32tVcHtKOTW6kaPaMvKwQ2inn4Zz4+4+KVlRlZ6twH1Uynq6TSoWZlki/5mfMCPmJ7d6BgbNFJUfeM6q2U8gkS8vz+uT3gv1BEq+SSh032sfm4nP5OgNJZmfTJDLde2IlAlWQ1IVoOuhimuHzI9u4EbqZHuiIyw3+RciUQ1XqTQT3usnM2xdD5vkhaskdgX7IrCsmuOQn3EfuGnPW4/ME6mWCdZ9sn3KM6bvFvk7rUxECMYKFG3394NIrLrtVaFMJhVSz+xOlGjR+Wn3NaqRSIlVfFREdMpT4R0ycfzw9hU1TOzG9STLtWsR6YckKoGRrrCEZbP5pi/NMr07XUStZBm4cX6ZIbSTjWMRLh3ucCZ2xtGx6pxrHrKJVXtHpsKppfHFtKlOlN3imalpcYILZ7Pt/YdWa3Fv18KheUKS+fzOxu3ZddYQ2HZFUelPmI/UUeIXGFkvd5DUwgS9YgLz60wd2W0Jei3laYYYLuhqGU86mmPZDXoWUDWLAxbyCYYWakwPl9u+XJUTI/wZC2M7c8tgBsqmUpAuqF71BIaDJWpu0XmLxWYuzqGVzdS3H7SQwes3t5KmHS5e20MrxbihhH1tIdEyrkXVnFCbRnZqKGltLV+waub1ULHexEq07Pr3LlvjDDhmkLEuPcJ05zIcnhY15NlRzz8SMAH3vvWE2ckwGQlNV0dvaZPs2JQJu8UCWNcOdCQ+Njq929k8BRHU/1KA/D8kFTZZ3y+bNxZDXeLGypnbq0TuhLbt3vrceJWHE29pGY19W6NRDtBYwWkjhB5pqhxYyKNn3CopU120tJMrsutNNLoINc1djUBfjDGtVcjqUQ9YrRHlpNl/7ErCsvAtFYRh9A/YhiMLlViJ6+tmGKxgPmpPNmNetdrVOhYTbSed4SVmRFq2QSTd4uxGlK1TILCUrnnOJwwQkVQehuzXmNO1A/+LjzyHFbP5Fg9kyNZCZiYKzI5Z2pR6kmHZhN3J4j6rNpMkaFpS1qOFVwUYHS5wsZ4uitxwLL/2Hf4FKOqDKqxeFJXEe0kavEy1nGogJ/0WDljJKlbbT4FFs+N9BW8K+eTsYVkKlAcS5EpxY/DtORUo5GUdFrnHbR2YasarlcNmLq9zvTsOumN/e3h4tVCzt5cI1ULWyucZD0iVYtIVUO8QGPHHQG1pptKtZVMEIcKpLap7rbsD3ZFcQqJImV+zmd91fRYTiaFM+cS5EbiJ7fD6kI3bIxabHx8Yiuh5xB6QnE8Q6mQatQXCNVcon/rUwAxdQkT90pkGxN0Le2xMpMjs17r+bJITOFYkHS5e984Xi0kUfOZulvadiUUCaxNbdYtTNxeZ2Rjc5LNFH0CT7hz//i+ZArFrc76Feu1P19srMZS1aBVexFLIwBuOXisoTiFzN6oU61str2s15XbN+tcvJIkm+s0Fsc+9XUHrE9mWkqxTdrnqPYiruWZTZ0hdR0q+QEzhxo9HZxQWTo3wuL55sHNsSbvFGMn0WbKbnsHtiDlEqRc1uoRY4vdPbzbX7s0s1kDki7VGdnobuTkBcrk7Q2WLvYW6huUZLVHo6gBaLqSItfpu1xSoJq11daHgTUUp4xqJeowEk1UYXE+4PK1TUNxmowEmBTWxQt5Ju6alptgAr9rExly6zUS9ZB6ymVtKrsj4b8mXj3kzOw6rh+1UkpXp7MdgoDaZ3b1U/HNgtansqDK2FJ8HUY95XYUqBUW4l2IAuSK/r50BgsSLol6fByiH+3XX29oPYnfXQgJGOVZWydxKFhDccqoVnoL0dWqZttpMxDtVEaS3H5gHM+PUKElKR4nsbEjVDl7Yw03bPZ0MNPd2EKZIOG2GhVVs55Jgd3ycuPjj2+pCibIHXtaYG2qs6DODftP4BJGqLu38OX6ZIZ02R8oOaCJCea3rWgbhZCtXhiNYwWew9yVUaI+1ebtJCsBhaWyMfRpj/WJzK4M/WnGvlunjERCehZ+uZ6caiPRQmSg7ms7IVOMlzJ3FEaXyi1DUc8kYKVHnKJPJlR+LT62onSrplZzCRI9enAAA92lu35IYblKuuwTeg7r42mqbeepZRMsn80xca8U20WwrTFgx3Or052NnoKUx2yjENLzTb1Gs/hwEDLrNabuFltjSNRN06T5iwVTIW4ZCGsoThnZEQfXga0K164HT3/DXxvOoE4BHW1T47Y1qGYTsYZcia9uBkjUQuOy6VGIl6oEHRpVK2ey5FdrsX2/Kxm3I0AsYUR+tUpmo07YaB8aJD1mrq9tGr6aqf1Ym8wYN1iD0liaRC2g0MPwRY17llZr1Zkc9UzMlCQyeAyoHVUm75U60pCbVfCTc0Xu3DdmXVcDMhRDISITwAeAq8B14G+q6krMfiHwqcbDm6r6LYc1xpOKiHDpaorZm3UCXxEBSbj8j4e/mue+7KXDHt6JpZ6Kl/DQ5rYGkeewMZoywnZtjX/UEVamO6W1m4Se07en9OhimfnLo5tPOA5zl/KcvbXRsV/gwvKFzUC2E0Scu76KE5g0VQWypSKRmJVQ+xRrVkYVimOddQ2e37teopZJsHo2i6iJR+z3pJ2ohT2bFXlBhBsqoWcNxSAMa0XxTuC/qOqPi8g7G4//ccx+FVV9+FBHdgpIphyuPZCiVlXcH38N/+IPX0w9Y/sIHyS1rElr9WqdshQqsDpt3nuJjIRFqiHB0cx0Ko2mWJvKtOIlWwmSLoHnxE7KAiRr3bGNei7J7IsmyK7X8PwQP+V1Ka2OLpZx23pQNH9vNRLtJ0uX/Y4OgrVsgkyM1Ekk5j3xUwc3BfVNndX+iQOWToZlKN4MvK7x978H/hvxhsJyQIgI7/72H4BnAGsjDh4R5i4XmJgrkWu07WzKgzfbrI7fK5GqdGtBpco+YWIk5qCbrE6mmZqLl7QIXccIDJZ9EKhmEuCI6QEeU0HeJLvRW/Oqx0WiW1YFxdEUo0sVNNw0OCbFWFr1EgdFkHQJEk5X9pUJmnsm/dYyEMMyFGdV9W7j7zngbI/90iLyDBAAP66q/6nXAUXkceBxgLMJO/P1I/30Wzqa2lgOB3Udli7kWVJFIjq1llTJrde6jIRgZMRHlsoUJ3s3+imPpokWKjhhZ8A8EjMpXvzScscMv3g+v31rUOkR+OiJUtkSR1HX4e7VUSbmSmRKpsCvmk2wPNPds+MgWLyQ5+yNdUQVR5sV9MLi+f6G19LJgRkKEfl9IG42elf7A1VVkZ5JdFdU9baI3Af8VxH5lKo+F7ejqr4PeB/AizNjO/l2nyqefOwJeM+wR3FEUCW/XGVkzTQFKueTrE9kDn4CE0G3eJGctvTPrt1p+P8nMr39+E3p71sbJlVWBFGllE9uGqC240/d3uDOtTHCPtldzdXAIB4aBRbO5yHG3RMmXBYuFTaFAQ8xgOynjHx8br2GVzcutlI+GTtOS28OzFCo6ht7bROReyJyTlXvisg5YL7HMW43fj8vIv8N+Eog1lBYtsemvrahRo213dWTX66SW69z99roobsloobEuRvGWws3MnLhUZ/gq5/yuH3/mLmmyHSSG5+Pl/cQhZHVKmtn4gPkYGohcms1vB4Cfu0ECacjPTaW7QxEc6XlDLDvDlDn4N1cJ51hOemeAr6n8ff3AL+xdQcRGReRVOPvKeA1wGcPbYQnDGskOkmX/a54gIOpSejXae7AEGF1Mt3b0dNwmQxynFo2QWUkSeQ5uH2yjrytOdJbUEe4c/8YxXyiFVjfsjABjDtnpY/B2RZVRhfKXPrSCpe+tMzFZ1cYWa50SZNbhsewDMWPA98oIl8C3th4jIi8XER+vrHPXwGeEZFPAE9jYhTWUOwCayS6SRfjq4YdpSXUd9gUJ7L4yZh2pbBrd0ktm4jt6dCMXfRFlcJShVzRRxsqtb5nXFJN1Vo/4bB4bqRVMLgbxuZLFJYrrboMN1TGF8qtvhSW4TOUYLaqLgHfEPP8M8Dfafz9x8CXH/LQThTWQPSmX9OeaB8a+uyWe5dHOXtrHa8eoo04Qy3jsTyzu+Drxnia/EoV1c6so8gVSqP93THZjTqjS5WOVVciAKfkc+vBhsrsHl1EpqCvO4jvKIwulNkYT9uiuCOAzQ87oVgj0Z9SIRWbRx8Jh+7PllBJVAOcIMLzQ0LXlCyrI6xNZZi/VNi1nHbkOcxdHaWa8ToUaOeujm17zNHFSmwWlhNFpMvBvkzgiXrUM9/WUSgs2i52RwEr4XHCeNX7X8brP/jaYQ/jyBMk3ZYWEZjgroopbivvwY2yI1QZmy+TX62CgDRCBq3CtihidNH0dWjvJbETJFIm5oqmt0OjvNrzw4GKzXrGMHT7+MagBAmndd1bEWB0uUqQ8jqK+CyHjzUUJ4j002/h9bY+YmBKY2mquSTZYg2JoDKSONBK4a0UlirkV6tdqavtOGr2Wx9P70rRdWKuuBm0b5wjWQ2Zul00Mt19qKdc0pX49qn11P6IJkaeQ9jI9oqzXc3rt4ZiuFhDcUKw9RG7I0w4bIwPoUBTlcJyta9GUwuBVDWkmtuZoZBIycX09BYgXfFxg4iwT83I6nSWM7fWO8YYiemLUd8nmW6JtKeRaLJfqxfL7rGG4pjz6k+948T3sj6JiNJqjrQtiolb7BAnjLoUYluHFMHZxlDUsgkWLuSZuFcyCrdi4hvLZ0f2LcAskfaUvW+yX6sXy+6xhuIY84H3vpUnrZE4lqjQt8CutR9GHdbfxWQZeo7RXoqrR1AdqOdGdSTJnZEkEqmJa+xzBlLkCqHr9Fw1bO31bRkONuvpmPLkY0/wiafGhj0My24RYXUy01Xj0AwlGE0is5KYv7TLlp8irE7HnyPwHNwduHTU2XsqbCwiLJ/Jxo4xdIWFC/mOXhqW4WBXFMcQm/p6MiiOp5FGHwdp3PWXCkmKoymStYgw4RiRvT1M0MXxDIow2czuYlNocOb6GnfuGzsUcb5+VAopFlyH0cUyiVpI4Anrk5mOPt+W4WINxTHDGokThAgbkxk2JtK4QUTkOq3ahvo+eltEjduou9ObMrJa7ehKNyyquQTV3Oj2O1qGgjUUxwRbH3GCEenZlGg/SMf0uABjONJln/UDO7PlpGANxTHgyceegA8OexSW40qQcGKznxQIDtBAWU4O1lAcYR5+JOBR523DHoblmFMcM3pPW+spVIwWlMWyHdZQHFFsfYRlvwiSLovn80zd3dh8UmFpJoe/T4VzAOlincJyFTeIqGYTrE+mD9SlZjk8rKE4gtj6CMt+U8knuZWbIF0x7UhrmcSuhQbjKCyWO5RmE/WQkfUad6+ODlSvYTnaWENxxHjysSdMWyeLZb9xhGpu/wUPnSBibKnS4doSgEgZny+xcLG/ppTl6GMNxRHBxiMsx5V02TQ2itWUKvlDGZNlfxlKpY2IfIeIfEZEIhF5eZ/93iQiXxCRZ0XknYc5xsPkyceesEbCcmzp58JS23ToRDCsksxPA28BPtprBxFxgZ8FHgFeAnyXiLzkcIZ3eNgCOstxp9JDYiMSU2luOf4MxVCo6udU9Qvb7PYK4FlVfV5V68CvAm8++NEdHtZIWE4EjtFkioSWZlMkJttqdXr4Vd+WvXOUYxQXgFttj2eBV/baWUQeBx4HOJsYQn+BHWDjEZaTRjWX5Pb94+TWa7hBRC2ToDKyN50qy9HhwAyFiPw+ENdu7V2q+hv7fT5VfR/wPoAXZ8YGFPo/fGx9hOWkEnkOGxNH+ybNsjsOzFCo6hv3eIjbwKW2xxcbzx1bnnzsCbBGwmKxHDOOsuvpY8CDInINYyC+E3jrcIe0O6ygn8ViOc4MKz32W0VkFngV8Fsi8pHG8+dF5MMAqhoAPwh8BPgc8Guq+plhjHcvpJ9+izUSFovlWDOUFYWqfgj4UMzzd4BH2x5/GPjwIQ5tX3nysSfgPcMehcVisewN2wr1gLCprxaL5aRgDcUBYI2ExWI5SRzlYPaxwxoIi8VyErErin3CGgmLxXJSsYZiH7BGwmKxnGSs62kP2PoIi8VyGrCGYpekn34Lr39PnEKJxWKxnCysodghrVWErY+wWCynBGsodoBdRVgsltOINRQDYqusLRbLacVmPQ2AzWqyWCynGWsotsEaCYvFctqxrqce2NRXi8ViMVhDEcOTjz0BHxz2KCwWi+VoYF1PW7CuJovFYunErigaWFeTxWKxxGMNBfDqT72D19le1haLxRLLsFqhfoeIfEZEIhF5eZ/9rovIp0Tk4yLyzEGM5QPvfas1EhaLxdKHYa0oPg28BXjvAPu+XlUX93sArVXEU/t9ZIvFYjlZDGVFoaqfU9UvDOPcYFcRFovFshOOeoxCgd8VEQXeq6rv67WjiDwOPA5wNpHpecAnH3vCriIsFotlBxyYoRCR3wfiFPTepaq/MeBhXquqt0XkDPB7IvJ5Vf1o3I4NI/I+gBdnxjRuH5v6arFYLDvnwAyFqr5xH45xu/F7XkQ+BLwCiDUU22GNhMViseyOI+t6EpEc4KjqRuPvvwa8e6fHefiRgEedt+37+CwWi+W0MBRDISLfCvxrYBr4LRH5uKp+k4icB35eVR8FzgIfEpHmOH9ZVX9nJ+exqwiLxWLZO6Ia684/1nzVzKgWvvdXhj0Mi8ViOTb8wU889heqGlvXdiK1nr4kZ4Y9BIvFYjkxnEhDYbFYLJb9wxoKi8VisfTFGgqLxWKx9MUaCovFYrH0xRoKi8VisfTFGgqLxWKx9MUaCovFYrH0xRoKi8VisfTFGgqLxWKx9MUaCovFYrH0xRoKi8VisfTFGgqLxWKx9MUaCovFYrH0xRoKi8VisfTFGgqLxWKx9OVENi4SkQXgxj4fdgpY3OdjHmVO0/WepmsFe70nnd1e7xVVnY7bcCINxUEgIs/06v50EjlN13uarhXs9Z50DuJ6revJYrFYLH2xhsJisVgsfbGGYnDeN+wBHDKn6XpP07WCvd6Tzr5fr41RWCwWi6UvdkVhsVgslr5YQ2GxWCyWvlhDsQNE5CdF5PMi8kkR+ZCIjA17TAeFiHyHiHxGRCIRObGphSLyJhH5gog8KyLvHPZ4DhIReb+IzIvIp4c9loNGRC6JyNMi8tnG9/gfDHtMB4mIpEXkz0XkE43r/Wf7eXxrKHbG7wFfpqovA74I/PCQx3OQfBp4C/DRYQ/koBARF/hZ4BHgJcB3ichLhjuqA+UXgDcNexCHRAC8Q1VfAnwt8AMn/LOtAW9Q1a8AHgbeJCJfu18Ht4ZiB6jq76pq0Hj4p8DFYY7nIFHVz6nqF4Y9jgPmFcCzqvq8qtaBXwXePOQxHRiq+lFgedjjOAxU9a6q/mXj7w3gc8CF4Y7q4FBDsfEw0fjZt0wlayh2z/8C/PawB2HZExeAW22PZznBk8lpRUSuAl8J/NmQh3KgiIgrIh8H5oHfU9V9u15vvw50UhCR3wdmYja9S1V/o7HPuzBL2/9wmGPbbwa5VovlOCMiI8AHgR9S1fVhj+cgUdUQeLgRO/2QiHyZqu5LPMoaii2o6hv7bReR7wW+GfgGPeZFKNtd6yngNnCp7fHFxnOWE4CIJDBG4j+o6q8PezyHhaquisjTmHjUvhgK63raASLyJuAfAd+iquVhj8eyZz4GPCgi10QkCXwn8NSQx2TZB0REgH8HfE5Vf2rY4zloRGS6mYUpIhngG4HP79fxraHYGT8D5IHfE5GPi8jPDXtAB4WIfKuIzAKvAn5LRD4y7DHtN43EhB8EPoIJdv6aqn5muKM6OETkV4A/AR4SkVkR+f5hj+kAeQ3w3cAbGv+rHxeRR4c9qAPkHPC0iHwScwP0e6r6n/fr4FbCw2KxWCx9sSsKi8VisfTFGgqLxWKx9MUaCovFYrH0xRoKi8VisfTFGgqLxWKx9MUaCovlEBGR3xGRVRHZt9RFi+WgsYbCYjlcfhKT32+xHBusobBYDgAR+ZpG35K0iOQaPQK+TFX/C7Ax7PFZLDvBaj1ZLAeAqn5MRJ4C/jmQAf7f/RJos1gOG2soLJaD490YOYUq8LYhj8Vi2TXW9WSxHByTwAhGHyw95LFYLLvGGgqL5eB4L/BPMH1LfmLIY7FYdo11PVksB4CI/G3AV9VfbvTm/mMReQPwz4AXAyMNdd7vV9UTp8xrOVlY9ViLxWKx9MW6niwWi8XSF2soLBaLxdIXaygsFovF0hdrKCwWi8XSF2soLBaLxdIXaygsFovF0hdrKCwWi8XSl/8f6IJxOFmr9SAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABVIklEQVR4nO29eXRs+3XX+dlnqEkqzbpXd773DX7GCfaLcZx4AOwMxH4OOJiETgwJK0A74LhNVkwT43QzpOnuAF7pBZ10bDe4MxCI0zgmD+LEcWiDYyDEL8aO7Xh6wx10JV3NQ811ztn9x6kqValOlUq6kkr3an/W0pJU59Q5v1PDb5/fHr5bVBXDMAzD6IUz7AEYhmEYpxszFIZhGEZfzFAYhmEYfTFDYRiGYfTFDIVhGIbRFzMUhmEYRl/MUBjGA4aIXBWRgoi4A+z7OhGZP4lxGQ8vZigM45QjIjdF5Nua/6vqbVUdVdVwmOMyzg5mKAzDMIy+mKEwziQi8mMicldEdkTkKyLyrSLiiMi7ReQ5EVkTkV8Rkam253y/iNxqbPvx9jt9Efk5EfkHbft2uHxE5KKIfFhEVkTkBRF5Z9u2v9c41y80xvNFEXlFY9svAleBf9twN/0tEbkuIioiXmOfHxSRLzWe+7yI/NDxv4LGWcIMhXHmEJEngHcA36iqeeA7gJvAO4HvAv4kcBHYAH6m8ZyXAD8LfH9j2zRwecDzOcC/BT4HXAK+FfgREfmOtt3+DPDLwATwNPDTAKr6/cBt4E833E3/KOEUy8B3AmPADwL/h4i8fJCxGcYgmKEwziIhkAZeIiK+qt5U1eeAHwJ+XFXnVbUK/D3guxt37t8N/DtV/WRj2/8MRAOe7xuBWVX9CVWtqerzwP8NfG/bPp9S1Y824g6/CLxs0ItR1V9X1ec05j8CvwX88UGfbxj74Q17AIZx0qjqsyLyI8SG4OtE5GPAjwLXgI+ISLsBCIHzxKuIO23HKIrI2oCnvAZcFJHNtsdc4Hfa/l9q+7sEZETEU9Vgv4OLyBuBvwu8iPjmLwd8fsCxGca+2IrCOJOo6r9U1dcST+IK/ENiQ/BGVZ1o+8mo6l1gEbjSfL6I5IjdT02KxBN0k7m2v+8AL+w5bl5Vnxp0uL02iEga+DDwXuC8qk4AHwVkwGMbxr6YoTDOHCLyhIh8S2OSrQBl4pXD+4D/VUSuNfabFZE3N572r4HvFJHXikgK+Ak6vz+fBZ4SkSkRmQN+pG3b7wHbjQB6VkRcEfl6EfnGAYd8D3ikx7YUsRttBQgaq4s/NeBxDWMgzFAYZ5E08JPAKrHL5xzwHuCfEAeSf0tEdoDfBb4JQFW/CPww8C+JVxcbQHsh2y8SB6tvEscIPtTc0Ig7/GngSeCFxnn/GTA+4Hj/d+B/EpFNEfmb7RtUdYc4CP8rjTG9tXENhnFkiDUuMozDISI3gb+qqr897LEYxnFiKwrDMAyjL2YoDMMwjL6Y68kwDMPoi60oDMMwjL48lAV3E15K5/zc/jsahvFAcXdidthDeGgpLD27qqqJL/BDaSjm/BwffOy1wx6GYRhHyIfe/1Y+9/TEsIfx0PIf/+GbbvXaZq4nwzAMoy9mKAzDOPU8+cbAVhNDxAyFYRiG0RczFIZhnHqect65/07GsWGGwjAMw+iLGQrDME41r/78u4Y9hDOPGQrDMAyjL2YoDMM41bzu3eVhD+HMY4bCMAzD6IsZCsMwTi0fev9bhz0EAzMUhmEYxj6YoTAM49Ri1ding6EZChG5IiKfEJEvicgXReRvJOwjIvJPReRZEfkDEXn5MMZqGMbJ8+Qbg2EPwWgwTPXYAHiXqn5GRPLA74vIx1X1D9v2eSPweOPnm4Cfbfw2DOMhx6qxTw9DW1Go6qKqfqbx9w7wJeDSnt3eDPyCxvwuMCEiF054qIZhGGeaUxGjEJHrwDcA/3XPpkvAnbb/5+k2JoZhPGRYNfbpYuiGQkRGgQ8DP6Kq23s3Jzwlscm3iLxNRJ4RkWc2w9pRD9MwDOPMMlRDISI+sZH4JVX91YRd5oErbf9fBhaSjqWqH1DVV6jqKybc1NEP1jCME8OqsU8Xw8x6EuCfA19S1Z/qsdvTwA80sp++GdhS1cUTG6RhGIYx1Kyn1wDfD3xeRD7beOw9wFUAVX0f8FHgKeBZoAT84MkP0zCMk+RD739rfItonBqGZihU9VMkxyDa91Hgh09mRIZhGEYSQw9mG4ZhtGPV2KcPMxSGYRhGX8xQGIZxanjPm94+7CEYCZihMAzDMPpihsIwjFPBqz740mEPweiBGQrDME4F8o3fPuwhGD0wQ2EYxqnAqrFPL2YoDMMwjL6YoTAMY+hkPvGWYQ/B6IMZCsMwhs7PfzUz7CEYfTBDYRjG0LFq7NONGQrDMAyjL2YoDMMYKlaNffoxQ2EYhmH0xQyFYRhD48k3BsMegjEAZigMwxga2e95+bCHYAyAGQrDMIbG6z/82mEPwRiAoRoKEfmgiCyLyBd6bH+diGyJyGcbP3/npMdoGIZx1hn2iuLngDfss8/vqOqTjZ+fOIExGYZxApha7IPDUA2Fqn4SWB/mGAzDGA4/Uv/6YQ/BGJBhrygG4VUi8jkR+Q0R+bpeO4nI20TkGRF5ZjOsneT4DMM4BFaN/eBw2g3FZ4Brqvoy4P8E/k2vHVX1A6r6ClV9xYSbOqnxGYZhPPScakOhqtuqWmj8/VHAF5GZIQ/LMIz75NWff9ewh2AcgFNtKERkTkSk8fcrice7NtxRGYZxv1iTogcLb5gnF5F/BbwOmBGReeDvAj6Aqr4P+G7gr4tIAJSB71VVHdJwjVOEqlIqRhR2QlxXGBt3SaVP9X2PYTywDNVQqOr37bP9p4GfPqHhGA8IGil3btWolCOatw3rqwGzcx6TU/6xnDMMYsMkDuRGHBxHjuU8Z4FXffCl8OFhj8I4CEM1FIZxGDbWgw4jAaAKK0sBo3kP3z/aSXx9tc7qcoA0DqvAxcspRvPukZ7nrGBpsQ8etlY3Hji2NkOSHJCqsHCnys52yFF5KEvFkNXlAFWIovhHI1i4U6NeNy/oYbC02AcPW1EYDxwa9d5WKSuLd2uk08K58z4b6yH1WkQm6zA545FKHezeaGMtSDZKwPZmwPTs8bi6DOM0YSsK44EjP+ZAH++SRrHBuH2zxs52SKWibG6E3HyuSqXcx8okEPRaNSi2ojgEH3r/W4c9BOMQmKEwHjimZnw8j1bMYFA0gqWFg1Xt50aSvyIivbcZvTG304OJfdKNBw7XE64/mmF61sM9oPO0WlGicPCVwOS0j5MQs/Z8IW/BbOOMYIbCeCBxXWF61ufKtfSBVxb93FZ78Xzh2iNpRvMOIuA4MD7pcu2RNGIpsgfCutk9uFgw2xgKUaTUqornCd59pLOmMw7jky5bG7uZUCIkBqDhcDUQqZTDpavpnts1Ura3Q3a2Q1xHGJ90yY3YamMvTznvHPYQjENihsIA4krnzY2AjbWQMFAyWYeZcz7Z3NEuOlWVtZWA9dWgNaFncw4Xr6Rw3cMZjHNzPiOjLlsbAWEIo2MO6bTDwp0aqvE5RMBxYe7i0WYpRZFy+4Uqtaq2jNPOdsjklMvs3P2LU5aKIWsrAbWqkkoL07OeGSHjxDFDYQCwvFTvuCsvFSPu3Kxy5XqKbO7oJqbN9dhINCfw5rnmb1W59kjmUMcUEUbzblcB3I3HM2xvBtRqSjbrkB93j7yienM96DASEF/XxnrI2EREOnN4Q7u9FbB0t946dhAo5VKNuUs+Y+MP1lfXqrEfbCxGYRDUtcNINFGNDchRsraaXJdQrSjVysFSV/fD84SpGZ+5iynGJ71jkd3Y7lP8t7Md7nlMiaLBAumqyvJiPfk9WawfWUGhYQzCg3VbYhwL5XLU069fKR/dhKSqhD3imSJQrynpAy4qqpWItZWAcikEAUFwPZiY9BibcJEDR7rjCX51uU5QV/yUMHPOP5RcR7EQMjbu4vnC8lK9ZVT8lHBurv8x63Ul6mE3oyh+rVLpByeY/voPv3bYQzDuA1tRGLh95kDnCD8hIr0D16oceOIrl0JuPR9LdgQBBPV4gq2UlXuLde7erh34zntjrc7ifI1aNZ6oqxVl4U6Nrc1kCxcbo+RjVcrKzeeq3Hyu0rHyqNfiYxYLYfITYd/Vj4kSGieJGQqDbM5JNAgiMDF5tIHTmVmva2JtFq8dVCb83kK3a6aJahz7KBUHd2dFkbZ0nfYea2Wp290TRUo64+D1iY+rQr3WvVpThdXl3m49zxMymWRjkM7cX6bYSZP5xFuGPQTjPjFDYSAiXL6WxnXjFYRI/JPNOUyfO3iWUD9f/Pikx+ych+Punic/5nLxysEyhKJIqVb7rxZUobDd+659L7Wa0uuIUQRB26JiY73Os1+usHCnRlDvvyrrRbXSf/wXrqTwfJDGt1Qc8LxYudYwThKLURhAXI/w6BMZioWIoK5kcg6ZA2bsRJEO5IufnPKZmPQIAhrG6eB3x4OGHuQAl+C6Qk9Lwa4brlgIWVnqzNwKB7dHLTyv/0X4vsMjj2co7ETUqhGptNMo/HtwVhMAP/reuWEPwbhPhrqiEJEPisiyiHyhx3YRkX8qIs+KyB+IyMtPeoxniWaa6cSUd2AjATB/qzawL15E8H3pMBJRpGxtBCwvxTGBfhlCIkJ+bP/b+LHxwW/1fV9IZ5Mn4UxWWnUe6z0ytw7K5PT+r3HzOqdnffJjhwvOG8b9MmzX088Bb+iz/Y3A442ftwE/ewJjMg5BpRx1NROC/X3xTarViOe+WuHeYp2NtZB7i3We/2qFWq13jOH8hVgcsB+ef7CP+KXL6URtp0pZW8qz9drRZIL1ympSVYqFkI21gMLO0fXWGAbvedPbhz0E4wgYqqFQ1U8C6312eTPwCxrzu8CEiFw4mdEZB6FfDcR+vniIGwFF4a4rR6PYnbM431vt1fWEKzd6S2s0tZkOguuR6H5S3VWezWR7K8oehI217pVWGMSZUnfv1FheqrNwp8azX65QKh7Ct2UYR8SwVxT7cQm40/b/fOOxLkTkbSLyjIg8sxkeTErauH88X3qK7e2XoVOvRT3v0itlpdqnh0Qq5ZDNdR9fBEbHDl6JXan0DmhXK0oYKtMJmVsQX+dBjEUY0rVaWFqIU3ObzZmanfXu3KwNtDI7Tbzqgy8d9hCMI+K0G4qkr13i91hVP6Cqr1DVV0y4lhVy0uRGnEStJhGYmu4fJ9jPs3Lz+Sp3b1d7xiwuXkmTTktrBSES3/XPXTh4xpYIfQPaInHg//LVVEemk+/DpSsppmaSjUgSvi8dMYcoUgqF3kZxbSV4oFYWVmT38HDas57mgStt/18GFoY0FqMPIsLV6ynmb9eo17RV6T057TE+2fkxC8NYgLBcjPBTwsSki+P0zxwq7ETceaFCdsQlCmEk77YygDxPuPZomkpZqdcj0mnn0BpLqT73GE3lWVVlbTXoiDHU6zT0qtIEgbK9GbZeg+bvdoMoAjPnO1+XKIrvjPrZzc310EQBjRPntBuKp4F3iMgvA98EbKnq4pDHdOaoVCJW79UplyJcT5icchkdcynuxMHrkdG4WM5POdx4LEO1EhGGcTHa3lVGvRZx6/kqUbQ7cW5thExMuWyuJ+sm7Y4DKpXYmmxvhaTSwtUbaRwnvjPP5oTsfS6SN1Z7j+H8hfjrUipGlBMC90EAt16okh9zuXIjjUaxjLrvC8v3dkUXXRdmz3tdwn6uG8dderZfJTayDwLWe+LhYqiGQkT+FfA6YEZE5oG/C/gAqvo+4KPAU8CzQAn4weGM9OxSKUfcfqHamhSjmrK8FLC8FLRcLCv34mY+5+Z8RKR1Nx+GytpKnVIxwveFiSmP1eV618pBFTY3Qq5cS7G2GlDs435pf06tqqyvBswcoiiwFxvrvcSoYkOQSkOpELZiCHsJ6nGQenM95Mr1VKvaPD/mxqnDxCuHlXsBrud01JiICOcv+Ny9U0tcVohAOivcW4xXbdmcw8Skh7tPPcYw+PLf+vPw3mGPwjgqhmooVPX79tmuwA+f0HCMBFbu9ZfJaLK1EbtEmrUN9XrEref2rBw2e/uWBIgULl1N8eyXKz1TR/eef311V7Y8N+Jw/oJ/YCmQdnq5v0RoCRo6A/TNUIXF+To3HncIgrjGpJXR1TjPwp0a1x9Nd4x3NO9y5Wrswut43SUuHtxc65SCX18LuPZImlTqdIUbrcju4eJ0fbqMU0e5NJhWkmrcm6HJ8lK9kdVzsPOJCFMzg9+/7O1rcev5KvU+rpv9SPfQV0LjojuIi/gGCVgHgRLUlc31IDHuoAoba90rmNyoy2NPZJia8fB8wfNgNC9o1Pl6qkIUxppXhnGcmKE4w6jqvsVcScVnvWj3nxd3DtZbQqHVTW9qxmN69nAB2yiKFWAPS+w+63ysmWrrN+7a/ZTDuQuDG7NaLeoZoa71SAt2XGH2vM8jj6fJ5BwK29rT6JaKEWur9VZB4LCxtNiHj9MezDaOAVVldbnOxnrsa/d9Yfa8Rz6ha9rEpDeQZIUIjIzGk3ut2h3o3btvPI7d/+cu+q2aBxFh5lwKz6+zvHhwuYzyARRj95Ibcbl0NcXKvTrViuK6MDHlMT27+9rEPTD2T1P1fMFPOWSzTivw34HsrlKSqFYjFm5XqQ1QFrR6L2BNAnIjDpeupJAhypBbWuzDhxmKM8jifL0hDRH/X68ri3frsdbTHv2k6VmPSiWi1AwwC4mBXMeFqWmPciluodqPdgMxNu4yNeMlxhUmJuPg+Oq9OkEQ7+95cWaQ40CpmGxBvNT9TZIjo27L6O0lipTbN6tEA5QzNFVexye9uLPfnuc4EgskJlGvRdxuZIcNSlNafX0tYHr2aHuDG2cbMxRnjHot6jASTVRh+V69w1CEYSzS54gwNuHi+0IqHVdCb22EjXRPZbQhWud6wtLN6sArgDhzKeobfB6f8Bgbd1v1CM0CtaCuPP+1Ste5ROLajeOisNM746kdz9+V+nBd4dqNNEsL9VbMJ5MV5i6melat763TGJRmrGhYhsJ6Yz+cmKE4Y1Qqu8Vwe6nX4piFiFCrRtx6odoKoIoAAleupfA8h+lZp2syCkOltk+PiKTx1OuK30fmQ6RbGsPzhUtXUyzcqaE0CtUUZuc8crnjK0ir13vHCtrZu+JIpR2u3kjH1eW6f+bUoEkEieceYqjiv914bHgnN44NMxRnDN+XnhOd6+7esS/erXVMdqqAwsJ8jUcezyTKXR9GAVtF+G+jj5PNCI/t3CYb9XdbtTPSyA4qlWL/fy7nDJS6Oij1WsTmRtjozyGMT8Ty6+Iku9/aidOCtet1GlR7yvPkwEa3STMpYBj86HvncOshuUJcC1IeTRGkrJL8QccMxRkjnRH8VPckJAITDZdNGMZ9p5MIg7jQLSmN1HGE3KizG88YgMDx+OyFJ3FE+b2pl/IdS7/D5fLywM8XR3rGE+6Hna2Ahfnd7KntLVhfCbh6I43v7z+JtxvdwzA141Eu1Q4cyBcHZueGF58Y3SgzuVyK/1GYWCmxM5Fh81zucHcSR0l7cMw4EJYee8Zotj3dK6I3Nu4yPUj9Qv8mcLHf3Rvsuxi6Ls//kT+Gui6h4xE4Hh8//xrCIX8s67Wow0g0CQJYuFvj/EWf/LjbUy1XhI4sqUFQjWsuwiB+dUdG3ZZKrePsvk+9cN24+vv6I2nS91FweD+UfuktTC6XcJT4h/h3frNCpji8Wg+/EjB3c4urX1nn6lfWmZnfxglORyrxg4KtKM4gvi9cb2gyBUGsydTeltNxIJVOvmt2BNLp7hmrUo6zbeq1iNF8rPtUryvFQrKEeDE/wQsv/gZWL1zreFwR7ubOcbW0dARXOhiqSqnYaAGbdVi513tSq5SU+Zs1UmnhkcfSiMC9xXosO9JQ9Jua8ZiYGvyrVSyE3FuoEwSxxHk263Dhks/0bNwytlSKcBzI5oR7iwE7W2FcqU38Xl2+nmwcVLXVcMnzhdFR51jTZn/l3/lIwl2Eo5DfqFAZPV5VZ4mUTLGGE0El5xH6Ll4tZO7WFk7buHKFOqlbWyzcmIg/0Ma+mKE4w6QzDu1tfwrbIcv36vHEnvD9EYELl1JdLpXtzYClhV2pj0pZcZyIKzfSnJsTtjdDNjfieoix8bjV6gcf/dOEidV8SiBH87F88o0BTznv7Ln9P/xklnv//U/yWz8fdEiN7OfuUY17U9y9XePao2kuXU0TBkoQald71/2oViLu7pHrKJfiRIJHHs/gep0tXy9cSjEzG1EpK64XxyOSXFxRpMzfqrWK8OKMsdioHKbN7SCsfiVNnuQYk9Onre1RkCnWmJ3faRlrAbYnMzhh1GW8BHCDiFyhRmmsd+MrYxczFAYQp30uzLdNWI3fvh+3E02lhanp7nqHKFLuLXbrQUUR3Fuoce2RDOOT3VLjF8v3uJObi53q7c8Tl4sHiFH0YpAWnK/7sRJv+dcjjARbh3J21WpKtaJxP21PDiXOt7aSXFAYhbCzHTI+0f0V9VMO/j4356v36pTLuxXhzXPcvVXlkRclJyPcL+XRFCPb1Y67d4BIoDR6fHETJ4yYnd+Jz9t27vxGhdB1Ej2EjkK6HJihGBAzFAbQW/yvXofxKYeJiWSV0n6yEZWyEkWaeIf96rXP8pHMtxE4LpHEd8xeFPDyjS+SiQ7fofBD738rn3t6oud2J4jIFuLjZ4sbZEqlQ0dERGI9p/uhWk1+/VSh1qe97H5sboaJwaQwilcsR93T4j1vejuoUku7pKphy1hEAqHnUJjIHOn52sltJ39eHAWNtJU+3U4kEBywn/pZxgzFGaVWjVheiiXARfrn3q8tB6wtB8zOeV2VxCLSN7hN4tcUJuo7fPf8x/jc+BPcc8eZWZnnammJq6kdOGSK63ve9Pa4g0kPOjJyAFGfu9dfzPWvfT5x/1bDocQriNVuk+I1ByGVkIHWPPegKrhRpOxshRQLEZ4fy670St8Vums8jgwR7l0dZ2yjzOhWFRRK+RTb01nUPb5J2U1wLzVRp1EHlCCfUhy31cSgmKE4g7Q3D4LBfPIAK0sB2Zzb4ePOZAVHoNfc89xXq5yf8xlLcKHkgxIv+crvcW45VlCtCzyncP6in+hy6cd+FcF+JWhl5Owi3H78ZUytLDC2udax//rMNF/45m/iic9+CaceMLVyF7fNmoaOizeRxU/d36w7NetTLHRXs4tDnFnVRhgqhe2QMIx7UWSyDlEIt56vEoS7fbY310M8P+6NsRdVyBxxnUXHa+8I29M5tqdzR3qOflSzPirlLmOgxO6wasZj6l6xZe1VhOXLeaJjNF4PG2YoHnC00Wc5qCvprJDNJgc327lfeYi5i7sOchHh4pVG/4SEY0YhLC3U8VLSVTFdLoWsLgddcZF7C3WyWad1Rx0GShAofqp3oHg/IbrRzUriXWfkuszf+CO85L99qvVY4Hl8+lu/haVrV6l753EjZWbhJo/+4e+TKe0Qej6L117EE+MFqN5fPCWbdZi75LO8WCdq+Nj9lHDxcqrjWkvFkPlbsYulWSmfzTl4Pl2y6qq7vTPaEYHJKRfPE8JA2dwMKJciUilhYjJZb+tBoJLzqKU9UtWgdSOggDrC1nSW0HcpjaVJlep4QYiKmJE4IGYoHmCqlViAr70nQzojXLmW7luhfD/yEEk++dyIyyOPZ7i3WKOw3X1s1bhYLXet01BsrCW3HY073sV6RUt3a52pp7Me0zNehzH80PvfivurEbntKm4QUcn5VEb8jsIDN4ySyx5EWLl4iZ3nx8mUSqyfm+Uzf+KPs3zlMgCFiTT5jQqrF6+zevE6EkWoCJmwyrfc6uPn2kNQV9ZX4zTauJ2sx+hYbNTHxj3yYy61qiIOXU2Ioki7MqNU4/ex12qwWctRKkVxeqwX9/kYG3eptQkOqkKReBVy8Uqqo+PeoAxdLVaE5atjjK+WGN2qIpFSHvHZmskhGqfNOmHE9HIRt777+ayM+KxczFuK7AAMuxXqG4B/ArjAP1PVn9yz/XXArwEvNB76VVX9iZMc42lFVZm/XevqyFatKMv36h13/XvpJQ/RnFzq9Yjtze5JKJYST74T8zwhnXYokGyEqpWIMNCOgHi/QHAYwMLtGqVm5k5j1/WVANeByek4VvKeN72d7L+ocnFxA9jN2a+lXZavjqONSaAykiJbqCdm5GxcmOZXf+ivJo5jayZHuhyQqgSgkCZEIuWppU/i7BOdaVKvRdx8vk1xtqZUyjXGSy7nL8TvU9xCNnnCKhaino2PeqHEK5Mrs91++HuL3Z+buCNfjcdefDwZUceNOsLmuRE2z42AKhPLJeZube1uF8GJtONmIVOsM7FSZPP86MkP+AFjaOsvEXGBnwHeCLwE+D4ReUnCrr+jqk82fsxINKiUtaNRUBNV4t7MfWaRqWmvZ5Xv+KTHufMp3IRbCM+TA8cOmgQBPPfVCvO3qq1xj4w6ieOIA7nSkd7ZRDV2nbX2DSNmFgutamCIf6eqIWNr5dZ+xbE0oed0mDElzsgp9snIUUe4d3WMe1fH2DyXY+HyJN9/62lmqxsDX/vqctAVQFaN28fWavuv7qJQ+5fDJw4cRhIym1S1p8RKFMFX/7DCV79U5t5iLRYw3IfMJ95ywIEdPxPLJfKbld0KcaXLSECzarx68DaMZ5BhOupeCTyrqs+rag34ZeDNQxzPA0WU8MFvst/nfiTfLQ/hOHG/as8THFe49kiGsYlYAE8ERvIOV2+k+haTVcv9A7uq8d3x/O24KGti0kvsoOe44Kd6S1aEQTzhveqDLyVbSK6idhRGtyq753aEpevjFCYzhK4QusLORIal67urjp6IUMv67ExlKY2l+TtP/VD//fdQLPR+XQbRxcqO9P6aOg64eyRTRGIV3cPUdUAseLi1ETbcmg/WJCqRtoxEx+O99t9Te2EkM0xDcQm40/b/fOOxvbxKRD4nIr8hIl/X62Ai8jYReUZEntkMD5+H/6CQyTo9DUKs49R/kpie9Xn0RRnmLqa4cDnFIy9K4zhNv3csN15uawxUKkQNV1fySYO6UujRSGgv1bJSrcS++uuPZBjJd34MwzDOsOoVcI8nRuH1H34tTp+JTPY8P3IdNs6PMP/4FPOPT7ExN3LooOZ73vT2gVt+9nwvpKveMJFUKg5aJxFFcPFSiulZj9yIw9i4y5Ub6Z4NkcIwLqLcD1WoVnXfeNaPvndu/4OdIG49uX6kF4HvWIxiAIYZo0h6d/a+xZ8BrqlqQUSeAv4N8HjSwVT1A8AHAF6cnXjo7xFcNw5O7m1TKgLnLnTOBKpxA6L1tZAwiPWMZs77ZLMO+XGXwnbI81+N7/KV+HvjuNKVTVOtKPcW6ly80h3/WF2pD/4FlbiqOZ2JJ/363niJxq4qx0mu75iZ9fjQ+98KT0N5xGcq4RRxauTxqqi+/sOv5ac+8RiV1/9q3/3GJ93kdrLKwMHjvTGFdipVZXrWZ3q2/zGaadH9jtUxvCguqDzq4rwjR5XRzQrjq2XcHjcy0F0PEwlsnDu5NN4HmWGuKOaBK23/XwYW2ndQ1W1VLTT+/ijgi8jMyQ3xdDM96zF3ySedFlwXcqNxc5y9X+zlpTrLSwH1mhJFcbvMOy9UKZfCuC/zfI0oavRQiOJJKUnID2KpjyTfdWH7APUEGheaQWww9hqkJklGQgRGx9xW9XXou2xPZIjaZgAFIkfYnD3+SeBH3zu3r1zI1IxHJrvbfKmpu3Thso87YHGh18ONJBIrxw7C8lJ9YCMB8WqnVwc+GEwm5SQY3agwuVzCC2N3bCNBroMIqGZcAi8uEK2lXFYu5SnnrehuEIa5ovg08LiI3ADuAt8LvLV9BxGZA+6pqorIK4kN21rXkc4ozdTKsfHeb2NQ10bL0s7HVWH+du1QVbpRFN/td45lwCdLXKSXbhTtRdFuBfSglH/g62E3oYXNczmqOZ/8Rhk3iFMjd6azhN7J3Qe9501v53/79f8rcZvjCFeupykVI0rFENdzGBtz+07Ce5mcclle6l6VKHEtxl6pFFVlZztkbSUgDJR01qFUTHYjNd+7riw3Bl/xDA1VJlbLiTGJVvihUYW9fn7EelEckqEZClUNROQdwMeI02M/qKpfFJG/1tj+PuC7gb8uIgFQBr5XH7To2pApl6OeE/FhjITrJt/Bjk24rK8l+4fbv5sjow5zl3ZdVweVwFCF3/mlEnxn5wnK+RTl/PHKWO9HP2MhEjdYOmyTpfFJj3I5luqIDxiv/lwHbj4Xuw1H8y7nL8arlLWVoMPdtV/QfCTvUNyJdlc9Dly+mu6ZvHBaemO7QYT0mBJUYOVCnuqIjx5h58OzyFDrKBrupI/ueex9bX//NPDTJz2uh4lB3RKDEGfT+InB2elZn2Iholbd7SktEstxjI251OtxDcVeV4vjCLNzHsuLySqqe3FSwtbU5FFczpHj1kL+8R/7AV5UXMbdKvOyza9wpXw0fTVEhAuXUkzPRJSKEfW6srEWdLiSdnZC6jcjLl1NJcdEeh48li+PIqiUIhy3t3z5aaNfMoIAtZxnRuIIsMrsh5xszukZFO6H68LMeZ+NtYCgrqTSwsw5v+cdseMI1x5JU9gO2VgPqFZjf3GpEJHNOR3yEFGkVKsaN0hKCROTPr7vsLYax1EyGSE/7rJ0t1vRtqoez770jx7wVUi4vnpIfiPuvBb4DjtTWaq5wwe//WrA3K1tJFKWGIfcOPcyM7x84wt8w+ZX7nu8TVLp+LW89XwlMTherSrb2+GB3HkXLsVpz44Tx38GYejV2A3UEYpj6S558wio5HyiE3Q/PsyYoXhAKRVD1lcD6vVYIG5qxuuSfoDd1qd3blZbWkL7TSC5EYfzF31SKYeJycE/IiJCsRA31WmeY3srpLATcu2RNKm0w9ZGwPJSXPugGgdLL11JJbplHEdYvFuLx0wcF/no9/w5yqOHqKRVJVOqky43Giitx35tIS7OyxbrbJzLUZjMHvzYwOS9ErKntiVwPH5/8o/yR7ZfuC/p9CR69exWjVOLB2Vk1OlojHRacYKI0c0K6XJA4LvsTGUIUvG4N86P4IYRmWIdFUFUqWY9Vi9axfVRYYbiAWRjvc5KW2CzVg3Z3gq5eiO5e1k64/DoExmKDfHAKFRWezTMeeTxNH6CwRmEWjVie6s7cB5FsLJcZ3LK62pyVK8pt29WefRFmS5/+Gje5bEnMlQr8Yw+/p/+HB/8qQsDjUUiJVUOUEeopxzO397Gr4UdwoDS9lsUJpdLFMcyh3JVZEr1Hg1yQhYzs9wo3U18nkbKzk7Y0mMa79H3Yy+uB/dte4RWUsFByHziLfDe+zz3AfBqIXM3txDVuMcEdUa3KqxeylMeTaHA5mwOmYo1nVLVkEyxzuzdAoWJNKV8n+pNYyDMUDxgRKF2GIkmGsHyYp2rN5LT/USklcGiqtSDOBsq3ggoXLySOrSRAHpm1UDsgorCZOOk2rubm4iQycZf8ncNaCRafSfa8yR1gFxwETLlOuVD9HZWSeh5AFT9FC/90avs/INuQxEEyu0XqgR1bSnCrq4EXL6a2rd2wXWF+n2WFAscqLf3sJhaKnRIcDQN+/RCgc2ZLJOrjR4jCe91ulRnuu29qaUd1uZGqWePt8bmYcMceA8YzSymxG2Nqur9EBHOX0hx47E05y74zF30eeyJzH2nQjouPbUSHEd61mZo1Ltu46BkivVW3wknatP6GejZih7yxrM4lk6UQ1SE/+EzTyZqIi0vxv3J23t1awQLd2r7vo/Vyv29Xo4Ll6+l8A+QotvkRKuxVcmUgsSPlagyuVKK3+fGey173msHWi7G2M0YceHWNpnCw6/ecJSYoXjAEOlTAH3A77zfiEGMjXt9ZckHpZehEYGJKbenOqo4+7tABi3uGlvrzqkfmCgOgPZDwgi/EiBhp1nYOJcjSLmtwr9I4p+VS3kQ6SrMU41dTonD0AGk4O/j7fI8ePRF3YWZg/DkGwePfxw30iYE2Xpsv+c0fqYXdkwM8AD0/XaKyJiIPJrw+GAiN8aRk805PaVp8mPuUFMaHScOTDcrjyH+nRuJg+3Ts37iashzhdH8Ie5ZVMltVzl/c4uLz20wuVTAqw0+ke2dJkSI5cR7nGtqscCVZzeYu73NlWc3mFostCYbdR0Wb4yzejHP1lSGzXM57j42SXWk0/B0GLwe85Sw/xx2mAB0UwTy4pUUTqNisqnrNShPOe888HnvCxEqOe/IdfucKI59GIPR89spIn8e+DLwYRH5ooh8Y9vmnzvugRnJNDvKNVVd48fi3gPn5obvdx0ZdXn0iQznL/jMnve4cj3N5WvpRqzBid0dKWnbP5Yd6WfgeonvTSwXmV4skKkE+PWI/GYVL9Cek4ru+bvrjEqHNHk7U/eKjGxX47vYSBGFke1q3GKzSaPwb/PcCDuT2Z45/u9509sREbI9WpKqxtXW/Zg97+P7MlCMNpUSxsYdXDdOLLj9Qo1bz1e49XwllhX/wwoLd2p9+4MMk/W5USJHWqs1JV6tBf59OkQswD0w/SJZ7wH+mKouNuQzflFE3qOqv8p9LXyN+yU34vLo4xm2NgOChshfPu8ip0QF03WF8R5ptbkRlxuPxb2exaGvbHmTpJx9txaS3+zMnU/S+NlL4Aoq4CdMis1U2a7HI2Vkq9rl5nAURraqbMyOxJlSqmSKddwwTs9spm8m8aH3v5Xv+kv/glsvVDtayDYlwvdzBXqecP2xNDvbIaVCRBjFfSaSmk2N5h02NsKO81TKnTvubMeZVzceS/f8HB15NbYqfjXEDSJqGa9nzUOQcll4dIKRzQqZckA95VKYyODXQmbu7nS8L0nv/96rUSBIOX3fH6OTfobCVdVFAFX9PRF5PfDvROQypuA+dFxPmJoZ/griMIhIYmOkg5AtJfehaNf4SQ6AwuZ0lqmVUtfEr0At0z0wN+gTL5CGjERdOX8nLrhrUsqnWLswmnjn+rmnJ/jcn3sHf+8jP836akClFOH5sSLwoLEDx4nTaccn4jTbm89XO4LjEBdOhqEm9jPfSxDEcZNe2mHyjd8OH05ece0lXaqTX4/VXMsjPoXJTMcKy62FnJvfxqvHrWUdVXYm0mycS9ZjilyHnekcO+3jTbmsz40wubxbw1LO+RTGM2RKcbA6XQ5axr/52YgEVi/mB7oOI6bf13VHRB5V1ecAGiuL1xFLfffsC2EMh3otiiuiK0o6E/dk3pvqWiqGrC4HVCvxpDQ945EfH25cYz965exHjvRcQoSu4DTkptuvLE6rVLwgInIECTsL5FRga7q74K6vuGAEijJ3Z7tL4jq3U6OWLrMz3VvF9u/92Xf01Ic6COII126kWVutxx0OieMY07M+87eqAx1DNZbwGBtP3v66dw9mJPJrZSZWS3G/auK4z/haGZXGhD+Rjt2E9UYf84ZlG92sNorpBi96LI5nKI6lcRvvqTaMUXlsN8XZrwTkNytIEFHN+RTH07ihMjO/TbZRpFccS7M5m2093+ik36vy1wGnvT2pqu4AbwCSGwwbQ6FUDHnh2SobayGlYsTGWsgLz1U7MmeKhZD5WzXKpYgoiit7lxbqrK2cniyWJHqlYpZHU4lGIhIoTGQojfo9CuDi1UhxPN2SnI4EAs9h5XKeyHOYuFfkwvObnL+9RXanhgrs7JEybyLAxVtbHSuJ9nONbew/SR+VXLfjCrPnUzz6RJbHnshy/kLcsTCpYj8Jkd6y4oO2PHWCiMnVUislFXbTVt0I/HrExEp510i0P1dhbL2y95ADDTz03Z6TfD3jsT43ytrlMQpTWZxImbu5Ra7RQ92NlNGtCnO3ty0Tqgc9P0Gq+jlV/RrwKyLyYxKTBX4KOB1C9AaqymKCJpJGsHh3Nx9/b0V0/FxYXw16dq07zagjrFzKt9JQmxN+LeOxNZ0lSHs96hogVQkZW6+0At/FfIq7j4xTT7lceGGTsY0KqVpIphQws7DDxHKJzXM5dsbS3ZlSxJ30kortAJxwAJ8PsbE4rtTTqZnePdI7EBg7ZE/0Jtlichlg++n7mS13wNfrfhhbr3T10HY0zoLq1Vr3rDPIrcY3ETcY+s/EPSQWgNcc56CMwanXlbBHtkpQV4IgFuHrVdAmAtVK95czDGOpj6NCValUIqqVwYoCYf877cpoiruPTrJ5LsfWTJbly2PcuzoGjlCYSPdMuZC2HwcY2amRKQVMrJRwwu4JJL9ZiQOuIz6a8I3pNQcrUM0OPvE+5byTV3/+XQPvPyiZbKzd1eyN3syYa6bLihPHMi43eqYnMWiRnTZf2ENSO4EAc2+5lTi2YnQzyKe4TtwLIgtkgBdUBwmNGacBYXdS6CWf0Z5hU6lE3Ltbo9Ko/M3mHOYu+h3qrwelWAhZnK+1RAldFy5cSZHL9Z4UBs2wiTyHnQQhv9B3WbmcZ+ZuAWnc4+7tod3EURhtZNT0muOyxTrhPv7rSDoLwFRgc3Zk/4to43XvLvOy97+V/+6H/uWBntcaQ6SEIXguHdlL4xMe+TGXSiXCESGdETTarfTfKyveNOYHjV+VR/yBU132JhxEEjehOgokjBjZruHVQ2oZj9JoqtUbO/QcSMhuiwTChqHMFOuMbpRxIqU8mqIwkUFPSVbhMBjEUHwa+DXgG4Fp4P0i8t2q+t3HOjJjIHxf8PxkeQw/JS2fc37cZSdBsM/3pdU8KKgrd16odkiSl0sRt16o8shjmYHE6vZSq0bcvV3rOG8QwPytGo88ljlQl7eDUhlJMf/4JOlyEPen3iwzupN8x+hE/eU7VIRKj0lQiY1CJeuRqgY4UbyS2JwdoXaAFUWTzz09wef6NEFKHJ8qy0v1Dv2uqWmP6VmvNdk7jnQYZ3HpUuyt1SKWF+sUG42ORvMO/89fHDwkqa7D2twI00vFVjA7KQNNBQrjGUa3KojGNRHr50eojNx/86lUJeB8I97gaGwAJl2HpWtjjc+C9syKK45nmFgukt+otMafLgfkNyosXh8/s8HuQa76r6jq31HVuqouqeqbiQ3HfSMibxCRr4jIsyLy7oTtIiL/tLH9D0Tk5Udx3ocJEeHi5VTsQmgrwHOcuM9Ak/NzPumMtFYX4sRSDpeuploTycZ6nYSYLBrB1ubh/Ocb6z0a6ChsbvQ+5pH1OxChmvOpjviUxtKJAelI4lTWwnhywBqgNOqjjrB6YbQVE4HdSdBRyJQDAt9j4cYEK5fHDmUk2hk0yK2qLC3U2FyPbwSamlHrq8GBkhWCQLn1fLVlJACKhYg3/cIv4dUG10YqjWdYvDHB1lSGnbEU1YxLREPWxIl/lq+MsTE3wp0XTXH7iSkWHp2kcggxxi5UmZ3fwYm0tbpzNE5hvvDCJtOLBbKl+DVR4r4VkbMrt+JESn6j0hWMd4OoZzHmWWDfT7KqPpPw2C/e74lFxAV+Bvh2YB74tIg8rap/2LbbG4HHGz/fBPxs47fRRibrcOOxDJsbceprJuswPul1+JsdV7h6I02lrK302JHRTndDpazJd8wauygOQ7++Cb22HRe1tNeVFhtX+LoUxzNA7HJIVQNEaa0wyjmPuVtbqCMUJjJszGSZWoknjb3xjHQl4OLzmyBQyqdZnxvp77JQJV0KyBVqRA6UxtLU07tfy37tVVXjLndrK0FiYypVWF8LmJ7xBirG3FwPuuotVMGv1Xjki3/IV7/hyX2P0SRIuWyd23W7+dWAdCkgciWWBnfa7moOQGdfirjhVHvhnF8NExMIhFi2Q9r+h/jjvn5uhNJYGnWE/Ho58TvgaBzLar+ms8Qw11GvBJ5V1edVtQb8MvDmPfu8GfgFjfldYEJEBtOaPmN4ftyB7tLVNNOzfmJQsikbMTHlMZrvrp9IpXp8aYWBUyz3kuklBCi05MO7njNgKuZB8GohF25u4TaMRLMor5L1WLo+jjqCOsK9a2OsXMqzPZVhezpL5AjZUkCqFpGuhEwuFZlaLfeMZTQD5I5CbqfKzN2dHnsS3/3e3eHc/Db5jQrjaxXmbm4x1pTNbvCeN709UcZkfTVgdTnZSOyeA4IBJY1Kpe7KbgC/Xuf8nfnBDtKDetqjMJlpTciHwauGXHx+k/G1MrlinfxmlQsvbJJtU4IV1WSfEj0elobbsX1MZzcU0ZNhGopLwJ22/+cbjx10HwBE5G0i8oyIPLMZmoTwYZicTk6jFA7ft2BiOs626TqmkNh/Ao5Hxnpyudjd04DYXSSqeNWQ/EaZka1qHF84NxL3NWhzYUDjCzPgQsjROMOml/jcyHaNTLHeIYPtKIyvlfGrnS6j13/4tR0GVCMduC/2oH3TUz3iRaHjUBjvUYV3gkw3+lI034/m6zW9sCvOWEsf7HMq2pnaXMonu78igcJ4cq+Xs8AwDUXSpzIpTX2/feIHVT+gqq9Q1VdMuEfg6zyDpNIOl66kcN1GCqUTd1I7bN8CiIPlV66nY4nxxiEyWeHqI+lDBccPS6aYnBKJwMzdHS7c3GRiucTUvSKXn90gu10lt1M7vGR5AxXwexiK0c1K4vFFIbe9p1BPlXf/L9P8xJ/8q5SdNEGg+xqJprz7IHpaqkp2pIdIoePwtZcNWTA6UtI9stKEeBsAjrB+bqQrjtSMR+xFhTgjqkHou2zO5jqeHwnU0werGH/YGGZ7q3ni+owml4lrNA66j3GEjORj9ddmY5w4AH5/E3om63D90Uxc7yGxaGAvjqpKuYumv2kvCulS0HXHNLNYoN4np39v1kyvLJpmRk/ikPrM9O2pvF414MYXb+MFAYXxKX7uke/iyZUvMv3sp3s+H2BswmX2/P56YGGg3LlVpVbV3TRqB2quDyL8znc+RWFiPBbxq4VIBLWMe2Lqq7ntKuOr/QPJ7RlrxYk43jS2VsaNlEo2LsKcXShAEDXaqdKquA/Sne/zzlSWSs5ndKuKE0aUR1Nnvp3qMA3Fp4HHReQGcBf4XuCte/Z5GniHiPwycRB7qylUaBwf7e1Hj5KTXEHspTiWZmSz2mUQmimQSdTTHn4tTBQPDFIOXj3aNT6NCdbZs18t43UEpzvGlE/hV7sbLalAueECmZ2/y7d85N/i1eIVRuS6fPkb/jifnfs6Xj/zNZzVzY6VhQhkcs2V4WCv9+LdWlfHvEiF7alJfuMvfB+R5+FXAmbv7sQCiRJ37ls/n6PUSALoiyq5nRpj63HhYiXnsTWTG0i9dWy1xPg+zahUpCXmmClUmVoq4rUVoWaLdeoZj8UbsQJtbqdG5AqFyUzPdNx6xmMjQSDyrDK0V0JVAxF5B/AxwAU+qKpfFJG/1tj+PuCjwFPAs0AJ+MFhjdc4fo5cxrqNzdkc6VIdrx61cushFhf0EirQRaGeciiPpsgWanEWFIDE3ewKExnS5QC/FlL3XapZl/G1CmPr5dbqpZr1Wb002nNMhckso1txUVhzIowk1rGqZj0yhSLf/v9+GL/eVvsRBnzdM5/g9//En+b/e82f4ZEv/1ce+cpXWiuB3IjTaEw0mJEIQ03sde6oMrm6RqpaoyoOc7e3Wwqt8QuhTC8VCVIutYT+004Q4QYRQcplbK3M2PruZD+yXSO3U2Pp2jj1PpOxhFFfI9FcFaxejBV6J5aL5NcrrXhP6zgary7KoykKU1kKZ9iFdFiGajJV9aPExqD9sfe1/a3AD5/0uIzhcGS1EwlErsPijQlyOzXS5YDQE4rjGcZWS+Q3q4mritBzWJ3JkSrXyRbqqCMUx1KEfnwnXM35VNtap27N5tiezuLVQiLP6a86S6xXtXR9nNHNCiPbVVSEnclMy83x+B98HklIaZIw4vLzf8iXv+HVfPLPfCefLryOv/0dz6H/46cGiiWFONQdj3RU66vzFTkO6UoZr+aAatdrJBrf8a9dzMdZQyJIGDG7UCBTqsfuoIjuiRtAYXK5xPLVsZ7nT1XCni5DBbYn0+xMZglTLl4tjOsfehxLNO4dkiQjb+yPvWrG2UGE0lia0thu9sr2dJaR7VqXSBzA1FKRejq+Y066a05CHel7l5y0/85UNjFQOr6+jhd2B8IdlFxhq5XhUx4d5e/8p5fBd72MT/y5T/Ff/vIfJJ6rLh6fmnk5z41eRQWyYZVvXvkMIs8my7uIsDMxwdhqj6A7kCsG5L62QeA5bJwfYWy9TKoRdG5mEyWZojjjrL+uUuRK8pMbB9hs612RLdT6ZqMJJCr8GoNxNuvRjVPHcdRODELouywl3NU26yE6Wp0eBaqkS3WyOzWcfg2RgNULc9S9bqMTicPWxAybs926SHvTaNv5jQuv5dnRq4SOSyQuRS/Hfzj/zdRfdJVwj3Grex6f+ROvJXJd6hkvsWK9GcAXwA8iZhZ2SJW7EwN6rXGifYLD9bRL6Dld838kUMynu4PLfQ7XdOkZh8NWFMap4DhqJwal2cjITbjjTFXC2Pl/BBkvfiXg3J1tnKbgnsL2ZCae8BOO/9zXvYSX/af/ght0Tr6R6/AHr3llh9urnR997xw0ssd+6m8uUXn9r7KWmmAlPU3kdAaQQ8fjt//ot5N68QpPfuo/kd/cojA+xmdf82puvfgJIA66T6wIEmi3C6mNZjbRIAxUlyDC8pUxzt/ail+zxsHraZf1850V0qV8iomVUsJBGkkFWY/y6IPZEfI0YIbCOPNErrQUZrs4qkStSDl/e7vLGOU3KtTSHqWESbOeyfDRv/hWXvMbv8nM4hIAmzPT/Oc3fAfrc1NxcFm10e0veaBNozGyVeXC+g4k9FHyayG3n3ic2y96PHnsjrB0bZzpxSKZNhnug7w0zcBzUxqlnnbZSlgR7SVIudx9dIKxjQpOXSnnG3GhPdcb+i6bM7mOznrNc27O5NiZypzp9Nb7xQyFMXSOrXZiQGoZj8hxkKiz65oSLyaufmWdWsZl49xI1128Ww+ZXC61ZCRKYyk2ZkeI9gSyc4VaYt2EozCxWqKcTyVKW+xMTfKbf+H78KtVRJVaJoMTRMzMb5NrNNkJfIf1uf7Kq4HvUK1Joq95v6A7xBPx8tUxJFIyhRozS4VE2fZeFbLFUZ/KaAo3VKoZj2rOG2jizhRrDan4+Ej57Qpr50cS03J3prNURqz+4TiwGIVhiLB8OU/kSKsitzmlOzSkpish5+5sk2oLwDphxIWbW60KbkdhZKvGXEJrVDeIevplvHrE5a+tM7rRuw1oPZ2mlsmAxiuTXKG+Gx+oR8zO73SMDRopqvXYdVbNegR+sr8/qU94L9QRyvkUodN9rH5up3rWpzgR62dVR9pWBKqkKgGpStDVMMWth8zO7+BGGkt3RLGw3/RSEb+SrIpbz3hsnB9h7WI+TlowI3Ek2IrCGCrHWTtxEOoZj7uPTZIt1EiVYsG5pOK86cUCizcmQITRjcpubUFzH2KjkNuutiqEIV619Er1bGYITS7HWVbNVYtESrpcR0XiTnkiZIp1vHqYmKp6bn6HWsqlkvPIlgLSlSCWrnCE9fMjLF8ZZ/buNn41pFl4sT2dpXhQDSMR7l0d49zdnVjHqnGsWtolXekemwpxL489ZIo1ZhYK8UpLYyO0ejHf2nd0s5r8eimMrZdZu5g/2LiNQ2OGwhgq/+3GY8MeQgt1hMgVRrdrPTSFwK9FXHpug6Vr4y1Bv700xQDbDUU161HLeKQqQc8CsmZh2ErOZ3SjzORyqeXLUYl7hKeqYWJ/bgHcUMmWAzIN3aOW0GCozCwWWL4yxtL1CbxaLMVdT3nogNXbewlTLos3JvCqIW4YUct4SKRceGETJ9SWkY0aWkp76xe8Wrxa6HgtQmV2fpuFRyYIfTcuREx6nYibExknh7mejKEyzGynvfiVoOXq6DV9xisGZXqhQJjgyoGGxMdev38jg6cwnu5XGoBXD0mX6kwul2J3VsPd4obKuTvbhK4k9u3ee5ykFUdTL6lZTX1YI9FO0FgBqSNEXlzUuDOVoe47VDNxdtLa3EiXW2m00UGua+waB/ghNq69Gkn5tYjxHllOxtFjKwpjaGQ+8RZ477BHscv4Wjlx8tpLXCwWsDyTJ7dT63qOCh2ridbjjrAxN0o15zO9WEjUkKpmfcbWSj3H4YQRKoLS25j1GrNfO/678Mhz2Dw3wua5EVLlgKmlAtNLcS1KLeXQbOLuBFGfVVtcZBi3JS0lCi4KML5eZmcy05U4YBw99gqfYVQVHaShwTHx818dQFDuBPGryTLWSahAPeWxcS6WpG61+RRYvTDaV/CulE8lFpKpQGEiTbaYPI64JafGGkkpp3XeQd/BvWq4XiVg5u42s/PbZHaOtoeLVw05f3uLdDVsrXBStYh0NW4A5QWaOO4IqDbdVKqtZIIkVCC9T3W3cTTYiuIMEkXK8lKd7c24x3IqJZy74DMyOmCHmyPic09PnOj59iNWi02OT+wl9BxCTyhMZimOpRv1BUJlxN+/g5vEdQlT94rkGhN0NeOxMTdCdm8fijYiiQvHgpTL4iOTeNUQv1pnZrG470ooEtia2a1bmLq7zejO7iSbLdQJPGHh0ckjyRRKWp31K9Zrf7zQWI2lK0Gr9iKRRgDcOH7MUJxB5m/VqJR3217Wasrd2zUuX0uRGzkZYzHs2okktqezLaXYJu1zVHsR1/rcrs6Qug7l/ICZQ42eDk6orF0YZfVi8+DxsaYXComTaDNlt70DW5B2CdIuW7WIidXuHt7tz12b260ByRRrjO50N3LyAmX67g5rl3sL9Q1KqtKjUdQANF1Jkev0XS4pUOlRnW4cLWYozhiVctRhJJqowupywNUbJ7uqOE3UMh6rl/JMLcYtNyEO/G5NZRnZruLXQmppl62Z3IGE/5p4tZBz89u49aiVUro5m+sQBNQ+s2s9ndwsaHsmB6pMrCXXYdTSbkeB2thKchMgAUYKddYGu5y+BL6LX0uOQ/Sj/fprDa0nqXcXQgKx8qzVSZwIZijOGJVybyG6aqW/SN1R8eQbT29qY3k0xd3HJvHqESq0JMWTJDYOhCrnb23hhs2eDvF0N7FSIvDdVqOiSs6LU2D3PD328Se3VIU4yJ14WmBrprOgzg37T+ASRqh7f+HL7eksmVJ9oOSAJnEwv+1GpVEI2eqF0ThW4DksXRsn6tE5cC+pcsDYWik29BmP7ansoQz9WcZerTOG70vPwq+T6kCX/Z6Xn4oiu56IDNR97SBkC8lS5o7C+FqpZShqWR82esQp+mRC5beSYytKt2pqZcTH79GDAxjoLt2th4ytV8iU6oSew/Zkhkrbeao5n/XzI0zdKyZ2EWxeyt6VwuZsZ6OnIO0x3yiE9OpxvUaz+HAQsttVZhYLrTH4tbhp0vLlsbhC3BgIMxRnjNyog+vAXoVrEZiaORm303E2KDqtdLRNTdrWoJLzEw25klzdDOBXw9hl06MQL10OOjSqNs7lyG9WE/t+l7NuR4BYwoj8ZoXsTo2w0T40SHnM3dzaNXzVuPZjazobu8EaFCcy+NWAsR6GL2rcs7Raq86NUMsmTEkig8eA2lFl+l6xIw25WQU/vVRg4ZEJc10NyFDSY0VkSkQ+LiJfa/ye7LHfTRH5vIh8VkSeOelxPoyICFeup/FTggg4TvxdmZxyGZ84/vuGV3/+Xcd+jtNILe0lRpq1ua1B5DnsjKc7Cs2URg3G7EjX8yHOwOrXU3p8dU9hmuOwdCXfCpA3fwIX1i/tBrKdIOLiC5uMr5TJVEJyxYBz8wXmXtjsWh3FK6NyV48Nr967XqKa9Vm6Ps69q+PMPz7Z0VDqKPCrYc9mRV4Q4fbp7md0MqwVxbuBf6+qPyki7278/2M99n29qq6e3NAeflJphxuPpalWlDBUMhnnxNxOn1l9ATg91dgnRTUXp7V61U5ZChXYnI1jCBLFEhbphgRHcwIvjqfZmsm24iV7CVIugeckTsoCpKrdsY3aSIr5F02R267i1UPqaa9LaXV8tYTb1oOi+dtJcCU1d8iU6h0TfjXnk02QOokkfk3q6eObgvqmzmr/xAGjk2EV3L0Z+PnG3z8PfNeQxnFmEREyWYeRUffEjAScLsmOE0WEpatjlPIptFEkV/cdVi7nW21WJ+8VSZeDlhJts1AtXar3NBJNNqd7Fy+GrtOSB88Ua9C4y1ZHKE5k2JodSVRaze301rzqcZHonmMUxtOo09ntI04xlla9xHERpNxExdw4aO7F6bfGQAxrRXFeVRcBVHVRRM712E+B3xIRBd6vqh/odUAReRvwNoDz/uCyycbJ8aH3vxWeHvYohoe6DmuX8qypIhGdWkuqjGxXu+68hVhGfHStRGG6d6Of0niGaKWME3a6hCKJJ8XLX1vvmOFXL+b3bw0qPQIfPVHKe+Io6josXh9naqlIthgX+FVyPutz3T07joPVS3nO39pGVHG0WUEvrF4c3f/JRotjMxQi8tsk+xh+/ACHeY2qLjQMycdF5Muq+smkHRtG5AMAL85OmPPxFHLaKrFRJb9eYXQrbgpUyqfYnsoe/wQmgu5ZIDht6Z9duxP7/wtT2d7B16b0952dOFVWBFGlmE/tGqC248/c3WHhxgRhn+yuwng6rrAe4JIUWLmYhwR3T+i7rFwZ2xUGPMEAcj0dy8ePbFfxarGLrZhPJY7T6M2xGQpV/bZe20TknohcaKwmLgDLPY6x0Pi9LCIfAV4JJBoKwzgQGquxNl09APn1CiPbNRZvjJ+4WyJqSJz3CrC6USwXHvVxE9bTHncfnYivKYo7yU0uJ8t7iMLoZoWtc8kBcohrIUa2qng9BPzaCXynIz02kf0MRHOl5Qyw7wFQ5/jdXA87w3LSPQ38pcbffwn4tb07iMiIiOSbfwN/CvjCiY3QOFJe9cGXDnsIHWRK9Q4jAfGXwQmjvp3mjg0RNqczvR09DZfJIMep5nzKoykiz8Htk3Xk7c2R3oM6wsKjExTyfleGVDuRwEYfg7MvqoyvlLjytQ2ufG2dy89uMLpe7pImN4bHsAzFTwLfLiJfA7698T8iclFEPtrY5zzwKRH5HPB7wK+r6m8OZbTGfXPaaicyheSqYUdpCfWdNIWpHPVUQrtSOLS7pJrzE3s6NGMXfVFlbK3MSKG+G4D3YpdUU7W27jusXhhtFQwehonlImPr5VbKrRsqkyulVl8KY/gMJZitqmvAtyY8vgA81fj7eeBlJzw04xg4Le1O2+nXtCc6goY+h+Xe1XHO39nGq4VoI85QzXqszx0u+LozmSG/UUF1N8itxNdYHO/vjsnt1OLaiDbL5QfgFOvcebyhMnufLqK4oK87iO8ojK+U2JnMWFHcKcDyw4xj5zS1O21SHEsn5tFHwon7syVU/EqAE0R49ZDQjUuW1RG2ZrIsXxk7tJx25DksXR+nkvU6FGiXrk/se8zx1XJiFpYTRWRKwZFM4H4t6plv6yiM7S0WNIaCSXgYx85prJ0IUm5Liwji4K5KXNxWug83yoFQZWK5RH6zAgLSCBm0CtuiiPHVuK9Dey+JgyCRMrVUiHs7OIDG7VYHKTbrGcPQ/eMbgxL4Tuu69yLA+HqFIO0dedW2cTDMUBhnluJEhspIilyhikRQHvWPtVJ4L2NrZfKbla7U1XYcjffbnswcStF1aqmwG7RvnCNVCZm5W4hluvtQS7tkyslKv7X00eiCRZ5D2Mj2SrJdzes3QzFczPVkHCunsUFRO6HvsDOZZXs6e6JGAlXG1it9NZpaCKQrvSXGez4tUkZ2aonuo0y5jrvPqmBzNtcVCI8k7otROyKZbom0p5FoclSrF+PwmKEwjCEgSqs50r4ocdzigDhh1DPdVkW6BPz2Us35rFzKU2/IYKjE8Y17V8aPLMAsUS/hqF2OavViHB5zPRnHxmluUDRsVOhbYNfaj1gdtn6IyTL0nFh7KakeQXWgnhuV0RQLoykk0jiuccQZSJErhK7Tc9Wwt9e3MRxsRWEcG0857xz2EE4vImxOZ7tcO81QQqxJFK8klq8csuWnCJuzyecIPGdf11PHc5z7T4VNRIT1c90uLiW+9pVL+Y5eGsZwsBWFYQyJwmQGafRxkMZdf3EsRWE8TaoaEfpOLLJ3HxN0YTKLIkw3s7vYFRqcu7nFwiMTJyLO14/yWJoV12F8tYRfDQk8YXs629Hn2xguZiiMYyHzibfAe4c9ilOOCDvTWXamMrhBROQ6rdqG2hF6W0Rjt1F3pzdldLPS0ZVuWFRGfCoj48MehtEDcz0Zx8JprJ04tYgQ+u6hi+r2I7NH06qJo7HmlWHshxkKw3jISWreA41YxT4NkQwDzFAYx8Bpr504axQmMomV2CqxFpRh7IfFKAzjISdIuaxezDOzuLP7oMLa3Aj1IyqcA8gUaoytV3CDiErOZ3s6s28LV+PBwAyFcaRY7cTppJxPcWdkikw5jklUs/6RxkTGVksdSrN+LWR0u8ri9fGB6jWM0425nowjxWonTjGOUBlJURlJHamRcIKIiT1y5EJcdT25XDyy8xjDwwyFYRj3RaZUT4yBCJApWlbVw8BQDIWIfI+IfFFEIhF5RZ/93iAiXxGRZ0Xk3Sc5RuPgZD7xlmEPwRgC/VYnak2HHgqGtaL4AvAW4JO9dhARF/gZ4I3AS4DvE5GXnMzwjMNgtRNnk3IPiY1I4kpz48FnKIZCVb+kql/ZZ7dXAs+q6vOqWgN+GXjz8Y/OMIwD4cSaTJHQ0myKJM622pwdftW3cf+c5qynS8Cdtv/ngW/qtbOIvA14G8B5P3u8IzO6+ND73wpPD3sUxrCojKS4++gkI9tV3CCimvUpj96fTpVxejg2QyEivw0k+SJ+XFV/bZBDJDzWU5NZVT8AfADgxdmJAYX+jaPic09PDHsIxpCJPIedKbtJexg5NkOhqt92n4eYB660/X8ZWLjPYxrHgNVOGMbDzWlOj/008LiI3BCRFPC9mHPjVGK1E4bxcDOs9Ng/KyLzwKuAXxeRjzUevygiHwVQ1QB4B/Ax4EvAr6jqF4cxXsMwjLPMUILZqvoR4CMJjy8AT7X9/1Hgoyc4NOOAvPrz74J3l4c9DMMwjpHT7HoyDMMwTgFmKIz74nW2mjCMhx4zFMahefXn3zXsIRiGcQKYoTAOja0mDONsYIbCOBRWO2EYZwczFMah+Nvf9QPDHoJhGCeEGQrjUJhkh2GcHcxQGAfGgtiGcbYwQ2EYhmH0xQyFcWAs28kwzhZmKIwDYdlOhnH2MENhHAjLdjKMs4cZCmNgnnxjYNlOhnEGMUNhDEzuH/3YsIdgGMYQMENhDIwFsQ3jbGKGwjAMw+iLGQpjIKzIzjDOLsNqhfo9IvJFEYlE5BV99rspIp8Xkc+KyDMnOUajE3M7GcbZZSitUIEvAG8B3j/Avq9X1dVjHo9hGIbRg6GsKFT1S6r6lWGc2zg4H3r/W4c9BMMwhshpj1Eo8Fsi8vsi8rZ+O4rI20TkGRF5ZjOsndDwzgZWO2EYZ5tjcz2JyG8DcwmbflxVf23Aw7xGVRdE5BzwcRH5sqp+MmlHVf0A8AGAF2cn9FCDNrowyQ7DMI7NUKjqtx3BMRYav5dF5CPAK4FEQ2EcD0857xz2EAzDGDKn1vUkIiMikm/+Dfwp4iC4YRiGcYIMKz32z4rIPPAq4NdF5GONxy+KyEcbu50HPiUinwN+D/h1Vf3NYYz3rGK1E4ZhwJDSY1X1I8BHEh5fAJ5q/P088LITHprRhtVOGIYBp9j1ZBiGYZwOzFAYiVjthGEYTcxQGIlY7YRhGE3MUBhdWO2EYRjtmKEwurB2p4ZhtGOGwujC3E6GYbRjhsLowGonDMPYixkKowOrnTAMYy9mKAzDMIy+mKEwWljthGEYSZihMFpYENswjCTMUBiA1U4YhtEbMxQGALl/9GPDHoJhGKcUMxQGYNlOhmH0xgyFYbUThmH0xQyFYRiG0RdR1WGP4cgRkRXg1hEfdgZYPeJjnmbO0vWepWsFu96HncNe7zVVnU3a8FAaiuNARJ5R1VcMexwnxVm63rN0rWDX+7BzHNdrrifDMAyjL2YoDMMwjL6YoRicDwx7ACfMWbres3StYNf7sHPk12sxCsMwDKMvtqIwDMMw+mKGwjAMw+iLGYoDICL/WES+LCJ/ICIfEZGJYY/puBCR7xGRL4pIJCIPbWqhiLxBRL4iIs+KyLuHPZ7jREQ+KCLLIvKFYY/luBGRKyLyCRH5UuNz/DeGPabjREQyIvJ7IvK5xvX+/aM8vhmKg/Fx4OtV9aXAV4G/PeTxHCdfAN4CfHLYAzkuRMQFfgZ4I/AS4PtE5CXDHdWx8nPAG4Y9iBMiAN6lqn8E+Gbghx/y97YKfIuqvgx4EniDiHzzUR3cDMUBUNXfUtWmHvfvApeHOZ7jRFW/pKpfGfY4jplXAs+q6vOqWgN+GXjzkMd0bKjqJ4H1YY/jJFDVRVX9TOPvHeBLwKXhjur40JhC41+/8XNkmUpmKA7PXwZ+Y9iDMO6LS8Cdtv/neYgnk7OKiFwHvgH4r0MeyrEiIq6IfBZYBj6uqkd2vd5RHehhQUR+G5hL2PTjqvprjX1+nHhp+0snObajZpBrfciRhMcsX/whQkRGgQ8DP6Kq28Mez3GiqiHwZCN2+hER+XpVPZJ4lBmKPajqt/XbLiJ/CfhO4Fv1AS9C2e9azwDzwJW2/y8DC0Mai3HEiIhPbCR+SVV/ddjjOSlUdVNE/gNxPOpIDIW5ng6AiLwB+DHgz6hqadjjMe6bTwOPi8gNEUkB3ws8PeQxGUeAiAjwz4EvqepPDXs8x42IzDazMEUkC3wb8OWjOr4ZioPx00Ae+LiIfFZE3jfsAR0XIvJnRWQeeBXw6yLysWGP6ahpJCa8A/gYcbDzV1T1i8Md1fEhIv8K+C/AEyIyLyJ/ZdhjOkZeA3w/8C2N7+pnReSpYQ/qGLkAfEJE/oD4BujjqvrvjurgJuFhGIZh9MVWFIZhGEZfzFAYhmEYfTFDYRiGYfTFDIVhGIbRFzMUhmEYRl/MUBjGCSIivykimyJyZKmLhnHcmKEwjJPlHxPn9xvGA4MZCsM4BkTkGxt9SzIiMtLoEfD1qvrvgZ1hj88wDoJpPRnGMaCqnxaRp4F/AGSBf3FUAm2GcdKYoTCM4+MniOUUKsA7hzwWwzg05noyjONjChgl1gfLDHkshnFozFAYxvHxAeB/Ju5b8g+HPBbDODTmejKMY0BEfgAIVPVfNnpz/2cR+Rbg7wMvBkYb6rx/RVUfOmVe4+HC1GMNwzCMvpjryTAMw+iLGQrDMAyjL2YoDMMwjL6YoTAMwzD6YobCMAzD6IsZCsMwDKMvZigMwzCMvvz/TUkHCm9LuhIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -765,7 +593,8 @@ "metadata": {}, "source": [ "### 2.3 Module\n", - "下面我们再用 Module 定义这个模型,下面是使用 Module 的模板\n", + "\n", + "下面再用 Module 定义这个模型,下面是使用 Module 的模板\n", "\n", "```\n", "class 网络名字(nn.Module):\n", @@ -792,15 +621,13 @@ }, { "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": true - }, + "execution_count": 12, + "metadata": {}, "outputs": [], "source": [ - "class module_net(nn.Module):\n", + "class SimpNet(nn.Module):\n", " def __init__(self, num_input, num_hidden, num_output):\n", - " super(module_net, self).__init__()\n", + " super(SimpNet, self).__init__()\n", " self.layer1 = nn.Linear(num_input, num_hidden)\n", " \n", " self.layer2 = nn.Tanh()\n", @@ -816,18 +643,16 @@ }, { "cell_type": "code", - "execution_count": 28, - "metadata": { - "collapsed": true - }, + "execution_count": 13, + "metadata": {}, "outputs": [], "source": [ - "mo_net = module_net(2, 4, 1)" + "mo_net = SimpNet(2, 4, 1)" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -848,7 +673,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -856,10 +681,10 @@ "output_type": "stream", "text": [ "Parameter containing:\n", - "tensor([[-0.0458, -0.6043],\n", - " [ 0.0567, -0.6961],\n", - " [ 0.5034, 0.2557],\n", - " [ 0.2466, -0.5245]], requires_grad=True)\n" + "tensor([[ 0.6988, 0.2605],\n", + " [-0.4452, 0.1708],\n", + " [-0.3578, 0.6637],\n", + " [ 0.2984, -0.1281]], requires_grad=True)\n" ] } ], @@ -870,10 +695,8 @@ }, { "cell_type": "code", - "execution_count": 31, - "metadata": { - "collapsed": true - }, + "execution_count": 16, + "metadata": {}, "outputs": [], "source": [ "# 定义优化器\n", @@ -882,31 +705,31 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1000, loss: 0.07277397811412811\n", - "epoch: 2000, loss: 0.06705372780561447\n", - "epoch: 3000, loss: 0.06257135421037674\n", - "epoch: 4000, loss: 0.056195128709077835\n", - "epoch: 5000, loss: 0.050691165030002594\n", - "epoch: 6000, loss: 0.04715902358293533\n", - "epoch: 7000, loss: 0.0447952002286911\n", - "epoch: 8000, loss: 0.04309132695198059\n", - "epoch: 9000, loss: 0.04179977998137474\n", - "epoch: 10000, loss: 0.040784407407045364\n" + "epoch: 1000, loss: 0.0754304826259613\n", + "epoch: 2000, loss: 0.06512685120105743\n", + "epoch: 3000, loss: 0.061497319489717484\n", + "epoch: 4000, loss: 0.055132776498794556\n", + "epoch: 5000, loss: 0.04916892945766449\n", + "epoch: 6000, loss: 0.04603230580687523\n", + "epoch: 7000, loss: 0.04394793137907982\n", + "epoch: 8000, loss: 0.04242979362607002\n", + "epoch: 9000, loss: 0.041267599910497665\n", + "epoch: 10000, loss: 0.04034609720110893\n" ] } ], "source": [ "# 我们训练 10000 次\n", "for e in range(10000):\n", - " out = mo_net(Variable(x))\n", - " loss = criterion(out, Variable(y))\n", + " out = mo_net(x)\n", + " loss = criterion(out, y)\n", " optim.zero_grad()\n", " loss.backward()\n", " optim.step()\n", @@ -939,123 +762,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**小练习:改变网络的隐藏层神经元数目,或者试试定义一个 5 层甚至更深的模型,增加训练次数,改变学习率,看看结果会怎么样**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "下面举个例子" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "net = nn.Sequential(\n", - " nn.Linear(2, 10),\n", - " nn.Tanh(),\n", - " nn.Linear(10, 10),\n", - " nn.Tanh(),\n", - " nn.Linear(10, 10),\n", - " nn.Tanh(),\n", - " nn.Linear(10, 1)\n", - ")\n", - "\n", - "optim = torch.optim.SGD(net.parameters(), 0.1)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "epoch: 1000, loss: 0.07510872185230255\n", - "epoch: 2000, loss: 0.0662045031785965\n", - "epoch: 3000, loss: 0.062202777713537216\n", - "epoch: 4000, loss: 0.053606368601322174\n", - "epoch: 5000, loss: 0.047997504472732544\n", - "epoch: 6000, loss: 0.045905228704214096\n", - "epoch: 7000, loss: 0.044531650841236115\n", - "epoch: 8000, loss: 0.04245807230472565\n", - "epoch: 9000, loss: 0.0403163880109787\n", - "epoch: 10000, loss: 0.03822056204080582\n", - "epoch: 11000, loss: 0.03605899214744568\n", - "epoch: 12000, loss: 0.033822499215602875\n", - "epoch: 13000, loss: 0.031671419739723206\n", - "epoch: 14000, loss: 0.029688959941267967\n", - "epoch: 15000, loss: 0.02786232717335224\n", - "epoch: 16000, loss: 0.026174388825893402\n", - "epoch: 17000, loss: 0.024574236944317818\n", - "epoch: 18000, loss: 0.022980017587542534\n", - "epoch: 19000, loss: 0.021339748054742813\n", - "epoch: 20000, loss: 0.019654229283332825\n" - ] - } - ], - "source": [ - "# 我们训练 20000 次\n", - "for e in range(20000):\n", - " out = net(Variable(x))\n", - " loss = criterion(out, Variable(y))\n", - " optim.zero_grad()\n", - " loss.backward()\n", - " optim.step()\n", - " if (e + 1) % 1000 == 0:\n", - " print('epoch: {}, loss: {}'.format(e+1, loss.item()))" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'sequential')" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABVd0lEQVR4nO29eZQs+VXf+bmx5FqZtb9Xb1+6m4YGNS3RSLQksIQEqFsYGRmwJA8GjI88BiwziGMLacA2x8OIsYzHDBikwX1YhkXCQtCgBiHsBoEFQm0hqdHS6u0tVa/q1au9co/lzh+RmZVZGZmVtWYtv885daoyIzLiF5lZvxu/u3yvqCoGg8FgMHTDGvQADAaDwXC4MYbCYDAYDD0xhsJgMBgMPTGGwmAwGAw9MYbCYDAYDD0xhsJgMBgMPTGGwmA4YojIRREpiIjdx76vEpHpgxiX4fhiDIXBcMgRkWsi8trGY1W9oapDqhoMclyGk4MxFAaDwWDoiTEUhhOJiPwrEZkRkXUReVpEXiMiloi8Q0SeE5FFEfmAiIy1vOa7ReR6fdu7Wu/0ReSXReTftezb5vIRkbMi8kERuSMiL4jI21q2/Zv6uX61Pp7PiciD9W2/BlwEfr/ubvqXInJZRFREnPo+3yciX6i/9nkR+af7/w4aThLGUBhOHCJyL/BDwNeqag74FuAa8M+Bvwf8HeAssAz8fP019wG/AHx3fds4cL7P81nA7wOfAc4BrwF+WES+pWW3bwN+CxgBHgN+DkBVvxu4Afzdurvp/4o5xTzwrUAe+D7gP4rIS/oZm8HQD8ZQGE4iAZAE7hMRV1WvqepzwP8KvEtVp1W1Cvwb4Dvqd+7fAfyBqn6svu3HgbDP830tMKmqP6mqNVV9Hvh/gTe17PMXqvp4Pe7wa8BX93sxqvphVX1OI/4M+GPg6/t9vcGwFc6gB2AwHDSq+qyI/DCRIfhKEfkI8CPAJeBDItJqAALgNNEq4mbLMYoistjnKS8BZ0VkpeU5G/jzlsdzLX+XgJSIOKrqb3VwEXkY+NfAlxHd/GWAp/ocm8GwJWZFYTiRqOpvqOoriSZxBX6ayBA8rKojLT8pVZ0BZoELjdeLSIbI/dSgSDRBN5hq+fsm8MKm4+ZU9ZF+h9ttg4gkgQ8C7wFOq+oI8DggfR7bYNgSYygMJw4RuVdEvrE+yVaAMpEb6ReB/0NELtX3mxSRN9Rf9l+BbxWRV4pIAvhJ2v9/Pg08IiJjIjIF/HDLtr8G1usB9LSI2CLyVSLytX0O+TZwtcu2BJEb7Q7g11cX39zncQ2GvjCGwnASSQLvBhaIXD6ngB8D/hNRIPmPRWQd+CvgZQCq+jngB4HfIFpdLAOthWy/RhSsvkYUI3h/Y0M97vCtwAPAC/Xz/hIw3Od4/0/gfxeRFRH50dYNqroOvA34QH1Mb6lfg8GwZ4hpXGQw7AwRuQb8E1X9k0GPxWDYT8yKwmAwGAw9MYbCYDAYDD0xrieDwWAw9MSsKAwGg8HQk2NZcDfiJHTKzWy9o8FgONYMfeVpnp7pt4D+ZFOYe3ZBVSfjth1LQzHlZnj07lcOehgGg2HAvPO1P8DXDHoQR4Q/++nXX++2zbieDAbDseSdr/+BQQ/h2GAMhcFgOHY88PCWElmGbWAMhcFgOHY8Yr1t650MfWMMhcFgOFa8/Km3D3oIxw5jKAwGw7Hh/e99C696R3nQwzh2GENhMBiODZ95bGTQQziWGENhMBiOBSbLaf8whsJgMBx5Hnr0/kEP4VhjDIXBYDjyvPqDpsB2PzGGwmAwHGne/963DHoIxx5jKAwGw5HlgYd9E8A+AIyhMBgMR5IHHvZNYd0BMTBDISIXROQJEfm8iHxORP5FzD4iIj8rIs+KyGdF5CWDGKvBYDh8GCNxcAxyReEDb1fV+4CvA35QRO7btM/DwD31n7cCv3CwQzQYDIcRk+V0sAzMUKjqrKp+qv73OvAF4Nym3d4A/KpG/BUwIiJnDnioBoPhkGGynA6WQxGjEJHLwIuBT2zadA642fJ4mk5jYjAYThCpJ9446CGcOAbeuEhEhoAPAj+sqmu7OM5bidxTnHbTezQ6g8FwmHj5U283Wk4DYKArChFxiYzEr6vq78TsMgNcaHl8vv5cB6r6PlV9UFUfHLETez9Yg8EwcIyRGAyDzHoS4L8AX1DVn+my22PAP6pnP30dsKqqswc2SIPBcGgwhXWDY5Cup1cA3w08JSKfrj/3TuAigKr+IvA48AjwLFACvu/gh2kwGAbNAw/7vNMU1g2MgRkKVf0LQLbYR4EfPJgRGQyGw4qpmRgshyLryWAwGLphXE6DxxgKg8FwqDFaToPHGAqDwXBoMc2IDgfGUBgMhkOJkek4PBhDYTAYDiVGpuPwYAyFwWA4dBiX0+HCGAqDwXCoMFlOhw9jKAwGw6HCZDkdPoyhMBgMhwbjcjqcGENhMBgOBSbL6fBiDIXBYDgUmCynw4sxFAaDYeCYZkSHG2MoDAbDwPmR90wNegiGHhhDYTAYBooJYB9+jKEwGAwDwwSwjwbGUBgMhoFhAthHA2MoDAbDQDAV2EeHgRoKEXlUROZF5G+7bH+ViKyKyKfrPz9x0GM0GAz7g6nAPjoMsmc2wC8DPwf8ao99/lxVv/VghmMwGA4CE8A+Wgx0RaGqHwOWBjkGg8FwsJgA9tHjKMQoHhKRz4jIH4rIV3bbSUTeKiJPisiTK0HtIMdnMBi2gQlgHz0Ou6H4FHBJVb8a+H+A3+22o6q+T1UfVNUHR+zEQY3PYDBsA1OBfTQ51IZCVddUtVD/+3HAFZGJAQ/LYDDsEFOBfTQ51IZCRKZEROp/v5RovIuDHZXBYNgJJoB9dBlo1pOI/CbwKmBCRKaBfw24AKr6i8B3AP9MRHygDLxJVXVAwzUcIlSVUjGksB5g20J+2CaRPNT3PSeahx69Hz446FEYdspADYWqvnmL7T9HlD5rMDTRULl5vUalHNK4bVha8Jmcchgdc/flnIEfGSaxIJO1sCzZl/McV0wA+2gz6DoKg2HbLC/5bUYCQBXuzPkM5Rxcd28n8aUFj4V5H6kfVoGz5xMM5ew9Pc9xJfXEG+E9gx6FYTeYtbrhyLG6EhDngFSFWzerrK8F7JWHslQMWJj3UYUwjH40hFs3a3ie8YL2gwlgH33MisJw5NCw+7ZKWZmdqZFMCqdOuywvBXi1kFTaYnTCIZHY3r3R8qIfb5SAtRWf8cn9cXUdF0wA+3hgVhSGI0cub0EP75KGkcG4ca3G+lpApaKsLAdce65KpdzDysTgd1s1KGZFsQWmAvv4YAyF4cgxNuHiODRjBv2iIczd2l7VfiYb/y8i0n2bIcIEsI8P5ptuOHLYjnD5rhTjkw72Np2n1YoSBv2vBEbHXayYmLXjCjkTzO6KqcA+XhhDYTiS2LYwPuly4VJy2yuLXm6rzTiucOlqkqGchQhYFgyP2ly6mkRMimxXTAD7eGGC2YaBEIZKrao4juDsIp01mbIYHrVZXd7IhBIhNgANO6uBSCQszl1Mdt2uobK2FrC+FmBbwvCoTSZrVhuG44MxFAYgqnReWfZZXgwIfCWVtpg45ZLO7O2iU1VZvOOztOA3J/R0xuLshQS2vTODcWrKJTtks7rsEwQwlLdIJi1u3ayhGp1DBCwbps7ubZZSGCo3XqhSq2rTOK2vBYyO2UxO7V6cslQMWLzjU6sqiaQwPukceiNkMp2OH8ZQGACYn/Pa7spLxZCb16pcuJwgndm7iWllKTISjQm8ca7p61UuXU3t6JgiwlDO7iiAu3JPirUVn1pNSactcsP2nldUryz5bUYCoutaXgrIj4QkUzs3tGurPnMzXvPYvq+USzWmzrnkhw/nv66R6jiemBiFAd/TNiPRQDUyIHvJ4kJ8XUK1olQr20td3QrHEcYmXKbOJhgedfZFdmOtR/Hf+lqw6TklDPsLpKsq87Ne/Gcy6+1ZQeFeYzKdjieH87bEcKCUy2FXv36lvHcTkqoS+PHbRMCrKcltLiqqlZDFOz7lUgACgmA7MDLqkB+xkW1HuqMJfmHew/cUNyFMnHJ3JNdRLATkh20cV5if85pGxU0Ip6Z6H9PzlLCL3QzD6L1KJA9XMN1IdRxfzIrCgN1jDrT28Bsi0j1wrcq2J75yKeD685Fkh++D70UTbKWs3J71mLlR2/ad9/Kix+x0jVo1mqirFeXWzRqrK/EWLjJG8ceqlJVrz1W59lylbeXh1aJjFgtB/Athy9XPYRQlNJlOxxdjKAykM1asQRCBkdG9DZxOTDodE2ujeG27MuG3b3W6ZhqoRrGPUrF/d1YYalPXafOx7sx1unvCUEmmLJwe8XFV8GqdqzVVWJjv7tZzHCGVijcGydTuMsUMhu1iDIUBEeH8pSS2Ha0gRKKfdMZi/NT2s4R6+eKHRx0mpxwse+M8ubzN2QvbyxAKQ6Va7b1aUIXCWve79s3Uakq3I4Yh+C2LiuUlj2e/WOHWzRq+13tV1o1qpff4z1xI4Lgg9f9SscBxIuXaw4bJdDremBiFAYjqEe66N0WxEOJ7Sipjkdpmxk4Yal+++NExl5FRB9+nbpy2f3fcb+hBtnEJti10tRRsuOGKhYA7c+2ZW0H/9qiJ4/S+CNe1uHpPisJ6SK0akkha9cK/w7WaMJlOx5+BrihE5FERmReRv+2yXUTkZ0XkWRH5rIi85KDHeJJopJmOjDnbNhIA09drffviRQTXlTYjEYbK6rLP/FwUE+iVISQi5PJb38bnh/u/1XddIZmOn4RTaWnWeSx1ydzaLqPjW7/Hjescn3TJ5XcWnN9vTKbT8WfQrqdfBl7XY/vDwD31n7cCv3AAYzLsgEo57GgmBFv74htUqyHPfanC7VmP5cWA27Mez3+pQq3WPcZw+kwkDtgLx93eV/zc+WSstlOlrE3lWa+2N5lg3bKaVJViIWB50aewvne9NQyGnTJQQ6GqHwOWeuzyBuBXNeKvgBEROXMwozNsh141EFv54iFqBBQGG64cDSN3zux0d7VX2xEuXOkurdHQZtoOtkOs+0l1Q3k2le6uKLsdlhc7V1qBH2VKzdysMT/ncetmjWe/WKFU3IFv6wAw4n8ng0GvKLbiHHCz5fF0/bkOROStIvKkiDy5EmxPStqwexxXuortbZWh49XCrnfplbJS7dFDIpGwSGc6jy8CQ/ntV2JXKt0D2tWKEgTKeEzmFkTXuR1jEQR0rBbmbkWpuY3mTI3Oejev1fpamRkM+8FhNxR9o6rvU9UHVfXBEfvwZYUcdzJZK1arSQTGxnvHCbbyrFx7vsrMjWrXmMXZC0mSSWmuIESiu/6pM9vP2BKhZ0BbJAr8n7+YaMt0cl04dyHB2ES8EYnDdaUt5hCGSqHQ3Sgu3vEP3crC1E6cDA571tMMcKHl8fn6c4ZDhohw8XKC6Rs1vJo2K71Hxx2GR9u/ZkEQCRCWiyFuQhgZtbGs3plDhfWQmy9USGdtwgCyObuZAeQ4wqW7klTKiueFJJPWjjWWEj3uMRrKs6rK4oLfFmPwPOp6VUl8X1lbCZrvQeN3q0EUgYnT7e9LGEaLsl52c2UpOPSigIbjx2E3FI8BPyQivwW8DFhV1dkBj+nEUamELNz2KJdCbEcYHbMZytsU16PgdXYoKpZzExZX7k5RrYQEQVSMtnmV4dVCrj9fJQw3Js7V5YCRMZuVpXjdpI1xQKUSWZO11YBEUrh4JYllRXfm6YyQ3uUieXmh+xhOn4n+XUrFkHJM4N734foLVXJ5mwtXkmgYyai7rjB/e0N00bZh8rTTIexn21HcpWv7VSIje1gwtRMnh4EaChH5TeBVwISITAP/GnABVPUXgceBR4BngRLwfYMZ6cmlUg658UK1OSmGNWV+zmd+zm+6WO7cjpr5nJpyEZHm3XwQKIt3PErFENcVRsYcFua9jpWDKqwsB1y4lGBxwafYw/3S+ppaVVla8JnYQVFgN5aXuolRRYYgkYRSIWjGEDbje1GQemUp4MLlRLPaPJe3o9RhopXDnds+tmO11ZiICKfPuMzcrMUuK0QgmRZuz0artnTGYmTUwd6iHsNg2C0DNRSq+uYttivwgwc0HEMMd273lslosLocuUQatQ2eF3L9uU0rh5XuviUBQoVzFxM8+8VK19TRzedfWtiQLc9kLU6fcbctBdJKN/eXCE1BQ6uPvhmqMDvtceUeC9+PakyaGV3189y6WePyXcm28Q7lbC5cjFx4be+7RMWDK4vtUvBLiz6XriZJJI5NuNFwCDHfLkNPyqX+tJJUo94MDebnvHpWz/bOJyKMTfR//7K5r8X156t4PVw3W5Hsoq+ERkV3EBXx9ROw9n3F95SVJT827qAKy4udK5jMkM3d96YYm3BwXMFxYCgnaNj+fqpCGESaVwfNQ4/ef+DnNAwOYyhOMKq6ZTFXXPFZN1r958X17fWWUGh20xubcBif3FnANgwjBdidErnP2p9rpNq69bt2N2Fx6kz/xqxWC7tGqGtd0oItW5g87XL1niSpjEVhTbsa3VIxZHHBaxYEGgx7zWEPZhv2AVVlYd5jeSnytbuuMHnaIRfTNW1k1OlLskIEskPR5F6rdgZ6N+8bjWPj8dRZt1nzICJMnErguB7zs9uXyyhvQzF2M5mszbmLCe7c9qhWFNuGkTGH8cmN9ybqgbF1mqrjCm7CIp22moH/NmRjlRJHtRpy60aVWh9lQQu3fRbFJ5O1OHchgRxCGXLD0cUYihPI7LRXl4aIHnueMjvjRVpPm/STxicdKpWQUiPALMQGci0bxsYdyqWohWovWg1EfthmbMKJjSuMjEbB8YXbHr4f7e84UWaQZUGpGG9BnMTuJsnskN00epsJQ+XGtSphH+UMDZXX4VEn6uy36TWWRAKJcXi1kBv17LB+aUirLy36jE/ubW9ww8nGGIoThlcL24xEA1WYv+21GYogiET6LBHyIzauKySSUSX06nJQT/dUhuqidbYjzF2r9r0CiDKXwp7B5+ERh/yw3axHaBSo+Z7y/DOVjnOJRLUb+0VhvXvGUyuOuyH1YdvCpStJ5m55zZhPKi1MnU10rVrfXKfRL41YkTEUhr3EGIoTRqWyUQy3Ga8WxSxEhFo15PoL1WYAVQQQuHApgeNYjE9aHZNRECi1LXpExI3H8xS3h8yHSKc0huMK5y4muHWzhlIvVFOYnHLIZPavIM3zuscKWtm84kgkLS5eSUbV5bp15lS/SQSx5zahCsMeYwzFCcN1petEZ9sbd+yzM7W2yU4VULg1XePqPalYueudKGCrCH8zdA/plHD3+g3SYW+3VSvZenZQqRT5/zMZq6/U1X7xaiEry0G9P4cwPBLJr4sV735rJUoL1o73qV/tKceRbRvdBo2kgEFhewGZQlQLUh5K4CdMJflRxxiKE0YyJbiJzklIBEbqLpsgiPpOxxH4UaFbXBqpZQmZIWsjntEHvuXw6TMPYIny12P38y1zf8758nzfrxdLusYTdsP6qs+t6Y3sqbVVWLrjc/FKEtfdehJvNbo7YWzCoVyqbTuQLxZMTg3O7TS0XGZ0vhQ9UBi5U2J9JMXKqczO7iT2ktbgmGFbmPTYE0aj7elmEb38sM14P/ULvZvARX53p7//xcC2ef4rvga1bQLLwbccPnr6FQQD/lp6tbDNSDTwfbg1U+P0WZfcsN1VLVeEtiypflCNai4CP3p3s0N2U6XWsjY+p27YdlT9fflqkuQuCg53g1P1GZ0vYSnRD9Hv3EqFVHFwyrduxWfq2ioXn17i4tNLTEyvYfnGP7cdzIriBOK6wuW6JpPvR5pMrW05LQsSyfi7ZksgmeycsSrlKNvGq4UM5SLdJ89TioV4CfFiboQXvvzFLJy51Pa8IsxkTvGmT/xDXvWOctu2x8OfBeDTf7i3X1tVpVSst4BNW9y53X1Sq5SU6Ws1Eknh6t1JROD2rBfJjtQV/cYmHEbG+h9jsRBw+5aH70cS5+m0xZlzLuOTUcvYUinEsiCdEW7P+qyvBlGlNtFndf5yvHFQ1WbDJccVhoasPUub/ct//Fl4fXtnu6HVKhJzF2Ep5JYrVIb2V9VZQiVVrGGFUMk4BK6NUwuYur6K1TKuTMEjcX2VW1dGoi+0YUuMoTjBJFMWrW1/CmsB87e9aGKP+f8RgTPnEh0ulbUVn7lbG1IflbJiWSEXriQ5NSWsrQSsLEf1EPnhqNXqo3f9XYLYaj7FF6fDSAA8Yr0t+uP1G889Hv7srgxHrRql87ZKjWzl7lGNelPM3Khx6a4k5y4mCXzFD7SjvetWVCshM5vkOsqlKJHg6j0pbKe95euZcwkmJkMqZcV2onhEnIsrDJXp67VmEV6UMRYZlZ20ue0HK9BuiyysHm1t94JUscbk9HrTWAuwNprCCsIO4yWA7YdkCjVK+e6NrwwbGENhAKK0z1vTLRNW/bfrRu1EE0lhbLyz3iEMlduznXpQYQi3b9W4dDXF8Gin1PjZ8m1uZqYip3rr68Tm7DZiFI9Yb9ux4VCNJlO/iw7gVtRqSrWiUT9tR3Ykzrd4J76gMAxgfS1geKTzWtyEhbvFzfnCbY9yeaMivHGOmetVrn5ZfDLCbikPJciuVdvu3gFCgdLQ/sVNrCBkcno9Om/LuXPLFQLbijVelkKy7BtD0SfGUBiA7uJ/ngfDYxYjI/Eqpb1kIyplJQw19g775Yuf5kOp1+JbNqFEd8xO6POS5c+RCnfeoXArw1G2ktzInkERTi3O4AeVHZ9LJNJzeuBhf2O108JPffg/b3mMajX+/VOFWo/2sluxshLEBpOCMFqx7EVPi5/68H9ukxovD7nUkjaJatA0FqFA4FgURlK7Pl83Mmvx3xdLQUNtpk+3Egr42+ynfpIxhuKEUquGzM9FEuAivXPvF+d9Fud9JqecjkpiEekZ3Cb23xRGvHW+Y/ojfGb4Xm7bw0zcmeZiaY6LiXWwpWMS2imthqORkWM54FQ9womv4Wr4Pzn/3OdjX9tsOBR7BVATm//0yPfwU1Y+9vXvfP0P8KfvTvPxF/2HruNLxGSgNc7drwpuGCrrqwHFQojjRrIr3dJ3hc4ajz1DhNsXh8kvlxlarYJCKZdgbTyN2vs3Kdsx7qUGatXrgGLkU4rDZjXRL8aknkAazYOKhbDZk7kXDYXWO3M+lU13uam09IwHPvelKmsr8b6dnF/ivqf/mhf96R9y5nNP4V27w3NPV1it79/PHXm/uJWNjBw88C2X0LJ5/t6XsDYy3rH/0sQ4f/b6R5g9f5WF0xcIrPZ/lcC2mblylWI+3kg0iIu1tDI22SlCCJFHLjfcftffqJRfWvAol6Kq+MBXrj1b5facx/pawPJiwLXnqjhdPD2qkNrDOouf+dG59icsYW08w62ro9y6a5SVU1nCfTQSANW0i8a8h0rkDls6nSUUCK3oJ7CF2xfy+z6u44R5p444Gmp9gvAp1SePrditPEQrIsLZC4nNoYYmYQBztzxKpc7b2HIpYGHebxqiRhX47VsetbpL5k/fnSZZLjO8sIjt7TzFcmilEnvXGdo201e+ou0533H45Gu+kRfu+wo+/+Df4XMvew1feMk3UM7kUMB3XG5evY9PvPab+jp3r5VROm0xdc6N6i6sxkpCuHg52eayKxUDnnu6wu1Zjzu3fW5eqzF9vcb87VpULd7yeapu9M5oRQRGx2wcRwh8ZXHBY/pGlfm5WvP93i4vmbiyo9ftJZWMQy3pELYYCwXUElbH0xRHUkzfM8b82RxLpzIsncoYI7FNjOvpCFOtRBk7rT0ZkinhwqVkzwrl3chD+H7nbJvJ2ly9J8Xt2RqFtc5jq0bFaplL7XfIy4vxbUejjneRXtFvD/8UbymFVGwXUXjqZS/lqYde1lFUYPshmbUqth9SybhUsm7bPnYQxmfkiHDn7DnWnx8mVSqxdGqST33D1zN/4TwAhZEkueUKC2cvs3D2MhKGqAiBY1HO9e93v/frPf78A1G6cNRO1mEoH2Us5YcdcnmbWlURi44mRGGoHZlRqtHn2O2+oFHLUSqFUXqsE/X5yA/b1FoEB1WhSNSL++yFRFvHvX74+Iv+Awy6JaoI8xfzDC+UohTdUClnXVYnMohGabNWEDI+X8T2Nr6flazLnbM5kyLbB4Nuhfo64D8BNvBLqvruTdu/F/j3wEz9qZ9T1V860EEeUlSV6Ru1jo5s1Yoyf9tj6mz3tJhu8hCNycXzQtZWOiehSEo8/k7McYRk0qJAvBGqVkICX9sC4nFGp0Hgw60bNUr1zJ1EEK0mXvRXn6CWSvL0S17c3De9VmVitgBs5OzXkjbzF4fR+iRQySZIF7zYjJzlM+P8zj/9J7HjWJ3IkCz7JCp+dJtqW6gI8+fzfVf4ZtfW+MAvO6Qq9cB5TamUawyXbE6fiT6nqIVs/PGKhbBr46NuKOAmhAuTnX7427Od35uoI1+Nu798+xlRT/z9v+DVH3zl1jvuI2oJK6eyrJzKgioj8yWmrq9ubBfBCtvTd1NFj5E7RVZODx38gI8YA1t/iYgN/DzwMHAf8GYRuS9m1/er6gP1H2Mk6lTK2tYoqIEqUW/mHrPI2LjTdY4bHnU4dTqBHXML4TgSm67ZD74Pz32pwvT1anPc2SEr3j9fd7+0pnc2cH2f+//yrzb2DUImZgvNamCIfieqAfnFjfhAMZ8kcKw2M6ZEGTnFHhk5agm3L+a5fTHPyqkMi2eGmLl7lFq6//fhgT//HySq7RpWqlH72Fpt69VdGGjvcvjYgUM2JrNJVbtKrIQhfOnzFb70hTK3Z2uRgGEflH/7U9sc3P4yMl8it1LZqBBXOowENKrGq9tvw3gCGaSj7qXAs6r6vKrWgN8C3jDA8RwpwpgvfoOtvvfZXKc8hGVF/aodR7Bs4dLVFPkRq+k3z+YsLl5J9Cwmq5Z7p9OoRnfH0zeiSXNk1IntoGfZ4Ca637Cni6XmRaYL8XELS2FodSP1VS1h7vIwhdEUgS0EtrA+kmLu8saqoysi1NIu62NpSvnk1vtv4vzzL2B1+VD60cVKZ7v/m1oW2JskU0QiFd2d1HVAFCtaXQ7qbs2tJ9G9rpTfDRJq00i0Pd9t/021F4Z4BvkJnwNutjyeBl4Ws9/fF5FvAL4E/G+qejNmH0TkrcBbAU676T0e6uEjlba6GoRIx6n3JNGUhyiGSF0eolZVyqWQVFpQVcotjYFKhZDpGzUuXE5ix8Q/fE8pdGkktJlqWalWQpIpi8tXU8zN1tpapwZBlGHVLeBeGso2Z8ZuEzCAbHp9aFssn86yfDrb1zj3Ct/p8m8mHfWGsSQSFo4LXky5QBjChQsJyuWQUjGKRYyMO6TT8QcOgqiIcqu8AFWo1r8Pe1FzcVDYXnz9SDd81zIxij447KH/3wcuq+r9wEeBX+m2o6q+T1UfVNUHR+z91ZQ5DNh2FJyM6+986kx7bqSqsrLk8fwzFZ75Qpmb16qUy1FQNTdsg8LzX6oyfb3GzetVnnu6ws1rG9k0jWB5taLcvhU/wyzc8fr/B5WNXtG2A97meIlGriqry7fzam7DjVPOurF3i1Fq5OFo3vPM/S/Cd2ImW6Xv4PHmmEIrlaoyPuly4XKSM+cTXY2EVwu59mxlSyPRHF7Yu6Cylb1MZd42qgwtlzn3zBJnX1jtvtLe9DgUWD6V2e/RHQsGaShmgAstj8+zEbQGQFUXVbUxK/wS8DUHNLYjwfikw9Q5l2RSsG3IDEXNcTbfAc7PeczP+Xg1JQyjdpk3X6hSLgVRX+bpGmFY76EQRpNSnJAfRFIfcb7rwto2qrg0KjSDyGB4Xvy54lYUIjCUt5v5+4FrszaS6kiNDC1hZfJwTAJ/+7KvZXFqCs+NDFdDd+nMeTd2dRaH08WNJBIpx/bD/JzX0+B0HNuiawe+ODpqKg6IoeUKo/MlnLrWVF3uqY0QqKZsfCcqEK0lbO6cy1HOmaK7fhik6+mTwD0icoXIQLwJeEvrDiJyRlVn6w+/DfjCwQ7xcNNIrcwPd/8YfU/rLUvbn1eF6Ru1HVXphmHn3X7fiTISFekl68J0YbhRAd0va6sBzqt/p5mWuXIqQzXjklsuY/tRauT6eJrAORwL5tBx+KM3/wPOXL/B6Zs3ee0LnyKft7c1CY+O2czPdepCKVEtxmapFNWovmbxjk/gK8m0RakYvzpofHYdWW70v+IZGKqMLJRjYxLN8EO9CnvpdHYbX1RDKwMzFKrqi8gPAR8hSo99VFU/JyI/CTypqo8BbxORbwN8YAn43kGN96hSLoddJ+KdGAnbjr+DzY/YLC3G+4db/zezQxZT5zZcg3GS5b1QjWIcEBXjveodZRChnEtQzh1il6MIs5cvMXv5Et+19tltv3x41KFcjqQ6ouNFqz/bgmvPRYvuoZzN6bPRKmXxjs/SwoZh2Spons1ZFNfD5mclFpy/mNyWEm6lxXgfFLYfIl3uMlTgzpkc1ayL7mHnw5PIQNMVVPVx4PFNz/1Ey98/BvzYQY/rONGvW6IfomwaNzZQPj7pUiyE1KobPaVF4PRZl3zexvOiGorNrhbLEianHOZn41VU48aQqBuXQ1Hs1YJdC8gvlUmVPALHZm0sFduD4YGH/W1nCokIZ84lGJ+Igtaepywv+m2upPX1AO9ayLmLiTYjsfXBI/nyMIRKKcSyu8uXHzZ6VVgLUMs4xkjsAYdjbW7YN9IZq2tQuBe2HU3yiaRgWZG76NzFRFc3l2UJl64mOXPOJZ0RLDtyT5UKIZ6vJJJW00iEoVIuh1SrIarKyKjLuYsJ0lkrarCTszhzPl4DCWHHtRxt1+cFjMwXmXphhYnpNZKl3XVgc6s+Z6+tklupkqiFpEsekzPr5BZLHfvGKc32SyJpMTLmUCrGVLXXM5XW1oJteVjOnIvSnh1HGMrbZLL2jo3En777YDMO1RKK+WRbjAqimEQ54xIeEvfjUefwJEAbtkWpGLC04ON5SjpjMTbhdEg/wEbr05vXqoR1p+1Wd5qZrBUZiYTFyGj/XxERoViImuo0zrG2GlBYD7h0NUkiabG67DM/F03KqlGw9NyFBNkhu6P3tWUJszO1aMxEhufshUSbb7/vqmBVUiWPZLneQGkp8msLUXFeuuixfCpDYXRnE93o7RKyqbbFUhhdKFMcSe25tlC3nt0N8cZ+yQ5ZbY2Rdot+8qPA3ldpW37I0EqFZNnHd23Wx1L4iWjcy6ez2EFIquihIogq1bTDwllTcb1XGENxBFle8rjTEtisVQPWVgMuXonvXpZMWdx1b4piIWr3GQbKQpeGOVfvSeLGGJx+qFVD1lY773TDEO7Me4yOOR1NjryacuNalbu+LNXhDx/K2dx9b4pqJZrR4+pD4lpyQlR4lSj7qCV4CYvTN9Zwa0GbMKC0/BaF0fkSxXxqR66KVMmLTcsMBZIlvyN+knrijVRe/TuRqON60NRjGu7S92MztgO7aNsRITSTCg4zTi1g6toqohr1mMBjaLXCwrkc5aEECqxMZpCxSNMpUQ1IFT0mZwoURpKUcj2qNw19YQzFESMMtM1INNAQ5mc9Ll6JT/cTkWYGi6ri+VE2VLQR0OhufadGAuiaVQORCyoM4o2TavdubiJCKr29f/JG34m2PEntw88qQqrsUd5Bb2eVmJ4H1IcQc+Ifec8UP+krN16o4nvRCkwEFu74nL+Y2LLIzbYFb5clxQLb6u3dD90M924Ymyu0SXA0DPv4rQIrE2lGF+ruvZjPOlnyGG/5bGpJi8WpIbz04aixOSoYQ3HE6JXFFKmJ6pb+ZRHh9JkEY+MhxWKIZcHQkN1TcbYfLJv4JHYiN1K32gwNu9dtbJdU0dvoO7HtQ2psX4N+KOaTZFerHcZIESqZ+EnJk2rbdWt9zLdu1rjr3t7ifNXK7t4vy4ZzFxK420jRHQiqpEp+7GpNVBm9U2pLjVXa5TqsxpN1EtWQM9fXmD+fi000MMRz+NedhjZEesx/2/yfd+sxiPyws2sjAd1z7kVgZMzuqo4q1t65QPKLnTn1fRPSdVJvIEGIW/GRoH31tHwqg5+wm0HVUKKfO+dy8W4PVV54Jv79CLUPKfhdfFyOA3d9WWdh5lFDWoQgm89t9Zr6z/itdSMGuA16rihEJA9Mqupzm56/X1W3nwxu2DXpjIUlEFcCkcvvPFtlL7CsKDA9cyNynjfcKZlsFGyvVpRiodrx/+nYUabTdlHg+ewFTl9bxQ5CylkXp9Z/IHfz3acIJCo+tTi3hCpjc0WG1qrNgGkhn2RpKiriUtti9sow6YJHsuwRuFaUjdMjiG11UWcVtp7DcnmbtZXtFcI0KsLPXkhg1VPhGqJ/hzYVVoRKxum6qtgpVhjFPvykcar0Q9d3SUS+C/i/gXkRcYHvVdVP1jf/MvCSfR+doYNGR7npG7VmBpNIlD10amrwftfskM1d96YorAUEgZLO2KTrrTdTaeH8pQRzt7ymyyU7ZDF1NrGjierj4w/wxfxVUpXIODgrUeHZZgPQoPX52H00WpEsnO98H8duF8muVaNGOPXJNbtWBYGlqXp2zXYK/0S4fe4sU9MzHZtU6arX1GDytEu5GOL7uqVRSSSiOE+pGOL7cOOFWjPuU6kXL+byNqfOuF2lQgbJ0tTQpmB2FBMKHAvX60+LKpbDahwPIb3M6TuBr1HVWRF5KfBrIvJjqvohdrXwNeyWTNbmrntSrK74+L6SSlvkcjZySFQwbVsY7pJWm8naXLnbIgwil9N2Kn9bWXcyfCF/N0GLTnmX8Egbvi2ogBvTNKmRKtvxfKhR/GHTSyyF7GqV5clslCmlSqroYQdRemYjfbMbn/im1/Dwr/8midpGDUdDInwrV6DjCJfvTrK+FlAqhARh1GcirtnUUM5ieTloa5faMBAN1teizKsrdycP7nukilsNsP2QWsrpWvPgJ2xu3TVCdqVCquzjJWwKIyncWsDEzHpHjGIzm69GAT9hbfn5GDboZSjshs6Sqv61iLwa+AMRuYBRcB84tiOMTQx+BbETRCS2MdJ2mEmfRmK+hq0aP/EBUFgZTzO2KQhK/TW1VOfAbL/HXavUZSQ85fTNNaTFnVTKJVg8M9T1znVlcpLf/97v4V323/DCo5/CcSNF4H5jB5YVpdMOj4CGyrXno+B4q7GwbQiC9p7a3fD9KFW3l3bYVjz06P3wwSjbKLdUxg4i7a3CaHstiV0LODW9huNFrWUtVdZHkiyfitdjCm2L9fEM663jTdgsTWUZnd+oYSlnXArDKVKlyP2ZLPtN49/4boQCC2dzO77Gk0ivb8S6iNzViE/UVxavAn4X+Mr9H5phO3i1kOUln2pFSaainsybU11LxYCFeZ9qJcRxhfEJh9zwYOMaO8VRv6vGT2ALVr2LXlsMgsht5PghoSVI0F4gpwKr450Fdz3FBUNQlKmba9ibOg5m1mvUkmXWx7ur2BZGhkn+6Jdz+WOf736OPhBLuHQlyeKCF3U4JHInjU+6TF+vbvl6iFxelVJIfnhXQyG3WGZkoRS56YjiPsOLZVTqE/5IktxKFcer9zGvf45DK9V6MV3/RY/F4RTFfBK7/plq3RiV8xvuP7fik1upIH5INeNSHE5iB8rE9BrpepFeMZ9kZTLdfL2hnV6G4p8Blojcp6qfB1DV9Xqf6zcdyOgMfVEqBkxfr20IwBVhZTngwqVkMz5QLATM3NjYp1ZV5m551GrKxKmjtzK5VJxFJ2PuPAUKIymcqs9QTPc7SyFd8igOJ8msVXF8bU5gi2eyhI7FyO0i6aJH6Ahro2nKQy7rI6mundPOXl+NTwlWyC9XexoKiGoqfmo7F98FyxYmTyeYPN3+fCJhUa1sHfhuxLp2w9o938jowmxbTUkjrmAp2GHIyJ1yM/uobfwK+aXKtgxFY+CB230V5qWcjTgSkXzL1LXVjdoMVYZWK6TKHrOXh03sIoau5lNVP6OqzwAfEJF/JRFp4GeAw6PEdsJRVWZnvA7ftIYwO1NrZrVsroiOXgtLC35s7+3Djqs+//zNt5ppqA2XQi3lsDqexk86xHlbFEhUAvJLlchIAMVcgpmrw3gJmzMvrJBfrpCoBaRKPhO31hmZL7FyKsN6PtlhD4Sok15csR2AFfQXbH3/e9+y9U47JK7BVSwC+V3qaL3lx9a3jBP0ume3+3y/dkN+qdLRQ9vSKAuqW2vdk04/66yXETUY+jhRD4lbwCv2c1CG/vE8JYgJzELUi8L3IxG+bgVtIlCtdP5zBkEk9bFXqCqVSki1EvbVh7kfvvruIjN3jbJyKsPqRJr583luX8yDJRRGkl1TLqTlxwKy6zVSJZ+ROyWsoHMCya1UooBr1o2tsu42BytQTfc38X7msREeeLj/1N7tkEpH2l2N3uiNPuiNnuliRbGM8/We6btB45YK26B2AAHmbnIrlrJrccjjSj/fYg8oA2kgBbyg2k9ozHAYEDYmhW7yGa0ZNpVKyO2ZGpV65W86YzF11iWR3LnvtlgImJ2uNUUJbRvOXEiQyexuUnj1B18JDqzHCPkFrs2d8zkmZgrNoPfmHtoNLIWhekZNtzkuXfQItvBfh9JeAKYCK5MH2587DJUgAMemLXtpeMQhl7epVEIsEZIpQcONSv/NsuI7qa9IPfFGyj/t9p3qsjnhIJSoCdVeIEFIdq2G4wXUUg6loUSzN3bgWBCT3RYKBHVDmSp6DC2XsUKlPJSgMJJCD0lW4SDo57//k0SG4muBrwfeLCK/va+jMvSN60pXv7KbiLaJSD1oHf/6RvMg31NuvlBtGgmIKoSvv1DtumrZilo1ZOZGjSCg2X/b92H6eg2/SwvUfkg98cYt96lkE0zfM8r8+Tzz5/IUc/H9tSEqfusl36EiVLLxk2Ajr7+SdvDtaMIpZxxuXxym1ueKAnYnP66q3J6t8ewXK7zwTIVnnq6wMO+1rd4sS8hkbFLpyChYtpAdapcVr9VCpq9X+dLnK3zp8xVmblS7tqrdzI+8Zwq1LRansk13IMTbDRVYr7ewVcBzLe6cy1HJ7l5WI1HxOf/cCqPzRYaXKozPFjj3/Aq2F5BZq4JqV1tWHE4xMl9kcnqNTMEjXV9pnnlhpaMa/yTRj6H4flX9CVX1VHVWVd8APLYXJxeR14nI0yLyrIi8I2Z7UkTeX9/+CRG5vBfnPU6ICGfPJyIXgjSei1wKZ1o6yZ2eckmmpLm6ECuScjh3caPYbXnJI65YWENYXdmZW2R5qUsDHYWV5Z27Wn7lS6n+dhShmnGpZl1KMX0LIJrYS7kEheFU7HaA0pCLWsLCmaGOSVCIVhKpso/vOty6MsKd8/ltGYkGL3/q7dt+jaoyd6vGylKk3KsafWZLCz6Ld/p/j31fuf58lWJLN7zCesj15yvbckOWhlPMXhlhdSzFej5BNWUTUpc1saKf+Qt5lqey3PyyMW7cO8atu0b3RntJlcnpdaxQm6s7S6MU5jMvrDA+WyBdit4TJepbEVobcitWqOSWK00J+tbX5xfLux/fEWXLb7KqPhnz3K/t9sQiYgM/D3wTMA18UkQea2RY1fl+YFlV7xaRNwE/DfyD3Z77uJFKW1y5O8XKcpT6mkpbDI86bf5myxYuXklSKWszPTY71O5uqJQ1/o5ZIxfFTujVN6Hbtn74zGMj2x9L0ulIiw0FfNemOBwZnlTRI1H1EaW5wihnHKaur6KWUBhJsTyRZuxONGlsjmckKz5nn18BgVIukvjo6bJQJVnyyRRqhBZ80//m82/7vB7VqMvd4h2fMObjUYWlRZ/xCaevIrqVJT+23iIMohuF0fHu2XHv3NRp0E/YrJ7acLu5VZ9kySe0JZIGt1ruarZBe18Ki/WxdFvhnFsNYhMIhEi2Q1oeQ/R1XzqVpZRPopaQWyp3zWDLrtfarukkMUihk5cCz6rq8wAi8lvAG4BWQ/EG4N/U//6vwM+JiOheRUOPEY4rW6a5igjpjDRTZjeTSAilYtwLiW2K1A+pVPwxRdi2fHiDzZNSPzR6GjSyXRpfoEraYeF8vjlx3b6UJ1X0SJU81BKGliukS37z7tSdK0Yrsi7nacZyFTLrVawg5M6FfPzOqkzOrJMqes2sqfxShc/+6Hdw/3v+65bX1Fgx9PxvUPADcPv4+Eqlzsru+jApl5TR8fjXNYrseuElHbxd6io51YCp6+1SHkOr1WZfCqjLq3Qp0Y/9zKTudmw1pP2U+J8wBlldcg642fJ4uv5c7D6q6gOrQOzXVUTeKiJPisiTK8FuO7qcTEbH49MohZ33LRgZd2NbsYrsTUvTfhmdL3b2NCByF4kqTjUgt1wmu1qlmnZYOZWN+hq0uDCgU7a6F5ZGGTZOLb6GIbtWI1X0mm6Ohgvrf/yuzbLbxbjU0VD77ovdb9/0RI8aCreLV+jlT729vw6De8B4vS9F4/NovF/jtwrNTI3aNo1RpN218bjURacrFCgMx/d6OQkcmzJEVX2fqj6oqg+O2EZnfickkhbnLiSw7XoKpRV1Ujt/aed9C1xXuHA5GUmM1w+RSgsXryb76uS2mYcevX9H40gV41MiEZiYWefMtRVG5kuM3S5y/tll0mtVMuu1nUuW11EBt4uhGIop4INo4nrfi7+9/TjAfHKMG5kzlK1kX2KADXn3fvS0VJV0Nn46EKGrdter3nFAfvtQSXbJShOibQBYwtKpzmB6Ix6xGRWijKg6gWuzMplpe30o4CW3VzF+3Bik62mGqD6jwfn6c3H7TIuIAwwDiwczvJNJNhepvzYa40QB8N2lBabSFpfvSkWZUxKJBu6UHd+9dnMnaNSqdPMUOTFbwOuR0785tXPz4+ZpFfwufp9uEiQQpfK+/Km38/EX/QeWnSxP5F5MTRxKuWFCy+Url77I+LOf7Pp6gPyIzeTpravuA1+5eb1KraptadSNxIcz5xMkEhYKLLt5AstmrLrCj7/+n2157L0gs1ZleKG3QWrNWCuORPGm/GIZO1Qq6agIc/JWAfywTYF2fSSFn2z/nNfH0lQyLkOrkeuwPJQ48e1UB2koPgncIyJXiAzCm4DN5amPAd8D/CXwHcB/N/GJ/Wcn7Uf7YScriFb68YV3o5hPkl3p7EDX0COKw0s6uLUgVjzQT1g4XrhhfOoTrLVpv1qqu2++mEvgVjsbLalAOZfgVe8o81u/8F387jd/gHu9JwAIbZsvvvjr+fzkvbxi4hmshZW2lYUIpDKNlWF/7/fsTC22Y14iGSVAWJawkBjhj6deQdlO4aSEou+QWa1QGu4j+0yVzHqN/FJUuFjJOKxOZPpSb80vlBjeohmVijTFHFOFKmNzRZyWdO500cNLOcxeiRRoM+s1QlsojKa6puN6KYflGIHIk8rA3glV9UXkh4CPADbwqKp+TkR+EnhSVR8D/guRvPmzwBJGY+pE8zdX7t7xa1cmMyRLHo4X3VE2O9FZghOT+ikKXsKiPJQgXahFWVAAEnWzK4ykSJZ93FqA59pU0zbDixXyS+Xm6qWadlk4N9Rx7AaF0TRDq1FRWGMiDAXKQwmqaYdUochjr/kNkl5LtXDg85VPPsH//Ia/y6cfeBXf8Infp7AeNFcCmaxVb0zUn5EIAu3a67xWVcIQfNvh98++mlrdpevXwEYZnyviJ+zYRk+WH2L7IX7CJr9YJr+0Mdln12pk1mvMXRrG6zEZSxD2NBKNVcHC2Uihd2S+SG6p0qEjJRqtLspDCQpjaQon2IW0UwZqMlX1ceDxTc/9RMvfFeA7D3pchsPJj7xnasevDW2L2SsjZNZrJMs+gSMUh1PkF0rkVqqxq4rAsViYyJAoe6QLURZUMZ9oCtBVMy7Vltapq5MZ1sbTOLWA0LF6q84Caglzl4cZWqmQrXfOWx9NNd0c93z2KSQm71WCkPPPf54XXvS1nL2QwPeUWi3ETVh9xZICLDzLIRnWeup82Q78wY+/nrWVPJWPaseELRrd8S+ezUVZQyJIEDJ5qxBljQkQ0jlxAyiMzpeYv9g9aJ+oBF1dhgqsjSZZH00TJGycWhDVP3Q5lmjUOyRORt6wNeZdMxwJdpIS24EIpXySUn4je2VtPE12rdYhEgcwNlfES0Z3zLHtUWNQS3reJcftvz6Wjg2UDi8t4QSdgXALJVNYZT2b3tb78u4fmuNPf8PiS39tRauPPHz9d/hY3/3bBCudmYIlSfDk31wgv1BhWCsd2wXIFH0yzyzjOxbLp7Pkl8ok6kHnRjZRnCmKMs566yqFtsS/uH6AlZbeFelCrWc2mkBbrxDD9jg2WU8Gw04IXJu5mLtaIfrnGLsdV1iyC1RJljzS6zWsXg2RgIUzU3hOp9EJxWJ1ZIKVye3pIv3Hf5nmc39pE/hCGAiFZeHDv+TyZw99M/6m83iOw6e+4ZWEto2XcmIr1hsBfAFcP2Ti1jqJcmdiQLc1TrhFcNhL2gSO1TH/hwLFXLIzuNzjcA2XnmFnGENhOPTsyWqiB41GRnEkKkG8muIOcCs+555d5tT0GhOz65x/bpmR+WLX4z/3lfcROJ1y6aFt8dlXvLTN7dXPuRNlv8N9ZCkUh07z59/6CMsT4/iOw8r4GP/jkdfx9EteDERB99Du7Ce4+R1rlb3Yir7qEkSYv5AnsKUps9FIVV063V4h3a3+AepJBWmH8tDR67tyWDCuJ8OJJ7Qltq0qsCvJ7PaTKKdvrGFvcn/klivUkg6lmEnTS6V4/H95C6/4wz9iYnYOgJWJcT7+um9haWosav+pGhm5Le7O43qBN3BrATfuvYcbX3ZP/A6WMHdpmPHZIqkWGe7tvDWNwHNDGsVL2qz2sSLyEzYzd42QX65geUo5V48LbbrewLVZmci0ddZrnHNlIsP6WOpEp7fuFmMoDIea1BNvhPfs7zlqKYfQspAw7KiNUIWLTy9RS9ksn8p23MXbXsDofCnykQOlfILlyahTXiuZQi22bsJSGFkoUc4lYjWh1sdG+aN/+GbcahVRpZZKYfkhE3V1U4jqNJamsj2VV7vVcsAWrV4b+7g28xfzSKikCjUm5gqxsu1xU7ECxSGXylACO1CqKYdqxulr4k4Va3Wp+OhIubUKi6ezsWm56+NpKllT/7AfGNeT4VCzm0ynvhFh/nyO0JJmRW5jSreIJr9kJeDUzTUSLQFYKwg5c221WcFtKWRXa5Ee0aaVg+2HXYOtjhdy/pklhpY7A8YNvGSSWioFGq1MMgVvIz7ghUxOr7eNDeopql7kOqumHXw33t8f1ye8G2oJ5VyCwOo8Vi8HnZd2KY6kWBtPU822rAhUSVR8EhW/wwVnewGT0+vYoUbSHWEk7Dc+V8StxKvieimH5dNZFs/moqQFYyT2BLOiMBxa9js20YqXcpi5e5R0oUai5JHrUpw3Pltg9soISCQYKJuypYTIKGTWqs0KYYhWLb3E6kQjPSovaTdXLRIqybKHikSd8kRIFT0cL+i4cxeFU9Pr1BI2lYxDuuSTrPiRdIUlLJ3OMn9hmMmZNdxq0OxktTaeprhdDSMRbl/Mc2pmPdKxqh+rlrRJVjrHpkLUy2MTqWKNiVuFaKWlkRFaOJtr7ju0Uo1/vxTyS2UWz+a2N27DjjGGwmCoo5YQ2sLQWq2LphC4tZBzzy0zd2m4Kei3mYYYYKuhqKYdaimHRKUzoNw8fr0w7E7GZWi5zOh8qenLURHunMuRqAax/bkFsAMlXfZJ1XWPmkKDgTIxW2D+Qp65yyM4tUiK20s46A7lVIKEzeyVEZxqgB2E1FIOEipnXljBCrRpZMO6ltLm+gWnFq0W2t6LQJmcXuPW1REC144KEePeJ6LmRIaDw7ieDIeSfjrY7TVuxW+6OrpNn9GKQRm/VSCIceVAXeJjs9+/nsFTGE72Kg3A8QKSJY/R+VLkzqq7W+xAOXVzjcCW2L7dm48Tt+Jo6CU1qql3aiRa8esrILWE0ImKGtfHUniuRTUVZSctTmU73EpDy5V4g6dRgB8i49qtkZRbCxm+U9r1+A39YVYUhkPJgcQmNjG8WI6dvDYTFYv5zE/kyKzXOl6jQttqovm8JSxPDVHNuIzPFmI1pKppl/xiqes4rCBERVC6G7NuY3Zr+38XHjoWK6eyrJzKkij7jM0VGJ+LalFqCYtGE3fLD3us2qIMragtaSlWcFGA4aUy66OpjsQBw95j3uETjKpyGDUWDzI20YpbjZexjkMFvITD8qlMM7+/keu/cGaop+BdKZeILSRTgcJIknQxfhxRS06NNJISVvO8/X6Cm9VwnYrPxMwak9NrpNb3toeLUw04fWOVZDVornAStZBkNSRZCXD8+L7VIVBtuKlUm8kEcahAcovqbsPeYFYUJ5AwVObnPNZWoh7LiYRw6oxLdqjPDjf7yAMPD873HKnFxscnNhM4FoEjFEbTFPPJen2BUMm6vVufAkhUlzB2u0imPkFXUw7LU1nSa9WuLwslKhzzEzazV0dxqgFu1WNitrjlSigUWJ3YqFsYm1ljaH1jkk0XPHxHuHXX6J5kCsWtzjr0nmIQoFBfjSUrfrP2IpZ6ANyw/xhDcQKZvl6jUt5oe1mrKTM3apy/lCCTHayxeMR628DOvTaebirFNmido1qLuJamNnSG1LYo5/rMHFKNpMsDZfHMEAtnGwePjjV+qxA7iTZSdlsrkP2kjZ+0Wa2FjCx09vBufe3i1EYNSKpYY2i9s5GT4yvjM+ssnu/dXa8fEpUujaL6oOFKCm2r53JJgco2qtMNO8e4nk4YlXLYZiQaqMLC/GAzSXbavW6vqKUcFs7l8G1pk4tYODNEOeviuRalIZe5S8M9i9u64dQCzr6wwtS1VU5Nr3P+maUocNtyB689Zlcvacfe7a9NZFgZ794Xopa02wrU8nfimwAJkC3sjSvHd+0dtZ1uvf5aF62nhtGcv5g3dRIHhFlRnDAq5e5CdNVKb5G6/eagei/3ojyUYObuURwvRIWmpHicxMa2UOX09VXsoB6ErlvqkTslfNemXF8pVDJOlAK76eWRj7+7DIcVxH92CqxOtBfU2UF8ILl5riBE7d3dQ66Np0mVvL6SAxpEwfyWFW29EHLqxlpdriR62ncs5i4NE/aoNm8lUfbJL5ZwawG1lMPaWHpbCr8GYyhOHK4rXQu/dtuBbjcchFRH34j01X1tO6QL8VLmlsLwYqlpKGppF5a7xCl6ZELlVuNjK0qnamol6+J26cEB9HWXbnsB+aUKqZJH4FisjaaotJynmnFZOp1l7HYxtotgS2PAtudWJtsbPflJh+l6IaTjRfUajeLDfkivVZmYLTTH4Naipknz5/NRhbihL4yhOGFkhixsCzYrXIvA2MTg4hODSIc9SNrapsZtq1PJuLGGXImvbgZwq0HksulSiJcs+20aVcunMuRWqrF9v8tpuy1ALEFIbqVCer1GUG8f6iccpq6tbhi+alT7sTqeZq0lYF4cSeFWffJdDF9Yv2dBQBGWprLU0jFTkkj/MaBWVBm/XWxLQ25UwY/PFbh1dcS4rvpkIIZCRMaA9wOXgWvAd6nqcsx+AfBU/eENVf22gxrjcUVEuHA5yfSNGr6nzRaao2M2wyODuW8YVDrsQVJLxkt4aGNbndCxWB9ORsJ2LY1/1BKWJ9ultRsEjtWzp/TwQon5i8MbT1gWcxdynL653rafb8PSuY1AtuWHnLm2guVHaaoKZIoFQumUFI9WRmUKI+11DY7XvV6imnZZOZ1BNIpH7PWk7VaDrs2KHD/EDpRggKvoo8SgVhTvAP6bqr5bRN5Rf/yvYvYrq+oDBzqyE0AiaXHl7iTVihIESiplDcztNMh02IOkmonSWp1quyyFCqxMRjEECSMJi2RdgqMRtC0OJ1mdSDfjJZvxEza+Y8VOykK8xHgtm2D6y8bIrFVxvAAv6XQorQ4vlLD9DXdZ43fXvhMSSZe0dhCsZlzSMVInoUTviZfcvymoZ+qs9k4cMLQzqKynNwC/Uv/7V4C/N6BxnFhEhFTaIjtkDzQ2Mch02ANFhLmLeUq5BFovkvNcizvnc802q6O3iyTrzYUak7EAyZLX1Ug06JX1FNhWUx48VaxB/S5bLaE4kmJ1MhurtJpZ76551eUi0U3HKAwnUau920eUYizNeon9wk/YsYq5UdDcidJvDX0xqBXFaVWdrf89B5zusl9KRJ4EfODdqvq73Q4oIm8F3gpw2u1fNtkwOF7+1NvhHfGpmscRtS0Wz+VYVEVC2rWWVMmuVTvuvIVIRnxosURhvHujn9JwivBOGStoD5iHEk2K559ZapvhF87mtm4NKl0CH11RypviKGpbzF4eZmyuSLoYpd5WMi5LU509O/aDhXM5Tl9fQ1SxtFFBLyycHdr6xYYm+2YoRORPgLgI5btaH6iqinRNorukqjMichX47yLylKo+F7ejqr4PeB/Al6dHDp8uhaGDVw3aSKiSW6owtBo1BSrlEqyNpfd/AhNBNy0QrJb0z47dqfv/x9Ld/fgN6e+b61GqrAiiSjGX2DBALcefmFnn1pURgh7ZXYXhZFRh3cclKXDnbA5i3D2Ba3PnQn5DGPAAA8heMpKPz65VcWqRi62YS8SO09CdfTMUqvrabttE5LaInFHVWRE5A8x3OcZM/ffzIvKnwIuBWENhOFq8/71vgccGOACN1FiTLX2kc0sVsms1Zq8MH7hbIqxLnNtBvLWww0guPOzhJvSSDjN3jUTXFEad5Ebn4+U9RGFopcLqqfgAOUS1ENnVKk4XAb9WfNdqS4+NZSsD0VhpWX3suw3U2n8313FnUE66x4Dvqf/9PcDvbd5BREZFJFn/ewJ4BfD5AxuhYV/5zGMjAz1/quS1GQmI/hmsIOzZaW7fEGFlPNXd0VN3mfRznGrGpTyUIHQs7B5ZR87mHOlNqCXcumuEQs5tBtY3LUyAyJ2z3MPgbIkqw3dKXHhmmQvPLHH+2WWGlsod0uSGwTEoQ/Fu4JtE5BngtfXHiMiDIvJL9X2+AnhSRD4DPEEUozCG4hhwGNJhU4X4qmFLaQr1HTSFsQxeIqZdKezYXVLNuLE9HRqxi56okl8sky14GwF4J3JJNVRrPdeKJE5y25c0aTAyXyS/VG7WZdiBMnqn1OxLYRg8Awlmq+oi8JqY558E/kn9748DLzrgoRn2mYcevR8+OOhR0LNpT7gHDX12yu2Lw5y+uYZTC9B6nKGadlia2lnwdX00RW65gupGkFuJrrE43Nsdk1mvMbxYblt1uT5YRY+b99RVZnfpIooK+jqD+JbC8J0S66MpUxR3CDD5YYYD5TDoOQEU88nYPPpQOHB/tgSKW/Gx/BDHCwjsqGRZLWF1Is38hfyO5bRDx2Lu8jCVtNOmQDt3eWTLYw4vlGOzsKwwJFXy92QCd2th13xbSyG/YLrYHQaMhIfhwDhM6bB+wm5qEUEU3FWJittKu3CjbAtVRuZL5FYqICD1kEGzsC0MGV6I+jq09pLYDhIqY3OFqLdDvbza8YK+is26xjB06/hGv/iu1bzuzQgwvFTBTzptRXyGg8cYCsOBMfB02E0UR1JUsgkyhSoSQnnI3ddK4c3kF8vkViodqautWBrttzaa2pGi69hcYSNoXz9HohIwMVOIZLp7UEvapMrxlfO15N7ogoWORVDP9oqzXY3rN4ZisBjXk+FAeP973zLoIcQSuBbro2nWxtMHaiRQJb9U6anR1EQgWekuMd71ZaGSXa/Fuo9SZQ97i1XBymSmIxDe6NFR2yOZbgm1q5FosFerF8POMYbCsO+knnjjwNNhDxuiUZFdXyhR3GKbWEHYNd1WRbC2mICrGZc753J4dRkMlSi+cfvC8J4FmCXsJhy1wV6tXgw7x7ieDPvOcZcQ3wkq9Cywa+5HpA7r7WCyDBwr0l6Kq0dQ7avnRmUowa2hBBJqFNfY4wyk0BYC2+q6atjc69swGMyKwrCvHIaaiUOJCCvj6Q7XTiOUEGkSRSuJ+Qs7bPkpwspk/Dl8x9rS9dT2Gmv3qbCxiLB0qtPFpUTXfudcrq2XhmEwmBWFYd84KRLiO6UwmkLqfRykftdfzCcoDCdJVEMC14pE9nYxQRdG0yjCeCO7iw2hwalrq9y6OnIg4ny9KOeT3LEthhdKuNUA3xHWxtNtfb4Ng8UYCsO+cWIkxHeKCOvjadbHUth+SGhbzdqG2h56W0Qjt1FnpzdlaKXS1pVuUFSyLpXs8NY7GgaCcT0Z9gXjctoGIgSuveOiuq1IbdK0amBppHllMGyFMRSGPce4nA4Xcc17oB6r2KIhksEAxlAY9gHjcjpcFEZSsZXYKpEWlMGwFSZGYdhTjMvp8OEnbBbO5piYXd94UmFxKou3R4VzAKlCjfxSBdsPqWRc1sZTW7ZwNRwNjKEw7BmHScvJ0E45l+BmdoxUOYpJVNPunsZE8gulNqVZtxYwtFZl9vJwX/UahsONcT0Z9ozDpuVk2IQlVLIJKtnEnhoJyw8Z2SRHLkRV16PzxT07j2FwGENh2BOMy+nkkip5sTEQAVJFk1V1HBiIoRCR7xSRz4lIKCIP9tjvdSLytIg8KyLvOMgxGvrnoUfvH/QQDAOk1+pETdOhY8GgVhR/C7wR+Fi3HUTEBn4eeBi4D3iziNx3MMMz9MvLn3r7oWlGZBgM5S4SG6FEleaGo89ADIWqfkFVn95it5cCz6rq86paA34LeMP+j86wHUxcwoAVaTKFQlOzKZQo22plcvBV34bdc5izns4BN1seTwMv67aziLwVeCvAaTe9vyMzACYuYdigkk0wc9co2bUqth9STbuUh3anU2U4POyboRCRPwHi9KXfpaq/t9fnU9X3Ae8D+PL0SJ9C/4adYqqvDZsJHYv1MXOTdhzZN0Ohqq/d5SFmgAstj8/XnzMMmIcevd/EJQyGE8RhTo/9JHCPiFwRkQTwJuCxAY/JAMZIGAwnjEGlx367iEwDDwEfFpGP1J8/KyKPA6iqD/wQ8BHgC8AHVPVzgxivYYPD2vvaYDDsHwMJZqvqh4APxTx/C3ik5fHjwOMHODRDD975+h8wazqD4QRymF1PhkOECV4bDCcXYygMfWGkww2Gk4sxFIYtMXEJg+FkYwyFoSfvf+9b+MxjI4MehsFgGCDGUBh6YoyEwWAwhsLQFSPRYTAYwBgKQxeMkTAYDA2MoTB0YIyEwWBoxRgKQxvGSBgMhs0YQ2FoYorqDAZDHMZQGIDISJiiOoPBEIcxFAbAVF4bDIbuGENhMJXXBoOhJ8ZQnHBM5bXBYNgKYyhOMA89er8xEgaDYUsG0o/CMHhe/tTbedU7yoMehsFgOAKYFcUJxRgJg8HQL4NqhfqdIvI5EQlF5MEe+10TkadE5NMi8uRBjvE4Y4rqDAbDdhiU6+lvgTcC7+1j31er6sI+j+fEYIyEwWDYLgNZUajqF1T16UGc+yTz8qfePughGAyGI8hhj1Eo8Mci8j9F5K29dhSRt4rIkyLy5EpQO6DhHR1ST7zRxCUMBsOO2DfXk4j8CTAVs+ldqvp7fR7mlao6IyKngI+KyBdV9WNxO6rq+4D3AXx5ekR3NOhjzI+8J+6jMBgMhq3ZN0Ohqq/dg2PM1H/Pi8iHgJcCsYbC0B0TlzAYDLvh0LqeRCQrIrnG38A3EwXBDdvAGAmDwbBbBpUe++0iMg08BHxYRD5Sf/6siDxe3+008Bci8hngr4EPq+ofDWK8RxWj4WQwGPaCgaTHquqHgA/FPH8LeKT+9/PAVx/w0I4N73z9D8Bjgx6FwWA4Dhxa15Nh55gGRAaDYS8xhuKY8fKn3m56SxgMhj3FGIpjhqmVMBgMe40xFMcIk+FkMBj2A2MojgnGSBgMhv3CGIpjQOqJNw56CAaD4RhjDMURJ/XEG408h8Fg2FeMoTjiGCNhMBj2G9MK9YjywMO+SYM1GAwHgllRHFGMkTAYDAeFMRRHEJPhZDAYDhJjKI4YRujPYDAcNMZQHCFST7yRzzw2MuhhGAyGE4YJZh8RHnr0fl5tMpwMBsMAMCuKI8BDj97Pqz/4ykEPw2AwnFCMoTgCGCNhMBgGiajqoMew54jIHeD6Hh92AljY42MeZk7S9Z6kawVzvcednV7vJVWdjNtwLA3FfiAiT6rqg4Mex0Fxkq73JF0rmOs97uzH9RrXk8FgMBh6YgyFwWAwGHpiDEX/vG/QAzhgTtL1nqRrBXO9x509v14TozAYDAZDT8yKwmAwGAw9MYbCYDAYDD0xhmIbiMi/F5EvishnReRDIjIy6DHtFyLynSLyOREJReTYphaKyOtE5GkReVZE3jHo8ewnIvKoiMyLyN8Oeiz7jYhcEJEnROTz9e/xvxj0mPYTEUmJyF+LyGfq1/tv9/L4xlBsj48CX6Wq9wNfAn5swOPZT/4WeCPwsUEPZL8QERv4eeBh4D7gzSJy32BHta/8MvC6QQ/igPCBt6vqfcDXAT94zD/bKvCNqvrVwAPA60Tk6/bq4MZQbANV/WNV9esP/wo4P8jx7Ceq+gVVfXrQ49hnXgo8q6rPq2oN+C3gDQMe076hqh8DlgY9joNAVWdV9VP1v9eBLwDnBjuq/UMjCvWHbv1nzzKVjKHYOf8Y+MNBD8KwK84BN1seT3OMJ5OTiohcBl4MfGLAQ9lXRMQWkU8D88BHVXXPrtfIjG9CRP4EiNPzfpeq/l59n3cRLW1//SDHttf0c60Gw1FGRIaADwI/rKprgx7PfqKqAfBAPXb6IRH5KlXdk3iUMRSbUNXX9touIt8LfCvwGj3iRShbXesJYAa40PL4fP05wzFARFwiI/Hrqvo7gx7PQaGqKyLyBFE8ak8MhXE9bQMReR3wL4FvU9XSoMdj2DWfBO4RkSsikgDeBDw24DEZ9gAREeC/AF9Q1Z8Z9Hj2GxGZbGRhikga+Cbgi3t1fGMotsfPATngoyLyaRH5xUEPaL8QkW8XkWngIeDDIvKRQY9pr6knJvwQ8BGiYOcHVPVzgx3V/iEivwn8JXCviEyLyPcPekz7yCuA7wa+sf6/+mkReWTQg9pHzgBPiMhniW6APqqqf7BXBzcSHgaDwWDoiVlRGAwGg6EnxlAYDAaDoSfGUBgMBoOhJ8ZQGAwGg6EnxlAYDAaDoSfGUBgMB4iI/JGIrIjInqUuGgz7jTEUBsPB8u+J8vsNhiODMRQGwz4gIl9b71uSEpFsvUfAV6nqfwPWBz0+g2E7GK0ng2EfUNVPishjwL8D0sD/t1cCbQbDQWMMhcGwf/wkkZxCBXjbgMdiMOwY43oyGPaPcWCISB8sNeCxGAw7xhgKg2H/eC/w40R9S356wGMxGHaMcT0ZDPuAiPwjwFPV36j35v64iHwj8G+BLweG6uq836+qx06Z13C8MOqxBoPBYOiJcT0ZDAaDoSfGUBgMBoOhJ8ZQGAwGg6EnxlAYDAaDoSfGUBgMBoOhJ8ZQGAwGg6EnxlAYDAaDoSf/P08tYq2FLkzvAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def plot_net(x):\n", - " out = F.sigmoid(net(Variable(torch.from_numpy(x).float()))).data.numpy()\n", - " out = (out > 0.5) * 1\n", - " return out\n", + "## 练习题\n", "\n", - "plot_decision_boundary(lambda x: plot_net(x), x.numpy(), y.numpy())\n", - "plt.title('sequential')" + "* 改变网络的隐藏层神经元数目,或者试试定义一个 5 层甚至更深的模型,增加训练次数,改变学习率,看看结果会怎么样" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -1069,7 +784,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.4" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/6_pytorch/6-deep-nn.ipynb b/6_pytorch/6-deep-nn.ipynb new file mode 100644 index 0000000..7e05137 --- /dev/null +++ b/6_pytorch/6-deep-nn.ipynb @@ -0,0 +1,671 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 深层神经网络\n", + "\n", + "前一节简要介绍了PyTorch的神经网络实现,同时示范了如何用神经网络构建一个复杂的非线性二分类器。针对图像分类的问题,下面用深度学习的入门级数据集 MNIST 手写体分类来说明深层神经网络的优良表现。\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. MNIST 数据集\n", + "\n", + "MNIS数据集是一个非常出名的数据集,基本上很多网络都将其作为一个测试的标准,其来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST)。 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员,一共有 60000 张图片。 测试集(test set) 也是同样比例的手写数字数据,一共有 10000 张图片。\n", + "\n", + "每张图片大小是 28 x 28 的灰度图,如下\n", + "\n", + "![MNIS](imgs/MNIST.jpeg)\n", + "\n", + "任务就是给出一张图片,希望区别出其到底属于 0 到 9 这 10 个数字中的哪一个。\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. 多分类问题\n", + "\n", + "前面讲过二分类问题,现在处理的问题更加复杂,是一个 10 分类问题,统称为多分类问题,对于多分类问题, loss 函数使用一个更加复杂的函数,叫交叉熵。\n", + "\n", + "### 2.1 softmax\n", + "提到交叉熵,先讲一下 softmax 函数,前面我们见过了 sigmoid 函数,如下\n", + "\n", + "$$s(x) = \\frac{1}{1 + e^{-x}}$$\n", + "\n", + "可以将任何一个值转换到 0 ~ 1 之间,当然对于一个二分类问题,这样就足够了,因为对于二分类问题,如果不属于第一类,那么必定属于第二类,所以只需要用一个值来表示其属于其中一类概率,但是对于多分类问题,这样并不行,需要知道其属于每一类的概率,这个时候就需要 softmax 函数了。\n", + "\n", + "softmax 函数示例如下\n", + "\n", + "![softmax](imgs/softmax.jpeg)\n", + "\n", + "对于网络的输出 $z_1, z_2, \\cdots z_k$,我们首先对他们每个都取指数变成 $e^{z_1}, e^{z_2}, \\cdots, e^{z_k}$,那么每一项都除以他们的求和,也就是\n", + "\n", + "$$\n", + "z_i \\rightarrow \\frac{e^{z_i}}{\\sum_{j=1}^{k} e^{z_j}}\n", + "$$\n", + "\n", + "如果对经过 softmax 函数的所有项求和就等于 1,所以他们每一项都分别表示属于其中某一类的概率。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 交叉熵\n", + "\n", + "交叉熵衡量两个分布相似性的一种度量方式,前面讲的二分类问题的 loss 函数就是交叉熵的一种特殊情况,交叉熵的一般公式为\n", + "\n", + "$$\n", + "cross\\_entropy(p, q) = E_{p}[-\\log q] = - \\frac{1}{m} \\sum_{x} p(x) \\log q(x)\n", + "$$\n", + "\n", + "对于二分类问题我们可以写成\n", + "\n", + "$$\n", + "-\\frac{1}{m} \\sum_{i=1}^m (y^{i} \\log sigmoid(x^{i}) + (1 - y^{i}) \\log (1 - sigmoid(x^{i}))\n", + "$$\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 示例程序" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import torch\n", + "from torchvision.datasets import mnist # 导入 pytorch 内置的 mnist 数据\n", + "\n", + "from torch import nn\n", + "from torch.autograd import Variable" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# 使用内置函数下载 mnist 数据集\n", + "train_set = mnist.MNIST('../data/mnist', train=True, download=True)\n", + "test_set = mnist.MNIST('../data/mnist', train=False, download=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们可以看看其中的一个数据是什么样子的" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "a_data, a_label = train_set[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAAAAABXZoBIAAABAElEQVR4nGNgGMyAWUhIqK5jvdSy/9/rGRgYGFhgEnJsVjYCwQwMDAxPJgV+vniQgYGBgREqZ7iXH8r6l/SV4dn7m8gmCt3++/fv37/Htn3/iMW+gDnZf/+e5WbQnoXNNXyMs/5GoQoxwVmf/n9kSGFiwAW49/11wynJoPzx4YIcRlyygR/+/i2XxCWru+vv32nSuGQFYv/83Y3b4p9/fzpAmSyoMnohpiwM1w5h06Q+5enfv39/bcMiJVF09+/fv39P+mFKiTtd/fv3799jgZiBJLT69t+/f/8eDuDEkDJf8+jv379/v7Ryo4qzMDAwMAQGMjBc3/y35wM2V1IfAABFF16Aa0wAOwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_label" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这里的读入的数据是 PIL 库中的格式,我们可以非常方便地将其转换为 numpy array" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(28, 28)\n" + ] + } + ], + "source": [ + "a_data = np.array(a_data, dtype='float32')\n", + "print(a_data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这里我们可以看到这种图片的大小是 28 x 28" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 18.\n", + " 18. 18. 126. 136. 175. 26. 166. 255. 247. 127. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 30. 36. 94. 154. 170. 253.\n", + " 253. 253. 253. 253. 225. 172. 253. 242. 195. 64. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 49. 238. 253. 253. 253. 253. 253.\n", + " 253. 253. 253. 251. 93. 82. 82. 56. 39. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 18. 219. 253. 253. 253. 253. 253.\n", + " 198. 182. 247. 241. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 80. 156. 107. 253. 253. 205.\n", + " 11. 0. 43. 154. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 14. 1. 154. 253. 90.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 139. 253. 190.\n", + " 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 190. 253.\n", + " 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 35. 241.\n", + " 225. 160. 108. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 81.\n", + " 240. 253. 253. 119. 25. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 45. 186. 253. 253. 150. 27. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 16. 93. 252. 253. 187. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 249. 253. 249. 64. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 46. 130. 183. 253. 253. 207. 2. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 39. 148.\n", + " 229. 253. 253. 253. 250. 182. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 114. 221. 253.\n", + " 253. 253. 253. 201. 78. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 23. 66. 213. 253. 253. 253.\n", + " 253. 198. 81. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 18. 171. 219. 253. 253. 253. 253. 195.\n", + " 80. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 55. 172. 226. 253. 253. 253. 253. 244. 133. 11.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 136. 253. 253. 253. 212. 135. 132. 16. 0. 0.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]\n" + ] + } + ], + "source": [ + "print(a_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们可以将数组展示出来,里面的 0 就表示黑色,255 表示白色\n", + "\n", + "对于神经网络,我们第一层的输入就是 28 x 28 = 784,所以必须将得到的数据我们做一个变换,使用 reshape 将他们拉平成一个一维向量" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "def data_tf(x):\n", + " x = np.array(x, dtype='float32') / 255\n", + " x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到\n", + " x = x.reshape((-1,)) # 拉平成一维向量\n", + " x = torch.from_numpy(x)\n", + " return x\n", + "\n", + "train_set = mnist.MNIST('../data/mnist', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换\n", + "test_set = mnist.MNIST('../data/mnist', train=False, transform=data_tf, download=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([784])\n", + "5\n" + ] + } + ], + "source": [ + "a, a_label = train_set[0]\n", + "print(a.shape)\n", + "print(a_label)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from torch.utils.data import DataLoader\n", + "\n", + "# 使用 pytorch 自带的 DataLoader 定义一个数据迭代器\n", + "train_data = DataLoader(train_set, batch_size=64, shuffle=True)\n", + "test_data = DataLoader(test_set, batch_size=128, shuffle=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "使用这样的数据迭代器是非常有必要的,如果数据量太大,就无法一次将它们全部读入内存,所以需要使用 Python 迭代器,每次生成一个批次的数据" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "a, a_label = next(iter(train_data))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([64, 784])\n", + "torch.Size([64])\n" + ] + } + ], + "source": [ + "# 打印出一个批次的数据大小\n", + "print(a.shape)\n", + "print(a_label.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# 使用 Sequential 定义 4 层神经网络\n", + "net = nn.Sequential(\n", + " nn.Linear(784, 400),\n", + " nn.ReLU(),\n", + " nn.Linear(400, 200),\n", + " nn.ReLU(),\n", + " nn.Linear(200, 100),\n", + " nn.ReLU(),\n", + " nn.Linear(100, 10)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Sequential(\n", + " (0): Linear(in_features=784, out_features=400, bias=True)\n", + " (1): ReLU()\n", + " (2): Linear(in_features=400, out_features=200, bias=True)\n", + " (3): ReLU()\n", + " (4): Linear(in_features=200, out_features=100, bias=True)\n", + " (5): ReLU()\n", + " (6): Linear(in_features=100, out_features=10, bias=True)\n", + ")" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "net" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "交叉熵在 pytorch 中已经内置了,交叉熵的数值稳定性更差,所以内置的函数已经帮我们解决了这个问题" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# 定义 loss 函数\n", + "criterion = nn.CrossEntropyLoss()\n", + "optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch: 0, Train Loss: 0.515279, Train Acc: 0.833889, Eval Loss: 0.162182, Eval Acc: 0.949367\n", + "epoch: 1, Train Loss: 0.164546, Train Acc: 0.948244, Eval Loss: 0.121298, Eval Acc: 0.962025\n", + "epoch: 2, Train Loss: 0.116251, Train Acc: 0.963669, Eval Loss: 0.160981, Eval Acc: 0.951543\n", + "epoch: 3, Train Loss: 0.091204, Train Acc: 0.971149, Eval Loss: 0.098640, Eval Acc: 0.970036\n", + "epoch: 4, Train Loss: 0.075570, Train Acc: 0.975796, Eval Loss: 0.125001, Eval Acc: 0.960839\n", + "epoch: 5, Train Loss: 0.058536, Train Acc: 0.981710, Eval Loss: 0.072245, Eval Acc: 0.975475\n", + "epoch: 6, Train Loss: 0.052349, Train Acc: 0.982743, Eval Loss: 0.082497, Eval Acc: 0.974782\n", + "epoch: 7, Train Loss: 0.051543, Train Acc: 0.984125, Eval Loss: 0.065229, Eval Acc: 0.979727\n", + "epoch: 8, Train Loss: 0.039741, Train Acc: 0.987257, Eval Loss: 0.116367, Eval Acc: 0.964893\n", + "epoch: 9, Train Loss: 0.033266, Train Acc: 0.989489, Eval Loss: 0.071046, Eval Acc: 0.978441\n", + "epoch: 10, Train Loss: 0.029305, Train Acc: 0.990039, Eval Loss: 0.087192, Eval Acc: 0.975771\n", + "epoch: 11, Train Loss: 0.026703, Train Acc: 0.991388, Eval Loss: 0.067075, Eval Acc: 0.980617\n", + "epoch: 12, Train Loss: 0.021403, Train Acc: 0.992970, Eval Loss: 0.063208, Eval Acc: 0.982002\n", + "epoch: 13, Train Loss: 0.238340, Train Acc: 0.962787, Eval Loss: 0.122586, Eval Acc: 0.962124\n", + "epoch: 14, Train Loss: 0.070087, Train Acc: 0.977046, Eval Loss: 0.134682, Eval Acc: 0.961432\n", + "epoch: 15, Train Loss: 0.049751, Train Acc: 0.983575, Eval Loss: 0.078269, Eval Acc: 0.977650\n", + "epoch: 16, Train Loss: 0.040535, Train Acc: 0.986657, Eval Loss: 0.069318, Eval Acc: 0.980914\n", + "epoch: 17, Train Loss: 0.033759, Train Acc: 0.988739, Eval Loss: 0.075110, Eval Acc: 0.979035\n", + "epoch: 18, Train Loss: 0.028471, Train Acc: 0.990672, Eval Loss: 0.079602, Eval Acc: 0.977551\n", + "epoch: 19, Train Loss: 0.027123, Train Acc: 0.991021, Eval Loss: 0.078461, Eval Acc: 0.979233\n" + ] + } + ], + "source": [ + "# 开始训练\n", + "losses = []\n", + "acces = []\n", + "eval_losses = []\n", + "eval_acces = []\n", + "\n", + "for e in range(20):\n", + " train_loss = 0\n", + " train_acc = 0\n", + " net.train()\n", + " for im, label in train_data:\n", + " im = Variable(im)\n", + " label = Variable(label)\n", + " # 前向传播\n", + " out = net(im)\n", + " loss = criterion(out, label)\n", + " # 反向传播\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + " # 记录误差\n", + " train_loss += loss.item()\n", + " # 计算分类的准确率\n", + " _, pred = out.max(1)\n", + " num_correct = float((pred == label).sum().item())\n", + " acc = num_correct / im.shape[0]\n", + " train_acc += acc\n", + " \n", + " losses.append(train_loss / len(train_data))\n", + " acces.append(train_acc / len(train_data))\n", + " # 在测试集上检验效果\n", + " eval_loss = 0\n", + " eval_acc = 0\n", + " net.eval() # 将模型改为预测模式\n", + " for im, label in test_data:\n", + " im = Variable(im)\n", + " label = Variable(label)\n", + " out = net(im)\n", + " loss = criterion(out, label)\n", + " # 记录误差\n", + " eval_loss += loss.item()\n", + " # 记录准确率\n", + " _, pred = out.max(1)\n", + " num_correct = float((pred == label).sum().item())\n", + " acc = num_correct / im.shape[0]\n", + " eval_acc += acc\n", + " \n", + " eval_losses.append(eval_loss / len(test_data))\n", + " eval_acces.append(eval_acc / len(test_data))\n", + " print('epoch: {}, Train Loss: {:.6f}, Train Acc: {:.6f}, Eval Loss: {:.6f}, Eval Acc: {:.6f}'\n", + " .format(e, train_loss / len(train_data), train_acc / len(train_data), \n", + " eval_loss / len(test_data), eval_acc / len(test_data)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "画出 loss 曲线和 准确率曲线" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnfUlEQVR4nO3deXxcV3338c9vZrSMtpFkLZZs2XJsJ16AbLIJgZAdEqAEHiAEKAktITUlPKEtz0N4wUOhpQs7LaRNkzYlKRBDKYG0dRpIIJA2m+XE2Szvuy1LsmRrJGsd6Tx/zEgZK5I9tmc0M/d+36/XvDRz79XMLzeTb47OPedcc84hIiL5L5DtAkREJD0U6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdPEVM7vTzP7faf7uY2Z2c7prEkmXULYLEEmVme0GbnbOPXK67+GcW5O+ikRyi1ro4hlmpgaK+JoCXfKCmf0LsAD4dzPrN7P/a2bNZubM7KNmthf4VeLYfzWzQ2bWa2a/NbOVSe/zPTP7cuL5ZWa238z+xMw6zazdzH4vxXoCZvZ5M9uT+N37zCyS2FdsZt83s24zO2pm682sPrHvI2a208z6zGyXmX0ozadKfEyBLnnBOfdhYC/wO865MufcV5N2XwosB96aeP0QsBSoA54FfnCCt54LRIB5wEeBO8ysKoWSPpJ4XA6cBZQB303suynxnk3AHGANMGhmpcDfAtc658qBi4GNKXyWSEoU6OIFX3TOHXPODQI45+5xzvU554aBLwLnTrSepzEK/JlzbtQ5tw7oB85J4TM/BHzTObfTOdcPfBa4IdHtM0o8yJc458accxucc9HE740DrzGzsHOu3Tn38un+Q4tMpUAXL9g38cTMgmb212a2w8yiwO7ErpoZfrfbORdLej1AvLV9Mo3AnqTXe4gPMqgH/gV4GFhrZgfN7KtmVuCcOwa8n3iLvd3M/tPMlqXwWSIpUaBLPplpadDk7R8ErgOuIt7t0ZzYbmmu5SCwMOn1AiAGdCRa+19yzq0g3q3yDuBGAOfcw865q4EGYDNwd5rrEh9ToEs+6SDeX30i5cAw0A2UAH+ZoVruB/7IzBaZWVnic37knIuZ2eVm9lozCwJR4l0wY2ZWb2bvTPSlDxPv3hnLUH3iQwp0ySd/BXw+MXLk0zMccx/x7o8DwCbgqQzVcg/xrpXfAruAIeCTiX1zgZ8QD/M24DfA94n/9/YnxFv3PcQv5v5hhuoTHzLd4EJExBvUQhcR8QgFuoiIRyjQRUQ8QoEuIuIRWVvMqKamxjU3N2fr40VE8tKGDRsOO+dqp9uXtUBvbm6mtbU1Wx8vIpKXzGzPTPvU5SIi4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIR+RdoG851MdX/2szvQOj2S5FRCSn5F2g7+k+xt89toM9PceyXYqISE7Ju0BvrAwDcPDoUJYrERHJLXkX6A2RYgDaewezXImISG5JKdDN7Boz22Jm283s9mn2X2ZmvWa2MfH4QvpLjasuLaQoFKC9Vy10EZFkJ12cK3Gj2zuAq4H9wHoze9A5t2nKoY87596RgRqn1kNjZZiDR9VCFxFJlkoLfTWw3Tm30zk3AqwFrstsWSfWEClWoIuITJFKoM8D9iW93p/YNtUbzOx5M3vIzFZO90ZmdouZtZpZa1dX12mUG9cQCavLRURkilQC3abZ5qa8fhZY6Jw7F/gO8LPp3sg5d5dzrsU511JbO+367ClprCymIzpEbGz8tN9DRMRrUgn0/UBT0uv5wMHkA5xzUedcf+L5OqDAzGrSVuUUjZVhxh109g1n6iNERPJOKoG+HlhqZovMrBC4AXgw+QAzm2tmlni+OvG+3ekudsLE0EX1o4uIvOKko1ycczEzuxV4GAgC9zjnXjazNYn9dwLvBT5uZjFgELjBOTe1WyZtJicXqR9dRGRSSvcUTXSjrJuy7c6k598Fvpve0mY2OblILXQRkUl5N1MUoLy4gPKikEa6iIgkyctABzS5SERkirwN9IbKYg5qPRcRkUn5G+iRMO1acVFEZFLeBnpjpJjuYyMMjY5luxQRkZyQt4HekBi6eEgXRkVEgDwO9MbKxOQi9aOLiAD5HOgR3blIRCRZ3gb6XE0uEhE5Tt4GenFBkDmlhZr+LyKSkLeBDvGx6Lq3qIhIXF4HeqPGoouITMrvQNf0fxGRSXkd6A2RYvqGY/QNjWa7FBGRrMvvQE9MLtKqiyIieR7o8yp15yIRkQl5HegNmlwkIjIprwO9rryIgKGhiyIi5Hmgh4IB6iuK1UIXESHPAx3iI13UQhcR8UCgN1aGNcpFRASPBPrBo4M457JdiohIVuV9oDdEihmOjdNzbCTbpYiIZJUHAl2Ti0REwAOB3qjJRSIigCcCXS10ERHwQKDPKS2kMBRQC11EfC/vA93MaIgU685FIuJ7eR/okJhcpBa6iPicJwK9MaLJRSIi3gj0yjCHokOMjWtykYj4V0qBbmbXmNkWM9tuZref4LhVZjZmZu9NX4kn11BZzNi4o7NPrXQR8a+TBrqZBYE7gGuBFcAHzGzFDMd9BXg43UWeTKPWRRcRSamFvhrY7pzb6ZwbAdYC101z3CeBfwM601hfShoSk4u06qKI+FkqgT4P2Jf0en9i2yQzmwe8G7jzRG9kZreYWauZtXZ1dZ1qrTOanP6vFrqI+FgqgW7TbJt69fHbwGecc2MneiPn3F3OuRbnXEttbW2KJZ5cRXGIsqIQBzR0UUR8LJTCMfuBpqTX84GDU45pAdaaGUAN8DYziznnfpaOIk9mYnKRulxExM9SCfT1wFIzWwQcAG4APph8gHNu0cRzM/se8B+zFeYTGnSjCxHxuZN2uTjnYsCtxEevtAE/ds69bGZrzGxNpgtMVWNE9xYVEX9LpYWOc24dsG7KtmkvgDrnPnLmZZ26xsowh/uHGY6NURQKZqMEEZGs8sRMUYiv5wJwSN0uIuJTngn0iXXR1e0iIn7lmUCfaKFrpIuI+JWHAl13LhIRf/NMoIcLg1SXFurORSLiW54JdIh3uyjQRcSvPBbomlwkIv7lqUBvrFQLXUT8y1OB3hAJEx2K0T8cy3YpIiKzzlOB3jixLrpa6SLiQx4L9MTkIvWji4gPeSrQJycXqYUuIj7kqUCvryjGTC10EfEnTwV6QTBAXXmRWugi4kueCnSI96Mf1HouIuJD3gv0SFg3ixYRX/JcoDdEijnYO4hzU+9jLSLibd4L9MowQ6PjHB0YzXYpIiKzynOB3pgYuqh+dBHxG+8Fuu5cJCI+5blAb6jUnYtExJ88F+g1pUUUBE0tdBHxHc8FeiBgzI0Uq4UuIr7juUAHjUUXEX/yZqBXhjmg6f8i4jOeDPSGSDEd0SHGxjW5SET8w5uBXhkmNu443D+c7VJERGaNJwN9cnKRul1ExEe8GeiaXCQiPuTNQI/EA11DF0XETzwZ6BXhECWFQbXQRcRXUgp0M7vGzLaY2XYzu32a/deZ2QtmttHMWs3sTekvNXVmRoMmF4mIz4ROdoCZBYE7gKuB/cB6M3vQObcp6bBHgQedc87MXgf8GFiWiYJTFb9zkVroIuIfqbTQVwPbnXM7nXMjwFrguuQDnHP97pU7SpQCWR8A3hgJa5SLiPhKKoE+D9iX9Hp/YttxzOzdZrYZ+E/g96d7IzO7JdEl09rV1XU69aasobKYw/3DjMTGM/o5IiK5IpVAt2m2vaoF7px7wDm3DHgX8OfTvZFz7i7nXItzrqW2tvaUCj1VjZEwzkFHVN0uIuIPqQT6fqAp6fV84OBMBzvnfgssNrOaM6ztjEysi65uFxHxi1QCfT2w1MwWmVkhcAPwYPIBZrbEzCzx/AKgEOhOd7GnomFyLLpa6CLiDycd5eKci5nZrcDDQBC4xzn3spmtSey/E3gPcKOZjQKDwPuTLpJmRWOiha5VF0XEL04a6ADOuXXAuinb7kx6/hXgK+kt7cyUFIaoLCnQWHQR8Q1PzhSd0KAbXYiIj3g60BsjxZpcJCK+4elAb6gs1igXEfENTwd6Y2WY3sFRBkZi2S5FRCTjvB3oEa2LLiL+4elAb0jcuUgjXUTEDzwd6BN3LtJIFxHxA08Hen1FMWaaXCQi/uDpQC8MBagtK1KXi4j4gqcDHaChMqz1XETEFzwf6I0RjUUXEX/wfKA3ROIt9CyvFSYiknGeD/TGymIGRsboHRzNdikiIhnlg0DX5CIR8QfPB7omF4mIX3g+0Cdb6BrpIiIe5/lArykrIhQw2jXSRUQ8zvOBHgwYczV0UUR8wPOBDvFVF9XlIgLj446vP7yFvd0D2S5FMsAXgd5QWayLoiLA1s4+vvvr7fzg6T3ZLkUywB+BHglzqHeI8XFNLhJ/a2uPAvDM7p4sVyKZ4ItAb6wsZnTMcbh/ONuliGRVW3sfAC8d6GVwZCzL1Ui6+SPQIxq6KALxFnowYIyOOTbuO5rtciTNfBHoDZWJyUUa6SI+5pxj08EoVy2vwwzWq9vFc0LZLmA2qIUuAl19w3QfG+H1i+awp3tAge5BvmihV5YUUFwQUAtdfG1T4oLo8oYKVjVX8+yeI8TGxrNclaSTLwLdzBJj0RXo4l8TF0RXNFSwalE1x0bGJkNevMEXgQ7xNV204qL42ab2KPMqw0RKCljdXA3AM7vU7eIlvgn0hogmF4m/tbVHWd5QDsDcSDFN1WH1o3uMfwK9Mkxn3zCj6jMUHxoaHWNnVz/LGyomt61qrqZ19xHdzctDfBPojZFinIOOqLpdxH+2dvQx7uL95xNWN1fTfWyEnYePZbEySaeUAt3MrjGzLWa23cxun2b/h8zshcTjCTM7N/2lnhnduUj8bNPBV0a4TFi1KN6Pvl796J5x0kA3syBwB3AtsAL4gJmtmHLYLuBS59zrgD8H7kp3oWeqsVJ3LhL/amuPUloYZEF1yeS2s2pKqSkr1LouHpJKC301sN05t9M5NwKsBa5LPsA594Rz7kji5VPA/PSWeeYaImqhi3+1tfdxztxyAgGb3GZmtCys1oVRD0kl0OcB+5Je709sm8lHgYem22Fmt5hZq5m1dnV1pV5lGpQWhagoDqmFLr7jnKPtUJQVjRWv2tfSXMW+nkEOaRa1J6QS6DbNtmkvi5vZ5cQD/TPT7XfO3eWca3HOtdTW1qZeZZrEx6Ir0MVf9h8ZpG8odlz/+YTViX50dbt4QyqBvh9oSno9Hzg49SAzex3wj8B1zrnu9JSXXppcJH6UPOV/qhUNFZQWBnVh1CNSCfT1wFIzW2RmhcANwIPJB5jZAuCnwIedc1vTX2Z6aHKR+FFbexQzWDa3/FX7QsEAFyysUj+6R5w00J1zMeBW4GGgDfixc+5lM1tjZmsSh30BmAP8nZltNLPWjFV8BhorwxwZGNXC/uIrbe1RFs0ppaRw+sVVVzVXs6Wjj96B0VmuTNItpeVznXPrgHVTtt2Z9Pxm4Ob0lpZ+DZFXhi6eVVuW5WpEZkdbex+vnReZcf+q5mqcgw17e7hiWf0sVibp5puZoqChi+I/fUOj7O0ZmFzDZTrnL6ikIGg8s+vIjMdIfvBVoM+bmC2qfnTxic2H4kvmTndBdEJxQZDXzouoH90DfBXo9ZEiANrVQhefaDvBCJdkqxZV88L+owyN6vpSPvNVoBeFgtSUFWmki/hGW3uUypKCyetHM1m1sFo3jvYAXwU6xNd00b1FxS82HYyyfG4FZtPND3xFS3MVoIW68p3vAr0hUqzZouILY+OOLR19J+1uAagsKeSc+nLNGM1zvgv0xsow7UcHtai/eN6uw8cYGh0/4QiXZKsWVenG0XnOf4EeCXNsZIzoUCzbpYhk1MQF0ekW5ZrOqub4jaMnbiYt+cd3gd5UHR+6+Juts7vao8hsa2uPEgoYS+pSm0Q3sVCXhi/mL98F+mXn1HFeUyWf+ckLvHywN9vliGTMpvYoS+rKKAoFUzq+IRJmfpVuHJ3PfBfoxQVB7vrwhUTCBXzs3la6+oazXZJIRrS1R1O6IJpsdXP8hhe6xpSffBfoAHUVxdx9Yws9AyOs+f4GhmOaTCHe0nNshI7o8HE3hU7FqkXVHO4fYZduHJ2XfBnoAK+dH+Eb7zuPDXuO8LkHXlKLRDwl1RmiU62aGI+ubpe85NtAB3j76xq47cql/GTDfv7x8V3ZLkckbTYdnAj01IYsTlhcW0Z1aaEW6spTKS2f62W3XbmU7Z39/OVDbSypK+PyZXXZLknkjLW1R6krL2JOWdEp/V78xtG64UW+8nULHSAQML7+vnNZ2VjBJ+9/jq0dGoMr+W/TaVwQnbB6UTV7ewboiGqJjHzj+0AHCBcGufvGFsKFQW6+t5WeYyPZLknktI3ExtnR1Z/yhKKpVjUnbhytdV3yjgI9oSES5q4PX8ih6BAf//4GRmKa/iz5aVtnH6Nj7rRb6CsbKygpDKrbJQ8p0JOcv6CKr7zntTy9q4c/ffBljXyRvDQxdX/FKV4QnRAKBrhgQRXrd+vCaL5RoE/x7vPn8/HLFnP/M3u578k92S5H5JS1tUcpCgVonlN62u+xqrmazYei9A7qxtH5RIE+jf/zlnO4ank9f/Yfm3h8m9Z8kfzS1h5l2dxyQsHT/8971aIqnINn96iVnk8U6NMIBIxv33AeS+vK+MQPnmVnV3+2SxJJiXPujEa4TDi/qYpQwLQ+ep5RoM+grCjE3Te2EAoGuPneVnoH9Ken5L5D0SGODoyecaCHC4O8Zl5EdzDKMwr0E2iqLuHO372QfUcGuPX+Z7Xwv+S8053yP53Vi6p5YX+vbhydRxToJ7F6UTVfftdreHzbYb78n23ZLkfkhCZGuCw7zREuyVY1VzMyNs7zunF03lCgp+D9qxbw0Tct4ntP7OaHT+/NdjkiM9rUHqWpOkxFccEZv1fLQi3UlW8U6Cn67LXLuPTsWr7w85d4amd3tssRmVbbwSjL5555dwtAVWkhZ9eX8YzGo+cNBXqKQsEA3/ng+SycU8LHv7+Bx7Z0ZrskkeMMjMTY1X0sLf3nE1Y1V/PsniOMjWuSXT5QoJ+CiuIC7vnIKqpKC/nIP6/nk/c/R2efFjCS3LDlUB/OpeeC6ITVi6rpH45NXmyV3KZAP0UL55Ty0G2X8EdXnc3DLx3iym/8hh88vYdxtWAkyyYuiK48zUW5pjOxUJf60fODAv00FIWC3HbVUh761CW8pjHC5x54iff9w5NsOaSldyV7NrX3Ul4UYn5VOG3v2VgZZl6lbhydL1IKdDO7xsy2mNl2M7t9mv3LzOxJMxs2s0+nv8zctLi2jB9+7PV8433nsrOrn7f/7eN89b82a9yuZEVbex/LGsoxs7S+76rmKp7ZdUSL1eWBkwa6mQWBO4BrgRXAB8xsxZTDeoD/DXw97RXmODPjPRfO59E/uYx3nT+Pv3tsB2/51m/57VatASOzZ3zcsTkNU/6nE79x9DC7uwfS/t6SXqm00FcD251zO51zI8Ba4LrkA5xznc659YBv58dXlxby9fedy/0fu4hQwLjxnme4be1zdPUNZ7s08YF9RwY4NjLGigwE+uqJfnQtA5DzUgn0ecC+pNf7E9tOmZndYmatZtba1eXNFuwbFs/hoU9dwqeuWspDLx7iym88xv3P7NVFU8moV24Knf5AX1JXRlVJgRbqygOpBPp0HXKnlU7Oubuccy3OuZba2trTeYu8UBQK8qmrzmbdbZewvKGCz/70Ra7/hyd1v1LJmLb2KAGDc+ae+ZT/qcyMluZqXRjNA6kE+n6gKen1fOBgZsrxliV1Zay95SK+9t7Xsb2rn7f9zeN87WFdNJX029Tex6KaUooLghl5/9XN1ezpHqBTN47OaakE+npgqZktMrNC4AbgwcyW5R1mxvtamnj0jy/luvPmccev4xdN//l/dnF0QDejlvRoa4+yojGSsfdftWhiPLqWAchlJw1051wMuBV4GGgDfuyce9nM1pjZGgAzm2tm+4E/Bj5vZvvNLP2deXlsTlkR37j+XH74sddTVVLAl/59E6v/8lFuW/scT+w4rD52OW29A6McODrI8jSssDiTlY0VhAt04+hcF0rlIOfcOmDdlG13Jj0/RLwrRk7i4sU1/PzWN7HpYJQft+7jp8/u5+cbD7JwTgnXtzTx3gvnU19RnO0yJY+0HcrcBdEJBcEA5y+o5BmNdMlpmimaJSsaK/jiO1fyzOeu4tvvP4+GSDFfe3gLF//1r7j53lYe2dShG2pISibWWcnEkMVkq5qraTsUJTrk29HJOS+lFrpkTnFBkHedP493nT+PXYeP8ePWffxkw34eaeugrryI97XM5/qWJhaewR3cxdva2qPMKS2krrwoo5+zelE1zsGGPUe4/Jy6jH6WnB610HPIoppSPnPNMp64/QruvrGF186L8PeP7eDSrz3GB+9+ip9vPKARMvIqbe19LG+oSPuU/6nOX1BJKGCaYJTD1ELPQQXBAFevqOfqFfUc6h3iJxv28aPWfdy2diORcAHvPn8ev3vRQpbUlWW7VMmy2Ng4Wzr6uOkNCzP+WSWFIVbOi+jCaA5ToOe4uZFibr1iKX942RKe3NnN2vX7+OHTe/neE7u5ZGkNN72hmcuX1REMZLZ1Jrlp5+FjjMTGM3pBNNnq5irufWIPQ6NjGRvzLqdPgZ4nAgHjjUtqeOOSGg73D7P2mb18/6m93HxfK03VYW68qJnrW5qIlJz5vSQlf0xcEJ2tQF/VXM3dj+/i+X1Hef1Zc2blMyV16kPPQzVlRdx6xVIe/8zl3PHBC2iIhPmLdW28/q8e4bM/fZHNh3R3Gb/Y1B6lMBhgce3sdL+taq4mXBDk5vta+ZtHtmnES46xbK1x3NLS4lpbW7Py2V606WCU+57czQPPHWA4Ns5FZ1Vz0xuauXpFPaGg/r/tVR/+p6fp7h9h3W2XzNpnbj4U5Zu/2MovNnUQCRdwy5vP4qaLmykr0h/8s8HMNjjnWqbdp0D3lqMDI/xo/T7ue3IPB44O0hgp5kMXLeQDqxdQXVqY7fIkzVq+/AiXnl3LN64/d9Y/+8X9vXz7ka08urmT6tJC/uDNZ/HhNyykpFDBnkkKdB8aG3c82tbBvU/u5n+2d1MYCvDOcxv5yMXNvGZe5tb8kNnT1TfMqr94hM+/fTk3X3JW1urYuO8o3/rlVn6ztYuaskLWXLqY371ooS6aZogC3ee2dfRx75O7+emzBxgYGeO8pkouXFjF4toyzqotZXFtGTVlhRkfxyzp9dutXdx4zzP88GOv5+LFNdkuhw17evjWL7fx39sPU1texCcuW8wNqxco2NNMgS4A9A6O8pMN+/nZcwfY1tnH0OgrSwuUF4eOC/j4o5SFc0opDKkPPhfd+Zsd/PVDm9n4haupLMmd7rSnd3bzzV9u5eldPcytKOYTVyzh+pb5FIUU7OmgQJdXGR93HOwdZGfXMXZ09R/381DSmtfBgNFUFT4u7JtrSikpDBIKBCgIGqFggFDAKAi+8rogaJP71fLPjNvWPsczu3p48rNXZruUV3HO8eSOeLC37jnCvMowt16xhPdeOJ8CXaQ/Iwp0OSX9wzF2JQI+Oex3HT7GcOzUFwwLBuy4wC8uCNLSXM0Vy2q57Ow6qnSx9rS85Vu/YX5VCfd8ZFW2S5mRc47Htx3mm7/cysZ9R2mqDvPJK5byO69rJFyoFvvpUKBLWoyNOw4eHWRP9wBDo2PExscZHXPxnzHH6Pg4sTHH6Ng4sXFHbCy+f+L16Fh8f+/gKE/sOMzh/hECBucvqOKKZXVcsayOZXPL1aJPwdDoGCv/9GE+fuliPv3Wc7Jdzkk553hsSxff/OVWXjzQSyhgrGys4MKF1bQ0V9GysIo6LRudEgW65JzxcccLB3r51eZOfrW5g5cOxCdDNUaKuXxZHVcur+PixTW6oDaDlw708o7v/Dd3fPAC3v66hmyXkzLnHP+zvZsndhymdc8Rnt93dPKvvqbqMC0Lq7lwYRUtzVWcXVdOQEtavMqJAl0DRiUrAgHjvKZKzmuq5I+vPpuO6BC/3tzJrzZ38sBzB/jB03spCgV445IaLk+03udVhrNdds7YdHBiyn/m7lKUCWbGm5bW8Kal8VE5I7FxXj7Yy4Y9R2jdfYTHtx3mgecOAPEL9ecviLfeWxZWcd6CSo1xPwm10CXnDMfGeHpnT6L13snengEAls0t54pldVy+rI6VjRW+/o/7iw++zI/W7+OlL73VUwuzOefY2zNA6+4jtO45woY9PWzt6Afi12JWNFRw4cIqVjZWcM7ccpbUlfnue6AuF8lbzjl2dB3jV5s7+NXmTtbvPsJY4v6r8yrDLK0vY0ltWfxnXRlLast9sUDZ+//hSYZj4/zsE2/MdikZ1zswyrN7j9C6p4cNe46wcd/RySG3ZtBUVcLZ9WUsrS/nnPpyltbHh916tbtOXS6St8wsHtR1Zdzy5sX0Do7y1M5uth7qY1tnP9s7+3lyR/dxo29qy4uOD/nEo7asyBMXXJ1ztLVHece5jdkuZVZESgq4PPGXGcTXgN/TM8C2jj62dvSzpaOPbR19PLali1jif/YBg+Y5pSytL+Ps+vLJx6Iab8+rUKBLXomEC3jryrm8deXcyW1j444DRwbZ1tnH9kTIb+vs54FnD9A3HDvud+Ot+DIaKoupKy+mrryI+opi6iqKmFNamBcLmR04Okh0KDZrS+bmmlBidcnFtWVc85pXto/ExtndfYytiaDf1tHHlo4+HmnrnPyrLhQwFtWU0lxTyoLqkslHU3UJ86vCed+qV6BL3gsGjAVzSlgwp4Qrl9dPbnfO0REdTgR832TQP7q5k8P9w696n4DBnLIi6sqLXgn68iLqkn7WVxRRU1aU1ckxbe19AKzIswuimVYYCky2xJMNx8bY2TUR9PGw39s9wH9vO8zglFs61lcUTQb8guoSmqri36sF1SXUlhXl/KgbBbp4lpkxN1LM3Ejx5KiKCSOxcQ73D9PZN0xndIiOvmG6okPx133DdESHeOlglO7+YcanucxUXhSiIlxARbiASDhERXEBkXD8UTH5M/TKtuJX9p1pK3DiphbnzPVnC/1UFYWCLG+oeNVfNM45DvePsLdngP1HBtjbPcDenvjjqR3dPPDcAZIvMRaFAjRVl9BUFSaS+PdYFApM/iwqCL5qW3FBkOKCAEWh+M+J7ZUlhUTC6b/Wo0AXXyoMBWisDNN4kqGQsbFxuo+N0BkdprMvEfjRYY4OjhAdjNE7OEp0cJS9PQP0Do7SOzjKwMiJb+RdlPjseCswfNyf/QuqSygvPvF/6G3tUZrnlGj98TNkZtSWF1FbXsSFC6tetX84NsaBI4Ps7Rlg35FB9vXEQ3/fkQF2Hj7G0OgYQ6PjDMfGjlsXKRV/cOlZfPba5en6R5mkb4TICYSCAeoriqmvKAZSW3Z4JDZO39DoZMBHh2KvPB8c5ejACAeOxoPi+X1H6R08/q4/VSUFx//Zn9TX2xApZlN7lBU+7T+fTUWhIGfVlnFWCneDcs4xHBuPP6YE/VBsjOHRcYZGxxiOxX8urc/MHaYU6CJpVhgKMKesiDllRSkd3zswyr4jr/y5v7dngH09A7x4oJf/eunQ5MgNiF8vGBt3vOeC+ZkqX06DmSW6V4KQga6UVCnQRbIsUlJApCQy7Y1HYmPjHIoOTYb83p4BOqPDXHeeP4YsyqlRoIvksFAwwPyqEuZXlcDibFcjuS73B92KiEhKFOgiIh6hQBcR8YiUAt3MrjGzLWa23cxun2a/mdnfJva/YGYXpL9UERE5kZMGupkFgTuAa4EVwAfMbMWUw64FliYetwB/n+Y6RUTkJFJpoa8GtjvndjrnRoC1wHVTjrkOuM/FPQVUmln+3EZFRMQDUgn0ecC+pNf7E9tO9RjM7BYzazWz1q6urlOtVURETiCVQJ9uebGpyxWlcgzOubuccy3OuZba2tpU6hMRkRSlMrFoP9CU9Ho+cPA0jjnOhg0bDpvZnlSKnEYNcPg0f3c25Hp9kPs1qr4zo/rOTC7Xt3CmHakE+npgqZktAg4ANwAfnHLMg8CtZrYWeD3Q65xrP9GbOudOu4luZq0z3YIpF+R6fZD7Naq+M6P6zkyu1zeTkwa6cy5mZrcCDwNB4B7n3Mtmtiax/05gHfA2YDswAPxe5koWEZHppLSWi3NuHfHQTt52Z9JzB3wivaWJiMipyNeZondlu4CTyPX6IPdrVH1nRvWdmVyvb1rm3DT31xIRkbyTry10ERGZQoEuIuIROR3oubwomJk1mdmvzazNzF42s9umOeYyM+s1s42Jxxdmq77E5+82sxcTn906zf5snr9zks7LRjOLmtmnphwz6+fPzO4xs04zeylpW7WZ/dLMtiV+vvqOwpz8+5rB+r5mZpsT/w4fMLPKGX73hN+HDNb3RTM7kPTv8W0z/G62zt+PkmrbbWYbZ/jdjJ+/M+acy8kH8SGSO4CzgELgeWDFlGPeBjxEfKbqRcDTs1hfA3BB4nk5sHWa+i4D/iOL53A3UHOC/Vk7f9P8uz4ELMz2+QPeDFwAvJS07avA7YnntwNfmeGf4YTf1wzW9xYglHj+lenqS+X7kMH6vgh8OoXvQFbO35T93wC+kK3zd6aPXG6h5/SiYM65dufcs4nnfUAb06xfk+NyZVG1K4EdzrnTnTmcNs653wI9UzZfB9ybeH4v8K5pfjWV72tG6nPO/cI5F0u8fIr4TO2smOH8pSJr52+CmRlwPXB/uj93tuRyoKdtUbBMM7Nm4Hzg6Wl2v8HMnjezh8xs5exWhgN+YWYbzOyWafbnxPkjPvt4pv+Isnn+JtS7xMznxM+6aY7JlXP5+8T/6prOyb4PmXRrokvonhm6rHLh/F0CdDjnts2wP5vnLyW5HOhpWxQsk8ysDPg34FPOueiU3c8S70Y4F/gO8LPZrA14o3PuAuLr1X/CzN48ZX8unL9C4J3Av06zO9vn71Tkwrn8HBADfjDDISf7PmTK3xO/xfV5QDvxbo2psn7+gA9w4tZ5ts5fynI50DOyKFg6mVkB8TD/gXPup1P3O+eizrn+xPN1QIGZ1cxWfc65g4mfncADxP+sTZbV85dwLfCsc65j6o5sn78kHRNdUYmfndMck+3v4k3AO4APuUSH71QpfB8ywjnX4Zwbc86NA3fP8LnZPn8h4H8BP5rpmGydv1ORy4E+uShYohV3A/FFwJI9CNyYGK1xESksCpYuif62fwLanHPfnOGYuYnjMLPVxM939yzVV2pm5RPPiV84e2nKYVk7f0lmbBVl8/xN8SBwU+L5TcDPpzkmle9rRpjZNcBngHc65wZmOCaV70Om6ku+LvPuGT43a+cv4Spgs3Nu/3Q7s3n+Tkm2r8qe6EF8FMZW4le/P5fYtgZYk3huxG+PtwN4EWiZxdreRPxPwheAjYnH26bUdyvwMvEr9k8BF89ifWclPvf5RA05df4Sn19CPKAjSduyev6I/8+lHRgl3mr8KDAHeBTYlvhZnTi2EVh3ou/rLNW3nXj/88T38M6p9c30fZil+v4l8f16gXhIN+TS+Uts/97E9y7p2Fk/f2f60NR/ERGPyOUuFxEROQUKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIR/x/CIkyfTJI7x0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "plt.title('train loss')\n", + "plt.plot(np.arange(len(losses)), losses)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'train acc')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqYElEQVR4nO3de3xU9Z3/8dcnCSGQBEhICJAA4SaCtipGVGzV1m69taXam7ZVSvVH/a3adq+1t1/9bfe3vWzb3e5qy7qVotZqb9rFlla3F9ftokIQVK41cg0JEAiZBJKQ2+f3x5zgdJiQgUwy4cz7+XjMIzPn+z0z3zkM73zznfM9X3N3REQkvLLS3QARERlcCnoRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5Bb1IDDNbZmZfTHc7RFLJdB69hIWZ7QRud/ffpLstIsOJevSSMcwsJ91tEEkHBb2Egpk9AkwFnjKzI2b2t2ZWaWZuZreZ2W7gd0Hdn5jZPjOLmNlzZnZOzPOsMLO/D+5faWa1ZvZXZnbAzOrNbMlJ2rDEzLaYWYuZbTezT8SVLzKzDWbWbGavm9k1wfZiM/u+mdWZ2WEz+3nqj5BkMgW9hIK73wLsBt7t7gXu/vWY4iuAucDVweNfAbOBCcBLwKMneeqJwFigHLgNuN/MivqoewB4FzAGWAL8k5nNBzCzBcDDwN8A44DLgZ3Bfo8Ao4Fzgjb9UzLvWSRZ+lNWMsG97n6094G7L++9b2b3AofNbKy7RxLs2wn8nbt3AavM7AgwB3ghvqK7/zLm4X+Z2TPAW4n+MrkNWO7u/xmU7w1efxJwLTDe3Q/37nt6b1MkMfXoJRPs6b1jZtlm9tVg6KSZN3rVJX3seygI+V6tQEGiimZ2rZm9YGaNZtYEXBfzvFOA1xPsNgVojAl5kZRT0EuY9HUKWez2DwOLgHcQHZKpDLbbQF7YzEYCPwO+AZS5+zhgVczz7gFmJth1D1BsZuMG8voiJ6OglzDZD8zop04hcAw4RHRc/B9S9Nq5wEigAegys2uBd8aUPwgsMbOrzCzLzMrN7Gx3ryf6ncF3zKzIzEaY2eUpapMIoKCXcPkK8AUzazKzv+6jzsPALqJj5JtJMNZ+Oty9Bfgk8GPgMNG/HFbGlK8h+IIWiBAdh58WFN9C9LuArUS/0P10Ktok0ksTpkREQk49ehGRkFPQi4iEXL9Bb2bLg1mBG/soNzP7FzOrMbNXeieIBGXXmNm2oOyeVDZcRESSk0yPfgVwzUnKryU6y3A2sBT4LkTPVwbuD8rnATeb2byBNFZERE5dvzNj3f05M6s8SZVFwMMe/Vb3BTMbF8z2qwRq3H07gJk9HtTd3N9rlpSUeGXlyV5SRERirVu37qC7lyYqS8UlEMqJmXkI1AbbEm2/OJknrKyspLq6OgVNExHJDGa2q6+yVHwZm2hGoZ9ke+InMVtqZtVmVt3Q0JCCZomICKQm6GuJXq+jVwVQd5LtCbn7A+5e5e5VpaUJ//oQEZHTkIqgXwncGpx9cwkQCaZ1rwVmm9l0M8sFbiJmpqCIiAyNfsfozewx4EqgxMxqgS8BIwDcfRnRCzddB9QQvbLfkqCsy8zuAp4GsoleonXTILwHERE5iWTOurm5n3IH7uyjbBXRXwQiIpImmhkrIhJyCnoRkZDTUoIiZyh3p/FoB7WH29jb1Mbew22cUz6GhTP7WixLMpWCXmSY6ulxGo4co/ZwG7WHW4+HeWywt3V2/8k+xfm5rL7n7eSNyE5Tq2U4UtCLpIG7c7i1k/3N7exrbmd/JPqzvqmd2qZW9h5uo66pnY7unj/Zr2j0CMqLRjGzNJ8rziqlfNwoKopGUV40itrDbXzikXX84pV63n9hRZremZyqru4eOrp76OjqoavHKSkYmfLXUNCLpFh7Z3c0wCPt7G85djzE9zW3c6A32JuP0dHVc8K+JQUjqSgaxTnlY7n6nInHQ7yiaDTl40aRP7Lv/7LzJo1h9oQCVqzewfvml2M2oGVwpR89Pc6+5na2Nxxlx8EjbD94lAMtxzjW2Rvc3XR0vRHiHV09dHY7x7qCsmB7T8z1AkoLR7L28+9IeVsV9CJEe9j1kXYaWo7R2tFNW2cXrR3d0fvHfwbbOnu3ddHW2XN8e1tHN42tHTS1dp7w/Hkjspg4Jo+yMXnMn1pEWXB/4pg8Jo4dSdmYPEoLRzIy5/SHXMyMxQsr+cLPN/LS7sNcOK14IIdEApHWTrYfPMKOg0eDUD/K6w1H2HnoKO2db/yyzs/NpmxsHiNzssnNyWJkdhajc3MYl5NFbnYWuTkxt+y4n8H9wrzBiWQFvWScw0c72La/hW37Wti2v4U/Bj9b2rv63XfUiGxG52YzKrf3Zw6jRmRRNiaPUbnZjBs1IhroY3tDPI+ywjzGjMoZkh72DReU87Vfb2XF6l0K+lPQ2d3DrkNHqTlwNAj0aLDvOHiUQ0c7jtfLzjKmFo9mekk+b5lVwvTSfGaUFDCjNJ8JhSOH7V9RCnoJrdaOLl7bf+SNQN/fwtZ9LTS0HDteZ+yoEcwpK+S955dz1sRCJo/NC0I8JxrkI94I9bycbLKyhud/5F75I3P4UNUUVqzeyf7r51I2Ji/dTRpW2jq6eb3hCDUH3ri9dqCFXYda6YoZQyktHMmMknzeeU4ZM0oKmF6Sz/TSfKYWj2ZE9pl3VrqCXkLh0JFjrN3ZyMa9zcd763sOt+LB/928EVmcVVbIFWeVMqeskDkTo7fh3As7XbdeWsmD/7ODR1/YxV++c066m5MWkbbOIMhbYgL9CHub2o5/JrKzjGnjRzOrtICrz5nI7LICZpZGQ70wb0R630CKKejljFQfaWPNjkZe3NHImh2N1Bw4AkT/884oyedNFWN5/4UV0UAvK2RK8Wiyh3lvPFWmjh/N2+dM4IdrdnPn22cNaNz/TNDU2sHanYeDX/QRXjtw5E/+asvNyWJmaQEXTC3ig1VTmDWhgFkTCqgcn09uzpnXOz8dCnoZ9tyd3Y2tx0N9zY5Gdje2AlA4MoeqyiLeN7+CBdOLObd8TOiDLRkfu6ySWx5cwy9fqefG+eE61bL3l/yaHY2s3dnIH/dHf8nnZmcxd/IYrjirlFkTCpgdBHpFUeb8ku+Lgl6GHXen5sCRPwn2fc3tQPQ88gXTi1m8sJKLpxczd9KYjP9PnMhbZpUwszSfh1bvPKOD3t3ZfvBoNNR3NLJmZyO1h9sAKBiZw/xpRbznvMlcVFnMeVPGaaJYHxT0kjZHj3VFzy+PBLfmdl6tjbBmZyONwZkOEwpHcvGM8SyYXswl04uZWVow7L8QHQ7MjI8trOSL/7GJ9bsPc8HUonQ3KSld3T1sqW9hzc5osFfvauTgkehnYXx+LhdVFvPxy6azYHoxZ08sJOcM/GI0HRT0knK912A5HuJxYd77M9HpjBVFo3jbnAlcPL2Yi2cUM7V4dOi+LB0qN86v4Ou/3saK1TuHfdDvPHiUf/1dDU9v2seRY9HPxZTiUVx+VikLKou5aHoxM0ry9Vk4TQp66Ze709rRTePRjhNvrR00Hgl+Hu3gQEviWZ9ZBhMKo+eXzywt4LJZJUwMzjUvG5PHpLF5x89Fl9TIH5nD+6sq+MELu/j89XOZUDj8TrXcfaiVf/3dazyxfi8jso0bLijnkuAvuEljR6W7eaGRVNCb2TXAt4muFPU9d/9qXHkRsByYCbQDH3f3jUHZXwC3E10Y/FVgibu3p+wdSEq0dXTz8w172bavhcajHRxu7eDQkeDn0Y6E0/UBRmQbxfm5FI3OpTg/lwunFlE2No9JvZOFxuQxaewoSgpy9Wd2Giy+tJIVq3fywxd38+l3nJXu5hy3p7GV+39fw0/X1ZKdFR1m+sQVM4blL6MwSGYpwWzgfuDPiC74vdbMVrr75phqnwM2uPsNZnZ2UP8qMysHPgnMc/c2M/sx0bVjV6T4fchpajzawcPP7+Th53fReLSDwpE5FBdEQ3vS2DzOmTyG4vzo46L8XMbH/SwcOTQzPuX0VJbkc+VZpTz64m7+/MpZaT+dsK6pjft+X8NPqvdgZnz0kmn8+ZUzmaCJXYMqmR79AqDG3bcDmNnjwCIgNujnAV8BcPetZlZpZmUxrzHKzDqB0UBdqhovp2/3oVa+94ft/Lh6D+2dPbxj7gSWXj6TiyqLFNwhs3hhJR/7/lp+tbGeReeXp6UN+yLtfOfZGh5fswfHuemiqfz522ZqeGaIJBP05cCemMe1wMVxdV4GbgT+YGYLgGlAhbuvM7NvALuBNuAZd38m0YuY2VJgKcDUqVNP6U1I8l6pbeLfntvOr16tJzsrOib6v946g9llhelumgySy2eXMqMknxWrdw550B9obuc7z77OD9fspqfH+eBFU7jzbbMoH6eAH0rJBH2i7p3HPf4q8G0z20B0HH490BWM3S8CpgNNwE/M7KPu/oMTntD9AeABgKqqqvjnlwFwd579YwMP/Nd2nt9+iMK8HJZePpMll1XqWigZICvLuPXSadz71GZe3tPEeVPGDfprNrQcY9l/vc4PXthFV4/zgQsruPNts5hSPHrQX1tOlEzQ1wJTYh5XEDf84u7NwBIAi/7dvyO4XQ3scPeGoOwJYCFwQtBL6nV09fDUy3X8+39vZ+u+FiaNzeML18/lQxdNCd21POTk3ndhBf/49DYeWr2Tb33o/EF7nUNHjvHAc9t56PmddHT1cOP8Cu5++yymjc8ftNeU/iUT9GuB2WY2HdhL9MvUD8dWMLNxQKu7dxA9w+Y5d282s93AJWY2mujQzVVAdQrbLwm0tHfy+Jo9LP+fHdRH2plTVsi3Pnge73rz5LR/GSfpUZg3gg9UTeGHL+7ms9fNpbQw9asYPbR6J1/79VbaO7t57/nl3H3VbKaXKOCHg36D3t27zOwu4Gmip1cud/dNZnZHUL4MmAs8bGbdRL+kvS0oe9HMfgq8BHQRHdJ5YFDeibAv0s6K1Tt59MVdtLR3cemM8XzlxjdxxVml+oJVuPXSaaxYvZPH1uzmk1fNTulz/3jtHr60chNXzinlC9fPY9aEgpQ+vwyMuQ+/4fCqqiqvrlbHPxlHj3XxzOZ9PPHSXv6n5iAA171pEksvn8GbK8alt3Ey7Ny6fA3b9jXzh8+8PWXXVf/N5v184gfrWDhzPA8uvkh/NaaJma1z96pEZZoZewbq6u7hDzUH+fn6vTy9aT9tnd1UFI3izrfN4gMXTmHqeH3hJYktWVjJkhVr+fXGfbz7vMkDfr51uxq584cvcc7kMSz76IUK+WFKQX+GcHc27m3myfV7WflyHQePHGPsqBHcML+cGy4op2qazn+X/l1xVimV40ezYvXOAQf9a/tb+PiKaiaPG8Xyj1100oXLJb30LzPM7WlsZeXLdTy5fi81B46Qm53F28+ewA3zy7lyTqmuvS6nJCvLuOXSSr78i81s3Bvh3PKxp/U8dU1t3Lp8Dbk5WTz88QWUFKT+y11JHQX9MBRp7eSXr9bz8/V7WbOzEYAFlcV85cY3cd25kxg7WqdGyun7QFUF33wmelXLb3zgvFPev6m1g8XL13CkvYvHP3GJzo0/Ayjoh4neSU0/WrOH3209QEd3DzNL8/mbq+fwnvMm6z+TpMyYvBG8b34FP6rew2evPZvxp9Abb+vo5vaHqtl1qJWHPr6Acyaf3l8EMrQU9MPAa/tb+LtfbOa/XztISUEuH7lkKjdeUMG55WM07i6DYvHCaTzywi4eX7uHO982K6l9urp7uPuxl1i3+zD3f3g+l84cP8itlFRR0KdRpLWTf/rNH3nkhV3k52bzpXfP46OXTEvZaW8ifZk1oZC3zi7hBy/sYunlM/r9zLk7n39yI7/ZcoAvLzqH6940aYhaKqmgoE+D7h7nsTW7+eYz24i0dXLzgqn81TvnUJyfm+6mSQZZfGkltz9czTOb9nP9m08e3N985o/8qHoPd799FrdcWjk0DZSUUdAPsedfP8T/fWoTW/e1cPH0Yr707nOYN3lMupslGehtZ09gSvEoHlq986RB/9Dqndz3+xpuumgKf/lnw2fxEkmegn6I1B5u5R9WbWHVq/soHzeK73xkPteeO1Fj8JI22VnG4ksr+ftfbmFTXSThF6u/eKWOe5/axDvmlvH37z1Xn9czlAaDB1lrRxffemYbV33zv/jd1gP85Z+dxW//6gque9Mk/aeRtPtA1RRGjcjmodU7TyhbXXOQv/zRy1RNK+K+D1+gpSDPYOrRDxJ356lX6vnKqi3UR9p5z3mTuefas5msBRdkGOmdXf2zdbV89tq5FAXfE23cG2HpI+uoLBnN9269iLwRmph3JtOv6EGwcW+EDyx7nk8+tp7xBbn85I5L+ZebL1DIy7D0sYWVHOvq4fG10YXkdh9q5WPfX8uYvBwe+vgCTdALAfXoU+jgkWN84+lt/Kh6D+Pzc/na+97E+y+cQnaWhmhk+DqrrJCFM8fzyPM7uXF+Obcuf5Gunh4eX3qp1nQNCQV9iuxtauO99/8Ph492cPtbpnP3VbMZo1Wc5AyxeGEln3hkHdf/yx84cqyTR2+/hFkTtI5wWCjoU+DosS5uf6ia9o5uVt71Fp0uKWecd8wto3zcKPY1t/PALRdy4bSidDdJUiipMXozu8bMtplZjZndk6C8yMyeNLNXzGyNmZ0bUzbOzH5qZlvNbIuZXZrKN5BuPT3Op3+0gW37mrnvI/MV8nJGys4y/u2WC/nh7Rdz1dyydDdHUqzfHr2ZZQP3A39GdKHwtWa20t03x1T7HLDB3W8ws7OD+lcFZd8Gfu3u7zezXCBUV+f6x2e28Z+b93Pvu+dxxVml6W6OyGk73UsWy/CXTI9+AVDj7tuDxb8fBxbF1ZkH/BbA3bcClWZWZmZjgMuBB4OyDndvSlXj0+1n62r57rOv85GLp7J4YWW6myMiklAyQV8O7Il5XBtsi/UycCOAmS0ApgEVwAygAfi+ma03s++ZWcJl4c1sqZlVm1l1Q0PDKb6NobduVyOffeJVFs4cz73vOUeTn0Rk2Eom6BMlWPyK4l8FisxsA3A3sB7oIjo0NB/4rrtfABwFThjjB3D3B9y9yt2rSkuH9xBI7eFWlj68jvKi6KUMdLVJERnOkjnrphaYEvO4AqiLreDuzcASAIt2bXcEt9FArbu/GFT9KX0E/ZniSHCGTWd3D99bXMW40bripIgMb8l0RdcCs81sevBl6k3AytgKwZk1vYl3O/Ccuze7+z5gj5nNCcquAmK/xD2jdPc4n3psPa8dOMJ3PnIhM0sL0t0kEZF+9dujd/cuM7sLeBrIBpa7+yYzuyMoXwbMBR42s26iQX5bzFPcDTwa/CLYTtDzPxN9/ddb+e3WA3z5vefyltkl6W6OiEhSkpow5e6rgFVx25bF3H8emN3HvhuAqtNv4vDw4+o9/Ntz21l86TRuuWRaupsjIpI0fYuYhDU7Gvn8k6/y1tklfPFd89LdHBGRU6Kg78fuQ6184pFqphSP5r4Pz9c1uUXkjKPUOomW9k5ue2gtPQ4PLr6IsaN0kTIROfMo6PvQ3ePc/dh6dhw8ync/Op/pJQnneYmIDHu6emUf/mHVFp7d1sD/u+FcFs7UGTYicuZSjz6Bx9bs5sE/7GDJZZV85GKdYSMiZzYFfZznXz/EF3++kSvOKuXz181Nd3NERAZMQR9j58Gj/O9H11FZks+/atV7EQkJJVmMux57CQMeXFylZQBFJDQU9IFjXd1s3NvM4oWVTBuvM2xEJDwU9IF9kXYAysdp1XsRCRcFfaCuKRr0kxX0IhIyCvpAfaQNgIlj89LcEhGR1FLQB+qDoZvJY9WjF5FwUdAH6iNtjBs9glG52eluiohISinoA/VN7UxSb15EQiipoDeza8xsm5nVmNkJa76aWZGZPWlmr5jZGjM7N64828zWm9kvUtXwVKuLtDNZ4/MiEkL9Br2ZZQP3A9cC84CbzSx+9Y3PARvc/c3ArcC348o/BWwZeHMHT32kjUnjFPQiEj7J9OgXADXuvt3dO4DHgUVxdeYBvwVw961ApZmVAZhZBXA98L2UtTrF2jq6aWrt1NCNiIRSMkFfDuyJeVwbbIv1MnAjgJktAKYBFUHZPwN/C/Sc7EXMbKmZVZtZdUNDQxLNSp264NTKSRq6EZEQSiboLcE2j3v8VaDIzDYAdwPrgS4zexdwwN3X9fci7v6Au1e5e1VpaWkSzUqd3lmx6tGLSBgls/BILTAl5nEFUBdbwd2bgSUAZmbAjuB2E/AeM7sOyAPGmNkP3P2jKWh7ytQ1RXv0kzVGLyIhlEyPfi0w28ymm1ku0fBeGVvBzMYFZQC3A8+5e7O7f9bdK9y9Mtjvd8Mt5OGNyVKaFSsiYdRvj97du8zsLuBpIBtY7u6bzOyOoHwZMBd42My6gc3AbYPY5pSrj7RRUpDLyBxNlhKR8ElqzVh3XwWsitu2LOb+88Dsfp7jWeDZU27hEKjTZCkRCTHNjCU4h17DNiISUgp6ei9/oKAXkXDK+KBvae+k5VgXk3QdehEJqYwP+jfOoVePXkTCKeODvi6ilaVEJNwyPujrm3T5AxEJt4wP+rpIO2ZQNkZBLyLhlPFBX9/UxoTCkYzIzvhDISIhlfHpVh9pZ6ImS4lIiCnoI21aWUpEQi2jg97dqY/o8gciEm4ZHfTNbV20dnTr8sQiEmoZHfRvrCylHr2IhFdGB319b9CrRy8iIZbRQV/XFMyKVY9eREIso4O+PtJGdpZRWjgy3U0RERk0SQW9mV1jZtvMrMbM7klQXmRmT5rZK2a2xszODbZPMbPfm9kWM9tkZp9K9RsYiPpIO2WFI8nOSrT+uYhIOPQb9GaWDdwPXAvMA242s3lx1T4HbHD3NwO3At8OtncBf+Xuc4FLgDsT7Js29U3tujyxiIReMj36BUCNu2939w7gcWBRXJ15wG8B3H0rUGlmZe5e7+4vBdtbgC1AecpaP0BaWUpEMkEyQV8O7Il5XMuJYf0ycCOAmS0ApgEVsRXMrBK4AHgx0YuY2VIzqzaz6oaGhqQaPxC9k6V0eWIRCbtkgj7RALbHPf4qUGRmG4C7gfVEh22iT2BWAPwM+LS7Nyd6EXd/wN2r3L2qtLQ0mbYPSOPRDo519ahHLyKhl5NEnVpgSszjCqAutkIQ3ksAzMyAHcENMxtBNOQfdfcnUtDmlKg/vrKUevQiEm7J9OjXArPNbLqZ5QI3AStjK5jZuKAM4HbgOXdvDkL/QWCLu38rlQ0fqDotOCIiGaLfHr27d5nZXcDTQDaw3N03mdkdQfkyYC7wsJl1A5uB24LdLwNuAV4NhnUAPufuq1L7Nk7dvuagR69ZsSIScskM3RAE86q4bcti7j8PzE6w3x9IPMafdnVN7YzINkryNVlKRMItY2fG1kfamDg2jyxNlhKRkMvcoG/SdehFJDNkbNDXaWUpEckQGRn0PT3O/mZd/kBEMkNGBv3BI8fo7Hb16EUkI2Rk0PdOlpqoMXoRyQAZGvSaLCUimSMjg/74ylIaoxeRDJCRQV8faWNkThZFo0ekuykiIoMuI4O+Lrg8cfRSPCIi4ZaRQV/fpAVHRCRzZGbQRzQrVkQyR8YFfVd3DwdajqlHLyIZI+OCvuHIMbp7XJcnFpGMkXFBf/zUSg3diEiGyLigPz5ZSj16EckQSQW9mV1jZtvMrMbM7klQXmRmT5rZK2a2xszOTXbfoVbfpLViRSSz9Bv0ZpYN3A9cC8wDbjazeXHVPgdscPc3A7cC3z6FfYdUXaSN/NxsxuQltbiWiMgZL5ke/QKgxt23u3sH8DiwKK7OPOC3AO6+Fag0s7Ik9x1S9U3RyxNrspSIZIpkgr4c2BPzuDbYFutl4EYAM1sATAMqktyXYL+lZlZtZtUNDQ3Jtf401De369RKEckoyQR9oq6vxz3+KlBkZhuAu4H1QFeS+0Y3uj/g7lXuXlVaWppEs06PZsWKSKZJZqC6FpgS87gCqIut4O7NwBIAi46J7Ahuo/vbdyh1dPXQcOSYvogVkYySTI9+LTDbzKabWS5wE7AytoKZjQvKAG4HngvCv999h9L+5nbcYbJOrRSRDNJvj97du8zsLuBpIBtY7u6bzOyOoHwZMBd42My6gc3AbSfbd3DeSv96V5ZSj15EMklS5xi6+ypgVdy2ZTH3nwdmJ7tvuvROllKPXkQySUbNjO29/IHWihWRTJJRQb8v0kZhXg4FIzVZSkQyR0YFfV2kXRczE5GMk1FBXx9p08XMRCTjZFbQN2llKRHJPBkT9O2d3Rw62sFkzYoVkQyTMUG/r/cc+nHq0YtIZsmYoK/rPYdePXoRyTAZE/S9PfqJCnoRyTAZE/S6/IGIZKqMCfq6pjaKRo9gVG52upsiIjKkMibo6yM6tVJEMlPGBH1dU5suZiYiGSljgl49ehHJVBkR9K0dXUTaOnX5AxHJSEkFvZldY2bbzKzGzO5JUD7WzJ4ys5fNbJOZLYkp+4tg20Yze8zMhjxt3zjjRkEvIpmn36A3s2zgfuBaYB5ws5nNi6t2J7DZ3c8DrgS+aWa5ZlYOfBKocvdzia4ydVMK25+U+iadWikimSuZHv0CoMbdt7t7B/A4sCiujgOFwcLgBUAj0BWU5QCjzCyH6GLhQ744+BuzYhX0IpJ5kgn6cmBPzOPaYFus+4iuG1sHvAp8yt173H0v8A1gN1APRNz9mQG3+hT19ujLxo4c6pcWEUm7ZILeEmzzuMdXAxuAycD5wH1mNsbMioj2/qcHZflm9tGEL2K21Myqzay6oaEhyeYnpz7SRknBSEbmaLKUiGSeZIK+FpgS87iCE4dflgBPeFQNsAM4G3gHsMPdG9y9E3gCWJjoRdz9AXevcveq0tLSU30fJ1UXadc59CKSsZIJ+rXAbDObbma5RL9MXRlXZzdwFYCZlQFzgO3B9kvMbHQwfn8VsCVVjU9WfVObzrgRkYzV7yrZ7t5lZncBTxM9a2a5u28yszuC8mXAl4EVZvYq0aGez7j7QeCgmf0UeInol7PrgQcG5630bV+knctmlQz1y4qIDAv9Bj2Au68CVsVtWxZzvw54Zx/7fgn40gDaOCAt7Z20HOtSj15EMlboZ8bWa2UpEclwoQ/6uiatLCUimS30Qa8evYhkuvAHfVMbWQZlhZosJSKZKfRBXxdpZ0JhHjnZoX+rIiIJhT799kXadXliEclooQ/6uogmS4lIZgt10Ls79U1aWUpEMluogz7S1klbZ7d69CKS0UId9HXB5Ykn69RKEclgoQ76+mDBEfXoRSSThTro6yLq0YuIhDro90XayMkySgo0WUpEMleog76+qZ2yMXlkZyVaJEtEJDOEOuh1Dr2ISMiDvj7SrouZiUjGSyrozewaM9tmZjVmdk+C8rFm9pSZvWxmm8xsSUzZODP7qZltNbMtZnZpKt9AX9yd+ki7Lk8sIhmv36A3s2zgfuBaYB5ws5nNi6t2J7DZ3c8DrgS+GawvC/Bt4NfufjZwHkO0Zuyhox10dPVo6EZEMl4yPfoFQI27b3f3DuBxYFFcHQcKgwXAC4BGoMvMxgCXAw8CuHuHuzelqvEnU9+k69CLiEByQV8O7Il5XBtsi3UfMBeoA14FPuXuPcAMoAH4vpmtN7PvmVl+ohcxs6VmVm1m1Q0NDaf6Pk7QO1lqsq5zIyIZLpmgT3Ruosc9vhrYAEwGzgfuC3rzOcB84LvufgFwFDhhjB/A3R9w9yp3ryotLU2u9SfRu7LURA3diEiGSyboa4EpMY8riPbcYy0BnvCoGmAHcHawb627vxjU+ynR4B90dZE2crOzGJ+f239lEZEQSybo1wKzzWx68AXrTcDKuDq7gasAzKwMmANsd/d9wB4zmxPUuwrYnJKW96O+qZ2JY/PI0mQpEclwOf1VcPcuM7sLeBrIBpa7+yYzuyMoXwZ8GVhhZq8SHer5jLsfDJ7ibuDR4JfEdqK9/0FXr8lSIiJAEkEP4O6rgFVx25bF3K8D3tnHvhuAqtNv4umpa2pnwfTioX5ZEZFhJ5QzY7t7nP3N7erRi4gQ0qA/dOQYXT2uc+hFRAhp0Pdeh37SGPXoRURCGfT1TcHKUuMU9CIioQz64ytLaVasiEg4g76+qY28EVmMGz0i3U0REUm7cAZ9pJ3JY0cRvcaaiEhmC2XQ10XaND4vIhIIZdDvi7QzSePzIiJACIO+q7tHk6VERGKELugPtByjx1GPXkQkELqg711wRGP0IiJRoQv6uiadQy8iEit0Qa8evYjInwpd0Nc1tVMwMocxeZosJSICIQz66KmV6s2LiPRKKujN7Boz22ZmNWZ2wuLeZjbWzJ4ys5fNbJOZLYkrzzaz9Wb2i1Q1vC/1kTZdnlhEJEa/QW9m2cD9wLXAPOBmM5sXV+1OYLO7nwdcCXwzWDqw16eALSlpcT/qIu26PLGISIxkevQLgBp33+7uHcDjwKK4Og4UWvTiMgVAI9AFYGYVwPXA91LW6j50dPVw8MgxfRErIhIjmaAvB/bEPK4NtsW6D5gL1AGvAp9y956g7J+BvwV6OAkzW2pm1WZW3dDQkESzTrS/uR13nVopIhIrmaBPdAlIj3t8NbABmAycD9xnZmPM7F3AAXdf19+LuPsD7l7l7lWlpaVJNOtEdVpwRETkBMkEfS0wJeZxBdGee6wlwBMeVQPsAM4GLgPeY2Y7iQ75vN3MfjDgVvehvncJQfXoRUSOSybo1wKzzWx68AXrTcDKuDq7gasAzKwMmANsd/fPunuFu1cG+/3O3T+astbH6Q36yerRi4gcl9NfBXfvMrO7gKeBbGC5u28yszuC8mXAl4EVZvYq0aGez7j7wUFsd0L1kTbGjhrB6Nx+35aISMZIKhHdfRWwKm7bspj7dcA7+3mOZ4FnT7mFp6CuSZOlRETihWpmbH2kTUEvIhInZEHfrlmxIiJxQhP0PT3OFWeVclFlUbqbIiIyrITmW8usLOOfPnR+upshIjLshKZHLyIiiSnoRURCTkEvIhJyCnoRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5c49fQyT9zKwB2HWau5cAQ37lzFOg9g2M2jcwat/ADOf2TXP3hKs2DcugHwgzq3b3qnS3oy9q38CofQOj9g3McG9fXzR0IyIScgp6EZGQC2PQP5DuBvRD7RsYtW9g1L6BGe7tSyh0Y/QiIvKnwtijFxGRGAp6EZGQOyOD3syuMbNtZlZjZvckKDcz+5eg/BUzmz/E7ZtiZr83sy1mtsnMPpWgzpVmFjGzDcHt/wxxG3ea2avBa1cnKE/bMTSzOTHHZYOZNZvZp+PqDOnxM7PlZnbAzDbGbCs2s/80s9eCnwmXN+vv8zqI7ftHM9sa/Ps9aWbj+tj3pJ+FQWzfvWa2N+bf8Lo+9k3X8ftRTNt2mtmGPvYd9OM3YO5+Rt2AbOB1YAaQC7wMzIurcx3wK8CAS4AXh7iNk4D5wf1C4I8J2ngl8Is0HsedQMlJytN6DOP+vfcRnQyStuMHXA7MBzbGbPs6cE9w/x7ga320/6Sf10Fs3zuBnOD+1xK1L5nPwiC2717gr5P490/L8Ysr/ybwf9J1/AZ6OxN79AuAGnff7u4dwOPAorg6i4CHPeoFYJyZTRqqBrp7vbu/FNxvAbYA5UP1+imS1mMY4yrgdXc/3ZnSKeHuzwGNcZsXAQ8F9x8C3ptg12Q+r4PSPnd/xt27gocvABWpft1k9XH8kpG249fLzAz4IPBYql93qJyJQV8O7Il5XMuJIZpMnSFhZpXABcCLCYovNbOXzexXZnbO0LYMB54xs3VmtjRB+XA5hjfR93+wdB4/gDJ3r4foL3dgQoI6w+U4fpzoX2iJ9PdZGEx3BUNLy/sY+hoOx++twH53f62P8nQev6SciUFvCbbFnyOaTJ1BZ2YFwM+AT7t7c1zxS0SHI84D/hX4+RA37zJ3nw9cC9xpZpfHlaf9GJpZLvAe4CcJitN9/JI1HI7j54Eu4NE+qvT3WRgs3wVmAucD9USHR+Kl/fgBN3Py3ny6jl/SzsSgrwWmxDyuAOpOo86gMrMRREP+UXd/Ir7c3Zvd/UhwfxUwwsxKhqp97l4X/DwAPEn0T+RYaT+GRP/jvOTu++ML0n38Avt7h7OCnwcS1EnrcTSzxcC7gI94MKAcL4nPwqBw9/3u3u3uPcC/9/G66T5+OcCNwI/6qpOu43cqzsSgXwvMNrPpQY/vJmBlXJ2VwK3BmSOXAJHeP7GHQjCm9yCwxd2/1UediUE9zGwB0X+LQ0PUvnwzK+y9T/RLu41x1dJ6DAN99qTSefxirAQWB/cXA/+RoE4yn9dBYWbXAJ8B3uPurX3USeazMFjti/3O54Y+Xjdtxy/wDmCru9cmKkzn8Tsl6f42+HRuRM8I+SPRb+M/H2y7A7gjuG/A/UH5q0DVELfvLUT/vHwF2BDcrotr413AJqJnEbwALBzC9s0IXvfloA3D8RiOJhrcY2O2pe34Ef2FUw90Eu1l3gaMB34LvBb8LA7qTgZWnezzOkTtqyE6vt37GVwW376+PgtD1L5Hgs/WK0TDe9JwOn7B9hW9n7mYukN+/AZ60yUQRERC7kwcuhERkVOgoBcRCTkFvYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhNz/B5Ivxl9MhyL+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(np.arange(len(acces)), acces)\n", + "plt.title('train acc')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+g0lEQVR4nO3deXicZ3Xw/++ZGW0zGu2yJEuyZdmO5S2LY0xWkpAASaCEsjVpCWt/wUBIaaFt+r600JdCC6W00EJCgLAlTQIBSiCGQJqEJBCSOCHxJtuxbGuzrNVaR9JoZu7fH8+MLI9H0kizz5zPdfmyNPPM89weS0e3zn2ec4sxBqWUUtnLluoBKKWUSiwN9EopleU00CulVJbTQK+UUllOA71SSmU5DfRKKZXlNNArtUwi8oSI/Hmqx6HUYjTQq6wiIsdF5Jo4nOe9IvJ0PMakVKppoFdKqSyngV5lDRH5PrAK+JmIjIvI3wQfv0hEficiwyLysohcOec17xWRoyIyJiLHROTPRGQjcCdwcfA8w1Fc2yYinxSRdhHpE5HviUhp8LlCEblHRAaDY3heRGrmu37c3xiV8zTQq6xhjLkZ6AD+yBhTbIz5gojUAw8D/wRUAJ8AfiQi1SLiAr4CXGeMcQOXAC8ZY1qBncAzwfOURXH59wb/XAU0A8XAfwWfew9QCjQClcFzT853/ZjeBKUi0ECvst27gF3GmF3GmIAx5tfAbuD64PMBYIuIFBljeowx+5d5nT8DvmSMOWqMGQf+DrhRRBzADFaAX2eM8RtjXjDGjMb5+krNSwO9ynargXcEUybDwTTMZUCdMWYC+BOsGXaPiDwsIi3LvM5KoH3O5+2AA6gBvg88AtwvIidE5Asikhfn6ys1Lw30KtuEt2PtBL5vjCmb88dljPkXAGPMI8aY1wF1wEHgG/OcZzEnsH6ohKwCfECvMWbGGPOPxphNWOmZNwHvXuT6SsWNBnqVbXqxcuQh9wB/JCJvEBF7cGH0ShFpEJEaEXlzMFc+DYwD/jnnaRCR/Civex/wlyKyRkSKgc8BDxhjfCJylYhsFRE7MIqVyvEvcn2l4kYDvco2/wx8Mpim+YQxphO4Afg/QD/WDP+vsb72bcDHsWbjQ8AVwIeD53kM2A+cFJGBKK57N1aK5kngGDAFfDT4XC3wIFaQbwV+g/UDaKHrKxU3ohuPKKVUdtMZvVJKZTkN9EopleU00CulVJbTQK+UUlnOkeoBRFJVVWWamppSPQyllMoYL7zwwoAxpjrSc2kZ6Juamti9e3eqh6GUUhlDRNrne05TN0opleU00CulVJbTQK+UUllOA71SSmU5DfRKKZXlNNArpVSW00CvlFJZLmsC/Yw/wB1PtPHk4f5UD0UppdJK1gR6h02468k2Ht7Tk+qhKKVUWokq0IvItSJySESOiMjtEZ5vEZFnRGRaRD4R9lyZiDwoIgdFpFVELo7X4MOuw5b6UvadGEnE6aMy4w+g/f2VUulm0UAf3P7sq8B1wCbgJhHZFHbYEHAb8MUIp/gy8EtjTAtwHtYOOwmxeWUph3vHmPYlfzc2YwzXffkp/vOxI0m/tlJKLSSaGf0O4Igx5qgxxgvcj7U12yxjTJ8x5nmsvTBniUgJ8BrgW8HjvMaY4XgMPJKt9aXM+A2v9I4n6hLzOjk6xZG+cfZ0DSf92koptZBoAn091j6bIV3Bx6LRjLVP57dF5A8i8s3gRsgJsaW+BIC93clP3+ztsq7ZOTSZ9GsrpdRCogn0EuGxaBPRDmAbcIcx5gJgAjgrxw8gIreIyG4R2d3fv7zKmVUVTtyFDvalItAHr9l5yqN5eqVUWokm0HcBjXM+b8DatT4aXUCXMebZ4OcPYgX+sxhj7jLGbDfGbK+ujthSeVEiwuaVJew7Mbqs18diT3BG7/H6GZrwJv36Sik1n2gC/fPAehFZIyL5wI3AQ9Gc3BhzEugUkQ3Bh64GDixrpFHaWl9Ka88oM/5AIi9zBmMMe7tHqCouAKDzlKZvlFLpY9FAb4zxAbcCj2BVzPzAGLNfRHaKyE4AEakVkS7gr4BPikhXcCEW4KPAvSKyBzgf+FwC/h2zttSX4vUFaOtP3oLsiZEphia8XLulBoDOIU/Srq2UUouJaocpY8wuYFfYY3fO+fgkVkon0mtfArYvf4hLs3llKWAtjrbUlixydHzsDVbaXL+ljnt+30HnKQ30Sqn0kTV3xoasqXLhzLezP4l5+j1dIzhswrbV5VS48rXyRimVVrIu0Nttwqa6kqRW3uztHmFDrZvCPDuN5UV06YxeKZVGsi7Qg5WnP9Azij+Q+DLH0ELs1norZdRQ4dQcvVIqrWRtoPd4/RwbSPyCbNepSYY9M2xtsAJ9Y7mT7uHJpPyQUUqpaGRpoLcWYfd1Jz5PH6qfP7e+DIDGiiJm/Ibe0amEX1sppaKRlYF+XXUxBQ5bUvL0e7qHybfbOKe2GLBm9KAllkqp9JGVgd5ht7GxriQpLYv3BRdiCxx2ABorgoFeb5pSSqWJrAz0YKVv9nePEkhgrtwYw56ukdn8PMDKskJE0MobpVTayN5Av7KUsWkfHQlMobQPehib8nFu/elAX+CwU1tSqLX0Sqm0kb2BPhh8E5m+CXWsnDujBytPr3fHKqXSRdYG+vU1xeTZJaGVN3u7R8h32Dinxn3G4w0VRXTpYqxSKk1kbaAvcNjZUOtmfwJn9Hu6htlYV0Ke/cy3sbHcSc/oFF5f8jpoKqXUfLI20IOVp9/bPZKQjUACAcO+7tEz8vMhjRVOjIETw5qnV0qlXlYH+s31pQx7ZuhOQMA9PjjB+LTvrPw8QEN5EYDm6ZVSaSGrA/2WlYm7Q3Z2IXaeGT3o/rFKqfSQ1YF+Y10JdpskJE+/p2uEAoeN9SuKz3qutqSQPLvojF4plRayOtAX5tlZv6I4Ia0Q9naNsHllCQ772W+h3SasLCvSNghKqbSQ1YEerB2n9naPxnVB1h8w7D8xwrkNZfMeY9XSa+pGKZV6WR/ot9SXMDA+Td/YdNzOeWxgnAmvf/amrEgatZZeKZUmciDQB++QjWP6ZrY1cYSKm5CGcieDE14mpn1xu65SSi1H1gf6TXUliMS38mZP1whFeXbWVp+9EBsSqrzp0vSNUirFsj7QuwocNFe54trzZl/3CFvqrYqe+TSGauk1faOUSrGsD/RgpW/ilbrx+QPsPzG6YH4e5val10CvlEqt3Aj0K0vpGZliYDz2Bdm2/gkmZ/wL5ucBKl35FOXZNXWjlEq53Aj0wdn3/hOx5+n3dA0DsDW4R+x8RITGCq2lV0qlXk4E+k2zrRBiT9/s6x7BlW+nucq16LFaS6+USgc5EehLi/JYXemMS6Df0z3C5vpSbAssxIY0VjjpGvIkpHumUkpFKycCPVh5+lgrb2b8AQ6ciNyaOJKG8iLGpn2MTM7EdF2llIpFzgT6zfUldA5NMuJZftB9pXecaV8gYmviSBrKtYulUir1cibQb51dkF3+rD6U+lmox81cjRXal14plXo5E+g3r4x9s/A93cO4CxysDtbIL+Z0X3oN9Eqp1Ikq0IvItSJySESOiMjtEZ5vEZFnRGRaRD4R4Xm7iPxBRH4ej0EvR4Urn/qyIvbG0Aphb9cIW6JciAUoKcyjtChPZ/RKqZRaNNCLiB34KnAdsAm4SUQ2hR02BNwGfHGe0/wF0BrDOONi88oS9i+z8sbrC9DaM7bojVLhrFp6zdErpVInmhn9DuCIMeaoMcYL3A/cMPcAY0yfMeZ54KyVThFpAN4IfDMO443J1vpSjg5MMDa19AXZw71jeP3RL8SGWLX0OqNXSqVONIG+Huic83lX8LFo/QfwN0BgCa9JiNAdsq09Y0t+7UJ7xC6kscJJ16lJAgGtpVdKpUY0gT5SQjqqqCUibwL6jDEvRHHsLSKyW0R29/f3R3P6Jdtcb90hu3cZ6Zs9XSOUFDpYFeVCbEhjeRFeX4D+OPTZUUqp5Ygm0HcBjXM+bwBORHn+S4E3i8hxrJTPa0XknkgHGmPuMsZsN8Zsr66ujvL0S7PCXcgKd8Gy8vR7u4c5t6EMkegWYkMatPJGKZVi0QT654H1IrJGRPKBG4GHojm5MebvjDENxpim4OseM8a8a9mjjYMt9Uu/Q3ba5+fQybEl5+fBytGD1tIrpVLHsdgBxhifiNwKPALYgbuNMftFZGfw+TtFpBbYDZQAARH5GLDJGBO/bZ3iZEt9KU8c6mPS66co3x7Vaw6dHGPGb5acnwerDQLo3bFKqdRZNNADGGN2AbvCHrtzzscnsVI6C53jCeCJJY8wzrasLCFgoPXkKNtWlUf1mtAescsJ9IV5dla4C+jSGb1SKkVy5s7YkOVsFr63a4RyZ97s7HypGiucOqNXSqVMzgX6utJCKlz5Swv03SNsXcZCbEhjeZHm6JVSKZNzgV5EgnvIRrd8MDXj53DvGFuDpZnL0VDupGdkCp8/5bcSKKVyUM4FerDy9Id7x5j2+Rc9trVnFF/ALLp14EIaK4rwBww9I1PLPodSSi1Xbgb6+lJ8AcOhk4vfIbt3tjXx0hdiQ2ZLLLWWXmWx3x4Z4Ff7T6Z6GCqC3Az0oZbFUaRv9naNUFWcT11p4bKvN9uuWPP0Kkt1D0/ywe+/wGcePpDqoagIoiqvzDaNFUWUFDqiunFqb7fVmni5C7FgLQDbbaKVNyorGWO4/Ud7GJ/24fH68PoC5Dtycg6ZtnLyfyO0ILtYK4RJr7UQG+0esfNx2G3UlRbqjF5lpR/s7uSpVwZ4VVM5AYPeM5KGcjLQg5Wnbz05xswClTAHekYIGNga5daBC2ksd2qOXmWdnpFJ/unnrVzUXMHfXtsCwPHBiRSPSoXL2UC/eWUJXl+AV3rH5z1mb1fsC7EhjRVFdJ7S1I3KHsYY/u7He/EFDF9423msqXIBcHxAJzTpJmcD/ewdsgvk6fd0j1DtLqCmZPkLsSGN5U76x6aZmlm8pFOpTPDgC108caifv712A6sqnVS48nEXOHRGn4ZyNtCvqXThyrcvmKff2zUSc34+JFR5o/lLlQ1Ojkzx/35+gB1NFbz74ibAWvtqqnJxfFC/xtNNzgZ6m03YvLKUfScil1hOTPs40j++rNbEkTRWaBdLlR2MMfyfn+xlxh/gC28/F5vtdEXa6kon7TqjTzs5G+jB2nHqwIlR/BG2+TvQM4ox8cnPg/alV9njJ3/o5rGDffz1G1poCublQ9ZUueg6NblgkYNKvpwO9FtWljI54+do/9kLsqHWxFvilLqpdhdQ4LBp5Y3KaH2jU3z6of1sX13Oey9pOuv51ZUu/AFDlxYepJWcDvShtEykBdm9XcPUlhSywh37QixY+cuG8iL9BlAZy0rZ7GPaZ6Vs7LazbyJsqrR+cz0+oOmbdJLTgb65ykVhni1iK4Q93SNxy8+HNFY4NXWjMtZDL5/g0dZe/voNG2iuLo54TCiVo5U36SWnA73DbmNjXclZvenHpmY4NjARt4qbkIbyIl2MVRmpb2yKTz20n22rynjfpWvmPa7SlU9xgYN2rbxJKzkd6MHK0+8/MUpgzoLs/hPWQuyWeM/oy52MTM4wOjUT1/MqlUjGGD75k314vH6+8PbzIqZsQqwSSyfHNHWTVjTQ15cwPu2jfc4i6d4Y9ohdyGwXS12QVRnkZ3t6+NWBXj7+unNYtyJyymau1ZUuLbFMMxroI+whu6d7hPqyIqqKC+J6rdN96TV9ozLDwPg0n/rpPs5vLOPPL2+O6jVNlU46tcQyreR8oF+/wk2+3XZG5c2+7pG4z+bh9E1TenesyhT/8NN9THj9fPEdkatsImkKllh2a4VZ2sj5QJ/vsLGh1s3+YOXNyKS1EBvvihuA0qI83AUOTd2ojPDwnh527T3Jx65Zz7oV7qhfp5U36SfnAz1Yefq93SMYY2Z73yRiRi8iNFQ4E9bFsm9siolpX0LOrXLL4Pg0f//TfZzbUMotUaZsQpoqQ10sNdCnCw30WHn6kckZuk5Nzu4Rm4hAD9BYXpSQGX0gYHjLf/2Wf/5Fa9zPrXLPpx7az/iUj399+3k47EsLE1XF+bjy7drcLI1ooOf0HrL7T4ywp3uExooiyl35CblWY4WTrlOTGHN2f51YvNQ1zImRKfbP06RNqWj9Ym8PP9/Tw19cs54NtdGnbEJERCtv0owGemBDrRu7TdjXPcrersQsxIY0lhcxOeNnYNwb1/M+eqAXgKP9E3H/IaJyx9CEl7//6T621Jdwy2uWlrKZa422K04rGuiBwjw761cU8/SRATqGPGytL0vYtWZr6eNcefNoqxXoRyZnGJqI7w8RlTs+/dB+RiZn+Ne3n0feElM2c62utLbO9GmJZVrQQB+0pb6UlzqHgfi1Jo4kETdNtQ9OcLh3nNecUw3AUV0EU8vwq/0neejlE3z0tevZWFcS07maKl34AobuYS2xTAca6IPmpmtCOftEaCgP1dLH7xvg0dY+gNnqiEhtl5VazHefOc6aKhcfunJtzOc6XWKp6Zt0oIE+aEu9NYNZXemk1JmXsOs48x1UFefHdUb/6IFezqkp5uK1leQ7bBzt1xm9WrrjAx7OayiNKWUTEmpXrAuy6SGq/1ERuVZEDonIERG5PcLzLSLyjIhMi8gn5jzeKCKPi0iriOwXkb+I5+DjaWNdCSKJK6ucq6HcGbcZ/YhnhueOD3HNxhrsNqGp0kmbBnq1RF5fgBMjk6yqdC1+cBSq3QU48+3a3CxNOBY7QETswFeB1wFdwPMi8pAx5sCcw4aA24C3hL3cB3zcGPOiiLiBF0Tk12GvTQvOfAef/qPNnN9YlvBrNZQXzdbrx+qJw334A4ZrNtUA0FxVzOG+sbicW+WOrlMejIHVwTWkWJ0usdTUTTqIZka/AzhijDlqjPEC9wM3zD3AGNNnjHkemAl7vMcY82Lw4zGgFaiPy8gT4D2XNHFeEgJ9Y4WTE8OTEfeqXapHW/uoKs7n/IYyAJqrXXQMarWDWppQ99ZVlfEJ9GClb/Tu2PQQTaCvBzrnfN7FMoK1iDQBFwDPzvP8LSKyW0R29/f3L/X0GaWx3MmM33BydCqm83h9AZ441MfVLTXYgg2nmquL8QVMwtosqOwUWjOK14werAXZzlM66UgH0QT6SC3rljQVFZFi4EfAx4wxEW/dNMbcZYzZbozZXl1dvZTTZ5xQF8tYF2SfPz7E2JRvNm0D1owetPJGLU37oIfCPBvV7vi15m6qtCY0PSOxTWhU7KIJ9F1A45zPG4AT0V5ARPKwgvy9xpgfL2142el0X/rYAv2vD/RS4LBx2bqq2ceaq0KBXn9lVtHrGPKwqsKJSHStiKMRam6mC7KpF02gfx5YLyJrRCQfuBF4KJqTi/VV8y2g1RjzpeUPM7usLCtChJjSK8YYHm3t5fL1VRTl22cfL3PmU+HK5+iAzuhV9DoGrUAfT6Faei2xTL1FA70xxgfcCjyCtZj6A2PMfhHZKSI7AUSkVkS6gL8CPikiXSJSAlwK3Ay8VkReCv65PmH/mgyR77BRV1JIVwwz+kO9Y3SdmuTqjTVnPddc5dISSxU1Y0xwRh+f0sqQFe4CivLsHBvQyptUW7S8EsAYswvYFfbYnXM+PomV0gn3NJFz/DnP6ku//G+AUBOzq1tWnPVcc7WLxw5m94K2ip/+8WkmZ/ysjmPFDYRKLJ06o08DemdsijSWO2PaO/bXrX2c11jGipLCs55rri5mYHya0amZCK9U6kwdwVr3eKduwMrT605TqaeBPkUaK4roHZti2udf8mv7Rqd4uXOY1208ezYPubsg+1cPvMQ/79KNV5aqIwE19CFNVS46h+Jzz4haPg30KdJY7sQYlrWB8mMHrSZmc8sq52quLgZyq8TSGMP/Huybbdesotc+6EHkdMO9eGqqdOL1BzihXSxTSgN9ipzuS7/0b4BHW3tpKC9iQ03k3X9WVTix2ySnZvQD415GJmc4PuhhambpvyXlss4hD3UlhRQ47IsfvESrK3Wj8HSggT5FlnvT1KTXz1OvDHDNxpp5a57zHTZWVThzqsSyLfjbiz9gONKXO//ueGgf8iQkbQPWTlOg7YpTTQN9itS4C8mzy5Irb54+MsC0L8Dr5knbhDRXuXJqRt82J0118KQ2dVuK0M1SibDCXUBhno12vWkqpTTQp4jNJtSXFdG1xMqbRw/04i50sGNNxYLHNVe7ODYwQSBHFsHa+iYoyrNT4LBx6KRukB4tj9dH/9j0bIol3mw2YXWFVt6kWlR19CoxGpdYSx8IGP73YC9Xblix6OYQzdXFTAd7jDeUJ2a2lk7a+sdprnYhojP6pQhV3DQmaEYP0FSleySkms7oU2ipG5C81DXMwLiXa+Ypq5wr10os2/rHWbeimJbaEg30SxCqoY9n18pwTZVW62wtsUwdDfQp1FhRxNCEl4lpX1THP3qgF7tNuPKcxQP9mhzqYjnp9dM9PMna6mJaat30j00zNOFN9bAywmwNfUJn9C68/gA9I1pimSoa6FNototllOmbR1t72dFUEdWettXFBbgLHBzNgUWwowPjGANrq4vZUGuVnB7UPH1UOoY8uAsdlCVwn+TVs/vHauVNqmigT6HZWvooFmQ7Bj0c7h2f9yapcCJCc3VuVN6E8r9rV7hoqbU2eT/Yo+mbaLQPelhdGd/2xOG0XXHqaaBPocby6GvpQ3d8RpOfD2muLs6J1E1b3zgiVkCpdhdQ6crnkObpo9KZwNLKkNqSQgocNm1ulkIa6FOowpWPM98eVerm0dZezqkpXlIZXHOVixMjU3i80a0BZKq2/nEay50U5ll3dm6odXOwVwP9YvwBQ+ep+LcnDmezWV0s9aap1NFAn0IiElUXyxHPDM8eG+KaCL3nFxLqeZPtvzK39U+wbkXx7Ocbat0cPjmWM/cQLFfPyCQzfpPwGT0Eu1hm+ddhOtNAn2KNFUV0LTKjf+JwH/6AiTo/H3J6/9js/QYLBAxH+8dZW316VrqxtoTJGf9sRYmKLPT+xLsPfSRNVS7ahzz6wzdFNNCnWEO5k84hD8bM/w3waGsfVcX5nN9QtqRzr6mybiDK5kDfPTzJtC/A2uozZ/SgN04tJpF96MOtrnTi9QXoGdWNwlNBA32KNVY4mfD6OeWJvEmI1xfgiUN9XN1Sg822tMqIwjw7K0uLsrq52ZHgYvPaOambc2rcwTtktcRyIR1DHhw2oa707M1r4m1NcG1Je96khgb6FFus8ub540OMTfm4egnVNnOFet5kq7Zgp8q5M/qifDtNlS6tvFlE+5CHhvIiHIu004iH1drFMqU00KfY6b70kb8Bfn2glwKHjcvWVy3r/GuriznaP7FgaiiTtfVPUO7Mo8KVf8bjG2rcGugX0THoSWiPm7nqSgrJd9i0uVmKaKBPsYbZGf3ZlTfGGB5t7eWydVU485fXf6652sX4tNWhMBu19Y+fMZsP2VDr5vjgBJNe3YRkPh1DnqQsxEKoi6VTK29SRAN9irkL8yhz5kWc0R/uHafr1OSSq23maq6ygmC2dg88GmxmFm5jnZuAgVf6dFYfyYhnhpHJmaQsxIas1o3CU0YDfRpoDFbehAvdDXt1y/Ly8zCnuVkWLsgOe7wMjHvnmdEHWyFo+iai083MEnuz1Fxrqpy0D2qJZSpooE8DVi392ambXx/o5bzGMlaULL8qoq6kkMI8W1aWWLbNVtycHaxWVTgpzLNpnn4e7UPW10OyUjfWtVxM+wL0jmmJZbJpoE8DjeVOuk9NnjHT6Rub4qXOYV63zGqbEJtNWFOVnT1v2vqCzcwizOjtNuGcGreWWM4jGRuOhAvtH5vNVWDpSgN9GmiocOL1B+ibs2D6WGsfQEz5+ZDmaldWtitu6x8n326bdwetllqtvJlPx6CHquJ8iguSt8mctitOHQ30aWC2ln7Oguyjrb00lBexocYd8/nXVrnoHPIw7cuuCpS2/nHWVLmwz3Mj2YbaEgbGvVlbcRSL9iSWVobUlRaRb7dp5U0KaKBPA6f70luBftLr56lXBrhmY01c+oQ3VxcTMKdvec8W4c3MwrUEWyHorP5sHUOehG4fGIndJqyqdGrlTQpooE8D9WVn1tI/fWSAaV9gyd0q5xNqbpZNJZbTPqtp2dxmZuFadLepiLw+a1u/ZJZWhjRVOjV1kwIa6NNAYZ6dmpKC2dTNowd6cRc42LGmIi7nDy2CZVOJZXtws+m1C8zoK4sLqCou0Bl9mO7hSQIGVi1hb4N4CdXSa4llcmmgTxOhWvpAwPC/B/u4YkM1+Y74/Pe4C/NY4S7IqhLLSD1uImmpdWstfZjQTk/JLK0MaapyMTVzZuGBSryoIomIXCsih0TkiIjcHuH5FhF5RkSmReQTS3mtsjRWOOk6NcnLXcMMjE/zujhU28yVbc3NQjX0od9W5tNS6+Zw7xh+nUHO6hxKXnvicE3BHy7Z9LWYCRYN9CJiB74KXAdsAm4SkU1hhw0BtwFfXMZrFVblTc/IJL/cdxK7TbjynNjq58Nl2/6xbf0TrCwtxLVIeeCGWjfTvoDuVzpH+6CHAoeNFe6CpF87tFG4/n8kVzQz+h3AEWPMUWOMF7gfuGHuAcaYPmPM80B4U/VFX6ssDRVOAgYe2N3JjqYKSp15cT1/c5WLU54ZTk1443reVGnrH18wPx/Soq0QztIe3BA8HhVdS7WyrIg8u2i74iSLJtDXA51zPu8KPhaNqF8rIreIyG4R2d3f3x/l6bNHY/Cmn2HPTFxukgoXymVnw4KsMYa2vshdK8OtrynGJhro5+pMYtfKcHab0KhdLJMumkAf6cd+tAnPqF9rjLnLGLPdGLO9uro6ytNnj8aKotmPr4mx7UEkoVx2NpRY9o5OM+H1RzWjL8yz01Tl4pCWWALWD8mOIU9Sm5mFW6NdLJMumkDfBTTO+bwBOBHl+WN5bU6pLSkM9mcpZnUCyt4ayq1fmbOh8ubIbMVNdO+TVt6cNjDuxeP1s2rOxCLZVle6aB9ceJ9kFV/RBPrngfUiskZE8oEbgYeiPH8sr80pDruNG85fyXsvWZOw86+udGXFgmyo4mZdFKkbgA01JXQMefB4fYkcVkbomO1amcIZfZWTyRm/llgm0aIdjYwxPhG5FXgEsAN3G2P2i8jO4PN3ikgtsBsoAQIi8jFgkzFmNNJrE/RvyXhfeuf5CT1/c1V2NDdr6x/HXeCgOsqqkZY6N8ZYG7mc31iW2MGluVR0rQwX+iFzfGCCmhhacKvoRdW6zhizC9gV9tidcz4+iZWWieq1KjWaq4t5/FAfPn8gKRtCJ0pb/zjNK4qjrho53fNmNOcDffugB5HTW1imQqjE8vjgBK9urkzZOHJJ5n63qyVrrnYx4zcRNznJJG19E1GnbcCqaHLm22nt0Tx9x6CH2pJCCvPsKRvDyrJCLbFMMg30OWRtFmwrOD7t4+ToVMRdpeZjC25Coj1vCFbcpC5tA9Z6UWO5U2+aSiIN9DkktFF4JlfehBaTo6mhn8uqvBnN+UqP9hTW0M/VVOXi2IDO6JNFA30OKXflU+7My+gF2SNRNjMLt6HWzSnPTE5vQjLp9dM/Np3yGT1YDdXaBydy/gdvsmigzzGZ3vOmrX8ch02WPCvdMNubPnfTN6GKm1S0Jw7XVOnCE/zBoxJPA32Oaa5yZXTqpq1vglWVTvKWWDUU6nmTy3n6UE48HWb0TVWhyhtN3ySDBvoc01xdTN/YNGNT4f3nMkNb//iSKm5CKlz5rHAX0JrDrRBCM/pkbyEYSahdsbZCSA4N9DkmtK1gJvYD9/kDHB+ciKrHTSQbanO78qZjyIO70EFZnDujLkd9WREOm2hzsyTRQJ9jmkPbCmZg+qbz1CQzfrPkhdiQjXUlvNI3js8fiPPIMkNHCtsTh3PYbTRW6P6xyaKBPsesqnRiEzJyQXapzczCbahx4/UFcjZd0DGYHqWVIasrnRn5m2Um0kCfYwocdhornLRl4DdYqJlZ8zJn9LlceeMPWHdEp7LHTbimSpeWWCaJBvoclKmVN21941S7CygtWl6Oed2KYuw2yck8/cnRKbz+AKtT2Ic+XFOlkwmvn4Hx7Nj1LJ1poM9BzdXFHBsYJ5BhG2a39Y8vO20D1iYka6pcOdnzJp1KK0NWV51ubqYSSwN9DmqudjE1E6BndCrVQ4maMYa2/gnWLbPiJmRDrZtDvblXYtkZKq1Moxz9mjntilViaaDPQad73mTOguzghJeRyZllV9yEtNS46RyaZHw6tzYhaR/04LAJdaXp0/+9vrwIu010Rp8EGuhz0GwXywzK07cts8dNuJY66w7Zw725lb7pGPJQX16UVvsQ5NltNJYX6d2xSZA+/+sqaardBRQXODKqtO1IqGtljKmb0CYkB3MsT58O7YkjWR2svFGJpYE+B4kIzdWu2XLFTNDWN0FRnp26GLeeqy8rwpVv51COtUJI10DfVOnk+IBuFJ5oGuhzVKaVWLb1j9Nc7cJmi+2uTptN2FDrzqla+pHJGYY9M2m1EBvSVOVifNrH4ISWWCaSBvoc1VxdzImRSaZm/KkeSlTa+sdjrrgJ2VBbwsGTY3GfRX73d8e577mOuJ4zHjqCOfD0nNFb60WavkksDfQ5qrnahTGZ0dxs0uune3gy5oXYkJZaNyOTM/SOxq8XetcpD5/5+QE+93ArHm96VfTM9qFPo5ulQkLtinW3qcTSQJ+j1mRQc7NjAxMYE3vFTcjsgmwc8/Rfe6INvzGMTfv4+Z6euJ03HtqHgjdLpWHqpr7MKrHUGX1iaaDPUacDffovyJ6uuInPjDS0CUm88vTdw5P8cHcnf7pjFetXFKdd+qZzyEOlK5/iAkeqh3KWfIeN+rKijPjNMpNpoM9RznwHK0sLM2L/2La+cURO53NjVerMo7akMG49b772+BEAPnzVOm7asYo/dAzT2pM+VT3tg560nM2HNFW5tF1xgmmgz2GZsn9sW/84jeVOCvPscTtnvCpvTgxP8oPdnbxjeyP1ZUW8dVs9+Q5bWs3q07W0MqSp0slx7WKZUBroc1hztVVime7fYPHocROupc7Nkb4xZmLchOSOJ9oA+PCVawEoc+bzxq11/OTFbia9qa9o8voCnBieTIvtA+fTVOlibMrHkJZYJowG+hzWXOVibNpH/3j8qk/iLRAwHI2xa2UkLbVuZvwmptxwz8gkDzzfydsvbKCh/HQgvWnHquCi7Il4DDUm3cOTBAysilPaKxGaqkL7x2r6JlE00Oew0AYe6Vx50z08ybQvELeKm5ANNbEvyN75RBsBY/jwlevOePxVTeWsrXalRfrmdGll+s7oV2sXy4TTQJ/D4r1R+NH+cQbi/NtBW5x63IRbu8KFwyYcXOaiae/oFPcFZ/PhuzaJCDftWMWLHcNxLeFcjo5g2WI63hUb0lhubW+pJZaJo4E+h60sLaIwzxaXBdnWnlGu/8pTfOC7u+Oa8z8Sp66V4QocdpqrXcuuvLnjiTYCAcNHrloX8fm3bWsg327j/uc6YxlmzDqGPBQ4bFQXF6R0HAvJd9io1y6WCaWBPofZbEJTZew9b0YmZ/jQPS/g8xte7hzm90eH4jRCayG23JlHhSs/bucMCbVCWKre0Sn++7kO3rqtft49WMtd+Vy3tZYfv9iV0kXZ9kGr4ibWHkGJ1lTp0r70CRRVoBeRa0XkkIgcEZHbIzwvIvKV4PN7RGTbnOf+UkT2i8g+EblPRNJn5wPF2urimGrpAwHDx3/wEl2nJvnO+3ZQVZzPnb9pi9v4rO0D4zubD2mpddM9PMno1MySXnfnb9rwBwy3XrV+weNu2rGK0Skfu/am7k7ZdC+tDGmqdAXvgE7vCrBMtWigFxE78FXgOmATcJOIbAo77DpgffDPLcAdwdfWA7cB240xWwA7cGPcRq9i1lztomPIg9e3vDLDrz1xhEdb+/jkGzdy2foq3ntJE7853M+BE/HJTR+NYzOzcKFWCIeXMKvvG53iv5/t4I8vqF/0JqRXr6mguSp1i7LGGCvQp3F+PmR1pZOxKR+nPEv7oauiE82MfgdwxBhz1BjjBe4Hbgg75gbge8bye6BMROqCzzmAIhFxAE4g9TVnalZztQt/wMxWZyzFk4f7+bdfH+aG81fynkuaALj5oiZc+Xa+/mTss/phj5eBcW/CZvQbZnveRB/ov/7kUXwBw63z5ObnCi3K7m4/lZIdrQbGvXi8/rSuoQ9ZoxuFJ1Q0gb4emLui1BV8bNFjjDHdwBeBDqAHGDHG/CrSRUTkFhHZLSK7+/v7ox2/itGaZe4f2znk4bb7/8A5K9z881u3ImLlgEudedy0YxU/39MzuyH1crUF1w7i1eMmXH1ZEe4CR9QLsv1j09z7bDtvOb9+tuviYt52obUo+9/PJn9WP1tamREz+sxuV2yM4Zf7evjCLw9y/3Md/P7oICdHpggE0iMVFU2Xo0irOOGjj3iMiJRjzfbXAMPAD0XkXcaYe8462Ji7gLsAtm/fnh7vTg4IlVguJU8/NePnw/e+iN9vuPPmC3Hmn/ll9IHL1/Cd3x3nm08d5R9v2LLsscVrn9j5iIQ2IYkuzXTXk214fQFufe3is/mQClc+126xFmVvv64lrm0cFtMR6lqZhu2JwzVWFGGTzGxX/GLHKT77cCsvtJ9CBOYuMxTm2WiqdLG60klTlWv24zVVLmrchUlbJI8m0HcBjXM+b+Ds9Mt8x1wDHDPG9AOIyI+BS4CzAr1KjZLCPKqKC5Y0o//UT/ezt3uEb7x7++yv3HPVlRZxw/n1PLC7k9uuXk/lMkv72vrHybfbzrjrNN421Lp56OUTGGNmfyuJZGB8mu//3prNR/o3L+SmHat46OUT7Nrbw1u3NcQ65Kh1DE4iAg3lRUm75nIVOOysLCvKqBl955CHLzxyiJ+9fIJqdwH/8tatvHVbA72jUxwfnOD4oIf2gQmOD07Q1j/B4wf78c5puVHgsFk/ACpdsz8EmiqdXLy2csGvxeWIJtA/D6wXkTVAN9Zi6p+GHfMQcKuI3A+8GitF0yMiHcBFIuIEJoGrgd1xG72Ki1DPm2jc/1wHD+zu5Nar1vG6TTXzHrfzimZ+9GIX33umnb983TnLGldb/zhrqlzYEzjraal1c++zPnpGplhZNn9AvOvJo0uezYdc1FzBmuCibDIDffvQBLUlhUn9LSIWTZUu9nSNMDXjT+sxj07N8LXH27j7t8ewCdz22nV88Iq1uIJtoBsrnDRWOLk8rCjLHzD0jEzSPujh2MAE7YMTHBuwPn7icD9eX4Cq4gJ2f/KauI950UBvjPGJyK3AI1hVM3cbY/aLyM7g83cCu4DrgSOAB3hf8LlnReRB4EXAB/yBYHpGpY+11S4e2d+76HEvdw7zDz/dz+XrqxYN3utr3FyzcQXffeY4H7yi+az0TjTa+ifYVFey5NctRUtdqBXC6LyBfmB8mu8/086bz1s52zZiKaxF2UY+t+sgr/SOsb7GHdOYo9UxmBmllSHvumg1O+95gb984CX+60+3JfQH/HL4/AHue66Df3/0FYYmvLx1Wz1//YYN1JVG9xuT3SY0lDtpKHdy6bqqM54LBAw9o1MMJqjvVFR19MaYXcaYc4wxa40xnw0+dmcwyBOstvlI8Pmtxpjdc177KWNMizFmizHmZmNM+nbQylHNVcUMTXgZ9szfPXBowsuH732RancBX77xgqi+CXdesZZhzwwPPL/0u0OnfX46hjxxb2YW7pyaxStvvvHUUaZ8fm597cJ18wt527YG8uzCfUm8UzZTauhDrt1Sy9+/aRO/2HeSf/zZ/rSpqTfG8NjBXq798lP8/U/3s35FMT+79TK+9M7zow7yi7HZhPqyIs5tKIvL+c46f0LOqjJKaEG2bZ70jT9guO2+P9A/Ps0d79oW9V2q25sq2L66nG8+dWzJ7YA7Bj34AybuPW7ClRblsbJ0/k1Ihia8s7P5WOr5K4sLeMPmWn70YldSNmSf9PrpG5tO6x43kXzgsjXc8ppmvvdMO197In433i3XgROj3Pyt53j/d3bjDxjuuvlC7r/lIrY2lKZ6aEuigV7NpiPma272pV8f4ukjA3zmhs1LnnHsvGIt3cOTS27ZO9vMLEEVN3O11JVwsCdyoP/GU0eZnPHz0WXk5sP96Y5VjEzO8Mt9J2M+12I6T1nVK/O1aEhnt1/bwlvOX8m/PnKIH+5OTa+gvtEp/ubBl3njfz7FvhMjfOqPNvHIx17D6zfXxn2hNBnSbxNJlXSN5UXk2SVi5c2v9p/kq4+3ceOrGvmTV61a8rlf27KC9SuK+fpvjvKW8+uj/iYJNTNbaoXLcmyodfNkcDEs33F67nNqwsv3fnecN527knUrYs+rX9RcSVOlk/9+roO3XBB+K0p8hbbmW53GfejnY7MJX3j7eQxOeLn9x3upchdw1YYVSbm2x+vjG08e4+tPtjHjD/CBS9fw0deup9SZl5TrJ4rO6BUOu41VFc6zKm+O9o/z8R+8zLkNpXz6zZuXdW6bTfjgFWs5eHKMJw5FfyNcW/8EK0sLZysZEqml1o0vYDg6cOYPum8+fRTPjJ/b4jCbB+u9uHHHKp47NjT7gyxRMqEP/ULyHTbueNeFtNS6+fA9L/JS53DCr7lrbw+v/eJv+PdHD3PFOdU8+ldX8Mk3bcr4IA8a6FVQc3XxGYHO4/Wx854XcNiFr/3ZtpjK3d583krqSgu5YwnNztr6xxOenw9pqQ1W3sxJ35ya8PKd3x7n+q11ca2SefuF1qLs/Qnuf9MxOIG7wEF5Bgep4gIH337fq6hy5/P+7zwft30Twnm8Pv7mwZf58L0vUuXO54c7L+aOd12Ykb8NzUcDvQKsBdnjwQVQYwy3/2gvr/SN85WbLoj5hqV8h40PXLaG544N8WLHqUWPN8bQ1pe4rpXhmqtd5NnljMqbbz19jAmvn9tiqLSJpKq4gNdvquXBBC/KtgebmWViPnmuFe5Cvvf+VwPw7rufpX8svkV7+7pHeNNXnuaHL3Rx61Xr+MmHL+VVTRVxvUY60ECvAFhbVYzXF6D71CTf+d1xHnr5BJ94/QYuX18dl/PftGMVpUV53BlFJUXv6DQTXn/SZvR5dhtrq4s5FGyFMOzx8p3fHeeNW+tmG5/F0007VjHsmeGR/YlblM200sqFrKlycfd7X8XAmJf3fec5xqd9MZ8zEDB848mj/PHXfovH6+feP381n3jDBvLs2RkSs/NfpZZsTbDE8oHdHXz24Vau2VjDh65YG7fzuwocvPvi1fy6tXfR/PTpipvk/eps9byxZvR3P32M8WkfH706Prn5cJesrWRVhTNhjc78AUPX0GRGNDOL1vmNZXztz7bR2jPGh+55YdlttQH6xqZ4z7ef47O7Wrlqwwp+8ReXc8naqsVfmME00CsAmoPVLV99vI2G8iK+9Cfnxb3h0nsuaSLfbuOuRVoYhwL9uiSlbsDK0/eMTNE55OHbvz3OdVtqZ3P38WYtyjby7LGh2X9rPPWOTuH1B7JmRh9yVcsK/uWtW3nqlQH+5sGXl9UZ8vFDfVz/5ad47tgQ//SWLXz95gspT8DuZelGA70CrC6LpUV5FOXZufPmCykpjP8iXlVxAe/Y3sBP/tBN7+jUvMcd6RvHXeCg2p28fU5Dm5Dc/uM9jE37uO3q+Obmw73jwkYctsQsys6WVmZA18qlesf2Rj7x+nP4n5dO8PlfHoz6ddM+P//vZwd437efp6q4gJ999DLeddHqjF/DiJYGegVY/Vj+/k2buOvdFyZsJgtwy+Vr8QcMdz99bN5j2vrHaV5RnNRvwlAu/rdHBnnD5ho2JrjHTrW7gNdvruHBF7qY9sV3UTa0D0Cm3RUbrY9ctY6bL1rN1588uuDXUciRvjHe8tXfcfdvj/Gei1fzPx+5dLb1Ra7QQK9mvf3Chrgtvs5nVaWT67fWce+zHYxMRt42rq1vIqlpG4C60kJKCq2a/UTP5kNu2rGKU56ZqBrKLUX70AQOm1BXmp3bM4sIn37zZq7dXMtnHj7Az16OfNe1MYb7nuvgTf/5NCdHJvnmu7fzjzdsSevOmImigV4l3c4r1jI+7ePeZ9vPem582sfJ0amE7So1HxHh6o01vG1bA5tXJqePyaVrq2isKOK+OC/Ktg96qC8vwpGlFSRgdYL8jxvPZ/vqcj7+g5f5XdvAGc+PeGb4yH+/yN/9eC8Xri7nlx97Ddcs0FY722XvV4JKW1vqS7l8fRV3P338rFryo0nscRPu3//kfP7tnecl7Xo2m3Djq1bxzNHBJW/luJDOLCqtXEhhnp1vvvtVNFU5+eD3XpjdkP65Y0Nc9+Un+dX+Xm6/roXvv//V1JRk52830dJAr1Ji5xVrGRif5scvdp/xeDKbmaWDd2xvwGGTZbVynk97jgR6sPYo/s77duAqcPDebz/H53a1cuNdz5DnsPGjD13CzivWJm27vnSmgV6lxCVrK9laX8pdT7bhn1Mmd6RvHIdNsnYhMdwKdyHXbKzhh3FalB2ZnGHYM5MzgR5gZVkR333/DqZm/Nz15FHeckE9D992Oec1lqV6aGlDA71KCRFh5xVrOT7oOeMO0ba+CVZVOrP2DsVIbnr1KoYmvPwqDouy2V5xM58NtW5+sPNivv2+V/Gld55PcRKa4WWS3PluUmnn2i21NFU6ufM3bbO7CbX1jye94ibVLl9XRX1ZEffFoab+dNfK7KuhX0xLbUnS2hlnGg30KmXsNuH/e00ze7pGeKZtEJ8/wPHBiaT1uEkXNpu1p+zv2gZj7tAYulkqm9ofqNhpoFcp9bZtDVQVF3DHb9roPDXJjN/kzELsXO/Y3ojdJnzt8SMx5eo7hiaodOVr6kKdQQO9SqnCPDvvu7SJp14ZmL3xJZnNzNJFTUkh79zewA9f6OI1X3icbz19DI936V0aO4Y8Gbl9oEosDfQq5d510Wpc+Xb+6/EjwOk9bHPN5/54K/d84NU0Vbr4zM8PcNnnH+erjx9hdCryHcSRtA96cm4hVi1OA71KudKiPP701avw+gJUuwsoLcrcXZFiISJctr6KBz54MT/ceTFb60v510cOcem/PMaXfnWIUxPeBV8/4w9wYngyp0orVXQ00Ku08IHLmsmzS06mbSJ5VVMF333/Dn5262VcuraKrzx2hEs//xifffgAffN0/uw+NUnAZO4+sSpxdMVGpYXa0kI+/7ZzWeHO7VvVw21tKOXOmy/kcO8YX3v8CN96+hjffaadP9neyAevaD5jm8f22Rp6/WGpzqSBXqWNt25rSPUQ0tY5NW7+48YL+Ng153Dnb9q4//kO7nuugz++oJ4PXbmW5uriOTX0OqNXZ9JAr1QGaapy8S9vO5fbrl7PXU8e5b7nOvjRi1288dyV+PwBChw2ViRxwxaVGTTQK5WBVpYV8ek3b+YjV63jm08f5Z5n2pnw+lm3olibeKmzaKBXKoNVuwv4u+s28qEr1nLvsx1aWqki0kCvVBYoc+bzkavWpXoYKk1peaVSSmW5qAK9iFwrIodE5IiI3B7heRGRrwSf3yMi2+Y8VyYiD4rIQRFpFZGL4/kPUEoptbBFA72I2IGvAtcBm4CbRGRT2GHXAeuDf24B7pjz3JeBXxpjWoDzgNY4jFsppVSUopnR7wCOGGOOGmO8wP3ADWHH3AB8z1h+D5SJSJ2IlACvAb4FYIzxGmOG4zd8pZRSi4km0NcDcze07Ao+Fs0xzUA/8G0R+YOIfFNEIt62JyK3iMhuEdnd398f9T9AKaXUwqIJ9JGKck2UxziAbcAdxpgLgAngrBw/gDHmLmPMdmPM9urq6iiGpZRSKhrRBPouoHHO5w3AiSiP6QK6jDHPBh9/ECvwK6WUSpJoAv3zwHoRWSMi+cCNwENhxzwEvDtYfXMRMGKM6THGnAQ6RWRD8LirgQPxGrxSSqnFSWhT5gUPErke+A/ADtxtjPmsiOwEMMbcKSIC/BdwLeAB3meM2R187fnAN4F84GjwuVOLXK8faF/mv6kKGFjma5NBxxcbHV9sdHyxSefxrTbGRMx7RxXoM4mI7DbGbE/1OOaj44uNji82Or7YpPv45qN3xiqlVJbTQK+UUlkuGwP9XakewCJ0fLHR8cVGxxebdB9fRFmXo1dKKXWmbJzRK6WUmkMDvVJKZbmMDPSxtE1O0vgaReTxYFvm/SLyFxGOuVJERkTkpeCff0jyGI+LyN7gtXdHeD5l76GIbJjzvrwkIqMi8rGwY5L6/onI3SLSJyL75jxWISK/FpFXgn+Xz/PaBb9eEzi+fw22B98jIj8RkbJ5Xrvg10ICx/dpEeme8394/TyvTdX798CcsR0XkZfmeW3C37+YGWMy6g/WTVttWA3T8oGXgU1hx1wP/AKrB89FwLNJHmMdsC34sRs4HGGMVwI/T+H7eByoWuD5lL6HYf/fJ7FuBknZ+4fVhXUbsG/OY18Abg9+fDvw+XnGv+DXawLH93rAEfz485HGF83XQgLH92ngE1H8/6fk/Qt7/t+Af0jV+xfrn0yc0S+7bXKyBmis9g8vBj8ew+rBH97xM92l9D2c42qgzRiz3Dul48IY8yQwFPbwDcB3gx9/F3hLhJdG8/WakPEZY35ljPEFP/09Vg+qlJjn/YtGyt6/kOCd/+8E7ov3dZMlEwN9LG2Tk05EmoALgGcjPH2xiLwsIr8Qkc3JHRkG+JWIvCAit0R4Pl3ewxuZ/xssle8fQI0xpgesH+7AigjHpMv7+H6s39AiWexrIZFuDaaW7p4n9ZUO79/lQK8x5pV5nk/l+xeVTAz0sbRNTioRKQZ+BHzMGDMa9vSLWOmI84D/BP4nycO71BizDWt3sI+IyGvCnk/5eyhWE703Az+M8HSq379opcP7+H8BH3DvPIcs9rWQKHcAa4HzgR6s9Ei4lL9/wE0sPJtP1fsXtUwM9LG0TU4aEcnDCvL3GmN+HP68MWbUGDMe/HgXkCciVckanzHmRPDvPuAnWL8iz5Xy9xDrG+dFY0xv+BOpfv+CekPprODffRGOSen7KCLvAd4E/JkJJpTDRfG1kBDGmF5jjN8YEwC+Mc91U/3+OYC3Ag/Md0yq3r+lyMRAv+y2yckaYDCn9y2g1RjzpXmOqQ0eh4jswPq/GEzS+Fwi4g59jLVoty/ssJS+h0HzzqRS+f7N8RDwnuDH7wF+GuGYaL5eE0JErgX+FnizMcYzzzHRfC0kanxz13z+eJ7rpuz9C7oGOGiM6Yr0ZCrfvyVJ9Wrwcv5gVYQcxlqN/7/Bx3YCO4MfC9aG5m3AXmB7ksd3Gdavl3uAl4J/rg8b463Afqwqgt8DlyRxfM3B674cHEM6vodOrMBdOuexlL1/WD9weoAZrFnmB4BK4H+BV4J/VwSPXQnsWujrNUnjO4KV3w59Dd4ZPr75vhaSNL7vB7+29mAF77p0ev+Cj38n9DU359ikv3+x/tEWCEopleUyMXWjlFJqCTTQK6VUltNAr5RSWU4DvVJKZTkN9EopleU00CulVJbTQK+UUlnu/weks+qFjvlRhgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/bUlEQVR4nO3deXic1Xn4/e+tfd9XW5IteZFsDHbAGINZTAjEkKZkbaFJoARCnAayNWkI7a/pe/VtS0gIJW9piElJIZCQpSHwSxw2ly3EBhuwjYQkS5Zla99sabRvc94/5hl5PB5JI2mWR5r7c126NPMsM2fG8tzznHOf+4gxBqWUUpEnKtwNUEopFR4aAJRSKkJpAFBKqQilAUAppSKUBgCllIpQGgCUUipCaQBQSqkIpQFARRQRaRSRDwTgcf5aRP4YiDYpFS4aAJRSKkJpAFARQ0R+CpQA/1dEBkTk76ztW0XkTyLSKyKHRGS7xzl/LSINItIvIsdE5FMisg54CLjYepzeaZ7vFhGpts5tEJHPe+2/XkQOiohDRI6KyA5re5aI/EREWkXklIj8Nhjvh1KipSBUJBGRRuA2Y8yL1v3lwGHgM8CzwFXAk0AFMAS0ARcaY2pFpBDIMsZUichfW49z6QzP9SGgBmgALgf+AFxqjHlbRLYALwCfAPYAhUCqMaZGRH4PDAA7rd+XGGNeCew7oRTEhLsBSoXZp4Hdxpjd1v0XROQAcB3wa8AJbBCRE8aYNlwBwS/GmN973H1FRJ4HLgPeBm4FHjHGvGDtbwGwgsy1QLYx5pT73Pm9NKVmpl1AKtKtAD5pdf/0Wt05lwKFxphB4C9xfRNvE5Hfi0iFvw8sIteKyD4ROWk97nVAjrW7GDjq47Ri4KTHh79SQaMBQEUa7z7PJuCnxpgMj59kY8w9AMaY54wxV+PqoqkBHp7mcc4gIvHA/wDfA/KNMRnAbkA8nneVj1ObgCwRyZjzK1NqjjQAqEjTAZR53H8c+LCIfFBEokUkQUS2i0iRiOSLyJ+LSDIwiqs/ftLjcYpEJG6a54kD4oEuYEJErgWu8dj/X8AtInKViESJyHIRqbC6mf4A/KeIZIpIrIhcHrBXr5QHDQAq0vwb8A9Wd8/XjTFNwPXA3bg+rJuAb+D6vxEF/C3QCpwErgD+xnqc/wWqgHYR6fZ+EmNMP/Al4JfAKeCvgGc89r8J3ALcD/Th6udfYe3+DDCO64qjE/hKYF66UmfSLCCllIpQegWglFIRSgOAUkpFKA0ASikVoTQAKKVUhFpUM4FzcnLMypUrw90MpZRaVN56661uY0yu9/ZFFQBWrlzJgQMHwt0MpZRaVETkuK/t2gWklFIRSgOAUkpFKA0ASikVoTQAKKVUhNIAoJRSEUoDgFJKRSgNAEopFaE0ACi1xB3tGuBXB5rQyr/K26KaCKaU8l/zqSF+sKeOX7/VjNPAOcvSWb8sLdzNUjaiAUCpJaarf5QHX6rnZ2+cAOCD5xTwh8p2Tpwc1ACgzqABQKklom9onF2vHeWRPzYyNunkkxcUcedVa0hNiLECwFC4m6hsRgOAUovc0NgEP3m9kR+9chTHyAQf3riMr35gDWW5KVPHZCTFagBQZ9EAoNQiNToxyc/fOMF/vHSU7oFRrqrI42vXrOWcZelnHVuSlcSJk8NhaKWyMw0ASi0yE5NOfvNOCw+8WEdL7zAXlWbxo8+czwUrsqY9pzgrifdaHSFspVoMNAAotUg4nYY/VLZz3wu1NHQNcl5ROvd8/FwuXZ2DiMx4bklWEs9XtTPpNERHzXzsUvNGQw//+HQVO7eX8ZFNy2d9ryKJBgClbM4Yw8tHuvjec7VUtTpYk5fCQ5++gA+ek+/3h1lJVhLjk4Z2xwjLMxKD3GL7aD41xBeeeJv+kXG++otDvFTTxT9/ZAPpibHhbpotaABQyuae3N/Et37zLsVZiXz/LzZy/ablc/4WX5KVBMCJnqGICQDDY5Pc/thbjE862f2ly3iuqp37X6zjreOnuP8vN7GldPous0jh10xgEdkhIrUiUi8id/nYnykiT4nIYRF5U0Q2eOz7qohUiUiliPxcRBKs7Vki8oKI1Fm/MwP3spRaGgZGJ7jv+VouXJnJnq9t52PnF82rC8cdAJoiJBPIGMM3fn2I6nYHP7jhfazJT+WO96/h1zsvJiZauGHXXr77XA3jk85wNzWsZg0AIhINPAhcC6wHbhSR9V6H3Q0cNMacB9wEPGCduxz4ErDZGLMBiAZusM65C9hjjFkD7LHuK6U8PPxqA90DY9x93TriYuZfuaUwPYHoKImYVNAfvnKU3x1u4+8+WMGVFXlT299XksnuL13GJy4o4sGXjvKJH/6JY92DYWxpePnzF7UFqDfGNBhjxoAngeu9jlmP60McY0wNsFJE8q19MUCiiMQASUCrtf164FHr9qPAR+b7IpRaijodIzz8WgPXnVvA+0oWdoEcEx3F8ozEiAgAL9V08t3navnwxmXsvKLsrP3J8THc+4mN/OenzqexZ4gP/eA1frH/RETWSvInACwHmjzuN1vbPB0CPgYgIluAFUCRMaYF+B5wAmgD+owxz1vn5Btj2gCs33n4ICK3i8gBETnQ1dXl36tSagn49z11jE04+cYHKwLyeK65AEs7ABztGuBLP3+HdQVp3Pvx82YcJL/u3EKe/cplbCrO4Jv/8y5fePxtTg2OhbC14edPAPD1DnqHynuATBE5CNwJvANMWP361wOlwDIgWUQ+PZcGGmN2GWM2G2M25+bmzuVUtUQcbu7l//y2Eqczcr6h1XcO8Iv9TXzqohJKc5ID8pjFWUlLegzAMTLO5x47QGxMFLtuuoDEuOhZzylMT+TxWy/i7usq2FPTwY4HXuX1+u4QtNYe/AkAzUCxx/0iTnfjAGCMcRhjbjHGbMI1BpALHAM+ABwzxnQZY8aB3wCXWKd1iEghgPW7cyEvRC1NTqfhW795l5/uO87xJfzh5e3eZ2tIjI3mzqvWBOwxS7KS6BkcY2B0ImCPaReTTsNXnjzIiZ4h/vNT51OUmeT3uVFRwu2Xr+Kpv9lGSnwMn/rxG/zr7mpGJyaD2GJ78CcA7AfWiEipiMThGsR9xvMAEcmw9gHcBrxqjHHg6vrZKiJJ4roWuwqoto57BrjZun0z8PTCXopain73bhtV1gzWmrbImMl6oPEkz7/XwecvLyMnJT5gj+uZCrrUfP+FWv63ppNvf3g9W8uy5/UYG5an87s7L+PTW0vY9WoDH33wT9R39ge4pfMTrPGJWQOAMWYCuAN4DteH9y+NMVUislNEdlqHrQOqRKQGV7bQl61z3wB+DbwNvGs93y7rnHuAq0WkDrjauq/UlLEJJ/c9X8uavBSiBKrb7fGfMZiMMfzr7mryUuO59bLSgD72VABYYldSvzvcyoMvHeWGC4v59NYVC3qsxLho/t+PnMuPb9pMu2OED/3gj/x0b2NYB4gPNJ7k+gdfD0rg9msimDFmN7Dba9tDHrf3Aj6vVY0x3wa+7WN7D64rAqV8+sX+ExzvGeKRv97Mv/y+mtr2pX8F8FxVO2+f6OWej51LUlxg52mWZC+9uQDvtTr4xq8Oc8GKTP6f688JWJmHD6zP59niy/j6rw7zf56u4qVa1wziUE6ic4yMc++zNTy+7wTLMxLpGhid+jcMFF0SUtnS0NgED+ypZ8vKLK4sz6OiMI2aJX4FMD7p5DvP1rI6L4VPXFAU8MdPT4wlPXHplIU+OTjG5x47QHpiLD/89PnEx8w+6DsXeakJ/PdfX8i3P7ye1+u7ef/3XubeZ2voHxkP6PP48mxlO1d//xV+9sYJPrutlOe/ejkXrAj8XFkNAMqWHvnjMboHRvnmtRWICBX5qRzvGWJwCQ5guj355gmOdQ9y144KYqKD819zqaSCjk86+Zsn3qJrYJQffeYC8lITgvI8UVHCLdtK+d+vb+e6cwv5z5ePcuX3XuaJN44zEYRZxB2OET7/0wPsfPwtspLjeepvtvGPH15PcnxwqvZoAFC2c2pwjB+90sDV6/OnvvVUFLqWMjzSsTSvAgZGJ3hgTx1bSrO4ap3PKTEBUbJEUkH/5ffV7Gs4yb999Fw2FmcE/fmWZyRy/19u4ukvbqMsJ4W/f6qS637wGq8cCczcJKfT8Pi+43zgvld4ubaLb+6o4Jk7tgX9tWkAULbz4Ev1DI5N8HcfLJ/aVlGQChCWbqDX67u5+vuvUBPEMYhdHiUfglmuuDgrieZTw0wu4jkVv9zfxH//qZFbLy3l40HoKpvJxuIMfvH5rTz06fMZnXBy8yNvctMjb1K7gL/Luo5+/uJHe/mH31ZyXnE6z33lcr6wfRWxQboK9KQBQNlKS+8wj+09zsfPL2JNfurU9uUZiaTEx4QlFXRPdSd1nQN86uE3gnIF0ukY4eFXG/jQuYVsCvI3vpKsJMYmnXQ4RoL6PMHy9olT/MNvK7l0dQ7fujYwM6TnSkTYsaGQF756Bf/woXUcPHGKax94lW/95l26+kf9fpzRiUnuf+EI1/3gNeq7BvjeJzfy+K0XsTJAE//8oQFA2cr9LxwBga9cvfaM7VFRQnlBaliuACpb+yjNSSY6Svirh/dRF+Ag8O976hifdPINjyueYFnMqaAdjhF2/vQtCtIT+I+/el/Qxkn8FRcTxW2XlfHKN67k5ktW8qsDTWz/7ks8+FI9I+MzTyLb33iS6x54jQf21HHduYW8+LUr+MQFRSFfrEYDgLKNIx39/ObtZm7ausJnup07AIQyJ9vpNLzX6uCyNTn8/PatiAg3PvwG9Z0DAXn8+s5+frG/iU9vXRGSb36LNQCMjE9y+0/fYmB0godv2kxGUtzsJ4VIZnIc3/7wOTz/1cu5ZHUO332ulvd/72WePthyVvmSvuFx7n7qXT750F5Gxp385JYLeeCG9wV0wt9caABQtnHvs7Ukx8XwxStX+9y/riCVvuFx2kPYfXH85BADoxNsWJbOqtwUfv65rQDc+PA+jnYtPAh859laV8mH9/t+zYFWmOEqC72YBoKNMfz9U5Ucaurl+3+xifKC1NlPCoOy3BQevmkzP//cVjKT4/jykwf56H++zv7Gkxhj+MO7bVz9/Vd48s0T3HZpKS987XKuLA/egL8/NAAoWzjQeJIXqzv4/BVlZCb7/nbnzgQKZTdQZUsfAOcsdz336rwUfv65izDGcOOufTQsIAjsbzzJC+91sPOKMrJD9A0wNjqKZRkJi+oKYG9DD//zdjNfev9qdmwoCHdzZnXxqmz+7x2Xct8nN9LhGOWTD+3lg//+Kl944m1yUuL57Re38Q9/tj7gE/3mQwOACjtjDN95tobc1Hg+e+n05Q/WWoPCNW0hDACtfcRFR7Em7/S3zjX5qfzsc1uZdBpufHjfvBYUcZd8yE+L59ZLz65ZH0yLbS6AOwjP9LdhN1FRwscvKOKlr2/na1evxWngrmsrePqObZxXlBHu5k3RAKDC7qXaTvY3nuJLV62Z8VtRemIsyzMSg5qO6a2qxUF5QepZq3GtzU/lic9dxPik60qgcY5B4NnKdt450cvXrl7rV9niQFpscwHqOgbISYm3Vb+/vxLjovnSVWt48WtXsPOK0KR2zoW9WqMizqTTcO+ztazMTuKGC4tnPb6iIHVBOddzYYyhsrWPDVb3z9ltSeOJ2y5idGKSGx/e53exrvFJJ/c+5ypy9/HzQ5vHDq65AN0DY4tmVnVd5wBr8lLC3YwlSQOACqunD7ZQ097P315T7te3o/KCVOo7BxibCP5i3i29w/QOjXPOsvRpj1lXmMYTt21leNwVBPz5Zj1V8uHa4JV8mMnUAvGn7H8VYIzhaOcAa/I1AASDBgAVNqMTk9z3/BE2LE/jQ+cW+nVORWEaE04TkAyc2VS2uLqaNiyfPgAArF+WxuO3XsTA6AQ37Jo5CAyMTvDvL9ZxUWkW768ITwaIOwAcXwTrAnQ4RukfndArgCDRAKDC5ol9J2jpHeabOyqIivJvAoy7JEQouoGqWvuIjpKp55zJhuXpPHHbRfSPjHPjw/to6R32edyuV47SMzjGt4Jc8mEmU1cAi2AcoM5akGWVBoCg0ACgwqJ/ZJz/eKmebauzuWyN/2s9l+YkExcdRXUIBoIrW/pYk5dCQqx/g7SuILCVvuFxbti1l1avINDpGOHh147xofOCX/JhJumJsaQmxCyKTKC6DteVnmcWlgocDQAqLB5+7RgnB8f45o651XOJjY5idV5KSK4AKlsdM/b/+3JuUTqP33oRvYOuK4G2vtNB4P4X65hwOs8ochcOIrJoUkHruwbISIolJ2XxZQAtBhoAVMh19Y/y49dcxc/mkxNdUZAa9LkAnY4RuvpHp80AmsnG4gweu3ULJwfGuHHXPtr7RqySDyf41EUrWJEdumJf01mRvUgCQIcrAyhc3WVLnQYAFXL/8b91jE44+dtr1s5+sA8Vham0O0boHRoLcMtOq2x1TT6abQB4Ou8ryeS/P7uF7oExbnx4H99+poqkuJiQlXyYTXFWEs0nh8+qVWMnxhiOdPazWvv/g0YDgAqpEz1D/OzNE/zlhcWU5c7vP3ZFQfBLQlS2OBBxpXnO1wUrMnn0sxfS6Rjh9foevrB9VchKPsxmqix0v33LQvcMjtE7NM5q7f8PGg0AKqTue6GW6Cjhy1etmfdjTC0OE8S1ASpbXCWgUxa4FN8FK7J47NaL+NRFJXx2m31KGUxVBbVxKqi74qqmgAaPXwFARHaISK2I1IvIXT72Z4rIUyJyWETeFJEN1vZyETno8eMQka9Y+/5JRFo89l0X0FemAuZ3h1vZ8i8v8vmfHuCxvY0c7RqYV0nmqtY+nj7Yyi3bSslPm/8arrmp8WQlxwX1CqCq1cGGOQ4AT+eCFZn8y0fPDXnJh5kshrLQde4AoJPAgmbWrzciEg08CFwNNAP7ReQZY8x7HofdDRw0xnxURCqs468yxtQCmzwepwV4yuO8+40x3wvIK1FB8781nfSPTFDZ4uC5qg4ACtISuGR1NttW5bBtdQ4F6bN/oH/3uVrSE2PZecWqBbVHRCjPD97iMCcHx2jpHebmS1YE5fHtYFlGIlFi77kA9R39pMTHULCALwtqZv5c324B6o0xDQAi8iRwPeAZANYD/wZgjKkRkZUikm+M6fA45irgqDHmeGCarkKlpq2fLaVZ/PctF3Li5BCv1/fw+tFuXq7t4jdvtwBQlptsBYNstpZln1W4a19DDy/XdvGtaytIT4xdcJsqClN58s0mnE7j9yQyf1W5B4ADdAVgR66y0Im2vwJYpRlAQeVPAFgONHncbwYu8jrmEPAx4I8isgVYARQBngHgBuDnXufdISI3AQeAvzXGnJpD21UIjE86qe8c4LK1OYgIK7KTWZGdzF9dVILTaahp7+dPR7t5vb6b/3m7mZ/uO46I68PTfYWweWUm9/yhhsL0BG6+ZGVA2rWuII3h8UlOnBwK+Epa7hIQc50DsNjYfS5AfecAl6/1f5Kgmjt/AoCv8OvdAXwP8ICIHATeBd4BpkoNikgc8OfAtzzO+SHwz9Zj/TNwH/DZs55c5HbgdoCSkhI/mqsCqaFrkLFJJ+t9ZMNERQnrl6Wxflkat11Wxvikk0NNvVNXCI/88Rg/eqWBmChhwmn4zsfP9XtW7Wzcq0LVtPcHPgC09lGclUh60sKvVOysJCuJF6s7w90Mn/qGxunsH9UB4CDzJwA0A551eouAVs8DjDEO4BYAcV2vHbN+3K4F3vbsEvK8LSIPA7/z9eTGmF3ALoDNmzfbN2l5iXLX3nenXs4kNjqKzSuz2Lwyiy9/YA1DYxPsbzzFn+q7GRidCGjp47X5qYi42hfoVaKqWvqWdPePm6ss9ChDYxO2WJ3KU32Xa3xH5wAElz//6vuBNSJSimsQ9wbgrzwPEJEMYMgYMwbcBrxqBQW3G/Hq/hGRQmNMm3X3o0DlvF6BCqr32hzERgtluXP/lp0UF8MVa3O5IgiX8Ylx0ZRmJwd8RrBjZJzGniE+uXn2tQkWu9NF4YZtt86u1gAKjVkDgDFmQkTuAJ4DooFHjDFVIrLT2v8QsA54TEQmcQ0O3+o+X0SScGUQfd7roe8VkU24uoAafexXNlDT1s/qvFTbrWQErm6gQGcCvdfq7v+f/wSwxcIzFdRuAaC+c4CE2CiWZyaGuylLml/XfcaY3cBur20PedzeC/ic2WOMGQKyfWz/zJxaqsKipt3BttU54W6GTxUFaTxb1R7QLoypReAjoAvo9LoAc1/TONjqOgdYlZtCdIAzvNSZ7Pe1TtnGycExOhyjrPOj/z8cKgpTMQaOdARucZiqVgf5afHkptqjZEMwZSTFkhofY8u5APWdA9r/HwIaANS03KUWKgrt1T3gdnpxmMCVhKiMkAFgcE2oK7ZhKujg6AQtvcOaARQCGgDUtKqt/nV/MoDCoTgziaS4aKoDNBA8NDbB0a4BzplnBdDFyI5zAdzLfWoRuODTAKCmVdPmICfFvt0hUVHC2vzUqVTVhapu68dpYEMEDAC7lWQn0XTKXmWhpzKAtAZQ0GkAUNOqae9nnU27f9zWFaZS294/r+J03t5b4BoAi1FxVhJjE046+0fD3ZQpdZ0DxEYLK6xBahU8GgCUTxOTTmo7+v1aED2cKgrSOGXNGl2oyhYHWclxFPpR2G6pWGHDqqD1nf2U5iQTY8PU46VG32HlU2PPIGMTTtv2/7t5loRYqMrWPs5ZlhZRxcfsWBa6vnNAJ4CFiAYA5ZN7YHUhK2KFQqAWhxmdmORIR39Edf/A6bLQdgkAI1aBP00BDQ0NAMqnmnYHMVHCqrzwL2A+k4wkV5fNQq8A6joGGJ80EZMC6hYXE0VheqJt5gI0dA3iNFoDKFQ0ACifqtv6WZWbQnyMfVaxmk4gSkK4ZwBvWG7vK55gsFMqaF2n699RM4BCQwOA8qmmzWHbCWDeKgrSqO/sZ3zSOe/HqGztIzUhZqpPPJLYKQAc7RwgSqA0wCW+lW8aANRZ+obGae0bsX3/v1tFQSrjk4aGrvnXtKlscUTcALBbSXYSXf2jDI9Nhrsp1HUOsDI7eVFceS4FGgDUWU6vAbBIrgAK3ZlA8xsInph0Ut0WuEXgF5tid1noU+G/CnAvA6lCQwOAOku1lVGzWK4AynJSiI2WeY8DHO0aZHTCGXEZQG5TqaA94Q0A45NOGrsHtQZQCGkAUGepae8nMymWPJuWgPAWFxPFqtyUeaeCRvIAMNhnLsDxnkEmnEYHgENIA4A6S3V7P+sKF1d/eEWBqyTEfFS29pEYG01pTmR+8GQmxZISHxP2AKCrgIWeBgB1hkmn4Uh7v+1nAHurKEyjtW+EvqHxOZ9b1eJg/bK0iF18xC5loes6XQFgPsuPqvnRAKDOcLxnkOHxyUWTAup2uiTE3LqBnE5DVWtfRFUA9aUkK9EWAaAoM9F2C9QvZRoA1BncA6l2XQVsOu721nbMrRuosWeQwbHJiFoDwJeSrCSaTg6FtSy0qwZQZHbDhYsGAHWGmjYHUbL4ZmLmp8WTkRQ758VhKq1F4CM1BdStJCuJ0QknXQPhKQs96TQc7RpgTf7iuvJc7DQAqDO819ZPWW4KCbGLayKOiFA+j8Vhqlr6iIuOWnQBL9CKw5wJ1HRyiLEJJ6tzI/vfIdQ0AKgz1LQ7Fs0EMG/rCtM40t4/p26MytY+KgpTiY3w2vPhngvgHgBeHeGBONT8+qsXkR0iUisi9SJyl4/9mSLylIgcFpE3RWSDtb1cRA56/DhE5CvWviwReUFE6qzfmQF9ZWrOHCPjNJ8aXjQTwLyVF6QyODZJ86lhv443xlglICK7+wdgeWYiEsay0PXuAKBjACE1awAQkWjgQeBaYD1wo4is9zrsbuCgMeY84CbgAQBjTK0xZpMxZhNwATAEPGWdcxewxxizBthj3VdhdMQ9ALzIMoDcKuaYCdR8api+4fGInQDmKT4mmmVhLAtd19lPQVoCaQmxYXn+SOXPFcAWoN4Y02CMGQOeBK73OmY9rg9xjDE1wEoRyfc65irgqDHmuHX/euBR6/ajwEfm3vzI8OSbJ7jm/leYWEC1S3+4S0AstjkAbmvzUxHxf3WwKvcawHoFAEBxGFNB6zsH9Nt/GPgTAJYDTR73m61tng4BHwMQkS3ACqDI65gbgJ973M83xrQBWL/zfD25iNwuIgdE5EBXV5cfzV169jb0cKRjgEPNvUF9nur2ftISYhbtmrjJ8a5yzv5eAVS2OIiOkqk5BJEuXGWhnU6jASBM/AkAvqZHeo+y3QNkishB4E7gHWBi6gFE4oA/B3411wYaY3YZYzYbYzbn5ubO9fQlobHbVeb4pZrgBkDXGgCLqwSEt4o5LA5T2drHmrzFl/EULCVZSXSGoSx0m2OEobHJiM/ECgd/AkAzUOxxvwho9TzAGOMwxtxi9fXfBOQCxzwOuRZ42xjT4bGtQ0QKAazfnXNvfmRotDIzXj4SvLfI6TTUtvezfpEOALtVFKTR2D0464eYawC4L2IrgPriTgVtDnFZ6Dpr8p7WAAo9fwLAfmCNiJRa3+RvAJ7xPEBEMqx9ALcBrxpjPK/Db+TM7h+sx7jZun0z8PRcGx8JTg2O0Tc8Tn5aPJUtDjodI0F5nqZTQwyOTS7aFFC3ioJUnOb00oLT6ewfpXtgLOJLQHgKV1VQzQAKn1kDgDFmArgDeA6oBn5pjKkSkZ0istM6bB1QJSI1uL7tf9l9vogkAVcDv/F66HuAq0Wkztp/z0JfzFJ0rMfV/fPpi1YA8PKR4HQDuWfQViz2KwCr/bN1A50uAa1XAG7hCgB1HQNkJ8eRlRw3+8EqoPyqumSM2Q3s9tr2kMftvcCaac4dArJ9bO/BlRmkZnDcCgDXnlvA428c55XaLv5ic/EsZ81dTbsDEShf5FPxS7KSSIyNpmaWkhCVLa7Xu1jnPARDVnIcyXHRob8C6NIB4HCJ7OmPi8Cx7iGixNU/u31tHq/WdS1o8fPp1LT1U5qdTGLc4h4QjY4S1uanzJoJVNnaR2lOMsnxWnnSzV0WOpRzAYwx1HX06wBwmGgAsLnjPYMsy0gkPiaaKyty6R+Z4O3jpwL+PNXtjkVXAno6FQVp1LT3Y8z0JSGqWvo0/9+HkqwkjoewHERX/yiOkQmtARQmGgBsrrF7kNIc1wIZ21bnEBMlAR8HGByd4HjP0KKdAOatvCCVk4Nj01a27BkYpbVvRGcA++CeCzBT8Awk9wCwVgENDw0ANmaM4Vj3ICuyXYNzqQmxbF6ZyUs1gU0HddfQXyr94e4rmenGAaq0BPS0SrKtstD9oSkL7S4Cp+sAhIcGABvrHRrHMTLByuzTS+RdWZ5HTXs/7X2BSwd1f1Au9hRQN/eVzHRrBFdaJSC0CNzZQl0Wuq7TNfs8NzU+JM+nzqQBwMbcKaDuLiCA7eWuihkv1wbuKqC6zUFKfAxFmYkBe8xwykqOIy81nuppBoKrWhwUZyWSnqSFx7yFOhW0rsOVAbSYZ58vZhoAbMydArrC4wpgbX4Ky9ITeCmAAcC9BsBS+k9YUZg2bRdQZasOAE9neUZoy0If7RrQGcBhpAHAxk6ngJ7+Zi4iXFGex+v1PYxNLDwd1BhDTVv/kun/d1tXkEp958BZFVT7hsc53jOkE8CmkRAbTUFaQkgCwMnBMboHxjQFNIw0ANhYY/fpFFBPV5bnMjA6wYHjJxf8HC29w/SPTiyZFFC38oJUxiadHLMK6bm9Zw0An6MlIKYVqrkAWgIi/DQA2NjxnsEz+v/dtq3OITZaeKV24emgUyUglkgKqJv79VR7DQRX6QDwrEJVFtpdr0kDQPhoALApdwqoZwaQW3J8DFtKswIyDlBjLQKz1Grir8pLJjpKqPUaCK5s6aMgLUGzTmawIiuJDscoI+PBLQtd3zlAUpxrJTIVHhoAbOqUlQLqngPg7cryPI50DNDS69/6t9Opae9nRXYSKUusJEJ8TDSrcpPPGgiuanXoBLBZlGSHpiy0exGYqKilk3yw2GgAsKlGHymgnraXuxbHWWg6aHWbY8nk/3tzl4RwGxqb4GjXgHb/zCJUcwHcKaAqfDQA2JR7FbAVPrqAAFblplCUmbigVcKGxyY51jO45Pr/3coLUmnpHcYxMg64xjucRktAz2ZqLkAQawI5RsZpd4xoAAgzDQA21djjSgF1/2f0JiJcWZ7Hn452Mzoxv77aIx39GAPrllgGkJv7dblnBE8tAq9dQDPKTo4jKS6aEycX1r04k6NTJSCW5t/eYqEBwKYauwdZnplIXMz0/0Tby3MZGptk/7H5VQd1l0xeanMA3NxXNu5uoMqWPrKT4yhIW5yL3oeKiAQ9E0hrANmDBgCbauzxnQHk6eJV2cTFRM07G6i6rZ+kuGiKM31fZSx2hekJpCbETGU6VbY4OGd5+pKa8RwswZ4LUN85QFxM1NR4gwoPDQA2NFMKqKekuBguKs2a90BwdZuD8oLUJZuFISKsswaCRycmOdLRr2sA+ynYZaHrOvopy3Gl6qrw0QBgQ6eGxumfIQXU05XleRztGpzzgJ0xhpr2/iU7AOxWUZhKbXs/te39TDiNDgD7qSQrieHxyWnXVFio+q4BXQPABjQA2NBsKaCerqywqoMemdtVQLtjhL7hcdYv0QFgt/KCVAZGJ3iuqh3QNQD85U4+CEY30NDYBM2nhrX/3wY0ANiQOwV0pR8BoDQnmRXZSbw8x7IQ1Va/eMUSHQB2c1/h/ObtFlITYs4orKemF8y5AA1dgxijA8B24FcAEJEdIlIrIvUicpeP/Zki8pSIHBaRN0Vkg8e+DBH5tYjUiEi1iFxsbf8nEWkRkYPWz3WBe1mLW2P3oKsKqJ+Ds+500LlM3XfXAFpqJSC8uV9fW98IG5bpALC/3GtDnOgJfCqo1gCyj1kDgIhEAw8C1wLrgRtFZL3XYXcDB40x5wE3AQ947HsAeNYYUwFsBKo99t1vjNlk/exewOtYUhp7hmZNAfV0RXkuI+NO9jX0+P0cNe39LM9IJC1haS+KkhJ/+lu/5v/7L5hloes7B4iJkmknOarQ8ecTZgtQb4xpMMaMAU8C13sdsx7YA2CMqQFWiki+iKQBlwP/Ze0bM8b0BqrxS5U/KaCeLi7LJj4mak7dQDVtjiWb/+/N3Q2kA8BzUxKkVNC6jgFW5iT7/QVHBY8//wLLgSaP+83WNk+HgI8BiMgWYAVQBJQBXcBPROQdEfmxiHh+st1hdRs9IiKZvp5cRG4XkQMicqCra+Hlj+3O3xRQTwmx0VyyKtvvdNCR8UkaugeX7Axgb+5aR1oDaG6KgzQZrL5zQPv/bcKfAOCr09Q7OfgeIFNEDgJ3Au8AE0AMcD7wQ2PM+4BBwD2G8ENgFbAJaAPu8/XkxphdxpjNxpjNubm5fjR3cXOngPozAOxpe3kejT1DZy2A4kt95wCTTrPkU0Dd/vLCYr65o4JVudrlMBclWUm0O0YCWhZ6dGKSxp5B7f+3CX8CQDNQ7HG/CGj1PMAY4zDG3GKM2YRrDCAXOGad22yMecM69Ne4AgLGmA5jzKQxxgk8jKurKeK5P8BX+jEHwNOVc1gs/nQGUGRcARRlJvGF7at0AHiOSrJdYyfNpwI3ENzYPYTT6ACwXfgTAPYDa0SkVETigBuAZzwPsDJ94qy7twGvWkGhHWgSkXJr31XAe9Y5hR4P8VGgcgGvY8lwLwQ/1yuAkuwkynKTecmPcYCa9n4SYqPm1M2kIk8w5gK4M4C0CJw9zLoKiDFmQkTuAJ4DooFHjDFVIrLT2v8QsA54TEQmcX3A3+rxEHcCT1gBogG4xdp+r4hswtWd1Ah8PiCvaJGbawqop+1r83j8jeMMj02SGBc97XHVbQ7K81N1Gr6aUUmW6wtCIMcB6joGiBIo0+44W/BrGSgrRXO317aHPG7vBdZMc+5BYLOP7Z+ZS0MjxbE5poB6urIil0deP8behm7eX5Hv8xhjDNVtDq5ZX7DQpqolLicljsTY6IAGgPrOAYqzkkiInf4LigodzcOymeNzTAH1tKU0i8TY6BkXienqH+XU0HjE9P+r+QtGWWjNALIXDQA2Mp8UUE/xMdFsW53NS7Wd01ZxfK9taa8BoAIrkGWhJyadNHQPsFr7/21DA4CNzDcF1NP28jyaTw1ztMt3Oqh7cZSlug6wCqxAloU+fnKI8UmjVwA2ogHARtwpoKU5818kY7bF4mvaHBSmJ5CRFOdzv1KeSrISGRqbpGdwbMGPVdfhWgVMU0DtQwOAjcy2ELw/ijKTWJOXMm1ZCNcaAPrtX/mnxJqPcjwAC8Qf7XIFgFUaAGxDA4CNHO+Zfwqop+3lubx57CSDoxNnbB+dmKS+c0D7/5XfAjkXoK7DVYAwJd6v5EMVAhoAbGQhKaCerizPY2zSyZ+Onlkd9GjnIBNOs+TXAFCBU5QZuHUB6joHtPvHZjQA2MhCUkA9bV6ZRXJc9FmLxde0WxlA2gWk/JQQG01+WvyCA4DTaTjapQHAbjQA2IQ7BdSfZSBnExcTxbbVObxS23VG9kZNez9xMVEBeQ4VOQIxF6Cld5iRcadmANmMBgCbODk4Zi0EH5gP5ysr8mjpHaauc2BqW3Wbg7X5KcRE6z+78l8g5gJM1QDK1wBgJ/pJYBONVpbFQlJAPbnTQV+qOd0NVN3WHzEloFXgBKIs9FQKaK52P9qJBgA/HO8ZZE91R1CfY2oh+ABdARSmJ1JRkDqVDtrVP0r3wKimgKo5K81Jxhi49oHX+Pun3mX3u22cmuO8gLrOAXJT40lPWtpLkC42mo/lhwderOOZQ60c+vY1JAcphc2dAlq0wBRQT9vL8/jxaw30j4xTa80AXq8ZQGqOPnhOAf/4Z+v5Y303v32nhSfeOIGI629p2+ocLlmVzZbSLJLipv+/oTWA7EkDgB8ONvcy4TQcOH6KK9YGZ1WyYz1DFGUmBXSd1O3luTz0ylFer++m6aRrUY9yvQJQc5QQG81nLy3ls5eWMj7p5HBzL6/X9/B6fTc/ef0Yu15tIDZaeF9xJpeszmbb6hw2FWcQa401GWOo7xzg4+d7rySrwk0DwCz6hsdpsOrq7GvoCVoAaOweZMUcVwGbzQUrMkmNj+Hl2i7GJp3kpcaTnRIf0OdQkSU2OooLVmRxwYosvnTVGobHJtnfeJLXj3bzp/oeHthTx7+/WEdSXDRbSrPYtiqHNfkpDIxOsDpfv3zYjQaAWVS29AGQEBvFXq+JVYFijKGxZ5CPlgT2G1JsdBSXrc3h5douMpPjdAKYCrjEuGguX5vL5dYXo96hMfY19LiuEI5283Jt9dSxq3O1C8huNADM4mBTLwCfvKCYn715goHRiYBPZXengAZjicbta/PY/W477Y4RLl9bFvDHV8pTRlIcOzYUsmODa8XXtr5h/lTfQ/OpYTavzAxz65Q3zQKaxeHmXlZmJ7FjQwGTTsP+xpMBf47GqXWAA9sFBHBF+ekuq3WaAqpCrDA9kY9fUMSXP7BmakxA2Yf+i8ziUFMf5xVlcH5JJnHRUewLQjdQY7drDkAwrgDy0xKmMn90FTCllCcNADPocIzQ7hhhY3EGiXHRbCrOYF9DEAJAEFJAPV13bgEZSbGU5WgfrFLqNA0AMzhk9f9vLEoHYOuqbN5t6cMxMh7Q52kMQgqop51XrOKVr18ZtMdXSi1Ofn0iiMgOEakVkXoRucvH/kwReUpEDovImyKywWNfhoj8WkRqRKRaRC62tmeJyAsiUmf9tt0I0eHmPqKjhHOWWQGgLAungf3HAjsO0Ng9uKBlIGcTEx2lMzCVUmeZNQCISDTwIHAtsB64UUTWex12N3DQGHMecBPwgMe+B4BnjTEVwEbAnRd2F7DHGLMG2GPdt5VDzb2szU8lMS4awDUOEBMV0G4gY4wrAAR4DoBSSs3GnyuALUC9MabBGDMGPAlc73XMelwf4hhjaoCVIpIvImnA5cB/WfvGjDG91jnXA49atx8FPrKA1xFwxhgONfWyqTh9altCbDTnl2SwN4AB4OTgGP2jwUkBVUqpmfgTAJYDTR73m61tng4BHwMQkS3ACqAIKAO6gJ+IyDsi8mMRcX/S5Rtj2gCs33nzfhVB0NgzhGNkgvOKMs7YvrUsm6pWB33DgRkHCGYKqFJKzcSfACA+thmv+/cAmSJyELgTeAeYwDXR7Hzgh8aY9wGDzLGrR0RuF5EDInKgq8v3QufBcLi5F4CNXgHg4rJsjIE3AzQOEMwUUKWUmok/AaAZKPa4XwS0eh5gjHEYY24xxmzCNQaQCxyzzm02xrxhHfprXAEBoENECgGs32euX3j6sXcZYzYbYzbn5ganDo8vh5r6SIiNYq3XAhabSjKIjwlcWYjGnkGioyRoKaBKKTUdfwLAfmCNiJSKSBxwA/CM5wFWpk+cdfc24FUrKLQDTSJSbu27CnjPuv0McLN1+2bg6QW8joA71NzLhmXpZ62eFR8TzQUrMgM2EHyse5DlGQtfCF4ppeZq1k8dY8wEcAfwHK4Mnl8aY6pEZKeI7LQOWwdUiUgNrmyhL3s8xJ3AEyJyGNgE/Ku1/R7gahGpA6627tvC+KSTqta+s/r/3S4uy6a63UHv0NwWxfDleM9QUFNAlVJqOn5VNTPG7AZ2e217yOP2XmDNNOceBDb72N6D64rAdo509DMy7mSjRwaQp62rsjEvwBvHTvLBcwrm/TzuFNDzSzLm/RhKKTVf2u/gw+FmVwlo7wFgt41FGQEpD+1OAQ3UQvBKKTUXGgB8ONTUS3pi7LQLtMTFRLF5RdaCxwHcKaCl2gWklAoDDQA+HGru47yidER8ZcC6XLwqm5r2fk7OcXFsT8esFNBArwSmlFL+0ADgZXhskiMd/WwqzpjxuK1lWQC8sYCrgONWCmhxlgYApVToaQDwUtXax6TTTJsB5HZeUQZJcdEL6gY61j1IUWaiLpShlAoL/eTxctCrBPR0YqOj2Lwya0F1gRp7BnUAWCkVNhoAvBxu7qMwPYG8tIRZj91alsWRjgG6B0bn/DzGGI53D1Gq/f9KqTDRAODlUHPvtOmf3i4uywbgjYa51wXq0RRQpVSYaQDw0Ds0xvGeIc6bZgKYtw3L00mOi2ZvQ/ecn+u4poAqpcJMA4CHQ9YEsE1+XgHERkdxYWkW++ZxBeBOAdUyEEqpcNEA4OGwNQC8YZYBYE8Xl2VT3zlAZ//InJ6rsdtdBTRxTucppVSgaADwcKi5l1W5yaQl+L9+7lZrHGCuVwGNPZoCqpQKL/30sRhjONjU5/cAsNs5y9JIjY+Z83wATQFVSoWbBgBLW98I3QOjbJxlBrC3GPc4wBwKw2kKqFLKDjQAWNxLQJ43h/5/t4vLsmnoHqTD4d84gDsFVAeAlVLhpAHAcrCpj5goYV1h2pzPPT0O4N9VQGO3tRC8dgEppcJIA4DlcHMv6wrTSIiNnvO565elkZbg/zhAY4+mgCqlwk8DAOB0Gt61SkDPR3SUsKU02+8FYjQFVCllBxoAgIbuQfpHJ+Y8AOxpa1kWjT1DtPUNz3qspoAqpexAP4FwrQAG0y8B6Y+LV/k/DtDYM6j9/0qpsNMAgKv/PykumtV5KfN+jHUFaaQnxs7aDeRaCH6IlZoCqpQKMw0AwMHmPjYsTyc6avolIGcTFSVc5EddoJ7BMQY0BVQpZQN+BQAR2SEitSJSLyJ3+difKSJPichhEXlTRDZ47GsUkXdF5KCIHPDY/k8i0mJtPygi1wXmJc3N2IST6lbHrEtA+uPiVdmcODlES+/04wBTKaAaAJRSYTZrABCRaOBB4FpgPXCjiKz3Ouxu4KAx5jzgJuABr/1XGmM2GWM2e22/39q+yRize34vYWFq2h2MTTrnnQHkyT0fYKZuoGM6B0ApZRP+XAFsAeqNMQ3GmDHgSeB6r2PWA3sAjDE1wEoRyQ9oS4PEXQJ6IQPAbuX5qWQmxc44EHy8Z0hTQJVStuBPAFgONHncb7a2eToEfAxARLYAK4Aia58BnheRt0Tkdq/z7rC6jR4RkUxfTy4it4vIARE50NXV5Udz5+ZQUy9ZyXEB+UB2jQPMPB/gmKaAKqVswp9PIV8jo8br/j1ApogcBO4E3gEmrH3bjDHn4+pC+qKIXG5t/yGwCtgEtAH3+XpyY8wuY8xmY8zm3NxcP5o7N4ebe9lYlI7I/AeAPV28KpuW3mGaTg753H9cU0CVUjbhTwBoBoo97hcBrZ4HGGMcxphbjDGbcI0B5ALHrH2t1u9O4ClcXUoYYzqMMZPGGCfwsHt7KA2MTlDXOcB5Aej+cZsaB/DRDeROAdVlIJVSduBPANgPrBGRUhGJA24AnvE8QEQyrH0AtwGvGmMcIpIsIqnWMcnANUCldb/Q4yE+6t4eSpUtfRhDQDKA3Nbmp5CdHOezPHT3gCsFdIXOAVBK2UDMbAcYYyZE5A7gOSAaeMQYUyUiO639DwHrgMdEZBJ4D7jVOj0feMrqXokBfmaMedbad6+IbMLVndQIfD5QL8pfCykBPR0RYWtZNvsaejDGnNG15F4IXlNAlVJ2MGsAALBSNHd7bXvI4/ZeYI2P8xqAjdM85mfm1NIgONTUR1FmItkp8QF93K1lWfz+3TZOnBw6Y9UvTQFVStlJRKeiHGruDUj6p7fp6gJpCqhSyk4iNgD0DIzSfGqYjcWB6/5xW5WbQk5K/FnpoMd6BinWFFCllE1E7CfRYWsCWCAzgNxc4wBZ7LXGAdwau3UheKWUfURsADjY1EuUwLnLA38FAK5uoA7H6NTqX8YYjvdoCqhSyj4iNgAcbu5ldV4KyfF+jYPPmXddIHcKqJaBVkrZRUQGAGMMh5r7gjIA7FaWk0xeavzUQLA7BXSFXgEopWwiIgNA86lhTg6OcV4AJ4B5c88HcI8DuFNAS3UMQCllExEZAA5ZE8A2BfEKAFzjAF39oxztGqSxx7UQ/HJNAVVK2UREBoDDzX3ERUdRXpAa1OdxjwPsa+ihsWdIU0CVUrYSkZ9GB5t6Wb8sjbiY4L78ldlJFKQlsLehh8buQS0BoZSylYgLAJNOQ2VLHxsDWP9nOiLCxauyeaOhh+M9Q1oCQillKxEXAOo7Bxgam2RjEAeAPW0ty9IUUKWULUVcADg0VQE0IyTPd3FZztRtTQFVStlJ5AWApl5S42MoC9GHcXFWIsvSEwBNAVVK2UvEBYDDzX2cW5ROVFRgloCcjWscIIfYaE0BVUrZS0QFgJHxSarbHCHr/3f72jVr2XXTZk0BVUrZSnAK4dhUdZuDCacJSQaQp+UZiSzP0G//Sil7iaivpIeaegFCfgWglFJ2FFEB4HBzH7mp8RSkJYS7KUopFXYRFQAOWktAei7UrpRSkSpiAoBjZJyGrsGQ9/8rpZRd+RUARGSHiNSKSL2I3OVjf6aIPCUih0XkTRHZ4LGvUUTeFZGDInLAY3uWiLwgInXW78zAvCTf3rWWgNT+f6WUcpk1AIhINPAgcC2wHrhRRNZ7HXY3cNAYcx5wE/CA1/4rjTGbjDGbPbbdBewxxqwB9lj3g+b0DGC9AlBKKfDvCmALUG+MaTDGjAFPAtd7HbMe14c4xpgaYKWI5M/yuNcDj1q3HwU+4m+j5+NQUy8rs5PISIoL5tMopdSi4U8AWA40edxvtrZ5OgR8DEBEtgArgCJrnwGeF5G3ROR2j3PyjTFtANbvPF9PLiK3i8gBETnQ1dXlR3N9O9zcF7L6P0optRj4EwB8pcwYr/v3AJkichC4E3gHmLD2bTPGnI+rC+mLInL5XBpojNlljNlsjNmcm5s7l1OndDpGaOsb0e4fpZTy4M9M4Gag2ON+EdDqeYAxxgHcAiCuHMtj1g/GmFbrd6eIPIWrS+lVoENECo0xbSJSCHQu8LVM65A1ALxJB4CVUmqKP1cA+4E1IlIqInHADcAzngeISIa1D+A24FVjjENEkkUk1TomGbgGqLSOewa42bp9M/D0wl7K9A439xIdJZyzTK8AlFLKbdYrAGPMhIjcATwHRAOPGGOqRGSntf8hYB3wmIhMAu8Bt1qn5wNPWROvYoCfGWOetfbdA/xSRG4FTgCfDNzLOlNRZiIfP385iXHRwXoKpZRadMQY7+58+9q8ebM5cODA7AcqpZSaIiJveaXhAxE0E1gppdSZNAAopVSE0gCglFIRSgOAUkpFKA0ASikVoTQAKKVUhNIAoJRSEUoDgFJKRahFNRFMRLqA4/M8PQfoDmBzAk3btzDavoXR9i2cndu4whhzVjXNRRUAFkJEDviaCWcX2r6F0fYtjLZv4RZDG71pF5BSSkUoDQBKKRWhIikA7Ap3A2ah7VsYbd/CaPsWbjG08QwRMwaglFLqTJF0BaCUUsqDBgCllIpQSy4AiMgOEakVkXoRucvHfhGRH1j7D4vI+SFsW7GIvCQi1SJSJSJf9nHMdhHpE5GD1s8/hqp91vM3isi71nOftfpOmN+/co/35aCIOETkK17HhPT9E5FHRKRTRCo9tmWJyAsiUmf9zpzm3Bn/VoPYvu+KSI317/eUiGRMc+6MfwtBbN8/iUiLx7/hddOcG6737xcebWsUkYPTnBv092/BjDFL5gfXkpVHgTIgDjgErPc65jrgD4AAW4E3Qti+QuB863YqcMRH+7YDvwvje9gI5MywP2zvn49/63ZcE1zC9v4BlwPnA5Ue2+4F7rJu3wV8Z5r2z/i3GsT2XQPEWLe/46t9/vwtBLF9/wR83Y9//7C8f1777wP+MVzv30J/ltoVwBag3hjTYIwZA54Ervc65nrgMeOyD8gQkcJQNM4Y02aMedu63Q9UA8tD8dwBFLb3z8tVwFFjzHxnhgeEMeZV4KTX5uuBR63bjwIf8XGqP3+rQWmfMeZ5Y8yEdXcfUBTo5/XXNO+fP8L2/rmJa7HzvwB+HujnDZWlFgCWA00e95s5+wPWn2OCTkRWAu8D3vCx+2IROSQifxCRc0LbMgzwvIi8JSK3+9hvi/cPuIHp/+OF8/0DyDfGtIEr6AN5Po6xy/v4WVxXdL7M9rcQTHdYXVSPTNOFZof37zKgwxhTN83+cL5/fllqAUB8bPPOc/XnmKASkRTgf4CvGGMcXrvfxtWtsRH4/4DfhrJtwDZjzPnAtcAXReRyr/12eP/igD8HfuVjd7jfP3/Z4X38e2ACeGKaQ2b7WwiWHwKrgE1AG65uFm9hf/+AG5n523+43j+/LbUA0AwUe9wvAlrncUzQiEgsrg//J4wxv/Heb4xxGGMGrNu7gVgRyQlV+4wxrdbvTuApXJfansL6/lmuBd42xnR47wj3+2fpcHeLWb87fRwT7r/Dm4E/Az5lrA5rb378LQSFMabDGDNpjHECD0/zvOF+/2KAjwG/mO6YcL1/c7HUAsB+YI2IlFrfEm8AnvE65hngJiubZSvQ575cDzarz/C/gGpjzPenOabAOg4R2YLr36gnRO1LFpFU921cg4WVXoeF7f3zMO03r3C+fx6eAW62bt8MPO3jGH/+VoNCRHYA3wT+3BgzNM0x/vwtBKt9nmNKH53mecP2/lk+ANQYY5p97Qzn+zcn4R6FDvQPriyVI7gyBP7e2rYT2GndFuBBa/+7wOYQtu1SXJeph4GD1s91Xu27A6jCldWwD7gkhO0rs573kNUGW71/1vMn4fpAT/fYFrb3D1cgagPGcX0rvRXIBvYAddbvLOvYZcDumf5WQ9S+elz95+6/wYe82zfd30KI2vdT62/rMK4P9UI7vX/W9v92/815HBvy92+hP1oKQimlItRS6wJSSinlJw0ASikVoTQAKKVUhNIAoJRSEUoDgFJKRSgNAEopFaE0ACilVIT6/wFyh9MTAD7EpgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(np.arange(len(eval_losses)), eval_losses)\n", + "plt.title('test loss')\n", + "plt.show()\n", + "\n", + "plt.plot(np.arange(len(eval_acces)), eval_acces)\n", + "plt.title('test acc')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 练习\n", + "\n", + "* 看一看上面的训练过程,看一下准确率是怎么计算出来的,特别注意 max 这个函数\n", + "* 自己重新实现一个新的网络,试试改变隐藏层的数目和激活函数,看看有什么新的结果" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 参考\n", + "* [损失函数:交叉熵详解](https://zhuanlan.zhihu.com/p/115277553)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/6_pytorch/6-param_initialize.ipynb b/6_pytorch/7-param_initialize.ipynb similarity index 90% rename from 6_pytorch/6-param_initialize.ipynb rename to 6_pytorch/7-param_initialize.ipynb index 5415b7c..cd69fe3 100644 --- a/6_pytorch/6-param_initialize.ipynb +++ b/6_pytorch/7-param_initialize.ipynb @@ -12,14 +12,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "PyTorch 的初始化方式并没有那么显然,如果你使用最原始的方式创建模型,那么你需要定义模型中的所有参数,当然这样你可以非常方便地定义每个变量的初始化方式,但是对于复杂的模型,这并不容易,而且我们推崇使用 Sequential 和 Module 来定义模型,所以这个时候我们就需要知道如何来自定义初始化方式" + "PyTorch 的初始化方式并没有那么显然,如果你使用最原始的方式创建模型,那么需要定义模型中的所有参数,当然这样可以非常方便地定义每个变量的初始化方式。但是对于复杂的模型,这并不容易,而且推荐使用 Sequential 和 Module 来定义模型,所以这个时候就需要知道如何来自定义初始化方式。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## 使用 NumPy 来初始化\n", + "## 1. 使用 NumPy 来初始化\n", "因为 PyTorch 是一个非常灵活的框架,理论上能够对所有的 Tensor 进行操作,所以我们能够通过定义新的 Tensor 来初始化,直接看下面的例子" ] }, @@ -162,9 +162,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**小练习:一种非常流行的初始化方式叫 Xavier,方法来源于 2010 年的一篇论文 [Understanding the difficulty of training deep feedforward neural networks](http://proceedings.mlr.press/v9/glorot10a.html),其通过数学的推到,证明了这种初始化方式可以使得每一层的输出方差是尽可能相等的,有兴趣的同学可以去看看论文**\n", - "\n", - "我们给出这种初始化的公式\n", + "一种非常流行的初始化方式叫 Xavier,方法来源于 2010 年的一篇论文 [Understanding the difficulty of training deep feedforward neural networks](http://proceedings.mlr.press/v9/glorot10a.html),其通过数学的推到,证明了这种初始化方式可以使得每一层的输出方差是尽可能相等。这种初始化的公式为:\n", "\n", "$$\n", "w\\ \\sim \\ Uniform[- \\frac{\\sqrt{6}}{\\sqrt{n_j + n_{j+1}}}, \\frac{\\sqrt{6}}{\\sqrt{n_j + n_{j+1}}}]\n", @@ -340,8 +338,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## torch.nn.init\n", - "因为 PyTorch 灵活的特性,我们可以直接对 Tensor 进行操作从而初始化,PyTorch 也提供了初始化的函数帮助我们快速初始化,就是 `torch.nn.init`,其操作层面仍然在 Tensor 上,下面我们举例说明" + "## 2. `torch.nn.init`\n", + "因为 PyTorch 灵活的特性,可以直接对 Tensor 进行操作从而初始化,PyTorch 也提供了初始化的函数帮助我们快速初始化,就是 `torch.nn.init`,其操作层面仍然在 Tensor 上,下面我们举例说明" ] }, { @@ -439,22 +437,20 @@ "source": [ "可以看到参数已经被修改了\n", "\n", - "`torch.nn.init` 为我们提供了更多的内置初始化方式,避免了我们重复去实现一些相同的操作" + "`torch.nn.init` 提供了更多的内置初始化方式,避免了重复去实现一些相同的操作。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "上面讲了两种初始化方式,其实它们的本质都是一样的,就是去修改某一层参数的实际值,而 `torch.nn.init` 提供了更多成熟的深度学习相关的初始化方式,非常方便\n", - "\n", - "下一节课,我们将讲一下目前流行的各种基于梯度的优化算法" + "上面讲了两种初始化方式,其实它们的本质都是一样的,就是去修改某一层参数的实际值,而 `torch.nn.init` 提供了更多成熟的深度学习相关的初始化方式。\n" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -468,7 +464,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.4" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/6_pytorch/imgs/MNIST.jpeg b/6_pytorch/imgs/MNIST.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..7b145d441218a82fbc2a9b3b4e3ac5790b0424e0 GIT binary patch literal 41373 zcmbTdWl$Vn^!GWF!68@(I#?JaxVwfRgF|o&!QEXFBtUQ&f_rcc?rwuaaE8GxxI0Of z-?Ll)t=d=nJm*c{?%UPXpSpIw=brm-@!vWCUqKcs3jhLvfd6IxHUR80-Zqv1fU+`x z`S}qB;Dsar0D3L~0sa7hB=GtAU-|#Bf6D-A02VqrCOR4xCI%)pHWm&Z89p8^E*=#z z2_YGThJl`rhVBg$n-C`xGe654I_~$}{32qKl9CLZvWha|3PKW+V*h;vh>eYn_Y#j1 zAD>d}E!|tO|84u%4Isb(i~a9XA2hYJb#(Rg&CD$pyS;6jWL+G(stL^iM9Y-f#zD5WP#ttLed{#hi=6Sfn^G%CS9IU=kgDAc5jeG{Fc ziRuphwQB$Bo91)=5)Q@~TFnUBNYdeDa;9#OM8uOV2kx4|el|^YXFHS%+h*EI7e3~h zxs~J01oZgxx}Hs{Qh%2sngr|Dt6xTm@xI{F%?4Icp@IW!D<`Lly0uBrC^K6NSNFT* zJ|VgvAuwRie)^u{iSfyaK?EinOI>E>wb0*&{2vF-`^mng=5B6o)(#sc+$3)77XjRX zv45;VZ~0Ft>Y7BiD!qi~a>7)_KGPmr$v;9``hF+hk?1Us- zQjm17SbuEBLviKJ;jysCY~zdrODBI%&jIs4Kt#imsFa_b8(&Qmm%a=DHOdi#tBr9! zP{5yhz0JW)CP!mdvD!u(TkuU=BuUyoK-3?rSzs)bZ_G}1^ie@(#(}Xu6d+A>;S)>h zyhMZhr$+yVihkPuW#P!3E9i@LZb7;0UxQ|9mUb&4A+l~7^4+~`#kB2gOEyTf(c&%R zb7#PqW~&gzWX~^Qe6Y;pF3RSXTKsw+E9(;b?lN1B$eUVa=K7`aPJ=bMpQ55rRXP`~ z@-mtv#1$y&a;WJq{d4%|iouYHqPIikG=fwOMnL5EkeM@>*oWA%CYc_;u|CPmMsLc- z#C#!-G>MLt+8@frewa@yHvH{k_W*gNzf3mXFi-*W$yPi@78;al%R9$yV;is6SJJolRZgl8Q>|s#R7|+dY#M`; zg0CpciW16u3O`@%pHF(nQjryS_M5wp;8LI`WdCs$%*FZuf%+dd%5M--e~-)35feI% z{LOL2M%ganR=zLb)yu>n|6;W}YOl^bK2-N2_k|QCp8lSrBYk^I^5&*2%*L>-&BKxr zlH+QZ7e4sVYpsniD&S9$wyeKg;iiv*;Ih7<6rV97lWYebY06d-!qe*laHj4BLFSi-p!bCE} zd`{D6&Z+83ZT0IHND@XZrw5~MTv{}l)bc}?u_bZOsxlZ#%c5L9-87Q|MF>ZC7<>Zy z@<_$pvQrsq9XB5Nkkv^E?}SJbJgcd;YRbt2b{c*_Z!%uDngwSRTBymDP0g%P= zAxf>$;_)~xiMU0=nI5Gqkb;7yvfld!;-pho;WZA5 z{dhd@W*}S!2F-e;TnO{MvQioo5AnI6@{jC=rIQ}u&l;m4O=7qJiIQ;}eY^SieNHL2 zBFs}ZvY5*5)Uv9roGh2iPc7isW+5V=^wCYS{-Kn=W%2}eFf7%XGM*n7d4`Mbd*l&^ z@w@I$e9!pTkM<_>r8mpU9z?|>jHn}VX|mqiiP?))R1@3!Ydvm|x6U>45bHuRJx*7t z8!-v;{e~?6gLIjT-{g!p#;F$(99a~fZ`i)STLdtP5&2rB1Ijl}(UEs4GF>@Ja?M?h z$@B*97SwcTNH}9IGdflM8i}`2J3GRh=R~nQii@vbr8{*S*#~wf1ub;Aoe!P!t1sb| zWombQyUwc|Egt&hz0+6|iO}{OPKY=2YLu180vMjluqCL#a>o@W4E`Dlp`9@aN&$cN(YKg^8^Z*-~fbZE||l=@?!W)l`3&q@!t?T z^UcjhwtOPrqVdZN`pc&;<~1@cK9pR#N2TL3qi+}T1S60>y4Med+QDCmF&~2AxhK%(} zW)u2(x}e=OYy(}%EURV)Ip4Vc9DGr!%@{5=4@^1(`cD_q!~>R;+yNcT zjd5GbIt4+Q)cZeeF+{Q`mc1i(kJL3@nqw;KOY`t8gN+Gd` zRrKc6L6DFZI20Yk7~7>^|6rL|>Qnv$X^i-r2bKveQ2Z=#&$e*`X-l=l`cjAUyzKE4AT6YC3~vgy2|6WdhTmHt0HX@ zPAN8;+GnH5ZXwd$EW6FoWjhf+8Xr7|YQtpv+CVtvy9aX|ZT^VD z;mSi#eRt)ClOo+d>W$&;zaYl5N}Y2Yb^USilsx@KMdnoF10K2~91L0kLi~h;Y!#kp zZR3bC@u&*K0YPp;dYt}d;o@{ngq~UrqQX`3R_xGC=Df2l z*XGo$cont5YtqW`oZGq#w+383ttF|pSd1a=uRR|M6MIItkr3i z#r`6S$FckE5K0?N_=V^3I*cM7UG&eN>xp7Nww0rCzW(u+ZN~~bo&Ff{JXb#6nwF*+ zG7X9k5G&KN5}>rZ80OYb#!3KBZ!53xYGdO9!`6`esvhx@z{rNI=Z{;78HTjYfS2te zRY;p%bz!+MsHTa0G!W%8I<=Y|``dzG$+I@ut^Bt=uYC_SNYZ5rD}E)4o@NG9X>bR0=V|zQEzHDvVg0N$-B1;A(_p;~4RVu}#TNhVM$->fq zGikS(rGbg_Y5qjgllr?w#MW{;uaW7Y>h}Sva=+qb=--;k2*$tnI6_Y{nzP4LeIHsH zV5(f3@ui;lZR{t2n<=1OXjEL7_K>kwOo#Sz_Snb0*JVRZd3VBZ)L^l5 zsPUMBm8m-0`Iji%V{h!jj)LN(;1KhmDa-m! z23Ba*60=xIf<28+@S;Ep-e^2gc5X1njp(IeXhZ!%3PF#ZdcsokW_FUUnKXcOM$hueQH~>t z8U16%o9FKKp)+`||JCa9{@HT(jH99`eq{cSOtYCxvo3|E4XgRh)@)_m+am)tpUd_` zBHNZN7f0c%)9j=V`qLcl+~d4ub*u>zskPx`I2ebSQ)st0NnH`{T}KOXN4Ly4 z=k1=q3h+a<>Akl>*}8i_qP?m#5Fj@X9AFYoEItnym>8X7JD=py_Dk%0f^cJ&Q`*#z z!C`U}|3BDf%$#nBTDIez)@FIOO&`nnO2 zX}ZRokHPMGLAvQS(g|@J2MX6@NLmg_%n3~B1VzQx! z7O6Y(-71Ie`j+HX^@umF(ZETX_4$F_Ecd?@bsYf;BB>jO0f}R*^S|n<(J29z=s`n6 zL%V^@zZD%31(wGg*}SOTHQnDixA9d~{BElH2B-O3HpC<}FMb|v*2NAFy(%1bPO)D$mlUBNWeG%TD=OUguq@5)DkR;|8%XH2( z`=Ou2#ZKeC>8vY>CnwZ?-}hRKSejxDO95_>dq;cF_#8a^@t9 z81Tv#pL*5TN%4zyqXU)y9%ir(VvTOG3B#2KGt!tmlPv)Cg|m}iYq&%#?W&*BfZ{G}XE|X$N*$t>sF}oPt-QT~O+|W4ubr4a;HQyh6 zJg0k~y5n-O1vVoc6x@7X_Nj^%RAvh!r>B)w4BY5LkR{G9%tzFy1VYKkuAcCC{7P01 zKHM)faU-EK?$IjZ*&&PCogr46ipRnSF9}(S>*9}6t6rE#6Et5zOz`pOLK1XS_-FKt z6rJ2CWO$V{-hT?N5Tuzx`*SkX3ARzl^O`I%Yy-Pp6qtMlYQ>#g4X7-W-`*O-EK zO7S@8U=Jz%1Jp}W$7pv1+d1$Lv$JDff|Mz{o-VZqDHa=f;w150G>@Zy?9$oms(?vH z0*;rqsO|>t2!x67|>yXHLY&5h1~0EkK8YfUo=_iP@$Rl@k?L(@}1 z;%a67&k2nZJV9Cw%M3FfQBiu1GGpiQjPY)dNQ*(gjR>+6Sz8A@rP*ur=D*`CU_TtU zaYz)AZRH?YYS3iyhuH7HIO7424F{^x-uYJTQa3*fD+m0Rj+PjLH_00*G-!?%G@L+9 z6C9YEG1SYBEe1K?grQ+=SP<#QDfs3my!g;}JTFz+&%?=qjCRcpVx7;3avq2-B}ptw zo^IgX*l)*1T7#=d7K=ZzcNOyZ%4wd*s075BuWT5?xADm zx&Fy7V*_Rm9`gp^D%;uNRY-p_`&34T+EDVPPWGKA%zMMR^V$56p#HPvDVJ@1#&gh+~V#(8QFM?#Hgf>b^2vzf> z`g7Ch`_B{HF>ks!ma|f~q>P2?8Y=%yQIKl}rHt31*$mut^t zOkZcBh%@{mbycY|Rkd?w(mcaQ;rA%GXt=6B$i-H^UZqQ=u)gKIg=k4K{mKm^1qX|$ zq37T2>K=(QQYEu#PoTAZFtZ;b{K&v(!85$Z&2tL}1+6xpV(R__*m$==>lZ04+M>A= z=e%Bgk+j`5Chwf9AHKGlt*}V?WEXanDph}yXs>nT);ZlTY|spw zE3j}%>cJuS?tn!U+6~x?H63d-uh?<1we# zTJ%QCgtN#LssaAXKg~4w7KR~f>5JzG*3ZK8bFZ~zwgUlNap^S|9NdCUV5j&E z9b}He!ntLVTcPdNaY~dQ{p?$Jb|TJI>UfoP+|TvEhV`F>eZ}{lDNQ8&jR&KREZA!1 z?WX;4ToYFxJ>Att9r)F}86H2f}h`KE5(V*_~RgL(u!wJyX1~#6`T^iZZ}H?^{tm3$vSX zEk_Oxt!0PY5!!Bw&!3isCab&AD=lmn;tvF-R|XSV6GfmjFv))aE}`{6!Nd9bC&nLN z?4Vzq=egGklUh>s`*q25tF@>(1j!&<=%7kdrf6fJYaH0%AHcgr+=6Ty=XTI{3Ozqd zVNK!A2qj@<=^wyR&gsTGT?oYMc`0P6#?zlV48bX(akiVVHxFic^lFPKY|%@1#&Hp1f7X*U`of_%~AH9}hRRMr10S+H+ z$&JRZQn+P&JWsyFB)VJFc%ma0GjCjx;TxBaq`0C%!0Xv zdQR*MjOXAb#7OluR%8nFL=>4m zv-0N$({6oeVVDpD0p`b(P*!=0&!)OwYI45io8?1J?TP_n^{eh|j3etN_-NwlOR}8# zwd?8|4n*GJ{o1YmFdwxRHr^a$jFhEBaER7*TZTxb{-!ejoI^#QLolZ*68yq#Hl90R zI2SkRWA}q&mZL@F-iKzU*xu*x?4=-UWfFqORS>Ca7}=N8-&A*(#n)>lz%^F;zM|_5 zs>GX6>Rtc{G+pJb)4N}#)FhlVRXwet6{(mEZp$>~rS69d-GI|47mg~gPKj*!)$&2sx(QWp5dUUN-n_=QQG)%fh6*`K=Gc?P~)ORpe<}6u+o)p@uu6Y!hg>M6qb*3QFe1aW1P+pm$cf0R(kj{Bs?IaZ8reClCZD+lHED{t3Yqlin%hEPP zi7$?bgs^0PWj`gx+3uX4Y|rvxN42D-L$_^6Yqnu-`uZH<&wkhOPDfiNV*d<3hEtkO zH2h@noA@PFM<4)ZEA~a+f&7}z+VNAYZhuYTblGUgpBexv<=Aac+dgaxzT5B3vii@h0e<$xw&y=DQKj0D!XC>Yt)f6PqtNcg-9Fn z%*H0qHOu%&vmgfrXiOx}SkW zx9B1RC8W>fdO4VD2%_kt#`HEl zJ6}kbm{U;>{45Y9+I4ZVgI=0_)J5*6)FO;~r;zWKjrk9X0);6$%v73dTfY0SLC(HD ziWvMor^afzlxWR^lEMuM^o%KHX{Xzv#UGLIU1=v*SnF1`eGa^9!wB*hf7;~i(J1Yw zZWKzZ!L+)=s`fuXGFI~_c-tHtj4R8M^{bw5Zr(EBgL1WQ25nJY;Dc}UxLnNSP zGchk?aUz7Re?+tXVmzTEiVzorRB+JGs>n{UN53Kd?WYR;rP1PL`P=?Uy0=5>Nmv-T z{Y(Jxg{u9$O4CLuuYrMILW#}o{4LH|9IWx@gNUY48uNC-Y}f?1x$ z{WtMt>Cb}C6OwO1`fh_y$=Hiwx3}>@PeQ*XfI)ZK1rM1wozyXfEy;e%cL>f&TBkRQ zlx>=xtePQzN48q3T-)T`DJkiircU1PeQf=vP*?u| zRAx=uVzgEnkieloegSd{^XC>9B#qM!d9m0IVhX9hqCh-ubmkW-l7k%5LraPFNQ6O0)AU`+bBW^nf0#36aZU{mRMfTzyb_qZh4*F-qXL5t7X zNQnCSQ=C5bMBL)?gDIQj6r53~PJyIdmfLSyV1PUs#7*-_EVJ}ZbG)Da;TIre{J~}$>e!fJY56IfP00SWkf_;AkfBxB))}&sF|8qj zK3rZVVM9;Kv_D`VAoGt)^j1l^@5kVmdta;gGSb*z`$t%Y4}aq|8=dfnGwwiwUqoj= zVeMWmOB}ycnI9X8|MNpDZtQbZV)PWc(Iy9>HAtbY?yNAc)-U;eYy6a-x8;MiUUADRQj?PbEn_7FivB&hg%ZWX*66 zYJGwQPV&wKa5Epb7|F^XbjdyHr^Wt6)Hi<%Uz9_j$;pr+3#fl&Z%0;cW^pgb&iw<_ zRhnNy8Y2jIdWLwm_CSlT;(A-VF#JVo=AZZ+N{vT9AA32Qe60DpY>Vc4adJH94X3=% z#S^ItH)vbRwefZT)!oDymhe^bW#nSFeZZb*4P!i3WPj^dgB4}0k=hE!A&5#Wa8RzM zyiXP5}lG# z>-H4Akx*#asP3{rFMHCjQiuVDdV{dS^Z0EM;j%%JVmhBm z#)~TLKmoqDN2=lV%id)An_?4>0{$(BU82Mg9J4#gVX^ANymQpB42ygl4m*@HVSlNiu=$PXPZ#TtrF$hM`q^+QnHg+O5G;hki9#?H>DW=m z-&DDB@DfYXk=iE)S8{8iMQ~Vbc--#J8sbT4r0h|&fA;>)E-mjBQvORD*h&oDA2`WS z?md-v&ihvbNS#78zerGkN)%=R`1DPP4urDR@T`Ep43IO1Gc?W~9dQhnqKIGx6ktI7 zP1;NxY4%R8ZmTTU)RJFni%DZm!#Q(MoOSt6vePPKur^oMWM<7#kSaAh$B0FikQ?Nu#?q8={k?b>U6!Ts3CI-&0`uz z1Zj=>bfAz;71hCoVpOsfOoxLG7n{&kbs^L_yWGM(P;Uu&o68@y!( zj!afQ%8$G|Vl2W$-?`U(0c9it4*VuxfrmGEdr-(kY)5l{|L&-xO`(wRTZ+%D|1VSX zxy;cAq&`Bwg6rE>EJCb|=yOrgnf^Y@CPwi&YI~hc!V3%L&?M-F;#OA6KLA6O_u#U^ zv}18i(=;S(Q@KvY?PiS&OJEGEM5^aQtPc@j`Qxh})}C0rMahTI$pnE^B@DeNbno-v zdm8ghFiuFc4v&iq+e&{E2_bLd^CIslTK5X3+G+ReGqtygcScWZ%#YQM>I}6|N73f! z=wD@7`Ji0n((t;&xX+*CGCf-_;!fAG__1I2HCN8K0(fT8Q)o#2`LsgoTmAe~yGl^fe#9k1&N&<*Ut3)JglK%m8n{Of*FC+I12#ffH!Hb6)_8HvtMz zcDe>({|wr!qObCBm);7KkYvV8_imxhKq2Pombv!h7jPx{cWm{wBNKQJg8}(DxoXUv zdG)ql#)gVm5jpm@uK13>@tlQqJcvW`5eT~`U&o)H+)&cBO&dp{%sDH`Y!@5y{y}RA zlHiy1f8QSr6l#hJBtPoLRobi^68Fgk2q-ncnCO!%llH#LAB|ubngH^5#n4p2TaklR z#qi%<%gKpy4n&wP#Rf_^*7yqgoQmu2BDEs!xmc@&=d1|aVys~=FXHrz{1q9;MRt;z zgpg%Abd*cIg@=lVuqOUO*It{Q)R94{conx`F<~5E7bEJRdPQmi{eyJ7hT4M^G}L;Y z#%YqVu~0ExCa?!h`rx_SqC{i^T|t43DI*KkAZME#*bi)Vo{Rfq2A(eVmH3u8S-8w- z`RQyapd<9VYUVc6edEcVjrh`lvzyWa3AZv0MSv>JDyouscEZC*+-_RaMbqmj*F+P*-BOjg;+ZVjBR83nYdP1QeEO52vEjRhG7 z0xYBXr=8Jr#ghyMe%TTup5`BNgM~J=)KS~Q6g}Xhq;Tc@Xx|H{==^imYkdyx^5RQ{ zlZyqlwlLzB>}i>J2opN!WMi=g1S298oVLLwGqtz14td~r~G}} zGAGJ`n^FQ58=Eq`uTf`>rKMjnc$5U(D#H!;g9!e-PQqqCV)=qyg6$k&Dnx_w@K} zpOtl4{|jJ3gqP?8@!*%GGIEdonQIL8BxxTN($e33%?|_#cMHm!sI?33Uh@ubS{fhU z#x6FD6hC~Tk6qUUHsj`kLP0tD*@S0nH%A+zZoNaGBS1|w??r1+pLKQ2;anlIO!w6TV%rwfkN1rl^Y#U zCx^~Cz{K5CZ)gzuUAXjG*K~tNjA!qjT!`Yd`#u|+SymNUQO-m{W{Gh#00%fIbX_Lw zm_WZ;#>TFwU-sg%{hJ&t&>}VN({fAqse#vmjYZyyWaFWgjb~)zynXIC&C6z0I*%h~ zL3B|ZEI`kr#qo7zW!OGr@Qhy{hT#$VuD@CKl0=rZ_m)=U{F8xCiJk~wdoOoJ3aX?G z#TOj2v*J7MdB4%ayNWFvcKu$97@|O^3I2sI4j1Dh`Pe*fX}yumQ5CsBf|h~5m20&H z4u;quo_bF%wq1Fj!$wH4Zb7+=`{PdwvmPypH%v#uT#Tgv_t&ur^|1s*b%}w1VZPtO z7LQWJ26vwo%a>mopU|T1n`(z@s5WP4?kK+C9>d1D0;O*rC92oYYl!iV@nLMgC2NFq zZoo(5;DrFgjtia%?W>(valT$*9$vo~TU+aE1xOBokD@Cw zKW__`W91D4RR9xqMdyPlKbP;^WSeH!yV}zsu-)AgE$(}zyMBX52Q8EkWcFNm{<0x- zgXO$vaC&9MNXCx8Cs|%a*ZntHZ}io@Zh zc;U2R^CB^}*TnLyfdubY7_vGyAA^G7OD?N{oDrk1qOGdSAD*Y|o0u_`pk&fKc~j{p z<}&mH*DvH@gUiPY2?qCPQoCR>D~FQoqX3qc*&~0U{5x%fO7UyU^n>LiwIK(C+p5Y| zJtD4ka2Xn$RO~k>C)aEbi=^eWHhQV)5UUg1UJtUFW#H*+AfN`J>KU_x2mvwgjPoS_+5;R@wyFbJD?Lm@@$ zGI6sKiw+P_n%8fb2r94nNL$6W7^p`qGa82FiDttaE@in6B_v?axfOV#S0P-UZnRCXk?8k_MNv(O&L}v%YtU*V5 zF{^r#TyV{jKqk+u^{-xRBtlzC=kW}1K4j5P>>L4_DQ01k#(rl;=& zKAK&$sA6%O%p6v#iBZpp0adg@{2CwYp}GB z4`k8CJZVtU5`I<+#^sjZBP;P|vd;~EuyNF&Xp|y)kMv=U{QQW9kd?m=@DWu*p`vX( zf4TXbCTUmG`e#utqn2NNVv3HGxt%Hy>vM)#6=Uc%THQ1wY~+kF&Ao<;mY^;aewGYk z%xM+Y*8WLZpkLXmYuGVf?F7>yWrIr?yYdYBuIqT5otzxpLOW~LU=cTVKHr&OBSO+- z5TwsVk9xvlqZE1xI;hxIKwoRy%af;_gkaCEw1;f{Z&JgTyt@?5>4I~#f~HrJBwsRI z*bPeskwjU`uD(H$KQ}-{1Dm6C6{O?oEyG`~{i;13pOcq8d5+V6TV)#&U#iVtXIW0F z%{tP+Rx#KdQF@w6H4MP4wwS%Qf&kz+zy;x0>{n=n9V5PL;M3|DQ7wOUOEp-y@TI}v zgAdbkGGm+}-_V$$(5@%~qzfaS0IXf|aKR0M zlVG48!m-e;STx5HW77iTe3;b3C0#iFE5Kb8&rM6|GqBLAjqqK=!Ki#MO?Ia+LFN?{O|4 z)3>{XuJT(&sCMqe0Zn4Ap=s&j z;-$Gom{HGIEcCEtl)8v{H^SjFuUAu|a((iIp2mh{d&X!iH&HZ<)cjK%_zx2(y`?D~ zv9Zx23;n*46izc=6!)ogwD4e|)$b?_J0Jy=IZVNcf-3|^x#}h>;rm(r#a5oTyUPlz zyv3~{71&(jl={{_9#60e@u)ddv61tig@U2tVJrBC?JTKM(H zdc7XhKBX}9Fn1)3h2SFL`bDeiHywzSsiCS_$x8WfKyl@kBKgZT+8&9wqFL?hW`zLP zbmC&4AGS9SVcF;iQ`0xBZDE@je;c$9$SQv_1n($JKJ&jl>R$ibQW=M5SG`!_sWY!` ztj{;=7V1OBFSsQ{DT^oloB3zNnZHhXycF7vJ-+wjZXjR1D%M@B5rf~c_=FH`Ym+-y zebg?L*vI0XtE2@wUGu47ZE!ymO5zl7+&4LnGAyVFDdn>1hjLE8QqmY~G!Eg9{|9gz zQx7#2x%p!kI+MnmC3`{UNEf-Go*#C=vkP%*_V2FpX2w9a&3X9pD>>JMZcheg?2MvU+ftu7FlKBVvfjm#*94Rs%9v!MCxw5083%O&e!T6zgtGPW?5R@J>!sS`2vtd0K zB{!Pbf#OiSkCbOErzK;SM=23xY_QrVv?VxDe@QcWGmJYl4?eNK=|0R+IJusD4d05x zG}P;PIi{0r_j)5Vlh?rPBU`@-upY2n?bgi)_qHaUS1Za8&u7vwZ3q-xv!8 zQL8b%`1nd{lfq|%3Sv;7@ICeGUZBV^CA#3g;>Iza<}7VXXLULPfdLHDJ7Fh$O)(qO zVm4bP_u30i9@rYdziQbC`#b+4h0PuiDO$rqxD`?jCKQ2jyQC-f5f}}a)Y^EZ2MnhT zwa;)^#1MQZsE^-vJos!u^RpxuSAX-BlN*G7D?a}<8-=4b+}SVAcYpq{|K@?oLEDrD=D_i1uczPtQs*wEJYKYgi>_g=KzW6tKu=J z*+<9*{XqJpUuPm>W-WzKOKjRpCNQ-IiR#=T@qi&RMqXe@!P>!T1>Vt8QHomI8*ruw z6ef7z(Y@EmlK}m>Pd=DX!fiLdz-1)wMVzsFDc0voae!IAiq>4$a2}JtqD1>Gf(~jf z^4@-Eqyk=z5|TYvTv@pqzJci;Q9y?{~jwQg2I`?Z#@$Wu;YG6 zQK@ibu$X6)rklw>MFNJY0)Ux`gUrewRoZ8q2(h=?QwGW_@ubf(WdO7o>jvt0Dgr0ooojk5mxyM(6rOgfm-$5THkBPEc1*8v zFDsu0XG@R~#0xAhq$aT?H&ryBxEUd%%l<&v8cNNnN4*QclMb40DW^EBXs2npyeEgd#OD!Tq#5P@m-e8DFj1L@b8-?3P}jQpm+xpXyWjr zZqwXGQ+1+NQ#O+lkWF;x=4Z0d{TJfl6Su_qGFzwvZl!yxe+>N(rA_otqcl$6bNZe| zaQe|I?HNjw8v-FkJ2%@Bim`f(IqIs)2nq`7eh&M^kpBZ{)pf{U8I+f>TfO0A+h&@8 zc7r{(XWFIdx9oHX4g^lWxL}i}dnV*SJOE9C6SfP%KabtJNcL~NYFX7}$5Tw?H8evR z!Rv&WaND^4(!#A;mZA`HG zkR}gT_x^#4R+XupUz(|>wl}i;wL^EjOV8|3EJgZW? zD*xpy{wLKYnCP&5W`e;*?( zZ6FXP1V;D03RF~^q1+TS~C;3OQl zwaMzjIHC4tu~~K;a?|V{EBche{buHK_}B%Eghim~CZ7F$?ovuIkT znJx8<(;4vv!$T(Rp-4FU%Yo4SXacW@{2+8I2sH~$PSaD<=8(cJEsqNz87fE9nvUPY z_V(#zKDDTwKHB!&&l{u-D>CmZw*vzwX*`~or12+;4!E#dS=q&>X?D5$J)}n<6V;fX zyvNkl>rWNfzl1I{T~-_GmJtzZOsdhtAURf0MpLN-0znFFvn z5-`D^c*oNwfHD*oAwbC|fGbbLnq+z}h%Yqwq*)Y$GWxBaRI(e`L89UIn?BIi(cdR`k!sArct!%8p^XHH% z5&S3D@ay9gKo@mQC;LB2w7IyE+UD{}89^A#N_L0moU?B0*iu>O_VZY!&EBbJY34Cl z;$ZIWj-;vsv}e~D=N&3f6l-H$)=kW9aA1xkf)BJd=>jU_EPIl2Pr0UecJ9`~_Iul% zjV-hdC8{_$X}Amj0DR=O4+m~L&;)nd9o43~`b>Lnu9d`UE%Mu#DR9n#{HsSw0Zt(iFa=E10C7*&2&)ec6wKV z=YrDXeygg>w(EnKU_+g`^>)EH&jSX4IqO&&>gp&Jks3w{8QW@%`kunN4P(O=+D?@$ z{{U>3Sz>gLd4;2jRy>uDb{V#TlGp>0>M9QoYnECZS8qL&++DukCRCTpC^_6Sf<|&V zTpR)c8Ku;`Uwy0Tv)SINJWSD;22R^xyRr}*_1(!QCmfSN68JO1vUsBI?CqJLvw+Pa zK%mJX=%~5lB=G7NB)_ONh4I0dB#DGV9ljo(B!w*FUGd zs$am`f=eZ$xH7Cn24(I6JrBJAXk6&g*!X7KP`r_r>h?_9z%k4#kkU7B3t%s<7}OeN zf?q{<^GeMU1`$G_vkdZZdV#?peR>K_Z&;gK)a1OGRy80bQ77GoFfgdTz+is09+7mG zI;FkDg_UD$?opD5vky`Z58*%s{e$W9MH{lWn+i-Z!2yPFLFj+|b$`RU6#9kjyUnKD z&0!-Hd4Vya58`7X1wc`g&!tt@uai>NZZ6|zaV9e(j2Rdx1<34Jf^qL!)_ym{42VMGDLg;+v0ftl8rk@0tMTWraoKMQ;9LZz_$9ZW+Ke((672xX~ikCcB)i zzMmpP6s-wSbt4{$p1=kq^V8nBP)d+NAdcd?opZ!vQSf$^V)wJ%-U;QnylIOw2H{X{ zZlhp5I%a@5h~sHwNYG{6g#db*)bTcr7J;u%rbl!3lWrAdaJT|Zpt6sn5;N^h@YU_E zo8oOY_fS@ATYH3-K&!Zrr#(CL6;DySYyC><@w2+(SCr)B{Kr4mfHnLl;rM((Hm0-7 zA}yAmHQMa{CO|L_dt}!?T_1#eM+b*at@enekY8!?+9-^U8M+gm!yT)ik8ha1W_Dz5 z+t(h{0n(iY!%fkQ_qxQ^x}=ukXrPYSnli4r2xJF>%6el1I6dkQ3s_oCH9P%C$@V)7 zLhO;g#+BHFM9-lupP;QRYsKkx;rTS{d)-3tOe2gf)M$%u9DM?XIA$aPzk`8}^^4)p z5X<4q=D1s1d&r$Yk_(00jfM;lu>=AQ05iknIvj2Y_7wCLt4wc z4&3lDTRs-hG>u}~)v_9V-h&y*hTYX?6CC zi)D^MzH4FxsHcY8p7o1Bmc0aOwce8iK~@z4qY z!_h1u)b&VhZX}j8kmE4M9golw0Pb=~01VY@h+|9HVTNUrHIS-GcnksH`vN(u-W}8} z^o><-?hNIv)VxUv1I&JbSe}YOImU80?^%*Ll2&p6EJ?r^6amyn@b_4k!>OxA){-os zymsj*X{15Hby3s~eZU0bxtm*QuWq8YwvD8oRtSirC5hk)>9lVd$EU8I_u67!+-a!M z+DYda@P{X3j2*xhK8KuSiow%0TfHArj{g8pkVA73B^)R_atP>n=uH4AIE8 z#nQ|mx)zr00m@4t<(nt?LV?q%W#<)7Mbp2vwOB06$r?z0XNm@ylzSrbPjAPltqp6% zS6Zf>Wn{82h8Reg6h-qSW+b);w$MA^Qs~$E1&xwPaJtHBD#v?TPLZUDe}_F(W3O5O zo5s2gmW6j}w%0d}Jm_Sa-t|;X5BE#$Bm%=HY2*xNtxKl(S59p%!tYSjF4}ALZ?jt2 zS(#nfKGM6110xy7p%sg-Ycgxvthds{knUAPjR_$UR4R;~P5>O9Pg?1;PZ`;0o(G>z zwfkIm)2yp1t^&yIfUuYF$Y2S$T;ACO5fHz z8lE50C41SVxV?!}&VmUe32g7veu!OLcK^fh5Fz)xgLKGEY)TIXwWN4E-NWZC3n2<|HvHw35u=m5CH( zn1R;=u-xKETD;d-2?+ThjX+TxYr?1lfr07VlRy{sjS?GQ4)}87(kWi=QI1!TjGe?u zwN*#39ldKd4I1R@Flo1->GI0zgx#r(CVRF zji4?tz!98-*By^Jtlt)Rs^i6agjY8Z#|l9ZhA7mQ+M_3yJh90;u6Y|Nu6@vTY zb~E0ep=$SfUBfM{v=@SW18s2!nvO@^JAFauN2whN6<1NYy_;6JxxO;3@szZshSpcl zr(!)g#wY`=()}!s{TUhVz62?c8)ns84 zxcQkg!9MuTRvw`Xde%<&rgQ;mAAfHIK)i3O3 zTPPq%W0jCD*#7{8k=F#A1|tX5)IJ*;_`PX7HZQ)?tMj#>VnX!i9lo>yspB62UidQ7 z%3J%(S!KG&F-FI75y|V+bJTaJydz<615e@|S{0K_)4D|CBIa^FNWkyT3G@S=wVUD_ zeR3=C{vwX~ZloMN;BCwYp*=^^qq)>C@3fnEBm~&le25VOsxy*uan+8~$>)!10JWn@ zqECH!b>bm$7S{g8>rIVjWu9Rya-m?P zX8?oEanZ(QaEeqD-Iyr+&2*8=sOUZmyMkRZ;uv+Nh^^y-5u-v#QO8nw>(F$?0568^ ztQW)j&Z|9wUtQSwK2$QX5h}Y7U4oEX2WZCwp7iZ`ZM6>yY5LOX_O=&t-AiuiYNaEU zRZxZt&=6RTI@V{0bsa-a)ff9NF+9_$g{_`HF(+2)jJ?7C0PFEqJXd|HO?e%bsc8j> zvr@5ITgDP7!+gZ38P4tw?40q<0B!h6$4u2Uxa}G%B1pJxMp?1vM1eArN0ZTTNdu|t z#w&%cm%EwppZB(knv0-)$kC*^dZW#pTnc zkzC0G%a?57%L9}OF~W{|lUY6@y4SAmVt){ewUJY7OK}m51^)nLZ~z}lt81voZ30In zg`LL9JiyYc?ma$IRfboNht$vktLal{*S}`CXq=Q;5=fhJNQ^S951|IT{{ZZHzu_Cc zO=8zbT|VDVEUjr8iES=GQi|`5#h-A<$pwhB)YqW=R`A8`hJ$QvEHvwV6HQ?pMHrityNt0s5KayTPjl_&I!?2Fp=t?z zrd&0>%wUC)Ksd<3;P8JM*4M5)QLX9GYI@xFGumWqX&eB%vxe9@1A+r%2OVewcj3N( zXR^H4V~!avEu;}ZWU+=DBaEtR5Yn@h<22e7j~K$&Psgt~osPs#=Zx_NRLD>Q@uoT%VPi zW-Q!x=lM_vV067FThkiHM$zSyQMS{fneVNhM@N@vXGTtdk+^4%m}3>mX_isnYH?d# zT*qe#W9H2-0yP|yj^_a2bteL?==z4S;k(H1ZBptaMh_wo>XHC@HadfnKN`$=5$>8# zD-oC7<%T>A^vUPjCV)C!YTrSR!@}~%PPw+0>TQ;OWzO=^Cl4zwI3=(#oM(1ARX+lo zfA~$bl)R29E#@*H5CkOoIu;w-fby*B+XZ0;n6>M}}7 zhYShe{)E=_{x$J=)3;Bl-~E<-$g(iuy+CYr=dtfV7`jEoHrk{T+-&kyzGCnRfa4k1 zNDYrdYeU7>meA_r>cJK}8|aqi-2&|@haiH#!gnihGCeq`d^2gNUF%VuF2XDMp;IA- zWepzCFiYftfu5xLQh1DNiLA)F)J7|yiUfE8RWb5~1C5|#7~>QH(fB4w^i2~`)~_Rl zG_VX{JYco#yGU3;JnYHb*#7AJIA9A90OXzpZD^h$*RhDvS-6=P3Cf87bPWn-7UN-hRG^wYngK*I<y>C&`oIfiUkd4_=1Yt4v7fO8Wb>FTYUiUlJZ)SPj^rrkHA7#ARJYb=k6rV> zv<3{mb8db>BPZxZN2lrwMgIVVC592CMSRvieZ8zuKiW4Y8Qjj@NmX;SaoBXtdHk&JBRqwR zx6E0(ob#INE_II)Xu1WprS_E+F}w{GwdKW@CJ{I}RCC)5eZW0M0CP4l!*hKMS2qIM z7hoQ3h5WVdc8*R5VO&TzqK1t^EH^Ij(1VDT{ZxNfD{e_jAH|ViU8X1 z#*JZXrAy*J5FnPuCNbJs=bOpBIQ|vxe+qYwVv0LG4oNioO+Qke+2pymwu{ROrO%g@ z?8SNKo|R8Z@#eRq=~38O&j^YZW`U%E9pNl;b}<}e^H?``cNh0kT;0ti^T>BRk}+mu z?o9x9PvI%GUj#vUr}$*0)x@Lh?E}c~<$!lP?rdR+0YC$xJu8{hyf1%y;+V7XYRdmo1Vp!1@zF7ra}h!K8SW>dM*|g(BJvZ6}$rih|3#10XRYKGkc( zT4jaRoyFFnZMq9(Eb=wt#-+c3Htj8vd-?-eny#;^>IGoc?ye_z7>ryJ&WE_k=eJ6` zr)heoui@F3O|jo^X(5{8UEmjOyZ{eUsu@_kMR zHQ#unNziP3A#rzO4U0ziLfcQ8-Q;;&Z!Xd^VOSOHtAI!u;Mbhi-l3^#I<|qQK-Oh! zG_+{aSmR*1cF8PyWSkD&C<6C^ygh%cYNqbbOpjBFz^s#7Jc^!XbAiuMk<;*}`2HB6 z)U6Urds}T(+lJI4v|X_zg^2?l18gh19A>%wI`;m~b{b{H%reftQ5No1oFC!iu6-*@ z#IkDfNo}TUa-@@5MmFbZk}$v>j=*P*K2!I4aX=S5E8(k6V%zPvSGLhdZ9eO$=AC22 zAPjr_%tGXJtPMfD-BRhZ2hA%Sz%d_R;r8_Qtqm_s*Kah-h;-WvscmjbnH?b{KEiM} zeNRE$3dJC)Ac6?&Xam)}Rp1R)>rS{$EL*{&XmS4PDNfg%nAPN$IKd|%azNt)7_TU< z!YKT2toT*kWYnk8qD&QOFs!OO0&?I1+c?Lyar6PvcshG)TlR#lvoWM>M^ zvm76soaEOHrD+#h%WOX=YVS)(tpbpc;lf9>hEbLz1-%PoZRyP(_^Ld_P zC>tI|B(`!$0g2#b0Zs6>lchvTzh0p0&+t8e3Rd z>GQOT;`ReFfz@#Am_PT%e;T*p-2?k-N#?nm?AmprhPj_^;-H)=s{a5JG2jXS)A6>e zqujx!*m!N{Z93g#l!?hMBzD2cJ+`9YdLLZYZj~bc0KzM;M#GXV+#f)Y<$o&LH8|Wx3%T|HfsW<9jQ~NU*{-3h z+1g0rG@f*gosI&6z!RUwy$i)Hs%ctgzBS9ZmMikHY5HqUBr&4M3b;^6K&ZIS8O?eA zlVCMHN-IaXg4HC+X{IlW;<^ejiJFo#H0rLQJ^5^J90Cl=yxiXiUZ?jp$5c#B# z09lTIgk?qtB)4ovW^Fa&q0Po zVIq)1hDA6Do>`lg#s+JS@B}S4jI2sd@jOMQUo3#`RZDDK_iSVFq&^XE_(pCugw=HE zR^20cE#i@yMc!}$`EVOK<2{XLXnK9dtFBpDT1p|fxS3Kp3lX%F*CYB+2UqbsSG?6O zw70zTZQ1Qaucy0YTRCPOI)cg-zHWK+tiJ|cM`tb6hSmvMG!x4t@vMp=Pne)mI=gIK z_RUc76`i%7qR_*rzN2uYi5I*rF z3@GH0_<#yGx3g+Dvt8Xt(oZv&c0EZo+RdowW8v&b!%#9z65K?)5k!#&c5L&xOG*zw zcmlY)&$Ao3KExyz`NDam79-T-x$A+`r!}p2qQzn1J1s));zMz$GqtU{V`3t(R(JO# zU;*ipdr$%4JqUR?anaH;^wC)fZ_;Zy3CI&GX$9Y0n3 zbc{%l3wDeqIuKi~dF(n+2DgC@t#7X-){6u)$fP8RBY}k^5`OSF7|ur=bH!om?uT2x zcwc%OhbZ9n8;%e4sWiPFeOS!tBv4!1sCn)tZK)6^132W8cmQORR`ve?4=#q5ulA!a z+5v5k35rDnA2C950nY^EIOr$?Lrd0mBckg!_u7Ts#9wC?ajes`29jPn6V4G_{sOr= z>2<#k>N+ls9M<=LY|w8RWJ`#1<(B|}9e;(#BM0*}&L}KGfJr9+3IOf=b$+wxx>0m^ z?{y$`8em9?a;kHJPDTbtsNfz& zH^o{<_9g5VQp<5Q+%O{Cw4ZTbA8|cGj1QR8t!HarM890 z+)ms9o~D2-_|ADQJXL(s>M?317$CTXcA)?O0k`oWVY0F z)Q~H&f@#Xhg$0SmI$#r;0Ku-`##)?B;msn&Qb^~K66v94`EBFa5;Pd~0Lhbs^YhJd z6{9t*@@ZpKy0|Q5m&u7-lF|iHlb*prQTX6=pbaks!5z-JVt6br9KyyZujgpuXB>gY z-aKPzz%{4w8s9fI8jZ|E zKH^!l`CC<%Xy*u|M8CTPVPoR5oL9z-QMT53!&Q?QCu=ejQ)MbEZwD%PdIpUR=$% zUX8()G(-1E;N?O4ypdcDq)l;o1WG_@9aIu=jGR|pKZ5PYfhE`E)?P^<5voGg&WKB6 z$r6n=bF ze+bJ3s%n>4@hr9x+YdG(aAke!V?pd$Mt|82P;34k8Wp{(HPm+!OSm~q1jsl$4szfe zjo1oEAQOz%j)mcSe-LSri&3jY;kMk|7*N_PXOEb&;{cAiJoKOrZ&1FUQofq*>G#bk z+{gL>*baaWfMUHq%Tc-UPs816>dg##l%r+nEM6x_({XU8h}p(QdJ?1p39mENbjyt! zQ@F9ZP$h-Rk^#dG%rn#x$UVWSbo(hL)Ab9lJi!ILYrC)SU7HG@Qa2x>ngF8;JhCiE zuH}#2L6Uz8>9zZNNc=fwH2Ad$p^A14H3h@&W&Z${co^IAbKfLqj8`{lZ#CW2Huk8` zJgyQoUZsx!R<5Y^R#-Mv~xgm z*TyF);s@+I99AE*Fj?e57)4LBQ@ZDyFMrabXRRypnG|NW8-gfP)eeLXLev&N$$Tz2My{9cx&c&PgUo zn$l*r@}FsGLK3U=I6QZt3Z5g?W7YMUE?`2j1Xz)u@5mKGhjZPV87I`&W1!i1Yr}da zmbG=RZq)A}m12Pt%v*P5DZSJj{GgwyJPs?)D^kZmyuH!;QH4;{CMF7>NTcGpw;EXy6hg&$~U zKf@v6`6H*T06*cxx>cp+{nnwV+gM*m2o_S@MqOiKerW(5Sywm*xuk#a6s$H0QVxOSm}{#9w|0gI*q-&a?K{| zx4@5#oQ`qMI2j#9J4@0o^=lSO4N3zk$TkfzNgNJ-P<~eLz&ZA;Iso-MsYir74|ZVJ zA=NH!e7G&5Gow9<6>#JzW&?&R^5k+2d1ZEE;my;$_Oa@EdDQLTTZ!!%nS7)>PE3Ss z;4mlV{OXtdB6@fI4Z1hwH~#<;KoIzESc^&*3vxvE@|E)}S`=is3&`B<_W<=7K9z#Z z3zku|6Tls-pwRUH01jVhw=Jt`vuW4y%%UP9^HI=`?v8jMUd*QOCPt# zcQJ@bF2pP46UbAZ_`&wg0AEd2d_scf#2zZWf>dwyA_kLz(5BK9AFes)n#J)3q`J1b zb$Eh79IQ6^jk(AG09f~822Z&)v*GPF*4M)tw!NxF6p@5Bc2P((zIN)sf3Up%HOf#1 zw}>z8?=Iku$9LInZR59yu)%B$vtzbdnEo}r;C~xi_-@BgvAu%h%Dll_n?j;!Tmk`I z+#U(^$KzLgMWXmuMbIObYduQaSGa_E7IIuEW#j#9fDe=t{5?;g?Z{}hFkWggeZJ%D zmLb1;a?vxYahzaxIL1Bb182m(EsIvsZM2(zw%kPo%{SWh8AOwkMmCIn)$fd+dCfr#;Qhl0Vr=kapCScVz&2?wdiYU(^mqF7t_PTx{GMaGMHCC8T)ypuEe=oc*bVU@wa_s>cI z)v<+^24K=bA#W|n&Nl!?ag$nJF4ZE{JV7(sh()9TL2czG(d8!#@6dPVrtof=YpiO< z%5669QMr(Q;uvlg72~OPAm9Pd6`|v=>^lP%k)~+^()!uY+UDIR3I5`T75S!<{0t7mk#QCvahh$poQSS-7DfLrc2$N+Jk2^ckltm>_-UaZD38YF8RNw~38 zUYTRd9;BY+^c^c-!a9D5s3pW&lF0W;8bG6dJfucuDp&Z%)Azn#t#aQ=0PDO@;yYRV zJ*MdTTvm}r5L{k0v_>_OVm?(lbRK-~Zy0b|Sl4q#Gt>->k=LmD z*7mQZ-M)dQOAWglTT2ln(*(k)l2;=w+>k)Wx20xi^4P52RrRbg2^aw^(nzZi?nq8g zZ(f}!153sF#g?kpBHDScZXk)0d+DKAp5x}qSXW1g$QkvZ4831bmsZs$y_r#7Q=O=|0|Ot(4o@ek z=DQ6)$NF>{6_vf-mL|Egw`*;JD9m>Y&fV-ryKcB4dd@f4nos2TrGo$?>JGk7MFlZFCLaW`z|W zFT8o6eA`&{8RI^n9aWM%Lwj>^(*oNq_~srz^vNJMae{$F*}d7tf|@ zP~E_>NhA-wJjC3jj)a5P@vlR_(7Y4jH-|^omr%RZZextia~lPY*f9Ia{o(9$k?&lb zz7e^L#rIkZPa6G|n9Feg0C6HwxX69B^N)OWpbZZc_|iRo%HS-TgpyuNlRP(08Y^A7 z`C{jxEO{VsF@sqC8NRfzzLIN++S*|s`ZdbM=J^t29oup_#y~xZ2NlxIr+70{(e(>` z6*U2SVQyzz*-y(j0B3Tax(g7X4su0f_!Gmc;vH^9p3Zx_TWB6xB7~4!;|jU$mLu{s z0iEJ~Mh#!YcbB%iyt$k(XBcNV0i2G-h%JuU#agnygGun6<6Fw7Qq)}AHV@4exB$1) zc_4iig+Ir7D(F5fzO{zY?X3i#=<39s$?6H~p1+NB{tnPIeL4*$O>a$YPX7R1e=gq8 z90(xJ49DN89>AQ60P|YW)ovk_T0v^tp|`hH&Irq&na@A%5;N!pS=4kbzA?Gcbk`H@ zyK8t`KYQlD&-v|I)A%+!A2R;%Ud5x^M!V&i1X5hcc-s=5aL15H;Xx#Jpayt1QPQon z&2Ga|zn4vuP=z8(#DvSW0}|}&YHShS|5kfZ|wNxGs|&sF(u5nz$6X= zfshBeJ!%gKXz^?QDz&kZS)pRmG-`flR8rdk^*eE&eAFH!OTn$o+J%%hQn*%FVNkKE zV+*%$1YmU;&phUUC9)_rp4Z+TVFi=0+uoSetT78R)~<;Pt_v4wqQ*ZKC*2>qocMH62~<%xVqfep*_` z8OR8`kIZ-(7#J1GXjeA&TJ4R+;gnm&GQ5T&LjVsr!5sYvuJc;(R;6j+3mY9fPy0j0 zzuH=i%2RR@xKtg;3zNock?^;N#<_8F(k!zjtYS~ITao8ZO9cwK=rVF!oB&P@06WHd z>iC0LONEuL8aRYaa`7xiVhK6erwRZeK;+;I^H0)mJTTfYwbt!*RJcZFS?s1(51&+i z20CPQt9~=lG`$+jPH13jeMa#N(pyJzCW;gUsQJ2*NcA9K^``hQO42oZ+j~okJFDB7 z3%uY-<)jfWB&bkX*o@$D&ISztXLy5Fw7<90?JOd=@+@O$)@zccSpj0e9B=^71Ds^@ zP+nfbJU?M!Y~S%(GT51hc@_-K{^Z?}SE~l}-g67t5B6yrMa{mBugTbwT z7wgAb)RH))4P|8?k#DsE1_SRt&;SLSC!pg4wPooh*lM=FZGu~iZ!vtxVr{J=y$9dH8OA_8!K?yFB%Y?a9|LLdYJMxXx4MZXgvT?oIN-Bu(EsKt|_aJsSaYT+A}Hyz$DI-x~%SfFmQ@y?QN=hvL;dEN!(L zO$N_VlHNb;!xhS<&BO76<8c^ap135Q)#rCs(^*|jZF3t(G%jP27+|Xdfz6Y$X5C}c{>qkxe(~w^XOaFD=0xsd za0Yt{+t#e0i^JLl3(sKHhd>&BAHRc4)~)X@EdJUd zJEMS{29qBqeL!p+cg8B6?ajsA?DrRL?{O=am7A$zdC%ioo)3;GJXK)V3=$X|&g@Pw zBU0!8070yIWND^(Bx26&S(x`GfHpNd?MG11wBs}@4x45Ty||2FUHpRO!F>NKi-aOduAz2iW(BSvyy;$)!qHpw#56noB{F!7c6l#i~$W$l* z3=AfIq?&`l>uCDot>QZphskACVH^JdeYbIiUB^7&fN*+H20hi(x3^N<+&PkISi7Z~jMo+u>Do=Kuc%#uCY-nmkS`>EvI!YxCl~;F)o&7B+G-m8)y;sL?5seH&OwoY zP%_x=NGI{HLh$Z`r@`Q4Y45D!hVm~y^~K^vB)>Ki4aX%Fak;o8oB#~~d2CZlZ8}Q? zjU2JCWOQs5BcTL;I^Ithc#zmkCe$u2?OcR^wShW^Ambas!(b8!!Q!*;Q%GMB%9gTR zwve+BkAP({=dKP0ez>laUzbn5@Quc!X6*vq>OjW~v27t@h$uxXkZ>d%oM+QC0ncdq z%o<9`=4lo;(h?aS=gd1l1z-sJ(c&FXQP%YlscMO~OPIloi1sN(`9{&`Hj(%mPY-CX zuIipn{{Sl9DB63Ov7ag><(nPPU^|ipH^dsS)-^_&D9kposD{=Of7L|1D*bWEJ;^43 zCeW^~t?cz^tSp{+r?e|1sghuXFftrtp#TDSz$US)y7+tci=89I7FMfHaq1)qk_r%k8tZqC(J!OJx-qfg>HVKsojmR>tUA+zEcq z1;GP_ol7o#ah`u1k80n%yRwtQliXXuEHmBD3?*`*0Er20xa5La4h}GJ$*ywV7P+~K z6~Jj2AScwEPzC){RMf6OwY_$ZG$Dn$Ac{4}$U77P(Dn2+cSi9g<-L?zY=Wew0NHDAz)tp;^1*hxj1Wko zNgmY}CfGS8=07q=wrlR$=K4pH=0?nn!vvq{^rtMd+Uat{&=D2x z*I5W7I|&?mjFLX0r|~AJb)OL5UzQBA%61UDenGbKgn$1UTHh`S+;5F~N0qA0)v z>G;$1O*YR`xsh-6Yke{lUB+2scP-CFRUDtnxBOSEY1g_HrG=)kaei%Gm>0A1l;;b8 zGlWp9oB&BAlZpV&@K&`hhpw5e^!C&xniqj#M`UlCy0Y>Q9lI0A>si|M&Bf-sdvSSe zwzm?@&m=0FLK1pnu4ool>?FE|!usmL+wAkLuLex~!acwo0zl3?R6Z&o_?rI!Y^x%P zNCid$j>F0$*dz(hVpw)GFXscFFiWrk~;g=KA+-S%RO4_ zP?Se`CF(qPOK=HUmCjfkV2qFsMlp)t(Pz`OF9PcpYaFoZR@OOYjTEf$tm^qa4&Yk^ z^YVauV!2HtPrB80Yik=74Rbt!BLw50@Ev~&0M*uYJyvZsVgAe-R+lLZB7z5wIaqWo z&64DMk_TWb1}Bsfku!q)6;gh0@vmg~m8@Lono}uLb9bq!wY!qwzm}yHcNijW0+uB1 z^#>lc<^B}4j_<`52|2_O$>&RvpOP`XhvF2E#(*K$H4CjzRFZu{Fqdkp6r*m^SrjQO zJ$_z&>!H$oW#V|eH!X&j51AFLMOyYda??Q$a#zg$73=iuYm>dYd+Ym)sQ?c=jUxa% zvB~~**mz|dRq$S+qzh~45nfBbx5mUkhKFo6rRu`%P|D5_5uQfl(0iVh z-guh!?^4kq%>Sgtxbd-AKzWbC|Z1w1r+lPzEqL$e<1zOS-$V)a~vx=5@S{ z!Gy*#cXj}G&rEmeSA0({tuCa4TeLQFM-WKi`#6PF26$Bf3}lnXa%*?t+<#?(0dB* zd?By+i&~!zb75tp*+vcJ!`Q>JILB|h$!udC&2hdYzO&T4M}2vw+by-6(w2%K017^X zrh4FX%>ZAy_<`bktt@HNYZIGYyEcHTO8OQ9Bz;YDV3Ei;HQDMn)_?G>Ah*+^R9Cx2 zl)Ne&y2q9w^Onmuwg%7#T;OOaqnpCoB!r1nD&U@@f^+IkN#Uk=@0sAzn^L-se8?0Q+ZzM-nOE-)oDv7twLE;5 zV*1bQ^Qm;Rg?xmzF(N5V;~6~;;p%-(Y99=JmJKrUTi9-=iso3YN?JDA7oFhrIT=7U z@t;sd0CV@(Q{P|QU0u0*iKJ;HVmh%oKdoA}yOv!gw5wZpd1stT%!IQzRUj_W*luG{ zYUV?%-kF&iPd)dt50st9IQFjkTb~WtcxEj|71b?P>Jz5gvPBm4Rl`juUQ06-B#>}O z98d?F$0Nlm$r}}PA(Vs2BD!A}>sr@}F5tS=H0FWr?ZO?fGJ-N#xzDL2`c+Q|*scEn ziY()6Nv~jy{MliN13RMfM%?q$r+VA*uCcD^xBmcQI{vLKz16st;khOkK-n7}Fitob z$Dtfh2Rq?=`~5S-c2_z~Yc247kfSa`GXl8B{0g(DiJ+cHpBvGNw$cd5^dqfyUk~i# znk(sTF72Sz*rX6iJgXSCiSi_waz^F@fCnQvtS=Q<=~{NS_PQ<8-P^>9uQ4EplOHis zI*k7S`p;SbyJh2x-8R-3w7ow{v$%}{3%IQm&fT(EiRZpXIjjki=H~GE%Pf~OHcsG6 zyA%16Nv``&u(GxADb--PwbSqIVP}rw*7Q8nyWnhfE0iD}0+HPN*E8YUZF9svBZ;)@ zvig)m%}K5%85@1ut~1hr4-{Ezmg7%-b4`0dmaA z#Y_FGD`;`)P(rAUF_uOM7+ZR>^fDw7gL)`yJ;-#V4m(p^5JP?5*XN#%BkabZb8OtU&ptN zE~9CuO)A`7>DK;5)yElkJ1Bk$qc+Z*8O2xk>=l@cxUa>)MdD(--%J zPWc(Oq-oHWZo`~==N!}ZjR`dC8(Yg;_%E$)9pe&2jGJ9H?ot>IFzR#PHPC3fzJ$LI zu5^p5r?I)7ZTAe8=0}_>DL@WD006@Tj(M(oTh*e!7WTGKn{7VL3c(XL<|Lf6x$ewy z(|`a2fj|+yi!yj_J!z$j$&%#TEPU@IC}MHb9D(@OWpvgWot5W;?=(y47T#NVP4%3( z;z!yQqCZdp2h?*|x>UB1>eiBKP?@aKRWrt?mQ3;o;hF%}mq}&t-M!|qdToJ?hMj66 z-14U4OCCnlEJzGFbbPNHTq1-XIr+%M}Zu~&jG%a&fitk2S zkttHMGmWueaDfz(Q~)uK2cQ*^;aj+DJXfV%T*xDa8>r-wkMMxNlRz0H6(kXYJ64^h zmXc_zKi5o07>Z6%uJdyNO1e5AicdY4LJkH~zF*VirbH!GgPKwrdF;0`kIhqOW zz}x^sFid1JDTI~SNzWMRT^ES2!+0yhRw8whUAGrA;kO;l zCKq?ORqxo)2QdkhlN?3!C&{%xkK5mzaauZuhIL&k+|PY%AwWPOrA@$|pC~!~DsK#G zHhNB?x0e%56wzSDW4B3x>KG8jVBqk>IP|QGheH~{0VRnjzz-D_5dPty?1bt_>4oOI-z_5cj# zx-C=179a4A9V*J={`wMvIFj}VqZY~zK?QQm!;zeU$>7#sg7w&ZJK}qL`=yk?72}Y^ zaOxdO?q6}7{uBVdE%4pPh4n#ed2nZ)(|fp$)k!^evwiXIJJsC=&rsI%O+sBmRKANv zu!wF@?BV1*M;fkhNo;)wr9Z?vrkNLo;n6hxQhi%(*V+Qw4Bq*x@je%mzxa}u~3JA#@Wa6u6H#RpK%#-+rV<~9Z$0X(548OzXZTX7z z>CaBpKaDk*b)8DhqPZ6)-q9d=V~oceFeLnlakW4obR9E_0MF3vbxlI(+G#R6$lz`Q zVG@u?9FjolK>TVgXG@z!)owKVr-`SwZIT$9a_;Uk>NdbC6FZw8=CQJW|GYE1|d+;T>O3(TvwJOxC)Jx)^SL&*yATcLY*! z9Pl?bMl;a!Kp8i>CElB8lU{6x%*U4#wk2SHi)T!Ly zS@K=R2N5n8lkJ+uBEHqUPg@?PculU?YO8XI48aRXA;=VB^r>k`Jyb zZxi3?dWNQrqS+fuD56-ESwgepKQmySa6ryUIM1~JSkY{C{cA+J)3o;g0EujJ3FSwT zBSw%f19M|7fKJ@@&N!^ebeWR&8#ttb;^Jlqsc#^Y<|hDTah&=STbeejq)VeNo#G|m zYiwka0d5>my@3A!fF3~QvOwaw+Zp1wzJh7eM~XKL%Ny)s0qot6y#RDKeipy9vP(Tn zR?=+5Qaqn!mgE^DVgNY`40IO%lU?2=t*mW4(mupk#!H`S^f6(_YsI8`y&W`-aAYzFckK%GV0na9v z#JYu^sjpn!Y48|r-0CXr^a8F$1PzN#Me-EDx>cYs~!*&`Zm1c+TFkz98QSVw>Cxi7Ze@c#duVb~e z8`8yY9f+Pm^D?6L91>fmM|#Wg9cO8JTv$tqWQQ4_Yti=BS6LQCnGTre&96p0%KBcYNT3XJw^2s0zGci#g za@ih$6Zlo{6X`x04RT~CR;O`>Yr1X^TfSGl%!oi8G@j@>49;HyNZkCYFXbCJ@3IZY=> zpIN*X_U1JTrb#7{wxmcpvmV2s_ap(5Y8^*Un@iLuvbovkK;<7}1{ogWwmcPm4x6n> zbta&;4;{Ptay(_!vB1Gmo!k;YJQ4cTac2Ryx0XWD#7=gDKpR>ggW=aS ztDC5`i+JX@f#-X342NJ`{rA9C&N$@tu426#L-7ui;qMMj0oR`T+Ix2mq;IX{H}X=<7!wwI>cNcyZ3U(Sgsw2C%9 zS~~6pobj9yz|UG{h2i_Z5KS<*FvA7Beq{GEw#cDhRzCdz>T5^ETE&g^jjgOV3#eT{ z-!=aL*%sd@6evIkE(SBXuxZ{8yPn-HqP6iPIy{mTESCyQGpNpUggWKJXX}eK0$bR=j0# zrCe*f^j(b*g%)Wdi^`5!K>3*y_*C)7)~C~MtRU0vq13MJZtR9+dt(HibZk$|sN4WZ zP;*WiG;(B#>?oJ2YTQ^Nazw5EV}? zfO9|`w}ovlue?uT4wWE=^UVz$%rYX!CC+;&1pXA7=9JoWkX)tW-rHX*OBKikOqgP= zka+|!J$;Q&;QdD1OYsD9-b~OzBvQcBDsM4)k+N>v-y5@!YL~^jt%dB?RysPr_HLU8 zkqnXyJlQ3g$nBOVk4gZkr)W3#nsvsZ4k5LOZ1Y@|^IY_aG0QRZ9lGFET~kcB(eLE4 zyb8Aw0p=pGZG?>NIPNooJ02^p@c#gh#+jg~y|=TxyVHuUmlU?&>WL(?mKf=Q$5Kc+ z;<=0cQr}h8BDtEv8(8u@=$6msKEZON0-&*~<3PB zT!jF1o)hr;>V|8}i&?Jit(jC>z;?aFha@iV;ZPKoZoqnxRD4Hob#Ja*E&YU65}Yu% zh+z>(8+P(?F^+O`^`~f_CcV(2xQ5*=r?$Aqn+4P&Slo_>2e_)brmc6aUYo1g73A6x zLa0SW90gSz00&_}9fhZbG@CyPUOuQ9wL_=K$D*FzWY9 zFPpiP5L?`IpbedWNO-jMI&GPKGQez>{{RF1B2qwR2dO~VRmU7>sWjgM>6W^#votq0 zg7!qWX&|;~j8Vwr1n+V8KwZbSNCQ08O=rbgj=66IwZlaXq$m(ZKQaz?@n1+ZDF5bU^kRr{+o!& z9kYtR2ZnTgN@(EId{1uI5}mQdcWop)nDiTlO(jtTra9I! zHv*>w4Dp`$%E*CCF&^TPE&-+!+OC!%K$tyFvv1VpG zl6#ui*KW<#hLIdL*DzVzS_qTPTr83jT1Qjd7C&48KpA#0iS-M3SQ4^Is6aT*PAXku z+ABS7{@UCyh8u|^OrAo9Abx_Mp{2pr?HG^`-!Gf zl1VEwt~wHON9RBtSA={iVXQ1uNpNnTa1y|$$c_L`2bn8%CmbpQPpGU7aw}Bv1?)O? zywF=L#UqM;zPLES_s)2$ns11$w7ohNx6+_(P6-*~ypfA-Cm1_A7F-+?kTaZTn#7t} zCz<7$+2nRC%*Q2(=O%zXBIm)L9FFSu!{Kj}S<~zq=3C9<$!7>0ji>l|#zsFHF-Gnp=x1^_?Z91MZi z>BVw(rr|E5HfB+98~0`+cjwz2=jlKj-Y)R6_-b1ghT>`9yo1hDHMxb?<|7QGoE|g% zDZUMlPM20N>NZf_w5UWv;_O?%oE^;Xj=&sazpY8*FA{3{)b{aeM)oM8hA^;Plgoq( z(qQ#0K{@xQX+9~thQ@0jW;ms>bv(+`!o_hWZ<#aYV_f@k+;&RDt-JpK?I=7mr`ye@&1+y?rAeA5QF7<_ zvUoU900Xv9b6Iwm4QY7|!YZ@FBDhu=1cRP^xS$Q+5a_Sr-8$ONYc~5-xRQI88C7g# zM2Dx!56#~v9S1eMEu_P&>ZaP_*HgJs5n&#jiqdBzle>Vt@_v;Lv98=|?iu2W2t%}j z7(olYxn?;evmQAl@Brynd^h3&;lX=#1Pt1QkeF>QH)HJN@Xe0rZv)db0e|8LhOB%s zsoL4uM|O^24L8~)NBPe;40^8~uc)8Z}yN@nh%M`zBSj>@y&LfNh z&c~lY)0*?iBxzi{j9u8|vmBFM4X25s)3nhJkENtqi$Y?S{z)2H0+2&_YIu)=Mn+Bv zuF0LOS0e`pt!em!SeIPCj_zm{ z5+I5Y7dRmlC_MV(Gy%2Xj}2LCHrl1_{{Shcq;Ik0F-5hB+|J+=g#$ZBCp=ajzI3nc ziT?nwMB>07-TB8XeSZw+8Rs2&t!*d8@@c*jz0s1yNYjY`oJc@bkSJ})IAeqxNyglo z<){O>n?TWQd_8ffgnOF_?eT4UB%34`IR5}tv5!NN#j-Yz4?=l;6H1d=)Z?^C5+os> zS)cC38jQ0aU;+B{ty|9(OMl_nEEi5i9$YcYGP|;>$HI`GbqVJrb<29yFAnQaXwzMN zs>|(`_jc`XBw}AI;If_=0!JzV^#qCl(D4O^i2fh8)ig*htyAq!Xk)pPahxiK5)VVj z1Pp*ktltm8=4z1d)0+Epd2q(eL}pX>cahacQaH#RK%>ML_qUg;4du7kmf1YGY{C>+ z7p?$2XW{@CMXv?ye+>A+ODo)d!<2!SJ25~?cn%mmRt==_? zDq5La%Lp(r>IYzYrn1wwrk^Z@l^&=17$38;03k+o~4meg9aNL$GR0RiL>%N+OXQdnzq z>GrbQEH=|b?j+kZLGZv4pU9pLN3~YFmg44rv|N@iDBKx_GCFbX#yH?(6am&Gq>+ZZxwe?@f#2puSjfYWr9m8WNC!OEJK`N7^bL0JOp;`ot>0;p1_9$e zJ05u*jzw>`#5Z9D-}XI&YjH-g{{U&orQhWkSK5AE-~sa-^sZJL$zs1t!bFoSqFl-I zZfxhDT$%vve0AZyKf~H(fVH<++F}|xo!zClO`w)#z)0{&`FU=6qv7X;EPO#0p>=x% zm!{WZt(;S=MDEUAn4T14^{k%~c(zXvp^0pvvw`j&?bR8bo@N*!yX_W z9@HnAOI5qKxwm^+;`0g?jr!q--8^-m4R45E8?*5A`f;(gmIS(k%ysj;_=D%7NrAfq z8TyLQ@UO!~)%5E-%~s;#71SSXs=$hHI&XGj02$B9GRGVW=6pfo5v)aPYinqhI(3qj zx3)$tw|6Ye$L}#9WbxCbNug`;XciZ;!5odM%AQTM#~W>tzWc9z=b$4P1f2Gu47ESBL07K!89vxEh;#<~nVPS6f zS33?Fm3k`svk*P9O<3`5g_KF9YC3!iYZj$x=Nn~W!X^yLa7iZzZh80VRJ0v>T?XcM zNMX5x<|75gyug%|4h{|oAc6q|aw)pzxjw&mlg^Pskwzhc2$u;AW1^`1Ny*71&<3x9 zp|%$nw;G*=tom$l?VjT2ID;pRnETQmLa6K4fC;W;!nDLh8)0vhG3On#?_CCu<2$`4 zMjB#i`fb!HGh8EGTls|?t}-%lz#YM?OY7Nn8`-YzHhHr-cG#gtPoNwR!hk!g&xiI_ zGD~lA*J?DY2f5U)lz#2zAQXl?jA!NpJm;R3=atsa@e5VH@O{>WsJmTx?-@zteq%)E zZZXdwa((NPpbn!%zqZqKNdEw{t>L=YuCDy8liRGpV!+$ASP_IjRc{%6jeJ2Q zb}0%paiU!PoNb8C7ZMa5mv%=Sa7f_P{tW?qcNWkGm*=u$_)5m)5%eHeG)_r00oCb8 zNIn<7MN-#7$=+sYK`SSip>XG-;DLYvB%Gd=%-Y<2mgYIUsHWI+<;uI2zN5IUO*8&Q zop1iw5Bz?yXala-ue0GhDDLd6A-uhl?GcN6REeU2a;uUCPWCK$&k7HEx$yVIYiT=K zUf6xM$~c{ky}q9u(@swtOA(N~=RUwzSHu#3;WyP6KP+yjgZru#Km*tc$J2Ei%{Et- z!tQ%n845GQAwpMi{t@ve ztF-QDQ%{V8-d6d)@zo>ou4dwSZe%l0E6XeL&g@v9#MF`8&X!W!tkNtJ5bqdb6^PCW z9@#Vi?LSVs)oz8gj14^HS%M(sfC)JD;2QKjZdupie8TayW|^MaB6URa&|n{y-E-7q zmd7e<&Mjw_(&Z<%mPlrdhDjr0tf$lwQ|j8K_NR1TP`$ajWjIqjtmJ-XfHgcLrrv6o zSFzY#!*3$mv0~xNGUQ|+KvTa0guZk z^EJv)2YYumkuHa=+*tjM>?4jiZEcd+q|rOLA>GK!FjQc0NIC2(r^8J*P`L3dSJo0s z8d|UuvBZe7NAmnz)2N?#i?9cpC`ltPOxBgO9I~&`Z3zVMD;%j+v)z^HN&JcG#C;j8y(mN zKX-c~A!EP?p0&qnSGQO9k2U4Y*AkP0^Er0>%|#T_z*xg0##n7)tVTiVK9m7}SB~FI z@g2l^T%K$YPy3f7KSR?!8wZT^IL<55=kVW*C-8OL7bfFS)b)vxrMGK^D`^-ZvQ(Ta zF(aoyJ6DiYo^-1F)<+IUEDtmRwV>GBS@_1@+h37v;kBHbpD+>z%#x%Ixhsx6Yg@%b zNt46TYBsV@cYUa861=yQphDqPZrZs!S96ZMoOZ4;n71rRCz4HAn&Me4?V)*HqKF?Y z3lbA2Cj+)k0BiU*-pcDBPs?@agZ_y%~99xV7u3ECA8W0 za{FUtjZiX<18p1(<2W77TJXmo+VA{nr%F}3f=a3V2_K29Iso>64)|)~ZwN^*i9ABm zX?J>hvd20Xg4|T&XndK&VLZ%$nwSh=uEsIJxr*e8hPU+Mh63aR#)n%~JY zNMQ#eJ;!K2N?Skp{e%9xFY}-ct#(zj(X_o3Mu{{5?k9$j0sgxNhFmA*b2ndout(6UD&g<&Px-LPUBT*1EKL{wY(AN z&urpFmcdDoN3+Z;Bd&0Lln=tSJTrFj>H21!9i8Ge?bGJw*62peK2eeaq>$8X-_ zy>i!+NhPhAcV-dBRRKBLH?hF{Nv-P}%b2_Ye;jucB!6i{+O9y_z-}1yIOc#dw9P5C zpAtu>$0#OgiirTuM-`yYaqE{MZ90 zvW@@-y!BYA+@yvaf;&^Do?D4blgRQ&-C5X@e-l6({u;R&Qk_D39oEk_+)_9Iq|Vbmq1GAnL6(uAO9Mn)()Bwn2Y#z{v5q#=xOQ#RX5wbI9WYvHTH#cWdGs zce+JkrF=J|PJE z5!r`HNd6PI0Q1!6io(1s*VFEWU}Ga@A<+(ceFbXxP?prn6O=KQDtcrQgIKb=NX6ZY zI}%xmB!^qDQKq@KzvD>Rv{Fs%gWHiII_oH;CW$m(&Nj8`wD#d9vHY%HxB z@^x_Q0-=5TdBz7gV6>F-L|a;r+l7V*Y@!|vAYj3BnSfrT;+Kg8SF)Bd^@_+R@ys3e`}}ev)?MTv)KvS zSV#aygn|^7CppJa&3W-9i6rEn=Cu4ccKD-7BZ4m>{{Ya%07>G+f<>ry3e1+V{CjmeMKEMG$7Cb4W#jW_3&c@`)aO*<8UMn4^H)y;p?3`(Pfh7KWg5dUTxNJ7oFHv<9RzkCm;fQ z)=kyS*Hg6jGf6bh%RG!(nER7c=wLR#r>PkR<~)!15TFeo8~vaD6D>_`Ad223n_!AC z09~L1(~RU2aon2R@Qvq&*==pEG?uuUIOLY~r3g@}g2lHSumM0DKpgiuu3N;P@-%AS z_4zmchHF#9iWkE^DR40BXA*|)0iHaM#(+8L2%hD z`^h72rA(d3JY{e@Vz8*74@1x*8m^gVXW@NL(@VG(%(|M+g=BHg`3#sKpi(|ujC-2p zJWC~q_SCRxA%4MX1Q5R&lrL8&xn{}w5Ia?CIpv1V`C^gLWQkG2u^X3q@O?)Ds1Bll zJp$)jvWvs7d7;?FZ3IReOPedpDC9{_82Gh~N1LRLbOy_3C?kR7sc_q2Vbi$Y`LUUFAYUyW)X$74?mz4jcUE znyZwe78VxP#O$MA@J~WFSzR|xCo4A(GZ#xVP3vcFZk8^O1N(2Fp)sH-%1CN?j;~HV zccxzS72MqT-N+qC@nG`@-|OQQFKk4H_S02G z()r^T(iH~iUnxa5H3zFZ_d=+mkh}CTD+j2xvui?;s0va~Cls4qK9%PUpFOmml_tpR8sjswP@0 z#*r8QNp)&GiqAOxGoNG2^}ns+)+Nt!*NQUb#X}o!jzYGT)Qqlaq|+3&|-dDMu3WHe}jbTBX`D z9{BG41GElaUdQPk)5}Xs);2aZ!Q2JIw$xNq;=OUu#UFW^$bx6X`Pzcwd{iomik)W% zGZ%{fdCZEj3e1$aUFG%9R*<1>nFAcZF?oo?adB~XcXyeI!;df}Y@C>3ZkDpYm8U5% zXAM~MCcn1SD;Q4cv4ZP|Z4<8l-ty$9(suu1RiT$X@Um@od)p|h%F&}|Jg z7)r+2u%TuCWaV-W`RoBhuH4;<9F04YgvzY(-SdOXZfprk%gt%2sgWIX$;ucnj7tPl zd&nbM;OA1AGK_b{#0m@JMpvTbvXhnN3Wmqm+@s{;`xXrVAsA!GJ_zr%0SdH%XmrGFOX zV#A}o690xzpWOW%q%+lYbVfaz zPNpI$xFfPYKk0iL9UZ;5G76uI4*%1R^{Kk1!**`AhmCt927UJrCWjtLOpT2tcUl6q? zVd7K6?%>0c`fVk)gyZAUCP#iMog)3cZ2B|njp>HbVxt{TF;S0o4sPxk8AkbNnlTu@ z;Q}35b$eUe@fz2~ks^b1)!Q$0OnmpeXHKS3tMvT*yy8jUSMxGFY5}pWFC;PI$4j?q z3njlGvg*{hl0={W{sJRuWo6~QHl8zVd*~1+SRwo1KRN5{_Uu_yRMhau$oT;MS!~;^ zko&5xiOEc;ZxTHn-Tuj$d!27bG%a1s?f6b*W#!LPj*;!E|P@e8sC%sd6ybagHJx^I~mnu_OQv=+A1w$q`@Gr{QdjMaY{r?OpK3jC)fWt z7bB=;;Q^gbK`2hS%S`P&zM#lF_EEuhiZL z>-U|1HP6LJI0~dDv{&jo$jgTg%Aoe|FJEN*{rxR1S+c_%Z{aU|FkeewSzf-I+A~q@ z9ru)Ly{D%}s2#Uz%+g(`mCyJ>FS} z1`C}y{3RsFTDQD*^P}{F*dD7VR#sl#-uLMs(!7MC(t)zBvOE%pa0&y9Gd44M=@gC-^wk!?F9^MY;0UzE5_{U=;#^``Mp-33S>Y?)4krJg$#nG#g@=x1^wIMWS%csP-Fn` zQCp^&Xepf3eWy-VG0vqXO}_|PFdWEWU8Qg7mRw$nh&b{&Z*zY~7xQFoyb6{sj1~<( z01=am<53nCmYtKO80+%y7mV|SKW-~AB`D<#SifHEmAB_gdYC(eqoZ9g+*|De&t<@h zV}|^$k@v&)nRrHq|MAJln#Z|2`~bJFtuFTq+v1LGl|IV^x};jj-yR9sJFKXbGH`z! zSO2pIGEZxMe*VbE&)&W;GgFfACBTG%0rk2m$BHqS;EuWQc5}$4sXh6_f0L7wVP7Wj z-trOO*z>Zpv%5#t^W(=4yOM_eYX6gJY61I?d3i+WlGy_aaj*Lpo&2(lOLRo$t)4u& z&B|JDT!Jis(M;{3!VQ@j(-^SkXN|v;(Z?Po9Mr-iDq8TW`MlY!rl#tTOAU18`*&p_ z8h4TOK!!g%&(%ryyc&r0cNAUuLfgzL#^mJXpFDYzfM1=LmuJnN4@f~G!hn_xH-=1| zNNt>d%wygKc0RyDb6bZiB~5hL!LOGIjQx)0zkdBXKCWLk6wBvNB+i z_4V~@nD{ifDci2bV|IfGB;^Jb0R}HB(hQ%Qv7_iERho3>x zf?@5nxEj#h-~S&XLP^H}L8_EHM1L4MIy^l5;|Gnf%b(U@98FD4S65f=#zS)+N_%T- z1UL7hA?_C>(SWy0&18w+Ucuvz=$;I{H)`zd08t8C?9L-nbO?ym$(o(RtvML2lacDi9ArU)PyWY` zZ|Gm{n*j*Z(;JJX6@_VPx;Wc_R3SuzKfn3CLwG+MSpfS-#@Sd#x~PZaOrvktO)b^j z3fL}+i+ks`VA(^$@xM6muhuWBs;croU-WO>Tn4l=Rr~Dh>}+akYOyz6GfxY~hLe*M zBCdbgP0Te6Tk)*N$uC~}ooJ#9-7C55&Uu$SkLA7N{QP{#@S-%)hFla_=!46Z6Km_M ztCRK5U7tU%K^9bv*>`;wYMRODv1%|bX*U;kU;P>XNPKL3JRe!W6sw@9sOaF}U}QA) z{rh(a^gn;z^Hxbh-=qodS6cO?#KjROC|OqNLn4J3>X?Jg1U|@udo=h?)Acotjm7}q z93asX;bP2feco0uFqk;``m3`%O*JaA)nY_4&ge+F|N-lu!? z{Q2`IPjWlvV2y;!v^rL^7v0YZpp5At3IDRcHj(iB4`6|W8x$~kBI%#>i|*aKr=p_L z<+*@nUxi5 zYLEEguOQgLl>Ci&C@Xb2APDjB@K#&04Z?;p2aO)aF-sD@b~*@n@M~|>dR+|}FF&76 zjtF(HEW}%3*M)DfOw!WQ%WmWIE>kqJd0KzRtL#uf5u`AQ!vH*TPdlj zqWJLo@u-`sR|a&qDzKPhNB zW)Es{-d`PilHohD=FS(fL_Q8M5K>d|tH&eO{9X;y=4G1*qJjHFvVjcz0s>#n@6PXB z1a!mM1}57w|FI?7BOc1MZJ{YGKM@Fltk#-#3?G@~uEZg{W-@7VOT zBX9C|tBUS<4UD3%b6cs|2=Yjn%scW4uXhHYiA;4Quf>L~-z&#`@So*;ueU^_H+?w= z2Vnf$e*HlQBI&Aw%kK@js%?k!+v~75*KSJY8b-=0GURN*Hd;Pr&ls!5YG!Ed;^G2p z?c`tskZ;#@EjBhb@!rBtkE=NzA9VvYlLM8Lt=}P#y2%kL!jho{UKCEXJDqp^Q!lor zM9Y~wUodnBGUv$0VQgv|}U=Kiv$K@Bvh_k&if*fnx?7KdSA=;`$c34L@%ZTx=5fA0_#tG7f3R z;?~v{Wb6KZHB!4&r5wP8?Ck6hm6RgPg8^9cQ#n{$AC?yX5|u}gZl9d(?d|Qj+Rw~} zgoIS;7xgXHk+>k@B{@PA{!}{-Ak6Q6F%Rn?itHTt_@*a+F@9lc5gVsXxhMpQ(_q}c zk~t)q8zgrv3PXSGWF2cK1|e8Q#Woz}KjU%Ij7f1`!cgy_*(yy)h^wj?_h(Cs%V*PL z`l9*5cP2dsKR@Q?$DM=gSKRAJ!*TsKyk`u45cO6sUV{TEBw#T*9adW{RR$e=j+y#W zUb~0d+GH=>L>zc16S<6P;h2zhC zA=Xd(Pk=~C9|ldE@+|Egvph^B-A-a94r}KT47J{^c2t_?sJG-*V#gGrO;gq75H7f9 zQ9m`$cCy|$IU4geb(nlU zXgWHVzu0Jfcl<-;BSGZdpesQ^a`By&A65QL>|Eixa|bg1OvCw($M=jgDl)?(lROYNJO*R*3vkIERFCas* z|M+Xjd(+l-Fd@l~gIu?WC)t$0)%5dLiOZ1f)6m`f?DCCvb~U#qM-aBw)^Fat5rTu| zLQkr!dcEISZHsB?#9EWxbQs71w_w_krTU|o!4JGR_%}f4tIVMNE)(9b87MV6}6s#AeP;#8Z{R6-nVyh z+UW1^ujmsO<>eh57|1l#{cc-TtXr1V*eFhjWmxaIB`rzz)$!cVHcq@${t1bay z?nN~>M@ifM4eM(M5iTQf%Os5q5f$E~BZpq#pvLRO*5&$v-(|X{0&Vtw{_OJEM@9Ql z9NktG)@9#TbN0iH;cd! zR}0<<@q1PJ4JaT}=kB{}4mlgAir*6+~(a3ROMqc0B z)2+s5N4~2fQ&BCK6onfStoEB4ph z!$}mF)zkylCdwSB$H#x|O$$xDc9kQB2Rk-sVKXs#o;ak5N1gk9?=>IeEz}SGB=BRj zZ8503J&_RTKkbtI5a!b&K4V!;P+_L*ZFQ9s;$F0&(*v9f^BmF zW8Y~|JR>KS-q%T*V&nE$CLuqXYu9vZN$p17Rgloqmg+w@zih}|X$8`|d_fPBN0|^VKM9-;(3`F4I~Q|7E7WggA?P|v{G%w0o0Iu;8)^IxLw`0<&(EjjhXQ|Dc}RT2 zuqF`x7|RqUxAjBwXDylC2u#0f$1*W$U?VxmhxQNbr5)D1%wuzw$XbZ^A__{u2ZENm;`ssBd{J9@@PMa=t+~*_mbFTM^1?{b< zYqz%&!Y{GS&96epEJ}2I3xf#Y_PJtEomEdGLTe}eijh&@BJSmwUYb~Vl5y*7o3%sK z{o{`dktRQu_h>R7z~9-zw6Nu4eqWrMxOqI@v-Meb9ikTeyX%GNiXvsTu;Sx|o)h

)%xqby39eX8kUjK;XL=iXlMw=>SQ=3y^KvB2NrMS<&zD& z>ctxxJlF26PDO@boVL)Lj&f}t5|UAhE`_Zd<&hSfbogHgs=oaaL3U_zfnzti9Z`S^ zEh)v^yFy_Z7c}?pBe;Qz(yhR76r7NDqXsmyWX!BcN#7C6ba>R4iF~|*TpfpHX8fd6GzTTUjpP%puByjP(TExlZ?#4OM7xZ ziD}Pk6x>-k*CBvMkoejRpCZCOzOb^|>^AxRU zRS(wqa6y^h{l)1IqEx66SEbZn=*a?+#3jFsCH9L~=6{Li!Njx%t^JZ4R~Av>udE zVqk18r1DVq4+OwK{$fRq*GMxOKHZl?Ara9sOC0&0%jsoL|61cJck{CEy}fio&hPT_I_(8gXBxuFW;P_;meg3| z^*-6_!I6lWxW;oUODPBD#TPr1u(lR<{BmBgLxxrN-e#3{3-xF+7UFQ=W@l$-JLvsS zmvb{3fs+PBB{U@D185*g$#37ni5pJ$z=NI4Nu1Boin_y7jT^iYoNf%j;Nv!o(u~ygJwzO{jgOC5g3@!bw_ROI1;hI4>SbnaA%Gd-bJUJ5iT0mru4_#i zA_6!#YknY#8(CyBw8Ud#iRw>z(^M;~GCw5_v8%=Ey~cBQcSj~#<__h((&VAUb*%O_ zH)o7h_|6T7?wy~HV?eNJI$rcYe*y{sekkgQ+kA~+^3;}ugyjC^2d0V;>x+3A@LGd| zgIOOpR#)xCGn(9%HPj0ofSzF{2L3!#?IQvyL=^>;D4f5sJWky}5aNwh*gZJl{@R?@ zBH5klH2&ntn!zXK<-M}*q>82syO1`sD*f~xt4Q;Q3eY?)z(Wcq%sMEtIF6aD`>mO$ zr!HwbVpxgdHYp!H1f3a&Gig&4rR5BL4VN5{Gsh+jSb-YzN2Ja+cyhA->D<@E#6;lH=}&)Qh7!;IN~P=|EBC75b#?V!XV>_@Tgm^LzM&YB3OgyCi_CKT+tD z62&l4${=3evn#cH_}p%#==r?8K*8urq$Q;~f)tK`1$lW-MbZ((M?Q_Z`?%2jhHq`A ziHVVs13y)2YN`sWCR;*8yLned*wSMk z?`F}BcO?Y)nC@#*vAYH&oPMM?0@d{N@V2)E} zO>i{=T$fg92*foyefprxW3w52HY&I1{PykJ@=z`)6cF7LKYt!# z`fp-N91p}yd(Pom3bg@r{Nyy#OT&2l=EDc)Ek-%H&6+-dDGPvN98roR>^C5mF1iTE zcWN0M8|&*s6WQ3=L1!CU{$b7kFp29dvgt6=Q>>VV27(jk2?k?UjDS#B^-PF<)O>fD z{mm80S6QhD*HaL6xO^ZYYp2$a=+jjfLFqW8BlN`%M?XGxUM5aSDYdwP$)WaiPL?q& zB8G#Bu(`?(3%&F?pRJwn91SWXmC6up)CU#l%sQJ+2xw`SF{2XC)i~z&8h|TevBt;M zbUIcfFL4Ze@|SN|Uf!8QW^-~v>1n60Q5(JP(2$TbnxBNN?dGo_9!lNIgkyI7s^{6W zH_FzI3wsQg`9n}Na@NeSKCD)R!w9>8jLk0$1qy@t#iI*!i14!;Xk~ee_)v1@y2}x7 zZ$@Z)U;_Kr#FPI>$nLuHk&t1c(o%QQ-MazN_*&X6_Ey?qMSzXo8RElXg7SetWRbzF z`wjvnUwDY}bD$3gW#lW|?{;8mjh_HxkMSkIM z917D4vm+Pdq6847vjTB~o#(MxS=BUyvea7w4~7V98%YCd7pK zlaN0h9^S`-#~YU;`Ag~+E?&!qygX)pLFRDz{|3_1u<_No-^byfl{ducA4;Kq``LAo z=kAplOioU*^h*$@o7MM5>g)e`0m5XiCUMfHSi#PRJU?uI3_o4{*C5`T=vSBi22MmBd;PRei%7kk zuUITOIUb=fmWTa6zIa{UySRjag6l!i*9bC5_xJxL;O?ajc@z5l0(BFD>Qt6XuplL%qv6G3(@IW$hoj)<9QPRj)>en&V&0H%Lg}mk)9B^WV+37^0>w zz^EyDK>fXjZWT5i0eZl{o*+%=Lqao$vl?g<5(+Udf9mCZR{$gQT6a=*6Nan--fcPp@#dEMh6H~!yT<&m=9hHJBl>_%HHeg`nthHiRO4A9=9YER~SlPqa- z2U!vV0d_gEcJAaI(YKOiw8``ho@-;F8f2zOEOm=U0zV0;3!Y@pcmD!lO9*btgO)*n zhxh$f?IOoW>2*EueUQtlCt6Apf=r>5L+mJm&)$IZqWq11(L$Zn0aX+IwQCB@{gbbb zy+(p4Wvdk!2!%Y>C)rEtiDNq0+1NxxMd>|%1q{xJt21WwnS6Gh1#iV-Uj_wwCdic_ zfXCe5r<@_H9ewrc*I(@=H*0%nCu(Cc_`zK3GT+q_gqg1TL{?UoEn&RL-`~NZXv|)q z!JDkqUO<$O&vmIkQ-K*aLt?myH+j`vbcVQg^cyb(mq^61m#0{%E^05B!d`X*5}^Pk zZv)k>t)qk5qe1ucr=p|;UOpoxOP6D0bkt+(ce_fez}YPQd1j}D5;O7DzW49Exgq3U zMVWa~*^OqsM_cw9u~x z=yC`&DT~q3-@Liy)ewqLE8=rl%F%5%QfTAg08+|^chv(1XJ{|%(*V`r$sKcBWo2c+ z8IZ~Pf^;vQ!JSwIn|Y@NFo(QUQRMB|eZ9ROH1f{R{f22J7C0`2)Y)0Hbk*w3EiI+9 zUeQmPw+iH#MAPG2-n~}p^iXgZwyommmMvoeVaiS9zK94FE=HtzFwor0ifoDZ+kXCh zgNTqNmo4YW9kM}FGQfNxmwh)`xyFzyshe|h1qfr{)+@&NsZ>PL#X-y!N#|l`AF}4h z@%}5LuADmr+&DCX_=aBM&e3UWQf>U5xoeS@4xpYtP0%3)#cliOG<~M3;1z4bbM3jO z%inK4byO`bd~IvHEt3AGyVK*_2X-u}rw+AQ2$#N6g?Y{{WbC$C>VK-8oP8WfELOV@&2FuI~GH$p4nR}a9pvC;2ndtP>neE;Ae z7bI}K39#uX%%{$20BrZ1l1807Ju-NWRM*pkgF(0p#tH}}Rd%DStgNgwtZkfKdZ-+@32fNSn)^~9Qc-NtDzd6t2>E%uW>sYG=n*yd50z|leTVUB)- z*E43~Bb1RvhEW}f{A4o(&HMmpALM#aDT?%~@?jSM;}LjErmCH0T>I{0nu3P`4iy!; z9BjSKvIokfMxW8DskOD8g;05L%2qsMgD>Mq88}yg)GA#LZEfwYBa|#_RWY{a4p6#c z3~*1Qc{{e{e;%-1^esNdAGpt${N)d`oLs3Rtr(qZfYPfhS<@K2{60ks(2NYJ{?DXW~D_wJsVC#BbYWZ{EY+_$%3ADuEP zHj-vQi^05iuXIe8pf>kuA(eWjBJuWfNKteh<(AGOkb~JS!A#dY4_{C$5!Tg_!YjA0 zu$p7is%N&FFD*+V(5tBnblR*f6fct=S=8@coA(+Y3%|s%ppMS9qh&$SAKzKrbajQy zB|_^X{&`9a7>Ob{nRhJ$<+G~yIw3PNKp16~WBdF7?d%Np3Bnwric1Jk{B^Qd&}C||JDdOeIWCB?LA z`vJ@MWykI3AtgLLFGrJ!KP>Ss{(9C#}xouquAM?%cqwaWpbTqW=Zs+W`;nD6iivZLp zsiCrLGuqWF19OT=35u*F1yZQS01?3!+#)HHJ+`p$W&lyfifVSC60`H{)j&yIjvAJS z<`_ZWQZ9#;ja*uXVqxKz+k&kfi3lxV2)K5FNOp{)tGm6cs}k9bU_>?jKZLnE`IFvv z@6qw_)bfNnucAh%wAJiYG$WcZ?$Ah!bC; zI<0#o#$^oa!d{@z7!Otjs>hXv_=|l^u@6-60A3Y|UA81uri`-KIGEvG&UGukAGXL~ z)Q=y8qkrwVd-qBbj)TMZTbI}Me1BI*T}GLoU+NvId6ygYRfjD}d(6Sgb+!aR%oROBUtLvLL&3h}>j&i8{e;Ek_>bQ8flG?WCFJoX2TR-iAlqDl8#6;nAcbV9km~nm22FUZ5qjn{nF$?vp^snPpK-u;nvtsPZ5c&gQ%~}`nXEJAV2@_-@o6jc6uK6_V$7S>MaP_unECFjl>tu`u$qD2X0a=QUE<=X zPgFz%%#e01H0|Xa0A;{(=kDPFeuBF%KmN>K+O@H$*z{62!fSZTa;w%?ow?iPQk_&U z7zTM8JQ{J#C8KZ)eQoV3o(S+4gp=F`HzsfxjIsT;RX!3Q73Oy!ENWa!$NKxxvSZ;c zQ|hEx=pZnH;0lLZN?fj_f~u-}l(?!YDpj98HJ%Lg0AP44^fU|fT>xru%p?*2!{Ef5 z3~6=NStz6L;NW1q^u103(?`w$=YI;!aHQlQ?_S)IRfi17-tAIme`CwjkhC3~JEWbuv0(0uFeggT zNu2*3nPtt7-3vc}_x*OtK%`vF7$&!0aB2e*mp;vlbp>uYVMNrE^W zAPbznTUsPT+tfLz(>S_uE;dDznH2#Jxw)Z?a6s&UiE`%%@YB>jZU48hqjV1?jXN2` zA}oq6I20Ni1`L;mAplf)5f-YoT5RB$EL&y2^!8EF&}dO~u2yuty+s#8(LNp>6&0SP zYoY%BJ<*G!h9Cy4jR{Q%3Lc)#NR!j7iV9bVE|AuljCm9|n5sP~`#4g}IaNPq z%iD0_N*yk9>gR7{lwPJFvLPoY2U_ar3SbOyssd^O3q~U2%^D$baV|v-kfqfNi}Z_( zS4-5Y#Us!qfjdKs>wF)l2<%g`vTfD)QMP0jLRD3j4(L4FD#)p72!3JV=f}G?VB4wE zhkP%$GaaFaO1R@ce_}lV47KM4W2~>QPwF(gx>~4T#FbbT)iI}EG-6dj){PCZU@x%Z zUPs}`6MQ>Df%(@#b}@cb)Q7*eLp@Ra>ZE`s4Y_n+V6O#$<(4~6S!ZXy6S z6PWPZH9$et^-+K6QMb@K>&%rD&wM9A>H5_xsXYP`a$FgGi#tcktUJdmB?ZHOEqH|m z1jwW0psCj;ExTXLun`FROR6&z`0BT9!hN1|$yvT%Dbr4;W1O zsjdYycgEk&@H@5v@Wqimv`pumKxehd_7veFk4h?$B0LrunUi zrIofrAvX~>_bi3R1>&hSb#!2VK__1yVLvSv_DfH8ab*=?(e=kr|&bTOgAGVQX7v3+yDWn~yY=1ZyI-PU8MeXK8w z29X4y=sda4NACY0=o++Dy!>nG7T7 zEBEe+RU};I4{7P8jZmfF5oEphz5ohcV1FzjxOS~{tkmre8@nDs)}xr9N8#dk_2f{{ z)%n3ci9zd|MLGoHmXFB!;*tHZ-B>TN5vyK|$8lai7O+Yh{)~`DeN5wogMI$4# zwlTxMY?Pzj#yz)zHgvh%w;D8GLi7)}(bnmiOz&5+{_U$CmIDx*Vnr!|flmtbz!Mu^7RR_fWkf87Sg ztgY>{+YJYYk43>Kf&|q?g+!;ck$mLi9V-;|csW_}>W>IQLT6pf_H17#{QK^bj$B&* zy30>R{d~xSM^{%D`0a2p+D@;6 zUmAD=N?fSh0N!WV7Ch6Fj@7EUb9GYHIg0#u12l8r4VWIeXlXzFMWenY9}5x_K%_^0 z+wmaX7#W@QOB1Y(RpjR9D|sI5_?{i_QJDB_6;)4Thqgg(u&ol``OXJaHm7AZ))YP; z-)B#vvojC@S4QrJhDAt3Fe{3s3Ak&(fwnePSKZJsWm_degKv2g5)gdG z#%y>fp~l3+;~?i@5Lj1V#-X(y_Ju`R=5o#6+s7uYep3xemTkJH3jI-sa3~1v2)Cm&-`Xjy;hx zXrc#(&Yu*#r^>9FK%8r6fa8D4@gQHj;MA{aX2S&R*5z;7&CBXVwU9+fgCb;=K4wpsz*x^gP9pmh#41QJ8hLOkCfx&)226CiBLWFZ;aP7~b0aN-!K)*l@raq2s%N8$ z>@+JQpYY%ef6GBSPIG&eVg;+S9pCnpU# z$Rp*luU)$au1=70EO_rkn1jz3NDJA!bTMGy$G93`e)JODY17lwGp-lstvK37Mydtc z`(BvY1G~XE)#sW?ofaTXnV4h%9EceII`{OlP9VbE!L`PaEdf}!e)7&&0hh{_7MnJy z9Y9yM2=lEfn0AeEkuE0iWplnI_&yB0mIqAj{{H&Uvd4hm1-T)G0vZSNa>dvx@DzTh zbM!h$q@StvQ~;Rm;r5pp$3Y~Wj+T}a+-HgJ2{3}TJnL&~k2N=DH18-sdTjkIYhX!Y z=VncIn}L3c4ri+{eyoCpt!>xJ9v6+gSLlW>K&Xy6=y6oLIbhoI@<9#eTo&*dE5rd} zjL5;u)!WYxx=^^kOi|%#okrqmcz%s#7Ah{fzOgVa#`9y;60wt1lQR9b3 zaz~*3TyvKsgtDi>58yY4>jBT%3vk z)o)&1SSYo`5pW9W{E|;Ng;6cO1mv%az{;OL77T=89dqC$g^UhdmYE$ecqR>Ado_!1 z`BHmOb#mQs)UD^hB|EO8D>iD|nuF8Y+8Pg4=I>o5nd-Kz$_S7(;aCEN9S^x1ECfZA~Zt(6)6V@~^SaGQVA7R21C|BGx%544YavdxRRI>7z z$YS(~KQbQLq@aPqFoP${WKg7e(X!xiY`AwALQU-D)KbV^L&2N^?mhU|{qQ z1r4Z!4-2%bb>%G?H_q8F?L!Y|2!*FB7+t>7-}^);Wi`-3$PU$`+!+aM8tWbS8-;+# zlQ|w+FMU~U_!)*py){Q_^GJcRr2*!{Jr#9;^nvXz>`?*$#J&+zrOYT-3E;ld{ zxtJl(9|5CU)0deQsB+1FNq*yX5#HUK?Y{*!m<$4gYV&y|%BVs-)KsXclVZ=pb1E`g ztlE0he}0ORUI>doiy<2@V$6_d4g`x#OHk?9W)3%)*aWC?q*0`YmiM=f4$%#0A1DRg zo&ZF?W6^b z9hl@|uJdn9o!mYxk9nV}UWb_;_}z`-Nf+O?6_l7;V}Y59jGeeUvB#F5OpFtC|H>ss zA{g(gQBWDn^?YV=z`-X(lckz8cSi>G1ljj)UDtyEOoZak2BRd^Zt~ORjI7KnLqk}h zdd#Rtn8z_Q6MJsSo*s`1xnktxcplrV{=AYwV0*6{H3j+>nS^jYc*vbufD`wUR&;Z$ z&%B393+eJ!^YYikvR~#XX}%oofLTgD20V0jqvk6}`)TlF?Q~zRg(wcD)b>dl49u-o z9FV00(DL&)Z~F&^(nrvN~{pL)zhsooEGS4fB$a&iTB);CxR@x{E)w(?_mnV(wV@i_d3RT89I|GI|S2Z&ibC!qshP$YM)7M1K z&l}>0KK-_O0;on7b!S=-w=f)^Je|h|?_~lzRwz-7bRy`iMFwRqEWo!b-k`zPElLwX zMZm82x5Zdxa9=P7s$sP-1WH0i_o8ZHU?h4!q=u4;V=#w@1s%od#pta0SEHHW3BF=+ zFMa67R-L8>ZQc)osXV-SBXlOFQ&Cx!k+OaOjW>1HC9~$}tHZL!k5TE8#hX$vOIeQ; z;4J;v3ZsSL>J{{>U<3QZ3}h>B-~+S)1oMq@+;n_L!ITu#CRj__otW83=P3BY_M?_s z!7VI%4A`Hu5tO)4duMZTeikm11tMWXgKt|19@I(TG+IA|vg@2AV^qa5Kh-^|D5&ex zt#JXIJzrP;^EIogNR;w|+#G9ylvuQy0xZ&#A9u3lf;?%qgotl|FJ3NIX-bzj9lXD2 za!g7}Y9J<(SXv_3rETt{ss6Mt)i-HFK!`nSp6bW65%s z^u-SezqIy2n_KBfmiUePhg(i@ZgY2(QXkLGb*YffoE-Q{aQUd+{QhCmrRJb^oHzNv zF^@D(Q6`(JX{KnH>c`)Mw{d;aq-H$L)-SuSXA`lK6e3^0ZeEkKxih&=EtpFp$0VUC zG9T+mtEpsSt0(+SR$g>$xNjouf?haLwdV0wnbLxpV(62%juzH@>Be5+RdHD`t zJ*T}^IQ0@GL?SG1W+7fmZJtQ5VTg0Qd~Ni+h3*QENPf44h2{J0(423fmYt#Zi@&s; zL{EN?Nkcl0tw#M&UuR!?dz6ZhO1y=omgne}(%@~v89^Q@z2??B`(gsGj+SdQ>f0Ue zrh((9B4z>=1yNz^zy9ZIOIHOP3cyX5BQYW(VsB+M=JL}gKLEw@M>~tv4iiWnohKDz z0`@;Q2On~Ssk^hB!{<J5E-PA6!^hXBXmn-Ny}~zMzT{bYvxYCHJPMR6le0!?l3(T9HSx z!3ISkE(V7p`fE`qK+x9?8OY8$>ypY=Pk`I(hbd0e zrEjHY_T$^c$MLheKTL~sg(CLo1l>=JW95#C&ysp$qut!jL-CIH9x769cf?&k@m}KZ z4R5Hg?9=xyY8V;++_$I+^~TA#vM`ff=4J4Il7t{4>uFh%;bJUaer^PoP8cP>k{}kA zCgi(7_7>^?$E-NS|6~eZ8Qbe>&Xs0qGzwYui}PlGg%op+f3@ldv~a!p!yfi85Ax*sM8V>$Vg@HQK_gX0BD2x zbe#NrixA6J$`sx&p{@l0Qbl3q-~{Tspa_;lM`nmWdJY#unt|}eAx0ZdrrOe$r$QWu zSR&K{<&gq?Trq}=5d_CR%CDw8&088}?2K5gD|_SipJW)zYHQhuXD2=hSL)ZZic3KO zS*Hb@SB;1Q8O+Nlg$8}Z`%HPD5R9347S3&1 z$81o#nV_VZM~XViAmH3QWP=~dM2f9?4B5--+t5vR^Uf1HrzH?mUCM|ig5$h zZhn5oP|{Bt(fZiD?58OY6q!S5VW$Pu9!9puDdpG;PzOBuO^AiQJ@chjMwTi{j)NQs z?)LU}W!5=25r|ZHO~`vS1aUZeL>81g=V|Tl?m{6@ZLNqvs_)K%N|~-bKh?!NQi_4F z)OJzn9)74Md&dt3wE3MQ-8JRTuRO0h=7zsaUzb$}>t|tlo;)lAP0_PXL`33kErHLL z-{xKJS%9IcrS|Q&a=+bd`l8TD-~qBe9?bY(l=z<&bkF}?U!Ml23zZNC!jPPD!~7^9Fa8gDaQRP6n*4pKSvnT0Ys00)3hPUpav-r zKM;~oM6H6Arj!FuP2@BX@Eem7Nryr`u+dg&{3eT%gGy@fXxd5X$1%h463+Zu`qb?i zWxC2a8X!IlzpSh=#P4`oFr2TEXWK~@z?mSG`Cs=uge$zVps8ubl&2Kx!DDif1yJ$} zWIhm2;wB}du>OGInVA8BA)}r}UcC}3ap7GT$bCDI3yP4VO4+VBl+%;7u9Z+vQV^xifDQ@}wb-t|cW`usujg~QTTD0M6&yJ>DedN0_D~M#57qpn*eEXu z2ZxxdI=>2V5Ks@Mz$~TyS`D$fz789e>8b+DEk)v2fxz)+A#mGvy?nt#{d5RI5cV_Z z7F`Tx8r1Imb6DlOu<;2C+f+}elU}DUP+%S}dn~WWf)za{klM4jGbNr1Y(ohp zk z+VTXLqQREHuM*E}Q!xfR3M7M=4m%qgFc!@_-IOGxi|LqkM%ClCLEIac`2P(o$6G`x zo~^A=b4>vS%diSfyw~pKX<-`@ZEDc_Y_?3*c}Qper^_Mkw$vYR4YTV>JbF+IsD)rz z7ESHJM!y=_o`o!6cYc2p3tjwlQ@Ug{a?X=0$-u~{oyQ)kF6WD_9Ua$)bxekr-QEeL zx0{Ez|L&^Gf}up&ivStfR;2)Op_QL49|N8x7ae%*3pYqW%Y!T!L1sLZ?(36z1J>wQ zC0SOk!@dH}T~syN$jF1O^+q*6|KYlgTaAr1}>yk;g^ zF57g-s!AVrC3uYk4q5n^{m8say0|aO4aXWE-eL;xXu!k8g@mBhPG$t|yeW?vm_9^A zpsz77GiAf@q8ea(z9;iRx%PlHXlMDft_3ro=Dy1TnK8V;smw^3##iO7P|dvNyHR@GiDh8kIToSBc$aX8;!7Y9{kmU}(B8aR19E9s7j{zjRD<^cRNgDIde_ok zgt*FbkOR9#3uKnPz{UAN6F1kdD@En7rf#dI@gyrdR-X{Sp&9hiP7Ag&85Ac3ukZk3 z*~`m|oPq*0S9qm>`^NMc_etV;24&P&&0JMT+&;X8bDh7tmKH>rkW-+@c)`P z_i(7wK8#C~gqVbiNs}ZwC9hBkBNH)%osD9VO)YDMRKhwgc1Ch)OhZL1QV#1-vdAe( zlf=}@vd+h)C?u!6_q4m$`_4agx%$nRr|0nf-p_r1c)ZmY53|Zl1mN-p901qLQvnuP zZ6Dst0|bHKcX0K}F2i{SU1h7hJP;R{Iu*4pcLq)N8Km`ebd+D3bmGvk=76BtQPv4V zT>#$1ROcMB6Q1DP;3FyV&*&?wscRxA>38A`KYw}>D+eJKlI9vJ)-cV=3ZtB~>lj81 z>*{}9UYxW0lnL=3_65EGw@-FGo4cMM2o}{a;_kIB{0SpOz4!XjRGlc$QKvy8 z&~YFW={|{078YFKe^g{*_KJO5($TP&6j3|1xQv&T9{KMkvdC2-#$-Tl%{t8Jc1P)AOv{yp1A}Sj&Hnjd4;_ z7keWlYBudic#4^TZ_t`)imJolOCZ41)YLg(EUUjvEvbpW1m;^pKzU#X1_oxfj)Ib) z8hhm1BKun}7+!jI@c84~{k+j4;CGbTU0#>4Q(0J81O`@EE5rVO+Zr8L@=UEB2}m0R z&O$E3N~SNrN0NcVFSU7i_97KIYfTS!eIIsCtUp*kObx^W!qy8Nz945A>gMk03A0-q z_dhrk{Pi_tVk#;s5LN;HC!h*tm2Gb6hXUax>qJFMCEoMrS32JcO=mr`QDL$Cl8tO2 zJf`1iXrNa27#=*RnqVg4`p~fedLu;gj~_1<*Wnz1@SF z(^{~aq84J9>>O7j3WMf_xDnD98f;P5Cw>RE3KN+1Pf#NP~klY|#4MRh2q{0_@KH+3Akw9m7_3B!EA5t?rlW!^lsS}%V z$2OPXV1r8(XXol)f3>a*R~^_l8}Q?)Q=ysZyGTVCV9-n$jCE`-i>B1>P}#WqnOE5+ zRTZLesC&O8K9r@ykMpRVN2cnLYiTPSZ8e}r}lx%k?D#f5gza3?QS9j&*kr!KY zc#Hvm=~N@|me8`j?JOG^9u^EUVsxWmX&iv>b`2ZB2wCyyB&(cni{1=8P?IKOZdqBu zDeTR;z;NT9)(Wl;adma|^=<3(h6Ux>&mzevG1U#$f)9c%xn^Iny;@1fm5e*k`nPbw z*~06Lwk#?iHdk7hAQTanp%JEhf%?9d{$+W@=@I zcMR8Eva+(EA1#0db~v+Ds&fwiq2keD9V#ZfKr|V6kA>u+9_6TUY5aE#*X#E7xra8Q zlaChPfiH&=5NYe)-d+@fzdQWmt@pgoTjXn=jC2z-7Us}o#G|pHsF!E(5q@P}f2zc-hUS54 z7`KVHG-E4&Tiu8WfM^Z+t#aw^-!6O~5@L9L5MvI1Ex-pE@P+L54h&pu3I2$Cx+A>O z_Hk_YnA!UBlRhVkbA}OoM}P<(rJajv43pxJmEbJf`TMYY!3?Aj)8KpHW=u>>$O117 z9-q%cYb=C|HJV$cs8!Q14(g=lTl>+|Gc(aaZv}^Gb5!}C?_lfp*6RXwt+UhN9TRXr zCzLnVUvChJ1c?kTYh|$$?XzDMB>7Uq43lGQ8uTI*n=lyFNbK=Q)dlPr1g zP@x65;GlkZ|CblkHB=fu=%mIRUJH;Q-%hqArlC&L)7`ykeD-QwTtpv}C833R2lo_K zFoj5YAb<@) zpvuHGq9&6QiIkO-yQg&`0WP<4M`i|UXRsEd3c9f8Abqwq_6Q|h%6`Dqp#1hXtw>f# z$m@Ta{H%(enJ8=|jr`%-k-gw=J^X|4#!`xkXS6uD??hCRB(5sOJS#aR5?P0dd1#*F zci`>xe3zH5vO>sUlpxjSOa9J11&cr_X`Pg*!TGOYvfo8wtX?6!5W-mpZR7kf?P#e; zR8E2-2EizYt}l-(Igk4boDm|z7bEaM?lQAT9K_BG&)YHRKuch^#H^_ll>a10PW>XyxOB3c&)n;0)|@(f;3l}AV8VT2 zPnA15^}875Jf4_PyE=fm!RDf@E3$XAvzzlPxRac%j&2T)J6yz~+%Qpq=7LCq5m~u> zn>-~RQy5G~V0G-(9#mF>Q&$4=4%0F<_|w$(>mGS@m2K|M#T{xC;+S7bhH^aTCWnJY zgH<^4#HVsfHc+2jgT_uK(WEb1%Oinvu%9#Wd6qwL)=;y zB3=F*z-%znxwSkhF8;v9&6Feq)Ih|DSlf<=&8`y^{nbn`OknhJ-jt(VO7?&F@}5iD ztuMr;KfNGoHMmB6eu*6mzcxUdhK5i9C@h!zjtQ_;%m<;;)!5UT?S3G^j7V7ZO4N3T zwk3>k9?chUVpdgE)w+0Jyr{$Gf+dKv3pJf&HI7%fMA5+fXyB~H0Zj^D^svn<^as&1 z(l~5$cvzs9k@tXd11yk+hQ>*?WcX9CHHN+mcqw3!c>36}xDHRDS;I|xoUjJ)F}>9t zo*w~&g;gS*G=v=x5};OfT~`Hr2by^9pImt~H1#^%n}iSDtMLK9&yKe$nfI*psx z0WgAGi|CIUE_ir&0NTVd-!6<@&MXlyKV)|C7_1esvHP^OXJ%*L&o4phK!K#&69hIX zZk~sS&mgARH!S(`?!Nu|!N$UJ=k|FUMZQPQ6JR<7VL6;Fva2{b%L)89wP$fj_>&DMcG8U z!WcSYoz(Te9C9tXUh6VCF#%BvZI>w#OBJ6E&o#ap<{cDR*pD7O&_NWO6~0E(w_(gL zs=g09%qlxV6eV79U4R0b`EC0Cz0>p8Y0#X2S#n-zW1BA=ZD)L^eEuy1-E;?$*yH??O98;UcaQZAge*9DC+hj9EaNQKV z>$EKk3ksmG#Xl^yS5rJ1{&5pzpCWrBL-PiOE@&PY{Qf2BFZ<)j^s03}Bxfflp=zvh z2tgQ_JoD=1zy7-0Gr6_`?8R(c%H+QG@O}f3BxPAFscB+zGRJ)ZeWkXguC6ZZ*7xXl zMYf#_-6Tgi>{Q6Eby1XDS7d*qWn?!KC8$?fs^U@W%8KG*V{|CI%~7*6Ghk}EYo~|| zcBBQq+nhHT09S+UN1_~-k91t&NMreM}RPU;ISd}Ei#OT4B1O-KfB5(ppJW&Pn zO(>j=Mq}63COJhz2a1IPxk-bqN)nH_ zOOG@@rNvoTSimsUNQHtY05RHQOKFgSgzs@wH)K;mLCbJ*jlAp?XJ0)MGy-ZX+AC8Ktxq}DkT8lPnPEGBilF6^q z==ODzHrsX`Vboj+xuwqf?onc!40Df&Vb$qVp@zxqIl8CliW!xqHZ1x6u78IuC97dU z?dT=8YRO6N{q#4IN6lY3_~&(*(`|+mbN9uZ$W-3P2vAo@S6?zkx{y8xY7S~NFzG}{smFkkNSTP5J$hf t&p!|R`~2U+<-gDW^T6NF$FBr^UTgBEMc~B`0qp{K9i>{C6d1dN{}(v%oIn5o literal 0 HcmV?d00001 diff --git a/6_pytorch/imgs/softmax.jpeg b/6_pytorch/imgs/softmax.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..f5c5227df03f4979798c6ea55915f3c69a017f53 GIT binary patch literal 102103 zcmeFYcT|&2+bvbIm<-{pL5<91I;y zfzBK08R~(K9618|`|t-k7zNz|ojh@Z{lxK;?Ck6u949$X^PV|<>eT5A+&t%aMFcO3 ziUz z=SkKiH5$6p0RoZ7T32b+C4M?SbWU_S{i34@&doMGr+v?ktB2Bt$pi9}gCIrf&wkZj z?P2Y_nJ=PKXt7eV=hB`;ui-k9@q>`B4_DvmUs09tQusLVt6eX_P#Ij(oR%hrwpnGC zn)IdKPI&N-CI0Hyu>M#fvuYWvnKe%%+nvzL&u003>ktpLx0|^UvrcfS=Z__6qQCbO zTbuq^zyiXnpI>p)7^)Dt{Mo2*z**R$pQ#zgGF#Jr6Fl{gK(@0>*bW?}d>SIfZp^k2 z7#fFXhJMgZF}?~@_$_XnHEzQYIYUCW7EZ$$0e&5Fzm&&J%|zU&5j&kS*2x|dg?Rzk zcsol--8E^R<`CW^MOAj52pknRIS}L zj-4%t6D*2*p}m)vPj<;m^+F-pbl-Cq9i3jzlUHhz2*B>kMsovr~W4ws~J7C6ipf^tl-7TY(ev?vG-BH(i*U@knF9DB5I~;H_| zf0J}hcJB>6>_WDlIc(hXjIb|2RBtb`&+pt4rD|c~SDYIK4XZnj$`)nRe6EkKSscVG z%P&KYEdA!O)j(5Lc;&rJlg~!kg>$uk-+LXwmV5dJJWA!!+}jX|$VaJVG#P%Cke)8T z5<9J=;d{Jm+i6rzz;g6;$4D<;-2GU}X^I}jDVkI#TQVbgkLUXH?83-}Sc!-wo`ltk z`pPvTb)9Q8=^80@p`-EGqYp_}FZQqQrGh_ON}Oh##0iN-+#Ny7LzokE>vcJ#b>-vyHkZ4@L@OsV~U524mKQmsd33 z(l)zlkx^M*$IWUUEEFPTBnYQwIiWhc)+sXPI!X^mDFi+>uLQ@Ux|X0v>1AILGAkmI z1wcL!hy4NlvicR55BR%Fne1rLss~J@EZ$k@Zbxq?ND@ug+Mn4;E-;b!jc&+9Z`iW! ziFgI{XLajqpcl<^6Y&YHpZd~arJKB>4_B{@e}9yOmep_Z%ndL$N2*LK>s2(7ivsf4 z(WcM8Q<5ttmMvx~3#_q&7-&}kw;F)d?TqU(&pa?*2pY{&r}4z){X?m5oRXyG1L-pyP;hgxbW^AgWtuSfmWNZ z{VVy*<)J(t?sCmeEje$_rAjHath--!x08m6E0WgUR~NlnL@)K?xY24)A`|EZ3G~r| z!Vb)}Nk7!K=;bPX$NCD}Y@pv0Ci`4Ba6waoWyU#|abBzZ)dt_JmaC_O9l>o94bxVF z>)+m;g`)}R)_!aP+K;#s^!)l#%$M>Sz6orLv&1bSlZmjq5Y1m2Et%hCJeD$EuHnBd zh(HZ3{&-pfYQKznJGTw6yTY2T49Xk>W}0rUF6Lzyr1M7Fga3ZzonP5st@6|5M(FYp zxt1;U>g4tqU|_4NP}g)hO&DRAEvtq^_%wpmY^;~TxYO$e7%1TDGAIvx^N_oU?BdP! zEGgne>BZ-V(hx>;Gd~9iL0z4NQ5d&FD}`CWe3j2w=OrN{lZ$&9SGTR2;CmAf49nD> z(GV=>zMK9mg*adv zuZ}hcQj2gY56Ho0wgF+zmSt!ew89|anW_O6gKp?&f?FZNDeEZ9fzK1T8O|5y?x|hogvSOj^ zWl(kBd;FGMV&(H#tS}6_N%sViAVrFoxrhuajcmlEQK;>B%j>CMTUYmce*bOa|1+9a zaFsZ0=t(hXRM5lt@nvthBZAl_b2$~M)HbLj zZb^|zaq$York%70pkEkQdndgKrOqPU>d1r*BJdmGPIQYO?ycb;njt#FP_FCdx(ZT>L%hsgsgjeh)=p09X%gqUh1wlyrg8C$!*zeO&h}VY%&e53E5$km*BX&8 zJBOqMGp%Aaij*R^4QvNw5iU%KQxb1{1SZKb{Qd#R;m|M|E+X6Ny@T0#NoyWuDs34P z{J2)u?}51u5cr2qi@>9u?BG3u#LO&M1C=8o%gZox#1^7l+~QEC%wc-yA~x8tcIGrk zmZpDsdoIE!defrYTIMRc<8feFY$4f&j`y_hg2o-YgRxgkF~tkevlvn*W9EjI(${!C zGRFH&k^T6nITQ*GpNKi83?F*56ul`T(Yr-r8T=Hg7Y~jWGjEStO>|Z5x`_|f)ip^_ z($#tJ-@-#5DXJN>b$d7FW!hm$A{!1~n`2=1pF`ZrCsw*%dYE5R!?XO2S@+Z6iQW-) z)+;MH<;mYX@+vU!`d(CXaeJq;S1BggB_`&H-&wal&S_)Pm?z)DEp%Ri;YH1fLi~oV zJ~a0U#{G2)cl@ts+$g4cz&Mb3C)7Fm&5DC<8SVzO0=-S@u$Wt~LSH+? zyrG6!9&)i>(Z1EAliEl}gM_ubgj5C?%_EL7g^4Gxgu#GOvm0>ETL?2jIIkN}d5HFS zU?a8XAvU&UD7!M(yVPulHci1cax)b_=h)MwyTF2L?NFWt7(P@4!x8Nq5)|O^!^DTW zm|}Bt^I<5}y#}oQvqU@ix&m3`W6E*`%h)qaWdl30XUL~Q{7MTeiUt*YPoj>d_2h!(0- z?-2392IWI16C^%p_%QB#x`c489EI*0smee|ae`l3Qvqs;dK*v`^lkE!Em%;oKHy&3 zAn%VsL!xz>Mh#w^HO(WTk3Ym&X=;MMzC^zB+?(1Pc5|j?=o1XeN(wxKw}1*fWQPm% zt!8g6sF$uyctgdYP{0ji(^xWG&^4LRno3IwVwv5X@sLdJWFNd!b=Pj$<_tN%Twl>b zpN^%Yi1S?rKDF!(?{7+#bb2}|Bq)WhqeGvY!ij4gsjA%9wR|c2?#2%l9oLgyAYdwG z-MI;u+U%l$K?ns(kspu}^cL4J=#6lBarw)eGIJDiSlS#46_K>rSV<_v%mHx-R|v#~ z3FN9;{_ehMCAs7i=9uS7^&2nPU7}hlVrJGlJ|Zq5L!i|)vz zEca`(N4`r+IcaXJ@07iGFXui7L^eK{IqXcPCEa_$!udNtDSGvArz4KhhpGAGH^JZ* z!xrl5ed!OhO;GhaV&*n!Qa*MuV)osHToU1PQE-!lm<>?bg@J0*iB5SyRY;oZ`7y^B zd9r!4Pi1nvDU&-RGA_1Y&g9!@7mb05R!>y!5qPe9PoD=X{vQ3g?Kn2JP`0dub`?I4 z8cF>&Pfo)sJh(D(R$r&bivSfS)AN%$#DUl34yJmdI2*>$^SQp@U-`L?Bc-1|8_Ud@ zb)?$>%_4SlWbM@DY-$Yt*zmB$Z`e_v z=BJCoE#~Dj&iCDkyLhMIA{vHHo_J@bd{wP=DP!C6OKb|3mfUZ49$W+%EqojnTHMWT>1mV2u0tYeV%An*>mi~~RK>rQ%5K8FR4^2*9 z9vdzQbhj)yFRinN)Oq9S+IgEo|28wYX-qjeYglXeWcc zD1^pM5}&tp7IdEW9thrxA!&w{WW*m^k$&r8V(LOQ`~p#Q%RKQh)N?60MULRQ_|gw> zvdkurj10?^OjgJ>PMteDwBF|4?9U(jOd;(pAr-0OUff<7Ua~RUd9@q!wFAKAo;r*@H4?V5wHBxUIS9NkCpNm8o# zBTidOd7s9mo^V!RN3id2EuD@+gbG7Td@VQrGD|2eNq7yYN|el(QF)bkdZgHsmXkvE z5=|916pY%&Gup@y3T1(b*80o;?`n)$+?6pkz)C#VBi@fs8Vt7iLN{ipy@kM3PaUr~ zJv_}A$=~HPNJ1A39D+YO9yt84l|BAjctp^Nl5gRRJ9{puaoSYY!;Ps?@vb)TFm!$f zz9ndvKO|Nja<_|=3W-Ox>%kV&h(s5kMGbq_^w;wzyHTrLquNyq`v1xe)o%3uDLVJ! z@tdXln5V7R#k7&{^gVuTq>KD37awOg-mBKRdG>M6Z@Y_^K+m>KKZ=x&*7^thD^K(n zQCQymc~awS%J#j`Cr6c8n#TgWy?*xmEAK^o_OGKg%>DKMtMGrag6Y{_JI;idftj=r zu(`P~iR#|X;4u5IgQB%%_UOA^MMM$P@%wv%VS_=NIKdL#4I2nFqGgI&OMA6szdpn3 z8LwsNNf3-0V3asTMKifLF#lDGm~{3h?s;7kgclkYy=!6P|F40&`~MII9zz-k)XH*2 zK;`Li5_uSLl^*p#9gJ&oXloQu-Fo|n?THs<)ulM7w?gCuNyhw}(U+!zwBDJdIrR(YJi~v>C;6E5 z(C#+BZ6JO^c4xlp#Qx#LWVfAj@?~xiVR3MbdIt$2C784wp5_BPlior+|buF6Ji-RdHSrMWo`b;BGgc2s`~oYvh$b)j3UQ>hc<8`x5h4yyPU%K ziYK&w$@U|JBH1*+Eohzo|{ zfb?b0E43O1V?Pt(6R=D=%Vf}->r@XlS)yg9vLm!SvPWEHU(>FQ^^;nnCV@chukC-Z z`RjjMU&OBFicIedEL%>>h_C?(9o(u?bt+!gMK-a?-_^#sR$^OqOXA%Dr5v%Y#e{)oJHP0!Q zQzIbHvS^w=8iw)3A1SPv$n#mtpso>9?_}rdT8lnA^l22y#*r%Y`Njr;lJ3~GuNZ5* zh!&U8yBbS1Mf27urqi6M#H|}t`t!fH!RxBKN9dO%P?GW2(epk?izg0FvY-koX^(ra{A3;DQl$~(dPs6x*c+6 z1*gvchp40c*#+K`M;m-_khh)$D$P^v#8Lp4GGRO;NItwzmid8vRQ+MGOmX&w6W@r-qs{lsv3IJX{XDdXN!{(OcjzKI9CaR`HWV956alYh>P>li8w-G*JY zzc@YSsIAMVF=!^IY2FL_T$2jJh@%E{KfM(7*;Wm`RI{Iu>GA#Ee`xf7lb`#`y>xe? z_Wt|<=)<#f_K!b+&fS0ffxY6L)K*YrowLOO=*egCzd)dYN%>F3!vNiknwRgX2^$a$ zB($#2@OEh;#2q{?`c$#REl;T^%GSskiuCa4x70(Wq~=x^Os~ijJl6;B2HcWkeBUOR z{5k7&d~wc^2}ZiOv}V^J^8c*br5u1hc@N!OJ5-dDGD{8iPI!OW8&=?fQ&z@I>)7n749b2qx7WH1gozI(j$?Ca&m*Yp9f~ za$fJRFUOzFDMaI&JJC2#C%EoNboEL-8Cn0n)B4h%Ksh%~Dr1NlNnthsdDdbef3%t+912Hyz&S5CW1KG~*~ zgw_ooV8BW{9H^mqfSI&@jgq1pY*aCMWkyc>H~}_pGze830iwl&!toRaG6Caa{g-Ic z3Ar;)YC>VK0AbxS6fd8m=|znS2_7R83@ct1~#sUz>v;UQuxV$rdQIl;dy zb91A)P%n~nGCjd5TF1c%G3<}eXw{%s{oMsDKlH?L)TT@Ib<1zTZ;NfluDa!|J)?Fz zYc$RecddDRTNoZwFky?!SDX+ve#Rxs)A)yz%C4z%<|ky;P8E=Mt9{(`G+W!$GPu%K zZe~SOcqDiU5`V_2!}jsu0Fg-b?$ANqmfr;NZUB;zl+bgx&^*}1d_sb=?*2NL2sdQ3%i?)5i1eQ@^XTt2TnD)-8{EWDTJ0+Qu9@7R1 zc8P~;ZN&PY3o7leoQ{wR@YEEcw}SVQxc1RQ@f|4+-!6+LvcI}AKvp#6rZ2fjJqq51 z;0(n8dWwo^6GAU&xW0Bj109 zmW^{i6&SLRq)@aSqBlDQi8RrgyMBcVApy;#HLpjtkuIIanp|70<6ZCr(E7}AYJnmm z>;st56;UJN>8*PUDus=MuZ(6wDqtN+=i`H47b&CfbQDrBwA5Rg64Br=nv=dubY~hk zgnnD5M%-}>86&57+y2Tg&$4%{&4juKNilRiW*!S8Z(NMIdnxmAS$dq$AKteN8=wAw zm$$`sr3aE-Y2QL#SJ^P-jesfgx?dim{ce%*A=;1A*fDC&c3p`ha@bgVq<<=_gNoAmVKCr+J@ ztiA=7NEX@AGMdoCtqx0$M*Pp%0?K=B^A=s=sr<%}e#UZ@NU|X?*Rdj(*g27Z?Mbp3 z>Dt;u>84;pzU`-ElQSMm3|p}IHiytW9`NpWRAusfEA2={x(k)NPx1^G$z?SSSc+Tc zayEb1m5Sqkj_x4sfO&K*MtZu=F{Wi@3`I^GEXTaEmO~h)4Ytpl{P+rSB}wt$g;|*a zl6?r(^KUAbVbG=JUfyt9OEpG&{wx90(tcu4$UTGgcYH>2WApfWl6i?is$kKH<{B;= zdIuh$P_mHT^0vwk%&3KzhJdW(Uw=mm24Pg2%;9o6CBDn*n3WMD752w#33tk8q9KNK z7`M*ViMj3vju?#OH~QFMqN}`Lq2x&Z`kq>C)9q&FU)dxo3^g*?%nF7Qy*l0lCmK#V zkWV{5eN%0_O>O~73^La!32KZ`x9Y__s-#A9|5fhB6pbP0bf<(%kpd;~5EeKPST{)s z{B4AupaQ8E&7zjTlaCyi=J7-slCFKpBv&9#c3`yMr-k@7x4=m$yQkz{&*C5j3Yn{6 z9gXu!`ko#|W(eHp6muISh_)L_cJHvvX;Zi6t4xPTZ9$%AmEM&|x{&vU6&|@j{#eqI z%-d$xQy7T)Nl(XM`I6+MRHq3+%VMQ3oknIXHjG2%bQKPFrv4F7DcE&tlc#vYV5|kY zKw3!l^nP}#o(u>s3jlfZPVc$}4Npfi=yfyqw>h`a+2MiYBiC&21?3PghOUzyr^_a&=8ou5}URfgO?d2qxt;$BNo1 z)!^2WDlAt?ze}2f_gu?VH*5htcU|@YNc7&earm{Tn*DzQ`Mu8X^4$5IZuUpW$oT(+ z#Ew?AXt-gog{PdeTHSb$6C*0FCu-{kQ-cc$!3!H-HWPxrKc{lKrQ>w?rVu2sUo7IhnN{*GU!m(W%*1ht7eLx2`m4E)+t#8?~ zVtBiSX}*T))EJbs1?$w_q(%4p>*VcuIxD{&6|=^ia#>GS2XnCl$@{?83kRouRm;sV9&2B9?m zOxQ>@Jm%F3JB*75Y}Lc#0Kr0jHGy;U->tPzKx$05D53cwP2Qaea!VJW5)JBhp#(M-M=eZp(M#-RuUN z#LQQN<=y5`onX#7gFUN>Iq|$PkwtP!l7DD>Sk++hBRbgK-UlBWn6lvxOj#jFOj{N z2J6b8Yn2l9{xCBy&=|G6s^(3?a;WHM4l+sYaVDkc5!(1|&8TM0THKW{Jo!xPwcjGP zLPG-$c?(pdIXGHx4f`VTftG#D7Hs)v+-wbYtuTkF=)j^HWc1_g2?NZ4@?=JlapjGI zs-E8NCjvt*=?OKq`kH7#x-J@yZc`;Dq|4tIEz1;4?0T99dbpIbn^PBRP}h9NY;n>s z@DqF1-tMFjKu-d%`|}p!aIb}Uth;8sg1!~SSxogQY#E2|Cft8kU;g>T8OGQpS|h7i z0*;o`KY|eIQ`O5GVA`h$Rjwu`%HuvhwWexI-Y%|yR%?Rg*pgs4SglKAURC8b(REfX zOn8Ye)_||=^^hfL)|iAst`H=RnVoj3bX>pv(SqiZ_>5_|wg?tMCI`wAo4Ow4Vk|ojT=ziM~ba!qF&Q#Bz>w^!Is<3BJxph3)})`ZC;i zi+fe|CBMf#Ys0?&xvMl{tkM~p+>~Xr)5o-iIi?v5Qr2|CgC~derJg);gJyABUD-x= z%?FqDj^n>rIwLVc;!biM;%yyd7iN)8*L6kUdsYrst9f8zv)@pcHmG5wR-Bi4L1duF zpW(x&Q|>s5T)sTA2%T<&x{I!k3)1J|v-mltg6fvL3yDCplBD#Z=i6=Rxf;fcD3* z@woW7n&UHdTVbo*vx;JO=V~*I+=VmS&}jG;zn4Jck5BeaF)R24`%~$_k86&UU~fWV z^xb(Dn#%0u`^cslyosZ|b3*$Ibe}9a zwn-MBdfyp0b6qY@#*q+ztl?$KDNk+LZ{3zJpeROrKSEzqi=4;Y&Tsbe;k%UIbWd_L zgcg5!0U)qeBlyk1MSg)UKwV<{b#3#>BWw4|(*6iP$+~s1N$%-P=O5({uW-=u8*YUK zj^*stGVKV|Q`U!PcV6m>`o^ISRGJ0v7QF)}^Fq8+2-FfD^j;aDKmC4WlhjL@u> z;S(XE$u$?}7D}?bkPV0U)OG+Pj6$_uk^gh6@6`clx3aOW6nd?}7a5%TyMt#RZ+`$P zpB4Cp2}%nk|;eg z?8KA}TCiBW2(3#muE0xa?7rw5{k{?7krLVKFe=2Y)%V2V`d-jbY;)9nTS%&8XwGni zPhrtXYlm{1rJiSaNEAcOhM7YZn|t!Vf!d4(+rwtjIn zL#vXC<5R<4KX%>c^E`T*2fAVkR#NZ)g!0>|mG=GDKBoKY`_SbRJ9@9mD+H$&*LO}z zPv==@@}!x@>jeO*PzX?TQTmp`DP7>p^4t!LU&_;@hb!=F!f%cP5U-`q>H%oB z)#|S^o(G_*@xD3I?+8`B@&nMO*V0$R@cM^0g41-)Py8|HF2}uZ;k!Lmtt~fGtL_w6 zWH2mjP0(Ips;(kBDqbD(MVTkP?~A*RY9H|{vn@hJ8~afrOOAy&O;H`xE8CdF+n39F ze+n<9 z(ZJ z7;Wsjoak%07S7s@JN>lKGOvudA~-8y1SrJMGgRkd(%M(xHa71a32Qj&76NXjd1v~K zjZ015YKj!hyen`#ulBfVB}e+#MS4UL8Wj`tYHT+Vhv@=P0?ATtEvAL{$r)|s9yx0$cn>WQyY=#%!411*>@{%MyhC=V zexDpBsS56mwpFT5Ejc zNuJ#K8tXp62y3Ffr?6WrZEV1g|AW&aY5MWI@?%*Z?;mxXsV}}7T+3Z9d1&v-LZVD5 z!g4N^xX^yg4yWKQbPA=rY92{h)Ti$tYr%FdHDKFJRU_;!25jpa7cWyt*OxUVmKaPH z_h_pz+Bz6ooH2Os-KT6bLT5awr94CFXHcebenrs%XryBzeIk~W>ysB|s%A)O;wPAv zZ1VJc*Rx*LFJANNW*clgo|O~o>-*sqF}`;6_~A;7dI9{i5_{3oGY~}i5T0j|_GK&P zW=>@vT`9Rh9lB3n?j}UN=lX(Va3NmaD{$;Q2LB zBnd9>2Uo<+I>yBGWr(H$C^UMmP2KNw9PiR8?wPdhfUNU9x7e1J-Ul+@X-NHY@-m94 zD*q}uGp6H|y3ic{{LLDv>F-qkGf0(SAK~LuKeBidhAZB)({6}-R8b2FJX_vtpXTXWR!z~x-#(T-%%mPZ4BKr)0mnAyMR@o_P zfEp~M#EzkiO^iF{`#O61LctY~Ft*Q3~aw=Xa!KICXBfZv8#;O-gAg$L8) zX=B?=Zc~K`y<}`jiy2Q&vR;X*q?g~|A@6~fJ|i(JcVTRM$*El8&teTh;>`+Jr178USp8CZe|55g3Vc@?{7PP`q??$DaOk%EOsu+&dfMi~zPH zE?O=JTec=CBB_;7fNHdR0FqXMkCNs)Q_olIWfLwveq1@-I-lp&qLY#12)B>u-`y8dKNB!NJy3u_nXmRv-1>2pgYuzDE zg-QF`sJO8bD8%V?YgF{C-IdGF)TIo6TbLRpv3@vE#nH3YSM@4d=o!i^33h6n(706f z-g-m-*Y<6_LhNnVdd0P&VVh`1AjCDfze5MsA=t7Ulb2IbPX6T_fWR68%TW?~1i+UW zlg6JSvH2HYb0U7`ZBH^J*;$v6m&xh+vwKBoo5@+%KWOlyA&Q10>+Rg&!9=5Btnj{2 zCs!^mItMPS^jk%iDNR-aUdi0CCyHiL}IUX z9{vwXv-~55oJjwI?3|z;?($RYhdcg=oinb93jxQQjO3GY73X5%VS~3c;Q0XvHY&kp zSGWZzhF(I$^^1q0;l`NfaiHzCFB_=LdSj`!i$6N}^~tF47Yd9r-{Iu=WOBO1bh_F} zV4f&xT+F2mx93ip1k9#I67KKo|9+=^#9{ZE=TBMtJDjsDj(wZbA5ZL^=bt;8y!*}I z-?pl)2e$w`yA0QknO_QQYB%hg(Cp!v`*4YSvr{L;ey1S+@I+A`ArC-55p{KDe;}l4 zuhgm2deK9bnVYYVt1r9lgd(=wtG|+PYK|+B;PRePIqm`&t93!=ZSBbAQBpv43{bWE z&qV_bhjUD@BZ!PMq**&G&?OV4(%dhV}z0KI_ZxSSEK0fR(#Fru;wBt8(8)jvD z!`$AJcc;Mo9z6{0;hFg;qOG8x=tABIR!0+YRjPsr*~OBEhwp0SnpxVRiJewM!b#kW zPL`$is1n|@Gtcu~dFGO*RUmo%UKy$rZFuUAN7;s#MHW&V1DOYy5ZAi>s4ksGfr^Vm zlTpyie3OxG*?43lz%O< zF0*2@D19dwLIHBI^YDoQ$}ZacYFFI(Zm?+N>Nf10!E}uDT*CU;Kz1(_*yZ%o7*}<7 z=GjabximBW5eW;=t-&;}>mC(&AO7p9C!Ys)+22!kTd==7B%tyOR0iE?C*{N>W}&v5 z&o=SCYB+5%Ax-q=B$vW72)xm2 zWVW?wwPgA`M-j@rv!Sn*gS#|rQhUjP^u_sZNrTrNWY1YRe1@(6I!J44IeGv7*}M7s ztMX%)HYFQ=X=LuJzRUzLTdV35fYz$~r@vDFrg17b<{y9>+(g4_CX3Ies65+O_Ij^D z`aJC9C@=_Be(Vy|`rXWnmfVO-GgtMr@H1ZatN#>{Z|+yssW7ij(rYgAh4Cv0CNY{b zzP%m4T)Fzvl>E>o;cw!Xg#MfRd*fbG5a?Yn7ZEjiwQ&1pd1Y$Z`@3h+o&KpXM<*a2 zubEoVX+Jh}>?paxFjD3B4d=I^-MKkTWVxEj90q{GM$ue6!Cyt+`Pqsc`a3^tDirDx z^EA=3pMOLIHk87x-c^Mf=sP^?oI@YRMN;H#dBkTB(N$5~d7?HAKNnlfWUlYXT(-9; z1Ar<%4x$wclZuY11DlM?^&{fS>TX0VP5|xB@d;qnEW2%egN>t5*Dc<$J<8@xuF)1u z6Qgnfa>}#Z^7beE=+l{|f0m^Sz~51lyEC9jU0`|i2ck}b&Y z@Q%e`xj>Ayz!Epr>0xDeZmL=xCXQBfcdc9dfyw>H>m2jU-x4~Df6l#^N?!Q>@>jMC zYxzY)*)!)a4Nw+LDP+kRfhm%wl~*vyuc6<+-LLCgcFysE%Fo)3em#aH(L8Lx={YI2SP2@I|5rps$zqZdT8X`MN&m!RGNzKAldzl>HEmwC;lA zoVp2v;y;EVzET4G>oM12#;$$!{%zz@ta`S1mQ$QsbGtkYyQ^+fS)xn(Nk`<5ja9o5 z{LS|*rw>4h_m?f+XPWFLvd`E?6!8vQ1_$=Heg4X*KDDdu%(7f%g%CR=hP!|hDFTZw z3y+rO8?Eftv|jX3T7LkW0q2X=n8ITTte{Uq9&a<-$eHPay%Qv*0G2EqwTH(lS)5#Thw>^`kjsldCBZ1 z-X4Qx{rc9q)cnljGGJnN0vN2c09PF-LP@~e2?5Oa-gcD~x9Nn={1r61HKx#u9)9`< zF^{KH>5vhq*ofxe{RElFz4&0qY{c{cbXEyT#Z^lDPs)~W`|3V>Wq9x1UEhbq4Evtk z15jRYQ4;3Zb;|hw^=Ogz2T09x-$Yml8>Q%OS&;4(1AF zPb=j2uzvGv8vzSo;^nr_Ap!vau46s7JJ;b@GSdn!Yq6vrLM(%TYsf$AthnjUA4;$ovA(X+Ct9b+hevZ-nis^RbOB>|>g;8q>v0syZGEu_nW3MisNfvqb9OU^t1 z0f$)0m9ZyYybQ<#Cb6HYl|OY#O&co4vjY`Kh@6v`CtOLLsBbW~H_0iJSbuw$$8bkm zPy!vZgeL_Dw$rD?iA}QSW+!5ciHMBz+A`6019xm2GUf;tG0tdo8&84ntv&MZKehYG z*UEA=R`s9x4_-5pQ#pliSPKk5$|SYsr3LTIkvm!&XD6#vrk6d;T)ihHp08czx4ia8 zzF1+k{rTn?YJz&7*!X+oA3C#2A-TW$&ab3m9FX*~q;G{tVAy631UVj`8O?~=g0+(t z+)1Y3d=a>E=0_$Ns4T+I9Y%hSwZ~SU!;0GX*<|^*87x4>ETGP4T-%_u&*G#3X^EX$ z>YwlCzBn!fA$HWu#>@o<(G60mhNVB@3b}3~$echV!(2p8_B0&V3IGp+Q~6aoPpYP@ zKqx)VTfNY5KFRvVdB2S415n)qTA>D_$wq-VU2W?Y=7CzGA)sx*n(jETpCmeAsxsb0 z(%i;D|$7;rZ7#xxA^vfDZSw`E=>slP=~ zLDL4P^E~+!kOQkc)vYdne*kKFS^JI;{QSf;r{*o}uq0kKiCfKYK5!7~C)sG~bhEav z>ttc=XY)zV7aBo}uNDDFoHDVIMpox}j`r)Gb!|M}-cqgyTSfg7xrB`4Y%qIH@OOmD zB!F2ySxD^_GQGaGelI+)WO~;##aL;u)A;ai%BQ?3)|ze`*J2?qFHL!NPGz^oH(9%Z zHPp4ue|^|<&Gkkv4b8Rp6_$>dXAP~gR_bIEU&*C|4nTa0`z79AuV|asHLbC)Ssj4t zUk$mj@4kzjPYn9p)h8)LYaBZ2=H}qfLM18zSIMc&y}UUh#FtJ>BF?s+wc-AAxgdS` z0Mzp0otgaKXOub~zWY`XkbKut>4NAky41(Zg+OMs7TReI>iB&Ykm53n*^D@|PKkXp z2k2Kl)Q2upv^(LQ=E|L1{PoA4{bx8I(uq(s>NDTNv;7YZdVTLdXizH~=N9xmwX=OU zJc9Lo-fMq~$Cg^X>OVv&#O+Sq^`wpbis>_3_xG*-48!{9XNwx&2gcM6vn@kCpNFKg z@u+F2Q3x`~ICHD<*QpP=KavFk<;##WvgjasXi}%4qm#G3K>@DIZz6sojo3llm}~A0 zjN1Hh>SK46EnZ#;CBD@hZ7w4`mYxy972VcO{3sak^z3vyL1LL@F0*L;p-JVemlxhc zk4f*4&>hYQwT<(-+H|$Z@M<8iAi@|}mGfdHn0MJXXk(w5R>{{OZHbbGhwR4@cQ>Bh zLh4V{q+8G4+s#S6X+UOQw#$a&o^;YR-QQ8PF{0E<>bL8eO`dA)F28h_f4e?906kq< zgNe>tvr*6;BLKDKt~t>j1U`QDMS!*`kyTLJ+8{WB^coL9SOR|8gu-#S=5N!XyKgqv z!v45G4RH!=oWT7Cmu=IPB;*d~neT&c(D?@F;bLp^EI@&~i)AVGl#bfW=xqpe^H~?F zu%2$SHe_=cFl#4DVK+Fx)Sj2lL=_$egb4w<`$8h-LMaJoG1M=a8KoW0VG@j_KP+OeH)p?wmC^=)tXN{s}#?I7!MPSA8ANm`5-p()Ta=n8|f7N$(h*INuX5{88-! zZA~`cCfZ>N-Pci+2sTG^DIu1lXa0ieE2C)JJZA)E3d~~P zGBJ~dhBu7j<1U*QtCN=!8RbmByK`&fjO%fG**eEZ>fCa7y(KDz|40{zteb7w>DE|W zJi2CIhTK;pt({%%(SBUh_DAN!>j(dZxcK*qs8#P5-p0Ffm+fROU->;iC!4ZcxLux0 zh;J9@Arc{!!}V`U+Z43LUSMKBlJjk^(z{aI!Ql@}A(Pb?);BtJ?tE}#({I538jboZ z_uUl_?%pYnYi8!WFFL{H=_LI_=0-BS{la# zOObQcbbt`^W%3^~R7#OG-2^9xVr+}k9NeT_fjep3^zmknUjoZ-d|5ax8NZ;7Y<{4p zjbPoDBkdU0t3CBJmaufKK-(q<5nW>J;CIeGy5gx7Eqlr@MsGa?$^tTYZ~FfI4tb}; z^}0nrx|^@E&W0Y4^pkF@Y$uoYVDtg#=}fxh9gj;z;O3cO=tyP^Qi?-9G$y*Zt~w8M zw)aGW%9EWNk5*}f3g~j7|Ka6_tub=`7#^A{ea$Oov+Pwy>3K{~VSPE^#c!D(Kymmg zrY679{)w#D3>UH%vKfFW5o}T+QjjC&R%Kw_<&0EEp&Z2e)b>EgJ$-R}^}1cngvvS} zqjnUI&vurmB?;ODhFHCc6X@T(lzeC|5n_ECCDZ~Y+`_P#vs1w>+yUzBJ$GF?%mbKR z3CQbXgGn8Y1G$3qx$9cp4~w-eL1}!}(qbe+6RIHVZFFI``p8b{wG-u`%TZ6?sQh2- zy?0ns+qyT3z3V~<9aO4xDFH#yr4V{qkc7~Y4hcmPda;WT+6oAm&@@0G2?QwtLRG1u zh!7Gw0#ZXqnpoD&+WVY+_T6WH_xbj7&vWi~pXba!2xHDMM}5bbW4z<{{@w>qCEmSs zKFzNsNx_Ckj_j4B-MBxgZcZQXOENM@xQ3vF9juBwEoL3v6D+_zP7mGik0g~OV2DkA`jD&9AF-hhH zKiQ-3cDAPEXXy8Wph53?uNHJv;(G}v)s4No3g!G{}rrL4wCy|pm`1dvBeI&^Pk z%(B8*B-zc>vXjPdIr{7&vM2f(Gt++m>e5){Q|#g(bk+hoZ(axvXH+8O`9>Zqq-#bF z`FT_r%zB3i;E5opU?aPpi}7*~0C zjrB{CHrPKYZ7!8*I@Gg1=`_(w*NXp@(^1wxiybu;JI??1Nj4uf5rFB*5z4ZbnHy48 z)gsQx28&v^iS*x;wH+#7wV@@O^>^0ygOfP;5HdGoMptZff;WzhyKZM{-E%On8&5(v z4(f+JEma?}l2-2E6A|_9imZi>E8*u8qp^Nr(qxB{hPauqo6k17hUj+w#Cp3NnHvA< zvM2B_{vf(mn(O8F`)4jp{p8*y83sd$FVexf9_dT;lKM2P>X9%+O`C7kfWxc4M+J|5 zH_V%-77u9%uB5u|>vfZEPk?@2j{3RCedgJX6ChnhT}fkr4!53AfQO$! zQT+K0E&+gzgHv#}lxGDRZ}|b2Q|2P{I+ttdPZemYT(~=0eY|rtNq^(YI7hZYB0V-H z?TrbI6tj;9ENYSgm78O}%FQFG_mayU`f&i(j$txx|JLf*Uulq{zag8-wMZx+;1eDb ziqI$b*!r#T@ZaYYxXsD$Tj@ZU`Vd^n(1+_@s)k9MMjLsX#+Hkq*9FCPyWa?Wa?4X2kuw1Uo0r@y9wA{fq8f12wsTK z$wn;Aa*7+lglWcT4duEHOmgQ=f=gJbatJlzo(sH+J?ea1;B(*od@Hq0(N~8C*x{Gt zJ)>3X4Avs40Py=TPNQmjJ{H7W^udaY&&TcJ=RV(fc!UrxPJH&Umq#j|p7wG#9}`tf z(3K)h1fX(2w@u9`yWK|>y<*0H|G*WZprUQlwK!Y>R5c`n)i-ip9Wsi<2Wj3JDZVy- zq06LW8+3mrC0j`h1L}KsGMf9;x6XQSHFln@+>Q6yBPGjBB zW7o;<*2zG;^G;W-z!ti5?XVRfk@6CxN}1a_B29f$^x=6$xJoe#&uLG6{o&_Ob48$s zDZpF@++IH-&rP2JHynCm>{IP9UWTu+25W`NwH&b}&*)v}WN=-pGzvrtltvTCZb@V-(Jp9(3t(c!gW65 z-C1OvO>2ASy5BZjyex!M^5u-H3rX(jNl~JWWoG@+C+;4xSL+o)Qr=i%Cjv(Dmq3SRR8-D zsslw(G31z{Ne!~^j7w(H*^eh6R)$B-(E?*4{$@Cqv{8IdoW$d+AsJU+wjt+NZSYX40seEy-tG0NhV=FGjQPyvZKphwDFGx zfVEe#ViogsN%}pjTxUB6al(k9`lo`_oWH!F=$_;@m7X-U)eTd`B0V@m&QMs~ zO;rP!Xx4k!=jslDZqhGA) z-#3~Kb+7_UakMhE7j%4blcQ0E2Z?&lyGjDxpC$45t~i9&#k-U$`!hLaJxv z+s}p^7ff0&#o={hjK_GgguLb;NK#Nf_<tVhQgg;e@N2v$FYpl)gb7|zVW3RsgZJ?%s`#NlharoguIrJ;7S#YWIscp0Cb*|`HQs-C;uIFa9v}c0mPsLruoFp z3%hRCADZ#zKXsRzqr7{K0|`O!OF`$#nC!OpddmU-Jg*K7kW&B!4JZLym{b-ibh=*h zwwVDS(FwB{3 zcIJ~Qm-phb7E1=Pg?bGId11ar>@P@FcS^BTk8~b48?vOy(B8#;14H| zlx}*VhK**wj0Z)az2{{*%41S_ zOZ_oZa(&a>m*BuZxNiNy)!Ic}n#;UF6+P@4Ib0_ls`p;ouOIh8zc+GHp<8Asmwz?2 zZ+o$6BY|(4Ht+G!-$yEJsPq1cY*&ihv0uI)mD4vHG%}q_s*u>?dNOM;DLMEX}1j} z6GMM%Pe{W6I5yXohuHT{#QleEqkox)f0r2jlajTT`-v<32}@de)%xoXC(Q}nM^El% zWFB!nh>RnkG)p7K*Y$e@+g4tk67nzsMcl)H}zD|>XkYeC<7I!Xa5koU_B z!hL;D3Y9KR_G(ao_M*nh*PO_mSedJQl#}my!)4CBgA?G3raOH6e%0l@lmn!$A{^f|)VepyOwI;lO7(NI=6JQ=>ySZz{r3gw~ zjmK^{)WWroyN;f4Q0%F(Hb3L-DKC&XwZm}uQz1D)m|~-)TX-bgJld&3gBFr{Z+hmk zxN{v{EN{4vOuhSAoZxv7Ruasp5S)vYjsV&(I_+pK>;6KDLvug?K`)#pCrk;tGOb;< zJ8yO{4FD*D-_x|R?}^)%ccuDFZ}>-5jL-apReTw<4pjekakdonn0cgm3M}0lu-vq@ z7UaQ_0vFGl$h3*t;5RI=qN7jlFTrF*{jB%jcSYz zC4)Sp6J7+rx#=Co!C-BvK<0Q<4F$UZ87V6BvaPiTs~&aR^{@R)F&t=@jHcacq>3sO zx#C2gQmlBfqx&0Ok?=Jp4~VNSm0&sRLRiqvX0}q}H?zK{;pMp~EoATZd)jZeL#QkV zQb_IT+Dk|4$f;}^iAj$@g4K^hT{a%PyOb4lVEG3Z_xDR1hV$e1(>OB%l?(89Pk6+i z+^*FgyH`jlGWjWlvoRN=8u*qlL1qjkh{9Wr%=XWWzAWAdVf#+947y}ds7%RSbo^(h z*o{&|mHhLyDEYPF$3(S0+2x&n9sk2e*oflz8WBCSC80E9-V5%4P?}H~2(pHdN!-2- z)qACL#Zu1nnE9lv5RJM*G9ZNkge>k&3OzYHU~YaarmMW-mWzE;p%*IDGYuLhb4~cq z68x85XXVr1Co=+ZO-*?1NLz<8$qFT-!9Tdx`2_@D;gxfXM~&c@MA2RBm!mW(5TrpY zda)JcSWn7nA@s3-_eejN{Ka+Z6>@foD9y5wQOZx_SRig+;7Rzs=USg zW9M$`pm}jZN!Ac>qTQhR3Fwx;>W^bLzs7J~b(!k795ZXaZP|3|?`~hIyYaTk6!ddcscr)E)a{UFRT~H2SMIN)Y$?6m$#kphTam;? zFmVGU|FS~AgO-p5?FHGC$sq+c<3Db^WEQ-ysr#-Mm^uyh&6u$G3VSVhqxp=aonKVe z*VE+Oo+0m{n$qaae#lMS&5NP!b7-A@U{2~RmeNbcyogrS>tpHg7m}%s!}q@gr;d50 zf&26Znje#F^)tUEJ1gYC;F_VKxZ-!F13F(&8YgDsFH~NRX=sej=cKb z39VFf`4DP)q8B_X458H1R9|~UO{<*ycdoM!|F=8lUyXQ-oBew|q~*3pRr`WQ?(3~S zRq<~jUL>H7P*;=q-eqm@Te0SA+g9L4jAQY5g>~ak=17ra8wYKk7ASWazr5FB(~W8KZ0be}4GQPeL} z7bd~c(R?1s(-w0?Y#Jm7U7YK;$x4jk*c$25zAD4#K0L>7+Z7sZGNfu?t)qz6v(qA& zZ^k1u$MHQm4rg5-E@+mIL!6>swFQBgbmEgpdvpm*DFPhHSyjm)7Dznj#^6rJD$u0) z62}Z1ns`zaNBOrO*GD=dVBUYvRZc79E<)JKfz&k7y(-Yq8DE-tBjQ{}e3h|J-Z{pn za)7YBoILpH<6N^H@%R`LDTtgFFeznmP0jCTan?D1hbwgsa-}`UxfbA(n!|?`48PKh zES%-+Q(VI1oTqv-R>+fN=e~^T&kv~#RPwF;5|I5SB=3x~VhCTP*8s>#BwO+XXA7X@}eczOBi;I*!VoUKmwQ#gWRUkcHO&cFiaZfrXg-Vi(7lCBP@ zKKRNe$=P@tA6A3GpvCdj&IXgFi)w{Yx>*<8yRtyZnXieyZb@ZFa$awo%6sMUp$s@jxaX2_0wE2t2v{Z7V7`GUvC7jOhih`~Zf>WVI?&=0D_{g!7COeeco zmlhOpY~`{OvKTo+$&iK4vu9li**Bia7u2+g)X41*$qF992nsg?`LYL~dtNlkoaG_s zgDn3BsmZS)$f!ha1~4LIoZ|8(S1p2#Zpi_-zH0rYQtN8LlnlgjKX8}S*dguGbgc6E zdT?#Rg??vW0NoOH(P$#NGLW+?RRe)QYk&!hTm|DeZEyf}JV42A|Kx1ZV3)UdrY*YO z3Wi+iDJ&f|uC?EG2S4=<8U9KVY5XN&^)gbrk|)P0chXSScTv+&SElN#D%0o!q8MhcVxBht-}xIZLneD9=)be;TG-lj5ySFs}BQTb|I3 z^3M8d#GJmgBc40J1+^tx45KdC(Dn3=4%xp~3;mdDM1taRn;;nefnFES^}6rxsxlZ~=?980GQyMZ7G2Ubg1 zJ)nO$mi1iy%kx0RV$Tqr-I3{MUnD$`x)l=k6dUT8_DY(YoOCqd(-B{rv6O%vjRScO z!ON>h-geSVCWK`$R}PaJ+mW?dsx%Boop$gEsJ8uN@O5G8k|||@N+(f<%sruI75d$w zgA*O~I~rp^|GlxwthLk*v$k0#2-P$e{i~6ZcIcZi6(A@B;eWpo2qt=9f!xLO^-w5} zgHEL-x1X3UL#n=T6x=`+PLqj}6Yit5LVvQ#mmHFnl9~C(XW|{vi4@ z(VY-mO!bOhirnY->KFV)9alX?)dW*XvvD-dc)$or=A!a1V)S~)SCymk0U_EG7YvUq zq(Rl3Z1AMHzBgqGxO**`aEBzv?VVuWZ7b?psy}oZ(4A&G2PEqcA<=6N4(`iX+nr478RVXftni*iXHril! z)p=OcY&*PAVGa-WQQ*>jhbdbFSFXcA`>5j+pHNjD)@gNs=Nkjd zcyW>($#0T&MdM#x?ELq}Kk{UJc(^PIQwsMYkyFKmzUl4`#a*paVz?ah5S%T0Ho`6w zCu}<}jfCMtKG0nP{kqSPhy{2G^)N_Lwbj{j&8YQLmP@+5XlbSJ3({?S}f{{Z|tgE#DiC1>-MIZp-< z^VYSB{On~0Y-GsplyZwf^Bite$_#!8Y@3a>Y2S zhzGp<^{`sWggWjs3AhY=XGB>u8Pee!UJhA@G`8HJLL7i*9;R;t}^p+a{3 zfPkxYb$@WV+S<@o3JSQ_J9cx)0XkZW|% z&n~E_rdzrALS0bXH8+KOF9uZ$s;Yi5(PVFH@P3hsdNxS+WklfMp5J2Q zeQN6J&~_7&JbLn0y&Q%BLyiQ?A=eaje{t1;y2o^VPLLtSn43zVPZp7; zvsqLq6pDhFFQt07z5?6((YCuyVA8i_^({5eAuQ1RXC627mr!=0sSR@>>ukpj^dASHX%AeK;F$1P zlI0z-(Ej}nbl-);{MI}>}R!ODKd7y@QJBL{&((i^j)5;bz5r>A zU|v_Z)ZYJKFV=rwqQ$mtFX~5Q6{gK>_kFewQoaC*zki2fOfIq5E`223aUFSm(ZgK{ zf>e0%UAnyypo#*7SJDCe={$AEpAT+y@)$BLlI$z$KFgfy%5hh<FI5{^3g*4RZ-1tuR_!8Zk{}c-$p*imqt?Bfnu{x5dBXbxV7;|?gx4PImhygSX$a_ zHeC`lhd{c;_=hDX_zoGBM0vbp(S>Gv`KIOkM-y=RIc@sT4H?KPY)Ue$#}Utv-8^V6v^J#;54r3gYbiPE!6 zLDYl^J+hkISna!@{Y(k6e1nt<)QSDfYd`{BfzK7dd3%(M3o= ztFbVvQFXtw>98Q7_%Q#6L0Hvdc(qZMu_!Owk4RXia9#wXw`)Al_+mu7&hNSo8q<4Omy8xc3%vXP|h{$4n>~CCbNJi%Kuwi0_ zI=}axS~@QUO&(-Sb(gs9aYJD_T@fAJ5=xQQ zb*k0SWWn`|hVozNwryCeuq~OFyRR2|r5EkjUE<`{YyB~U6{X7xgA|OwZfDboJ%tVc zgs%4iKOeTdK>T#VU=~GMzlgtYx{xBZY4DVBZc0JzsZ*IZwe2h$tEk8HNC&4-LgDc} z*eiDi?5f5@Z}|8ggotpgIt`(~I$~!s%+KHxI{0GWBsTJPwFGC4ZeuHmD||cWy0>DiDvAo za2MyQKS&(#%{=6O)-_>?RI=MjeDxSp4*bExqZ(S7K9ZlE(4H&Kd|NGhjdikWWZs}U zGMp#YfZ~&?1^qDAF(mg$;=gyr@vrB0T+t6@4zdzeShD&w`ZoN9sqFS!-IWyUJ{%pZot2 z<0z@xS9TFD6Dx(Yok5KVhmyzRNO3s~`d;1YRd)|GGq|9hsgjDgcPelSmpm6r<_Ud} zUc0SXI*uA!aT&z?*jx@1+5N`9Bl#fuoLBs{qr(yxx|WlR%;mF(J|vD}fIOvM(QwWI z8i&d;MWI{d*}+7IZd2P2<4d2!YJ&O#%O6-9?s2$V`TrxC$iKxn>~qrPpJjCF)s_2y zd%5FpF*c+h{{JHR*Uylprv4SAnuodhuV;d@&z^;Keoxc2!3RPm{-aU;u3kDn9NgOL ztU3^2J9sHa$H1K}Ik@hp{yTofjLEGb9i>THXfG;O;L}#nbT6oK_-p_Mt3ewmoWoH$ z(mZ)W{hucKU)EUap=V-tA2ClwHdm~a8En{BDHcs__1%KcvHH~4JU;~f>%#s&Z~R*e z>>pl}W7$kDla`>YZ_@9~JUzj6Ff16To!+O50{AMifCPcNNI%VL4u4ueZ2eVw!r*T+O z$pOQx$yGLuDB7*2@2#3TF-$?m1-w0K{Of<&ckU7|**|wZ?(Bi$l9LEC{IN9 zb!TL0{M@;RT(unY@c$34BTBgD)`j(eFBeMy8`>k2&AmpYE;FdTnuvIt)BB=+>!u6V zXDv}Pc^4)#zH?bQ9%^$Q9HslF}X@tZ9e9t zyzmjRRome>N_6rp0u29y3-jbz@RQihgjsZ-eOYllFz;xh?PPqtPG)47TBo6y{>FUz z!+)Of-|l{G4RRvnUv$oTz5;-0>Q`)B#j5ZtdO{5dlZvEgx0SB94;9^nAI*8=z3M9) zg1JGV!G}23;*t&cKOWf`vet^!pvWn zPY8qD`GYI5r=h(`8~U(M=@thrN519pX;1C;lYT&XRH>Y{CKSWDpc|RPvo)~N%x`lSn?wR`~=kY1?#5D-e z_t;E|^yUt_gUaFTo1Kxh(^1Hfk;vx&>5)PBH9i%ab#LZ^n3#h5u8qVIW>&c%w95?@ zzfXIt8yBQ+12qzN<4~^kL1CqC$g)@cN>|#9FX@+_F1W!lj18qYN5`$Xm-a&#?Os}Q zg0q#+hOd`^YU|&>Bxj&9?i+7N42SU=Mna3Q@#h@Cx)5jTQdjQdJGRuwgu#%->}g8d zw6d#GFS-B4TP{iHKh*wT4<5=i|Hr{658KcFu{!AnecW`y;l{w%!6!W9`$a8#g-tzi z9OCz7uMY{Qfe4bC$I01V9>q1te6Nn&Q<}z$fQ)4)s|0a^VaSWYRdZ)UEhvo5+!QJ? zr`H5{Y1Jt{e^SJsM3@N5QE9(_=||uj8-ap04MED#PDULGZ&pGdsSl)}s@)0RTB`kzJs&PcOepUs%R1hfOW<>I zZnL3LzsN(cr%MJ|&{h`lv#8CznqgC`q&ByEHP;!UpF+VeJo6d#9|dgcswh-zrt}iW z$L=&-`70K?u3@Fs9-vC{!s5K&IWI{FLR|M>*EnP+mgJ!Kj583zYIM~FC}_>YZ7N$L zuz7lTt%l=_kwk>;FwAxa^^rA_W6fR>UvN3fBWz(Lp#hj2qTTv?V`r8?@f@VDzH~>Z z;aD=`{6avPq4p;UDsFexHoJaENrPBMnl%u2TTnhH`Yam&T|pz>g?;%zOunz9d;Nx7 zz>uQYXRTr)n}8b~0@9E6!Nl8V`y~621P+~>Mn>=2k7Ie~%p>TMN#zpx=A-NtD)>F= znPKp2V#od#!PFhP=<|qh3UPwU&a<~%c9NQ^WFTRgOHIA zH1U1QP_J6_K|=$eI!Pds+ya^ed~kYjPU{+3P=ct>PCNBMY6#eiY2hQ=j zo#5DR_p&;R=Ent(zG$g^BB5#F$j+0;@)azLOsU=OiyNyFKCaG6qF>2FbvaS6xAw=P zUXM8rzPxxN-3#Fqk!$*N4KiA{%-SD~Yi=myumc`%E(}J5F5%v%lo+M*b*|PW_Cl>1 zu%y-Q`^LF5w3<<$K%wB`W_uZeNtD0LG5a^Vq)LdE2v$z|JC2Ck!b^YOs+7OFMBz=f zX5ALqFv8x{63%kWUbNnSauPh{FEf3EAmC1PuVronLGmIbW`J*Ls`5q7X@n-nTj9xd z!|yUL$}az7MgJiz0Nv&t($*Yc-l4yWBvb{O^&=sWgZ}fK`9+0~%G*0XC&i}%i<3C) zm~pF4w7E{}Ohv(&_+`05zmFz#DO5jSnAa>6`uUDL6>2Hu+gtwDb=A$wr#|#*+-Jef zzJ+r)F$f<-`7`~&(?co}?qa+Ch+OPEZF7aLbF3!6OK^2x?$bFvXc0!z`O>P=}$@LAsorOBm zU?hn&ZIhf3$Z!%6wkb8VANSm^>}$DdWb(IFkkQ|kMiZ_P-B14hgU4|K;9z>bju7CK z1P?^!Dox;-JWi+=dQA1+5Rm$pR02uc%WH=N21S6QUbOqG?=*%uWL)2W4gWg0Qc#Gz zg@>yKuWhPm{nB&Ozgk-_3IG|S>e}B#%`a^@XeX$!%95OuxjBYy%%mhl1owGw#&nNa zPxV8tmMaWh1)yS=ZGQxRl8($hT`+{9)$+j{xozGICzE8;GRM>gyxQcYlO&Tm=gWjd zvyy`QwPQiVBC{Enka(TNkZ=42FhwX|kXnxRev4(&NYxOJQ*Bp_16NS8LAS7n+x(EU zPm#nTgb8R5qJJF1;>z^oG&; zrx6=fRj*1cvOM>`ta#l)qfxHN)<*Bej{eqaTm+QoncpI-Ow5GY*Av@!T5FQJm;oA1 z3jJyB+0E`myDUq#4(ISQjs1)Gm1OuVe@Sh!2RymGAlUs%JrP11Ah zsB*!GZc+zBL&GysYVrrvI|HL5@$*$}sCv`P5?PMNu7s5*HIeI+WO@97mHRK}E_wDd z8ybY8XTR@Ny8pp-!KK~H3wmJX1o`a7)E)JWi(@>lsW-^b2^9H=SJl)_#mij0;hwh2 zciYK*{r(bDb6Y#6h)*{0Y)HTaK}-Ljadj!{rGgZ@p25R&)6RqIT-u-J-T(B8Husjx zx83t>hSKsvJbs*QGQmRR*BS>^zsNH07n59(S-ia}iZ&&AuQTaZWSK?JEy(D+no0xf z!@3^yuVFa-KrlL8gO=F-#jgG%^RGdniu^PkX7$+oJZ{0_b_$EZ){@Z;vs5=CwnE#rAM;%32R7`ggMe5T-e_@ z_7)Kx(BR*^79gX*4W zC|_}qMX;MN$}+NkU^?Lp*&8(V3SrCAjLJlcbN9#;MEaQqFQFDEjBns5DVoa?TcgBW z3GFlA9Ti<#OT@@Vco~@nSA1}+t zfMXwp$=ydHuQ$U3s)DOC9T%{r1x5oPOc&Za|F(V;U-~~gGP%ZT85nJ5QOj@8;y4U3kkI6^_J6FX@bit zS`z8JvITy|cED7$wzPg5Y8C_Ap!Aip^oP;)VMsZO2h@7*x$^0}r}>nk2YhWD7f9+Z z7hik&xVlX#Emb~crQCF^2z8l{VF2oKWPOy(5e`=G70yE@=SlKuH)rr)^+W8J?N{;P z9R4!+hmR|vPdN~!8xi^j(Hv)iF$}uWJKLOEe0%yupfFUpR_kRJwW3db9>Nh2ODt>= zo?*K>q+NqAu8{bhX13) z+u+=Z8H6^!_f;uOQu9!Uc_msMskOEy&i3vh*?Bsh_|{)Uif?Qb6MSuy)tNFI=g|o@ZyV;F`1o^%ip#>fwrd^ly5|#&UQOL4 z7)E)z103tRX^s?VcPJ=~>0rcRh4*#Zj`+FAE-iTQU7d2k8Lz>Hhr=mvtz)27DIDs{ z^iPI)Yq+e~JQZDnN9^2_F_0X=rz<@}Q~6Qn!^o4|x?*m070SifFF^I+fhIeNU@Mwq zJc$=%ER)1c=sU@$7qdlI&Ty^b7I%%L8E81<>yYe8#hk;5{evqMW{s2piS)06{HEn?xgokc{0MIisF)A*uzm}+Aeg#nvNoUVRn zJF-{m8Anrxy`q%Xs*{hbg9ZGvc7)^gmf@jB}P6$^X98IP^P*c>!rQ6!gd> zM-alU`IZH6I2|##5QL#yVARHXX5GTWuqp<_ZV2I3d+e3g;7XsKkb6~@O%LJ%s||!? zZZISC-f-Qsc=&J4e5fp5`*_X6Ke!%g4FAEEx~8tyW53U5ZzvyAuf40REn3Bp0;wa5 z<~TNjH!=PG`I;-e=!GPmhUWeG&}t#YA%5Apo0N}-Sn5;%mf&B1&I-54&rvM_<*UgR z`UZyb6p;{l}X2A{s=`rVKRZbLE8{Jbvq#}`J&#d*(oBrqd z3%t+CUnF@lpP|t-Bxgeu0$v{XRoEYWTM5#G=SF@j^y@XGODe%T=O!2A2(9{klIERQ zZc7_dMc;fzZWTD!xKZ)~p#Uu?llpoEE>W1K=v^i^_hwDpb_-vP{sgizcGA^W^s~~% z%*O4~#!!xxo3e_M=*qtFO_hvaxw<>Kxb6gLTuG&PR*qIiP1dFAW{o%F^5zRNz5)DL z_AghzZkuAbX-cLXzmv}M9;eYA@&1gG!57KNATw&E8^sv_eEF?LLOvL*WvLa{H+{Y= zzg9<~%{Gh4U?s1ZwHieBZD3s+Zi%L*J4suTF}F@`e}D0PaQ;hH4N$BNz6PNiUHZ29 zefu|1FOxJj#~kHSefJjq-3SybS=;gs`+R)%g3;9%Z$7>By9m9)qND=-w% zG;x&QxZg(ZiToC!9c2uB?V_}04n4!DzMt4OFQN zK(N~6!V7(~If}Wo%o|X=U*%XK#*GC*N$U4OIj$Ezi`U*T=xf<~L9=02M7SABDkPEO zumlqlxrc;BWhjlOGMsdaFD=+uPO8S2Y~&bS5+O{gVu?9G0?Mm*Jw$=Y;FjA8qS zs;Q`d>2i~i-Seg&tMp+DMb($_<2oGWSr*&?2U2@|rjkx=ZQAcxo8K6YSLX`I@fGjn z;El=S#h%iu3mh1j7!i+izxq63xPFL?UM43ZH@dr(OlDFH_sldyVgf|!+7lz;C4e9j z)uCC+W_?pUhq*7d8o%tC$?fDib*0ZH7cB+%|1_ipMUC`LDTq{i{@(31bMt*-U6YW) z2WD$;OhHdbMYm4=t#6rqSre^7?%%DLVmUY-U*3nyzNz#qCSm~yY!9$M&#ST_FyP*WPQBO$-54sAU`tN zn@el-&j1a1rXtEDT$p$caL;wJNB2n)MhUi zR!fDXmi};)`GH-ov5II0MvFLj2wfZqG=+=5&*Tso56^`{)EZ;x?5270S5iHV9~I;|CDn*+}-lVXx3M7;Kj_7N5BtSc2~^3aYMn6D#1NW zbK;Oncs6qeiOjlt%=NX9VCi+|O)sM3e2ueAQP@p$ufchz!dzFYv8%;0WL#kgp)y(u-VkO8{dOg@kG1LHb+gSOVxjn>W zO>otz+%PL0z#UUr+eq^7b$~P80TgwDHw-uiQpN2CtsGaSe){?|cbY0;?pL+WX0<6d1uJI`xK#gR3>*iT4@?-!fuJs?N71-Wx)%bbCeK0WS)ofT;}3};JiBa#xLk%GrSp8xiQu5_ibgXP^>3? z^#xhG**%5vTMR(=a%8QT75hi>E%V#kknQBM;m_NHmq3Cb`AQ0sp*$fOQJTLmP@|(U3DeDwVl+AWGKpgQnC?#mO&V^le)pIL~u~5%?J%G za(T3jjR*svaPYg!tHlV-V6&4Hw>^hO9l`z64DOk3!qt!)6wCN-i)5qy>pL;kc3*$* z{{v40MoT1NTCZWNG51GsIb>sZbj0@)$B3kt zvft~JFscwX>J<#)eb9y4>+xi=ILXpAUnsNl^p)cT+)&Pk^p!%v|iZp3KVMa!wa^C_~_Ec`S z5@H_oUe_TDI`eq%*U|0}J@{p)%`(UQAE5as(cv0)?BkQgx_2YhE4tHN>IqR$<}Sr`yTo@S^Ri=4-i_hTj5q$~J!cn}kV_ zCS`vpDsxmCfxNvn z^7nwMY_gSDU*rNg&9#uWh*(xkHz(qW8M$6-(H1sk98Xh~_vT*~C0OVF!DZQ^7N-9; zF4-bX6S=RtCJPjZ%LUv6ImIWlKOYB>HUk?6q@Z;q?YJZhaW_V8M!rNRuNVB{V6agL>#)NJ1bGP&xsEgeuizp%*Ek7wM2d zkWQ#d???%~NDCe5RrK4Q;(gEgz3)5jz2m#zZ+v6i{m0JEUfFY%tUXtmb3TvVjZ!S8 zjEfZwkY5e^o84HyUzPQ9^NyP}$u6rL(mojw-lJHq4-o_5R#yxPg=afAkzRUT%Yl;p z5vJ%GV+V^;h5Yc*e0rP`Oq=C`2+^T1ZaK}7U=eW`U_X4HcFbxStx?$vo6l#8S_Po2 zt6&&iR#!-)vU#&^prl2w-rMLU5e?;;?6)CC&1oDe3B6!#iERkn;=>SQ7CV}&>52(V zP}_RZ)Nt&k(GZwC72&YfNWaAwK|oj2KTZ*xYJr>mZnC3gIXP){>5Q$g%B~lbziTS00?{Z#}i(sTEjA zDa%v!fs$M+o}PydHs!>yY2VKA4@jPoiedHd)-fmtcR$*BApK#bgA+t{@nZ;!C+67dmfa}zlkj+d7#)@&6Y zI@_yrM_N?Ha3fL}x2mO{wIb_x9jin|$9a}f5nz~!2B-=yb7(mZo})!3*CC%7Un|=*bUI{u>)6Ls`s!L_wHPyZ`=zt_rrlKb&t=-o zv)5eaF6qP@yX#u5H$**j>!D4%iocFBtP<1H=C=F2FHd`bxGE!{!Z+TUUmPR2*KO_)%sbF zT`f#W9+BQc%p(6&Fc zvsmEe|4sUzZH?01KRgZ~FTS2L@EAJGoiAUqyrIGvyJU^QfCN6#^jVDUOa$9GUF(IY z$-k+e&|QJB5{!g+hO7yRseE{twk~G3LOPvv%;X*aaxr&_*|@M}DMvOiIijeZ+;7)h z)}KBZTu#zZgD{&(M%3@xMEWq$lCSOlq6^t@ip9mGr4J`Dst?!(bdznB+<+15bQ1%l zak#d(uPU#kJ5!&LHRBN*3?|%R|LWDLb&s2Oi%kOg1B=F=;KMA61ScFN5=o<^_0$S! zMl^80lZCXL!>oN*-|HaKD%Y5P?HeiSsQ!V`|_cT_ijI z@Wwk{ojjceenh8>a#g=O2xPaOfNxQ&R5R!|dp$V!xD(o-DY%(qIh^q1Gwwi9_7gVP4 zOWSgFuS{-{UyYUS(k4@Wqj+rA7MUfF#?#V7Zed+5h#Vf6i=5Z2wlA9C$b&}t1^Bq& z0aQM;Q?WdpVJMB$f92ic*o7xS@rJg0QCWCJp6d!Z(dyx@s~%Ws_KNep)V-zX?AQo8wLkEw=`o5<+H%Y#%dqe!;2Uw6=v#;;J|(e7!QAQzR{yFra?(em2| z63mev@ zQrq=WdB7f^ZWjW7;)#`VOSi%1**nk~^PB(D4y+uN1hcNaZLV;!fniWY_XAG(u8*w= ziOJ@gA~5#HSFcR)l?T%VOsEOfM$9UJWF_>f6A*g^4E#GX8tHs@Af{CpbrsCu2s1?z zfW>3PS$ZGrojKBq@6D89mJ78_yen+LOb*AD6cM_dCJTwr=mOkgDv2KvpmGxlks##` zwrHwA%L0X(MO?FdP-O2?OY)qiVYzwyx!(-j=e-o)*!3CCmkuxS2$XKxhDTjSwOrql zg@XjEh|pI{mbVN+1y1p@4G}1~A#ENWi!T$ca}=KGl3WlV&$nm(YEwQe;{2K|TjfdG z+e{10fNBmY{Ls!ZCZr>JeTMV;smzxu0|OOBDVJv$!FKVLczEg{yoJ|(&@f?05bmC3 z=;1o2M|n}@p+ROow~mR6j)s;mAKC=c#Y2nN{y;R0&uvL4-(oedd*VeQIfpG2?32;X zLxG6!fNQI4LwLUS&wTQis-3`PSt+UHY&#*|fOtZ29ES%jf@r58KNW4kdH<}bz|Am) zRWI}SS%0#^w1DdcR6<^Y4m(o0zs-J7OFS6Gz~Es=DMQO{O$(N`3*_J+mjbxWoc^8j zpSI}_YM%p^|38mYERC@N(Oh?Y&odjiy)V2| zaVo$N5Aobfqcu)_=7qVfiKuFo8H7+v*0P6JJ#NjRPzC9RUop#FjIuEapc8GPafZVJ zCc5CL96AC+gMF!_2e#W{(3nSC5|m5BQA*>aop!7@)|luqWX;ZXVQ1gK-qxV$;rz&+@Dl+6WwP_mCDH&WaaR0Jz0MT(sJ90+Kz692-IvioAFR z8Qc!wnI%KS%zu)ia#Sekkjq$gRcp`^Hi;H3-EJ?Ef#@Gv%#YSypA}>>;e(*bfZjs=|RRZ;0zN^PWd$9?*X>iRM`ij zu6`suzis{X@~~gAZrzO(C!e#cawB--K&?u5y;HygQ-3_5d?M?&PP&q7gBDSKr@4rX zzmF;p5xrfCY=@QgxK@7sn9!|dG7e9+5`c@CN2D$DxUME$4fy)&fbQoJNfw$D%F&CA zHRq+=CvBQ4go@A0hL<|u)9U5gwWmz(GA!;9S@`9i(WqMekfFA*rSHT=!|*br>+mXA zI61EayurUZu-Z_`Sv=~@Ni0xDMWXTjT=8{uVGT1s;~KjhZ)|C4ECxE_<1^kpJ|4Uq zE@`Z|envV;Tfl(9&FwfKK6;X=S0SF1E7Rp}3Qce}ijyZDRC}{f-#4YdVP|G%b87(D zqym6zTUgzBAzHFrJT)-GihJC*TG7tbg88OkdfZ@^vVTByqbQTbPj$amJ>6W zpPJO{iMQ8J&^r#76;3&E)}uN)aJL*kq7dn5nZJhQ9cNK^VSEFXQ|eem2XYXziCLYW z<}@^OWq3krJV3jjA0He5xA9(aS##TR8#_xZ0B2gXEzUeD9>(SSC^uR)bwpBEW&yCuVl33U*@(WH-MG6t}>z0Mm=U+R% z7Cg)Op|`RN>1Ts_YeO=%xwU2i`b>fXWO)TiE|Iurg}2#Iq6oNN4swlTHkcbO!C1_7 zjE~=9^h&j-p|imkP%A*BO-zHeV(4LoFdBJ9Na8bq&+mesq;>90dRAcaS(E~eb{-l9 z*a`^S73Ad(*^BQfwssDx7<4O!P7j%0dQf@;>$D-1EZUsQUxuoJTPW+>tO+BVFBcaC z>JNPdNNm=b#T4?o+{VAKa*7tC443ux$=OGN6UUr#Gd^#fX{+`${TjbfJal=v#8`91 zraWI+BXuQ{PZ~>OXf<&|174Fi*o6p)PqUqR*Y7_1wnut?EApeUtIso@uUecVI!QAk zW12X?1f(rtvF^_OsxYV+gWpkr(9m1X9iH_kz;-rC51*!+LBO}0+w$}LtBD-jDcT0L zMu#5{QWp8D?{B!jtQPCE4avugkkD~ScUn#PVT!EtB3l6|@MJ;7P{J)lUkp|JsD8S> z!Rzg5#|nO6rb`E)0clo0Ep@U0(`ZFxTnrf7D-;9G%Sdvx(X83<{k4Nv=9RSVm-fCa`K( zi~mX>LKVf}0_lS^{d8&g&mWw2x+7;`o?T`gnrqM1O}QIciWFik1@D$J5jX8L$>v+~ zg+^g(Za6a>c1ve4-Pz5p2x&Gms4x}ttMYm;*j(^a#Dun{gDkfJ!=NBTqhcwI34s1= zlWSj6elao1iR&o3KBxhz6w$<35trY*Zq~yu?Vn$+cn_jD%=39ja#V3WQzcp)D?tm` z|0;4cmbjL3xJ@%NUWor3B4p-J&Mq$_Pm-SHj0-f4BCk{2PX4axPghr3MGQGr0%isb z-gMc*v)e|S$V!9(kVx~sSHaq}j_v?lRYc)3kJW0XeMHZLKQA6yp6M}F4D-r&$KOsX z3vJgu>M)fy}unjQBwHLk!1aSf3Cqq!t7Bvfq)^}9~ zao9xI%g}^wcxeh4nB5y_(YkciBQv~}09BChV4p=M=9o{9pEGH&8sT25aL)j2l|7Nk zL0yegrzmwfY^LjJAl|IW(&pMvCg`RF+#{idd^pvAfDY1>( z8JE%V8Rcy2Q6SIQKaV_(;_d$hv`&H)C5)*|$gv4Cq9$>_5l>t(E6GgHF zHG(_`P;FZ2438vfMge^inYwxZ zqvW3&v+ALTYpPm#zRC~P33UJ8hv64%XI$T|t>_^C&xamNEK0c##AqATnJs#10WU?l zciVRb$p2By{mNwN-9HELGdcNFMNYDuM;A*jPrm%$Ts-4%RW;Gf8DOc>5rmF{nGHrp z&FA(pHZU1axQ!#dlyf*iiJXA>(l>(tqUpW&S&;jK@tL)nl`jLnyEvSlERdwwuI9xqQnGohmueyij4-^H)c)yh zKuw=ZUXIC}#Gf}CADJ8{?k+idE~HY?F;C;WwzZ%aOnpvCS*7Mg=NiOASS8j5jl2RP z90-O658kcUea=4_B0pv2Dv`Ru| z++uU71j&W@rh&rUz<$cI*MV>96UK?ebtC~;<+S5)`1ULXB%cga5__$MN1Ilg9VJ0y zlFcHN8<@@2O&@CK!rVBR2UC$TPs>DcPscrWiVqxsv$7KOKWpTcjORj*QhFI*@L!g1 zyS@P8jHn-m4C>#T`=v0%=neP!jkS8wVJ-~RE& zLUi4(l6uM5u(ZT{!HLc=#XsCvlMPE_Rya*64aw0PEh7NPr50Hc z21B_~UtqKR6?8MMsHFkyzZ<|5-%1(|ivCi@KWS1~I=EzVLh}S)K6-Blt)8Mgr=O|m zqD06|Y36X@l~Q<|g?*P-4AY$R(lD3XCFl6?B$0t$7;x?KN1zj&GFtLo0(1NnF{Tth zWW*Udbq3<8jl=H#Gz;6NPy3jcHkcQF zM10cvp!1*=L9_?pZof!a*gp6!m9kG)*6$49FGdj(zX?xtf*$X!4?({S91XG0Loc6= z+HA6Q7JM8mn9p}KlgmU1aOp1`*WZ+YpnW37hr(5K!!~4Y|J0C|>Zgk!3V9(_IYx}T zzC?`&Oi$vhoZ!zn8+Nv4F7A~agw7{M%4!f^6AX79zsyg5rn@;N0_0C|m46zD0z$YE z)wD6WsX6+~DNH5p1L0st6c|S)%4AtrNx!KcN%xdIid`l+z>H9)dqqf;@uPro(->{( zh~gFmPh*KVX}J6+B8y0*lU$n3Xd5fmt0=2XnOp^iX*#Q8FKDE#WUiF(X5)%R@-MC# z>p#Nnu9u0{xa_-}GAmNGV)qRQ^A%eLwNQar0q!f9;ueQh;z(+Q)xEC_z8&>24G7q4 zFqImFUly8X@7MweT5ct3pc@yESzo@_;BUvwIrXhtE*7?*J-bmB;m!F+(< zEWKdXRaxdpKq|-zw*kwh9xVw7K$8w!2q2#7d_5!Vjdi_VT9=yZ>iYsW&2w8#qzdO6 z_p^*2oYnuHg(qmtvTDM|N@IbKHNVWGW@zu#B&M4#5pVKL?lA>F==*O3(bp;wFh`j_ zuu^%YpPlrQ_CSZZov*dsxH8XoQn4v&nEoPqVvLU#i0ybc$0gs@$~ z-X!GO+>TS6EW2T(2^Q|jax%5-W@wxw+^01PHAc;tta&9#rw>pt%jwit9k&^8J(F#Z zns%5tnJYMyPBB+~y0F*d9md(`PQA*1*pfEc@QvbJj#PtZbL${L-}`cadAior487_B z@=W~zxb%Zv_qFn#pN8H0UfciDLGPHox8?e1y>s#9SlfhL#o+ko4pSu;7DxJ&Q`1Y| zrzWTV;UtVp9~GOuGwiIjX0Z9DOL{txsP>#<6#Vx0(1?GU^M8c3CjJ)I8q=MDDA<%Z z9;kk*n*`N zC&9F(IR=K1Yf!Ncv%N8_Fv^+}ofm#zI;mV_qLh}F+EL@ZT+U9WeWPxr%d{0c;74J@ z4i)Aokeeg&Mgm*n!5TqzVix`haI=)F!wF`Y;eDOURj(ljh|!iT&1ChW2>|Xn1n?%= zz-<>!2l3y^K-hrGsKkeC4n$T`fF%-g8uIkim8*N9>)c(Jq+Y>_wTV%*_aNO>)Y}h= zO7A=0o{|V8Qg`WFo%y8EvX@b3{`%d+60cuZ-hr8Rm?d76MOY)H;!D(+{CDLwLZ@kk zhEpOmwII^5n<)}r6t~R&p%G7!cnd#VBx4s_XHmp%WNSbvG{5BjjTlv%y?Z$}5e91? zJ_i}NKV-n`B~!vV*Her7)@IZ+!)%^pb)nWZ?I@)n9!VTc@+Sih91SjR8+#08qpSeD zW>PpPdtQQu;QHFp_&nod3W`gpQGhD>(r&4v5S7)fA~m)lb|AnP_ba|BHu>fGC(A)K zO@~T1n+53z*cD>Pf^n{}5o<|rGhKzr@$pVb;7DQ-!KEF}X~0M`T0`v?x%JGYD&z)! zGc@8!Q^jO*ZSAkSE>!e%scT=vDC;?ShB)moX_mz<-57fooOXEgpzyhLy@9rzu~6lJ z)|3}#KK}gn{;PJEbb$QYc`w30?6)A4(lHk}#IVcPH94!^EvFlVWOq zp0vkq%VwpPpdvI_$+-O*qCh}kQbX^jfA|yr>E(Y$>zp&(5K5y{V6`9}g}#4A2t-3f zNc4?0@?FA-_a5g)B+F;wkaZjLGZ@G1xQ=%#@wWiFuJ9aku5S|U!$NA5b$^F_#vyrl zaiRmPF)req+uzK5`=WI(hBYXWlT_Hsd`Swf8|{`*d{dVhD4-8iN2^xu^B z(*hd<0h0!%0mH`qDNO@>ChbI~#~7S<%9N2#IQfZsP?};;cVMv5Y*dMAo&2i7gg0k% zQCfipeh>u1*r~dei3#N1e_8@$LG5Y(a;AAubQHx;E8_G8q{1mTf1qC6M(A<3$f+6l z7TV=**gy2I9A>!d`u=lk(@?2VXA_-tIQ6j&{G87kaeY zuoCd3q1P}ic}2AR)18%Fur|yYD+N*CKRWzJkiO-`Zdjpo>N^TL+CK%D_sTHKD2}ixxGr!sNlKoz zI;k(y&Au)Je$!3Kq}W++B0gSDbN_yXhaP^g0s?(kAr*m6rgJrT^NGMe1)-7U5#Ek_ zJJh1M=kjb<7E`>J%(i>a-LS}85W<^#NL2Uu`@JwvkUz%siuE5ahU2kiol@kI%=tY!&)Hu4CqKq?o2Nfs3^5lO ztn8yth2JRRtB$h=ADjZk{#m>K^yj6DJSzgMs}dtQH5q^ZB;P0?SrBWqwD66h+4yh88wScpK2|M# z`l)|AWj^Oqzlh;D5x{SR#4;x_FuRvhoXdXxZ(8Qxc(?x-U)(zgSgmA3IzFQiv;%`& zkN8Pr`A~8qadE>&YGC@JZvTS4f4;dBp0X ze`sd5jadh#waTcL4pi_8AS?oobF{yl3r36ovhDb`UhhQ&0q2hMtvv63+iH}c-mlLx zn3l#$Km}G^ST~2u*Ahie^mT}pF;_ljTry&h*Z4*ONld9Uk!Yl;=g>7+$Vd$ppNqf6 z5D>|*pYFoRVRGZIc4=>d2 z$qc2Uuf7c*QP3`p+mw;vCjY|W7^>97!yeK;RQMf$1H`mm`wPXld%= z0;q*G%~zzkGJ~FGBF3CyZ04Rk(po{U!}u(0ShI>Oo8!nf8(B@1bDYA+Z5N0;YGIY)gV_#ffv`&}jF{)}FcaNSTg!+q>FwOw>YL zv4e`u=?K6~H=xn#Zz67?8T#o|__lw+`mHOQ$gms-djggCGFO_ONw%5|Hn3^1N8ins z{2wEEYL^he5nX14ivA@}}o&cePI z=B(asiNjEDo0?D!Tey%5ZVs2!ufRc7EXs)!vhAgXY`lt^7N}_3gud7fa%GcT3c!B3 zd7sv=JqX+>-}7oNBVdrFey}4XG@g(ekym76!($v_i^)E`rbDV{q0FiCS*uvsGsp28 z#S(;r>tcG3;Qlp!AG84)KlKIbM6F8w=qee$WNx;MY3eYfxlK~?q^b0o%(OtO(0sut zSp)ao4pNsZr(||wD}@Z}-y82Q-~TIN;B^!?;7m+JGocQCA?5&w32;O$qdC)+0%H3d z>X#u@I&5-C{~26lgnZ9tGk@W7kJgIsh-MUtDrY2T4vqpjfFwk7Z%n3fI3}x=?V(vK zvP`7LO*l+AFnu?v&M^3vU3|?BgZ7Cko1BqQnkK-jn=o^^)w6?dECji5 zZH)KPM(J*NL%hWxj=bPXEt(q;>))-PHsJ~ivM>0#NYCQwlpK~j*<&%zq# zi{K+;ICvsCHqo=Njhk2260_s^AsFE-h{@BKcclt+x$PFh9pgv%h~O=@;q;pypSX*5 zKnW50!pfh$^<7d5l&5*XWqMvg%9jVdd^UzI1y=|}se`sG9 zi=PqTT0p#JS?s`EKV0N@qgN7PrZ*qN9!)1;*o2%IFw&7%(a?rkGDV?B2wjfoIdiC^ z-_NI(ZvEvy`R&VPjpJ)$_qxin#8An8nM1bji!CzFi9}Yj0hsZrQiU$ze}#MX7g1LO zFI^1j3+z>1#x2KwdYv%7dlZR%_6ApgK;}D}CYWajM6Hd~L&1g%+jD_&oMG=3FuOO8 z`|4hd#3tJIm};HhOs4)u0l(d_Ze0@csj5r!=lX$ts>Tq`@E#?0tDK2Ys74^ZRe7I# z9f*iC$=QU~pzvZG6P_~`oS%+QA`+G_6kqPqQPqIzA z#MoRpomCHlVToX750d!>I|N}3iC~kkVAg?tpsQ4EE?}*)4*BRTyoSrs&0d@tP8P0| z@?!TMJPX<)3U4P8crpi<67#fEYP~~h@d5{8y#H@x_Tsr;W7K zsPMvo2*KQOx!JUkucM*`&X+x%TBuVnLI-&#AvXLwUsBkjB_QH+HeW$xM?tf)KBD8N zUFJqIzdo}ktsVbx#-e}!7W>{LrD&{X^e|DzV4zF(>(gux(;;#j+sQ?s*SdCQ zxwT@eP@yYXUB|9Dfot6kl3;KzjMf@t-x&ISGBX8O%PgF9fQ57T-G0& z4HpDI?|C!r4$pRnI2*Kz=vK>9h6Tn}{9xUWp|Tqv*VoN&c>dsbsozwHxj-!}rj;G@HLFqxTe6fnnHFi4x0 zUhQnra$!JoRWZzPh;K}}_RTxKGT-Lo8p2Omo>Y^xAuy5$Ok23k6`=Q8#|-s6`>C(A zH_Af$TFpa)@{l+#9HyI1;8L~Qv!4;%5f-Mp zqIZ!>?{~s!wp~D8&**yS4Xp|;so14Pe}*%ZrRC=g$Ip!p?=Kv8MC?;vq^Ch|zDlzy zr#~p}W74QPSk9W_@(cc^fq_!ONf?MhliDqo4_SCn)qRw9N&z*XoY;4vZLpHIhgB=?ZAFKxsg z3Ws(nt|0>G0zzEWauP^z@40y%cLV2H3Tu-#>#|9HF&>4HFn#M4GyR(~P^6_LQD~T$ z#>v3#&>hKpRn@hy7)3}=COK-m70W}rq`7p4cxw6HSE{8~&KUh#VSvVsazG)C`HL== zYX-@K1e?4ZTxDy*wnl7r&B=_G3*4Uqh;9FO$Lm>JW>LQ6(O|rtw8-*TI#E2fb(=;RSrDB^qM9AaB{!sEHlWUf*_lCwZ zhfm9r5+QZsc(-Tx4MorUtD7Wnug`l`fiQtF2Vvx#FaQQ}imO(-&aSb`HQM%A(la${ zG$jdG(GUDH%f%jDV#z`BqhX4RfzQ9!VEhtQb|udHMZky{FB#*&c}I&Sr2J)}n9V$k zM6c}aCiuF-jao?+^mR!tro3#_+#$q+_@?W{`L`Asyo%Y0^GtSuqJ{qcz?9XGe|js} zySFN&3Ot^|wc&^KYtS|c&A&%+8S}lh&fLxlm5l0gv;`=>Cl;Oh2ilk>F2f>J4zFtT zXsIMrEaS4wp`aF9=;#o~UIBN-hzDZ*G})=!sYe{r^n|NXJ8F9)#!8S2$HFQ}U#4|^ zZr$6F_lUqqZBLC#C|eMZVRM<##m9pdC@7K`sXl+c>(e%O41&CFaovxoo7?ijayO)m z$s9?is4ObIt6I1n0YGS4dc1udZM&gf>rDA z@4M2{z>b@Oh4ylcdpMW04v9_oST3_jkmVxhqvZG^vl_WOgQ1|l>-iQ zs%YwKO}+f`Yd}RGPG{*5!E*;4i^IuhjO{O@9iABkrzLx%V`xeW1q;d5Fny8>CQHb_ zoh@;rt%QOx=E`6H3#PmK^s=DD?(4_FDYWXa2^ITMos9n&+h%ZlhIcj)LHl3FLLJRK zo^5@7vNH+bXojZmD`k{FK9k{D@m-#cF?%kP)%X@{C5B&1W$YvNe%CX#MOmG%;z?_h zPNEV~>l1`{GAo=9k%nWnVEFnf_p432@qSbdE0jnhK7M53E}C7W^UR%I{Ji zzU#D*@`z6gVE~_8fP5K>s(m?|i@Vh#p~D+4yw|ZPDv{(U@QM8Z_s5TNh^2H3U{{^A*QY8SRN|RDk)v5Xp{(i;M-B>al@dpU(4{O=2X-!UHN#Pm}aIZ_>JPdLAJYAiJ!&U(CI5z%at%nnW};=Dr@0H0!~1d zpcunqY>m6uWLFuErKN?KHJUw@(H6pha0GqyFE&{D(YR##2H2}YnE0|)b}$6$5UMY~ zy`_5uKJc*xV7I<9_WZK2d)xKH63nd0iH-_K)%b!_3aN9B&;su2;jJj{tm8t9>@zsW z$F-Bw=7@y` zgu>Ywc?KL1Rd23)F%Qew zJ?2p$c9P=Wu}5aJoc~H}t!Xl>{wd>@^AH0gQW9#&W4&}|P%#60y-akWEgr|=apTf^ ztCMF>yhnJyQD_EzzG|drT&8xvKkfLvji9I)`ev051UkH4DpGoB(Ak{*A`hG47740B z+&plxu>M@K-X~+893Agl#0aJ}<-ys2mZr{~&sQLYipo%TBzqtuSUDLY>VC*<7>fRr zgg*4A^5?xrTlFVJ`d^diCT~~2`-9y6`Q(`^zS9a$S%^TYR?u6R?#3I{5yp4`ITCj1 z{a>5vuipf5prxhw&}6r1)T%=G;`kSH;Y?h-JDzkVcOldwQ!)+D6e_m=o_b?i*{D{@~|FL|&c!KuFiuJLYx(wC5^F*X8g z*_huT$1D!cD`>soW{oG@nhc8+t(8~Mta%1aN?YNuBBn(ZXs--Db8@B&nR2S&8^Fui zW@b3<4&I7ya$PXB=rz6KqUR8tnMM0o`>}d6-#k(!u<~`&|=?~p=Yv# zOLR2)TYRspRTe7Ne^zK34yUB##e%Q1v6@)mYSBv+FF=Ww{>&o&WNn2)pNMXbY{?`# zsp3NL$eXrD?W$)54C?uTiA_iQy8X#OtiigT_lROU0=4YYJSpQvFoG?BX_4u4j@+?< z+=o5ABcmTCh7Zs+fam{8*!j3X6QAg{U;x`L7zGXiAa2m|a^WE=PtyyO^6#oUqRjJi zR=2>eo)87gd^_IW&V9Ugw=S>&Wwe|CDlkY3E$KPOXHOYW=Wf@p-sQQqd03v^Qd3yi zMsRVq&rnE(4^?TmE!^Hz#WQrvY+TK=CU=?~+Ne46`b zq`G}wENTI7YV5I0E2h)Jq0>Sh3s~V>1Y-faeE1i&V7ptIw~QU*77wv*;%OGe6VbaJ zk(CxB0?}XOY(r=5QeJ1f<1BI`O518^=`g<*|0d!bZ#T_vGcB*qX`!#DwF2Kh79JI= z@RI%QELzx>m;CrIZb|>)i1a(YKH!L?`-dY^_TLR+)RdU4ML%`4*7}U}($h z60?j}t&YQviNIdi)5!-8nVRVysrZb7`qJP}dr)hE(&ITfL2F6Jx#eJ##GKaMBA_p^ z4bM3;#ifTkD#*nZB;!V&lnau;H=>VjX|vg6dYFU+5UFV~^6ShcupL*B1?ds&1MEyq z-W%lzL65+oH(Sypk0~gPfAyJ^;g}hR;`6oC_eQOflC5!_(F&T&>G1uiSW}y=Cwa6k zRq5eHkp8L{Jv%{z#mB0?Np5Wx zPPG~5VvL~1JO=!5AhdD}MkO0DD+emwtP$@wjh&lS7=P=omUHFY$z`9un2(arKlywd zI^p*EshD!+=#q_JYULv$!)I&l(^X<}oQ&}9pypRmR8>EIueb@%UH;Xs5Bem&(ihfD za{n}uYTu=8CxVtnn+$sm8;1tf%bZ6d-T{V_>}!VP;^Ac*>m?*yr#bxzu&gg?omVWa z9>HZzvf0}3@1xYf7jeszm6ff{f})jh0vRk$@;QFjSWLB7z-Y}d#e~Mcj|z4w66G3= z5g-3PzXa35+=k+);h3ASi_24T7xC$VpiC3qynuExc-$&5CoWrpDJwZX!osKk`&4pP zIN_%oo2_B0P9EXcx%#&f@zKQ<$NsNMuNqyI6?i+K0VX-{iQJQ%EUP`$ovTEgxE|J% zPm&+Ocf^(7`@Wm-=W&|YCo56=1lNHqzBD=lMAVdS)zbZP2n!cu@8JOPlaR+{+}D;v zviN)N9Q_2KpI%Ig9#vkCoM61}WY{Z22Y6RkhQM@7C1}Jzt5b2esti{g?)G^~JWkq> zyI6`Y7YEQ)I2TQfBw%6%bDXluKiMe7_OqC*%&k_8<~!+*it##QGKA6(pca<`8~Gg3Xco2apfJ6*33Gg zdf_G>yQP?((X{y*v3SkAQQ5VC6vc#f+H#!nX0_Plvh-#Y*X@SouJrZcxE<@-Pd~1v zXWyTDcT{Y3T*l$WU|%8m34St3vLz*skh|DKGHP+tUkAwM4H->0k>6h{! z7&XcDeKwnyW2Ygf*XY?5rhOamx9-A-jw^MDc0qI{=emoQHXNu;f`P3`RCLqD(z9Ea zGcT#!4Z2(gtfxlf=k-Q+46%9gDGajUv*T*xSJj7uck!F_g>}olq#xcu46SK2)w9O5zA?3L? z%eZH-y2zF~7f*{l-d>9@^8Gi)vfR3~X~5<^ya$^b9TADZK46bzw$|0pHK2Oe0Ee?T z(<-5g;T=4NVK%Oy(smM*Y*;L&Pj=GogM56{prpp2^b@b5U~Z$oE1^;1cvl|e}jvy5K@+ZY^L zl1Wz;Elind7}ShQtON7ZwTNcU>K{&G?K{=>m7tw0Bfei6>zuZI4I9`N$C?ll6O&0s z{)E0OwE5)&ef<;K+iEoFA=Q@x^5zxfHS*_mC>tN}B_H-%9w{ESeWRex8g=e+?oU`m zUP|LCbYaum(aewiMsaa0-)X=ZE+3l4)f*xFYq+yvLca)F5&k{D=-=`?nVmur4r(1K zHS+Ph3YDf4S6CQL;u^Por?UH(JDOeN%kQQg5({`AC2>)y|l#5goLXBzG|S2!j|J+9^adajad)P zjlExd`7pqHY2lKuoEu)wH5>jf-q1IbppO$vq{Xj)KC<{jO7hcIGqJ!DF?VP8``>Hd z@%^QSk3yP64ds;V%yFe4=1XDv)NCFYAU z9u0J8Nx8~$;^D;Z#HJ+RRc3dOI(U)t8oeHvEwAKi*wyi=qXO#J-$VyWkDP!);9__? zc!J$B7Gy^Xhc-3mA@j-5$)L_GhXp1U-$I4vLad8?e0WY>s6+=NwNxE;TpsdKx7CJw zZByYX-W;h0DToVyYBj%ZVN{B-3B8w%@y~KoyGNnyPw`@=T3>Hv;1>J}5$~L&&5;BV z$wuoJ`0-V@byo?(wAC#Ip#5OYN3o=FE4wu%-9bn{*p;`h)V~%ip)=Swq)^{G(4c*L z&CN_HJLEFB;DY|zjrHg>4qcc8aX@#_oNcligjRLix@a+rcTO&a$_O`iiBRWS_y-GG=l1lvL3ph5+;M`Pr zl37~ggs`*j9sFBQhvs}=5TBEVIkc;LP<}=|vN9w1c3N<@5UN|~aR(*kC0Y_hNVEmS zixqIU%<~^F+crxGkv(0ehHAKEmgi(B-KW`#tmTk!wDHt;>$D*$-icoiZ}Lqsu>DoL zQ!~U@ByNe=tpGzpXB1{fv$ne6&UwE2=rZ!yL;;@Zg0MM2fiq$_kpK^hZIV!5*Z_5N zw-rnBaI+H9qoZvPBn)tCur|+g&k)vHG?Vw%6!Oa|hal{o;b!ut$ozAyR<8|I6!Y~NRlE^3`aj;y!QL@ic5K`}Pjpt3zX-N6iVrs34B zNdsJyxq4N_0zK6&fLcjJ#?)Q?eyL(%tHG>UFx{(@s40}N?alAaJ)IKNn`fifT$me) zh+}nR@F-(QuO3v;hOjRdmcz9}?&(-}fgtY8{;`5C#Tg)85yboI9?#RMJS`>jgJ`|%grF`*ashkv#;)^{z1j~m^9&9Q8=j&D z;*1_XbaWEwozH0u2#U6jU(;Qvfqq=AoC)d|&fYq@ug(>}=S9telexS2=vf0!S75c{ ztHu3F$?w_K0oi4Jqj;9B)FtL#YKTztNblY4U4FszD9+^4^iL_M#!m{1^Kf zpd$xL<~)$Nac`#M94oZ=EcGN8``ZGdBuXDMWYXB!b5}tlXM8`6x}M=P0I!<~zFCwF zN=|Gz=xz(p3y{+d$>{)RCFF-oGkFbkP9-aug#|3`Ng(D7d$lo89WOr-{Iil}xu-_4 zeOW#AQrw8d?%9oniC++c)a@CtX~4e}cBpkQ>Z!1unh-}{Kb$-kNZ%{EuNKLW%f=pp z$U`Pb(7ng0IR0EC2=1)+&=!=Jul)^%nN|5Xwli?npq9O)ukZd9#B4#d5|P7Z)^QiY z7c@vbZ(kt8wU?>2qwlkPs-jPqBEPA)cgO&B$6WoAUSbV)sL0Q?GW9$KuE-qV+=t@h$StP1j!;=cXg zSEB!asz%+bKU;u5t0&m(kI;Hrm-bj4R?TLzqggXU4R>V1NmYhZ&5&miUQw1h^A^m% z>8fdH_($F5&`jvbM!ITWQYVa{CU4(I^mOXE?x@TAkmJ=A3h!^(1bkU&&1CD(+?P;t zCKOb@U)KQ&hYu*ocPUGFtP!JBr|r;0IRwAMy`qo%PpS>J`CLx>OJ;(TC2a-dhik5DChcI$MSZv0iXZiLFfC#$fO z+>zmLfXk!K3i8zSH|ixTAK7ZeV(y!rB;cad$>Db8oo@ZrXP{CPmo7(lSNN~hX#NEh zg92o2YcQG9bGg-o049~WJWIX;v>3E2J<;X=yf}N;D2#LJ@sfx8!mbqWLQ{Jpk0GuO zS=g9$=j5B(JvW+hyd1Pq$7K#{6bht^60n5zh8XeS21&6jc$KxOtnbFpCvSzWn~YIa zBZa*6O828PdO=yP*{5)E22+hr?LJZ`M9x6SaQbh6am&@#z@uA#k#7n;gekyWoQ~;D z4=H-lEU;MDK^^64W8oaZSGv%5!y15rST_m5<_ST?(1xL^IZ?I#noQ^gGaUeaP zIZ~2mnFKMhCN#zZJr^JME22Lk!j{JoocSo&V~3%f-V(RPBGuWbCD=-wG|h)pA@0`8 zLrzlX`5j{l^-5DvZ$8P*LLp;=UCTZXnsKvU4++`6nYn2{U!Y9AMqD5_j;PmkY3 z6(~sUIV1(C{guISdf;v6*(mlGE4g;%Ewcu8Z0P2icT*<8TQerXx#JUqYyOhzX>HM5lO1*Qx%p!d`8`uWGuEchLM5ny#4ItRe6&NV*T< zT!9Vuiw}4}lKy&CuvRX3O^dyL@tn3zn%*1hk7eoHVfYT;sYVX|&6r;C>=)jv;#+t6zM-jnd06egfzorIfBkW+nER^sAx;=~>v&xY(D>=dqUh9Cq}!^agZFe2Z1^x>U}Sr=Gt@ zmj`{-dF`Z^Xumt?4tKudS^SuS7_&iz#0{6uB(Z{NS6zj>eX&y|8cKA5>E-V;JOawDv(5^2zFWXetKkh;2 zru>2fS8}y4GSxI&t+G8Hp`j5|X})?AVT-c3tqg;}86QcldBvx%L~%h^(i4YbKI9)# z#cbcNkeXUWk*JQA+pomAM_iF~+17q#9Jq)ZDC4M9P+S23W`}4VxPjd_w`$2cQEQiI z`$Ou&LG1xq+B7cj@+${&M9)-hNu4j5a9!j`pPG@8lEKwsS}i9gFCa0?I?3LLuyy*G zXBUN8IJZ=CKg45WR>9@VW}2FrXU@aKG-n#uB<+c?rVTsIeKhb zq*r-f;{IKb?(9cDB8axEh&O{Jw~3%KG{NKPM_u~yWW7_iJ>sZH9hbM8FOW=vM$_Jq zwL{Ml?7GBSk2^X;{4*P1s^B+(p1h|3Md2P`Pl2)y+(06dV!7~Am4lc=3LThH=gW)@ z2dIj1g8>;W`A?9!6{GOoRc*pzuUOF zdag^%4eT%&l~{_Hl}zP=W=HDiAdB(3?}X)QDk-)EywOX!S}Z#QtKC!kO7|3AjY)4A zNirFF_1`w0ZABZ!-URWm?&1y@6b>33h{11+g}8dk|u ztFlgv`X#f9;iE6Ijttpvo%`eAUVF<@rAhy|t?VCVTkb=1yxJfCfAPmNDpyjy{!fp* zGQgm{&EFMQNL!e%MPVEeytEoNeZzU4t#v(J#lvncfd2<69*2#ib8r z_AU$=_5zuDDBvnCO1F4*-#fjYLd@DVS-|cp0`V3)cojPxF%^|&iVH0*2jD~yYj0It zE7;PnTe6#?D3|fjfs5p1zc*jRgL)TzvdfC937QG>m>l)Ua9><9t`O$dEOpCi)M4JU z2yR3ktfDgLb_q{et$;QPX%c$%RE9Hx?Zom80M$!5<}YTZx}8cGlXJhd`&xc*Mh^}I@`(*=-bLl2 zGWe{}n8eR?SAP8ln7^_svVHD{aLJoy=ekXFSw2j;M`>UAsP*XXpZj~GrwTHZ|KC3- zpG0|K4s6~&A1qEDiod&hJm8r8yE$GeqEHPUJwhUH&rf8Ay<`&FZayVkB{LVme#~%h zabaPbwB4;RumYUMy;QuU6Yvc%T7WPdU4aF?#ujV-BR2aTJ# zLMZJN&Cg9SSLI9&15@zbFnA;lG~`h`jggH9zlg58`+V6mD+eTQ)~hGE4%q)WFE{)` zPF1W7Ssn(ApfXv%e#lyi+$dq-eNbg@ze4o%mWun#(n(kPS~q>0S4}I)o8GD)UG3$6 zzfHdY@=4>=&1__(N?mha7-fJh6M4Dz!S5hOTnz=pD6MmsT43^dDvvTPC)AD;L80Y# zyWUDmL^4bY?S;%L3y77h+6vJ7y`jwhzb3RH1t?LNW-NZ;yzz-;sKD)(gQjZ_v>n|@ zWnhg>BE!6Hr3DoVo#lToIewSWYbWRwuF~A*YKay$ZV4IZ+&fTPZqUlgeU5)mc3;-B z+F1lH!#cR9pvH$*eP_n?3;e@u3}kyWxIzTG78cTpI<)3492_^VY5p19X`KIrzqFU1Brn-Mxi@lE9~Hy zAxvKJuOYFJ=3lq39KZPnaQz1O)#ImB_H4EwL)FiB8>*oE4UnlcT+_q)LlB~{LM7z> zkNFp5V@~_|s}0{T9Wd-t#gzcFY6rpU>=M$zJnqPCOk}uyK-#lNHm|)ccO?Qe`5rZP<`5C&j-9apgx--Fo{( z>9HPkjJ?~pXDDZ9;Y0miP3*xC!<&l?mmX57g<7e+9~yoCb!s8kx5?9?)yFvRNMgr!U zma^KM#8~lx7F?=&G9v5ILU?xHN6Cuh(ne=hZ&v2MZ-58P#`MJ&I8}CRZrD=cVD8(V zFv^UrS2Q@>H=D(UB%uYjs)>54zUEL=VrGC8p~>?y!l75r49(jPtvK)M(80!9U{l;5 z2*U2(lMHZ}BH2IUis7TkPRK&{S~Qf1&B=Eq7~WlaSgX)sqHj-?BjgJjQ5HJDBlzCUpaOx8Z-*{)2n^!0#z7%Bes ztHzw%e)7X=^0Jw#(_0VekN&v9>d>(}tgO&ADf=Ep-Tey+tR@Qn*Xd%4B@sT8_L1r% z9SDp~?#Ml*p2;&i`G|dS|Ii7K& zo9FC=p^~|#Z*)5wqGSxNVJR3%9WetjS8P6;8b({-(NNS}wq|S|sbQy!*wx+4FADQ! zAhI;mP)rtJt`i-hmx`)MY-8yjz|_vm?8y13K4a_0MI|x@*L|D9_gX9;R?z;Tz2Bt_gS$-KW3{<<`p6S_4IMG z)>o#GuiC9V*{=q8Uk=9x#f=`23Rb9|nc#i%5goXyn-RPU0q@O5ew7^LE~;+NAi1`M zbb1W*L1l)9=Oxqg6$x1H3(b8j_9)3lW(w1p)365|jI8tgexpV#?s-rYq9WITT3*nA zD{?W~u!jOKztdyhx}1OcQN>W~B&^3FOn=TKDz7CcCo)}l+hkOJ=N5R*Nlnz4Alv|# zy`G&hZhT-#OR-lSi7?*584-!A&<><{Qx>XN>&A#3f|*NSvYRJQhu|>x+EqlZl>gYy z6}*TZEvRRe7Yw48luqceqhM*6C~y;6B!DvS0Gyafw)Wf}&wgNM-?I(e8G;U9)P<-K z=7F?^rezXf0tm4@jBGNBEqmhT751?3(cUsuKplYu6*aD#R=0pVOtrgC--{`SwP%18 zdQ1eyBe$Z+tvY#OJ8SKDbXlxXUNt?Iq1IO948BUh-)+d7TXWm{@wlSX&}{pg8~RFW z*Yy$A8e|X6c>B9L=vL>PQ52~&>@ZbxhhQYhQ|qp3ACF7DnfIW7&P3TlHUDIZrd|(B z#!G=Y?aM$jzGPrUWsK+h$Nl&1)Hq#Td8(X0)KkMBCLlsb-K(axrK;OVv<$GDaNHG< zL`0=uF-y0n^~y(ASGVn>h{O3&@Ls6ZwAt9e@Pz1Go463r+v3vD{2bp(PglE+EC=be zeKbsKmqPh*aEpaIakz3^>teL-w4y2)d01g2m`nZmBJO$$t@t)f2O^)m4Q_4H?9kl+ zP>Fqivc3PnesnrnL`Lr~E|Jc0Jnfezy-HjkV}R9gXUFW=z)Kew@?~B45+3#5+44i= zcCU3}dXN2lF1uwK3A@C}X}Ijoe{BfEwAX{s`z5Y%HnO=3oVl;K!aQBFnM7_4KB>i8 zCAOHTKBTaPzdwZ|tMc>4W5nu8ngQT6_R){o6$J`5 zapeX1XnfRM?zknN&zNF(k1jdLApaWAoiS?29^JU}E2cH7b5-a{^W?#8n;ofu8eYHd zz(;nU{TZL0di$jR`z!xz6BQ8hJP6NM`&E~WI51_SuMwWHv3$BUkIBl;KyqX~zs(75 zLk9O~pJe@T765qouM7VvNo%Z#J%P#mG4M>lRYZ-w&$>@fxVk3Q-9s37Ff8TLQR8#D7nb=2&bjxY}LJO*C<@HGt#mZ%u7|V>?kb z*2F8s(2m5=rl>y_X1>S8q>RWEe_y3JwPMW(U(?>hQmg|xjxSI~OLyjfcf$C?6~njl>U=cQ~GL)kCjWfbt`#8tVOv#-IZP53ot_PWtpI zhOk9^AH`Htb}6~5>#p*BY9T?vpj3L!@7+12&5NX=vIApK%??3hPR|M;_Y#3&`((H; z_IG`m{hdAM$mMXL-*A|P4(v0mnMOv-t{`h&F>bA-c9%N}Q|cIXr)F6j6J}aM0PRXZ zN7!dYrX9hF*hxhhM(<30;i2v}2cJe)Q6p_=Pey4*H1`wgW_r`fSdt7WD-`ZYEuilr zw1H}VZHvYD6~l28>KQ>i81mS#ie`E1)z1c&RMyF@bALp~V-i@oT3{ZW&`QRp7DFu9 zwxE8HNR~ty+9YvbKxqHkWx7w%Tst^ALE5sxwwxmM(aB_N?ibxZ2u~*qD3qJZLFa0d zKHjc=z9h$NQ(?LR99gD2AF=yus@Y1Re!)@gvZP^5%xa^Gvsv2-PhK$BEvroE{l^%X5_muMh z`m@ApH*b5$3%JE;vzLII(q^!y;~FjBeJb^}1D9S8ic3M~IWcWu^O-1%^|O*z3}F1o z8w$m1U+sr*r~T~DgJ6?B=5aqREr0+0vCCNNoamAc(@Ex}_zzF5j91_5p@%%UA;Zze z)^om|CF1Ra*l8HW{cP-WP|v%i8&wjK*%}UD2`5WJCs=NNfVb4sfegpG@Z*w-BXi6E zw)qKG&B$D%Gc!YHESOWX&yNxlSIMpp+9%ONis1zT?70r0(vKP}%O+MWTL#AU(}*e< z_He$WllO_s3SPK>=T-u)h)yE zYo}i@R%gl4CM{npuj=W?`PUbUQqcwsu@IQNHQQ?(_Rt)P0)7L$rr%!4Evj8Iw&D*w zLmO9IOGlWrAB?Dn6!|Wt7Ic@rN{f_|s>mKR)H?Gy4(=RXGo;{6e6tdCK6fCOmL|8o z!IO2Ssh{3iDZHlMw3=pWc0K7HWik?J!lTC@8|hYjMM?N@|C`a<(%8AbYO;>3@>F|JmVFfB2~< z{$U`FBIODlJb*?b#;-i@F{{}bhJpU2D)?+4;iPERruffxTv2>I=#aA9K9(4f7nXvZ zRsqAtMwE+RMQjdD0(Xxx^9NRxi$xRrY8$^UuZPnsbvT701^#w`rhXuyt!FU5r_9!l z6WNqkEDFZ=}ECqlfN&F|MAzB1wAkWIQ7?0A~ydgWSO4= zS;nW#KUo0%!+-CMxnJ7#y@0Kn{Mm<|zPWi~{(7weZJi>bqBiiVk+HU7Kc$DzSYNR)bEx z_2Rbh|IGZ^PiB&oyZ@u?gm5sQCS-rku_JNcas}xlkKz)32Pz90B&%rM| zeJ@I|lF?)CKux)6X(p>VB#k+cJFxY`uLIJd7zfy711q~`siQk2w2Z~#jujvsyv-`MI$_Z&;6}!$7_FAlBO^Lm8mSCmq;XXT zBBbq$%$)0(ytJ4G**vh!j6W+sv9*R*j%QB{>@+F}p?{8IcBqaEN~|b=sPtPnaT*3A zw{OLKzwfzPr4YnAE8X+^1yyGh{M*@j?17ibjs$<#1FM

Q{H!3o};fPOD5Orf)*g9C$wo|K4~64Pbs|I z!o0FeNI9O|xB-)QUi{rM*;yGTy63WEAj~G-h9HMPq-1hCt&ZHuxMlp-U`q#bmIVX^ zAYwZpj{Oc9LT{CL)S%UtJ;t~>@2b;zjeCi}K5GD`CJs73pGsna# zbI$FWJbmi-bq?XeCH)$Jy&J|8%Y^9g^vuku+4g9^fB^W}Ryi8YlB(YCF;zVn-&IuH zNli^1!t=xz=Z%YuBp#)G+dd0^B;<^P4pIU}T<2&vNe+*W8pEAnK2duQQdecDj<7s| z{H=buj)#g!ClHrqUi_6uS`Cjc<9cL71O_Uf!B8CXo)!iQt^+^krB$G-YR?cV#|pPV z$m$K?=+nTjXijs&q11NWkeH2+j|9A2aCjHM`jnv%9Z;e3nfn2^v^)}a4Fqr$=ikGF zO**)dW3b6k8A=Pfgn(Zzz;|B4rSO6X(UgZ}rv1;~GhIBt>TQ%Et?1G17g3p88P9%1 zGa24AH8w`a!NDni_6r-Af;ZV2(7F`&hw#x6;sT^(DAOG}ROSzY2Va}=Za~;M896x@ zaS8O(>Nllz#LlLGQI@4&d34q9)+2~Z24IvKB}VkrLgikHRjQm0nCN;Tm>S;Hiz%O~ zhUgXWaT!M2WyP&!mqI$B=DobuoN7}Fq;K$X^dv{DKT zS-_$pYjjneRe*4(G`Q7aym1hSCqORQ*xc;BDx<9s7RE$tXtwWx&8UIWi49lK6ciRl zM}@z^iob!@qd}bh2r-@#6A}=hLGtxn#fzv-uujNQR_jM#+-79FR9{~Y14N8j*x-x< zzM++e*VAA@dQG)hP=&DfR3q%cmWCa8Dq-t)2?h%eB?A}U!H3FyLvRxfxrfONi3^fF zwr~F`(x(BK+`DVE#+e5tX0IbIegP6h=_=y3kJjsW>gaI@shqVbG+cRULX{7mtD5&D zi*;0POoYFCht_#nS{4yU`voxTNYSP9VjbC|dB{h>y=&j`^CzKZt_IqDEK*t%ggMms zP|iX@dlBo%3JdGV1`8{%K)nB>te*=)H4{r}@^)%+rd+_jrHN`1YQ<5tlal?5s0>&F za?MR7%KhOdDX(56&R6zNCGhq75O)49Vtjm*w)P;mYqt;X^;CG|uoLtEpk7#7B3X8Y zZ7(L6Gy%^@ksXxFWs#F`%>;uvlJlZ*4WbDkXQ4$!C>K)cDbhpx6`AC7l1Z zD0@RIjb2$13;&dbazgP`I%@Ci*l>KcM^GM98?pm3A7XdWT)L*bCpn*yW~wXR#(}&C ztm1Uy7g=3Wecakc))2`oDgvzq$vpf1qTmmu$mw{N4AeAu`4R8N30eNs z<}0;9lE}*J>T>UX3##7ZIj!E@k1vujG-oiG5nfJ}h#?1ws8^d!i;&A@B+17oQ9R)N zx}?qNPsEp}Mk6RbgRDAtK+}vUBxaVgT{1-=bOMHo#|+Ylx=F%~yDh}RBA<_)y%u@b z@a(e(7NzDNOyu}0rq1;NAvYgO{3_cLEBAbw?;HT0EY$jC%2Ly@|;1I zeS$E^l2lmnYTm@3A@V}&umLMxju~v=h%)I8LtcQ>$)O{-UrVWO(#q52*J54f1s*!e z;_Q=$oF2sQho%35y_{ArJUXyJ!pyNQlZa=mW9f zx$UsbO(eKU1LbOazI$_PRslJfr5hI~zxTqp%m-ym%!J6n*n)1^? zIs!O~_Gpf1`7^%UVge~xbL#W7i;(q@o}Rv#3Y*r>#MIOXeh`FW;(^Ac#Yw=6si~pi zf`rc%F(|FWcv38rV>Vzl&(N}f2hG#d6WwKJL5xnyp9~mqWN5mJix85)Ukr)!kb#t9 z*yv;BEAH0-mxa@2OrWxniI6(P7iOmX0n0ij7MAL>B))%5M4C(pHB6CydZdcg4)Oip z`uf6wA7_S_%ecD|RitB0e1ej!*tY;Xp$IJ#ZFDfHi?v|4;KK$J1E5eO5l%}iD2<6mIV9=gaDkdtImDgu7{{0XZWt)XV{yNEFe5by1Cx)I0w3}^e$`UPz7s|F#+>gIwh zrt}qCZz*&Iht;Q7eMK63`}3(rc$eQ>g#QkW*-%T_pWhUzH%s8Cc3MJLpN=XnDV0fD z^E5DQ6SLpOL$I3h+LMsg5P$sGD_5=nJm>+TAP6*wy|0-j8RQCPattt&Z{B@HbY>qL!0j zpzfcJPZS5x24AANe=BcKt-H!~nYu+#B{cpmxfYjXkH6%n=0-)hs-BCxf!g-?^@_u)?;X59;NF!d4F^0Bj{&3B&!(w$MZ&bk*7FY2=I z-v*zb|0-;ruiHqDH~3Gd_ysC_Ah(C7S~g9Ohx>EJ0GHcaWBp@$E78-viHm(cxB+im zcPV~Bxntd?v|JAE*lTanChT_JKEy41TxN=!v!4q>{W7H!J3mIIXQ>dVf(Ba5rlzK1 zs%mLinj>=PLkS#UUN@^ljY8|V`Dojvx!ut}Aekq!vEtj+4hunYbzN__vp0*adN1zX^ObeI1Uo?}293FouR5#_T`p86+B|x0 z&*^d?fDlGqZc@TA)Ki}1_sQ4hTX zMG(_TZK{JL;b-|sR=K+}yzlB<1jU!W+Khc}w)#|JrI~9>q!uMfbO-vu*mwXJ$kZ^4359@-=8w@^xZe+bn2i#CVHW0bp`+u*XKH-(?@^2>6tY@%5bT0E)J5% z2wE5Rb9_}v+M2%v6Qe~Dwh&BjEE5c<` zG9-JTp>j0}E+~)kJ&-9<*XJ2^TzDysCS?k0=2!a(1#MyEM5B;zh z$Y`bn*mEFB7cnuIkg&Bq29-BoB{?<~E zhsefIpI=R4+as>1mf%<~NKZgVb=;;vcxiAfbB`bIU*KOq!QtP}>G*qwfnhj(Xl*wg z%V{G7$}UMHt-8XF3vreZrMx2(vBS6Tf|_wV3ZIX&pj(lrVcJ#v;ID$(y8Ggk=A1p? zg`zB48a2;jazT3x<1s0=M?mo7KQDNtxE0k}i^2$>*;~DH%@^G>Mm2-BK5KG{ej#2f zP1C*clnsIWn(bw))4Y5{V_VYNq2d!AC4&a8BeVq_|PSw{URJ}m4 z=-WlsUr@5Zh0V693nI`1tB2kqzb{V%b}}^i<+AZdnbe2djHtJN%c8k8D|W9(Hx>t^ zz&UH`T6O385gb%-=R(M;#4L@HDVVDzA@hQ>#TjFuX!wHhv`~kmFCJyfDh+WB$?bUB zofTD}pd$sxKbHtXIld1@s7XFo5hx_Z!)BLTR48!h(ni##B@G!O<>NqrUVK zIjZ9-2lkJTWk6n}u(S&TrKab7w+z5k39|i;q_S(^+9sfMz@8*!M@IqqjPgbMY1YJU zaitXSM8h+E-L zgy-Su`-qEUCL%g&^EhC)s$_9_uxR5+rH}JH%RPsjANNqOtRrji0nObD>n4^Pr>=~B z`FN;3h`g>lQ(jok(`N|%5Qfk9nq9XX6Vf{+bmL|;A2u{L)=$28u`6lh({8*HaG zOn*<7?tC~S__OaK9Zme5=N?@*>CjE&+#)@)R4}mA5Xq3}gS{|T3130((NKalz5*PE4;q_kH0kg6h$@7JmgcrRAJz8@ zQGtpApn939O8Dze7`XBwZi^yGlvH`Ak>gQIznuGxzna*f3c_RsUkv0;vDu65fi@W; zIpFdqW4>e*U)onv&=?OACJl`_#PrVzd9i$ILWwK#_F-98iu^B@@132^6|A8P*7JVu zjYYCwWgtJOc%U`j`K!Si_tRrp_9$oewUFuuW`#%F@crK z5PxaD=gWg6ro1jHPMaEq*ybBQMnA2`fKz&j<;`PV-AiS^AIMiIXjrG|b~u^NU9OsM zPu)*rX5W8plVXgAzM`7(j2LwvYT)b5y+4iEGv7E`R7YH?OSzi>SL#N0f;Hf^Ad0dc6PPgC!HvRU+tky*FCE$$j}D=Hn^{s;lcbbGC3zuR}*0_9_uPmv3HL-T(E> zBWbZLi(>=4%#}3p_*$^fGZ-#45pdN#q#tdd4{Fyu{!&(hbYOyXp;+P|EoIsKn1A)5 z4yQIJm6sv0#K$Yb9q%K?DvXPUT>QcL&6}Ecl_|^|>yEij(y+4pEAXaAL>$X$>XlpR zrp`yUR_c+OHcY_Wq?;fI6>&Z6xI(dD^;>o628QM~#1u&5o{(>fUV8W5mfC+dFPg<+ z_2hMLM`ch#MTdQ!W)b%F(PM%F5N@Aas13o2Cab6zF~XrF&=4NRJB+jn%H>83lsOMS zM7QdupDmPCyeJVCa(D)|TeA!Jyb_&>710uX{Sb$it%yoSY zJtq$n(;v^^Lo{1N1bB{pLay}GROi;I@0#)lMjJ$!L2#O1aBx&yI@YaK7svRh7~WY@)VFf-@E9yhn(>f&XfPf> zZ`eg+Trrf8k3S~o71NDw4DpyRXE{01xQ+>q16ncUYkP&6Q)M3A1C_#~E> zBY+R&B-kc#{EiL|oDN=T9hT3bbUTiivVJCX_6IvFJ?FB4FqS-$w=*83S@d3QI z{T8yv5byY3Hjs6gN?}4L@nR%reoNacf&@?z7(%K*b@xM5l(g&5r?ACml5*HF{@ne@ z56^m~*y&fM_^%YC4Ij~r=j?XHD(kL&u2PaqctdBq7nHDbyTHZAE;50}siezH(B3L? z{}PNiFlkA~u8>&IpeBBffZAZ|;Xg-b!1mG?QVx%}5Ri$Y~P>gyuERbjIcJE(j( z`w~&`2hP1Fv0Ng&U;JhO#N|e3{*1B^xbS2p=Ea6b&)t0nm~j9FdvdFcs8IjwJJ#qz zg_EK`cTHggni*rUE39XkiZ8+i1|KRqu(_RDV3&$uM%7VpTirl{V8s0dpag#uw3mJs zCXIeMy|0akol}PFf44K29~?+JEcWPGB_$?OzhCMHUqh>Spg+I$09jTSHFLzPd`MOi zS$>0tg7lbT$JRsf^*fGRG#%gDA%$Yf;LlkEg=Z>B$73JZv<9s5Ks|BdQ(<#HF!8|Q zv(o)hv-i7(Xq?(Ib`U@x^QQy&puCoS9nL;bJ|{4Q_ImHRXRz|5lqlZm$yL)Yw=baB z^uJzH&r|~PnWjvn;d?fp(X@@iz2{}!c=2afGFa{WZ0jHdXR~$PGk%6B>1EXIavAHpIr)E#n}-~j= zg>R`PLfCcBohz)TPsNYuT_*@T8^K2oag&g> zrEqr*C|Z;DDB{h+xF8mDNoERuKHsy@x*o0c*m>x8K(~B5ifnOladKYYt)VKg-kUHj zy-9nhwD;=UWb{4mb#KCncFSfX)A2$;G+sbwp3(f^8Uz;AgATN(ug`c7gyyj``LLWq z(hh}IA;H5T1=FB%@dfDvh0T=<(!2I8+qe|I%vr`>yB7C+w&5sw`>*h(67oe%6-53%v zEqM)l(fRHveA`t<*iIXT@xWttg=$R}xLoWH+H%_)8_C3%u@R?|h8Sxs+%t&3yXXny z^zSeGi0YsMw83EI9dcY}xx?Ic_`w@zo`a5qpS0k%UfUzDL$G{HioU`CP-4hwU3Y=> zsjV?n@cSze2mILsa448;8U*BG3RqPZ27X_H;Er&Y-_Sa}pu35^zb-Xh_i6n@d~_hF zTRr*;aaXDxBS#mH0k>oK(H8@9-(`1^v5cI1X^yJKCHB3`?sCI`@}6$oRhqjEfo8Tn zKYx0dj1DN)i9Vbk-N)A$0<5bcr%WbbS5O3?u;*20%x~PFg-{GC_=$*55X>J=YHK|EC?u3#{IK-`kse?~Wx20XXGAw%Zy^h4cWMuZ)atf`xDh zPaQ^(F(ND&lg)8=AHK^L8`K!v%_Zho|2xbRP=8V1X6>M_rDrd~X;EnMQ>?%6 zy|7Pe0{|WWjv)ksIyS!pCh-5TQA2UT6r#8QTY!T@>tseOaoJFak;jK{Kf(~Dj{@Kz z4Ozv1CpZn*kS%d`ak+`4Kb)dp#zQ&~D_?EXb4#W0>peC|XhlOI25Tg#pB7&3 z4-}0&W$z;3L?TJu|4h-qtN^pn^u+Ax(_%=%^@+-PKq2Z@({wWW>ABgthb|5S*pC!?__gw(V7>;6aibHNq!c+Bnd~Fkdz_rbW4!jy zK!ZG6LIr{RuON{Hdo}GW1B*892FNS{@$=pTy&6?zWhET_5*$5{0Qix8X);&+k2nxt zxVec3VqN7zynnn8LG*~+xRu@icO$hws0Sn^C7H%TthQ!;c<*HZ{?k6oa-0a76?mKR zQEwnZb;9RIAm)9TdO?L?rkI!?;S#0Yk4!1_BZAxZ)i5Xr#G0D_M%9Nj%Hp{@O?=ic$j$>h`&nC<~d1_4CL>wTL{ zi+(uRA3uKd^r{v$!|-J~$sj}vqAC-17=`v0tc_47E`lNj7%&tnKR9I3BAs<#-Z+S(~ zUCcAjkb0bFhT4ViGl89K+W)eUYo#j}OA!+hd4d!{Ok11u<=U9xQ7`zd-$N)GJU2OY z;6n}3W&CF)W=2CpgJ5WrC-(oiISAPi1K+9vgy%ZdrV^LKX$Sl0R8NWo_{OgZL;mIC z?1{^8mMi~v>vY5XHkh_q?7hO^2Sa_}gj}kUr^?@94mOB4!iR53KvFXf5HZF_C2%AW z<+bK*$%SBnM$T9BwfxjbMxgb?hct9Gc^!)q(fVO3d*t-Y3)R3K|30>w2|Uw8 za6u8T^K~Gx&yC#5hynW9zu)jI4Sdna(e?)+X6b@|A5d`ZJnLKBPbf@Vs&D4s5%kNe z{`YfPo#Ca0|6aNZUTBE)hL?tGN%i&i*26%KJ3?YG{(<(Hbnkx$*993&K0ZF)dvMo0 zObh2h^j7`w9OJ!t^JXTI9~2&y5)57+2-~~5*vp?os3pulUqUV-?vL{%aY$5vDez4v zps+rVK|q+>e;hMdn>UXC+WQ~rRXl6{AM11kXe5wx9fv#xg!}yFJ#SZgC2cXge)Jx{%__yJ*2>T@9nM(hp!g5dCg@dHzVVZ0!cY;GBWyr z|2VY$|Hb$W@~g1V6ZQ4)ARhulvxi>5d5fOGOwtuYhsN;ztm7HjI~d zo|^%+i$zM;(Q##{1R^q^)MqB2>l!hDq_iC6TQd{JNM-c!^ki83R9bpoz`@=R^)CCG zsA!$|5yTpthj0{h{Nq~jBf&}T2^CrV2xd%lK&Ac1TzX|+vFMCP^aoJkkp&hOEsYBx z5b^buNkJwL%$mC3(!$aO|B*@vnk@SNoADV|L3Z0Sm@yC5>5hNGH~ax9Nl9cO>~Z@) z-OmYGSy@ddb!Vr-qbVgw20VOjF$)x0pk%!Fpy-@S3#eJm8PHN4Kud_|kAKz;ehB** z5JDr`P;Q70R+)FTcwb>grc{+5FqVtz^Z3s9uw4#aVz?}^LFCE29|utHSU`2)#&-0^ zk_mUI$Qv&yV|yecs`B?27)oXDJs}F4YiQ8w17R2j;)oV?{~t#*WIsU)RqLLNq@VPM zfqg6Jo~(RZKo#SsMkV~_0&C46-JRKrrs?ta0fUD0q>_G1G(cJhhk&0%Jlu|V&t>>W4Lkh-uU65J-@#{$k`vNK7>5iOVPjcRJO5GHmFnthwe@ZA2p)Go zr$H3kb4OPRyEk=83Dq-|zBM$jAzk+o9i620MGOqtmDgH{P!j;7@;|OT^EPoWGY9sqnH%y3=8(YLd%R!AeIfb{5EfRU!%h4+m+v1!1&S0y`m`g~r5 z?a7VP?R>C9K(No-=uUJL0?0y+V$ZMMW(d_xAGd@oG1x;UIsYz1zkFMduMv25#N9eI zO^C?RYvW&foULB3(Y|eXltw3c+qUY_=jv+tyXVIU3z7WJ%%(c(e%+}nKH=WgM27K3 zaBbS|8F3mVN*jXjZ*B~BWm5q5B8Qkb)T)9Qq@zx%Ef^CizB)BLH_iJ|p{7sIg;drY)f0i9vUs-un_}@8|4yFzWH^XZ@+n^pA(ha1_ zdy+=+=7cZ#$w_rbZT9t-yxf=6?urIcgaA2|oRQ(Z8QwBA_uIXJ>+N>DflpgQIOy-VzK9muz+w-y2rIil0iT3`;bxpDN2_nNV z8&vIBjt~8Wu%xQO|g4=&BJJSofF5%f3JQ01pCqCs|f|#Hm zSIeJ$>Mv0jHa+^4cdb$sjDGTxl3q;=38-(dM4zMl--VVurQ0;TvH#ZH#l^)@x%=7a z7h{cc0$7zTjpp)m)ZFEgU>g8~X{9sdBazL3`fXL|D^ihQami9nY;L^F_39cG4!Q(- zxkVr03Dr^R^SURB>N;Y`)m`|(1Kbk#)O7fVzam7AOJpfh?WW*)#sOS30}`$Afzbz! zPE23rD$c2cOk}Pm;$J(yO4VG&GbyXm{uUy%gmf!f&9f%GMbf~`HdLqG6TxqFa0A)n zZ3_Z&Bi_@C59hzpwQD_FuRFadDIt41TD+&FG^4*;fm||P(fi~lb}qQL%Mz?^OZuZw z#JX~lVj59Vcs$!agxv}%^W39B6tPjd9bV=X?9n*F!ava6Km?q@_d1FnCdP8_LY`OI zZ=D7W()~4&Z*`N}XeijNL3FUAcNfedr4DcHZi1>pyLuQW0L(Ep=#pq`ktCzE^E$4Iqfj%9-jzYn_ zJP~#ouODv)7;wH4oNRER4BGnj6?UrRjDD!r2$p>wuj_tV2_vIuH$MWvJv9<3i+a00 z_ZTe7xjlkV7{!v$R8eoiwRO0&`taN`4LV~O`qpF&s{@kWBPpOq{KZrg6|{}L z2ZbO*+IX0di1F-wN+VV5-xBJvz?N#w_@=^b*q)0Ds~Cor`28tMm zUqyX`*wGgbWI?Srm27@e{=G$}Oy?#Bxq*;A*W#z@X=rTOsd)AcP~U^3tSR94I_}(i zJN_AcLNbT!XzLvm>xi`FdZ; z?ay=|w7RdaF>2K^R#GwoY%d*&{Nc{`x?TNs)NCP?d8~$Z;loLIyKGgbU9-O!0Wx}Z zui(sht-|b#?@=|iPsR0`68Lj0s5YQLcpy!8H`i#hwVA=7{$mET(wT4ZjyG zH%7l=;gEK>fR_ZQ8HUWbrgO?q5MC8d-d%b7%Lb?c6k~;`Um6!04(jU>KyB_ixqiji zxSn)8FPd3^;9A?GH1H;;&~3?7TneOQWr78)>|UFNPKgLlWd@j?6Gs20Ir)ZAvTfGD zX2xj$i9Tc1J@9b33=2**{8fN!O^SXLED5e8)VI%@>^e(=NkA-0&i+v7f+;D-j*#hjeWK!ShF|dJou_iI_uS{@B;JX3xweg=%^~wWXc3YGOYBy;HF7mVhX-3q ziA_7Zl2VTTzYLScnqe>lH_y2nay=I@qss5A+{Xv++l%cMYx+8QDd5^s--d=T!F@V& z3gLynyt|_`JC^UT@`DCN2q?oA-wrm^w}4*?CU{qvfJA-j`n{o!^y0}3;_N7a*#3Ki z07~{9M}p3PsCAnt0a6B|T^@rwp6g+HlJ?NzHn%YaxXej7;%{vZ0khuW$N=(xqi7`0f0B*Q7`X}5oE87Rb2_MwUrAcNU1 zlu;iC?AFC(ok=07h({14hOOsWb}=lVQB8FiXC+0ovGKf zH*9CvxE)Ztjn)ot#jv$G5zVD%D)M zekIeI)Lrnhqoa0chCU5>vJ6d?JS7%a!PdHBKAy^qcWEu^OYvWy3cc8wj+OxmP_l6a zmLt6_fL=lid;7KneL>#jkLQ_UutE|m`*1pi_%T_gSW;%Dv1C;vA zy*%x7Lfq;CH&FOA!#Osc@gQVsd_GEz^3cRU(tazJO5@Yi!_-S0!)Z`r?#(B@PVyf) z3X&wATTN8Gb6)-89Njc$EZ&9#U^SQ^>c_??AzV?d8ziC4(8@6hszc+R-cezhBr0bp z{wAz{JBsa5@XK`!%`7pAt@r_08CiI_tSo@jgf1?2^-AdQ%^4r?k_0f}^bY^MtXy49JClW<&3TA%6;=Pe{_AC@Z`BI75T*&k>UX*N+7YBRSm=JT zskah!K2}_#G!eIE+s<-?W`mk%xR5u*cxqB5%%>-3EK}Ur(OWQjt;! z`-@IpUW@%$nXaj1f{7>O zEozDxb;`}j`wa<$8hn?wv71U~N8`WK96q-getdE8I@5y`I!PkX$AFI^SuUJWjr1<5 zos*L^>L z!upST;Nc|W7jY-}(~R?VlbgA!$I;o@d1Ftfovq;M4~vU>U)VFYJ&7g-K8y1FSj7s( z=mZKX(}lUS$T%ytR@I)DfBl9ndqwGs%?4t{_!UH61xqKvJDL3eCCyaKNdwgV4=Yl? zYv^{z-b%>CnlvsA@StTqzOI!R|Dp66SQ(LlroVn^F71$ugIpOJ$>dYhX2~RQig$Ee z1*$42BQVN%cMJCgV8a*{}l@xz-(<9jD#O3#|oV8AWpTDeS%{$guzxSQr@B2K@=ef5> z&9biFW6v3iwFr@OB24)6mplD$IL;+3!)>zbr&jC6D1ph59RHaf>;Eso=rM9=d$p1E z{(HA^W}zs~BZ8f;y4v)rUJhA*2XF&(gf|N?>!KvL1J}M-Dd?2<+6M%vRCqnVk2 zMTrcF=%0XYVHmxy3C0l+@Q0}j=&A6J=1jqKkY!o*c2IATfZ&WnPHMMn;hd~~)3@8P ztXh#`kfT1{S2G7R=A7`UlFdGsgqO$Z z!?s>WQ1YeGyK36*FX@2MT#MC{e+H*Yv%DdqoNGHzw4}BJBx)OMHn@ z1uLuv2KM9n6JLnq!TztgIA1sqj1fnmN4wHUq*fo(rp}jY#s6$=$V@!CNl$>nkE*Dv zlDs`5Z+PiCE1bfgOrD>(*WuT}F6~P#aXu`Znmym|HS<7T+r8drQ=eQ9Js_+l@AVXE zjYQSn`66GN6&r}|fl0%$jSRTYRi2$W*DovI8(mQWRv1B9Lw(4}z01ip5z>Irv&C=y z3OT76IY6QISJZzgtlREvr_L^EcjT^lBm~1{>90zFG}$s`Fk6q=xDr( zYmSwBxLCOW3gzg>-!O7YhFq^s56qX{lh zlE!5?3Dcy1yuripgG^-lVGq>VnqiZ)$+&sC9NS$T#-(wspRd98#A?}*<2&drLC8D`vLtvM{s99?CLlyP@nDXK+X=C3uGY?SFi}<|ERFS zkjUHv)kCPM42#kWj|ciN1lZQxFi1MMSa*W8Q^u~bH&%y&kW^6cvovK_N(^X_5nGmP z0wavT&56ExS0XQa!MnV0ElC0hYH=sgEOUiB^rhpS7N&ITno@ZIBLwf)cdDO%69>`C zMjtcn@V?lH(b~RXyt_q)LD^!i8lUbMsOA-hR~x8YQve`UWC>7g!XikDkSKA$FNLS!;-qYSXy6k+uW+$T@v=jfNBz71Qy_&O7OAruEDwX(83_fli3!TsucHKDFlZEjQ}oKc!}6 zV$BBjUf#hrJ`qB^62YD2NJwJqd2{4(ZJKl+ap$XeczF2w`FS1iRJXMu<2BqibQ4PJ z;^(8Jxe zJjiXJ3`>}8(h3R;;ORP+8s6UCo$UdM`07j+|7~nQ9!}|;ZUpiU0~jn`8PO6OD$I1j zzwN$E;xh&J3E%&=%t`3Ke^s_AyU3=+i-|ms6YM~C1IO>V?m)(!%iBv_UQL#V(OP0z;Yz3Y-o&Drc=OSw~+lt2|% z#pE5=f*s5+nQAI7P|_wN)^)eHmw~7}=&6*2j5frphgEaJASRd~+D&CJlz@sZRcCEL zhHlMXnGm5;M5II8TpG~lnE+o{e)M3=wV0Q*z5=Ms4uJRmnR9M}bdQyW!ah<+o=_1> zBj2ZDD?w_8r4zR9wQX5k<8tJ4t!fhWh4ftHuWn7ft7jWUf{aW$Sdzfw@gSvUZ(b75 z1NjWvhd6`f89ohGEvy#)qXPZ#*Y|xSQrJPpf{=DSSL*%y_W?4L|1(itfFvq1&zV|N z%2)-SL&B79FifF7%qF=Griq5u@hEClSVA|T#$eRQS6?InZ4?XAd0}{%+ztLO+@)JF z>-X-ZIY@Xt>>dA&NTs%Dq^p-?}NO$=Ya( zH{YbuWZksi+|@rtWGVb7c3nxNxv{g#JV+JUJ!ui1PsXjc4Qc@JE_h-zm<10`e7ehTE-# z-K@#h>smp#(~o~tE?GU1k9qn6>wQ{y7H|=qoY9&aWJPI4Jtj+zmfbp^pRjR>li?0e zYpj1#pm+h>2WmW!F?uLzNs*_^}0)^C6 zx1q8r5{a}phUXg-EQkr=1VxA72g%%wwQ8B!%4Oy(KFfk*X3jCUSZcPKV`f&ue|heI jE{KQ>-myLI+Y8J%7Oa^In6YIhxPauubLU>P3rzSoVq$8V literal 0 HcmV?d00001 diff --git a/7_deep_learning/imgs/lena.png b/7_deep_learning/imgs/lena.png new file mode 100644 index 0000000000000000000000000000000000000000..4a243df89947e325e0812d5dc7a4d52c2a20917d GIT binary patch literal 23303 zcmV)1K+V62P)004R>004l5008;`004mK004C`008P>0026e000+ooVrmw00002 zVoOIv0RM-N%)bBt00(qQO+^Rc1`ZYu1`!yyZ2$mT4@pEpRCwBD{b{o$S(Y7!t-bd- zKHPiXeM8KVkz-{IT~+AnfsJk$nxqjTNSeNgW;E&dNitDpf*_Gb5Na4^5Mu)kRCi5T zL(Z8o4{y4YyPv(6J{*79EmMYNSj3AP@$Pl^vxl|UT3i0FggQeD2+?fXkg?xhzPy;4 zWMZzM006nH=&LQnPbgMcs)5eR@H0a})qzj;213Y3I^5J}kt3@;F>h|ok;1rP@3D@z1Ptq-X{7@{B) z!cY~c5F#S=AyHKk1xST}q#y*MKmwSQ;}8)6OJ=H;l88t>1VKQ?H#;YE_0D}|L_`n@ z5rjZR05uyPe|$wzCF*kkP?Ji~>+1syN`MSVeL^VnMHV3l5uqj#p{SA&p@1SPDhOyj zpDF@@+(ZxR0s@*6VkYXt7!i(SA_|Cz8UQL7Ab5Q-29a-laO55}6o>*UfU2dOhc7;Q zxdTH95r_&zYxty-(3};bA*?4z1aruX07L|+*DlDYj{yNfgml(8BlW%4r`7@#Rge@3 z5~3;&i84+>fMS3O6cE$;mV_eZ)uxcrKX@n+4nm;yDHT=AcKG7sD>DTY0SE*_K!g#D z5CH@bP%@+5GeM9bBw{`e5v+%vj6jf(2&V*{6ncOR)|(LlNR$8(3=sw;0T7MRQ4du8 zmz7QeHLeA)d2=WMJ9+;^NFpXMKw2_2v%_bfY{VqgbUu0zRaFQX0froxuXVXGTcK<_MbjJ08_wBp9DG2}%Kmacu(;Sf*bAT0!)_V|SP*enDcz_g$ znM6c*%=d<@mqSE^_3qUCX(TD8B7|y$10)DWeGyeeL`6g(hc|;0cJ$tzh;U8ykVinU z|KwL!F?mpoNo(|hO0t_9FG^9>8Vu+3O#wn{SXjREIA=+a?V$jnJCkAT?jqj0P|wYVs6%1SRSp zMExH11_~qQL?7f_3)Uxt05zP!`p`olDs#akyve8xfmk>rf)S{fu|9x8vIcIEt4oK7 z9lv)}Ca)*TEFC`koFHWbFHA$%i}gtn|tq{k19c`m~B7% zbOSLcT!ijwHMXmSmxz%1ktFI(5da7XgY$W*_a}luk(w`rBmqG{AWDE!nMfk&41zVo z)>}{3+K;4&X#I6~kPsk1I-R1m8X-wuy&0UeqxbJKN_YvC{pX)-)WjN74MvefC`C=( z0}>*q(rS$YW_i(GExXB5`mgML>P<^ zh~PUJcQGLtqNJupLoYr~rD#~aYp7=q(E7PV0*DX~*0)0C66Isp+i2^Gv$7NkBT zwK;&+E36dL4oHiYStO0&`h2$^#Z;6c0-f&;A#+lld$a(cp>ya01zxK>fDriWlg1SJ z^gD0%s%iY{vkjD5Bb5h0Ng$xcD3e1?=B!dnMAQnN^|`K9pNa%1O06$cOlqW%Ol^y# zjzvppl+r}EetUfL`tnc`B@zJjo9c}aEjNv#fOLsDoJZ}Mf^;D%1P(8jNlX`y-v6a$ z|N7G_MW`CY33pK-F~k&J$`F!(S{xFr*;|32P^qA)2qH{Ds;CfDSWxH)(AuW4G9`2i zag`Ktn5>cR(WA}lXBSX)YDn##fx?v%MNbMejCKQ>ZwwytThJY$Ue|am5N?K2^2-AudxWlwC z0hZJ>N*T9Thhv~d*V=yxeN-k1rAj~+T||>V(eisL%0EZ2xqbv+%{wN)jL$6fx1v-GQtr zWtmDDt}kOlMFIKLO#M|%P z`o-gtF!$6^uad%4Ma4-RI`*JjaGDvgpjM> z&p#QNQx?#vb88?XN>HLiAf(Z`Lao&rq#_P#U;pAyuaz*0yK+@I21eR1(3IQLA(#&dI?e&fc|3WHJ?>0y!9>O}D#<@BYm+P19j} z5!q4eP9)r7Bz)9-0=p z$#?L*|LHM1p~JkQ3=x@tLCSDYSCgAYNal+cCZ_WIqiZ2VEf^)VRTfBE$aTE+JNLCr zht1_7#4sb3b5IW@p)8;v>dirbVydP9k>ZUzG$n=_iqcEOvo zCyT@~>AQa@+e2~CEA9}S+XmC|`ut)yxERAxn>1j~2j@S13Q$v4f?!H9GIX&FdGNar za`JMxzAAPD)z8z82(TX0iLP^drQf`27szS=9sHlV_gao}w1_L4lVqzh|fSLFn z&B>~%y|CyMsz?9j^UtF(g?Oz_RlPQGGQCONGFevE0}@adP*Z&Uiwy|PCN5=aGACNE zZQdTe|86@`ht2s0rkLXc=9H&1p2C1CLBJRxb29;$Zv#*bCNJtGRD~)Yu#BVf!qUPY?)$Xp9*kWjH&TN{X4?-HQGLqgRi8U$fR zIwNJJLOH=iZ5nfAGwStad;fMrcoKJa4b8zR1YXkOzZieL4a-t^gJ%iAaF}ln!)R*t z&)*#BhL67}LTePDNA7eVjX~6o?yglr)>+aBliHHcmGn)kR+Ha6&=b;x zj0)d1(-_)lpq50CCOJ}q(IiHeL}9%0_wR-?bJB>UI*pQOI+yHGmVdDNlV3?r5i@=& z8WCbPj@oriN?K!psK%3zwxX#5I*=w0kpYC+@w3 zh>GTurIux}KkvF`Y6L_ih+cm5MpewjnZg?zM>Tcm$-8$`6f9aGw01TMQLSxAg&QTP zlo=>xc*Vv85k=nS)-exq5Ht%nOIpSdGYKzcw`<;gJ5z`vCE_qeZp<^vO>}3dvi$Im zFiq~?Op*j1QHabBr|o0rs*I?M&anfyAN&!d?d8!1kDDDM%uShr%?ow zX!D1kem+i4)`38<7JKT$dD}?z31I-A|MDPEHG&anv`Ef=@Y8o6Eu#3Uv!F^+P@p8e z)Oio;00%+P?PdroNoyJJc!aHh>KZ1N2qJ0H!z7AOA6a&b_ilCQhiS}d8m$*|VN#ut zU3m~mN+786-hcal*_C=iY7Yl7bu(keJr|ZpIQr7aie>ZLdj^0D^)`&lQcj4Pm^<=V-g4j!4mqd|I_cwX6%j| zdH43tBw*^v2S7w}8b>+)@P3*iFWZ`Km?Q*RK`_K$0XTeOAZ}nsp@I&9=l2ei6%z{= zF)Eb^V%Vid_WN=;dFQB4<*X;#3b4r*>~W?A>+I=v+A`7gTIoD?Y6=cu3GaS)F7G z2v7~qqg&T?_7+M|-Lh~TCqHU@bf0d&eU{Q;*S0!MS&J$nT+|Vx=0+nlN{TT9jD*qd z{O5mf42V^bo`|Uw9{=tC?)KBeogM_2TfOr$N~KOnOlm5? z`n|h0MblQQ4=7AhDGZ4ff~oie>tHu2Z5~Ohz?4G09g|N6i0y}EG%d^E()YtYm%ToG zYmugX zyesLXo?CHBi6jywz4fr0BDFTpF;TfBVgYHOLLn7GRTD84o5wr=)Bp-cp1O+~G_GY~ z+1$mYZ33q`T6bJR$>}VngqaAvrdyMB#BIe+S017^ntV z7{_zJZ53!LA!K?xK86Hi92S54!}aw(-R{C2PE}LkbfJh4(SH}xTiU`T2 z7_NEJOk-noh9D;n&(dvmg9}MGqolj9Hi(Gy{-cxOb?H~BL;l$y2$y0A(K^9!3Bdh?m)0Iy;2@s67#m3X23E!vH zrJmTKOI|#hw%cDtmkXO|h=!%lQf#w1YQdOceUVWmH>cO6uim~L=S7b@Oc8`COhp8j z=VD@U1F@#XhYuTfwYl?{lS7huph^hDDj6?KBmfxdG@%xa5-hkKY61mw$r4j;VvtS_ zi@VCb8!qI?BZphb8Vx%huG(y}OP$f&%VahQOXj}0dwA4u z57y)?Qv?7LFzRW2u@hGOJrS0d4{uqCrebK7!wEuC%qd-KzE-&jVPK5e9EKne0;BuM z+SRfdq(m#pgsF>7zH2N~p04x4b#Z`|)TGUJXjhDq5~WDP1xH^Ap$m#ciG3YhNhwL> zw&{*JcPtU)kQn>xg->(|ouGJwXR9X3sd0VO*}7rLVOA(p3ht$oubpNd0N zR0ULs%J4$ghbPNp*w6PCF-2$&X}eozX+*Z#O-dcHQOLP`uM<9C?n)q_*5|C!ft5@o z;8?okyi4NNr$dbEJ85#oMLAkAk5igT-<6FV+d-65aA=ZRxpe8_>SHs3)98&I(pd88 z(J+$tz9`0{{VOd$!1We8PPU~S-sVWum0hFxlAPa~>>zIah zG9_Y+s9hjHqCk`(OKs6~-a}f)xH=u-(!42sCmN7V9JR95BZdr3zvq6iENZesL4?_0 zw3yN$e$e%;vgcxnGEA>%9}-B2q_A|k?43hRea^YSq0tvv3tp3CAm#$4jSrsoxpGY`Wc zsWso*)zkd@kSMTV;-FI!=Qi7eW z$9HmxltgCE&`sMx0;!TrpenUiq>!o%CyC0It;!4ukRm2pq*3-wvxvP)x+sg4IZCTyZ+{R_ixM%opkQ-sy?l8Bi{g(${G(@+Ra zD;vz(i^FQ61H9}yMSEqd#8=PPw+_4g;mhIeRnzhHize3V9M7zDFYwW;-;evN>uGh= zaiSPNliCzjN}kE)>BT3{*q(mt1N&z$T9Zn5qn_Qi0!><_DK`0EZh+je~(o6WSjTWpf$P+ots zHjKNg4VD+b_~8fTrQKSx&`m3*a5G~Sh)%CQ|NP0OX^!4|fBBPtf|NiHV)Ww&YZS>Q zNr-q2-%`b=u}jfUoSGi;-~n9%6;?r51t*p{s(+3S&x z+lzJk`lXdP-iSTzV*C7M!F_(3uSXyCJb(Y*{_56oD_+T3Gl33_1TpSjeERruSDL)~ z*0)Zt|74R)5z<12Y; zvWo*77Tx!Y?7($dC>+wGlvjOwd37wCJK@8dS9j#e?rL#wdo8)_Mze>1{GCmC_f(5} zeY|hD@qke;KKu2Ht(Z3b?YF*l{N^A3xugUbXopzbSuw0hGfyq#hJ2}Dh$K})i)2E{ z+HBQH!mN)86+&GkNaEF$r!eEN>h)R*Ke(>E=e)luMdHb@7EslA9k6t9bt*^&>m!N9^*(nUh1+OMqm)JB z_^Ro(4Aawcz1u0e)7H1s0;|_~vpDS9@BKGNAKiLC9|mg};xwu1EMds_^vTcPs6|@b zIy*W$Tfg`_pQUW|5SUu~)-gicTnpG6Xm_4$Ln0|is>G~Z0qC_vR#E|pN?N9hO4#=6 zyE~8Em#JwE+tee_90)CD$)jy#>_b;~zB`HkRwe*bcoi%9!#b+A3c>eq(nIPez8^ zJ>7l%#J|Pe*{840+Ozln%kk=4k9;a(oNkmm6cyvkU;Rv%db~t`)Fz31bpC()rHbW1 z7$82{-DB}+jHom|{$=c~$02Ezc1UI7i=c`l2}FhGXq+2*6|*OsUZg*ftMg2 zq*Q^37*$}+?(z3IqO8)z=!+~qOiRNA<2rG3e%W0=!->2Y>}WTv9*&=m^48Jyz26Mq z`q`Zyo;{cE9qUlsB!^K4r zYntn6eCW^QC_TMM%l`4*r{{nDargb(kNfZ4@rlYx#8if=Fv@5D{Nv+0msiJoZrUzu zS}cC`Cm%(!B%*MLAkg1#N@*IcdX=h{;{5acyqKz*MpU81Opc1m0wD!3krI^#C7PSZ zKegQFvP{dB=3(1p16104_5Ag)-;TS5y}r0!Ji737Jf1V-tJlMm^_{C9;#ViXeT(#f zP_;~91~7b@Mtyj4v3Ok)FN-rT+kf+a{slxeV8#MMq*<@IFF94QiE~yW&a(pmti^nY zz@rcm6cJD>|D+0hq|%O61Y((g`ZVjEMY*~=6}WaL*|g{gi+sEHesTHw5_fHHjZfZS zw?Ue2?|%Q?&sX1B(W4Z1!V8nC`FM!jKX^BD1-tH(6kDAh{{G*6rP4HwRq>ygYJalw z16!Nbg)(uQgC zWXM>rwqtf_ucyVG*Mj8{i}3V#x_9~Zhj|L~@DP?VOS&xO9R2+_ueJ}aU-#=N8vNp) zd|Z-5N&+P!OwChsnoG1`ZD)X3K#N2ZE>~M62 z_UziGeHIyZ(kD;to5$BWEErqS++DY4X}441WJ7n+Y_^O3k(EKs$71R#K=ItFh)P=C zdwF$negE*;4>EU8e(~{O)C`CT+$kv{A0M-%)(F&!yrsI%%?Kvi(lnZ*tsyK{rUA(y62-TsUA`e zlY^##7}KINRSDYSc#$tY@Al7;rrjV2B4>&T3xX2Xo%QsbDrODgHo>SSY< zg3kg#KtU0)nNWyI2Aaak4Ud-aX}{UMZ1dF+*hC=|U5Ykxm^?9IUm7`Diq2{RS@tF`7R|-I(xh!DRVWD60#!2X=+sK;v#We#;vlRo zdHn?|sGwDR=!78V7c)zq{YS_oge|2>6t=pqCE!@=I zn&$9|jaj-WUX_s4u9r>6&EfSGmW!+*Dr&}{q>QlB#-(pm1t?`0#wmgbpJ@!UkS5uD z(n+1=v9lG5K+P=GTScm@rgNi0W%KLbZPX<#WNMZNjTeXQcs31baUh#Ah#&6i=JK8P z>gbOjo_}x$O=%`{Ndt`GkUEu|AQ0NjLTDDPWiPw_8mZkjr3%v`0MPAZty9ydqKH|N zTp%_J((8{vXg%iiFvhHaK(&uZ*=D^uDXKPI5N4(czuDbRF|KmbIN!W@Tuw^tW4*XW zm|$6k#rexV-RjftfAH$;o;O{Wc|hZ1OuM0JO%=7JlB%;zx$pYcWQ;3~1t+r`_}`S? zJ~#%OBvwUb0@BBE*pH=DdkT`IB!X0WV7f7L(3)l#VG1`uX1uXERB>pt{k7S!Y>Ub6 z_2cV!_o}4faQdt{dS#O~Betb|Qtq5S_`&7+&Y_VczCZ5D)d3!@wW^4iwa8U1l)F{8 z=!SAQpZeseFf?2sI$?RcnWRmq3gaL_*Ko!-TOv>tWD2P~*r?H9wzknK?3pFmLWro3 z$^syA_scwW%OqoY_0>+V#{EinU)}4@Hj_?A(Us?`TV?yJ-+E`C-U>I+7GmjgGm4ld zh3Z^y>r8yHZrLrn(M#EO-X5wLvW!g1seNk|o*RkEaC5TCVnsbDNTQWBexrV_^0wL0 zCPa#Wlric?YI4kW|h+#Bm#?D?G(8ZkA<+5vuVZP!0>4tB0T0H za5ZFL&7-qqL4=Gs8&)>9GLUl9_Q&0w58j)KyH78h;{na_W#RpI%K4~Bc_+u^=rdjY zUUU8J);bA@=&`5!0AWoY9q`?z>HBt(L>QAKQ%@%=bvF794?|T= z)lBB`LHIaKC78fk%qs~G*7~=0EUMLFCxjHO0weI=>G`KGKYM3MKj7=_y~BRFd^Rl_ ze>z@!VzV2&NaFte_a6VXv;A@`1~cFP^wY)hvhVtZsxsiB2`p9#F=apQ&qrY?*J-Iz zC@JrQp=5h&5z%DCjZj|%LNSe~qIC%(Fi9e)m<8lFnv=h*_~$xPL&z|JKtFu>?|!*o z-1(jO@$21JC+n}|?AE8?wDF8aec7(Gbg$n${O#ut9*+Iu;9XL=_{q~Fym@u#j_=(* zu@FwMfP*FmA1|JK{`}x1vQU7A9L_kuBP)W_}?IG#<_U7g5mrToYu{_&lFY7d>)nO`e>n``aTK=K0zB9H< z>}{F(^po@h#Qyy8ldnF$`~KU#2E3{iTw-(n4a_-q6c{6;bF3wsx;=UtI3KKEM2MMH3GN;N$C$ zzaAssJ>E$);zRavT`szPX`8@)qK#}Mnlt^x(lnD1aQxM!Z^LPb; zeU{QXAkE29k@X*4##dA4Z?3vCZPuqhPQSGZ-4ETvXH2&H_$*#M_`%C>Eyh(JQ(r;ant-B*LM!hqS@yK{@E{4rUUoo>eAQmoh&9yn`JN*hB!PszkI&iTO*m1 zhXkeV#>6sFTw}a_YNLIl?**YiU=F83(1Suv&P1suM2zBrDu4-ib^l_Sbx`1__rJ6H zT#Cu?_2BgFli)6eZxWASKH5_8*)*Ihe|IdHv+8^Z52VUo4+q+`{p`wBxW^^ieK< z{oN0qoR@O^JC`3cyEfTmVpMQOQsSO2@fuh z%5xE&o*(bzl|8!qo3i?4`;Owd`L>MrkM}08|034w^Yp#m?;kpAMER$`!C~yruJX%u z|K5l1{-aNBU7dL6?qKf9PyX$7u?G*nySzMC0|1+fYBwnWRg5^hol45pG_S(A6tClv z>bK&Is&+uCQk|FwA~T4mLI5UaGVADY_1TA;Tk9PUarMa+-(CJvPF`EvZkLmJ=y-YO z%~oYU9433~oy*@H###dnw%bg)ETDzo5h{8O(_~l z@)*6eWeOJ|(44LqO(nfms!2_3MARPKnJ(6B3k3(kz3Y2^xoFxbAN}T3jxIin{OC)= z?|h(o{LbZK%EhUcTYrM@f2}b->X@v69Gbi@4WbzxCTSv$`#_%k<7Vb)b!dQB=MINY zfz&S-iGQVEoTbJy+GuKOVhZjL&(rb!_1y<|wtw>Fb&-2-UqG--$*_}k8-VV!m`eKJgAlmVAY;Bf{bu<{i5r-nI|xtB*-lB7cmo6g(PJje>|N0wR^`W zZTeUL;Fk~X4-fCe28E&E41gO)0jsNakeo-NW~eFWc6JpZw;i5$p1|&xdJw zdU8H!v_~;aqrd?O*Z0f%yLNi@{LAw;@5yZRF|S^6(oq1kcb4#M5yFswph20{6yYIJ zAY@)1b!|#1DGh}zRjyniZmLzx+EhgvKRo>5cZTiu>}UV#GWOpeUwz#^kA88PHhtWQ z{lga*$P6<3;P`Mc+~4$VQ~u)TM{OepJ!*Klzc{=e^x<-i7v3lk(*(Pv*VAtM`tplI z*Oz@1Ya>QEisWt(#p+(?$QHPO{T z)_-_^H5|Tvldtw8Up@b=@of9xRT(9xa(-0qT>mUVg96aY{U2VvJ8EwD7ysd?OF4;! z_lh`V%RM*YCJn=<@JJ0Y74x*n9j_(Ag>*U6sgS;mlGdrDW^T-t2>)hM6@dt0dwkS4 zCQ<=9clV%A9^ZJT3Pr0OAcJH6o!&3L_;fm+uBX-T`1sqSoxVP7()Rt$bEv&K-t7P? zOJVcF)IDUsXn*pr+g>d-$^`lX3r(p>5wU4f1PVB%{#Y!Pz1|t640#lFXGD^LqO?P4 zdoXE`bym(9#0{@%tdP~Mb(^ZUpQP}@Qo^TcbW|i8H@L}M!(Vpg<<;ZyEZ%s3I^EWv z5691Tb~t_By)(YLPW>JCMR zBI^T(Y^G|6f<_TiI8JHZP;>Qa_=c;@`QXzhJ-&0?DQBu*D(>`PxYX!S;cDDiivXhb zQaZf5eD&)gA0Owt!^PUqy=fjaPgkd<{njT3F>!ZO_J3{a9$44D{Ck@RO@cDa5~Pg+ zvj~mJ&78uR7-DFrq8ZV6NuVfw9NFt(%+O$eVpX;|yROZXI1)}4*OU84ouP{VMABqZ zAjQA2T&&˙Hww(mP0bW%ieJk zD3F5V1<=f1gi*DhvmIJQaB*kdR54Wru2Y#%s8MT3nP)#-ug_fmrEQjMLk{M~;AZ4u@DoD&0iPc)s+p~2mGk-%=O;b1-&e{I93Yp02i=Z-0 zmgD?Q9LxUb)$;A##l!abCw<;WBJ^;HodUtPp3!Mj{`Q#P?e*e+zF1}x8d%gONv0I@ zi43m*6PZ{XR_Bu{fR7;D!UrFZ60ARPs%qoJBb@7#&T2EOG&P8Nlwc_y zAyEw&+@osXKzA~B7wZpBcgM?H?{7XY7p3$YMq?_j+Jf@A~*ly zH+`M7W+4iF7)ECSKo6g$;^CzD!R>}V4#p709pq@aT`^Q_y$1V!HpHGSVJk-J&c*2> z&5)ZmIjM@4s5DZKsOCiO6-;GBw{#EWci-7PUZ?Tl%cslyZ0e5psZZkWW4f~~jqC2~ z@BEDp(to(Ox4Y$M|E#o1_u5;l!adw0YVW`@Rwv47=c*;5N*$+h5Xs`P9|dR0oqE=h zNp58OsIU(OWJEeWnz2V{N~!8PYgx%~)OlhxF7JGD*rQnJ}mjHK}H4b5xjfjx(mk z(c7n2Z$7(v`>kjB<;%tTXnk)leqSV_OjCRJtrhRwd+WpHFTN~ed`I;`K4YnD%2(Td0(M%F7Z{S*;COVz%R+?PgKo$>wBL{mwM! z8XZMcl(ol-u~Pq3I7b;?4EKkxHd9_bIDfiH{axuG+v7ub*aSq|)~(#S*SyH5uYURh zrw_L$5A%=zfs3>i;;bYdcMm^I#V0b#T+#*0VYE&wc|FGcPK4s&(=JJ480}<1B#>Ti z%;e=8x9Zh#Q~NzjNkEFKCXpaS+&yadqOF4UDG@GX6k*nMjpy0FRnE_q;t{c zN&X(b{`B+DhsVSE11s-zpZ(7lIjlcOM7RQs(!}JmOYk&BIcTeuusR}Hfii;A<)|=q zv9ckS>kD6>w4w=BOi!)Zn?ecqe6p+x#FSI@9aV}-s2QA$@ELp%HKj;lf3}!*`}6DL z?Rc`!zFB`c*k0PWMd^DV;&61dYIX7SD<8VQ@!c!e&wu_JR82Np;1U$CSceDb5&MIt z)HenPX&5{rVme&WNJGeUiM%|9w`Ywdo1I?6116kFeORnoB?OidzL`#`WdTD?p{oBs zuy1?o?bUWr-=L(sQ%u{Qmssq|;_6PjjziDr?wvvwheDY&1CvP49AwW(y0NW6y0QleceZ07A!zUg&E7`E!PidC&f zG!cMFCxMt-N?n?}-s*SWOY>%w#;myZ`A}Xhzx7%-j@|vw9(}cquD{y7etvnfz1|lq z=?ANH+seQHkArCeBvt)&rLO@IX(lOXqx;vkq#v&Lo5LQYAg-QOckU9YTu-fcNUL7h z$ZRhKAgZ}}kZf03NJuh-%-l0Univ#?q^|F>-k4emR4z-`b|~f0r?M#1=AFf_&MwF0 z_%O4(KJ5;Ac)7m)+eiQF*p~9{{kGTgum0gy&4SWaMWq3rW-gjG&A0MTc}ze4@Y>4qi+^>sP=;FOloD=4 z8?!b=1tO^*hsBSQY{q69cauqp!1k3&5ix;?ZFXzx?dZ%n8l@NH8XV-v=H983}ZZuNg zt-+)>o--0seb|9us-kJD*jwcW5Sl<2a|^U>4a(JQUZeto)m^=Nf`=l!dXaQg87^SIMdv>B<@fSU+}gw$RF6qt%ML$t?5-dj!+ zJs8|R2PtaJWZK7g$(R<$9mMGKm^N>9 zPx@B8fBWR;`^DtN&9;NDKlr+PHSO-{S8shkpWMxVwtw`4kN$O=Lz!qgSr##s`XJYx zGK5x}479R(7#CX0dNN*YEJ9k?UPX+TOkCf#5Uot*YC9c*%7kN+1hYHVjoe!yNX0P< zV@jdbjg?hy5s+|lwSF}$k={Q1@)9x0)zD^pafG{9xBbOXqWjUKbh7&CIo5Cf?scLf zH&M#8Fx-SiqIxd^t`bEcmX~WER1FcN?!PKRhy?>$N?c4?*GC#wnQtIv4!$+Fr=$=w zy^)aomHjF1?y5K4;cRIp@Syi+uct|yx8%pyM+YRp<60_G=0F)?`hkJl7nwz$56H*=O^7#cJFs2#moQA?hU#A;0IlQ`x z17HMF5~$fn_Tg6_rmB!;+z>WR>s<+XP~KpKyxPCcX_{=&w<6c; z-A9yrUp$v@|L}J|c=%xX(`WhHm;WJFcj;hQ8!Uy>G{b#T%?nWmFQdDMD!0$CkNE7| zheN@O*VIOYreM?L@ZFelo;g;vcvs%=5`q@}oLEpQqoQ7^wh-?u^x;k3Sg^L(=wtnI~1KqrwzjLM7`l@xE<%|d~6-#@S&lZ&Sl9=G4V{xLV{@E}t|_|IYF5&GzJ%uiNjO{NKlhKoMAyQd*~v;-v_wQCH^3x*dxL za-(gVty}4v=h`4Xd#a)VOZ9#1%j(wVGIG52=_UH^upE}pU!LC0yYczi-LtiExY+-!fA8&o^sEsOL(-D# zZZlZnqRi;4s;jh&DrHPZM+@bG)RfEXUr&&i=9`*Q znos|YQyxJwsVg8QiA2n$HU;T;eD?GG;`ZY4bm0$9Cg4OGyM?scy~+14;lAoQ+`9eG z)3@&YoBssQno2NFk;o(^am-~B5h{d}no%>0i*eje*ET}8sloX9o9glj3mB8Np$U#= z9tF+OlM4T49gw7?`i=j%NM#8C$zA4E6lHF<1fss*K0D~qqw_vMpbAdhc-k z!Po02e6((-@nk!7dw%a4PlDvp~Mg)zj;YPwT^sHh4cN$6@p$t>w*@c8lf#vIx5ajMYdSgq*5N3%+jhKImToy6Z~m88#xP1mP{$@h#L7r39QSRa z2%|cA6DpJz9s$)FD&=ZTo5vELox6x8F?a}bJrapUQK`!}BTbp>c|lZm$y`G*qBeyP zLDIT0Wzk2{2r`5kP*GJJGIp|Ro?hsb2JIl*lQ+^YZ@v2J-TdahT7U2QfBH-i6b%t| z_?XCKhasABfU?(^x4^l=2$9xO3Igu-`t!^%fks{TA%O&tV>HDRW~C8P4U<`6ve|Wp zkV>?f7X}fj(iWR`23f0KKZ3MWF8Y4(lm5CCZTCaFdv&o}U7xnY-Y?D`$*VgD{PX`* z=kf{$p*}KG2)BYk%Ss_gRev68 zfCr>uh|-l_VuFzcVOK9NH;3Uc34>6x)GQWFN|2^WNc+boRHV$9I!IPCb&M^D;4Gb* z%Mt|;!JvwCjRL`l>ef-AOwtpe1u8LC<1l=)G5{2m>1y1ag59Aoc^m%x%ljXk?$)+z z(sH@``f=-{!NsKR#LLc-5hi4skgun;w@jAO>}izEB|E0&Z#tCWbko{lkNu2GVR1;Im;dy^YYhRhZNcK%wUNzwY?aX9pBw-+xU z{o?iZ*caoAuWhK?dt9j|5G!z_gh4qqwk_p|*+@tci86GeS~oHs-ndSU1egvos-^(l zL^O#&CCXp+8g-E#tG!=mQnjqL6A#eC$Lm)~V`9j-TXtEXGX)q5u!P{E$nm~NS|CC$ zVtxCn-(Pk(y?Z^~x&7(U=@Uvo#WEEF4ONL^s-A;vSJ%@;ao^@;+ayn*L?`f&Qp#Zz ziogI4<;IUu!I=f9W zqWE<7qZjX%H_OeoaT_P(>_sG3MqlHCaN95(Q$CXj8ku zz_{M!ZqfD2+<7Aft&bCYSN1z~s|#XDvZ0tL%p$iIWw*69X}a;UhET)l&gDYkfq9of z__Vuv^6Ou}7$d2O)1753tJO@3SGtem+yA@WuiyK0+8iCS>&98Qz4c&oIlXzidHn8( z*uS~|!S>IuT!|(Rj39~%l@UpbV8}`s7!Froee|1`hv=G=m2_&1Q0I-fnk@15AD;i4 z>-)uqvo_jE^Q4Na_Uv_f_3PEiTfg~y-M{+95C7oyKYf`@9qxTy6&N7BfLf+~)31(~ zZEKp%VWJ6$(ZzJ#b^88Szy9Lfl^DDvkxFru6s4i>4_Y{xsF+%66hw$b(AEvS+zdL$ z?Zx9Ce{>D&jxA*aQM?Sa5~X zNq08=?9uyw>z`gAt3}F5G{Oi7A~~q8+AaDj;#C-&+63!XkACm*pa1I301rY^ z0~V!gDh+%}$tIQxW~G!=MGz#dQ+oCIrGm{+>Ljtx+e05DLnHL| z@lXDxO~3u=z+sY6iyn`c@wvS9?D*TaPi`Ikcys*t9>+UZyXJ5HlR+7Up(ZR%o)YL; zX@anvW^$gWM1)MBh*?sQviR5>Y>{mZ~rK@hakVqeHF0Xe7ZN|wiPL5_{ny#BZ{iQG8?;b;^S4XYy!Q&}*Ke^pM zneH8}KYw-PtDP<0fA5oD{^$q)VM<KgC_uNpb(G*Q(ffi4N5F(+SDsg`DF-hcP^ z|Kp!NJusJXbOF3fQxk3p(jKDtB*h(rCWop{qqu9#B$GIN_3u93=0)l{L1X{>Rj(P= zOeMObb)QuPsT*ItxU>(x^DmzQI`r?qxyZ-Ihoi%b>Cy7yYLkC?)~PMfp?~)5)uYWJ z=k3^b8*z~=49SoN;nsIav?fCelmJX~)8^JtSM=)XcRrY2AF%AYAvnR|kIn{dU1L;_)A zDVandRKgUIzkC0^KY1}-A4L%Y&W^>hP?9T?r&7u|M)7tjQw-Hdo)Y7$um9smI9-97 zQvfM6=cc(F{JK=}H>jk$d|O|BISNax-aUH1JG=K)dE@Q3%Fo|<>*6yTU%Yjsi-;Fb z-hc6nKYIHKB_}ljl}II!#Fqz!geagv)1&}=-mwZYgf1dN*OUMD&j0&K8N3K2M(G_{ zjWnryh%8xlDSZdg)k0^(+ud*e-N(4Mpj(@C8Z1q1?z7qDHXU45%m`?}Prvsco?Z2O z5#4;YT7O?Z+YZyw`$vCax4w80a$GKMt;TF;|G4?%fA;vhPp6o9Q*{L(&9v)=AOy+6 zoAw*;JIw~4OjHmyYbTq(-v6D?cH^iyI3=rVkp-eG3Q^JIHe`c#57tQ(q>pcY^C|A0 zabnY%LsJT;bpmd3op0$35Z+mDacNl@JwHj0b_ds^)%eRd-(CMFuEy=%T~R}S@9xKc z`1{Wuoj$HCLzqAjqOIp1m%}Iqi$j;KS_P<@i2yA1+yq4l(tZd3<6b;^2%9d1vv(vc zU;>n^nu&aTZ&5cfOxG`-j<=2lrhUhP)arIS6>V0xPTE;7UH3+-ycs{-TzP7{g)VHr z@uj`_^{t;9lAkpNZf>pr^v#E)RH41HyZ?y^lF`Pf!tZ%hUsay6cG}TXE z??&xURx6u7gs7^DTt9yPvq5ke4&0{l@;X1rTFS}l>rd|=T^6~(Vnn#zy7T1IcbsGqIGwUW!cva_g-z?gHeJg;l*PnT9El~{8uuT>99X^=Cg7Q^CnSM z5z9?u>G&imL>T**&v3RRA}x}aur}+LFRn*zn!H@XtE+TvJbJ>$>y$G*@S!a{hGcZL*YG>~@}# ziI($c15KMY#lCP>@~PVSn_E{%u+A^Z!POGE(9IWj*0I~K{nmT9+_p{Hzx4L`-J{ba z3d<0apch7)r>KrT;#Bdvrnm0zbRwLX3;3Cx9Q>`nj&0eqpZx$ZH-!~uaOdLAI}e(= z4SM%t+qRUPJKgUJl6fe~p-?1cFFqrU_3FJDCsnF#LKz_|9GH-{=cmhbxhHKo>~|-p zW&7krPP)M(d6NN%j|Gi%R`yL}(7DK~W>BJ)rdKzexXfCQx^Qaw$H(I|>Z0Q4->eLZ zN&wN*J9o}jSpjf-{X*I-jhRl9Ytjf&=(L+)$|36Z_SwQTcb&G>#$6~`ySrYlo7Css z7}WsCMB6Bq%5WGFQ3Z9C`PZMJ^@TF(#=O@(2oHJ$!|pyf?dEyN`1<82WU_2Ah9n~l8q;p{fMpey8`)bB z7@v%2o5NH>r+xEnFXq=~7)!=(*ljvo?xxh|#}9w+2mPzReTQ%_l8xigHfgz9FGZzM zfhJ+ylsxaDjoM4s-4wIaNi`t;tp|fI%?z9+m~l zL4|&pRG^L31-ez`DzQC}rr(c%$hi0|eg4K{>S8K8>3rJ0JRHSQSC-A)P+^U4KD(k&)v1&{#2^iz~ z>(S~y^x=TIyDP>-MGz{|q*<>#*C^Y(N}EX(Wb=Xj#rx5Ywit>M*=c3he-~ZBM@OfN z`+xqAcE_u5b$VC?y2YxIh(jbQz_3}I0t!PAS~rCzTTjkfB7`HsJf$QlY|@wLUT1nAypwXZ4Q?% zCJ^VP^wT)*nC-AgQ;7~o&(NoGwLLvw-2UpTw>~|Y^qumqY(_Oi)3tqqs*jCXBO)R$ zbF!HCeRv|3KolWjHd`d3{qCPG1az$%P%#^G8^i*2`TBT$IXXpLFdZiE61)IrNrC-1 zg@~q#HqRzIjA_ucrxDV-=iLC=BI!1k2PxU#cD+uUhL@1-KnnI)xj#b3!lG@o-JVcaoIOGTw#<P%qN zpSEKOFCj8r?$W}17>T4vDPlMTL{fjaArK-Qu}JIdT_7E;cNe3yj6oJYEEn#}yp@Nq zp8o+t(&aCI`2DA=S6_r97^6Gd-WnskT%$`SNr72CRJY9vXX9-VVNvrM?x_fg^>1J5 z!P}XG5fF!%ipk;YO?R@Ci19ELpN7aBN@~*-6T_$n6`<_h1I;pFo;X4TCD}4l7Pq=r zFDIBO(6*iJ7B<|CH=FU{^B;eFLEoLfT>bDrQ=LXF135raTC`aa`-`USQ+0((dUHmg ztjRrQk#qRWcm)MW-&ykN^_z?Bek4^@OjAm2lXd&#HBI6BeV|N5WY}Yoql`g;_%_u= z)rA4A#Pg~ew=vZ{&F3CrY+RB1O(Z?+8r@CZk#1i+lka@^>GZ;W^yODMO2+)?8aSgli_)q~IY9SIjv&OMr{`|E!(soVLwAzTO z<&-&&o|nC_?5~D#vqg{HzUiCE8L5kywuclHze1PU^)ZE4S&yjN6|9}CE0aiC9-2Zw zB=bSdFT3@vA|E{WJHv0rwT$JJmLUa5T3+_6Mj3ehY`yF&BSZvVL54~|3~B}0v@XSr z8GfOtG>h|seH`}ETehaLyy$W>#UR~Dr#_rt?Kj(@w{fS-t`yLc7994T2u_1gG_Qa< zd#3=@F^h@C0BRd!>(D?uOx8QrPtJIK=Z}7Tb+ndl`}wOwo+1rONjbHPJ|TSkVmw|q z5HN(Ip%U{(TV-gyTGgXI>dvtnbH&>^n&Mt!5L!w(uTLQC7gO%Cj#n?=oL`PPO$RPl zoCr_Z>Eq-nxjPx6%_4o{?xLdmH=PxxJwlH1H517&#U#k_bolsTvpN0Ge$lo4r%$F` zm#17jAZl&fC&K*8=O@Q2)9L}osC%=udNnBOx@>U)=2H?zf?>RM`ZTv*Vk*PLK-l`$ z?bU-j{${lhKU}_k_2$~zX~g0vZHg#F+^3O}TAFHzTAQuf-d78~eZgjz;3j?A38rGr zfWXqn)RyJ$aepNE?)9tdvp4&OgQQ7FmA30!hQ_Ne^zLydmG51*K0v)L90=;nTY%5# zidE7BKrG*TE)By|5e~yN;o^MzTMte)yS_o$pFe-SiC(9&T(&_LO9qtP;GR}XiEb3t z)|#sGtE1tm?GJm6)Y)*6G=@eTE`a-F{j}WudN^6`iL<4{S@*$NGakA- z&%%`s&uETv-zC`fuP%=6pC*-1z0qV-AP%jgCq!LyOwy}2GF>R4gg#hbHl~KzyqYYs zNI0Y(Ag0MtxyJAX-O_~I zjti!~eLCKMc>414xj7*^LT!RV74clM+>659+I@)5D_SX~9_Ki%A6q41^_RB^IO&QhiNQA0; zo%XOO4uNC{_ZHJ(d1^A9tgkiUmR`O5`PEymUI1n!lJ(29$`-GG{N&`VyB%glQN?<+ zdY)Hk!|LYQs>maJa=+1_2b=eFoG380+~j_}KGv<<>1y}nXMgt9Xju=kJj&Bya#-&2 zI5Ec3q_jEfTMM!jq}gypg#k$H!;Fx85C+km=s|mjcwT#1P1C~P-hcX}ZAJn5RZJ4^FbDhBb z-LmQ0^ABEpaXW9-rqGD4Z^q5VMLE8AvTSWO+!R`s3&U`;^ni5%4I<1{0f}%4y;(eS za{6_ZTT>;Qsb^tqpZxU8t08p_u{v4cu-})|HH{R=xGRk!Z8lA|#Yod+Km@Drt9H+P z)LJ~!C7bD_5w^U4n64jg^Z3rMcMH`IU!Dskqye&@mjmqN^k~s^=`Wpy!77lVLW7|w zu*x73FeIpgxIwxCWdHV;lhVY9Xv}ny>(|@ofAOU^NDA-QE8T7emelnbfbYkQaZ2UN zmhCjrY5n$wnx>-t<=!odi6KcIMPiyprgeMuve?~cFHY{h8vFB;4?Zd?VQ?HK?T(j= zW#8wdDhNfOnn5W8iqN_ROrv_lhO(O1Lx2buQ7S0uEt{kfCIp+DB=Pmf{^VI^nX zyuBMo{n_z@&r^=ck(SG@@0+I2x#BRvfDz&qHk^-zQlwPCPQeHfL{SiokeMBK_vqYQ z!c?J+QL+EZH_}U*O0l-H!)}1HJ8D!XmWfWdrIgCf50SdOXlklpvhGKUs z4`aKV;2XXF+4cDFtxw;a9)I=vt>f1dCUwu!Esy)Y*JMd==<1>{5Ta7mgflhNs+Sxj zs{OOY#7ePJA*ejQ{i3ajpf%MZ;1tp{DPoeYwe4X~O}6Zs9Mibl4Z#xBVA*Z(Tdw<7 zr*Xd@3xi1NK9-67GUw%;4t0bS&gR~7@RpS1Ftv-N#O7Y z>li1=>yuUAD6FEC;S@3Pa7u-f|LUkiL`|zP0B7~YyxFj#S@x(c5tA3ud7HH4?x<6d zX4!CZB$ej)sFQIVcDvC9(w!+nVnQzgE<4_ARHhx}hzY4NSko>_S$8p6Zb$#>19P^jxBv3_KJTVQ2u*TE zzFeJ-yWFshmoL9{q3h+Fj-ziyrni6pCx??|R@0Q~KJF0FS$PN%hI-Y*$h>WXdSj4f zkWheLS6Gk?0cHL05yHAGq)<;cN2wi2?yD>sUlvOM2 zUi}p5vlXw-Hr1v8RjTzQP%Zb#{P1ogK`&Eoa47El4(vkk!63m^U={B zt=jhg3)G6h-%ol|05UK!H!UzWEip7yGBP?bG&(Xf zD=;`ZFfcB~)(Zdt03~!qSaf7zbY(hiZ)9m^c>ppnF*hwRHZ3tUR5CI;F*G_bHY+eV WIxsL#g+^@v0000r literal 0 HcmV?d00001 diff --git a/7_deep_learning/imgs/lena3.png b/7_deep_learning/imgs/lena3.png new file mode 100644 index 0000000000000000000000000000000000000000..7091ad558e28a6a1efb72b58a2737cd6ff92f275 GIT binary patch literal 150951 zcmV(>K-j;DP)004R>004l5008;`004mK004C`008P>0026e000+ooVrmw00002 zVoOIv0RM-N%)bBt00(qQO+^Rc1`ZYu1`!yyZ2$m(07*naRCwC#{oAgk*^-=znVI|e z|G8E~WbWL%ip@RaJ}@3Hzyrx65L1Gv^Pv^%09nCqxDAUir|h-hLsq|_cwvVyENo*Wj>yKlQEycg&R_c>6J7&W1oi4NxjP$3uc zK4@cchdj+mUb(!-*%=QX?x?&%C9f;)fu8V8xAfNJEtRj4TwF2_Ab0x01FKde>zH01 zEVRmV)Wpc9jk7RdcESxM&_)H~58od*1sDN9wI5&q_{abGS8wsWZb6M4%4;T8^>V~x za!0sj$XeeHjlcr=!0VMjUP9e2@t*JJ4)@AW|LH;b*MBGc$KQX@zyEju{saI0#{=*m z`0qa+fd9aM@z1y`Fc@FzvWbm0_JYZlRI{TcM3{*2!Wfrlt}oX-hDO}f;Y zOJmNCotLz>)NwSF9MW9a5Zt9~udy}V$4D-Q10H}2FhYS80E9yW<_s$JZWt7Xw!P)( zG4c_CM~oW?!(wk??FVgRd|b3VdN9fiU1QUTy{?=K$fgWv9t|FwbcbebIzSHw4F$Ug z#{(Vctds1+!SKk4KB}WAhY`KSEf%LlLyc$vRA*xaEQ}#5_5c_+q(ewZ1mWi=dd;_M z=lJv-9Ydm$QDjaO~CXV^-Gen6-0X!6f$4vS(hd7%`(X zWUPvIT!A?bl^OAfee{~~W6dF(J*V3<&dy=8O*S1xZO5!j00>?S0!9coxx?uW9$klA z5k2HWvXnq6IMRf}6$T>9&m%Nusi5%G8ek8TnAEkv84LpeiUZ1sHharuqFyKtMCr;1 z4ko)v6A&OL);+xd*sx$ZLPCyvtWnO$m|zpMO}+#ukYMon$ExqS3GGEp9902#ay6*v zahw&(tu=6>Ru3vLi^Cl7!f*%%CU{E8{r=03|Mvg$@4m)g;v(E6HDxy}2Qk^B?YN^0cpty}GUhNNDyf-T%#p9C;8+wJkwhB`C9&vb&asWo#_W&`UMn37 zbXw8SVyii@?3^~EZJUURmS}KQTrogQoBPCdXxB?yN0S)9SaA(uZByz5K%gm?1WHAR zWgzGr=Xg>y`!*yHpwvl}hHGNF#+Yb@t-N?JtdoNCY?xflnAD|4V5e=u9G|urAlYc4 zgAKs3h2{YQtqIQ#t{@mN4G{LseZE$5Aty#tViDTv0cXugYsX|37*nS^;2dkvNNPoA zBsgSv$*ymI`*;8D^WV>V{F4ci#@b*^qe#U0qgFq#z2sLmT{X~xJQ!p>{ccU%|eQFZ|B^*C@DTz9(C$3QUJ9rv2k z!1R(loO64rsH!x`1S{BZ59Vc{>6n(H!HNMf8Zn&{YrvA$MUq^7Hg7Z2*K!dHkG7be z&4Hs5FvGQBb~UF(7a+ijV)e*Uk8+gAvN{})dH~MEg(#6l4DaMoVFC|9BNKc-?M{S2 zMFlxIX$e*>AZVQvw6J;#W0Lla%uba7jaaLNm|hQxRF95`AVmUz5SZz!-4lojp+S^L zdlg<|qpk2$F=I%xCCtIBp|YDKFqjoP;JN?u{^h585$^a)A`DarP=yhbvTO)k7a{Hts8C@7@@49p@P2VjB|n%!=8B1H(fMjarct2NJOZgQIm|vqDc3zUZ>6kulVpw7u@&AEl>ROmGK(aJ}lc#LLwU29vKpo3vLsnKCtlnH_; z+QAqx-F7^LxWY#_k(>Zyz)lmx5$CYR!l(tH(vviY9nH~1(HOW3WX!V1$bnrMi4Z^t zVbGpkZ_EJ>&?G>tj&WvBI>f;ctB2^2mDaEz#+YLUa*Y+bU*G=p^H2Ml9d5*55re)( zj0VH+9&-#S?PVK%5a(*<0m#^$@7ds<+F*D0rtd+&;(nMBNswfkKyL2zbP$zF?PWQ{ zXWz!GrOTYv1HN2=AakN);DTBzL~PE#{o)U;WU8cc%}H_i|H2Ya9ZRt|8Bs z&V5V(^w9{274T{WqJtSeAY!tY9Y%I^f=G{UZ4d_5+hKk0Ur06Z(o1-QR#M$(FkKE|y++V<(JHWKy19;s)IJXWptoME~-SRBh6fhZlYk4CKm zN1%cnx+Cw03mV^wC5+EUY~N52ibN=vD?v86c^S;q3Z0fpyb$OvmjljO=|BCy;h9 z(ZZG^p#+5;V$xpAoRF61di(bI?|#*X_o~~n;c$w8LXT6A94wZQ#mR|DB=)S9Ca5tlt&7>~Awu%ZQ4)k2 zAI*SR@Z^|71Jw5?$UcU#&#FzF(*ru{g!7#in80Qz0j4iItd>zqpA+1{JS zgL70OFXzBR)l(y=V<%_=Inad=G=0)Q7~u)z7(VrY+}YV;M08oBf`tjxk{DMUn*yui z=uze>j)|c=7Ya-TMZyvVRSf9px|zTIcCDTIDz2!#d!Yv0UFA~0?S7R zMLyqD(jK(m>e*v=9G!!Vye4O9&=E^&X;PjT%5LUP29H@O&Uw`Px353{!`FHAV|#jC zw;lh~Lk)*02XK{~LyH@nJZ%YUFs2*SQ0NI)J170PdU~tVbjWx(4_N!;73G|BH>epk zk_a}qm|phdtQ->o!60X-=&a=?)$@=E#9%>zEe8128nmHpa#nAzA3qw%DBft*@s%(6Gn6Ls>}^k^4G`4J?`& zCaxr-V%AbeHBuIodwfj9MTZxaHf@zL1F5t&M4K%SQf0-dBn5~B!i4v`Yf5XFt35E7 z0yxDw+lBM;stC=De26}gG0d=dPJMg(`PUzR@$^KcVmDX(B~8^1MzCaXOjZDs!^LJW z2Np5tD4>hRE?iZQx0&k-UCOwQqh7akTo-L9CUqUc(5$Wh?&SFhvJ#OeUP>fmV*w~if(8== zmj~?C2O$=~fF+hu{ry6)f&aL&q8}a7~)DkTpt-lSb0yrAjC|>Scohh850A)8-hx zDjeh5hul)fy27nq8@kRYG3waE@|DxE+GEo6@=-+$y$=Uuk$y_`>ZcOSXt_DLYYk2g z#jWrFU`5B(vcT!(2oGiuR9p%hG0QC) zN!UaHhT-YTObQHe!iXL{dcID1ap>4DSFk87=5^e>+yjEIce)%EUPGqO4kknU@#Uv) zfA_wNw*gkg#4_Wbc=!~k!|NdutboGJK{HygJ5)4sYef4(wC2dbEAG0xm41lBHpxV?J-1l0g}G|ubr*{)+2qNAvg zF?H^V>0rQ|Cgi-JAh055Wj*JBut>zHQtduy0c+F`72GD&!ub4Ez? zbM6Jw#QlE32B?YY5yZ9Qp&4vA;aLxkbX3H`IEYY$<-I?D{nO_!-_}jna=x~98!P^j zILhdR8dOwXxxL&I2P6uRsbHg9C<6xg;C{?DY98l<>fjv4Aqs5M-tt7vFy9515KW^M zy8uk8@knYKH2qXjJcIV~9)(AWfx$ue@MIyTNo@j-76KxU9S+W&L`Pw{xXQ5!`(~E_ zljs6GtCBl{-N$mnGC0@mK_h3MQB4}rL;w#A28dP@jRDl2#YZ>?zkfj3kz3n=Mo5uD ztg#qlr-n2waF#R^Dvial{Oln%QiKKu7?W6*X6O-*+02y!0)QC7vC)0Ke@tL4c%N%j z*&GDn$;TYCO=C$W8j+A>tmwHufBX5Due4vjZ#S~*z^xm%OE%&(7{kn zEfqJjeH-g78qKv2`jLC8C1V(I&GXBR)P&JAIFQEoCWn|nN{>erwD?&tTb*^fPmdYhc6myW;DM7Q|-LM7&qA(RLsCWhG>5>XnO7d?15 zE-&nLubR#U_*NQT>-S&Vf!c)13LjSzVq#7d^4RORMm=@dv7vMeq(m4KlY5YsJqVz) zBVdFX7^HX5KA|xuX3aQ`zJTJ`n+k3&m-s z!KeBT6af|#~Uj%4jKG%_^-;dsBk{{27v zbdS5mIQ4Qr&SE@o0IR$}9}_UG8n6-sk&X;TVLhH2EGM8tHL@BP{dfnT6?yn59?Nh2 z^zxX)^OP?xP}-O-X=bqO!;`#%5mw?H9~%QPHe%rbjcl`*8?w1J=Q+fKrrD}d?s<7^ zsh!3cIEu52F!**bx&fQGh24tnliF*znm1 z1BuEe`YeDmh|+Qf$v~!2N{tt6Mp z9)iToU{`am^D2blDCR6i(M@Wf7K~xmG@M|L1N`>o=O2HmTlDL9qsqrj2jKE+`~}#E z2zq2f$R-gOB{HS)q?%!?LwCbA?C6@SAKP63M^sfrPi8F(Q+#pMWn~Q^90qTj(4js+ z8K{V?rOE0mH~8UdGJFk8XoJq7)VfwV;B*47cVKaXh9Ypl43v}QusLiV(QB86-Dlf- zM6)>Q=Cpboj`oTX`v_C%wHe;+7(%94A){rPxpSgsd4@!LLhbNy$Ayuf5>A}banM=} zQbIaqjFdoiK20``5=65DtHYfE&BS#Ch9fHgnVuQV_~4BZ4nl?rkR89it)^46bcENl ziHudmWDgwECuWe)yaLBH_b-3?@$(<>rK+zT@4Yts;yf}s{wZ3M-dxe)5e5W@B*PJw z40L*E`az^PIW-&bo_TCm@8nA%+>z{aA10g=TV&VDM|kxS>_kjD8|+~^(K1>fFfY7^ zWYtm=;p{JF@P~gJZw8j zSYyft29;Zw5?P?YXmbrf z7kYItl`cKbM>Z*Jd7MWN1GL-@nFV4TTtHsW}{)h|$0=mqrRt zP6Zgr)Qn9U-40g{-7DI#$Ucg-EWi_itWG!v@Swsr>u9JA4G{?S>M(`2InOS~Bpem= z+E*C7GHwe&8I(l<Er`L%?FYX;=uTbfbstGuV4Od|N7>s-G#7Z zi8q|_R`J)$S!M@Ac1MWrImn_<#bh7VgtqE@s-xjGKuur0eW@}n?9&nK!w69P*d3ut zHn)VJ+@K<41>CV_g@HWAhEWka%E+BF+ z1H|eqPHH71*WAEB0Jm}s)iM~xh8i{~fVeo)BiFObM)t~DGBn~&4}l=Zl zjVOF=cp-%cUWnn0Q!%7p-prV-WgsC){r>f*fB)k*0otC0q~s%}aqKeVuQ`l?#)yFc zb|N@f5w_@~I)*)^VM7k1#xw29?&*z(tXJd^s`SpG?xX0(5m#Eh&_OemYB{146`rUd z49r}|=rlSow4b_E8hS7)?16Y#L-m>1Le6tcG7CVmmz!e~Ip}Pw@>xg#>WP+tt;j-L zDt=A(23YMx;0>UfP@VqWVjD{)PTvzrlDf?mAD0w9C~C(XuMxv7{<&>H9XU4cw-P1 ztEA*np#`Svr~BXi{HJdt?ZRF(*{Ufi-Se6l$O^OYSA8qBQT6nG)OA1+hd}`YG5%h4H{4h zoCs$D;K*^0$2n7w`;zTtKJ2HupN^Ta1(8!=ZV*EPrvXBF?Wm~bYeXRpG7K4bniiG^nug#)B0NS2bXYNtuwrOWpwNlP z$)SdHc6QsCIkcDS%tNFp1V8|z**p4k0adahBXw81ckv3q{3)5jBY|@m=26c&cyrF&IcZkPQsL-=xC)HFS|(E zG@2YE>KM6A2!c#`PC0iWG1f%K!3mehX$oerg4O`Jht|S?b=!+0-vxjfynmIwuBHEd+Ezt$yBbWHgDe;Xusn$ZM$_1XrKBViY*zYBgf# zOoVszb0R76jAf_DQ4kZ(!Q{qN1PW0k-A}tZdmvM=s)xYxKIz|lopkV0+raJg`pvXs zkQQC{FV{LpNVGWHhp+RIMPY7zme!RkE${a)zy9>^uM3fjSp9IkJlc?F)jo4|{1v19 zG;ijbf(T)P(tvt4@xY!i*vP>eXI*l`*TdVKvQ8x@$57(XERVP@TF2ysL>rM@6qXMP z=4^FPeN-|Wy<;rLs?j9SPQ*A!QoR^s%SVky2xBl2qlenGCj8WFvT6ZlZYr*@eUSq* zwig@APP13DREln(k$F)XWKS1qxWO$FVRBM^*p4mHh3NsVm?(NZXcI6OHB?k{tS2NcRv?3Skhm-9cUIj1ves5YL;y+`Jpp#YT|JawHp^ zNmE8Pqo`v)KL6>*KfQB!>cI(<=lxg-TMzXDcKiiq5^b2g4AD6QM0i0QdB!nh%RqEM z#ab?*!MVfR#^J+lgn)KzB1CF~xMH?xlay9_G$zV+P9cpLTCU2)4tYlr+-n?cN2lST z_*g~dXf&KWCNZXCs}6FpF4ZkC@X^i@I@72zJ&B5T5yR4va2N547Hb4qcK55CwO3l1|D5*b7e2yq}Vu9>?&k z@hBYpdOouoM5jV#f6MAit73`SJy9QvtLapH;28I77)ru5IQPlUe%w!zQ?iQ zm#hl3kxrDZm7Zw++VB1;%E#U=hB_Sc;V;|;Yq5a_@DFj-r7zT)ROV3W|8XyGh7I-$o zOFi5}V0!~2#_$@_zCm^(xf*WdCF_x#K*O2coUAo~jn!Iv5mttOn@p)Al*BM6D+aQ< z!w8@RUwIwX%qlA5jF=TkghYf*1ZR2Z3VJZ9$q{>5tDkww4jUcprGjw+00u4Ejks`( z@Or+SAJ@u=NP!+a-hTS|TkV-nsyW6!}@ixnRh z?8bBYn2q>nfdNO^%fJLZL2@E$*nS>5^iB;%5TZ3MOkdMiO|7q#;^M2TW7$E%(HA&D zSdXLK@ByrS#B?;{zP3Q_jBTK^7fnKl9%kE6mt-F!#Gcq}LA)QHH3K7d5RP$hZZOqP zrTF z<~}BOh8CQo4lBU84V%0l(~2Q9MyYuakc6oF{o9Y9zg^Eew6$(`E@$1r+h&gPygK5qP>h+d8OKDi zbdD(XZ~c-S(~>*fA_vE4CLT2An#T-srt=&ol4n0PL(0K55VJ2Heimmj5rnv0fr^!n zfHi&gL~EEm3v*ru++>Ca*odByI@_|~jsj?Q+eZbvO5@X@ElW>tB@kvbbFbY|5H6!m z)5Iu!<(iPwkT6XEi-x@q+br$i8aT*0dKI6AeD=USRmWI8Rz5yfrwL_;7J;yg9_Bp9 zH?%oa38tEbVVzV{`yc=ql?EmmM)ojbuTA#ag4}s3nNM?$0IEPDT^BJ9QLx#F(?b)*K*fXsntD$weugEfE)=vE2o zy~ZA)eRbu&R$Z#Ob*xsPyX$muV0$#(F_F0@dP%ePglLS68H<>x5uPgkoVDs4Pn%xl zP`q1@C@KQWy?0jZSree06L#*gIgTzXTG6Lx4Twqk6l(L^8&0e{<0GI<1Z0A+i<8k(8BF7Uz3wbbl<#h{xyMF%TpT2yy zn_dwoBNe>tjpJf>P8t;ze_?_iuGib_aMZF66G$(Q$*$3K6oW9c0uZ`tn%7)=&ja3P zpYIhu$ee~M#)qHAB~mR!w3k6-mrg!Xj{`iWs948+?bY^TUxRcjyk!&uG7#R)a;B+U zWWqSL8)v#%s}E6jzkmMxx1T>3l6uBV=iWU8bHB_v z@^Gda@mHkRK^J!SzMo6S2))6Gj8 z29!d|DT+CSX#s(pWe~!^E@nH;!9*LZ;A(-5i5`jt08y*vD9#Y0nY^taA<+QB0I}ch zXluf4a6H`%l-545zkU1s^RI6{k8aZ)=VYwVjXVgq57f@qnei{;X>@3)4|LRePO`S$ z*rlOr)I$g6x4=_Pxbljs>;5=21LiHBxvt`|N@V|k;v%iMS?{1#LO`jqmsk< z^y3-(=qyaE>vT|v^2( zB1#^UAP!$us>KvTKD`st%x`k1cO^$hsHbi9bkqq20 zX@2|m>z{sn-+3`{rYB!M+BAPJmbrslDjfhnz=Km{@l-h1CWyYdEV{ z6ML^gK}`$$aIW68Ml*qn`3&Wo&ZebNAJ5t1^;&S4QP?qbC`VBcw4VZ-|<%6J)Uu(sL{kX-q7-sdbC8t3&(rgbrb8&Y+++`?n zz25itdp>lZWejGB#yLI56^*TN%L8OOD$Mq>Zx6th3d>qEnAmJcL@)O8EPJ0#Fd9mm zI8J{uefoWoq?^-KrEFz}oP?qHCB8R}%a zPs2HV;N1HdRQlO)l$xFs+l6Bgw`PW{H9-$3%+U#q$WD6Gu~|olJbH$|9SsU$nsk#e zW=MmVvVi9Za&VlB;%{+r8g1;lzfG>n2^}*%U;x3r-+%q`x2R6ctOgDqH%A?F&QxYL z`{`DQ%kh_C z&r*j0%GL1oc1PP3c$U{F4$VgRd|2i&6`<#gzr-<&<;Brc z#8R&waOUZMg*%NoM?<4UgHcVqz6a~!?s}z9712nwi2qA{%C4J)K5ZcVb(VS{J*9_vHX-dL=#*oEjoR4X4YmD*qZ|cKH4IpAB z_Q?L+wI7?>6JGEN=Ju&=>ORrnLXSNMY8Wx5gagHf$jIcPndn9M)-W1M)A1Wrq8Dso z;887tV4BoIFEteKn8#{EF|8*Zz%UA^fmG)|x*>l50>lGV=*(VlZ z8lLrxDl&`0UTFCi&-lJ$Iw6FqA}@~^a?F64#;ovfSw{?6K@JAa8ILo-;V>Rp8*E~2 zO@hw{dB~|%F(}9_j%iRL;56oT=&AYq77{Tu?{9Tf*r|LL6DQt2fBE@OZ{35Htb+_; zNAR1vPOOHl>3OPr&iE?~)wK)=jy2);an}>qq6w^C5h~b>2^nXzfSSR*3s*Pr(u&`* z!(1(N?%18O&o&qM3{0$L1jGx`N_VR_Rs+QHasik_6$py2jSm-MXaKm?DNY4x-6Lv7 zDq|6b3tb0%75xC=G;etMbA9(;{o#uL@;{6C^M4$-?|-0d8D@PKZ**1)E&DTe-&9H8JkT>A|r?<~PeygP%HXv%7*vrxBASCPJJzy{dvoj`s&?7ilxXqnN zjBg(DIMf?Dy1jyP`}2&~BTv8lC*O|$_3J<2KmYDa{o@by`se@I?e?GkrW0HD*E6A_X6TxIDItTg5h@=c${CjU(N{Ai8GV z7aoma2XbB)vX{e0^`WDxqS`oHYOzB_KHc#Kt=Kt&<@MBgG&tsLGOhq-nN7=-F61+= z@TfvKknhW>nI@doo4p7O>NP*Sum5Cyy#;Uc>0^KVFYxczKi=fLeqj`J!izA1|~JZeYZZgIJtRT zS>Jy7hrj*CiJ@RPg9|=9h!vg2-gaHXM!F$Q{0%%9A0zrCsWzu!dkkqj5g9X>cqA?d zWx6}xdd3gmvu70M)F2xSg59|(-*y(VMI_0{1~2DG>52fko}gAZM{>MV8j%q$>g3cs zot^c*#OVBR^5cicAAk7$`{y5yukXMA{{GYL zck%V@;~&1Ge)#>LXC;P|8(=Ftr@gjDPXYyhljuYF2qj5JG!Tc;!TGI1oXQT-W(+8y zxcZbau7FlUc3|?!pdG|aV6x?a08Tjix8p$CS*%=U$xk&&bzZc=sJgA+rmckI2{bBy zemwS-NAp#J?LjOwWgDZ9aA@I zNTA>-2GUH>t#{qeif4}BNoIL^u6fBVzRhua(eFh9Ti zPT$`C?00X!=+pWBb^q=Ue|UL$`Qdy(omqp;v#iPCgeE{1K>(Nb;R!=+4ad*OTt4&^ z$SVPB8nzrbCSQmcAOju7+VJ8~EesklgK|83?*46VXb+JZbD)WVx1Zy%i-KH|>ZdbiAx6Wf6`?>d zM26hF)ij$P9lHSsw5Zhz_q_flnD7xLWX`PHLo(B??U)u{@%^WLJL|YzueV)VSA2-| z=f^+b)5ouM9$lYqU+(!GzC4a&zJ6XW6yo*MckA`#hCPk*0b?9v+ER|Gn4!<{vQaPq zG@k%y_IRR*<;@Nc)lP?m6X7^Y*#Z7$qaxUx-voDSGDk#oqF)|HSTj`TcDKd-ycXE$ z3BqWy4HJRV8G_w|ha_=?7* z6@P`MT^TJ(VAOD9Z+pm%PG+Puvllp&DS|UqqTjCZrJfKU1Bi6m~T;lnv3 z$A{EmY^X~^K$-x~0gV9EnwMjHCq^!)VpXazSU9#R)|Rnn^`sf+%leS-Cz^xxC%@c} z`QY>QrGC;6_3e0l)axhz`svvB_w#&w{dOK?$ompL{P1Vr<b4p!WHo$G$eFfu znekWPMlSC>5Di>Yo0oweuh|(-T&Cowp(SEN++)|?uEvALB-WHa@R=NnrW!Z)G@Gqj zMGuz)mWeq-mvZPJgU&tCj-JS|e38p`U}2TO*{}Pxfr4{40<3_+*7@<~g?#<|@$CB2 zFT`$|zvox|K0oIT_aAQf^*DLozk8j(fB&%V%GbxY_anfSk>CCP565~M&w4gjiO-qx zbI8jkA*WYwdI+yk#T$94myWvES^X+njgyc*wN119f?64TQiCJ&1P=k8Cqe- z;38De>aqQtK!{j{69{IVSJ>1M&&%JSD8VUS_d&>y`yYS4HU?Cn7|Kl_bK{Iw2c}g6 z2bfZBMDG_P{)RxpS_^`wF&i`JT|m3eUW)Z}En9&gz%trfHTxa4J^eaPb4A6(nk=OD z4TaQbFI$wT$xy|H@zrKBV$@-ib7LW7gyHCr% zHp!s&$89s7cb(OX4R&`_rO{-*has4L?59ne%(l%~qw{7t%`B>8wI-H_gyDe)h+g~L zmfKHarkXSTd?iMYj^{1guno@G2373!IPM-DDLt{RgC{&>u6HkDzy0{fZ>?#Nnixvv zisNz4tZyJFI9Z%CKxf{=#>8J5nu+I;gY$yZIy*wHfObO5zXkOYLBHNPBvKuGgj`#mrr0wP zm~Ku2O04y&M|Q`2*k50Z58a~A{@K67H*@b7-1}v{IX9 zk8@tm?>?q`I(iIj#JJOz9lh8<%%o2Y<&EbE#~lxeh5pS@*2+2#bkb62h)swd(IW8d zWqovXZdk%9(=#Q-7_!m*1pavJ9CcIhqKDSxM08!eouZ_t?M^bWczwhA`s*Km{`%f= z_?W;8#6x(AY?_sIQ|S@!7tWOSn(^q!T1WhaL&(KIjEWbUd+I{XB+2B8#Sm?)XfF<# zZfur&uB+bx3A=>$4stjZ!1EKvu_^VOF*u(v)F`z(oD)HZHfIprAskfn*A<36JD0hfWXWgFYfE`TF|6ov+B-Y#nT;e|Nm&yY>F{Q~&(khx+CGaQ(vXZ;uP9x0hFa zo)6z0Uw+oh%f5G?H=&2e?e+T)_p79HH#;Z-(?_9x!t)reF`iwMgfFPcc8M8*%bU3s0q+@`VHAC}uERhtR z&#eHu-uJgJkAMHxAKtay-yIjdh~|?`t#)AI9v36XmD?!s>Lw!onfM?qEy&~PDerAm z!5u3io^hUV4wd;-=T#TGUH3bhY^cdd4KoHTvpkm$XP|es}5yweBs$X8t>0KXdUf-_kL+e;OUVeQ4zTOT!=Jocc z$A|ORpFe(@{pDkR{qT|B?)t;|`JEqL;_J6tzUF)b`J&W%{VuL5Bcn$UJfHT{htO<4 zIS?!dUC(E~?gxjZXd}n_bv@#cd?a3LYo3^HD=82zL=!N`*lL!aBc{DG8XEVL0l#KY z&)3#t2!4)#26*Kn_cgQU z^&3;Kv*Vx6gcf9_-DvOLUArz%crh~~GoE~oiRWeHo>siY)sIK}lBL)$;}CY$u(>m* z`!_M{RKZWRZyfzJ9GXgOPPis&*(8hG9W2BYFQQ&*I~rDx=5(gM|G^*8*PG+aT&_9J zEBfs=55||@z1HJ(T_wKVUh9wg!EgGseyzOKqt3T4>-VqspRVse#kaTHhvcpuXB_B9 zt=q>BxBKO}qI7C7u(JSf)xpK?=tWc-++C&XfMZ}E4<@K8d3A=tLZp;267jT%8pM;t zJag2LUYnj7NE*VOsI=9rL?(XAi((zYgP-bM0iqdy&7kOD;?j0^>5A*>*{nDtlaS5Cq()6{wpq)Ao|9=S0DCl9h@X5so`qi7*mv;J4x2H=ykQy=+K`&AM_CB)A95C@Ob-hR{uW!;e7die*O5e_ry!} zign)Gkv{_Y=l9 zQ=ZG5LxDM>89o%`)D@1QeY=1dW1b$dv&kVwm}4(AcPA#+28J!Q9K*1rogH?EHUQY# z0pmE2r;11dpo#V$|Lxy5XVmNEp8eWatp*yN#)jZJu$8~IA9-5qE*OzxdU`s_XsrQ+&Pa^>u%l*YA((?fUp~U_Uz6^4iy& z=XWp1bw?A;?P=UA3;_k{p=Y#i*n?h7A{{n`=YUnZmMU_IC}uHIm2Bk}v1SBXApiqy zN0$$S9tOM`i~zNtsbNyXC+E^eB3p`=Cahk!6HkO}@Hxci*Z<{TfAJOUV0gW}uRgBS zMBXjY#r?HrJ+O53Y({^WkJu4GQReil>1ovx+s}8EUnv?8K+GM@6 z(AQNBuQOlt78|pU^JyBnlo(Jz=3WW^=4E^w`}I!bgUDm6wSj$W9x@9RJwAQ|pR|XL znfUa-{YTD^xA#X^y*;SbO?$f5754c+ukz!3{iR>_d?0YFZ};Qn>-|%Hi+)LyU*12y ze0&sMkNz^hJC6CX*DG{w#rfT*zfgb*m^1P$Ott(&Sx>j&zRn&{Md1iGp?r9 zQ2Hz3xGoB~>*>q>D@2e=ckRZb>ap*S_xCbiUlxzGyp;Aav2T_;fQj<1d0f4#?%3}U z3unN`mNB*ED_bqq3S1Ux-S+K*GA`)2?^_$z=n{Z=M&}ak<{S+*H!GUTTZ8k{kI{Qy zyWih5=QnIN;q$a^*M#QMt&s1J+s&1)Gq3&LKV;<`S&Se3yHoEGFSkE_dHwL+dVB9r zr{4dFPag-5ZxP4B^o-W&S?BF|l#k2AaW=+nF1XVyZJ4GtMh)>81HQA+(JQ#(;6hLn z&m5mL5M{IDnL~&taIL~f5c8~uG{pH_Q`Ov&Vn<_5JTa#-E21?{9HTtfktr#jWZ%b+ z|M&mXms}lmZXd*{m_+xG&8{~a9dr6PAFMqAdW!RMC@2280<#$RaMX+oZ+qYQR%hhF zj~2r>p)}F8I%AyEhSBKvea+r;>(q2ICgQmYi^_^xlT&AftUW*SbN1P zpI7eZjtHhP0gPK42mkDUgI~ti+;iS%yOC(<5Es`lYBz3$JRbAu-tqG7IF4V=+q-}G zFpt$=k9mt1y!w4UzO322y`K6OFK4`e*`GcJ-oLIhll$S7ncUZ7-G2Z5qrX0$+oZxC zLeS*o269@aa^Z+4GPW2p2x;rdvw9!Oq>PgY~k!M zA$KB@MhfBsoKp@K*W&o^^gAFf2;)$?`rO{+6}4Vwlmfa z_Z6e{vfgw<<7m8IU+<(1pL~4v$M{pfyuQ@uJI;JjcN}_u@7wFr^?1qS*6(l1T$;PD z2%ONT^{7$-*e0OpN4Ugs*-zcZc1K|%3Kh(&5yIg2UVO@W3u6Ww%En1*xJssi6V z85L{|azFP(qB+5R^ccm^OhXD_Qmd0Al*i6jD3%EK_5Sz&kN@^fa}4ZI)tb{>B8$1m5%$NT>HJHD;&Zu8Uq!^s?! zg8laX@s@LkZo+>1!tWMQRSX{FE+60h@G|dBLpue$ya(KDLIC8&qUM-`5-J82RNL%R zf>!|45=GFXX<5ZiqdCwdsK;vL@UDrVU16OZwq>^pGWd**JPlxtvDGA)&Z0gXl!&_C z|Kb1j-~6abEz69Z2F^1o#8{7G-)n%LBlcOoZp8_;7JF6g$36aqM7cfpV7YMB{eHi< z*9RV_kMzo$SBo}?=71_sk7usZ+tr#D`cO*Ces;H>;Q%@|wb$Wsop)oCV3ZAo+ap28 zrkxfYJ2#`KxWJh;-~ZRY{y%?tzddqt6z^Ji#OjIn#QRIEeAowEd5Z~FQJQ)`^F7wN z_Urr4x7WJz_rL2emp^=(-ZvfodL8G7HP`#`3f7nR_;fqGC-Pv(+a9FOPv^Jli7PKP z*VU+_*j%Pd+^vQl+uVXV#V#&MxAaLeM0ygiLk&e|iA^`WuHP7i^Nhjqc}w^}fdEPr z=J|*?tce^(rz<$oeBwPSzE1?Xuj^0$=Ku1)+|Ob@10!+lJUe>poVaey?1))BaJp-| zB?S4xT)wW|@xRkcNe1`ywRyk#{o42vXTIclQv@APuK5%K_F zK%c)t77>CW;>cDvE7mSve0>CZ;Uq>XR#zBdz0l!78t0W`!fcNC7{&kUzx?Un&>xSN z>3n?z!l+x@M-30pCdpswy9Wig6Suy9`lMg`)0@|0pC3Nl{rc(n`t$3Dk9ogdUX1t~+Z_d;por)@f;O!x5ah87Vi-yjCz%#v}&1 zbT*S?!`pQ{tRna7XZ(4@7tZVat1tUysrw0cMy+*3@ygP3DNXE%Z~XW^i- zQIU1;JNu(h{3ZrCMMWgZAs(B=Al*gaUMe5fBGN)+yCy`)}bh1jv*7pdYno3)HjUZq>@ApTs`r7wLe3fr| zEyY8g7$|p6mc|`1%Y$X!L@!M=kLgL#kdyL^1(j}IY~|4cDDc3g_rLqaA8u9(E8T9L z4RqYkxaoE=J3aAf8Ykkz`Bv+E*v+asKJc2`$LlA5c)fl7_Tj^^zwXyKd2L8%yxp%j zKIq!cR5u?`9Mqm`9WUx2ZZ9vpHjjqGgUf`_@oa>-Wf46Y#p$>Qj)0VL2*Xrr>ygi3 zzOzR5BzG2}rc`q%gPUHbj=x9@Mu@89P2HP_yKye4;H9V>Is0a zJZ|q3Dw9VOSG-42-~#u?`;b@lnU)o8xwJ+F&dbrp3=yZ7XwHjWP;@a56cv|P(r0UT$%B;;go3R zIHIX5F7{wQ7Xm!7fd-=!-GR2rrZ)sHp~nATmj1Ozwl2%g!^W6%uC@1$h|E0aytjI* z`cmC&x5#d?*`z4RkYqw8WLbbk8#YWB@c;CWFkqX80mGC)^`*MHx~ksGIVUd>d#^Pw z{t)#oKW88_)|_*U=h4uPLdji~proN15~`^T+3@`9|KGp=yLmU0XSBfL#e7?lAr~F@ zHn!L)q~cX(;mU3m$_HLWJ&pg!@( zy^B+q60aDudS+21tI1kE9*&og84vbSn~v7!HBYk0(H>6RmlHnT9y&hf@_>)mrLDZZ z_U+tlT(LfF7PrxR*RhMOEi#j)N*sH3>l9>_>1ma5Tq~J3i*(6h@Dg$tmno%c9WD_; zDoL)U+IVN8OF_alaYzDm@fv*={ocMeB$x_^rWRYPVpR`C)l`9Kqym&^AbUDWM6@hb zB+ag$fA|mo?_cIo+9dLxrtU1=oONRC7l}H&M689Y%Sb7l%g?7vlks}^u3{hlnf^OS zW<|uT<2dGiyNaW_by{z#CPFh+B;{TW0D{TH)EP35h`Uf!x1F|BiOa0A&ICoXF{VzPL@>!X46b&s0&Ivp>@RtAxZXaF5#O@pc=NqUgPyRMuh_W!`d2T8GCgW9-7PI>)#?H{*YS3F=hG7p9BQ_2+wF5*q@LzmJm$xGl{u2MHPY?~1Q(MjV@R~i7rytk)l3OjA{fPxIBr4-A& z47l5UEWH(q?5!lP&%gcK?~V{j&satuGqmg4&RJ7xQa!@KzE%=u+iPrEM#j=hUap5v z?T`QH=ik@_e9BP;4xe-Pq)b_TZ<;Jf3k$<+li+$l?u?jfyV?=^u^erLWik5srB_pd zYV=AV$yVwmp*#R3Q8jx&ARZyWGPC8#vfynI^=J)QB$ZF^|86%)!bMb$l$KqC&OOez z`TDdy2dnqD{nDRfZDW40j}PZttV_JvML+xFX};p2zr=Z4pRet~9%7WARpfO(orUEQ z%RBN-*%nG&{nWJlXah_4x*buyR&D%8U&V3z^w*yb-Bt1w7Lbv_Uhd+p4n~E_u?ZH5 z)nFM)2wj_2N&XIZHdz?!DAG|&VQ(r^1yzcqNGyX11%oZ@UKSPMYR|{Rd4HK-KK1#Utu2N*<*b^oqp=&uP0`k@8`wqQdr=#2 z*OyS9`nmVEJbv-@mp}RHbla~`M@l4dJAngtKoqQm8g_2p5xEHBs)txwkl9mgOAHM(fZwi3exZtMAZe2=T zymxO^#mc2NgFfw%QMsUC&~EYicAJUi{ChwD=ILS+1$ueJUf6xeAOGzQ$FjEBOTg?x zhGs&kUeq~YVZ)dQszhX&E$(t*jpX&+uF&Dhs(YL~U8^55a?`^bT&R#NVx~ekM7oMp z^ejx%re4a2$6tKD-!hG2k&W8aL(5`}?fp?2`#N3D^K(1h_Vp5>^Cs)7kp8)WUg&Cm|1eblMRcr`(*Dxc6^HQz8VCtU=MElmYg@6Yys z-|1)tt>BV_>VArbd(}P@R~6MY!o}~l0A(Ud=3QE#2S&{Z>a3~Mus|QoAXJb7O9otu zu%MPJg_a?%(F+7xM&n%zl>5u)??09v(y`;kP*jD!S#@aaB{fQE*!peZ$COy7h*L}L zgyYUMv7h|p@oA&}pDO58({cFg+gspsQzNbV2~C@{qQFF2AzKnmi!9(Mq0a zDcwr+v>vd~CAJC67MV*yVoeQE#XZz5o|VB?%OR>+9MrpHQwAyo@}>UjigkpG#Ox$Y zvnrB|mv`&y^%OH=B-2SEs0yX?QIs*$881(lVS_guH84V+kQ zHmk*8mDx3rcgai77IzRy=vzg}EXn&&zJRI8N_Dyd0GN%8v;ZI|s^7~vqEZG*wNM_{ zAO8ODrykm970RbKNZF)iWu@!LR+_E0ESAW`l*Oqlcxrz5t!z0xeEXAk=dSwim@_<% z>2LdSn_MXtIF?201hyUvsOC(FfrXSvjm!Xs$JIxag!KejZPAGt%_R&qO(WSVArerF z=xK4DT$dwhkg@GDR|bvIB}ydFpe!@_^kQ(JPg(HC}xy zS?T*DuKQ)ZUYF3o0(tdQzrH@%a=h7twtP)Fb(8(3eG`m5*QTq?&-!?d+;6h9kpy-!Gen$*8s(PAyP#5Xgn?Ss*_n-6Vv`6J2jIL{2X7w7IFLtB zK_PJW1)xfyC0QDl5OIiAsSFfYkRn4=h)OA{O6))W;#a6b<x-6|#hZ&+}w#Wp7 z1SHdI)(tcFl&C|(JerCJZi>Ap6{$QR3QKW;mWUiZDkn0{7oDcv*cm{xl5t8ItYk0f z`FP`;Q``vYk*1l;HDEKJtjyJ=miBgg!0ydpvKyWxxV$LpFo_>Ql>$-}F@JLeD2 z-}X)B(awFT+uMHDrS`YFv@YQ}mW4B}bK|`Etv@|IES>jRDxG&%sFYCK{D)(ZA`C6M zi4dZ2Xo#<9rOomj3T0_`C`0q^ZEPNul`$g^yeU$&rSsl*<~@XtA$o5GMhTFDUTTtI zbG-|ey}_+SI9}g=_~mz3(WJCdx^xM3tm_+aIs~exte{bK$`nUcra`6m_AtiuusnCJo!(}m>h70s_O{1O+F|$q2}PFQHK|& zTxnyxk7VbrYmBqv^CEcmcbeDp)As3k5xTBx{5HR$+`P86=ckuuYhPcVZLzh@W3S$u z9Q(9Z`(fwP<;i-sJ0_9EJ2#S)L}uf;1!5K!{|PFhd0z zg_N1;w^_lfOFOWrp*cf?&e9YW7Qhh6mTo#!a~j!-q>6+{WkW}f&p-U_cLx?Z}5q8UGn{|~=>Me42UScA)Tb6Ub%q=rPuyw?hd;&8bf zJ*ZuKJGPy9o8Heq`TE1QHn9->KVqkQ9*4hGgoJGwx5nyikww&m)H_kYTu@<%l9(A; zyB{_8I%u<#nyP?E!H(<p3vTvUIdvWTUY}4(?weO#5VO*s0X}ON`#jo2|*ZI)=z$$Oq&i4KBHS&5phc)-x z>C(D9yPcMvZ*OustBjX7V1Jd%(|KE(iBzVOkW694@0wXu6z!xxyj8Kn;8I}$Cd-K_ zb3kmlvzo9_+)7Z1l3?`AlIhIpbIg>H**XlG=CvInOf;x4(n5=+!Gg;aQt7wYy=ewM~~mYZO)|goH$iRr%GWv3}uqK3#DaQ1+#NGu9;e+7nriLArBj&r*e*cwQJ)sPqN3QO<8$c z7R=*ogg65(T9Q$EfS zR&9X*=n3ZCiFhXjOQ5A?NwSF`57%l{s<0A7Lyqsi|IKf5aztj+<>cDT5>j%T%S{f*UkwJh5qju>2p6`Z?}P_EzzfC8K}^crl}f5k`_{T znoLzyX7X_C!P0EaBnsxVbQKVGl+LEj#b_zfds+hst2+r80#2vGiS9bqb>mO{**_pi(L8e&|mbC z=5OuvDE|7^ZDX&u(iL-my=G>fo*vKVMYJrCQ9+~sjuzOm04RgXB(?wW>7XJ-2BIZ2 zn-JwnLrS$+r8KmsShipRSXg&|EU(0#$Lo#Zy(?5T8VE46h0~B05<-H3qGTAW(9_kD z+KQ%>`S$Twe|Pf%>ogXI@&R#5D5}9Ivv#4FT9b*L5<~;*RBc%}@}>`8eEIZbTLnwz zs{ehK&)eHEZaW(R-G+p3@YZ!%RE@2~z`Fq$EQvl-D$^0=V}{qdi!IeK8QDrRTF}Cz zjmng`?=>_ScX4D&iBzGA3PN z>+QN%B3C@PX2YHJB3@P%Ow|lza-l0gs20d79n2`9O59$4`PVNP04gQ3hZS6wwVE-)*rY6Yk+>(Uje zims?oahJ#tDLV8(cmyJ6%qSIBN3m6dlF@!gG&)*VR){1dO@Wr^Vd4(T$azzVZoFv zX(hrMX;q0PB_=8&1`WG6oRI*8nUyJ=@Ocd6EzvDHaULpYgn*JPNmiwVX#k1@IJ1I8 zDiv!{alQWb@7|(2X+=`F*4Db0UmHDJRB5s=A$@X6>X;T*8t=S#{sij7yDuNlCp%>z z3ElO7oAGvB_iJH7S;FK|PU%u7X>F;sq#9r$slKF2B0}cOsu**)OztcOx=c%*bV)5` z6ELS5vytY#MN#@5778It+)9iUD&~r8he2$a`<%sIY*8(QqwK(Gov114dajYy4qt%f zyyu4NkZ#kt#&z#f`~G1WpH+a{@*eWCt=Pk?@%7-s6}Pu#>3zID=RD&5*XQ%es-f;L z^}46h1CTo;@xG!xiseZYaM}2_&oUexL9hZAtx%vT8;y&yqlqR6lO*LRW_Av*jEG|% zu~xQ_HC($3%uNbOFd6O6j!F%d7HA=sN@&Xlsd4=37r%a$1FiR?rz}A4pw~hx z7wxhfF};pb$@P(QLb0@H^YQZjLw{I|NKfQU{qM@B`|ak((f}KpncB;$YtxN}SVCAb zP0|g_LNFuyn0(6^BO)kmDPd(35!4c?%N#aWSDUb*_wKy8Mz)@<4U!_InxTZElM!0j zB9EJQ>~^4|!L<6wc<|sXufg;9qz^vOC3+h?>2ZCq(@~q}vpmW2+&8mVh*mr_zI|HF z=i5bX|FNB{+5U#McKzY`bspE#x9|JH-cay}5TI2w2mqGNx{pz!#WV@BX{Ifg{Oxra z+293>L?ki=tq(Jhs#FmaQeYs;6D`5Yy++;SIdVo2Tt$R-uS}9iNVdwB0WH8%L4#?E zOTU|N1{d_AIL0bK;c%0Ij8BE0PDh`F#{izCpSJaHi5jE?8Lz=8*P!^D-OITJe z7T}>AOO}|Dh^$^fJA^z$qWfZm1a?bC7%5}!Z4A4sM;0&f*j5u9!u0KQT#d&#bqm$9 z)3LvuPBrX&TyuF8pWCW&bX_VQ$__tQqAiMUVxl5Rr^56;*{ANVqNIx3?*jG_4tRQnplNRcaa+RVfvrSb`;4DomClN~7w^ z{2WIndNsX6VY*-{3t0ezg>-`}Ef|_0Td_xDFV^+bKm6+Bv43&-@X!tk*0Rh#!D`hG zg+{d$tWmnl)X5Z|wgn5z(o33N&JR!R)Ic!D-1W5Te~Y=#BX+A=tGNiG1dfhgO%!No zl9Hu`f)^sRKsqCog_){J01JM&P7CB< zXh!C)SuwB)t&6diQZX=908J3ehESX0V~*qPnzhWfNV~s^R0^76Zb{9wyZ3`x6Kj;Y z5@2J>=HunJfBXHu^xu2>K4bM_m&nY7OJPa(Q1{*;5{xOZ6CmBZcU#1{FX!#DZYN=( zfq8AZn*Qq;^KHDCE}#{o=cpE@SlSu7$dcsU7zcA9O)678V%Eg*ikPs$MZH8dt144G zs8b7|FX85v5U>P6@#bBkkiVmxsCNjW)Xkgk2ek%zDVJ%~m=_I>AVZq(YrS0M;#jTH zPPgN9v8=P?p6|NcqM!W0rP^EXuvf42w~gf`=kpo2{jxCT+wFEczWv#|ZBZ`(*h`A0 zt0co!hg8L#l#E1^mYu)*Fz@HNrOn@tB7l30RTL{a!E<}8&8+T^uLUFox7su2DVIyQQ#+$@0>~Hdi-)vn}B)ud(qpc!>5XnFVhh%yZvTAGQ6nYUQm6B3=I^F(Z zQle(dOifvUs0I;}UK=I#PW|%E$ZSri&-B5FIo>|!aBVs+JuR229uzXb0uUO6ir>Z4 zr7l$hQJ||F*T4V8cd2h;`xXatncF=+;9?nLAhnt(ZC&0V+Iz}DnQ}@jrpA7GxLi&& zby3OJT(?C`|5tdszIq6YPdG%RoP)(nt<{<+Bq{_Vk|kJRGVjm8NailFXK|Z_ChV#A z2#G}XAeu0-Rn{=27HN@r;uI$;s|U-nkrV^1Rv*>VB}?s;73B}1D2tFN86TU~o0`sL z^Lc5x?@v08^9jf8LcEQ&+kolf)7DR)?J?{oo7J_y)ARgfPv_y|Ip^!=Z=Sw98;cay zEHn|EWO%8&RF&sUg&{XN!z$>S9Jn){Op;6YUy020($Zm47C=}UO;@l}6wt6F6I_bw zk|@N%x0ey)IN;Kn&IfJ=)s`C45>}`-QCi70D$JF4_aO^PjQ#Kb;o}X5gti&2&S^A7 zgg)t%WW^24P9t{@E6naxtL6(XD0z51Z;y+02}DpT>{V!rahGu8ea0H`zxKWjI zS{k}Q#Y|IC<~$D6!jw+UtXcf6ElL{zgM$2OLW2`_|G7CTi zV@Oe3h}=dcQKi{)mN|9OB*W13HhRCkQiSgg3|-&$?Zg*ed>r$X$BUgeKVmtSAq#HL z_N4KwXNx$kX5;1I-In{W2VS1ffAY=NPRJmGmEN>f_MG7oH58RYSf?)8-I5s?<(cIi zGP06E(HHjsV?iY|!wE4}HY1k8y&cVjA%SUN^a=Gij@aiIUMnkGJ9~7|mT3@Iila)C z;6zqq!9uMnTd0cG%jfU^{u894^(kUn?EQez0uI!xc~Pym$yYyQu3lhPuf0@q_rt) zS6NWCocG(;_IlK#&RRR>>-y0BWnI!hi`N6^#4RtDukTcj*LqsWA774m$*;b6_t=D$ z$jlbRS=ZY zEKRG)LP|H5w}CPOGjYAQ2> zy=BJ=6#E~0^YFbBy9;dq!d$A)!O4+KKh%#D%mRpVJ z#h!waw36^{?K-NZua*6lsIVEb25h*!T`4u6%ugpye+cn7*Gq0)ukoaLdwIHy`QyXs z<|2&O{q%L{VHcgdp8S|!Tx!|B8~)?<{nx+0<R@QRG}J_V$fSk5^xpF(Bs&BclwX<^p0;E zCnb9iG*syw`xFKeY$2m%lVqq#0r~pFZ+`I-m|_So!KqZM)xMj+v)Gy1P92UJloC)@ zQDrn1ZGC@!Y^y0nli1yCgPNx3U)C}2T3Tt*oT&uct>y3goWT?yJ-3}~(qk>~8&BGK{ zE`=JI>%p>cWM{I;Y5g8P+RP{w1H!UZmt^ZxgrZFar^9WTyS?x8#TNaP>$X4}dwb*M zRHH5#$L*x^_R{1S`nbo7JjjaIftSzQKl=TX&4ovblvXSz1hOKulb*}!a|@MnccZgy zOR>2r^>^9OkUP#HQ)PMgP_J>~UM9O8)HS=9Vm0)FWm$weC6k0LF*75^7pDs^ZDks>J~SyU4(<-Gp-7q4M9en%7chg)h3Q>K7Nc^y5C3pw4jdPXhI z(V=UtB@d66hjrDvt<-C-r&V>TQuNR2*yh$`(l`Td4HKG8QoHD)$um=ggarvML|H`C z9qf7>o=St+>=vZvvLu#ZHBr!#$|WQ#8hZ&+N}wT_eYtn9UedDqB5$`T8f0p5XJ#T< zd74q{El%Y^41cJ-+g7*HI_Jw5+o-9|c;(vR`#Cvb?Rb@CiJZ$A<9w;jKDW1D$Cp3< zS+}ZC)TnNN-y5&OU9*VX`rIvjWU(6>g@S5;Mj05yUA1vP*EaOiS@LpyQNX}Pib5Jy zL>5%bl4_BtG7&x;F{6$>N8a`WGt8pr;xsl2B-6y11Pg@{Bl_NwqEZ5_`SS7Czjzzs zMQ8`2tr#hJnZ=o0bTYdx51w;I*=589xg4DhVq8w!)6+Q{)76x_FSe3p%vAm7!W2ff zJABsc$V{O$J#*FGvZaWTLxNhVd5CybX2o8f0cXgR#bmHMW41zs%#yncXPD?RkV1e` zq})5P5JwP7XSTTT?N*VYuFxh~XORM;rf|6`5wqb{x3{^yL*My+j@{1v7Fd*elgr4l zo_9tI%4ff7`22(X^xOBV5}COn&?M3mHM636L~Fw6^PnJn=_*hmN(n78 zgozZ$o!66hErwhk_4U&b))W~M)|v?xnx+uK5=o}OW*ZYT=mWVQGoGqf?w0GsM$6Vj z?&dTJNToPS=n3IHn;a7J`5%7qc4XaO7f|AmO%n$YrdcH;m@a*z?0R3?}vj4MnMYaxwb6OaZeEh|eXv252PhpoJ+idUgHL}JA-$z8-sIj}6l z&l{GpYP{A{?*}gztLydMmbtg{%YbCgsCCTTs=wA&`{&X9(^&uHi>K`lX}symyaiF^ zL^23bX!(_?ZEcciqLOz|MVf#T0y3?1q_C1RP@(Ix9p8NngruOWLhaO*po%b2ydUg= z#W|wlh<(O9jyG4Y5>|EWx(`7t$-#+uV?5kjjas`M`yjh*T$!?MRn%`}m& zwAEk=XsBdMR53zQP=wEl%v(+!9;vO=jiC-QOt?Wc*+LWI>dG(+NQ)9>5O8Ih%=8qn ze=%P2TFoaW$WFnu)ls^%*gL}LxXM>jhKu@eE={jvIlaB;BHU})@~uv0 z$F^qvx;;wEMPxs-JPskkJxD<>PE4qoSW_M$#-J7o%|(L_u!`mG4M0Ys zrmD8{cR$=@C_xkHy1=GV$XdcR#7YVvQ4^?$n0}1IPvuhRGEHO|(Kex=Kpnh`X|$?h zK}AwTIgj7|-QUk4x!&VmbhdtQdW%*TQQ@_vF!ud;Q#5lh*jyMrwh#ToyLAzB0g0Tj zZ8hFSuao+Zv*%g~sc0IC5)(vig|=9;9=ecl0jWtOh^#^|lQZLHH?JmSvoev?ERJLg zsgU1!QBkobs{qXjNkdox#!4l<`q%4kMle3ZQ`E(lsclwLy0f=F`XDa3#|o?J{q?2~ z4>7o|I55)^Z~dZv>l^cCTj4mJrxVcIb34EKF_oM1yMJF=+yE2>tDVKLq#pB*i%crk%vIuy)mWMu<8eo zKpFyhSu=vgShmv_AGT9#rJ3|&h;$>A1*WFxpCj|SlrUQjEpK%&xg_LaQ9!g*qSFW* z>XMa=f-}n9k9i~qb(F;_(9z4#qK9R_SISc}vE?-Ilw`>gMN+CsNMZz8Kl$^I&+~QM z-l1ZVVK}5f8?hWyN7a%u*P(LuO1=24E>G%HmOlKDRl;LkCk7swuW042GGEM6UPEo@ z(;uIg!d#PPiPAcJX^8adq6o`5+*av^f*jQ-lED@b%?b%3$Q4?xR8Z`oiDb2$vYque zF9b!wH5U;zh?QlcWiXXR0>Y>$pvvt9J1s;tBm{z5RC-Vs6og(%>X3VylO#p2uOEN& z_l~k)AGW0lP8D!baH*RMqOxtq9YItxAm?R|6q#o^fAelTw~nl^jFNR}rYm$bB1`no zP}T2#a6yAYpx&eP##|djnwAMGGeu*KxHHWhLF`CBszRzu8x(~gJvYgaEDne(!dpNE zZI(bKdj!L@W{ABl8aV&chrc?mUfV$96cx(->&D6(kCtO>7RT1$a(NqpP2={~whG?* z@_aa#=2fet=cyvbdH0X~G>_NRu|NIEx92vZVzaCzM}%mUsSiNA#4Bb}ZDB&IC`XAw zYruS}yHeOv+3y&)N=K6-t4Wii725H4(UVZ1ne+wPh0*VhXH{p4Bo1@VsAG=fcBC_V zzb(@OSWJ2AxQm6UlqikjJrUMwsj5$(|LzyBy%>~;+-_7$bAc?&Se-S!B-;{!euype zAtdXjo=sP7Up_9ElR&2DaA0k=5yh!sYC-=(de~BZ>Q%E8$$&6jWYGpS;b|sFh$Ddr z0m_+P;WIqKCxC1wD`rW-IO)2iPE%387r%-LDMe`CjSZnksXJR~c`%z8(AJT>HL=)R*6U zeTv*SuGQ_@n6pfETzfN^czhmWYd2N1BwdtIgvpGaFqDdrS(TBfxR3RbC@?Kb0xSRH z)fK7QP^JnMbSXix^nL~}N&;S9?&G*suzExvrzne~2f3I_rG-Q*hYKhy_5@)y-+uVz zG0}=DvF2?nnpH(aq7tgC>X0VZ<}c&JX$Dl+MN~zXB9tX}t6W86I#5T+KI4cZ z>L^sQc7%(iT7#M-2(U^bq_QX?0)g=3r@#L0txps(B;RRREy2Q)I<(GXPBEULEvlLc z^9)ulFQJsLE?+!6oturIGY*~>HA0b;R>EBS+vnprKP|5>a%r~%Ykxb&LwmUmTR!`( zzv|OZ&l^TxiJsl}QyjZ#3Tm~wHN2LcdN;MAPFSA_p)Rp6M+q7jKCs}aC z$(mMQ`t?&SXZGvIhcDo6y^Xh8W%qTB=QoYp=?{KhTAO%ZS{8LgYSgL>QtS3CTeoIP z9464LQb3}>8;yblF-!7yUIzz3(O#+zgi56fY3OHu_uCyx!`9YX^d6mvyJbf;S%R$4 z9ks_kV=$`J>M&1MR2zZ@5DeJ)ysl@2vuLeNt9btYuU=gOXd_Jtb#9a}F<8r6!&nzP}!0+g5{XiyQ^A+`AR4N^+J-!Al8P4e=Tk)|&#BHHCQ( zM=J`7erezT;H`9N>)Ig#Yuyd?JFReNK@!fI6Fw^6T9q7mN)d$QEKQ16^{@Zv>o33l z`rEIb@}|nKpX!jf{`gnFon^gpv#cW9DzH(NOO!$wr}StCG^_do?^%VMnz^2S@AB@c z^*~L%?b4+gMOqf`0RMuE{*yT6>==}8RXvN*_C%S=+L}R4h1#IV`>en|k*+&p%)~8+ zM0P7FRap}VgsULHl^My2?4YT8Q4Nl+)HW&`1x`lX%duU@wr%K?~}`c zzRwcjOUXlTPg z?7eQv>;9%s=O!&Gnut_+FJTc7Dp++7Yc^vRZac)p1dVb(hl`X{F-lob>&x5!JV{xs zvsKHkT6y=)OEfnFdw9*LnR$D2hS#iK&Uq@As2M~pzyGIydU<;P{(M^7$@uj*KfUa? zxc&CKzdI0K#&KbjTxvHQOr)lvRYV^=XUQA5G8Z2*N{hqR$FJUfd2Su>85vfscd-hE zcuDRdDO&oUwY?|jLN70M#8l=?W7D>-O?wGNvWf{CR#I@0>0#-WQNvSEFkvojRy&|6 zQYxXX6W_qOQ)y)a68 zoy2K%xYv4~_12#}ZnA~w(N4$PtS#c%Ge3Ow(|3BPo;AXFgWJ)yk!dzx_XAI>Rzn#P zX;O%zsU<{9bAY`9RdB#(g|tN|$|^;LXb6!dQe^@%WUIgV*u>bBU7@Wy3hH8vmRWSE zq*qj3_xZ}(p~9ZW8my^wwdm_N|LQM)A`j;+Ju=WQUp}4K^ZN2Pzj`GNK$DoeQY3Y% z(7J9tGyPKJG1|yhffijydLWhOFTQws+H6gFI+Sf&bg8?$t5TJzQKEkqi-g}_XfrU8 zh%|^Uwk&Z!QV>P~vrA(5o({eedk2#+Yp5HyRww#~pfBf6;XQ5WF^Hc06o`pzFhlWyh1ZGFAH3ZRGvds!) zrk+k;Jbm@lE)o?06N@d;Kq*OARzb4J(tl2QL-%4u1+5KrYMMysEK3&1?FqcVh?Rd;dXX%X+XvY>%mpl<+lClV;Et*YJRagR@?S3+@JT$^R<~(Fxvj~=n9O9a) zw{=9Sf@#jKZ46b1kV#F^J}9Y)IcewLMM6qk3Sl%H)$%AG9kq7sg65x zmLqi6E95%jrkTpnQCfJM+Q0cX|Mj=Fncv3q=VN<_W`t6(9~u-*U~f^ zWPM{FEsn=Dh_p1PV9g6ED$8nKKD>W?T1*RBmC;+%GB!_yP_$C2$fEvPv2u2GOVU)e z)!?B{T~=u=niUnoLd||hyi|yDX61}q_&&VE${>^}DH>9Q4N4IS3B+m*q)RYtriZxJ z^z_8<|EJjh{&^pqW(ZajYMZs#aZ{*o8rOcp*!PEZmx=92-9+YX;w1aH$-0&LI$y4@ z-1IsRtNxR()~3o{?A?#Ltp_q2q}%@Eu*bzt?bsJVt_Grr+`YG~S=FdftuksJscka| z?)uZ3l+-HTr*5rM(g~zm5EDQAHkaybV!gVl1Q4pJ1;IcYsWE+w++&W|b;>Bu3eKs^ zAOG8b`EE1r$Mw5oxtvsNU95L&aftl#f0nj{96hUyr7?%@b(XJppYpqNHV?^y>e<6m z$5z7S^7O^SW(r0GQuSnP(gazOK+p-W#PvV#RZraDB4*HeSw8R>G>cmz$mR_4Cep`sSx=hApkN(faH4 z(CCEgvhHu6D3{)H3SyWcjTquZruNJr1O!9!Hp|2eilEI@L6c+w)TlcqVM2>{jG%$2 z`PZ*B>S+Z!=m3?H_iche6r-|^*zxk}i73cy4qc_VP=A{IJxzbmLtaF49EmKm4kh+fBC!Y%UE$ z-7F3r?yhX5K0GgVe(6lXa&1%j{_^ePhh2YMT*8f-cZPi%;0>1=YC7Q%T-+(TS8#sB1{vLsjXQke4WVI6N;ux zZPP6(^yhz3&)2|y_~Z)X6o}%MCxc_#T{j%n`t*8a1e&modV6Q}@%gqsnq;2Fb@#{9 z?fOco<)=SApN=l8ZFs)s%nsB*En9x~+EzX&Dsdo|u9K?85Jf^OO4@L%S$Q0N)qanE zGOVI1pajBsr-VzO3XxewSjrtF^TS8K#JN#zO+#6tG)+<`go3b{?jE^cCx;|2vr4x= z{BQr4-<(f!yZ-j?@slUDr4f?JK%q>8`osTJ7ToHnhC$|R(raoWE0E@CQL$uj9pz^~ z()q>H`S%{q>r&1{RjOGNO#v7T-W46L%oNpsia;(^t)xuYKo4p)Xfrh`jZ~q9wP3V_ zg}_A|L+NwKyhW#Sp|DzNEI|NyhaHMWAe*Q3=*Rutu|OxGIoST_XUFl3_;?)F$1=QY zOPym`m^HJR?$u1>n%l`!TF3O0#(Ya*MC32aJgHX14|%n=A2Wk&bN*sS%}MQt1q8zs4V0B^x^%wDs@)9*&;-_SjBHi<&n0Q@R+X8GVU%IeGUdAD{ev}4w5dV`N-9|JngNgNo>RQ;b+bk8 z9)iJgrem1|M2s7i^TQ2zrFqRXB#^~M@B{7cW+k6+yC=f z$_Up!!4}cl!;b-OGON|r#48_$6y2*}Q+j^!#rv;%TT=7jA?(ssp;X?*SCzsnPEjQF zpJ5Fn&Jx-XCzg7t?_N+rtYtYu?K#0_z!QQyD2lGzy9d zb2ca|OlrCFpB@i{y#H6LkNEX*odrgoM8u{nkZw7&#G9?RH(j6F&?RlYT;;O(+voM& z<5GKzE5=x2yuOKE>kqztT#sfawpaSBVR}@DZT8(8&kwzZAojU7r>W+xtKLYf(YixY zc)aS=W}Boi88x9o2@eV(?#4n|mI5gPp|m1{u#_TH^VhdUw#Gt>QG0G zVhBNFiMZE{ZZk8hu{L0;eElw*--#lohgc-yO)RU0k2WKo8s1))r(VsLjN7xHSGj$h z-@Mz5()}23ak^bUdz-(;&%S;tdqjs!y?V?ov+evwe*NoDbrEb$Qo4+>t|*#f2(cfn z$;<2#WjOXaKWvx+2Yn2yyq{@>RH0<4AdJpZFhQgcPwR%=-g22`}F~*B9WSGT?x>BXE`YnYFJ!}!l3>un{eA{VWrh9 zv!v#+P{Gv}TSQ?^p{~)O_mg3QJZ2kp9LG?i8(MT(ONHGKr>P>0J_V4fpg~I&DLq9Y zON6&-fBx+_uJP%4zQSV@(W%0;&97WJOWvkm9JnOvO zddJ>>?$HvuiL4nQiY9*Fvn7P)WL4i(nRdbe3T(b=2ll)V!|Vr$tn* zw?{t&oF`>o;=9+=wtb%V&?8{k#y;0M-&`M;jjhIY_vnwj?$!D+><`b4jBQ+Q@ww`C z8}RB+^86;>*7-V8_RfCQT6NsEewdN3b2(a!)o!15d-3hbEK6EN8m5Yju*FqMv&ul7 zyz^Vk%Tg0DkjYf0t7oz;KmGY{^0s73s|iC$S|aY7vuLCCKyL0cbG4uR#ee?Cr!DvW zx4+*1;EQGJcQaL{u+%3f4XjLRYf41XrUFUmIHRs0j|L1ybk1zIhsj&Z9jz^2_S2%} zwKq*MwvrNeff$SGpk`)66^hV*sVTF2rKpHFOEa66fNfcOh=@QX)awqbpfTLT26Nsb zy~cDzr&Xf@MuUqa+l0B4X(0ewS;0K%Q{^b^HTmu@*LmQ(^T*G7^st$d3zr!X|8!fo zC4A|N$EvZXw+(o{{@9=THkTM> zbLe8$mw8+`c2OpgQ^UL7K4RJ0s!SBrLj)8AyxP6pqoh!!h*nbRv-Wh)Y-E#qL{rSKCuYd1xjn~ir@EiZhH`}U-LPY{qfryO8 zCWH#cU;RHkP|`#tG##zx4ar8dn|Yrt^kAluwKH(}@~baSrzJ`XfYF2v1p-KKK~^#p zWlT|uC3I}QRzg$v7L=ju%L$d_JqTjVT&DFY1Vi9uVa^^mNl%w0l=^z3+&>v3q@cnwLts=G%$$cC4!+du_ixcNS!#svGjyIL} zoyl4A>R2yiIr`1@>6<4yBbFlvIP5y8>z3o0@7687xdpP)A30Lj=N~T3KYtL5Mc;LDhM; z;pL1pzs9Vi{E)2Wi$DFBfBtx?tH1oi^ZCR3c0whQC7J0*H!rSA0GgE$7uTYfscvs; zjO;@o-sU0Ut%ZfjWnf}PZ1VVYIWOTgq{_SWR_anBxGUKpQDPb51aNO?ba9cC<*Gdu zBJ$RTFPe%duwr3PiIiwncX3sptVtSMTlr#4y=b5fl_G>dgJ=v8;;m#FD@vK3TEgAd z*B&_@E&5B=_d_Y1%Q7TdiP<; znTxAkb8G1(JnF^P&xAV+~xog|=yv6g{@OIjc>zwn83rWOvZCbSKZ+osN z;Sw`W5ZnzMYFY9*)tsG%o)uMUl7dvsMM@w4eEW~%&<3~^Rqt{Iv0e8pIp)#&_DP<8 z|DXMnZ=YHm`}1pj{o&LNK~yG~m~RcENKgzEYGz6RSlUd{k^0bu~vU+PF+-`bp z*PO77LW+?guV21jhIYF}dqs?vZ(FZ6 z_vhQmPCi<6582t4-fyP0+iLZ?JUqXhwZClGuiHk$bk)phtOELo8y8ox;l~P40@F+C z?dm7ZcB|!1aOJ*arI1xQSlK@4`m2|WP|`d>RFPiHHq#CM^7j0A`Lloa)2~n1kK^N> zU%k`5AW0p?()qCjL>pwy+3*+&^r>(N50dC!8)GMDnIP&5^2NJANdg{UAkEv0fBqt6sE zUtgLSLZnt_49!+b->zlnTh1;N%tnVmG>244RYs_M4S9Y1Wsd5HRY>G{Ai5uq=T#*K z(Xt<58|R*J-e%VIvBgkXw(DMv?d^rjHy;+?t1Wu$&&T@~zWV$2{OfvH&$XYb;!s~t zhiPTKo-Z%RlDzWi?b=TBQ(hlGD0w{!jnp{dV%(^V=Bs^3j^ASGi84 zOQb?hE%oJgTYtU0ERn6vY&_ zr#v+3aTUqp=Vuw~F<(B`R}bGdi&uZ`J+C`o7FxUX=g)jt7SX-VKClCAnfk+};J$_?5jM0Z zLob`?uYH<_4Xt4%k$~=~JgWLPzxNlv_u;g^%(qX?<;zQJ%mELSL?DVOK~Rk(N~Nmu zTH9_7*ABRJuO)h}_w{n&bjbE^Ue;i1A}LHT6r;2t>4Kfgf;UQe zw*~;^E9g!{bEMcl%`yyVvnBnEqq}*Vum*{=DQ!mXWgaA>kKP^kBWD^NyIwhi& zIiM|vXqn8Cun3$Pb$Z!zc|DKQULBEbL_As|JZIZ-c)VNYe#H4HGQ2gp_4D8!a|N!? zZ`#h^$Ts9u^W(!nN4#C$_xpY^1 zBg}L3%3KUJ)SGB1y#rN}BJO&%vYQPY zfjKbGkAMFAUz}{ezP>!3_Wq$;mq;K1FJ=LL$FTv_1S%!cKi`!f4N_J6hwq3)X4zP8 z)@9)|l`GotwDtV><^^MiC{jQE0HyZViIKuuku;he&YPl+&Bh<~rlNn@lJk+UWUX z%ooG}$k7d94@hC`q3z{%J3sVK{@T7$$iYRq&pzt5=cemzFMa>;&iu9@RSkLdr=@vx}^vi56Xgk%_^5t=xdy?&~_F9)E+C1haA!_?gEiK8ktm|0>QB&4E zEN8y%%Soz6BZ?3y)crS>iO5!k90tuwd-#K~BaOlkrnq58fa>3V`zP-&r}27R_jB#% z)2c0lcLJ}fC#sZ&Fd$i0sLDe8&?Vz-gU%}Sy~*jVWU{!g?#X$|xxgK?Wqbccv!y^l z(N<`cfC0-iv?vrPtcp@9jy`+nzW@m4dYDwD^wf1^(uS#RFqH)YYVuC}s4};>3&gL8 z8Oc#SEhSN{5DhFuAvI?sZ%Yuxk}e^DloU~{gYp-DH0?Ixm!7hYYH!qu<(%4i9M!g$ z&$rVTe&d@ysz~&OCDGgS+YKw~_UR@MUwpgG=B6WWjv+#QXutV5*LSV!2+a=j&3Cis5kpP7Z z{nh{NxdU2VrqOf=cBQA!q|>&s5R!GoZ0+=WUp$@{L1?*at0rPm7F7k6gNPz4g{AZf zq7tSEpy-w*sd2F1*x|lK(=y8(rYg{s5@SG|2W+Ms)vwxSdeHSy_CO+=vJgusvU<*1 zBUAQ=uspIfOGH?%hsWi?Y=8BSHgD&kPCH|o4sYvz)Tvz$Jv}7E9~)wdf->`IUL9wt zoO^8RSF5Z-3~Pr-&f3&01nNE0beOq$h?*;&6=o{`owf zd}!uUxQN?2Ki%+{pZ0!goT#Oo(NXE5{_Hn7_qo@BwtR7Efy*&CK1 zBD&&I$zppyG}X!^7`^5`*nX@#YaP-qn0@qp|SE2!qL@*LrpHZ@DVde(v%P97EFa##J9ii)Bd`kTcixPq z6iNuo(WR;^KnJ8Kw17y9HpPp{s3l8EI#3YJ1QG>pUYbTX7fGq@8VosflrvRDeJxt0 z4l6iw_9S^gBW+SdAbSDOL)Y-A4CnH`=4~I_%NfsI_6O|Jr|1#h?AYh|9i33|5vOy7 zbf4)*wv)V=!+CmS+PEzuFY4CF4~V~sab6U2YcoSzSj}a&d?Pe(+#cs`cqki;TE5GWL?P*rFA z#>|Y22zNKzgD&FeF0Uh3gqiLAzR%+vMyc6Ni$uuXTbHDvfu#j#`^n33JGFIvZglJ4 zjV}hR;u(n~%aqIrDFNhF69ff_z-b}=UQ^9tT8${9@vv51dE3>>WlS0)*>8;DTW5`;oUgqg&vi@0+@6Voc0 z%-sE|`ji$)E}bP|r7jwM$W=tkngS|okwzS0DN?SnmKDOz4u1Km_4;-^Px6tuvCces z$QtL(&FMMsB|7!N=93JJP_i29nWow^jCI|=D!mo4(cQ29G@=57Z)?!1Z%wr#06v=w~>TatA=xJOHs9rlrIIB#Y(WHQCYcwq?DAx!l+CHO}e^kGaSz0f!>{(5k)X7 zX^#}KO;Dg%1Oybp2o@682;~e%2wjr-N56|$-!00=B7M>1!D8yxHf&4YjPnzXyq+KH zewW={z0D2VZM0x#KfE3_QYK!xcg}+0Hojf-#UXUCXjX?D#Oe_Sw{63!`-)YWtzAwj z_mhMHth0|LJ=B@C&)9IfCyNvY7D8|5k2u^&j@l(<73&b|3`S6DL__CHFkK~%?(P9d zdpa=%gEQ&y>1Uhmw$ICx_GV%l*on zo;AiuU2QOjg$lE#a1<(fv%9_B710J~GL|d59oKy&fr4QQP7omgVpni4S`h-nQdeb= zn+yx2t1f#EL?K3|QYOO%No>SUM0ItL2Yd8t89GR3*oM`n4p7U|eTbSdMBnzc0!h_~ zrH3x+ZAW`@%dNDhK4eCSa*WY=tEUyO*n&54v3|EH5w3c2x|G}KRGe&m@lw5QTb~Oq zy*Rh2&R-wPXA`O|S`5o(H|MF2mlB9&N3%b_(BpAyG|zEUi5-3Ag2A4)HTpV0fw@bS z8XYydHa{-pXuPRcJBUfQnXh!y0x0HrB#F38>4OLAdE-d$BXyL!^D`qodsFSz&@IpeKo1X{VESIG6{DzY@I`D+FFHCAXH*Ry zs1CdRBot1GNG>ekt{{#uXa*&*lnCx{^%%{ONUVbT*t?Yy&BI?+GpEsl`qJwv}&pIrPOh`OhdhBJ{@XlSq-c6{HSBWz@JotN5-Sa0s{<`IP&Mke+Iz@m zJud@|yI>7ii^FS8SRKT&uNw=xEAPMY-OF0T(3IEhV9SGy^$CnKB>y`2%Boo%eduX;Iwpxy9nco5CaiWQW7#eQ;G5lB?hm5_Gc@HQ4||I zm{YF2CfcM>=-@OGmv!XBVYeGK$PvkdK$xkA5PO2)etig}<4PVWY2pw{`Qu~*Lu=DW zN>?MIOh%SURY(g(aTdyO4bt?nr%8|S%z1%1FM?3HM;J&QV#F>0JEeGvxN47*+Cd#d zAbpYY=^qeQ`F0wQo%Phm1~HQ~E6B#<*iR^u;WWv*bkcpKi1}r<``w_8)s@U5`lfK4 zAMgXU<%64)-E_#2^2rCk#LNynv=q3a8J_s4t;(%&imfig% z%qY3~v(vPxN&^t(N=rnV_oPrrP#1?&WK^bT>M1JmJbd!vlY?@9e!Sca{nEypQB^a; zlVG6KAkG9x83Y(O{K{!$5>f(5&VTZ!oph5mYqea)At|j0K*W*O)Vps;S*P2ZO=U^7 z5O69nQpI5cAaJd*5Rx28DVd|Q1VsKmn28ZCnw2C8ffyorU{GZ#E*d4i2iB;AyCgZs zTx~Y-W{c`d9B1i#4a+Oznvfs_dTEky(r^-p8!R$BfA^;ddwPC3KUIC+u(nhqtuA4m zhKbKSY@#*XR9gZ!m3<_`+^~Da)U{QP^u?k~yXno>xZP_v8;BS_$piNZYp(@E)2&$=lXNLUNvDh#{E99$SpGb1fp7RvOH z)eFJIUDc9}j7StOU+i|kdO5Y*yqvZ>Enq~XU)vfa7T2Zkbu4p@e@kQbZI?Oi`RE(=6RrcZ(Ket8g&Z8j9*1o~{rVHUcwH z$cQv0D2Twpxzgru{aDs^*&QE&g`1tHW_1h!wT6LK@KiesS8Zm#(-;xnmlpdMhpFa>f|y7+#9f#&g~^y06wF|FH3f0XKcLXyAgmJ1(sn@=bAMJ8C+P=P*8|z1-mBq6rnY$chBN=T-DQDbN>%-EY6)DiW__D z$j&^do32uV%33Lz293_1`+#Wk_0;>}^;XhRIHP$Mt%nb9KKhFrqtt>6Z+CcH=dCBe zyRbU4!l*2AVwJuS(TX0a}BpVAa?L5nTrx`#6yNfDHh!OCEy1UQJ%dqx!nGC=|` zrT^tWx4KG=7&qCSyshk|*$^?&E`2O2MzXED&8`dqr-X`Ty(*BY2SKlYXL2U7gIz2I z$g2qBkHI}jtms@y)1Y)lB?nipDM~0ZxF(_oQ6v#1IgHZ#rOUdAn; z*llj=5GgQDW-1A0s#kfbXIxPh34vXk0feBqK0g2V>RB?_)<&7Nvk5a9D@B0}Ox0=- zu_l-#6OloQFze=qGa7s68bTa}JD}+zJys$|)?iA+uuP#)MoJ`m%d-39?b`g~Zu@br z<$al~-RxWETB}o&fpsf;j{foEWtxg7Q7uJ~=x80xNC4?XWXwP+LV^j)(g>== zlHeSWWO4eJzhT7IH8hYTsAnLC_R0~1D!i^$Uh>QRi&1N0rtYd$m{T(?01zdUb3&3+ zJta8BlL=x(p7M_XcM5SW8Wa@BKxdLZ#sFni;;hO+0?tUJ0s(WhNblDA>NPV4B}*#m zRoP4t3KIqgc~0{X-`kh@im~ClKhB6J+^pZeXx6s2mVG!|t;m$(v=o^x>ntjHPK8iI zTc+C`i*PW5^+J1q8dgI~zpIGANe-g+n=$vaX9phxgXigLczqC-dca zJoC*&WXfZ`cFkck6hIO<5tLAgAO=!W?PzO2aTPvM5FGr~KRtO@C^yqA4ODaN7IpTh zB|2uFF>d#}?LkKW9%Mo!9E?Z_CTB;k2m=Hl%b1t%m z5>bRQH3_3MA0RpRy1fuU8RGS5(tPYT?_{&tjntn{Yb^(!5++hPVF;wHRQP)~QyN&V zIAJGFCVQT>Tk$gQ;P8TAzcJ*yg_W-h zWkWJ)6Be-q8-&5pMbZfxSMy2A-*&cCP-E&0PAF<}tir`<&=g_4w*4)Uk<3?{PwUj! zFbAAb7|aTUBxNc<$sqBvjGZwc5z1m@%4%Vr`1B9UvJCy}Pu9n&T#V$|4w6>9r}9D* zu(sHbM2CxrEJnReH}}19b&0;Rpd2<|y;=P*s+a~eCh@1sFj%);MQ=sPoK2Q_Dck#v z6GCauUbtkcL1PRfE1E8yba4q76`?>U>WvjtYGxk-Oi2WZ-attyf^1s)N`ocBXRm%r zG}^wn*$(UJ^zO9XZ@n@JSJAk}{+s24ccYlI*v#ElyaVY#%`$rCP2S&1pZgb;Q~6hnp> zJ71C6t}dN4k>$sK%RS<_i*NIAY_gA5v7IZ2p&SRu)o)E1sp z8fne+1Sid z{q3~fQa5slGKs`hhy?-yH4p-TDM-{ZQy7#k9FmsucSBi`*>eWL2J(VH43G_T)e;rV zEQ&}$NaXjtba(U?eo6FX)vD?e*})`9V1eg#yb+RJkVO&-MQV36{ps(e$NL++E3fin z?2$Hh)4b4j%?em_ov8J)D`k0J(DiV)$1DQqWmU1wq`!Sb<9;`Q)*PiYrRGjDgba~B zw%&x~VrMJ6Y2#TaJbD!EF#x=hbOq;X_L#y|Bf2T68U)WvjsvBM5L6l$Vn>F#fh-7~ z7|B+d+GP_F&CX%YFFw85^7(Q;<;^y!5U5rFhRo!i03`4hEbVRI#6x!ds-0y`A>12hfFej*_2s=y@gkCJc zd3_}c;H*r+85*I0q?MI4hM=qoa29wMBBEY}b9A8~z0QfDURsv9I|ZkwGz{rPIk*s@ zR@Wj#WL{TF7jC3c*@=T-C186NkWxO5!+?j&3(2QpyJ7QA23>N%D%0|@?wPIU zsd9-6S}fZ_V;3&Zfdm4 zIs9&bkCZHm3?w|kD<=pFLGdIXGQ~kil4LTD=d*d1hOkM`@5XAy$?EZcjz!AmGFX7qEmAdPS7F9JcoplLU8{9JnSSQz^t@lIlo`!7?SJRYU*=hC2byOAYylY?;m? zCPPCaLV5_%0O(jm6fD$7%1mfN0zuL;*n41E+bk;?P$DZtn5cM4QXeuvp-$9^ToLF) z@0=3AN`CW)art<2dA!5?{s)^6eLt-IuMzWd=9~RUCE(`fgC`}yd+!s4$DDmF7%H#9o+D8? z$#RK4?Ro|g;7Xt@9f7o-K@lreLD3Z^&qddDv$nqG`0|rOrN^W9@kZ84RFtZ5IvF~3 z#8ov%jKHjbWYxN2=!3}69obQwB1s3n zDdq0v{;m?TONNk08&ez!gR={<4Uq;ZX)5F)fCw=V0SHnZ;?jhcvMiDUt0tDt#!OzN zC{l5=3*rc7=arq3oDxo8bw^hIg?_H-HY zc-gFv>#i-nUkA0(YCl~tPOY!wmR8DY>-us(@dB>==(^HSWO=`oEe;BRpdsDqd^5s^ z9OKyuR@PyAdZhiqgNV_Mog_=o5_MWyV;VB7(;(`-@@3u^RG(MVIw?rV+bA8PAwwT8 zTwM}rh#s-a9t2aoeW}m$T5TMMmqUME&zJojhZoNsXP8r_d92DUH8dlH0?gDoDTJ>m z$aJAoU&#bgH=F+Rb=+k37`gw)2W_h7oArWe@j4#EtuC0rvL*$lsnl{ejF~{A=uAvr zuBeYxL~^jlHNX@kM%URBQN&eDPmMLeVOm(bim?rW#(}}f+sJ9I%n&%6tO@PL#I(Xe zE~N0Gqg*uDl}Lh(iBs%E#MPX8-6P@1=J8{*cKPTVtd88qh)QHUz*#{y-i5$+| zy$p9B!xc2Z%YMG-sUKogtR+iLHk>wm8A|e+>ei?9;9QH)^JYkvzSexYmFG|Q+Y$cZ zG7q<@P7Dl;7JwsK1fg)Jj2eYNfH0A#1O%J`B3FE94k=qL8~Vk^B9%FYPRcALSQP&?A?CzZ(%j5R59 zvw8mOR4-f3P}LGGGS@zo!sR3TT{$}6$?>IcaVhA7j; zKTsW}Vluebb;xy!3%0F^q()<2d$2RfTq-WY-LQ6^qrAM^9^z>}(YT$v)WVa190AQ- zS7=rb5>z4(gDAxqtPv~%4hhoBw=g*!Gb zHCu`@k3!?kVJC&q1yMVTNNQ*%0ZLZVGY~9J5|r-Zn#QaV0!b&zR6=QvB*r{-LW@DN zi5Pndiz!GX)FUN`C3^@Nafmxba)<;+7PBbQg^=nqSuvLM?Zpci8f>VD!4Z)l3zt&7 zZ*qRRwLF&IzMC)~U+zw8hA&h0#@qYLnc;Sf*RO`ORBe~3F1(4>KAxwcOndV*UMI$p zc2hr(JMM3OG(f0!GQ04kzSYaJlmVC6O0VUS<}I&i$e8Ae7ClBxGR zZw1hGQ`_R(plVSvnvkcZ%FwHs$2#fF%}!-`|Fj>r)UcJT1s3jryI-P8a-girK_E$7 zRcVAs0GUJx&9|qHjbthKi*HrScBD>GB zVZAR8lbnyQ(``(|G^Uq6wmz5r>%oIu42?Fd%D+DCZhhHJF)ramvlN#Yv)jARp1o~c zm%`pJRdAkGn%cRq*enYTD&r#a;1Q|HOF67hGF9s9EZ$!irA7N77FP^^xunK2C|@x4 zpf*@$+cejHzF8Ntw1~~&W~#@hK9@n~G96rp|G!hNXVL&BWKakL;*>-Ylv#oed_ByA z@br<&$fXqi#do8Y%}^A<+P{2?CZMJgXwM2dU)eNs+DQ^$WE%;PUd~7x7)Q|jG2k% z&|S23M{@BNhEN5js1hCn_petjJ8U(mbIE?0Qh1?~Ywez+#~cxc0dCwV1GD(*=U{oU z-*4mN(PDR#BpV?SAT7h(gFFk62u^TGCZR}9Bxw*c6A=+akiWUGO5IHKi^p-eDYqIK z<9>7bAAinNVocH`W9>LeCju(mp^9NEhnM4K(B=_Aq6A8!5U^)vdZZ@DmGH&M7K!Wl zU&x^3LP16Tm{w5lNToz)NRrgxh)Gcf5e1PjUxiZ&I}C{ZcLoQ zBwdKAbZ|mxuB8t#uGKDOF5X!)ImAL) zhURYH*fiZuaiS8M%0UZNl|>l_ZLDeLoePrLJA}K>!`d!7?(a6VJU{SZ)EtMQ6iM!3 z7U>yR@H7}GAZBKUnk0n~G=dnCEJ>~pZz82`ihcE%`*AaoyX7Y+|6BL^X^ zW+I7}oV?kF&F`lCF!9Oi{o@)x=)N6Ri=o3AXYab%WN~*8HJ72v`uJh0c^P&!_-r?t zf?&;Y_J?(|O-xIiHuk78mCUvFq>Gwt@^qG4&_`mA5RM@;YB0i2Wgd1IBlgd;s1C47 zXk3PVIp}37@mz+X_2j#BC%8%#+!08wc`?-9X)LKNER~m^dxu6vOtKEIWr|W zB*3l`x%vI zVZ6yVad({0pBLAAG=2S5@P5v%wVIgxtD8}k z3ODJxtiGG5b6MJCOVi{bZS4;ueMHUqo*;=L!NBRV4!6o2bE!jLO1gj~-TS(Kc-ZR7 zL!2>+Df(%o2r3sWiPPaQY_wb+ma>brysWw?FKq1OJ$lvBnZPbgPLY}ll7u9OCQ)!Q zO2Qd|@16;D+Sr%pZP^!Ym$i*D4dvnAoBE=I`jDAES3JsA7lHCJSIG9H<9^&K8+Ykq zRVrIl7YB4LY(Qs_1P3EKDIiT7B~frdB1@34$vNXr`b-7=qG(w8pMBTo)zZ*HDaT;Mr0#kC*HF6Z{ zaV;1OiDYDwOV{K~LKmnz*Z?&!*n|hpnC3+7wT;v$ID6?Mg$F9Bt4n5aM3RJYGFVhg zxOVMzah6PpK&(Sg3CiJu8p4zySy>{=)mTFT(w&T#^JcqzynKH2r^CjcCy)7VXfmx& zJqzY8uLsRKKF5v?%TCqbFVkQlcRH_G5tEz8NPQNTiw?2I z(_SVBsu5bA&t|uqhpC*#Ll6&h9WSLa&nOy8x$HM#(|CN*ye3*x-QJEBU$v- zsE2qwqHeL?s4BAsEs{MbLx|EVNl-RUWC`YwBqE3*DVURkh$B;-zP(i0O_w)q+K<-0 zdFq>+-C;Y*SDx<`e3v5kG&AeR~s*hV-9;SVns*v=-KuSWaO{BwwJtVSP2`37Q zSvf%*o_TGbMMX*y6Ub8&M%}6pVR6Y~tOg3Tu##PaMVY)daA;(bb|#~Ajxo>?7qDls zNV6h>aJt$8sCmMGAt+#yGb_n+b-1($Z);-M+BrVoJU)EFr-x7Hr$-^8o9TVy^mU2* zm%W;c+N!!}%JO{PZE`Jl72}*Skj;$;Ilk8&9Vl46l~bp-r^INX9?9c5w>+PbB7}#t z_C$*|ezQD6@BZci=Uzr%wIR7QvNp7s#n{Eq(_qIUXjXWgQ4Q-dQ8Dww%gKiM^cZ&@ z^=0=xv0GR;!HSd=38tiABqwtcARr28riL>`aUyaeH9dYzY=+Y}xSizq{+m`xo2J9A z(8oUuxH_}h2v^o6{QBKx={GmNDj{!z@~muDUfhk-^Mm`8ZQ5|IHN+6J zB$B3J6GSDu2Bd}Py7CQnj%)qbg#%X#TxkEQ4cq$gAUFBu-F$i6mNL*-i`chcd*Q~T zmEx6GkKtL?+}72U$gKcm_cL0Yjl4u)>ZYCn{?}Fo_X7B?Xb>>WP3j78H{V z6$B>}!{gdiW-*g=Y}P^H>Xg@^p*uu908V!HbV$w<!fFg$6=-YBibN0;?de0aICu zDRHt9w0A<5`(Z8pUA`R7-@c^t+n4_QG`v0;KKo$Uv1X1p)7rEIb6HIW%JX?T7<_-@ zYcy4K%Fz7KWzt$NA>zaQM8jsc_9}Dsq0j63-MW@2Dm)R#Zs-fe?Q~hUub*)E^5G@8 zrkRL2Eq&5n4dYoHUKZ}K?e^*ItIfRbb9uZ+>8EWUKHZdI{rI#amOEKCWu#W%4kiRc zgXK!tO#NswBFsRUgwRe@XIqKNDlI67b0y~CQbQ1puD>q`%G6-) zPF~3{EtJUA?mfqTDtjE?ZEm06!GSSGXLD*9UGpMO==-&QvlB zd#}s8(BZJQ^crFs>zt0`FFyU_5zCPCv4kAQo5QX2k1e(4W};S@)UWo0RfMngT7-~X zgZ@NdXAP^ANH8)IA<22wsIOlRlRWgT{qpVmq_twYz1weYmGI_&^G+EE%viKO$FK-e zd$AyXrYyU0SA{?kk}kzHh>aZV8S1c-K@1{8-@kmDa=%&uxrfZUea9+NrjYG;$A5fEAHye=PKT(s>9qvEb2(@2+eO=yjut1%A8&OIx z;b}20+veL1Mhc`$sBqFiuA%HnN||tkW{Ob>BJI^Z#GO)%LZW1Za#9wPzn4`yghL70 znJ6U_%vr>$aAgrx@^sw^!(!H{N3^@AJ+p;-|cVO$GVAUn&^OFYE&bvO6lk4hvDFD+}9<8rO({P zT%XQm*sUTGyy>=FFbtJNLvvj|d^r!Ve>_r|04=+*kI(O|e>iNI(NaXLIdJ#L~I365|VKCAY7Ro zt^!;Kv_>V1OYK&J;XD8HdXhXNT@njCb07vBiOXm#h8(&OqNHlL zG$rjNH6$5fo`VQ){o`@JzdV#r@-n}o=Z~-W`MA6Lu=eS#HeHWo<*A{Kj723x>3H$`v#zYWwbu1`ZpcAes_%6X#HW z{HoWR*FPEITc+W8_syUDV7mOp&vx?AesX?&{O0TJ-Q>0U_{mNlT3hPOyTNTFLPG|^ zh&Wi8Eg?zd8XCb2Bp|&YB-m3BpwNITfs_2ZCvKqMeEr~MkDGO@b-dZ_4n<@BcmLU< z_923eFFN){!=m0eN93sz$^Nk2%CxWz@FY$`jmFX_)kv4(Y}$yp1UYALW{@F-8?J*% za`qlq@>5WN6zt|w0^yw-Dka2OApr#>0YKT{8QPL4TOv7_sOKoCD{+!hF{&#q8gd@i z!NfRgs(L4J%d_k~ zm+f9#Xs5-px_u}bhxC*IUhILxHifx(j{={cx3@Q%bM@nR4$4Qh+BRr!et?`ZIJxJg zO`?l$^!|J~efQ<m<#+z@vTpacdwh6fTTR`L z-K4q8wHC>Fy?$vJGm^m|C#FaSJClbJK#_zXlcYq6ygWUwi~BF%T*eZbW1^PB&0!L8 z`Ncn7bIASSgG5;X19Em5ki*J7E~9Ry&B$tM+`W*Ax*#_zgn|pVAptm2;q2Na2*eV0 zmEDqaWCBPaT>+{1FvC!kkZ#Kib|Ibf0-z^!x`b5W9+wJ`BNyfRn zqH$aYkTJ}H37jDT;|PKC_4_D^UOXicornlzA|V+9BGT-~ce9-zzj>fW;LWL=G3@rA zyxb`PAOHEcMHcE$HAx)M*>PQCT&%1jPIkE2ZiqRsQpm8eVy-KLgI$~wn(E1E>?Mq_u9Izyk$Kq`?wb-mow=f}+rJ-1ic9$(gnhxxNOuAkn0xn4p~ zm)EjV#FpFRWjF|pW9?b778eQY=URs9?4|UGUVATx5*aR~09`<$zpwUWpQ}=_-q(v0 zm3ChG>bmJm?RuPVWNeqyu(8J}AJEq491cGG=Ly@UT>6Dx<366pw2or)h1Vn!RaCtsHJv}`| z<-)#_78<8lFUD~~UjF_6;%16Ium^^d!V>_mBdIhtkx!>Gj4m_>aVBwB2plA|q$J2S zJi&0e4&_`NfkbKwf0=O!rXagW0jm%puajdhq>@&mCz5&W zW%G<-P8JS?=XRm&+S!sCfua=?BS?so_(}#T7bhpfemFnww)8&s)6?;X^P9Kh?FW7S zqMYBK$`M;zw$xFvKD@gx@;q+Th|fH96>iVVsN%(P3fE?2t?b5WNn^BZZyvs&%9noW zPfxKg^Kgl>vEHA`YruW8ruAhMn$K^JcF>3S_6mpB>+>TG4^A;X2(KRAQSIBLA?d~I z+kE#;XzOupXd2h`uaq>%jNPrho|@F zld5xVRobA>%fm3$sQZal7c}P7e(VR5UKSl7eegwRnW#~!HSUlWbeOe#B=J9Znxi40Zv#S}AWu*T8@BL&ue|*!Y zvb!%JO;1m-AwyG$K-q|>s~5>gmaBHf3L=?;IE#^qm`13_`J3;aFCW+0IY9#n*Pcwn z%lq4Xk`})FuYaY+Z1vjgB{Fud#k^DN$zi2pI}Xk(dBO)3ji3}_tOI0wlxKYsho62PzY0WQt5zAK?#HgiKH=6 zunPslL0ycH*V8GHlFoxs?WBOJd9at@)ZrML)`cP|3Q_{0qKP!tU~g7F#s+7ExP-~8^+ zhR1I|4&%*>Jv0fKN#q{Vog2ik^w=O@S4QjKoCZTJ^te1-Sfho1eH$%#`fhIf5dI)G#=i=B6PXYn22$iGwp^<`I-WrKv_F2kR>2 ziIl{mrk0jQ15=`;WbfnR$uMxQmLf4+1l&kc6Fw864d&+d&Br?0$?i9&kN5TQY2Utk zAU)0NFx6+3%z7?_$fldIWtlj{Pc;CVTVr0;ikH(O%;D`Tbd3K7NP8rvBb%-~O*3cQ+;F-TT{RKd-#IIQ%yr z{K-$s>reFUax91P>JC@zM$)x+D_7|n2WJ2(iKrBu-~hyd1Y&RvaWDgy4`2QDo1U&M zY6dn(&28pE$K5pD?Kd%u>BqnLAOCDA&7+Q4h&wLOv9`3D%w%LA2{i6Dq7fM(k%dY9 z>U3O@1>7S!jcl^aNOvM3CxNukfb=UptSo$1<`h*pF;J5@ILW}1r`uquiDU{dY?bKR z`;AbOWHxt%N%nPYyVXepZRb>Utw=ypgL@V86bli`LMHgw7*%SxT{kpI6@^g%7oR3Rw=WzW5dBF-Vzg*v5ZlxOFnWld?`LCV9;UN_*zNjddG z$;edhbPbs&D5-=xh^|#2jp7s`a4<9}jl_l!10?mjF=(x{n!0kP2WqfS$XbxZlCBQA zy6`BNk<^7~X6j+m*xWeUSduwy=!ulnRn(da=Wv0S4E0RvHS3yScg@NduI2JHZQF;b zo*u{S6o=nAo$$g>75Ft;BKfB9J)P|NGbf6JeYoA=+Q^`9IxmhU#} zEYBr#*!UkT{qEM2FIvCT+j7l6fBC&2SW7oCf z3i?1uut1E78kbCtAV)AFAhl4^3(7Bmw6m6 z{^r$-&87Kre-==A^>_Z@NBa-I{WWer{pkj?^dL_`0*S_qo}Obw#sET)uqDy;WM}207;7!m(T@q0&_)5Y&RgFX| zrUr1jIOPz1gOsKvDrFZgh8Q`VO%~xs?8Mx=q%ns^8@*FmB$W$cwbCiH7n-$4ABu;U zwM4WO3N~DR`^C-rwC;z?huar#&WDpV;_V^EyN{2b@6T{!4%+U{d#*yKEEb{lW7`OK ziP}q;SQqcK8-r>i^rz^-#WmA2TDy~vu|5y&@pwf5^emlyxqWe1*Pp!n^ADdd?@pih z|MIKXKiHoCB&Sc#2i?eEmsR{jtwY)W*T4S*`|{hj%gfJyxTToZ?jb~}4hp@lS>Rov z(t>-505Q_lm|QJlfDu!Aw`vhbK5Y=~SZ=VbEG z=&)@!b_IbbqJjHBUR}t3^E$n!a7P{6qgBJ9*HQj(3Z_f|*WHKl#gd zua=MBy{hle@q-s19?vfXcVB;a{#lb`&S>KgZh!p8pU>ZY_29cNKCK}cAy-gXB9o0A zg4Tpl-8-|kA^?!8Jvhne+B-z==eKVj?eI?F+%tgSP0;or+u=|EEi$BGr@#4Ub7W55 zgOVzGj>ImMePp8846_g-$6-IJWEQ}Pq zbzUgo-c=AC+~MS$#sU+IfqbPQLP|2I6$U#&BiJ;E!%CBGNQg_wxU3svjHVG<%0-O` zy<{-QDzqpXkFCsOm0F?{!hPrJrpfxhmY;Ta1|-zVK-_Ss+YNv#V9F0_LRuZDAq+Ac}S1$^;Dm_iw^IO zyk@BvE#<{e-z=ZDw=ceZvzF=n;qG<$ldk2k|LS;t+M{1A$(i(rfBVO;-hcdf;+H>o z1xau2DZw#Z5oyWD?5srB6Oe)x4G>R~03@9`k{HMRWIWBd#zN6dc51-C? zdiIIh;mPj(H}AFC&D6t-%$l++JRV`aDx^_eO0|ZhB?}8ECF;co^Sai-gO}sOaPfz) zZ*RBzF_!0b)$GdDeY<`Ay1l(Qd@bL6W2Voz|D^o8%j@m^^6}$ZsFls14nAkO{rx}s z+3?GUV;^7q&b=FFHuoHQOybGcforg7Noq`R0AmCd12G`TgsWO#zxe(X|Lv~=L6VWvrReA_bN^(ed2!G%)^Z{`E_)na9x6E-)wysg zlwc+($z8I9yCSa;N=k~(nGsAO#z=0Gnwh~V?9!^$9x5PL7w4{2nyy1v=j)Ope3#)8 zDb%%7a0Cb7&^2OBit8({)$}^7)a%MtL!3#ilzH8?N-0=q>TH`8NyIL}#YnBaf8Ml> z_6K>9?{9Y>zv;JM`~8;cx3BiQx}KuW$I>H%T+M`pjEiJU{06i?`*$(f6BwnC!fFzMF*Hd1_bp=#vEitIM69I!PHhqts)(5bXtWew_Fogk^#MY9X1NhFFqzNUvGeMUGTFGc45k)*g0w%+SwTp76SxYza+DW`d zh6Ec&348wa?MUb6VT!lg+slLhXk9+66nDRQf7v1?HrQ^g*87lImX!`P&|1piV!<+; zyNZr!ekrA=4q~_oupfeREe=L3;BNK|q3FHdt7)qua;?7XpZw z!UX|BR}NTQ{`{}rT&i+bXQIJ|o6|U8s6y2!bC5LwR&2)n&42%Mc+r`*O^LT`!YwgJ zmaIV@I<(`_W3ZSGJ62~Wun7Uq=^W(Z#lc-#B}!*Vpivi0XF+PDIJjF05I`Z+nLJjN z6a@%t^&BIE3`liW_Dm#)&LRkqi*sfsK^qZ?WoZmO`|8q>k-?PF#aRkDi5G!x8yf&q zhNCAzRt87$(kV)Q_{%@o9Z#Dv-pWgVjvt;bKakV=-Tmf7RL_-$7^Cpy|ISoYIg(D6WS>^&}J5 zBv58F7D7zm+#goe0#_MjnJn*Z09DYJaAAa(ir(JpRyd0mMH$92d zMCl}XJhgkC77VLUT26hosE=pXg;9(kgf3-w$S2a#8q(Y$U2ILF%zS- z5RN4ofmTSk2~#?80woYc%r1!2um8=T+s$!b&i1@nmbzbWOVMIXE|84mTt=~>l+8xp z|I0r;Gn-D}HgOx*i}Ab`Z4~7)hH&F3-i5P!5}6RJg+r89aS{iW6~(fjA8#kD$8skh{2&(^=KCN0hVyp+ z_}Dinl?y<@bv*Txv1C)z>{%#NbMf-o+8#g5e0LZ&#^tQ7y&FD!w7L?#eigs|I#uRW zIc$#6X)JU3o40rW`JL4dEs*2xXPF?80`P;%C7=|q@00at3SO>drQt7B0RfKaI*SST3*#$a*~ z7#YRD>(Ey=(Vz@7Bp~ zhem=}8_94U+l)jXl0l0WuhLVKHB&&D8R}K7m@^HLt2miUxnwR+ygxqeHuCQLIbYuK z{&K#1{YGEjezk67(jiK1>>XMkR=MHQ)ray#hJh`MY`425U-sj}m*sc1e9GAf-+X(1 zv3rQmZazGmd5cFO3?uc736w8h3~%3@_UnU2)Z5?v>DQ-|{3t&A`M1uyzyEmZ$Inao zqd&NR{r366cbgyFEnJB#6TF%htec?7K$MgoBHE~Q$q+#ZTLRAP1|0wGzrB3+!*(9l z7f+6S2Ei&wJEy_bmQn|o&9doTbR5gT zExBLaFO*R`NoEpfa9Bk~)?{-vq7-x?z$hh*2$Yl*8Y~&<5XxZrN61u@fTnXJje(>y zkUWYgsS?yRn1e{ZZofq%_>Nx(e^4C8rmj8+%PMqOj z2XWU{$N>R}MFbd_Q4sJUBq_Nwg8TJ&v2}F|afk{DClhl_Zp0Z(iee5jQA=ebQm;i3 zUL!epJ>2Wg&&y%|{Lnqigh#F)PmfQ@yf^PoMWRJ}D!WO6v8T=f0f$++lk5!ZvK!0o z<>Q;x+lMzk61&&)y1$qyuhaAr-}NZKhJGU7?tb&mOT3KO{o%`ZzkdGo2c z)fq2tZ$^Fa`}?vqtHa4^*+iy|k|KdxQYIc*`QyL-7so8Ot7r+;D4afJrl&f@GI^RS zap~ClHl~-m*Qm+lARY=;7Ybaj^~3;E2Bk};D;VI+fF**FELM`4Ddc;8FT)A!+QB_F z1e6ei*QPx&Tw?TA)*7tvL4pObQopjzGg(b8p{sY9d)v%=G@9n(Y+}5!7*c{&p`Jpy zj4k0+vJwEVuCB=s|MBI|+S>0n&(9JfMz`n7!QZU&c$i4DH`E@hKeitbg1eNXa?dTV zHpoPMOnC6emh+2G-?z7I6E_*=<7RYsDzvPuKOVk4cW2U(>X)C@St{}*e)Gj|zFS`2 z<*(1jH@5ryZ}Kmk_pe{mPyH89r>VU9;%-V(7)44C2`>OQQ#OkTwxLJm%p_g23J^m} zs}46E+3H$|`rs&$te!(H$N%&{|HUcEpD3hDqBv5T zSZ>;o7fDIC;Pfteg7{{tUXdPY1Ie{`BN@dcU{E60h^wB{D6VA`ru=>yAgh`n5a8fm zgIyS1<-cMk4vOLkPl_5yOsz7>s4N3>5g|@WP8AatN=Af*akQRi0IisSP=hF0Bq9dV z8tgEr6NxafYer;fkHN{c8C(1OGhX-8>0v|j$u@}TxRrOu+}SLhU--u~*%h3KhA*%e)|{bc{~{0zs#QitF9;{507NtCa5uYU9L;kUH5 zzAg$J&8Jh#_I$)o|MA`Pzi!z4G$)K#5eK|zR8qo-0Z zGbK?F)X)9ffB&mX*=Dle#oC%XfBjFsI_Kd6FhHa% z1Olt7SQ?drK-5gHjdY^=VmgdtBueyJR9KTJy$g3xlB-?Y>B^jhRufh!B2$0_zyJg! zl$m1U)Pp#bAeLG>LYO--oJm(Y%YlQEY@kpVzIq~plLDOHQk)kj?$WG@#^js^^gcX)nSwf*$f^Isd7HOi*uYVSRLimlQo z=KY~>Z}gWJjGz3@hlhnXpa0JE;jcF#yVsxXSQwrpY+z)d7Q0f_qH!@N9;|vz5HmR? zainGI=M`G|^tyfLZ(hpya{uAY=exV(^B~_WPGfQxE0T^fj#K>lpZ|xWN_%vY>fdwN zb+oqL#WPJFy&@H)ZIBYN-YAbMX%xNys`@wiPfBHvq{%vk;s!Wc22^4j|5W|!~Jhnac$^^0B1>$K!N6{a=_qcRWUewzQ}U;M{2Qw+Oc zNh%ufK$4AE$Hix}@eD_2Ft>ERp=mg5tD7gFwLmkt3MqM9z1$QjOzA;<<%0rI9YIJ= zfmi?niC_X!frN|e5j9JQ3>S^gYFDcqoUJ0508Zn`3gMntYtI?SA{U8@A*5%lAL}eDlL^m*n-+AHEt1B_o1?#vN`N7B(>jyo9aHC5N6MreqH< z=%ux(aP|Jl`Qelw?e(78V|C&EU+p&g%ZbgG< zA}+~Z`u~rnKkJqy$*%Lzxf(NbkBHrzF7src)u0G~4Jhb}SNC`8L3a#FPa4z^B~q6~ zpa7y!Rauqo>30_q?ryf4`>;#@ARgSq&DNUp`+@;QP{t!5!ZX#UGrHBaFgaiz&9l!y zG9$dCLNge_y>bWf<3mIV$>GSt1$w5?01>;D427)3C_-Be?uEU8N;q`S7%Gjpd>|@jW zV1^7pX#^KIZ&P*~U;&%E)`((Ac<)1~ksviLpKho1{r#_g@!_ZWiLV#OAHJ&DtA_Z- zj524NxNJB7>3@Ao!L;%=pQ}Ph1UeK>nwb=Wt+y7gTJ3OTEt&0tIY&lBVPzyCkVZU6 zG6e*V1UV-MJBJv`V9%1qgTVRdwI$<-Obzlf43Pg1Q%Vf6@u;*5A?g)OP~shtu&`u$ z0R`8`jUZbc7Q@YbbTjAR;4E1{j2Nnu zYl-s@|M2j|b$@U$XHXr5l$a!~PT?FzeSnKGQzLHX759#`hrV6X(@Sukd0~SvUEtGc z`fu;8QAOwHH}%|33)w`zdGXWOEq!2KLyL*m0x2M}de(0MdNd)@EvkU*{ z`*1(h>z$o%6&vH_zH1V-A^P#tSH9qjUv6)oe);4~uWmni_VN4?hmun;TRt{xX)vjg zri2Zb`sjlak08~K5mXDbBthA;Z$8F+*xp@zRwxbt>7}^M$V)C|+Lf98`~TxV|N1sl znE*);Lxnthz=gb~L5Bs48`r{&zD+WwtBYwOM+UXJ(-N8z#hINRKh;D?q)C7?NCO&_ zA(6zK`grzp4tT1A2}w{$XdodGLMfDyVZ_0MGF1qm=q#L4%!w(;n7w4@?7D#6jD&dz zAcC@ri4g;wJ(+lGPCAm3OY8>H$vFdzDWK77F4pYzZ=bdEMp@1>RXc6hf6>khjOOT^ zqs>f%I5>{*b?duMTpn_{d2!M5xOqJ;_1ebRAI4#H$+u!iw9YoQ{pDRf4`#7n)&F?i ztG}UoI8UGI!rq>|S+6Gd7w?{Rdw9}*|KvU|uD^Kt0i%S|hAd=BNl8PfZka?|rzi|$ zU>ZV_z&d0mpmY|>9GR%oJogPBefaIw^Vb~qA@BAVz0~NNLT6EX_w8@~Zeg2zaEY)$ zsXm=s4JwQ1ptWhoC_Pma7!oN>ShGw!p)?Ft6%|716tX=&MU)7XATMxAVm1l~h@nVI zNtXz!K!B-hM5gog+)Swf)fGaNDho)G9q!@q;sT8 zNatp?W=sa=mKu#S9YMh`XC@^wfn){9h$Ea+)_C$scUD(Z#@pA2U%nYzuOqRpo797c zLK2(yWi^ki8Yt7QZ?_-Lx3>DIzWCLgo9;-CZ^_XLZGPbCX?-Xk&U1NT7x|N87||3m z&we4T@qDqre1IHoKJV|h_fz)u<6nI~a23e|PUM+kVj~`-4;W;jL=f|$a0x;Z>Rdvs z2t=e1TP0tyjZB>0UOsvFw!D^C^$;GM%rdjwzWUw&{ik#E@E}Q=kjV_=!Kmrn z9%b={7IW_;`#BEJrkZXBpXywS23#RsJt>J8Oi2!cd&vx9xJW$OiIn0|7U@A?g$shj zg&lzW49#g0SzvbBS@T2yz_ zfmi7LtJ?>p`hhQ|A+JN$c|CLr-_3fy*&iQx^8Hue-II!9^L2lFciwK^{uCd! z#{X34Xixjm^z(M=|KiKjecNS*#o#0i2_GAP@Dfg0T!TuNq(Ed^s8$77HANgsoP{um zSMQf=l)^XL zP}x?R=>aEJAG8hu?KP{kalSe_K>4I+g?BYboSH!bG!4I zu%@}HGs1@%!y;R3Fc~6`^;&i0Ae!qWAsO%%l$w+gkQlx9*qr0TyI(we7q~cXPxd1< zCJ}!B{>bb7nuEAhPZ<|-^clz`+2 z1sey_9!vj}N=%;Qgu%iBAi%~MN$f~@l)P~STFAdcMp7q;ct)}r2m>5dQ)-PW0N5Bv z3CYLOK)M=wZs~qZ&jcg03p1kW5CsnjE>6M5P@-f!?h|1JS%wT+WlKphe)@ApeeC`D z^6cgYqe%%o^irvo5DH$|vs_$Mtm55&xkFs;sy)Bk;$m4>ty2P>3mM!;j5@MUQ!cCpS+c7e z3CxM*z*Rj6j6d&Y!^t(AR_}vO50`oO>hou}m)myxNeM5z^BhYbxo)>-tEBL)q(s%; zh!sEt_2l9-Z0JBRH?`s(wQ+lPxX$9k-5OfWn$95)}vfW&f1FX=tH7@h9?uXeXg0zkct}4TiH>K zZQEUc@uZ!T`uoMT5MS&S45Q)!3OC;w*;H*4bt{jk{K7d_xBa0u0TU5Z0w55G8*qm0YX_K{SgKL6IyG!fH$;PK9_L zZoC0OLJN?KGp>;hc(VVxZGm$ zl=I~YWmoLnmK;;v9?;6X+~+x|a2?{sd+3Z+!<*CLYIk|{K~SdauiEkOJSsKaYI0-Z zKx`!5xriBykRWa2tmNLKUTChRkeV6^2|ygt5CK*yC2T&t_98#!zj{C2Uwr%QdB%D* z=FCO%Y&4O3CJ9BALXqr5Sv%D}mopiS`BaKMCX9T)PV@fIki(R67LrWUxmkLYNu>mQ*acf*esaP>K;y!nG-H_TkOl z7$>-&tz9%JWTOx4#HWigw!)n2dE21l{Qmy-*ti~2O1~e*e)n2NxUX`3je4|Vp1i-^ zJ#Cje(m+KIN7E4&?%tD`o_+CfpCVTu{p>kkzj!i>RxvKD$})Pw~@PGZeDJPK&N>)ownkhoLdyd#;? zaq?@M&d0H(OK)NwNr{*;cRbaNLormN*3uj~TnCKEiE5y%5o`kLGN^k7Ju-n=NJd70 z6-9`dOD2ib>d|sbFf%I!fksG>nyZ;cgcc~0ECUoSOd`aj1&i(nMZj)VWb7hpOS{0tkxwwmavV*G);?RRZSp;Dd_2Zyo}XO6YV z<$k)XH6_+Yq{5t@FhnMDxO;ke^mU|m9>Q7?lBog^u{ju?#FY|*5}h-cyQc-%?9APX zstSsy05Y7@v65~SMKYNT=pmFO$rkRMJtPGVfhh5VCWDoXiwI4cP*Mmc5CKi8j7M0l z)XB&t3Xe!;Vh_N{C5CElZ*G?bEGa8by<5_-q%M~;aW0+D3nj}M$M5cb`r++TuCnLI zI-C)CwnIPN;u_;(x|`Bz>GFFT<@(7-6duG=E}Q4*KG;{HuRqG$(^mISzxaaSdFT$7 zfszcf5t|K%So*q*D1qp!V|1eVa%N<35{sxr5*%5pWQuiWBK0Pf{G1``-#Wy{n`vw( zCa*XhSHfsnL|IL|$RZTG#WH7Jjcbm0?Id1msa<+d#1sM~KN9TxSWZK4$fFKFBU6HU%uAQWxoBH~;m8yne};GUeyJS-zP zGdLK;4$&YAi*O?Fu8)?^3;}`3P#A@J8WiG~gi7H8aqfdeOEXewPE!)NSO)0|jfWq? zydZ3YW>w1AR^MGrOg)qY%ke&@Ip5#EeRCSUmhJBSgZFGnDp{2-uQs~zZ8|e2>b`6b z?{UjdKfcOv8fVO0h0lE@F4uqc>9ZJjd3gEDPiF^R*2olA&iW{J85W2b8K}e(2|IJ$ zqFn9>AP^}>W{N6XGJ8Z7WvMy?Jj8j|R_4-QeF#1B`+8_?=cU@sd98EOo+=a`OccG$ zTdR6mi|%C;*~p}YIFA_4vg0}{nk0J9Nm@xu@61UOOjIGs@&8=>LFqysuA~&{{P;D9 zFbaxDB#0z~K~kh}aD)`7#|GO<*0I$vvJPa7MO0xl5LzBLMeZh)hM*qiiNTBjk;{^U zMnR%SP!3x%JUI~|cBT}v6is7Nz+FHg$_^H6r$R2&(Z+|HOdDaF_e=@dK!>_7tMalj zjH-I#^!EOI0Uu@mw$U)J5_s)@`M$;CT4)ArHU&#pf?(pyQN_pAxL7 zfBDrH(T{rh`IkT64?orCLKGCqT!ck3(z6?BY9VD$?t_&t=ZTEWlhSRZ2Li55oym$Q zNg<)i%o4&;HZwmirOfMbnVDzOsN21IZPQ{aucL9)(jxjQL0yOGK>AE|JGV-1F+`bX zrdCFxbx|oCiRB3I>;|N}kVFnHX&E_eWA4df;ljbp2{30oCIUT0*$qx`Pnbde`%E}N zZAxofBt>XIB1o^4RHUJRputdQfYL!8B#|8%-pypw8cG_dDTb1&iYx_U?4+I(qB9pY z^%4jPcLpISok05a3s@nSyTAWnDiAg{G4SXCsXMrZtz{m^F|+v?H|XJe94;R692_JL zo`M~_^X^3CymBY`w7)hfui9=#zuv$2NbKIABa~=d{mWl{8Xw-@U%dGGD}Fexfy<^b zq%tcL#fTGu9_#lds~{}EwQ{0RijZW4uyArRvOrlloS~6!BWxKx{ghVB_~{sDc{!JD zrzLORyth2}twagdU^b4a@58u+Gm`F0Yyg;ScBF91bp7OF-;h3tcU1&rAx<8mo=Oy) zL<|sR5r8Q;1k4ly!cY)K66jGNn+ey!93{wVfK@3f>c$5Dp8rIl~^ny4N4Be zCQL#J7DYONWW>r;JYkg4vv7>k23ZU%VJcPPahN&nW*Tl$h&+38$%GM$GWc{COel1E z_1-xZ%Y%bi!?)v!b~~+>&;e`Skuyu0Q(Aua>u2_`{t_teL%*bi}$Yxxr&# zBg9-;mL;#^ez4MNsTs%ig8r`60--?9E50 zX$EX`y>p$S19=`YW)U(O+BF*OCz;!BCKjg7uu~!{M6fliw2EJWxzh)n|-TvCe^M+!pvEcwG7m!8$%KDbaap?iZBs_k-L zGIN&6@3-|dG~@Q2)2)xf(@WjX=rYdbuw&=se)sNNX*ZUKGp6}sl(xGPT5dc}|NQ=U zzx(44LrbSb(qI1VbNcbN?qB@kQ=Dq-DyCb9lzTRI_YH}PBoqg=Ml#~&9IDh=Gy@dr zL?OyX#6$_oXe>&qMWpDSs*K=Wj>~ZiZ5~I(8{N zv9eIcs)bw;98pZ%kr}}pnk*^FN&D{k=G~ru3}QQa9?vLdiO>EL(nCrR-Q+KYjLYYriJ<9ed9MhH`1HU)8qb zgESmi=Q9&Y49K~rgI6AumXZ{a>Z}e9*-V2d;Ka!m%n_MENOgsS9x-tolaX+l>rWRlK>fKy^Ieq ziexXY*_r+L{uf~KyQO*%Blg{kbbf!>wLImf718NF*76}v>%>`VcBs(ZNUsLg1x=8B z8sq&Fjm>zSo^5LnT-?Up7iX5_9=je`jHrC}S6@xvzg{k$z5J+rND#82^Lm;Pkr_+w zMpPFfF&QA~ukUuXrRd%aSt!Ahofwp^$VUiU6e3qH#3Lu&JO$misr~rXRrSi} z8KK~kl84KCYMUdEG)PLJrLg8uTTwM%1B$Jv|?t70MQD zqyb6-GTN%i+)2S8NwR=Mu>=q<?;%@HR^7J{TprZ^9k5vu7K zER@OXFp+ke)}1x#g*aLS@Mu@9F3MT@cWBUBFzh@>d1I?V>li1%KuWH0t zsVE2yLrdCnfN`#P}>l$o|-hJd)~!WZSU5`g{OG-YMXSCySbWMCn9kTR*`i=2vH1< zs$Ozl7B68lrdHD;YBzHE5z%s>*B^(3}1hd2R zad()7Rm-+zmJMTJODF{oICYef$Sr~aB8Ep&kg@@kCY~%9DFdCTjvzK+E#V{)>O_AY zBbVGtv6MuT*Ps9L%{PPUUqog)X&L;+C(1&Pz?X5mIv;N;9I5;Bq!?&Jw#P%wm(m@-HO z!pWLD)!bNing*xsuD5p|V5WlB@Ng6hyB|eXC`n?&!qCP^KhmNhrlYA}U1AN=)PlN>XMB5D_FrN>wJ}E!-?qG7oYq#lxk| z>VeBjr35oPhfA))DTQ26Fh-%AVj@`>QLEHFXNW=Cl%WhoPK8ogh!iT3S*R2zz|$6Y z^DqJ^h=MYx26M(>5@Zlb8kJ4Ed%}|4rLsr1$TT5NNTEoWa|R-bn5YRS5*~1-bf#hI z=>wYwz}t4gHN7J3zySs$Lcva1jln_YwLp0K=KG##+ZG(8oSBI9$!>ptlKQNYiS%{! zfy-wiu^n|P)O*@#8xlHB+@?0!lBsrY5gy=Lmi4eJ!#eSq9vIs4#7gb;QI;_up48=h z_4H-g%tqV&;#b%2@77g6`l{VNo~fjaeMyRk-rGURO7RRQnC0llJDTRggfs#xkqD>; zhl51}kw^#%5{9M@5TiIme5(phsdGt=*1{jBUS?`s@9e zJnLDLg)`Q}`D%B6zFfxSz7Df~(MzV-JuZJQ*9SV{x z43Vukg(s!cDlwSNX-J$YO@MG`4epS^cobFwfH9eHgp(sQoD3-m2#+C_gC)Z$9}xy) z%it#(Yq~iFRzfCwQcxkHV5CCQT;iqxGi85BK)`$!T7`JMvy$UUA&qb&}l|zkH#uR<8B)tMdm1 zMeMa~%&YQ|`sOLj+v-lkwh?lBmYFmJkc_BJEW?Argfsw?Ky1HHD1pIgB{(U9h?rDK zQpK|wTX z>mgQD=-f?%JSam!kGWtD1jpk#fI#BB8x#t0ueB)mCAY|cNK!HS^G}0#^Py@Y1`WXy zLJ$s1P8L)y+JAhTQfA|H7Md${sM`}+Bm42Zs(-k>oRcn}UEFr)q8V$yY|meOw5-9U zydiZi>_pJV!!sD1<72&f zHzve5U+-BuY9Y?0*Z!gN>Bm>R#`NVgy?ZYy>YU@^d7QRo;OTB(AEFn%I(n!1`py97 z`Z4~9z4TYd({|c@wEnQ@i+}U!%kS^l+siK>mQYUYim{OPSMBIeXew28JDNopO?~yk zjZ&0_#TmNsM6O_m6$+-ui7N;c2?&xi0RU+^M(0>I*+v$UqJwu2_=^HQ|8RAC7X|bP z=t1xx264CRMRqG`l8X?>Hd1Rod%E9gns27MgBE~?002KqV*h*xRYFa5H7}G1P#Qqa zeIP-QP;w25;AsDVaI; zd$#qkzW%4TJoEDDmpHt$6(K;<`+RB-9|j!{&qoQCd>Dh}f^SW>#`gMTudHlFWd4ux z^b48)?Ux^YxXp6;>1Vh1M6B#i8C2jRXRl4GVm-Ti44c+Fw91p0A|Qc)rGz;KXGBD5 zB!h)1nLSu}}^(K}NN*-=e z$dR3WG-|Cx2&w8Ml~b4~k(r)Og%pop*JL&tnnjWmOyNYCIwHHrh}CQpfFVdw=cF`? zLFi;`rcRk#&R}pwid&~1EWr~vGl{~?!=SE~iFBBxGAorBmIL9M&WiNG3p;3H35KLc zuT+S2h-Rzlx981h76!4woko&YUcq$!(@*a<4#M=bxUZwd$n68qi#P2idqay7YHWPa9o_TRq~CXRI&wh!Ozub%w%XD^TMPZ-xf zUmr?@dyyDPVB(tFX3;8d%hA?tL$kHyU|lMK3I|XCVDqF7Wpxi0v&>A&^vINC0R<9Z zq1sd%B(qkJ2K2tgr{^CdqlibT)owbR+NiN_(ySC38??sILL|f7Jch~PlDG@V3CgU5 z;REbUL6J^cnz96#*$ItA3MU~Fm75?KR&sdX`f#_NTm$S89GS@_lSo)(1z~MD*p0U+ z+=#OVcp?)?p+Q4QC?TA{W7HVP)RYcZLu6Qmi>Z{cE2%NkYL-+*ju@IzJ<|!4+njlF z9zrcMM6)rMDz)j`KOMIdm2#n@P0ojzY`H()J)Ga(^xdb@gWufjzRAG;%Cb>Ezx&fi zWnL~mCet1d%mG8K=WV)D!`a_mGd+DYyl%f+F83*?qS5hLwg9i^CNmml5Vg zCDz3jSmf~x2}vOcA>D&R2u&VMswtF@15%Zb&sgg=TN2$3dNxgM zeec^2oyUPUB^5fJHIqLaw|*CNdHK!OORrO}YkabMzuSLEJ7T_&@zr$qu&o?21v|8L zJA1SdqfHB5eE61l;P~yc@;9hIozJ_=&)S1)rXhz)rkKlgr5|;MV_iGkOFWLhA;yvt zR18iT#gi$Gi9nplY6zkPNk|}J?36;DOsI`@n&UCSZOIAZixfdCStG6c!>(~BmMv0> zV_w$~=1x-?&H{kTllG)EM3~TAh*8}^4nmg%Ig@xw$pj|@aLp8CKbV%ztExLI%FrB~ zFmXgok^qu3g2SNd3^2&0wXhV5!gO$nOeRl}P9#N4YqAhXf?b8cs0Kuco3QoDOx-{M z;wmeIIuSExb1nRspd%26SaPaxSW-~W#kUUH^r{|zy!p-DG>&p8=tI4qA_V92IBn-G zpYY-W-<7iRvzLEd77t{u-=DAk`U>y1!ql29Df%?-^Zs_fYr4m){`~3Xl$J!x?+WJc zjz@j^)hA<(OhJ;{0GI?UyShh_)6GaQThi2OL4tIMRVOAz7UE2H3Xe=s_!@8@9O;qa z@n{G_W_FW_n?`O#!nqnlal39e_knytmv&Yuwpj0-wor{ASqBByMPjpJv^oXjSgSyS zA`mE)p3Foo;nUgSe_7JILq-o~xOb{%#4j!v#3CUq;sT6~i;UeC` z6Rl?eou-wOHmxq(jycmCJ6r@w`q&b4c-^*$)RGh!)ooW#i_dFJAs*i{Fo z6OWovf@@?Fsn`KL)hN^Q<11Yc##gT!VHCR!B6lgVS6iL0532{85?_p)`hFQ#@#0*v~#GM^Nq9Vf>1ZQ<-<6tDiH8b<^ zGG#2#URV*5Ryz@xyLuWsQUOafab&_nGX)?eK#YuyOLZe5XOo}9& zCCEXk3*a=&2Ni6}A#D|Qf)NOun@*=j5@S>X9#P}OIV6IRAt0BQ0_HK%?uUQIi;q9o zRd0E7QtJnHjP*j8<0Sg^;q6ExsyyZO`MBxsMy_pMuYaY#UM{c=o`Wzr@bp_RynX~4 zW0Rlxe}1Ed$IKu9#np!&w%ygoUz{GYC3{a4Fho0h39XkZwzwoM&P}uj12H*38jXhl z6kvyNB)ep)GX^*SPDJWsMUw5fl5W&TKLSq2UocCU`PxXBQVlKr#RjN(zcEV<01tmA2Uk zQ68O&qYPoq$ruSIHYsq~S`K365ErB1+^AnZ9WO4Y>&wGaySeLqCaV~+2K4j+HzH`EYPWaX$}7)faOD3YD)`Mf}CdXfZjK5kKD6h$!jQJ-rvTK4M9Mii3B zbUfzmhY&e;PVI1>=MsGzVQ@6BB4taoko`)uyZ55RYnjPnw~$a>7U6RFK+QoB2-?q0 zk|hn{bp~^Wi+IdEWFs{K5dk^`i6A1{3Pmyq8#9}uqPiy|8J3zvA)j7W)Sx&noC#)mcAM*v4`tl> z)yw*a?c#X0QA*5p@C0#ljIByO7=8BomJj<_;FhO)z^<5*(V0 z(y*4e{r(TP=dqmKvPXilKBilopryESvSu0&2RxjD$>5m|jz|wjBqQBNqCi058|6#^ z=cC`A9=Jm=pRZ?^nXjW=oNosvM}u1m1wGh>>mEf1=CV7?CEYW*NT@JHWO~}RHxKd#OSfW_XDVxb z_Bu?U#tsZ_dcdCzrK9G)MmnFWW+8=AM@f4A!M^A*&o zG-MEWpCr_Yi7aFgLP8QM8Ja;bNrRJw6Bvn1Byk2fsZjX&{qPZ_FrmIZzc~`8%ry3f zhr@f>Fje!conmEUL{8&ovMn|bNu77h8Zs!Q6vAL#CkhUtA@a!WPk@-65`;h`WgR5p z3d?CE$cbG&)dZ4-ojQ^wM}~W35{d4RKA(uZ5H_U9ni-V!JP%cyu@)uCmf$3$si~op zK{Ap?x)Tr$DZEi8yOW4>>tUf;kmSN#VJfPY=iSf%K!@!^I!Zj3WCdUH;g0YdXub@@|du0S`kxB2|ORWPZC4>Pwq5 za4q;`|MsrWpZ&$BcW=k;7YuqQuC-mMir0LNC|;uriXY6 zbL~<4Iwi+ku~mo?5qem)MItpRE&4zG?`OW$CCjOgqLfW|-}_{> zg(`?jqQLTT_m9X-WCT%#Q)(}gfKw*m)cbNe_xtm0PdIOuVcvMFe9z64(pR5ZPI*%m zofK>CPBChxfjZGSNO-MMNkPLSK~*`uJSqSYX+hIcoHDXR5}3DA*C<9tX%Y^w0&J3z zHBCxVIe`NilCn)|h&l{pt^5HKZg#;t?W<1PDNC5G6n2hT3gy zqb2u5j^YxeLAB(*AXz<&RT&grl4GP7+Db4oBzXSh;~)RaxBA^Z4HA;R|1vHv>xb`h zF{ADF?Na#@9Z&9GdsVAfJFKT{MLR}X?(TNfLxOlNvUnx9T&+gaIDT9j^t*>KyiR}n z^y1sMF@5pnxVJWytTcELt27t55GR=4{@=f^6U|84?g|X|*HdW^yIr(S9FT-jaiFda z(r`*R02dnS&`pDhO_L*#o$ki@-RbSAN2ZTKj3OZ_`wxSW{OR#ee45&e(~Zq%nod*D zLu{>U2B-z8Z-eKyufin*h}se?;(uo4B3ef00X#-Nm}m$(a|qND7!~dk?2HnK04UOm zM=u4vjW&|#&!bsa0+QG@6sfC`f{nnf#LKG_*LF7r))7g+oo}FbW+N+DA z4T-_*oKD8jm6+<_WMtJuS1Cww5qJ&BXyg4icmGIejN0khOPxOY7616{=~vN15ABt+=P13&|x$S0qo)c#M7-rfRV!KDM(FAri{mzPzjPw$($jaCCUI1)Jmij z;}K#aR@gE`feb}v8N?*%0C*7FCeD^9gd}Sz21ANgv ze*RSZCvQr(7N@4vK7DsPpQeik>#WWN^vXVZa%tM9ZJ6zm*i z$fQ5lLVUYlPq*jow8eQ4q<3SGgkZZ*$MIs~sVp-uZOji^xd+`vk0Pc^4Qyo(cThFm zQxzSV9a=I`+~G+imK+>Opmahof<2fdB4`lC+%tO(a)l|w6x_km1=S+QpY=aUv1D+j z5=4gPNTxvu4R{Stg!%<53A1{6tcO5Gi1J_rpo6t5OG0RqQU`l=IN4}|`t6fCZ;PCt?*Hw}_U+O>{`$rJ!;VP` ziJtq}p$DoIvm>^Ddae6XTkRn1eXQG}G}dK*#P)Eg%Q9akS2C{d!H{rhZdHglG@HRB z6GWaJX2*BuoBLA?8V{S8HjGnN0}1lX!-7I)R?cEandf0Nb%Mb1u+)1}C~ZQ7v8%q@ zs{@v3SqfQ5n4}{m)Iz&BA(A6X7w6GTBmybML~xFhT}D9-;bd|y**io-JgX-~L6_vz zhTdFUiB}y|Wn?|qU?HW^Tr8kcvmj|GJ@yGOAlYegJr^o^j)F3#VmXQth&+f(@PNBF z;^9Rjh%jZkGb54HCL+5SuOH;%XE(3LK$4=n-JO2?pcfBs@~~UR#s|Is;=le_WXflI zUw-iGvI#)*lY4o0_w>tuT*u+vcEL_#_H7z(>PNr&{w2?%cvwFy<-@$g{<;SsH!TGKWjK@ZF!Ja7sEE=| zv#_BNGD+> z=^B}tWgC(lt`2f+9L$Zg=V+GAB_XESr}V0;ibipfPzMJwXLb1Lv-we*ow2jO9eeJPYosZl{&)t{FAO6H0 zcVB)o_J2Cv)hG9Adwu#mJ0EcU`Syga9@3LaMxn0X<@H}(yrmvr{pOvY+S9*yQC8E> zztGoo5Jgp`vH9SlyO}GoefagNB;hmB*xr8zoxGUplhcQ*Q$3+<+x_{tUR@ljcC}PE zmp+@;g}wF^Wj3{l=RWA~oU8wI_KUL8)#G!InYf#nZ`)1yL$(0*)?1&O-tz9q9>pjz-=B zTxJXH#i3;ra?wmelsrp;Y{Hl}>6Iz6%==o$;I{VTZNJ4u%KN3I_&E5&r(f2ewwpVd zN?k91Z{A2ge)|6PYr6gXt9M)B2jZiQ<>5cJ3i@)h(*TGxn#Ar%SCR4I*|r5={?#WJ zH(fscjzJs*DZq>?-| zk#I5t8E1ixL@&PbxAn}MbpeAavFv2mmO>PlkY8y-#_`$ zDYvP1YAaU75UQak;uN2Y2(M&hRf-fB&aRf~MyZ~e*#?lvES*v_Lrpw`xo4q`-Ni}3 z8IJ@g%5c`<2^o^|SQGPrszF>$-CLBcCW2jfTSPr8s!brT?nxRF0aAf;))7RI?lI*U z6kU}iV;Vr#>$8nWGKMn`9|$<+V;#`IC=6_T*v-NjBWqmBXYGs{IjjMq-nJv9on_OY-6vRj-aT+Bk zG-<0A%@III(Mp#Hbb((_E02JVnHG{jY9+fAQbF zI$tbbW6AN7R*`M>n^sBm>iwZcX?t3Kc;M69x0i=CJ58TZt+l*%UoPH_ak^niv-aez z%-aCC@Ybn{c)a{!Xe>JcKtU(C65o=aiHh~L7PM(sva`{a)0jfz(X`MhoB%IQoL>C}1@}fP>+jq{Em;BNpfK2pbvv z*n<>yburGKS;PmO@HlJjh>%FdG?-G|T@7{PR2{-F!6*R+VT|d| z_~8e-Prtr=yU>$gUfdk3)r5*TyD^n4GV7oI=UW=GswBUm z=vT}1X5iu5etQ2yB#-x>MSFL-U+M_D6iVx;k{Qk_p^-tX8O+WE@8>*h-j=sZyZexL z467@%)n-}C@uU{LSp!zM@R9Y%lts^!$vncnaP7J5R-uw`+ws+9(QsIh?#rm?B@==$ z9ZDbqhm$)6tMOn?go#tiP-kNdjU=u~#GXN(+#PN-NG*{e*1VH}n(jcPV^oV+IZ*0q zAWnKzrEqvWW)_vAcyI#MSvE>Fnr`Pa5QALqs*>xVy(PtXJSmWj8o9wZcqD39YSSe3 z$rvOFC#@EE@MSw)wi@sM{`>3Gn$DUpKKuO>#&jWnd`;)PjtjM$;t8F<`{?Q?)?Tt( z0vPw-f3llv*+gUv7EI@Mj{N?GQ2Do){$}icb@lL2F-1|SlxAuob!zRO{=at|^Xa_O z6F)=7Pkig<{rk6r(%%u*{LAlm&n6m5L<1^mLM6MvD!d?qlSDGfd>cLO$M)Ti#|TSy z0T%TVG%U2d=~BaD!4y5RPuBR|^IKo*R2EEUe^ftm=m;4>!<5XV)p|tZUK7liyHtxz zH66tKm_>KV2vTyGWC}59S3?p)s0T)kT8%TMWj4M8c&7(5b{Fje`l|NcWQ%l(?m zdMay(dEH1FpTCBA66<+HfN); z@Abq?^GfeW(am_&gq*q8{b6xB;H}zOirRFlJyT-dJY~#m8n%@~%MoOwDkCP(Nb0Gb zL!&r4Bz7A(ApmtDPGKjF$h0Yf)Yz>$U?GWgb#avL#DA8_LYY!>2q}R}hD2~OF=FA# zJA_W9yQRBuR2hZAjKmOecv7SRj{riccdMX?WN(r}0%lGRAecCzI)-{|1fQNh9fz0v zf6-hLEJJ8e;Zb~f_4e8P-IANEwCrC#e|o+_!AE+3aROh&aygX>PpslUK7aXRrOGKW zZ+xP0{^qNX=RbWnT>E|0&<#^NcYO3$SL>P|e{uDiXf{$1BZfs#w8nq`Ki$=J^RzK? zY)Rp?aG2K9M81D39yp#ZpKYyll2ECJF%PF99?V~@J3>C$tbY3vdfaqXFr;UF!tmkr{kS`?HikuG9v;;V)9P)YZsCqa>I@!$i_^N{n$iyeV}ZV#PPrj+6~f1EpR(EA3bH_B=Z$ zuOY!DIqluU{qgkT^9de3>h$6lS0^X<)As9eHO}?&dp^uy%W2CozooApPJI3pLkyXD zy8frWcEPqtV4|n5F*#B*l!khO*ntQqG0u`9gNi4G2|dzCvLFzG6->VNssZ~x))vP|fw-QoEU-C~xyWq)}6 z*{j=fwF?kMVm_5$|K&BFw&{<-!zzzC*2-V~>dC7Qc=1(vO%4*~nTmr#7%G4IU+xFV z8fi`i$&R{a6hJ?J`1-~A{>=jnZHwjm(92zgv8GUzV&uvkK#F7~u$A@AZ+~+?yl(7m zlgq1e`{0WcY3m|B29Mk*#stP=FjnZEAZNc^W;?+>9g<4G?kIFvOoq;Lr3g?4i%O75 zNI2yP&|ni3W2DN`bb*Mmi=>isB(O`N{8J>3S4gAHg5Xh}M@w z-ME$EpR7@?-cP&eTaB7GzxlU^s9)}0-v-d#HF5nH&&uz{SD#-WSC$MVumZ_O8ud^A z)0=5J_0}C_4CJ)xpj1Sy%geufd0c<{W8U*%xBGUnexy*hh(c4|g2&ne*or76O*%kDC_@cXM{+f+T0GT14J`!4wijjD(J zMPbWITgfB@857E&x^ZT3dX=QLtZLNUoSm66M1U0Pu;!^qJr_z?1aT%v0!SIbIi$0Y z3?UC_1+A_kzfiK6sVM^H}AeIwHOQTwl~-Gw|Bqpp2U{*>z^OKIo9VN`-jqJ zF}4J}m*DW}$AAB}lyNbR=gP)euv!Z}SNi(Cz5Myhukxl{J^!a0cS790-?_Latc1_5 zsbCtSQlac@RbEhAF{r2X|?eJFp!^Tl+gj%t|8j|aN@I4{J4cML?ucPv0 z4;&OILnYaHtv%Si%Ko4t$dPrg1e6X6gm?-CA%llt2x{bzk(@#i!4~p3c}F07&{{dz zhJujhI@DxBP>*rgua%rsbj}l}tqWj zE!crU0$sC!Aja$*RYtZP8nz^}Q_Vhh_WBQ^a3#uMJH1{8P4#pcKl<>i;P};--+uVb zeY^Z?|K=g@_hUStqw05xuSN)q6ASKLFMsuvyqW=A3S0QF5HVIBq_6QuHx(|aANLc zx_D5GGm8}x0!I_qLCkBEQMsc6>B$_Nhve_8(VJ@P=){LFy!)<3M4{MoA;jyRmRvhsF_?N?pJH zZ2tY};ukMY$C+6NGhL_?AYR}7FRyC#Z9Q(v!8kmb^k(-okBR)_&+)tazh+Eyz1{8P z$e-)0Wx4Fe1h|oI`vsMw&0H#Til2V_?Y%+wt0h;vA9Fi>I`-EO4}3B)2bbWXa1hNq zOq}46Tdj8=y~_E%CGpwGhzBkEx=e0N#Pd$upY`O0n8Qo*5E4_@l@(6x&`OACPU&DL zAp}zpgeX=r&`6|9H1lNYNx=aQPcjgPz{^76B+7`*=d*x0LYy+4QoV#uv)Iq*q zG02a-pL6#qf8d|*-@mr6eMK<2qyvCl#6MLBx5hYl%k1kfTrtIKwsU zv9b@JjB}I7EMdry2pLjG5(^{4DKiaS5Y9+7Dh?7F+#wXkMjJ6h6_MnmgQI%s#D+2u zh%E3Rl1CFUN;rjz7jFY8!NoHZRZbKL$`H$mmni|sqQ(uVfTmg|m+k&sZr4}aCx_4G z<3sxSBAv1FH68!>+P=vyQl`JyZePC}yWPk8e;5~s*!B5*U0%KYiV9ymu)st-FHZGL z{O;%b(jM9aF)hgCIh7v}!rxp-ygXL)=6Ft**!R`DR*O68!z3`!+}2P5vkJFmO>hw;*I ztcQ#H+bwG%%l>{E+jM7?_f)JLcOReMwjCRqDHon^E_kZ>Bv)-mBrC5OC34dcDwIaBzlIXAWpOk)aIYWF8cm7@Q8z2r)PyWQh@V zt5roE0Jm-xEAb)-Fma+pS|&V0Kl^6tfayYaL;TEn

F+A^7UdtnUvEI9m4W(_lx`0ym3UeZI|hMVssw9ZlAaDo9{pR>e>D4ZN1a0QK>S3 z0m83;SIR77tWPhG+e1Jk`0{i6!>5;*DC_U;F8;-HPUaNsU%WehxP5xKKPp^=(xAmz zMU$9F;kLdRr}nhpU{~kEdi50Nn=dXRoM-D=ZMX*Wm==vcx(*l6xci+7F!xZGzBII!WQ9s^( zFG^3_w>wB&)Ke|(nNA1$Xd((DIhb2V4{{#wKAms4tn=9>Bgtr6O^*rAbbWR6&Hjm= z-k;R!%&iqk@>I`%`1@)Ht)rYhrqx!(?8~$37vH@albrl!_cwpDVCW9h;7C1#@k~k9R98tKs2{|#0Q*=n`NFqj%Y&=Lkc#x@w zjY{GU4kC3^LFlR^odQHVsyt1u1x5xSLMG`+P+I|bM)ss6qU1!T8d;>ZN6wKl1-0gXRp=|`O+WupU@9)ym|ZR%fI=A1}A&0 z9n*^&$#!|KQpz?85s1RJ#TvDVtdnR2{&r@A$= z2Z|P81J*l!RlhN80)hm{v>*ynQ);s*Q{61GOWj>_)tztV&CE0Hz1Lb1|G_VI`6C?c zgIE#I@Ox?;-r{BuzI)_<@zc^G7B>V&dZ+ZAruD-5dL8-*2#AsUip5bl$BL1$u0bxsgStQss*!153&%))DpkpqJy zK%S+92FtDIPIu2-NdBQ2XWoEI0Ki$Sx@S z>GeBI&$8amInq9G;l7*v{nhe_hh4)|NomuK*ZsS^I2GgNXwqw)TS`hRky9RG#;$(w zioPuuKY8+cu2P(+0O-=hfAgPWtFmaeVMDtWw0Fh?R_JcnKcS0fuU<^1!c2<8;V|me z?^@aE$-R$BYFNYwLrxV+@K}=`Hn!G}{JJQr5xMGdRtOdol!uv;Lcvw>hGg!IYQ!~Jse!Sv*YUw(aGcR#xF```b! z|G_Rkm}jh1L-qNSX*!L!{uT?*+4rNa`6zc*8N2tBY#w%f-OGdb5w+c8DNWMoVrM># z&61g-xp-dQ|LC7T`5YHN{8a8!$VL-I1{#)s{6A#cd5(-!9wRoB4Lf7|{%WejwB<5w zpOC2&A^qC!dzni+S^Wxmxt;aQRfiu*_~ubBq_O zyF|zosTDR_X%!@ujmK8rKY5VUHG_IumI9!AQ7cVFWM$8q;-rm|#gP%t)W? zx=R`5v6xiv<8sn^GavTzqCwlco6mO3m-NApclUfDBvcD=M27$3Kl3#kl#w7VJ|M5! zW?t%>cR#H~E@cEg6xpJRFQ;YaY_~_2>eVz8X$8@$v=giB#0)IumE#6r3R70XnED=2ATjT8!~Ck=e%*TM^v%`t_hq>H_~}OMyVK=wkG^R#Z8r~u)_I(-AG%#V z)UxG=?Qna-2fM%52Y1reV+_sX&}=)Ce{+Gy+#ECJ>BaMl|2RMY^ts;^Eu%0CA%gOk zzpyJ}N-m3}2}m+ZEym@!49ACZjm@aH!*(te%TRVa-1cdI0Ck5Yw^Atj$_YPluNmwV z^3nR%n;6Hgqh`+&t%u%@%iX(KH{%+V)h#ohzU!3`Gm1seG7!(KgUy#xze~o&V^Yz^ zyHl&XX(CYxrYf*afRZG$bTO~1I%Ji`0J}(iACyT*B{-sF0@T47VjRZOQQT3CbWY9Q zHdRMeDa@5YAQnIcmIjR&cyVV6kC;J`L$Y}|Oo@dF&Ons&enhARJE^sl**v_85;dwE zS;-1v9iD97%+pe*@$%WnH*z}EVcXsvdY^Cq@&EHhar35!k3YS-+)Y>X?YF0V{@seY zj-*%H;^V^Wkaw5;@cj7UwQx^8F2k$WgG*^^6!Bpt!qW3$Xcv#PI?WQ4`=7l0?qU1v zqw)Q$Qb1go!r*`Vf6#8qN{v)1Q5qq5j2L6sQ66X>AMamnWwUgCy1u&+-uf;jAC61w zEcG}JYp`qtL10P(bfImbn?|=MDbZ)!ZzSaNgcN+n(T|&K7Mg|+CCYX9_)JQbp-gOFf=rzWL{U4-&FQ@^C+YUbA8 z(DTQKS3jUNcZQZ`tySZ(xBj`N`4;H||0gY;p z^8!lLo*XQhk$}OA+hA}6_aLM&HPWP{K}s10Xl0fl21zE6n#g4BbflrXq@*-$jFsSF zGmDs229qF@Qi$1#mz9c@mYoWhxdp`rfs$|q2REdZ7@oZ;o10Hw)_tjbyS5xDuP(p% zn?J1kZEug;H6MQS=dbR6`MTWc?gvl*_R*!F*0tvq9j`0Cu@6Pd+uKd*!^z)%@FV)e z!CSS$>kytKik7A3iDEH!N-7_Ha`n}tynG>Vd?1Baz>?cP{B?USb%Y9(CszZi!$4)8cbBir(UVjXT_H(dFh= zZ|IEi(=|4&wMlG4qgvNt4Ut-=VfG<&2`4f!URrT_WNx7S#ULevNR+h%IR$&1dBqM+ zA@l&}lH6S)xiO3-5g>RHt*nXUsF~40Br8kyf(z&_s|X1*3y_q6IBNo{C|Hw_RIGy| zFe8|aoJ?7q_)puI6bu%tjXb1f%9;tG95Ra3x%9DjPFH~Z{nh2=I6iqX*?ai$ZrJki zWWRZMcTfy=xKAm)&E;Qim+8&;^anrsez{!X#H*dmU-kQjg(z8C^RCG0VVDjTM$KZS~?-%W9vHTP%Eh_72?R^AaZafNC`AWQtuLs6@G>% zm&~w{l-xB~GlPi2l!6;7B}gryw>BFQ+BA!3;G#wu=$BXx;E4kSG z`hV}V9oJm>T`hSk#iO_=nIbq>F7mUFp8nyeo0tBUs<=rZf#h7-gy=Iri7XA1A&Ynmp;;7o{_#zFkIe_y_co5GK9!Q--~QD}C#fYgg*2Q>kp&^c zGKL|D${3^RkTfuMK1|q0*3zsM5iAfQiQ>w3&TW#gS+C$!syz2VIgSwmtQc}u8);i+ z;WG8LmN}>(nCW)!08+hEjlz2WlqP$;lxB0KGV1ZsZJI18DWoS0#ZZ>PGTIPH92|nq z8O5Blj~Pg!m5CEpG9l(fLA5K$kwU8!X&mWe-BPKdm6M56jM0T05D06+k>ChzNvk$? z)P>BuR_=parSn`cOD`#u07>)OED0fAmU2o@S7f?!GG!c~MA6@0J^!{1(gV>8-DCp5Ml@FYo$K z-rVlqEfzYq4588I@x*=Bz)btzsr>kI{M_~8;~`jCh-*p8&;O@)yP~fm7beO0dY{W6cQ*iRhyJ!ju;2+Gpz8mDmovMx#`67-c1?!tw{Py(`-gEk(dKIR z(C_Pff=*99muYORy?ryahvVS%`rYd4%sfZ%{QKwEvVAxlw_oc1UZ2=+FujtSOZ%L4 z5lvqEAiQzc5JNX&dhx-F_xBiIzPy)`nN+n?z8QwLqNL64m4IX1l#=@8{PcN%N9EY+p2vqnXByY&Xa4 zsPTONWu<9Z5A~bldRn<-b9)iU(?9;~W_pj8Qx1>o%AWvfK$gFMD<8>0zGHH z3{6-{>q*hIm#t1Z4k83p0B1cX5eN!~vl>EeDUCh5t1)L1Qo3YiMVnZ%3mYq;No1kO z5U+EhJCj>xJtYl>PzXiSAo2nVQ2YGF_5I`Rt&8@(?9#SZ*Hp_pd77~8L&E@bj%pM z()i+|%dg*&?5-Y4l!6he@%T4CpX#=5Gp*K=2eWs3$=P6CNC2g@$hI{s+0*97jg-23JOAk*d)#3sp- zuD(_XE;rMtszOZXv|lg)i39~R0?KG<+%@Z=P@;)&S%{R#ZRtQlQbVc)v6Y_ANg*wv z+GwRjiZop|1QF*7MFf0YK@ha>^R3y&4_`dyg-@GudOu^=xyo+r+tdC^r{%@Ny1ti> z>Pfzzp|ah*-NmNe+_&%6e|aJPIKO$I;g{22{PfLN>a9{)MX0D}39|j_fGi5${`hMC ze&x-F=M+vVnv}Iu%F-xTivuwXXpZjF}#y zU6Ls{d6>WfC#nW#8Vo^7U9EUAXGkZvpjB|7Iki@@4ag4*LTIHVY)-3@S%|?4hZ6U3 zCTTk@pp{b0CoUdIE|eDF9jd&ynJ!}+eM}iUc9-`nh;~h@BZI8 zssyKsP+cYk|B13Zq;CjTymHozu~TVEMUvv6&gh*xPRi7XL&Fd$yh@UKEV!m{6c%tM zSBCX;hLAg{Gt?Ponx(c*PP|Bp;Vigt4xRRWa*o*>^Y$SVLg)mPaoh~&4H}UeB5u{R z3x`KA+=YVM#9--I+2NA471K_pUea=S2A`qpRAT>Y< z?IO*2a4*z_n-42^7^2(cspwOHO~O_G6mo6}tL@CG>wr_CA(Df;c3OpFXn9}o{{Es~ z?%#~hcTX>!9v|`{3uO#_d~)^pxZP|Y?w`Nur+xj&vv>1%0U>g#bh)`)hXE@*AJZUAyjc%pI>{|3P3@mFN*3}`h22mgd%NH4Oo*yCK;NdS6G) zK~f-*PJkpiNoVKGa)2*uszoGm<)rYgYhjRpwo}%dajZT(%Vm8>Z{EMQSZhuK^LnX| z>(gpO<71trFTSi>kZ~C2_*|qX`-p1IYXjQFi8x~DxMvr++CQ@m|G%Y4{=6vvT=5m zK(eI8Mu$3XNQetXq(l;*g+x$tvKR$ZXa#VwuBN&YvCt||nYFuXN^lhdfdc0}P^Kga za8d?AEJ^4@NrSlbG0min%;lm~y}+_TmB*D{zkPkX5^w6^NJLr1+Eux8nmX+F*i3wJ zy8G^{bS1Z1L2d5C`uuuR%k^U~^Dll_=P&;0;h*2=ad=0&`fjPAvy6#adYqFGHy_o{ zms)RLoQ4qsDcpYkZ%nuh(=wuH1|bv_y+oc@l)M0pw&@D*sz^|Jcp)-%1W{=qafLWY zqWN^LjBrEG&^DfT1PH;k7aMvDNMoWb#(>l%)(6UFMXITg%>!HOWTh_yYqVvB)25yF zgNX)_Z8nuD$wOoSCzB;nz}eGSvax|ofMVdZpsqu=AY=-y0%Xf@k(N$WJ@!*6R7o@` z2_$X+6958;5p*uP8<-3$Thq=k59&tg9*`J{fRL~u3b_Ia(;&9u*)w6ND$t%3EJ0Rs zB4oL~+H(UfEtc){u>a%#c01mctEcmuF2bP1XydrB_KWrReEnpo>$}HRou^Yl+*Qlk zAE$2~<)48saorAo{l1wiCMNTUd#Z(lw~runM_s|LA8sEWG1gDY-K5DFiv97wKE(wm z^&LxE5%P?}OdL+qHPl&#sAj??u(p9R2af_b%7SE)(t8x7bAnPeiI|hZ*@D3!BL4rQ zxTr2dKnrpJB5S6lB?YVVI39}$Ngo$~^g&vVPX?E5Pg^33x7rp#ZZ1@Zw5)SZaAI_E zP)|j%bVvXoGR~;n1H6jcGBlyASR|R#g@YQ!=143TQ`wY4=R-d!GC9ee5t4}{fRP|| z7(WKNWGgdOA%gG<7#VWJsxTkg)RbRB#P=7QX(L-6w5)7{?n5HB;vj%xqw%`oz1UTtAJSlEx!U?S!LRQ0B5{N)1o5F$_yhes2JB0?A5Ih7z zyjmMe4sJ1Z9_J_-v_xIz4XjOk^Igs>V-0MSv6NMWOC6-u=E)_8;9w5vR02jI&kz!? zVUp;MBn6r#QKE&k!Ni0ejf@Tisyix$1^g#20g(Y9a^mbt%t#KQR7UqYtl83{>~GH` zd9|nz?sFL`GcbTCeCX2Iv!HYiNmh7zWHss=XAsxi><8(ytyWK!+2`Z;hsR^Jr?2wh z*g4zj>R{X9;^OZ8{^Env`1IoiyKjEqVHIvxChkKlqfwk*j&J^U!qXRDe(9(a?V<-b z{ce?3NGyVqt>_6<^n>lYM^t|@yuBy@2ATirAC@6i#)$onrAUvWYxzLFlGXvV4Ndv2DauNlCCC-|QMCwWeXQR|s;M~=PdIuHa$0x1j z?vZ7jnS=Wpp1W}+lhkE1&lCAL6YLpRZW>~&&cWeGK*+>YBL6gE)|60JMkY_qIGwC! z&tPb>CpoJ-k?KXADl_MK;vtcgL>$SPR8qnPf|B6gskEM+St({FU(#EF^spdM1}HNE zDTDvXg{F?hGdfv=M3P92T15-1a(nys{{EhneO)!fwpULtKiI#2+@`gF`N^N&Y+pWn zh5dGa|Lli;=U+Y6SX^T9fiR=dl%@E?Z-*b0ckhmm!rJDeT=Oa5{ShBijkfj|w z!9VbtfB`BEEjZ2~@k~6brSVk+!kT@DKN0xA|P9EVx;536WZHlr= zNkWo&CUMYt@`Dh>$x56YlxnC;5Ma8J7*jAzX7|A|97&l$%%n(Tj#MtqhFN45S-_cN z@0g3A(G-1rh&h>LOcGij4z9GJan9TlA5i(eZDZ2wJ$>8t{-!;BX77I44j;X^6{(#9 znM6UH!pkb3fAEvvzgy|fV(QVRJUWr#2kW=oedcU#JEBvcc=OTaI;*aqefZ5rEs62P zzdA_Wxa|a*65<+}XACBr2qH_a$|Q_LND^2B>C%{}b20}Ru}7P*Vn}u6HZ}Jm5#-ST zB{HE1P;}x&WR*smSv~vEnbz{)NI`H}&FXy7c{+g(E1-wEuf?_x{8M^Nzl0xIVW*2zzGw0QkpuW6ZO)28TX@BRxqU#Cm{&I5e#Cm zOL7XplElM+tf$^tBO=3+sThI6um&+jR01sjtg)@07!IXZJ{EkVWQcFsu8 zZk~C(pTGM4fm`a+a(jr2{bP>f?&jHrzFv##^)x;F@$L8be!Lk;PK~4yl|XM38*efF z{{Gd~+&5!!7dPdJxB1!4amoGFZtW1kGBdT|M=$rczByifm@%@34tM|EH$geao+5Hc zN}!gK4!}JK$PA0<5y|9CXiRmig*?nWEp+kh;0WrL0&)f@!V7~^Eu7quOvFwA$W%!=_SkDvr)rb81(3t zxlth4*{mp0DG|yVSxN&oT-ll>iYAEMgW#FLoq7m^(lQHcigA(>!AM8m@|RR2;p6lcyybCEII7G$hxFv7UFP0Qg{@~Z15h* zkVq+|w}pbphGVR~Ai`)wRO+;>WPI@5O&mY`V7nea{mC@VJsm+v^?J*R)cu+AS}$oXHW2D_I~+U zcU7lRzxY>e94FE23@sjp426wFnUjZX-aWjfgL=;k+i0)gjBSSt`o(ae&81q_0_twCYEB62_IP*Dn#0+dMv5K~e{ zWEN#o2@>WKqyj1}ZMQI`I3;GPL2910c2_W{rcDy5mbGUFJ0d-5;l70v0diCP^-X-WoePE8t!{L8kC{dQ;764L9 zbha`^IL-mDu9-1l1t7gWt>>Pgjx9v-DDx6Gzt#L25P>XbxQZ4_FiuZ6&lafSfM zp#|H}6UdfsM5%go+uw(ZclL6|>}EWMNEyxQes>_hbtG|=>O_c40=p&3|yX7xcd~mr=H2Z` zg6T96=JxK*X87QTFH3HBgL@7tQeHhN@4&=}NS4;zIj6^%YTf80gDb6?Pp2QJu^SUm0>lgv z@8+3Eq{?>cog;|gJE08Esu1r^bv681sVWmW|bro)eO#H5?)v75~Rs} z9L1Do;u8j@LEfhL=sR7GiVpoE9fAuduzPQ+a^Z8r7 zz8pZW>B;4jw|_i{>|(oG+LOkqM* zrozmck%=jDa4vM71r_089HpdifIO4(PwlZJ0Gv!x7zjc#r@IyeTx*|tc1k^e8O^hs zY#<^4F`JgId8Suth6IJDA;=?%#cs>6UTyp#q)TQs5a?pR|7^W~^ZxS<_8;xvwlD3| z&-_=vOXsVyTs|~f-@cUnZGHasR5v|}#427annWmVR-y9b5FN|KV6|;bV#~+7-~C@_ z`Da?bT03R64dtuL@rynT{7J!}s^#&2z0Z`qQtnL4h5$I{00b>sgb11e(?}sACNYqg z&W;3?B_SPT84+IHDK%pii|k^oNx`6X=xqQ6duTLu6h2B5D6wg{aq$caA*?ZqB-a93 zI{_fIHngJD^YXerMj1|{uY-wHtuSQxwytqFFOh=NyMjaPJZK&ga6gZKSSldkfD5M~ z4QbSJoHnBtk_4rCGBVC)4uC@Es~;sK5)Mi=aA8a7C{B8!BHUuIR=kHqc*F?sfPvGr z6QQRvmIybJP8bfZ%eKth?X@2~Q@NYTb}D=E*Wdl|@a=WpynNp1oBrWX%76N5Ws;A- zs`~V}?w+YmTm9tAFR91a^e8G3r5p&B)6%E<`yENuMJ3DjNe=t*wEp_(-K$SEULW=c z67ig#T*U#1&GVQwlK1#vb#CTb) zk*?v`d!?(n?T@3+owrxl%4*5VQ!xopf+)mclt{6l063V8fG(88o&z;*OrA;T;;y~q z#7cz(96=r&(gmDgrep$vgefSHP7GHq@NQ6pSd`g$A*93_nnDl?&@v)d1(QVavmcUR zqtb|i-Riye5Gti<_e{rdb$MONdjI!do~U!3o_|umdH4R4A8h~r^JDPv+>*(e-Km*Sq2x4TV)D#x8R-cQ z<-tf&Tmoh4rAU~lACKJ~boJq%eR{FJee;K}zB!oc_T`g{(H?F-&AqkD)v*HI3g44HGw6I6LOZH+F;E}qAX z#zc%&y?NK`4QmDx>`WynOJN6-P=@D#T0~7jni&$VAAAc zy=NPjoy$0g+OU1{bc*lqA2#!B&OBd!vY+Dnw=X{MpPxweetJIK^&dR+al`V^xBAuV z=O28B+UktH40F&T5g=&UUyajYGqxqKULB85u0|ckx8I)b-ha8goso$~<=IcKzFbi@ zS68cMQ2h4)btFTaHqJV_tXdLIgrNA7n<_CzW`ssHX*ovFqMo|CmS~X3;swYo4Razm zC74_gWW-?wCBl+pAt_mFNDX7tM(kjb?j^0q8irg$l-C{8$dv3PEMkr7F-BXet|xMK zi%xVksg~N{u7b>TP)Y;^2SL!zl&dCSXKo@*APt$ChMpuIR>Ky;wAU&~uuCL4fyo%5 zq##K!frEi0Cxj%xB0Ldl%VgH6a&Ki`!vbrQ*}xP*PK5$~-jSJuI%!HTfdY*ba1(2f z<;i6qpML!Dboj$>-j+H(-pST?Ke$wS{U7gM;pYdc>?$|Mb@OMJmp3oxceh8q@yF{I zWf~@u85vF7*7S*b4OyjsnhHW%lr)9E)9Q4>7QVn_I1g zvx~55QUKA`kPNKOnNFTr#^mJ8BvB|3;N%`bM0QB<@))FL&{Bk1QX(mlpkQSYW>z8+ zqCh57CCXBsD)3>0|ye*fW< z;reR*{P(Zv=F;zanZ}!c@t5I`zkYokzwV&z$*zA~AHIKSZyH}8jG1fsUSAaSM|%)Z zS8`}k*=$aycKQ6-70(YMefjVu_iK{6yF|V{dAn-gdcBU^0qGp`+@kFFV;#fTj3%&! zB$K$gLpe%7A=Ir)hB15em59M4T4h8KPePq14-DflR91j3D1(GR?96mdu$)CffPw-f zoWiQGAfgpSM?nfl<29ud8p*qLeVLZ{)~)0=woH*e>n zJ3e&P8sl&=eczUEZpJU;$Nuu)h2C7<-1$Yb8U|MeeDkl+uV9N%+?Je^1>^KbsnOLF5edJGDtw5h2u zw>`C1guDhw%!H{`FJe`LYfxZG5s!0vjupX9YdVEPGT;bGM=%IPnb~R+Kp;9b&7@E` z$UxfI+04mfHXz4271gsWyK)jD&NV{H0T_jS6zRm=V$1>BIZ(-mKqN!0IVyoOIYkn} zAr6?5aAty$SS66jU`GIjDi1XZ7!DwbK}k4Ygyif7Cjg{&4xvae6EO=XxQm!0JT$vU zq6d{QTAL>rMYKT(RFjy9gLoAYc13XArk8&Io7Yf(GtVc#edmq#TetUz+atb<4^O#% z<-b1cZ+3ImAJ=aZyIAih*68b2KDxKHS|m>UjC83LO9N-y9MeMOQc7)Kb~PlaQ|FE^t>NB*v1B&>4}- z>KW;9a}UYr9^J%%NM|eEi98)916YJ80CISQcP3<}4ju3m2h=#tYf`sJi*)6(?aUh8 z$aZbza7jI-KzmMYK*@~}YHX+Bg2NcD>BP)n@(c#VB8+XNHQijGnhYUX(}|)}kxWX7 zW<^YB7$zk!F+cn~b)|^&bi@IZP1)Y?P-)sVDV^Gh_PW!t#f^T>-KI?x%l{>e}3Qm_Tk^ppT*;0#jL$ek18h5 zUToh+_37nxis|eB`}-IyhXvxbw#q3wRUn|zV`KykO*@LWLI{g;%ULo zZfO?e#@!?%xJt68qM2_)LP*#hNyNF!&YCGv`9N6@6hy>pKb_pg4-?neoXAQmwSmpy z0SQVQE=hf%E{9ra$PJ~W#580$IWu)mDxh8{sf2O>9T}1UWpy$n2T93}q>z=wr(ru5 z5pX1%IP$C}NR%W7zz#wrA}QH8Adwnq;o!lAB$18C*cddEjGpHxB710pP@OsD+$$yt z(i!liq>YoT!{d?5ur2vSGJ9Pg6LPhE$Wwb+HtpH*wmg46-<|w}@#oWa5a}n>RkyhB zAO3w~=3-3BZSsv@t`b|FzJ8Q>dwo@Q_jOfz{Xc$ueB^a#^C%CxzrV1T!(AI7PhJ@J zWBr?N3|`_?6Ecd{avFSWnRNi762Jl%h?Us_45A1z)&zM#(mCOZBv0oK^3tNG5oJ<| z6bk~>i?MfVIy-@hh>;xG8BL9>T0-IxOP@`nfc#31 zNfII1oe30_Acj~VwZO#;LN>OVf-ovs)8jmEb$NIgTO8+k8GO%WdHaLw_f(S0d`}Z% z+x&z+ynp)nTo1k-x4%E$^Xbjq&9kzsv-N#^g3J+hwB8T3ih!1gQqzG9XLI-ic1(6($6Xy#$_w0Spsz|OOPBbKlK`DHG zI1m++bKH(w1R{(giKO4I2+oZ5{eD_xd&_zCUFqrReXXQc^78UKua-V<*GR=9*UcwhIE?zf6EUA%5K#Vk#SO`P{K9`pworCFo z6%azOSp=liA~FiuCO{Su+{M?~3Pqm(Uwj}BfCnb^A~dM2k%`e-Z$Jx?vb%UPp5V*7 z(|hxW&-=~G4_)8P7gs~^U-ws+{{8#4fAI3n;q_Ot6`cc_b&#*dkA-HwXCJ`nuR%wJKRez@H=vyxG^yIRvz3S%Nk zp#(|k#KDvt8H=?HM^O<$1TmrrYbP@b)2RlfRvo4d3y3olU=7dY6b6AJGZP5|7@lXR z31DSd5WxVftaFl4fcZqOQ4w89Tq#MMv=u}LJ0r=!Wo?PhNx6~vTdhwAJ@r?=TxGq_GJQ<^*1Z?mvmI4Fq5nib zp=Ve7i@BBf{P8fKlE4Q;{`hCxqnY;su&+*UE@bo5@4q|c*s6!eHYj*hVdrH#xZOP%gZTU>ft?BfJ}(NKY1ElQoL($gk}?^}n3}jVSxUEP zAO(3VCP59P>L`MQWd(x>NTP5mYl6$FoE*Zeo9A^ehxZFOX=5DA@p6j8liIe=N27P^ z1s@-`eU6{pym_=$Hgz}UJ$ct*8NT@N>09kF4j0SPNXLhu>w3#Sym|WSoA*Ee)#aak za`pBPuOG(uwsMzk>oolEU+&l**2^Q!-#qH}+4lC^-#wW4qOxv3`2$>OyDYRBmmP7C zM9Dm3v6A|b>_!B#YDkwM1&~ghViXL{l`Of3uS_IRhD-77$_ZbqR|%@=ZD7eHD{PTK zg2d7jnRa_{$3(q|PAOcX?@mgb!7*#&0;Ck)=Dz!}jKegPpmoH$g`{aGBw3+st`S)} z;3VV$_RPAZB7`A(lW-%QDUqyYEC7I@z!}(QA|xOJ<@xsqG6Nipb6GA(8KEYLtVxVjWF!Dm$T>?hH6{X@r_SRrUR`M(zokBkV^uOPt3C1)d;9D|8{R%% z?6GFC!}Qd@Bnh&aMUTs~EJVxe&jtvOm-;4}_iH{Hy_4zm!T;p}*WZ1p9$thsch%(Uv>qLF7N#K~ct8OY$`hetmZoUl1n zf_ZR^SlXs8#LN0{1$7+Ab{F>u6i-nw+u%Ud@M;Qjo=!5gGBVlcQCh|syS7okWBMKbZ(4bBh;C6luRA)N>m(13UvX==kks^Ke|Z_m_0B zIUT}kUu)84{`LlSi}HQ>!FRaW`qHD7rYnb^7@$@`Gms77CmYnTE}Ll-tv9F{{*Ar&i}0V>k_ zCL~Qo%itC(8?nrK`LMu9>bkEbh+FEIU=xFQ?-Bt=6LE2kB$LjGv4Mo05(se?r;HNZ zbQq-;ft+{ELBTLj#QrBpyBIfN$tcX7{wnu`J4l4rS~@n+8$S|hjF_4WdCbFl;&?gIWg1Q zyZx{kj#K>fx3}+GU0RVsLmN&uv?}x8&2Y!j<>QOHPfy>lLi%J&fPXd~_c2Tjb)yhG ze)0XoNrFK$@f0(K=fP&%Gm{lf46EuoWWt$zl;}X|HqFINJ>dgVY%SU-6Khg>P@6o7 z72G{3&4$(oLc-9!tz~dShTVyDm!7HAtez;*^8PrRAe?Au>abz+y=^j`)otNpWKML8 zCP*0>xtV+jrT|w(5E5xj4yRSdHT8;nhp1Ga`_s3&>Y84x&0^ zqmRuOa^dsQ6jIjG@?t*91xtOb6i?s#x>-+L{_;ns`x2LLyPtdd3{;F_KKC zOb$)Djd!?~WUV@w>Vi~VK zuWMYnwDE*G?A|xX@sZ2$)B1;D#?>SIq_ivPG(P{}tNGTS4y!tqSGT@;VK{aVF>GU8 z2L0@xk8i&CDnisM#o8Tw^Sp+{_OL0%nl0^r{d{d<3>9Z?NobJ=Au*zoE(sS4apJC= zO5C!7B&4n}HYvOk$V4ePkgyu12>`h~Xm!i_{`X%6U0v;Wq(kR$K5Uk$3(3Rx#HnG) z9V=VU9T^Il~3nl2hK96%lgh9|CXLb(G73m&KiBVDfoTEW4ED5kG*5zJ3O$8)6D94(|-_c#{CK@je55w-d zhU)gHh|4FpxAPm>O7wK)YoJUN5gDF7gC&J2 zg^t16=8_fRI$5@4j3Yxzx&+a=1WZCG8B7R}fr-vV5zarELK>9BTx+JH9Olt?z)N(kHPBq%Kywk$*Alp)E}gRP`HJ=|&?+OV1oH`La}ZXepd zJYQZPzg_m%%2!9{1Pzam^=dyXr$M^cllGS{PD@UNuFMg~_2ZBCMs1nuG%AzSwBF?6 z&*q~?BN@1$;IIGf;}T`cq^e`9CCo_VVq;ZJRU^*GX7(V?NDl~+Xhm~T_w;TV#6>s_ zo@t;E)d3`GE8Ie#KixdLeyZjV-+i|%PT5au_c%EZ+icXrmq>5{5uM&!9k?N?BN`Ia z+oqBUoX3D29zo)(O@$Eav>7FLVU7k(>%kE7bXtWoI{_&a!j&?!2orT?Yr`0vl!6&d zfyzo!h?O{jbC?@)wl0YYLSUvKB1!^*nHfMvXveTn=bA9$b`D5l8t0UWNup?yMrBBr z%m8=z#X$(ui5~pcVef2+zkKo4a(kLyL8%<(fgZ|m zdcS}A2=A6`EWy6l}nHBX0s zx@F|~azj0c#CtCxUNb~pnfqktSU$iMn(QN-qeez@Q0EfNZklvPd}S-$0QEXE8uPr7 zi(ZGV^)~C{?Nv3g`*IkUN3K0<7>5^k@?`MwFe^6_cBC{C(Hw8Ba9JWoy-W8d&NMWs zF$_Mx;N2h~V}hry>WM!EkXR9fP($HB!ZRrYOpzR=lQed!JxIctstPeXC^E$nl4txC zCx--ca^$%UmN=`_aE?I<7_$VC)ife+TGgW!NaaEb6823<_7dnEF5=>n5-G9}(idSV zg=uGzg>&>IrD&wlm3@sr(kF-85gpf`{`7cPkUPo!+b=#GbQlh4uV3z-yq5XdrDf0M zP04z_yLo-Y%+WpS_fKB#zWmh}Cm*+1d-G|G%k9fPZ|WG|tB>n?{KGpY^;(R^7Rhp& zWK0qdz%_*@ZcYVVB>@monua7M@X*2d6exH`M0OJtW!PyQ3@Lc+s_1<5QHoy=vZL?N6KK}2WihR!>GNKFYBcSTAd zi6hSg10d4`_sp|=933+Cm8BQyNrjb(L1ZOKGl^oLjAG2)%{%GA1G>6*p<*R#Q#HYc z;ALvZ)wH`GE{>l|Pt(`0cI5Y3y)5zUCu8~Q zotlSQllbBNZ+<^}o8&$|zP)%A>rEZL+%oxNsnh$--T(5-pe98py>m(}Z1KpZ29I|T_3&XPjF7?x2tH`n_J z_wbOUDBUPiT^`zUfHt9Co7X6zu7VmB&YdtzqrMs`sjqam?OJF*jFB2Ws-BBnCpVK!ZU&HV2ZSX%uwmap;oSrmY_GP&W79 zW_cKk-p1j$&dd1YpAN5&Z%-d|IrUbT!L`5c$LFW7{`|$0+}=ICy0u!i8N|c>diufF zuXA9b;e*G=rPTw!yyoe}hsR-jyu7?c9#)+8PxmSR`tMH$W!}G7FMEDVWTfM|94^M= zmLj@{jTspTan5Pg9>}bn2Y2?NvFj!i%vd{dkW*=0)YzFr)D_mFRYY+n4;R$kH12lW z`X_mn;V36a0L%;9*WGhyL|wJHjce-FU9MM5;M9|I#(e-V!mx>}w=3-`F@YnY66Z|; z5)$-K6LLzd=}84t%(Xjkk<}M zB9Ib<$^uu=L>chRfk<6dQFuBFMhUo_n}Ccg0U{D34x(u85d%pKL~Hdrq6;(M{%$~l z_SCp@Z?yaP`TgM!bLQS|xBjfP<1p_nrqh?7T|7U?-SF`}uTob@Iehf^7wr!jCzjzS z(-+^p_!PNY73^q4)u^eAc>{tsyTAl*yey!kHR$@*UO9RX=H?3SY!jS zg<6oys%yNRU1A>QHg?m174*1i-nwZgGLZwd)megi_sP^{qVxBig+S>FQfmqtI*L(( z#KjqF2r#T!$i>tsl3~GaNYZ{;l$kj>kV!!T1|`S26v~l|pv+*7luYz=g)6ak0APxi zQ!7i<2v4SxC6h~p2%|U(MG_>57}*4tnGVl%;ShKqGRak(BYhPr!y7+@U+tikPDot+ z8K2q>gtoL92aQisK^z`C^m=@4n?ymmqcO$@pC!c-yPjoqt z+ncL?Nu4jB?5^@}WP9(ETz&FVU;pccN+*||(H_yMCTZ6>b=6+2ajz539wo}#xxMyJP%szr4IoGF6|38VywvzGuUN*8uc;7v-~7X4`9^>AgHNZ@Xt(+J z*$2b#-{ZLOwB3F}hyVWfsyPf373z0ouTq(}N`p9IWnrw^5=Dv%f*Nwn=1V6;a>T&N z6i#l;N?`6(3X}DsOsQf-Os1k@QpRyJT|K+mi*q56fUUBo2_WX2oDPaNkHMMEq?CvZ zRp0E&^4KyPa<>()gVMv2Qo1Jdl>1!~s_-g6B0Rmp1<8)|=*fyyl3v6*73xVMOb+6( zaLI6Oav@x+P*O(E46qPLgAj~hI8zXqki>}KE`-#xHL4vX&Uw0a2NR5obpk8b0wFIY zB%+vdDEAtf#DGVJhyhFrJ2UPd2=r}^7;f8#Hwb;q5@XZvTQU;XEC zce~ry{l}O1$G_&1gGS1jWxtqq39`x<4C6rJr6f{<(3p@k7aA=~+DP1lR}L}>)3r(` z1e0cl8l1rC^@I`?tpef%uES30XjN?RAV52HlZ@;L>zU#lkHxeX%WgcBW0}G{O4`My z-+G_Ys=J-mZdF^TciruY3TE))BI=nTF6`_mUD^NC#_pOOHJm~s15_=9g<%{BLE1<} z5$aUj&xK$@3OSw2p+Oq-rzj9nA~O{NfS?s505%cA763QS@FK#L2qCW!_~0SN8d(xV zNu_HCDR`K5QA=%%Rb4_Q>aZ(ip7)RJW;V=w=Hbt;e)sxNcy>C~b@#|$*M2bFtWsqi z+R$%rq`$oV1|1c)I3B+K`htdM^1IvEy#DMJFKxK2<8|i6;otkN>E?=Gy`XRY)iD_c zI3CBI7YmCA!d=bmfmm}i8$(l=sTE>UXK+DyQVFLNFJ!QyL^gCtLZve@DKk>w9)%1g zWI!1&hSDvF5^CrrJOdOC2pov?{`R3u7Ax$zGN#S&kY0P8=V|s$%1MVuMqkkP%m$Cm z@n(RjL`tdvB-#cKW?mYz@pS5HB_=CA#LAkX6q%q%6JrWW1jMH?gU&ZeB08sBD9W-CzAt0bBD=Mv()Iqs@85o%?h{0Ox70(wG%XKXrt#*n%}?;|=IO)5wLEfu zke$CQyS^P??91DEh{~qBVI3~FTdtbFdwY2}O}v{vo*w_ryUK}e#tIg0Hm!)px>VyZ zib7;csUY<86dq*}%9>(|4kxgys{@%9HHm~!yCerqG7O_^W{5%zkRUR^ zEF>kssB>AqIFTth3WlZxPL67sHIr&cS;s0yao3Z0FNr>u?KBF`;D-Ras|0)3E^dS{ zrjVpySFB*yo|z>hnUTa@lG3G(94gG> zF)Ovz3^EFe5`Z!f;hK^XWXjAD9O>Xl&h8;pACc<84X&qJoyn+NZ-<9JJYemcnET!P z-S}L$@4oydhKJ02NUWumQ`OVsal5{Lm3h$%Nr7z4f`u<(X=T?S;R6h$vAnW$X_ zUOJzHahB=o+=X4ho@{_dN(3>vL@*gsI0hjuWymsmarP7|z=B9R^Zt`0W&ZXUM8+W= z4ZW7jLtszq+{-~aN?#&SE1lMCT%(RMPSb!KmQGcepcbu~bLk18CTF>x(xt2r4-RB$ zjucAikpz_HS;Scg1V;eOM8rgtNtqN#Lh#xC2a?WZ5jZFr&_D}HvgB3N&s;Kshdo}2 zfQ7&m-~tLIa*|{N2eS0@s8y@RC6Nke@|-R=)8kjB7#nnIhw-B)7yaSx7s78ygUYs> z?E5kEw8X>B_f$6hS2tsM_;@^A-j;qL7sJG|l)Hl!0#kkdU;ah;J>L|oebnW*^95-c z?R15|{U45-BZiasNw^=hwzSMgb${@-E^=HkpC0lkLHfH1QYemHF zPM3Y=?TQ5yK$971ruIQJnejpYQ)V*hK@udfktm5Uf+$d60YXz3g{oV($(!BDJk4$+ z)>`hf(LI31c1U=t%4JOr?0 z5Lh{USDHGt%}IzzfQ*#xYTiZ=GJF3%vl+-ujU^*DhhW5HqHEnq!g63-9v_}ltHu#8 z9{UCHAWo2oZ4euo24`m_CwLU&q>(VMV^q+V0Ki)z1(|q4Kt=NJntP!j5T~6Pu^>k> zK;oGMZ~`D5!AJs}dj}N|W2B}fbxLHZB^nd_OcIg=E1|={3@Anhfg^)VBV|~NqdReU zn=jh^4{_W?OUwWOfB;EEK~zmczM4$N^wp;?=r@1)TU=bKUJ14=>t&9zJw5I)m0f>L zb^Kv|aqrI{hi)`K+nwIMJKDR4(^e+gA9kN!=Uf_J&KEbZzbf@EOWwRH-~6BM*GHMM ztV5Kzv~t)BO$QQ`sZr|~;(l}{iGVx9k=4c_>A zR|G_4AO=wegM?iv$|e&Cg#`&r>H!qvWEQeCOL&rw5SA2_%93Cf5{3W-AqF@znK=Pu zp7oy~=G=k_K_KC2lFdkmF(pY3r6dpcNz*8e(PbW5^9F!zQz@Dm58cn+UGU|@R zb$|G1_w>WD1^e9((PX)Pd4X^K>h+Vbvl>b*Jsz4{wCOncw>SFuzRyqn`R<{`Ty1&W zU+&lS{oB#UdVA8(zxeobe19i2q{&U-Z;me<(yu=H>dilTmuMP7>cex40C7N$zim0D z*yAaVkLk{h;{x%JAyh>FM}*_wJ+1 z18r9yU0%&UzCUs;I_AJPzn+PbFAiVPfAyE)3g6~u*l9*m*}G7wWbB!}uO*HXI|d=T zaqTJWm}%W51zd9XdE_@T4T-qf?$jRWDc|iA1Q7dAJMI9o3~131`t!l0qq~ z!Dk;C!@K0YCPTbD0)7ne8t=W%~}BJ98u`{SQ; z{J0SxzI^rTzZh1_#ZEV!GFaz`oXxWu1r@10KOW zx&vvE%+a?L+lER6rBh)cLRK&~Dh@8&;B;mLfGCsUAY!7V44O8fs;b=7Xw=H)o?|mlNq{+nnGIk` z16)X$ly;yb9&9ZB=(Rq3CcigVW%RA5KD)_6wrqq}`|mzxse5kO`*N{6Jlbp#@AVV* zH@~$$4nJ)7{pFXR?zSI}+cl1FPk;LNzq;&cu5+0-ZnKPk`Y=s}^5*A%`ZxcF_blC$ zDW0-;RBb1%0JLP_h?J=haO>B_J#UU)I44A@*E8N396geC~bQ_2?KNFUi zL`E{IN(M$`4igdP*r|~K!+iv&@W_X|l1mV@vn*RZ(6U9nUgK0N)xK?U(x8+i*_ccw zt=xk?fSWSY9a2QX5uscMGgGlpn4gb#EQ#S(Vqt=If|vx2Aq6QQCx;3XqfjDDDCq+$ z9s~*om_Zp4Kr%=KnJiLz%IdW%d~~eCpo5}DAjuNW=Vc^%NMAc)9xf zm&==@caH|K8L8?hUQUvj2Qa8m#W6VdG5oLdX-y zsBm9s2EwCLrI=~a5Y9->KpF)LGttHj%8|6u=nf$YAKqh&kZ|?^G7R5XfUXkS+SRU< zEQL5dUAYHwM*Ma;0&20V%))EGQW|cK;afzfU7(Eau#7cM02waK5i&A8cqUBDF{;VV z-FXC%=x0$V#3(?KAt<>?z@!u-54*T0be_fO6U-tBX?HBXyhu=J|FO#L>?Mpy=~5`BxzT09n@ zPcS8D?d&Z?EIc?fC=-xW(@lbdk;BtTMGa9pEyyHN12&KojqG;| z*raZGxJwxvPaaxp5T;{_IAxt46l|2Mj|?d`Rf%R5)pcxBbRLqXv@$}B3_O@JX;j_> zf)Ye|hW`+|1Mn&XVY>hYD2PNLDG4M85(G(#5C^&7eDFU9K?sz@k)#dF=!)TPEva~g zb5MHOCQ8XMA&EK3+NkG30R<=>JQBoNM-(S7snheD<9A1qBsra;1^;wcE)`GdsGHtQ z_q}eH3FBw)j?Z$Ro3Q4CKL6F%?~h(DKDl}wQ}E`mEE(C?^ipuPp*-> zeEi4y>`CY8;?+mL{b#Z7+IgNXk5V@>YKv{VK5!F6y3~M-J|)U^q#)tKlZA3r&rL#{ za-|?S)6qjiDAm*vX?5Yq-U#9pl*%P4lj{?&k5%*X+Qz*dDRLhat9b}fN$4}LAc_lvT$8Gg1UV5UC?zc#q zl{rVHs!41Lkx*FS@HvN2u#UNFQ;4B=oI*YB{%+Aq7TLhP2kCUqf1$aFGIP9{X# zLQT@Rv74zzG9VIS$svqF%rKKafE}XTAKKH=hIv^UE%8K5G+S7H|B!@c3cMd6@*LV| z-38Nha=)zi0cpw5$UG@+)t7b!MFENz!Qg5dkq~rdP36{-NGm>}$4Q`?_ zrT_v~JqsQW6dtMeVX{25r>h!x2&GH9q$nUfz~XVXfNV$|p(GKN zGl>}x5Hb@<&Kz{!1SV0QHv<;LnG6aJ<|G9mVX>MWQS;v7-bHBG~LXd^NVDhyBl%-=D6(c>Z+SAt|w&L$-4K>t9d1o^#uM^2I;@e;z9hQt8WE zSr#Po*wm4=wj)nMorLr-17mE6Eh~H@2!klWh-7gIqQP0xl{1pWjYlRlda*$9k)Vi3 zA4=HjChmp9Gomc!M!7aW-5&XJVutzgYgo;pog!>rS%!>pNhys+D7E=@x}6S&;06h| z7P(%CsKPl2so)@n1TU22X)=J6L7WaDz|qwa4(D(MJ4+(dB|TH?m>4V|5CI?wN}ur5!)<1%GF=L-5hVw=AAWzJo0X~wg2ps$+a^WwF4{nhi#XOszuWF{a@_&`Ubn_&wus)A8kT?rw&@z2e6Dyjl5qdKin*P zE)QVEW44s795c08aoI|NCp?I{(yC+_%@wE{bkwrswwxgQUO0#xIgkN^k)x<#i#ks0 zUe@V;?#IW+Nhj*JTWKi5Wc{07$cRRn+~_!W->3Kv?^Ct=vZoyN5f^^_Mtil)qdS$Y z?zxD$Xx~VJo#EonQQSzldJ-7y8B=FMW=Q^BGFSi@a}IKsBJ2&sLIh&4QIcdZ=nM<< zB;bG4he?0{S0_g53E)}`WUSHoEC5s>5*RtEml(=Ij4S{oGo93hh7Qlb!mr{VP~aPnAdom$NsTg#aF-3$!7|K`gt>-|e!w^a-N zn!ot@{xhQo?Dt6~y=?2-|2Fpf2Wsu&=ktI4hAyaZ8xg1Og^yaOZ6e@Ud*QOXOR~a? zELtw#)};nqG;*8Onw_|8dyES8rQ9N_};_*US6U-T1}N-@M}G%|&^Z z$GhpJzB#?~kG{H)4P9}1`q!_Ymt}~&`uV5d{^Lc68cHlNZJSk}aB&A)K^mmR zX{(jy)9AQJN}>!C4?%E3yihX1Xr!=Y8V`>f=cl_YQ!5PuWQ%y}5j<$~CN#;sf*<|< zzFag_DwUh;4w>os-Mt?=dUezjX#@!unpkw-g1kP*_njKc-e*^rP)7+N z&%JL$vkQSOnFw7uR+6wJ4^|E(hZB?6q>VaRkO@%}h9)SK&WwWu06!Ze*g2TaFC>L< z29lDAf(I#Mw9VrX4P}*)3d-$*IVNfWIwR&Xz-TBA=%Cc}gr|k0!&R5(uP)#G^mMGz zro)Bpei~!hO8eyLcCp71ZFiaXL*>3a>tZyD&l_SvnV22XHxub2IW;i^EqHZ9_n6X{JD+9`;hM>R)A}AYi5@m)ECx|F1h{ZCQ zi~^|%+EQX*)U9qzFkx6t>2qeLvoOG{kpMd)GbJJEXBU+)4?O$j=kMP<42tR(SGj*X zJoI6{IlWUlto^baaA1F(?Gl=uDJem~VJK{CF+ zITVcS+aFHX^ey|#FMfgl@4sm}Y;Qw7$a%oE&V1A}0QGT>D7!(rv2-O$nmXs>L9J!U z!Ri{TBtk%GF1>U;$J-%#btso>_r)kBcjPk|%H&o1AxS+*nv#0EN{@jZ@1IzTWOV!O zldJYLMe33g4ozv9R#;CH7M`gsXufceulw+I9b95uY@iI12yzfMB%35Czz$PR49?U< z0UL@Jhk#7ZO3^gQBq|}zS`}siANMx({>3Vm)dvS4)JYl=P|E#6;r>|dMUmSD) z?8`s7`1k*1cgeOzHJVRE*2lCRi??axu-!(h&xN1}pO>rhgp-bFa9;{id+ABa;S$+* z2B)QJh9Ei1E|ToRW1`^<6_=th7iS{Ns6nAcizZj`cTuv)Xc9;o@%~#A@~LZ7-AG7@ zloPQeHyyfNB%~Zmt(SW1m4g`WEROj$le`R7OM-)=ZXp!nlA^@A33Vppb9^Jf{Naki zd*hJ>$?Gh_r2+~t5J?D}?}a#nL2w2L$>1aa=YdcrM@m8krql&idbCY*&^8Ms>q#2} zULjTiQWNBdRAtxDK}OomR@r~@<@n~!(O8OH$Yl4hb)L5UBh9+5_42sP^4PWrmHW@X z%Wax2#uh)y3oAL@xzC4MV*RUW`Q-ZF(aq@#zIh?5yNvw$=d{u7a^bDk z1t^E5%iW6*CJVENz$}9bBsrMC$Ru*wyy#Yf*8)&FLWqKlgEUf*#z_>OeCVmtL56jr zOt0iZoDxJK5gC$jI*<1&!ATHFpb!2qGIkU69SDZPHvwMY%xcB{wiBWILQ!K8HF8Nu!W>uU->!#%FjbB7=Kb)0uc0k-^>o zNtU)RO7p1tRA2RmF0qn~R>)aAt^4cS!BA_!i?#Kxdgc{-NRGAQ(@<>|H zm#J_~ky12}aaKMgM^Yw1-KKQfg$MIsK3m?QBSDc4ZQ+6Dt06Oto#8I5B#<^Tz<~g# z_}o}{=; z88JG?n$0C+9gn|z4EIjHGZa1bZoY$sJ@o;_9vF>AE{{hXPNRW{9o7}Z6eTl3?9h<} zRZ&N^ln7H5qa>1&teiWB5fx4%5se_#>`}Oe3cI90)gT;^`Jv4h0OGtZIE=!;iHr{% z@k9i|)gWm>WrZjn+ontFy9|y@p$tS4oP;D;(x`RKhy*sZL79BH<8S}?CR3BL-OTd( zL>HUJ8^Y7&=a;|bZ5YC1K4_uAzAx)d<3KT4#cN-R@(s2N2n_dO)Dj4g`7N@9>Jbsi#XK@A>eIiyrDu_h5RK_D8E#13N44@d}wz>x{cAjDaW9_)%UlGr#q zIyt9ww!LUH^5`vVAVfP=%AvB6k`;tQUG~dX%H%)(;nu;x?_4!ix zr%sKmT)niXIpXnh-)$PrXnr%cX}lv`T;xNl=SSZk4|lNHNd(m6gpV#?;`U#?{ix-~ zFSXtt|K;D3+FBFFDK>eI79MreI>METl^NDzlr(F-tCyj*t4u7094TcjgRRO) zXBXS%Oq6tPy{1`sVyNicR>%nUMZ3f%V=VkI#q8-mnr2MtCQi3sAAxmZa=Eze#W`V{ z*UO_>9G(uErCIabFQB{2PzZT8Uf11LvKNvhVGjYsPzRuh+L;oa#i=YPh~UX})ih?f z$8DCPk8skJ2O^Mx_a5#PlRfDcMIMfKRUeGz3yze$#l*B z_z`aJzPRz1WwUuWaXi;?DDir8bk!yN~Vc( zT5<{)2}#Qc@JJC|3D$GAX6X_!1{IhN%58M(DaY0M+`0CM_4g0cwh@I2EuIlI)>+Ne zi$^KsY&H(vK`0}NX`!XHI>%WSNIiCMApOuexH|p2Bi@r2nOs_wxcmMY0X7~J;{w22G{Q1f) zRwqW7w?aaqyTYYXp%g;fD6qF8}&I+Zm9Bp!-xJv+jI$~De)15geM_6YLK zczXZi{c$-3iE_*N#j9tJ-!2`sotDwpZ+17f+}^Gx2HqEaTt~aCtLtZn$G7>ueKxC_ zT+-v?H*s}y`Lprj%U9R?)&NSH? z-gETfeXtE*A2y!aln5K<>js-M2mx*!+!>Lx36sd2VBL&35VEhd1ol`l(Q0F#gleP# zq7>4k~nF&Z_W>P>QASK{`Fogif zBxFV;A~F&|$?LjgSJ<#A;2bVQtys2ec0#68cZ+ml3JxM7S52lNYhP~HzDC!X3eo)W zb^c_7szOzFy+7X#wXsFCado(&lP|aO?3Cpy9yWhxUw(R(m)DmUySvAKYahoq_1UNU z`QrZe6c;bn?n%S%x7+#I?(>w-zx%_#{bsD{k3RA=>d|61_SS?WDAWOxI{cz?iESfk zeXI$;&Ew2t6k5zy>KOAG_y!05|voTzzR>_HiSi_kFl(y zKqws}lh)U7kG6rlG*KBvrvr0y<}|7c(>cQ>R7M7Qs%eYZHL+@7h9x4IkR{RyMre|8 zMnRWE22!_FqH+E@=h%SkTWo{`lVqlHxKhS>@}FRkKtPg)q%$-wks0Cc;TG<6-Umo< zfX!-P%Yh7w0AR6=Y%=bh0-zj@bQG{Nh$%fS;83p;IW`$w*7TsuR=>ULmC9`Qu|4I* zValhW*OiP;m#ur`AG6TdUDI8$cR$I`Zw~D+T}|c9_rH;6rwh#u?d9Xwy-vq<5~ZyQ z{ru(6u5bTj{QAH9D=95_CW<=I%s5o9phPQ@Q{A^(IYWHSeYxCC)$$Q+ve!9^rklB2 zHwTOjZ00QB;c4tF1x!v(Nz9!iC8?1(6K!jcvHIv?{&0M{KaQ2^<+UI}at-_aYjB!) z9y7bIPb<^NYEkPdL!1j1DIAsyU7j*{w5I+P+xj#}^BhqI5m^>Cl+2+VK~yQod5{$^ z!V#2FC^Cf8LLKD8Y)fayDWS~CN)Q1PA_K%hAxRJt&ZGzrN1R_H=LAEI!NfN=sogD; z>Mm3wB&wjPug0)J3C^>5kqK!CD3Byj-%O-H>fl^$_v~tUb0R0U)5BA#G!|wAN`6Re|nV9%D;O5{`-40s)ssp`)L2^ zAO6GoWDb#gWD#hvJcLUf?LllQr2~>+wjnlTj{9momT61%4|y1HyW^k zEzEn6nS=WIC05F7z83-bH26H+wtLebY=|eR)|oVlGjj)#ZM3S4cE^zj*WKzdmiw z>*AwU3_p!~zkf2iUr)MO($W#@p{(~YXwE(CI> zC2Fk22W3LI60t}io&Ooq+ zM^JjQ2P~5tCs!xw!l{%jj_`z%Z{{l1)_0GaP`SwUw(I0<%6pd~wP3lspP%U|cGvrd z+q`*Jtj~Hm&2{?3-?Zto=RbV^SWesW?(J~gT==^`>=3_r`_KQ`X_$9$$8vP%smQ#) z2%}V!D)OoO2)aV&4ZZWADB;viy-kv%YO}D-%pn4|ZbSw>f0W!ikpGjY2F z%QW#svnoX5a^CNzo9EY8Q&%2lV_WmPx8lKR*t24ID@v$lk!qZ@XXz1KyOu7lX z^ClYY1qxeXkk%B>l4GKoi@o_wnKxUOzp5ar~`6yqb>(qRSHH z^N;55nz#DAzdOCiLH71?1vh?gpMUosZ~x@~u~=i9WcE=yGe@Mynp4+=o#wb3Uht&J zM=u#`E1}1_6!d0 zb@pN;ees}ru0=xI+fHv>?x3?EG`bD`t z?RSknvDLRn`1~vUZ1->fy9aJ%h#9P;L=hvA5*jm5s1#kAforymiP=?3*_bkrfhdcf z=1M~#CaB>pDo}%z1TKh{;h?&e7&R@jZL9_f6sAHnm6(aj(uPXRC_d-9Dr=|s-CLFo zE<6CmCYkFj_E3&I+*aO-`blrU@~G3}-NR>|CH9vbx%-lqPrvz_ z?;K8!val}2Le4e5uu*8Amfantdreb}UfH-akKiG7-5+IOOCl?y#+rxRNCe)COP&#$ zJ*Y(vBxweSz1SeYD|B+r7PWXYjjC%A+Rk@@%G96!ILhTyzj<`fC>qs_g=uwiX-GB+ zt$Yr5Zc(xTmDVVsN~_1#R)!-CQU@WUNFo4sPI!uYrB#E15T>EV#FVJknRURk6Ga*a z3`J9M27s_32#lm80>T;bp$G~AQ4*6UGKrF$otK4V^J3wI;p84oqDeI-G8J@jWPs9) z)7U7Jdh*E3Nl-@W25Cy`R(BViZ1yH%Ib$>0_O5@0x7XGbDlX*#ZWS{hK$S%)=kJsf<_R6kSRihKqTNn$>$_Ul86#O zESY@1EX+iJGp%UpM6it2vS|~>AV}KIoHao~0!bkkQ&4)#kVx-gQG~0+s>9YtD;F0; z>7MiTP8YnLCLtP}v#vb4`;%fw6BkvsEvZp?CViWXiq=FD6O_`3!cme0lw@qw0)a6CLz25tR!RzH z?Ji~vfj{b2#S#`oK?-FefS^Q)3_fcjBRbWj6ebY{Km7L%b{pQ$P{n!7++s#e5f?B&q zMbBiX^jJw*TB0JEMf&JRhhyU$bGJ!iBxHE9k*d9xU7>Nz@U2RLum$oKty$q2WBxueY5kw4;loV$OgAy&k&Oyqt0Fk+623JTVF~uku69LJ>KpH3m z2@41)0K}U`3<=qKGPF^i1Js@5$ruBF_HjU>O zUtDC&?>oKwtAGCn|G)qJcQIvkMAGPvtW&Yj5h~IWvR0>&rnxy&8k5kPWe_=`q?E)G zk<@Ez+j9F9+i@M6M{L58g9-?Kj`L@pWxI;TQj4@wy`=7BrBX=gf}BN!C>&H0>+gCN z<>*2U+vg<8n+mu>Ng2ssssZim)1Xw0sOu6McVx9vXnS&?lPDD=R9s>A>{XB-i#t4&72B!1$t6!jyDjSU=-aMQrm<2V zE5~B8t2oIzES{Emx}u*>ZFW4{muD@AES|Zq%{8|{y35zc^>5yKDq8`Su+vH#w!2n@ zg4{Y070S*%D+#JyOO%u^>}}N&hdSpGW)$gGJ<94_iI`*)c}ASg~Nk_2ar0z7Uo;{i0HAM z(|4*(oZT`M2ur0{L(RcCg$brfNmzx>SG*a65OKZ$WSo%^nF#XmILpo%2!?~fBIMx~ zLp+Nw-BB}?kfm=v6qydH4EAJ7f|pPTLW(N`tTr6J)u38at1RyxyxreMdEV9zS4pA3 zHpbE`P%2K{D&GC{?Qj0_Z}XKL$2IkB-*#8KD7oA7Sf>lZ^5DDW?L4|np9iANwbfEQ zWS0|vyhT$I?@Y;AVu%Xqa6zsdbCn7jA>s<|trTp>BvcxB*}TN+spM6&hM*@zWP z1tO#x!a`b9>eLET*f?#0P8~#$L1QRoZhtuTEcMB<(qR%~@=V55a59eTO@%8b1u-t1 z*@L*&EzC9MFprIkYN}D?8A%c9U@ll=WP({z9TJx5X*ABnKNyl7oq}>BqA2I1i&6%h zDbBmQK!5~9d@hD3Wg;?666qcZ`mjL&LK8ySc-2AToJ2dxB{kB73a2tM(}cn7EI~TR zh&aQ<2d7AC59pxkr{RwmPlStQZ2jW!JEM~n)Vg?zl-#$6W4V_7V&;8gq3@SpUMVgw z?%&PD_ud|kvfKCNRXqEXhqpR^_v^3twtYkktM;0dCbVguu6|F3q>|1|#bXrSrnPgd z4RI{)<)m56rK}EJm3EzTo!aJ`3U+qV&@Ai0l{1+(O7&t%Q&2F8ND_=Vh0{4mz{Qk^ zL=im^l|1_EC2}GkK!=%oLl-Nx7tE3?i<_b%;w3my&~- z%QCq;C0i*&fN)5x_t7WyNo0-d3Z~YNbk$2|{cL}`K0e(4 zqj74V{ic&}@yl(?pqkU_#m>YIiYzP2&No!9LyeiKX5Xhd3D{XMRGo?~H=|7JwAon8 zz7g_C9`?)|r!bC$dF_a@jn@r_Qo~XuhAN7)7+{QHH3i7mCE#k&`nK8I*@7C$mH`bs)e)6V-$Q zB|6wcp;+7SX#=q*bMpC+7eUGScN+jCF_7mxh{IuWHi(#{2PneQm*+ruYaWVeX*Plhr@pQVeL1c;`mo@o`0gZuja2`WB=O|Gd3_0rI!vb z%%Y_%%q+1N&z^G*%`o)nj^u^BgA5rLa3iop`kKaDNCf%XAHApg2qzkAq#LI}G)zGq zd1BiZ48$M`g`bIg1D+n8OX>MEOl`M21yo6aR&o`{)&eLfT|m65w0+NeAvUi?xXZeR zUeJyU*ASR#*Agk#Ee2=8AnR~KQd$^UqyPED%I2#>inVuqg2vyqM< zNfOBqiLi__|2LE2k(q!Y;p24bkGD#QE|WR$jLj0$*mSF|Ow24%*qJ1V;B_zq4#`v# zF9Q^i4zxss;8e=P*BPns(}WloS3mZh9C&eW52=g#khl5qvcGEksoHXZoaFuWA74yT ziMMdq`%Ffbt8cyR_pKrhe&^7W7hbb<-n3`wWsuU4O=~13Cj@4AI|V0vvzd5$;`zRV z7ZkU8f_IQl1J%}vQm4l-OoKrSg(v1cWEPV~% zs_QTf6Jb~~6K#9r0N2=R8Als1kW2!y-$JTAA& zAZ||LMlSI2s2j^@3EgQ$4xWV1vp}N&0}POl!g-cQNMNkW&C{Rdx9lmo&Wj)Xu1+;_ z)M?SZcTKAs`HIE2s`>2e;h4H!ye?)_jwjYPpkxv+nZtFgDZS0#; zaHD0)E#|~l3KN{7(us?xi=Zqb?!ds1BuY+>013QzjX>rc-CJQtCm%uXP!|?UCiV;$@Q`3#m91>TL~yB@mf9(ynLu$F;G_XDLK0-2 z8Jte%%134r01CnRk*6d(_XoVY4eHN&HkGsv2BrUkBhfYhYeXW+Pu^g1?HrZ)7z_mFzucW zyBBYdQ&}IUa{tNicZZ|!fnVls`~EmdI z#AzSMRkN%n3C@iy5*!u-6{;%W5A=OWq%3i5qd85t*{2!2&DET-%cDU^h*h#2w3f+8 zvy3Ej>u^g_1|$cEQXsGu9v@mB8!15o!nPGQxTH9c;x1?w*~RyP9EN0 zfAaFO|KK=>7%w);o3&oT^^l{n`l{h)%}(c=u=cHZL?NSFV0yavusKpRE#LnA!*GZBR~;U4mI;kaLgo}KMChs-!pOqNI%~PMS8{< z{jop3zkm1kwDd?lB6k~@)V&5NcT9b@N-jp*M4T*49BPuJ;YB5umE@p3@&e#475?_z&3 zi0r+5@~U0l_UYy84OkdbS0<;k)MHFueOZ}&95{XMbPS9nG7y$gWRW3WR)SMu_JVHJ zmuE}F^@6qCHv^lzZR&3#y|kyQn08X`C*F3vTCo)FlIvlSfV*U@iX`OG-N-Wg^43Vl zhDBMrYo8>SKA)ClB-sPyqsp{*rj#s+j-*gcs&U-OB-JT~pJkb~_sk2Yl66C1`wuN37>&C3r88U{0hC`SZn1X$K1qJI3NTbcr(MDTc^cq6~MM5nb7U5pWlaj*7T~bC2m)IuX);gijt2fdWstP7#mb#HJ z5{f0~(Kr*cRO+dlO}#o5+Ig>>!T}kj-udW0l1g#fMoJ6@k<}q$AsdT~Ob`u{bWVyI z*?AZQLpSHHW!@ELl7xc-NTPEE3<+RxBEdnP?&jX@czn0~@ar{-BoIsKHw= z7t!zO#+i+VujRX+mx&KwY?Y_je8EM3{^r@OZSM|!ijq^-V{C2PKYxDb{EHt>)2hi- zcr8E_4-_POjSSv)g`)UjiB90U6i(3^qecjY)EJ!WZY@@}wjC&Bx-a?^tJP$m;*eVP z5K+P9B&`IU3HvfgHwsp)Q>Y9hOStetoAqMA+GVS~kt*rXjMy&LC~9eE@_GW~KD(u5 zu!<`NiE}>iqQl`P6VXzb==!dtNy(*7kIaj|%PNSL2xM?BT@&=mj+M zokn2ZDDeb}800VsWDah0lA3iB<`}?<$`goeBYN0}=OvcPb}5&QO>4x=q*P7ll8LYr zUt}+tc}*d+gVaShVo&hq(nkq_WU|uc#8KJzr%CUob=Up46FCfmvhI3}kkihXyVYhP zK3Z9sHhtPVbtO$gh~?w)bU|)TBEiGivv%WAm|8L{Y`lCx7gU0$|<4E%Ilr}Gicl+~L zW%x)RN4{$pcKXBO%+gND7tci-Iq!<+kEdwlxM)9b63mpAqqee>fwEQF|# z6JU`W%SLz-pIdZw>B5d+iFM~eYLp#DLUl|&m^MOHhhmZuE-fdm&(7GZG8ydxIE)eO z#b_2x#G~%82(uGqI5QI_6R%jUgwQyacRyvgaYO;TSI-_faop#S`50SWT2G0d8M}ED z=P^x)oeeovqD4w;O@|>ixPy3O$t^iN31h!lP^bl4u4;7%nA9ksnb3{glafZbBcqlk zq!g4M0T3AnQy78HvU!91Ftcr0-@g0l-TR}g;cJx9N+^W_(-4w8_{zaiGRULIrhY#a zkNms2GFgfsQ_Rm#L0g?2DE9If|KXp`|F8e@wBY)xe&Zn_8@T7?#zUuV#@6SO)tpm= zNNqW+@4u{TUk_Z0pKgoNd%|@1#Od*e`e&fsl$YPc{KwDQ#YcSe$G?3_*(N&HhLg)c zPf+$?k!8{&`P`XdSi?QUh@-?7!qWMPoJ}axS00CUlHF9wvTp=TsIe!OB%qSYChSVJ zY)+KChPsnUMlVr~`H4#!A6OK{{j+zk-rm1Ep0>h1yozTp5}~GyBbah_VbLr($mpp} zW!PY*7VWr+?|W#8;T*k>)n&5+j8Jdc+e+w?VUeQ-Oj=;TYEmFFF(@T5G9)F9bvIX5 z_*o+hazPL|WhM~8fe5#5TRtxDU%&t9ezCPc7=8&mB(Z$PZ3?Hld7cBQUK_!6?I`<0 zRgxA8ZdUUwv;h-@sKd4~R`<(a{MnyO|M>rWn3nwLfA!5b%-6Zeyb~uB!nWJL>D=19 zjMhSRTz>K5X_3ci+VbT4ShLf1jHB&8{^XfI98W$!<7o)rkM-UA_VO8CT+PeTg_L-p za4nj%K0T&qm1pyNVn;YiDpe!7m}x4!s?!FgKE-PDpUhW&u+Q z%E*MF1cG?up5_$hGz__tP_`^w=fm~$&z`@W)p-q9Y|_FrvJ5IK(b`2kus1ZhibqP7 zV;e=oTU`rJ9?N|5)qHD*?IHU%CtCpS8JfoFz96j!Ivi{m8^PH>2tcz$@$iJhd82mu zyjA_6JV=5DlJ&z?A1EWk&HOa_>EYe&-TPDIjwo&(i|b)mxX916I~5(q>LdwdQ3Y{i zaG6RWNg-DHyL$x=aiVaTZI&CCU;fFT;lKXBZ+|aOE86cK?v8Yn?c$^5sceJ#^i_k7Ws-n$%6K|Nk*y!u(yAHF`$r)Sm z99B}0!aSt|2{2H|oi|GFF=bM+kdl}E#r3OCo;^F*lTAjMK}Oh0A2xS8@U@S$Lzb!1 zF=dan4U_H@9&DeFt>-5n?H`2utsF^cj&(LpVH*VGNcJ2aWl-Y6R;{8g96D$$_tPJbAYQDX?tGr@DWuP_yV|`@g0N3PEEH}TVA3v`3_@-hwht={m*Iu7QQ1veskR~r zlFj5iE2GRZG*XDDsPma0Ya!NQ5s6d@Wi81yQ#nE9^5v`Rn|*Y$7R9(%D5a;H<+3!V zSIbVPcH4DWzk0v#y(%q|+@<=bUrdjp%W63erz$v2QP_M6gA*n3AR0DOJZQv9mdGF{ zvM3g`F(J*9>gB~w&XBQiM&_9gnV=*xAe?)QVg2dx?#PQo<yRs&!4^8=jAiK`)j)%+r_Dm zaese%y<6XJT2FjC?Nshp5vG*JEIQe78!UOSJP{djdt!JJ52k|bDa;%xMGFfLI~kyjrm~Z1+Otx+ z{7O+LFTo%UglUQ@Ro|?d7EV$KGYMrX0_id&Vt57*Z_mHD`Q3l^m+z;Gk`MW-|HbQH zKRMDDsZ*hD#gtf{G#OuxjqGuzm;t*?nQtGbQs(22((1>9Wx77l-~Kl1emzkyWk)}b zG=4hh;qcSl;qc6V=wSxMwJ~2V$H*RY(EeW759!4Lwpt5WPSjdW-bgvQ^%xY`*+wKg zWuQ$`m1gQ1ygnm9IRh}5Cs8O@%a7i5BK*mijYoPSSQj=%pm`u zhMq!`vbu<%iO5dOGNSBBCK6F8!lXHfc~z9boN0hhFaMM5>;C@gBe}bW>{6ypL%A;$##VQ`O*WSjBV<(OdWsNDc(?~7iuGVE zoK_H3l&PWA$svQ}tjfeWLyzJ$S%GjCC^Fd$(ly~p!lbDxBv70$L>cN70hH?(FP`m7 z4|n*WvTQ^T7+eV#o>cGG-I!0=kz-dD-^O10WBd6R>xq1|MR^}AN=}+3h=9=S_ zl%B&pMq2o$gFR1{;l|y_bI5dknEC7+V>&0nLJ}XmkQNqW8>i#l-J9DVP8O*#%}nhu zbJM0pH7pMEx0q}(JBPuuBopVV*fuNxm;-8}zjzWAuk_y6Xu z745I)rLEa6>FJ?g{zuB6K0f6ie)scddQZzxHtt;b_;_47b3W|vmH~)CQ5Io1vJfaX zsYou7AdVzY=APC=dh0w z)g+>xN)F~tGXPgBnU&H!my94cC*Ev?Ful5H0*y?kr>1bTXHY^eQoP~GG)Qtw#HXAb4^P83 z_20()OdtDY>zcd{3%&mI#l;ua@#7y3e{#A0a3n(;)^zSMCZ8eC{mGGYj3FH;I+$b) zbd5T!ClwawtcYl_6`8c9M4i|qF-U|HOo3FOjs|j^iL8h~1anxP)Aa>Zs3s~C3lvD^ z^T&ijlFQYrm)D2Gx)5iQtqIRo+Fnn3`LIm6KeeHC*>mR=w%B&@^H;|na`NJ>ZNX>m zEM*xF0mL#o*OX=79a^?Bq4AW*2*5;dU8v_-wQN@%Zn*Ki)0z zeoRfj{@tna#U!`O%_VslFZpi=Q5Qi(=AhvnLBvm8<&x1gJ+! zHAhHhl8bPfaH*}tv=QW#n&JuCFFT(m)dDO<*^|#+g+W{-2LdHrkO}0b2w?hP*%nbw zp;DL$Od%AMl)~T)Cf37?7Z(?@xQ_^pfV8dE6?8rBpxSk%lTJ#)ZE5X!c$&YRs_&dPj#zl{_GKU<-R5ZPn1 zIM z)0HnjJspR2TSBgXe)~WD{QfV$U5#VOWRWDxYu?@XcLS`b^YdOfLH;U!G%L&X)#+mH z+k-93@tdbl{qdiSPwSLZ^3*@xSzY&;bE6->%76XMH-*L@=(GHdleES)=HopvI@LpY z+Sr9V_r@W6H8`WVxtJ753bTr=lLK24?P^w(S1+GmYF{i!Jc%TCbv%!0yJJ;vaJHI9_T6c{y8Yyn z=chbrjKjI|OArdEM@^lA89b3Bt@X_R7RoT*+-2n$G!dZPY};~osJl`K;hZEOPWF*>o zNG4IM_4MYLxtRH4+wKd@|1T(qRaC3ukq^nfG@ks?{~X(UW-Kd`zt;E{(f2y^8Ldv@HUmVO?UIHyAPLX zH@|VCHpp4yY{=8%=e+wa(ybt{n|!ev3C>DXbISA}R<@KF#AFka!K0dF64=$f)H79= z)wv*xl1PV;kNpq~ z*l8EGZL8-PIhM_)o1g#q%Rl@6zdFVylMyJjbc&d!kL0_zL7t@aS@Y9c^u^(a2j{eS z+<#R0dM@;GdHd{U_x5%OacLK$9uC@X-n@Bs{pM%CyuH)NI)`j4 zh?45%a?ch@&Or1Opjsy)N68T8P^j!+Mi~KUQk@IMM4@a%$Vg?^vk%>o3P@&g^~^2- z5l${lN<~3||6y86WT1dUf=Q7m#wpxxp6^?K5b8t+To06(w_{LQXe6EX))ft>a{Tz! zp$|)^gA)<4oZ4hb0YC+=s2tEJ!s%R{$k~NxL6)VcPLZ196rP9co4H6LgHlo$$l!>C z`-p9QJU+bs?nn1pudWWIDHT#LC5!pwRg+2nw-Vyo5M|;}E-6~r17s0x-esFhsRab2 z24%v75LhD;oleKG#j~&M`~UUxfBH8aN(reh^T^~T`K5ew3#AY$U+l;GfP7iLcdY}p z+dPl`tU3DO^XKKCWA`?%ZniqaXFYUK)dVVs!{*V3lfrK`C#Mmrp zf74H3sl`1f3TiD0s(m6lD|8&%h}2+{3=u6;J%|Wo7>p^ERfr0Y7RizzR+9n*G-?=w z5e>M%$9%?tjfOCn8MB6Tl?thLgg$L7GmNIN+uvS zKW(RnAAkJg?a6fB7bRkGD;zCZK-Dybpb7Y{hwMj$h2>1tNj-WaPWT}#01yLg6sQ48 z=k83rMwH29H+}U_+u`>2_u5WDtta#9xR_HHKUwK;lCs;)a$@Boqhxjjvz+ zV&^|iU%uGh2kq^<{tur;vADYZ|MT>xJ<=^%mL9g&-rMXPcaM0-``#h*W@T1pWp%N- z+0{}vML~ijh+p)V1qcEpk<>u4N%mOPRh3y;nfKU_gNT@WyHK>KD$OS^6 zZuka33q#5+c}w;xSpj|4pB^-<>;e!nRa)~omt+eg6IM2 z?3A=@lq$n9cDKpX+*JgAHwtU)p>eFGYp-aC;TT0t!Hona6x7WGARha5-`_s`=KXh% z)pPA4SjXtm*aV8k$jh2e{XY@LB-OI3h@eCn{aSP2Aa=5~wbm)9o0v5rqOQ!0%DG+h zBm2|izkT_azxlrguh}_!I$`tmU%ptD)6;iPgD!afPhZF%-s~#{LOFnI^E?%ePq%1MI84p$5pBGdmi>Tuj0Gy@$v5M=j&H{Lu-%2CZn6Z ze2d32O&9cea{-Cej#hRxkqUIy+81sUjMC$&bQPY=JQ-F@OOf=Dr9p&-7Fx4!Iz%@z zND8%q+E<7)2xyX8RaU}a$qm9v(VK}w?C|<-c_?jYRrOl@8jA=k)_f6jYdW@5{OnI= z`N&$jBhwT}shV9fC8S!4D`8$}OE}vOoV1*wcT4HLK*uIeS6`q1^w~-5<_8v0{OASG z8V}ot@4o-LFTNVS*s1rfa#d-!6X!CIm8cX~{XeEdJHhIqxQlL!q|UkqY+d@Y$f`yy zldxhzsRrgfAQ`a|K_hHgxxWxaErBm`pNUVWlGE5?|$}|pDthj{nqZz z-(5~|E_wCmcky=Y9!L4f`u0D5@#sg_zFp&u2%Y`Tjxr`?`S9(tx9@&_|Lu43s2@H4 zXYYRSk_{0FDLvd}Ww6h*V2PNoS#oG2ERR)7Z}Y%`m5Qv{z&Pgp=u9beiioP*%q%NK z<(9NZ4-tkY!&ctbRh0&aW{IQ;GPNW{Qc;$|R7t56loZg`=g;ivAy!_q-5u(29!9il z9(M4om5;KHKl|*_e8|%KewR!LOJ*Y&y&4&9YH?bjB)FuOnYJm5AF>~tcI3{>hI#t< z&8tNX0!bx>H#;PeR0XU_k~pVI=_pRqgLiHxfzA-C(U&pT zJb_76g>?oZ1;^AXvQ*eSboL8FHQ|)1CR&zOGvyYE3nB`L5D?QsER#v1=vGp=`+4vB z#eOKyYx7ZC^0K$5eU%oF5aHTfLTX=4C!%i+>LLZx9~&5{ZFWP2>;3>z3El;vQ zAq&J;Oug=mtfkuBx*QKC2i3A7q*Oy)sP3qd9{uzCpKbs5Mm#)5B4CDH&Gu5ij4|$? z-ydFl^y>NbAAggl>neDS*v>+U@BMJ~MNop1&3j_)B$ zOq|Yt*tYLJ{#AbSz;?I&#nbO&!PT=ih}i4#n7P{y+m%^5l;~Ub%tSe@U5{dOJ;w4u zCF!T*6n3a8Q&kt;t<-Y`s~4#~k>#lc1cRL=Vy!e<6|B4)SVT$*1;t3*41Eep5&|uj za5=uj2HZ%G)Dj0FS;n+NDAnj-Sz#rK zrgF?hb+6!F?fECK?^XjKrIi#^NM&-4^V=W(@b<&wJ(lD1brIH1>8@?DUQ2UY+aY46 z|A(xVR%S^updyutsvR@iVQnW_**aPpO8`bC@8EB^7ckNyiu!wG8ZC%E;M~oyU}9=3!5T$t-oH*ZT91+L!-xK76@tt4B4t z9%phUjl%x)9ozBMU3=t1#8I|NZO4}%^+SI5#rqn5`0VAoFN1P<#Ye`6(`miW`PHdT z2mjD~Twh?h`|Q*I6z_ib`N#k3AAa+=&u@P5lcz`3<=Qd_)?w#Cy+m~#9dfuvNDsTX zE|ai0J><1?!O|9gl5M|I45le5+H7FTldm93Vdbf?5?7lMbP>8JMOoB>3ItLC)S$A; zE7qV2L1%*UV+dD@fUKYXEBzmSgC&Rci_Wp*Ak#+;Zz0te01QZ*7Cj?%N+VMeqlIaC zDdAw7jI>&=b=-Kk9!6BP41|>BGTXDegA^;3Agh#|vRBo<$A|Zim%Vp?PL_J?);LuN zQ5-MRtJc0RBKp6p9?}bHg+?jOD*7JIna5LKrL|>M659WI=0{Z$Hg9x zUvHv733@J(X6^aQ_V}LOR=&Go4BTM_K;#&p!UKDA;H1lC=~QXQ)>^Lc^?b0`zkL2dILsI=1!>hCS!+mi zK^7W9t2Ge@jg3+zfH|~l>ymo2x!k>ab?Rc|j|(%37K`2987@^bB}J6Soc z^w1ZPa`Q~criaB$k;RToz<@UAQ8d?jOgB=>6F{g$%OBguR>Go2L@wi?HNSoKW^F$_ zv~em(J`0=vSKP87%}NN=q_oQEImZ=;I;@A2Ni(X@1W8GX_i*uP6LI|6;rj36GyNxD z{KL-mU8!_Pi_p8N%V0*XAFuQ38yXIW<2l^ljR#*Y)zJF-lksqU+E|O3aG8md>@q6# z(3ilh9{=`Lokp(tXP2Mp4{zSSef3Yi|E}?nO`G)gVvktM;-IFLOA|FH`Y0{)j{Yh* zV_6Sf5___^Jde|TFGIm*jTay$MT7|1#Hr}Nvl-=7uh@mVXDhFMZl4@)~`LMLUq zTT95cO-ZkuH=EdEiyYRI-8DC9YkGt%LZzBypl&=PfujYgwvCs!fB1v``dHlG#i+#{kn&*r$b*lEfrBZ zR1{ivly-9re7KHbINTkVu8ksH5hB@BS!{WOQu<6gJ^kw+zW>GN|L5;otz0rBYP)c* zD}Br6hQ|&2MdZbcmlK(ei)G+=dKx8<=e<9Z$3)VvRmVNA_oscvko%Khs&3;FZ}wMm zJnHzPEPwpR9RK;7-+d#d4B1s*Jnk)Hy#%kAVJxv3wJ+nT>E&j zkm5!6c)l!Th5@KjN&(RFrqH5LEhr_eREtEGP&*g}R4BdRMS|)^++d0+B~$@{RP@u~ zhaUzXgPEPD+L|~XQ|~|d#ePjMv*i|8C+97OUa3h0HA98WtPpY?XB{@FIgp7NPhB}T|YcMJf7qJ&sRUsSwpDX_}=c8-Y+aXqLFDZJw7REOe#hJY}!C_&$l9Spw&2sowV4Yd3pzshaN7@63|Z z6t-w;WY5fj9c&nl$ytT6n5-zTLRDmfjVQ2zB0yzIEjKs^5P()9>c?y0!=L}JK0zHY zW*eE;8vZ!Pp7ETSFx8f9ni$teqy=MgqHsI+r&5s&=%PBMsRhVRQCgPtMcZ*TvJ@zl zgcMQXF?@{eag0S&4he6fDG6)6g^!3R_r`UFETFu7`~G^~hhNI3i1nroy&n(Vz51ZX zE@~_`a7rdU8e8~Y5)}>0w|~>t_~U=`7Q}rEo1;QIVwK_Jylc+%4SVxdDk>1JZ)!hr=MePa(~j{VIRJ+`-9}PwK4zxWmE%V+uktsQfR_jornyq(tlp1j~$6#)byTj5oavGzm)Z}VOT$|Qq z3Z;ikk~700r4dnS5+O`a&<8Rp0Vbm4M&(Mmp*R2&fs{S}7ysp{V3Lp+++wtA09=G6 zEPBdJrZv%~WnwJ~8afL|O-V(n&0>L!YZGdksg^29)!U>#Sx9I`WdIWS@bvU_-o@^v zi6JKxsoJHf?I@9e%-DuTP~?2R?mm$4sivyxyF~8?(3sQNy50!X>@3Pu35HtB0JZ9_ zeQ|iLhu?~+o%g=OU4uKGeG)!vjKjek+5PVIT78$(-Lcyek>}MM#;Wu7;q((dbJIC% z<>3#zl`eLP>2j6>Ob-3U=bw39{?peV|1XYsTz>LNn^@El(>I{Ri;~__jpT^t*O`lt zQPD9khi8W)#ZpSLYEFMB%||~S){fF-M9H4zYXV6%`TTN=Bq)WrarqfW7*c|6=XMz*a65vd9jshw>beO=nFXR!*4(uqf2hG@}rb zQmaHjbZCj*0VyoW)P+k5`a*_?kT?1ttFnqd&)ehl)_8vq#E_ z-Z}6&)>+UYN2T$zIQX|<;%DG+xURq<@oBO zUmrev$o#+fU;J|UaC!Zywwja8;8dfS+G=7#%2JAp_q&svq=}-Kx~bc=(zTb!qGjWJ zk>~5dR5NdBM=24MB&$@iBuG!OoIuO+ECCSdNO(G<#Jc2_YE3ILic(%#g`216meMN` zu0Q{)*HE=sDA$O+v}-%`>8!Ntt%U(uQiSEv8ZCp3oPi#8WnOr`}Q=eW>XOdOw3Hh zbfHy=tt<^iCaZ4PX|c#2gw~VHeDmi0`?*hihQz z2dc+q;`PhBOYM7;^TYPbPwCtJ-ACN7{`DZm`n&hTF9*;0s;$T8*Yo@B-T(YQzWDXx z7d_2A%Q5!7Mv1o=BXaJ`Hu$7?6FFr8(yw0Yg=JQK;*W zNEHw)CQ^$O53h-w00a~v5Y`-CB^5UiN3jxyieg4)F#>=glU)D&pMB&r!KZE146mJd zwob2E+6F6UL!w{XSYR6TQeP(ee5?ry26^OM2v^I?_1KWN|a<+TC2>>5$>gIQ7uPVHvtQw zxr>)HDf>2_%ZGgSYP+;O7e;GKXe=*qM(0C)a@c#b(9X7!3*Y9G=`PIo->t6>OXA(i z>ksF{r}s~;&v1A>xqbIwZPTZ>elk0MM=kcl;lNuV-rDB+9}=9v5WvJXiu&fLfw>syo& zTW%g@380NAohhWxr^|Wndyzp+lUCAXQR}tuDiox!)DSzsN>B6-G_Qhx^~L*-Ug$4A z-^cDU)g#(|$v3aQ^Knh}A2bBIcDEyJ8H`K9SvlT)^Ym=#W#roAyKnjVXWRQbyYC0p z@85Y&2zd9pzB~KnU3T_jr2pZ+zWx-lyjh`Ll-+^%Pi~Pq+&X0KX3?H4o9hXg^XS!8 zu|^K_v-P#=2MO9yIYj{=W7dQxN>U7wngNtjgbecrlnC@k;5G`VCZmD~Wf|PFk{MYZ z#=LF*C97|C84o`K_S)rutl8EZM zi=Vw57}VbTa(LDiH&Ft68Ngssd5<7*C8`cBw;C6OEn{5!;7% z-(QDTT33jQN$0T^&)kF+DJT?)RFA~kC1)jLL1jJs_kZ}wPvq16s3m$DM`&CQ8It{L;lGpr|aXTQ1emxvybYm?f%VY&*pei+lqFg?0$b9 zD`tFjr!lrK`B70`w|th3GM74-H34?RmJ%tLk7M0ybv~t7N!5LCri6wBLa6&oA?6gN zA}dYMmb9Xl&SC_Cq%M=i9+lW@(#wHjnriy+REnbclqwgIPTU~Oq@bj-MCi$a7s1o7 z|Cucn*Z($In43T_XNRX*waF4KR2HWXjp3bv-_R{`$p1 zA!NlZ1d^33WS%c$lC1|zuh}is>adv7=h@?_0O6ul$a0DRT6x})kshk01eaADn~2N# zA;Fmiz@rjO+a1sZbg(Uke^`J0ivO>FH#83h3E^(*i|yNoNKwz@yjH=O_d*_@ExI1_ zSwflT?|v_zym{##dU(Z#b>Wlg;qLRF{gmJD*Y}=m9r^P0b&cx}U-D=7i`|?4>J_oR z)NRQOI&I>(oN$!cDF@|nsR4Ur^s@^*YcZ|4?V+C6h|s>3;#v)byf`HV#eJ8ooT{u) zB4mmR5SU59%;fy>E0zQhh=^$>k<5%egG2yXVoCx)sbwO)3hk4B@%gjV;OG&LKE+-u zj7Es=LY0ytW|A_&LJCM`PIJLpGv;l6tz#;(S1fH^4yWfYU!GP)R*2|rG+~wDPuqio z)>>cdN<-@@3w1S5%wd{y8Z1C2t_ zMny{~h>|Hm(xO);=D@AHXl-3|xm%W{_uhm+R>jQ*Gt;+m-L6y2RD~3vYX${?RorqoCgp8V;N zwWMfkmad0wS7*$@VByNNsg=0SCX+QMyF|oN=W!c=BqzCH6g$ObW)=2eR8&bM!W|PL z31rf$1W4X$B@li6FP{(Fpf#h`6}=BxO{WS85?L;Q1!Go#)5=?vXnMrP9kVJ^Z0v^- z)9>z%%VAv(U1@|6CbxqN3h>&_`(vDc-E!Di^6I6ob{vj%>EPo$JzKmcE+6#S{Z(F6d;MmeAD({x zv&(tIi|&{4;c~trsQd17IiNH*Z5z^bX0Q%Z+VbLl6_e)&xvS;8U0X_Pe(#JtR2>#F zAv&vSu1(E=rluP!39>kwsb}uJis5MEmi>ttRZ0-8jmRb}Y7r2Jw#eiNY$G#p;ck5}fW$l1~ zM6p0YxzMk3d)l(MYK!KU+L{Dgkr@E#XvY;?+C=R)gSC6wF3>%ECaYCKvBI`%RP;4n zz|6Upm{q0-P|_p<2v6zFzF+>AA2l{1qZJ}`J7YwXF=p@bT+3^DeRqmn$L4van|3U3 zPsRP4FTQ&EVfK5Tp3M&r&+gwM=lSV_=0SZCmYmC9;C%n;6Z6MIkFEB#;_zl{2YKMMYT4LXLJecCqB{s`+(0XQ5$uv`lOo^D#S(PT` zu-K;bl2~R!DC$|3nR2645;7&FdY0v_%s~x+qM0SP@toW~PGYbB@;Mmi@{A;&HIbp! zP}Zh$U4}#-bjECC3tWAVN(XC3m5}b?(hZezSeIqFzw2EDY$5~-Hz$y~=XQPiuoYnG zO15Ru5~IMF!^1P0Z!5B-s;;YgN`#iph`p*ZBxq7Xe}FAPr-~$%Rt1e8yU~OXs$_5M z?Dx2T_B+3~0|&FMrx)s(YGXm`^U^NfR#$m>m=1wIT~9A;dfoRJo9gwCzyIooho^ad zwmwAD%j4pgCRd7QUkm5VL;m(vt54|dt3P^0EjYiUk0xCpN6WUCiLL0mF1uK35;A;9 z=3E(zn$&*2$l)NB!}`j=)zNzs!J;IERYF2pLZ^^Z6yi>Yx8&?1$}FW;N<^FK3b(8w zW?42<92o(a6tbvUA%GyO3IwqJ`A^bAqI3wXUrXvxKl(vK_Y@tyaY9gHjoP$Xr>U|f z%7ap3?$q}D{&c^bOtjRRL2g+lDXFYT-^auIYxbbf_N{0WVkIg>W$qc6y$O|M%+Ben zw8kScH{`B~GSnV%3A3e2vMTn>8YavTBAkF!>kCr$s*$fg`=tHDZ^nha&zZ=|c~LZx zD>K%m9d&xQ)3drHF*X0{wP*S|fr!+Hq8BIDFl>XC$S4nu~lsNAn!r@OVec;D&{ zrx}EMdekTt%E?!h>W12={BooRp*Q(B2$qij&PJz<*nxB zKv60)%|81tj>A!$O0|=hjj)KEK}yg(shP(r8d>-to!X+IrsczNBgKQyVZ{ry+=dLQ4+KRxVno!btVfBXZo&X?hY z@M3z&r>n61zkI%xeO`EOsN3e#S&bWXU~r7vdRtMokh8|0SHV^e;V^T3#(hXIK(1L z6vpDd-|DPlWX*IHTU1;!t1g?3U^>!)EQgDA6+{39 zwq|C@xM87hCTM8T=XF0nO+hA8WY3=L_D}W6M+JT5 zb*oU*HF#>5@8%0@u|uzK-yL`IEzHaIhq3Cs?0HzvXI#AS$)|7r>BlP8K5Cb@U$y`8 zUl48VcM;2Bi2;+0(7tf8j}LqKv5R)9tk=1;!{N{hEHE_grPd@FDcwZWM|nx2YB-me zM0oRo)|iO`;mMS&suV5EU4K+>-In>1DFe*9ML`G}6H*mX^`pWA2|fL*Pht~97TW=} zH)(CdEHQyLibBK<;06&Zsim_@*mrj_yR}}let$Z2>&;ZP0ld99$*O?++^?7O%oGu3 za?u<^6NpUN4nU-=Yc+wTqAr5)DG_jSY>qONW)py&V=GspVnVeNjHxA+ijoj8CIV&9 zYd(Mc>(?q6*S4%OJ$em!!hT6D#+KFW^IyqkrH9iY+A-2$M@*?!vDxa~+|x^rGJLni zmdDHfb}kQZ{gn0kqmO+1yT5*V{^$S2U;gs>%U_Q7Uw{2q|K+dy@Z?=Xrpe_gDPecV zxwke`_%80nz=qb^-Qn0;u3A)RKwF$Lg05gt!XsChM0KUpr7=aO5fdw2TDb_lD%5F# z5Up8JRS2X4!axwvgt?G{O!8LKH!&=zEEHw^$xoi1wvR zd&^0Gxd+YW{>jgtzdavn!BZc~<*eZ02eePj4`{;uZpFO^P9RI^_ z?|ya4_VQnS+98=+Eb+KWmG?uBTws0f4LTh$%q|*b{eE4zboCvqXqoH8lD8FGWRU1( zE)hgEXd-H8mMTNik(DWg2t>e;A}R?NNYGaddQgiY2)bkm$t+~JXp5=}sUou=hhILM z09gIbT(K^og-he8<_ivPIg>j@F>*;w<;rYiGlVahRfYA?Z`<10qSx&EqGXodWt}~iy(#^G$>6ru>D5nvYG3~0`r+*l;uceLY^T>t>{k(weX~98 zt^hoZ{Mi;1LFl}1Dw z7Ld8CkQ1dS2SbHfu4E>HIipZoyalT&WF2$0v7W7+pldHY!OQNBhriydut;rkP zbMHZ$HdUn3TM8AdA5X@bRlPA84Gd@@+IV)=gqBtj!O)p2Ez?k7rBxv*P$($yqOmF@ z5oF=U>?9!fzy1${*>X8#p;&>A$YhmtaN00BJYy)MWfnLR1d7cA(aX)uSSeEQA2*nJ z6M7>ueBWj|Om-9aQsQ%I&`P(mD~8x;bpuHxbdTUQCe0?)X3vgdD~bw|DH_(qMd3rN z_FO3rgL==B3K0uP6x;4kPul0QXkMmCr{${;u2sQn2J`f1zu15KD%XVuOKYVg{`e9vv`Q~Zno8yDDbE`5Zo*uS0_R+n{pZ((V_s8G<_do2* zWW0X;kA00XTD9fv#P?kx$T$P6DwtJEgE|Z zRbgG|!Ko$ajexmkWOSL^JahptdB#>PCWbRBs-<+zFd$iQwgq(RM4>7us+f`iinV$| zv}ILnDYx+G_dzq=d0bu`+RM+kzyHVYFVBuo`N=0$**e?OD79vD*4bUO?m!>&O}}&5 zJP{|bT31dQmLNHMonx2HSXccywya`Kw zr11$wGO~(EsAk>1^HN|`l0cE|qmMIF^sq(=gR+N;#%Sdy$O2#5Exj1D2Jfwu-vhY)h&tZnly1tRxdRZkraXDv<@WH@_xO zd&Ml9G#w?CqNy3l;h56hk|34PiqLtZL_!)wW&LqCk(m({WxQptQ-()-IF#yVvdIk(f&zDZ?a4k;$p&VyAh z_eUS@4|q6Ev1QTij?njbwx0j-XYEPu+~fYIzxev^e|Y?ppZqtMBXpG4m|c-}^224# zUP@NlSXZ~ag*74KRSlPsWO`p<>c^`QQBpcfshq+*z9)eRNx2DRVrWY#rnNoWTz1#E zA#))*Z(IiysURgo$f6~K$tp@HoG7aTnLQ4lud~2oXCFq7gX$HbPFQBFn`I@fN^6pt zlBCW|3ot8SE&8e|rJk8}duul+d=}?8$F^0gkX=0sQS8WTk1Akz1U0j@ciP&fk9aYJGWs|NZ{)x6A$d(pj?g%}~eV{Ceny!*=_fHh4FoRvP9Z(kA7~I*3`5 zg?Tj~RYF9TNrCNs#7Z5QOH`#LLvL4Xa0?1Yb9gIC78o|AT7pxQl9CD-LO?LIN+4B& zVo_L0!ZO>>fA+VcTnat2ZjYJbAagKVw9(qRZ^pWz%Vtr-L#vHl1eIx$nkA`Os6-hE zR3&P9Z2M&l(CR8V_l2XiA>%-VFx^pA(v%1>UV*$J&quRDOP-+eSG!X@1OcVes=ou!@Fl6 zJ;mp7kAJzJ^0ED}-%G08y{@a~M0-NHu$A`gVJhhK;!e|n4~O9j#lA?2rz(?xSLBj_ zgqoL)WF@NyKx6~VNhqu!;w=%vYMHk_ro&oGMW7-{fD%fE7PEv{hM=MZU;^#sCx2Iv z=P@ayH|(cnCs6?Rg|YaqgJfk1svs>Y`Ulzt?ZL_Q;rh|&SDE?tQ+^fp?)U#3|L?WEzQ%v?^51;+k=gZl_mLi-+Vf{) z{=J%ylBKyuNv;s-?a(Y*s#tPL!Ipla9!Cev)k>stE~6B5*bouyS|CsXtrTwvP^v@) zGpbi%P_#-?AxuUAi7Z8FvC36aqQF~rbP_2VyfL=%>R11LCdIN%6;@y@yG6N1t(xmD zPIDkTJbOmXHiF(pt7@oq@4bmsRb>Q;&qa$?LZ95#^JsW%WQ(WEn002yXNklbp99`>(%Wp8dt0wDt7a-Subj z@Xgz&`{NHMOkWVve9?^iV|JxMixo>|gk8eApS6^-psd1%O{oagbYmCligFu{&<#pWZH?rr%|M6*CDd7NPKAnqz#*3suOlwsUi)@|K0A$R zQmljI7$qCNkzsal**iWkAiB5b-mVU^>q=|jsZF)Ma7D@2~5lhsU{O?S>@A#EHo7&CrU6`*^-q~ z7`IVynF!`gFcpXdQUO4!C@3JZNF<_Q_Oo9UmOBlID5{LU_$Wqcva;xf7DCY~kVlmH zGEA41-9(jERY+E)B#&Ox_S?RR+IFD z8N823yBuR5QzL6G<&X(+@o-cD*;2h)K#06GXs7DX!*z)7TTDXf%W}>8vkpm#ko!@a zo~&I5E-(E9a>K~HPeZQJt1pkpB~IrTw7JA)woiY1`1}BgKz6^9ac65>*VrBz${)V^ z?B{=b`tz^7>$zThfFF*3vzN)1*C(|9`2FJ_PoMt@zu(_w+0J&UMBdHiP}!1+?5?Jn zco)1rpMvuj@^Hcc1*b=w7Vyk*zuRyK})ZsgYPWLW>hZFj@eZr!Y*LJ;U0B!$kyy zM5QP&MP?>y?h~HIsXU82Cf&Ge^Ok-~jZ<4sMJClyvkkS(nujUwl54`w*oi;^mXSo^ zD8c9DuH_lbuuNqDCO0JSGz_06%bfW>(rp2s&IkkskG!nX?+$#JjMs2o`nvR zHc9Ca013&UOjM?jRnuLn3rdR=&0(6*%3viGBr2-1Dv~HE6#xhTm4!$^c>k*|wZ<^O zszouQB|NL42}9BXC}AaPYBc!Ol?Zi84)Z!YDr5dA1}(4>%!u;1PAO5J2Q}3+*)~On zOZs`Mgf^zC3CC0%ESh*tJJu>96~XSdDJsOAk~7QK&Z_l{gHE6nVg(|LS_uKGYL-tE zim4ndv8;ROoRi)UI?c{{=plgj>(y-_}$~-<%`St<(u)RpK4#PF9`Mbb$>dvRlA?F@sFYpfBheDsLu1A15NMD zm!;a?O`!d@0{fhGO;aOHBmqoSNg0l&EEdqECVip+Nww$#W)xwgTp@}?R8HO`rb6L> zBIk|IorOdbiXbw}0?14eao$EY3g}N(u68wwu%(FL>WGGVM0I*v7@DL)RG^$-OL()U zCZV0%^l(;$S7Bk?@XG2>@2&8ve+CuoE zV`AT{8~`=#y)AXD`6C~<$W)3}0NhJd$?9s$#1c}u#IypMT7vsE>Fx01uH_sHIpQ%~ zpZB}=bj>)&czUc?xTN+)n{8Qluhu_YkAL>U-hKQ0jc0#3KKR6{PhWj|u!ryZ@zr0f z<7s>>T%I0f@6Y7=lt)qQzC!ZbfAgJ6rt%td5^M@vp~+rxi@(gvph_7I9mrG`qqE9KlThr{hGb@vnJK>2Z9iW#0#Y7DBqF1jH)hC`+of`$ z*gyHaB&CrZ0?o?FCR1^kqD{03Bng(yiVa|9?Mh|$I^;Ds->w;RkIZ60m2_kvCu6u* zOL%xIR4%O$(zgeXYXt7PF4Z@moO?Fg#U^!QRp@KbhBFsCp4R(hztxSe`-i!q*>SzI zgJ>5f8AujOh(72{e>~jrVe)IsW1QPIrRZ5FO=io}F@3acN^|Xf#4NKsqn4Fgad-DH zQ;X{o*R9=u65nojudNPeyneo)+jn11e$J;}+ZW@s@GxJFAC~p*H?m%{4z=36`tsOY zG`rRZ@#|CHtu_^Qecnv+*q|nG>Ct@7>xcbpFI!u9S{N3pka2@Qs*nvFVuH$~W)U!N ziE1gOl`XqDjTB~~83}5lp^%30EAL@}dqxjtSZCmhu{ggb2ds~*=LVmFX#K$ z@x%7^<>&Ipr@Q-akH1ijncu(r);xK-9}lnkcSpbO5})>m^)k=n`Qdu>AFc0aY!6Sqv0qRtjB}8G4gOLu3e&i&hAN8Ahs9 zAiF@X?#PYhG5+(8!DwDKNvJq__%@NlC3A ziKeA8Rd2DSj8?-lok|m}ipcVK+|F|#6FMWX4@sw}afn?}NG?D_o%9JQTZ^xhhzD_DpUWtPYYpHYsMVe>cRwOzM+-$W-^ zr^#jc>BqG1qd zKN+9e<7vHq(0Y3Gb=Whf<{#S2c4k)Rq!kW6?yd!w@aostRxexoYOC<*O|jIiY02&V z!Qtsi^i#YnM)|Lywbu$0Qau~i61Q$h?95lvjB_ueHm#`LWQ zva*(@>9XJVKCI=gp6CRi1+y6?R4Ks3uzNfBdyyB1e#8|HF0F5|e)N;)*DwCC?VgD| zwnoKsysHYvvzCp^So!j9Nju7e-#vdOf84A|>Wh2uoBwY4%m4gm@#3fN|6ca?(W^I2 zf2j2j`=`%ezqTHKxJh>HG*~W;SVr^|UXkt{E7QigOV$MAFmZ8l8 zg|Ntog{gH+N)1E+PB!QjnznBc2vRg5DV5n5Z7Lxo8Hn_ex6yD`W)>?GnV1X~m<4(T zNrD2DDgye^FAvESueohcTSV#vs-o4}Jc=nKgh{hfnHE>01Wn1NqB1X!j~|{cmn#UC zCW`Rs7%7O5xtDnrcc|Ievk-u_MOX1kO`kH^U8uaEwB=4COn1o^HK&$li27i)zO?)E z?Zm^`2{1CP+$t1N>!t}pLKa?DJj)zy5OcY-=kxgHP~U%ZZfCW$p=jla54-KBP4Y-L zkL8N%vxoaG`y8+D+J_(1<&y2^Kl%3U_S^oy|LHvQ_0!Ak>6^pjLzP^gx9@-bKbRawn9@xutZ~swowVr#u}QE zL)#FrAZ4>x799peX{6Y!r5p^7V+xRMQxQtArIaHmV6-fmOpR)lA_7)P-UyUTFqS|0 zO<60D(-R#6sHW@V{(RE6LeGpjP( zyNJy!Zd>BnO{Pn>ky4g9GM2460-JBc5jdA-%)EQ7+XPTCP%2D26gv z3{NLL8#Qf8<5U)7{pdOFe*}W_xx^- zCgAz{=1(*5+xgS`FF*V0LmMx@e1Cnq*oX7}@XT!hR1(=j*6)~~1ShrayctNP|TbAGsA z<@xKc2j{?d`_Eqd{-6JRv-OML<-zTkVY3~GFpO5$yARee>X=dZ^+SGOcAgg~r_J*!;^JDlOlU=HW0(Tj=`svL~&nnGqrDV;EcHKLgdEc>&MV@~6>WBBK3qw2w-impyyJ=qe zl!qLTV?WvbaECY|Jc4h^mHZ;dX=MmF1CXdnEEEAp+n4SU0FwLWQWJojybA zzMZ#iY}e~`8{0Mmp4Ty}Dx$Qdv^HtOFiJIbU1=0BkTi;kW;J0G5Shr>GhA|3QSbCp zm!{gY<64Jcqga&cMJAoG^RNqy439b!KJ;Z-wn`g(^Xm0U6^lz^?wD_{Nvx-1*QO@b zlAva>l9G_UW%<~7x_t4iJ^PZiPnfrT+0tj(Uc|)R7HpQ=!OrmJFZ20Bdy@9x#JcCZ z3kR{hmfw3$QTycCn}f(7Up{}Uufxv|4`=@D{@aJ`uzalF#PZ?e8vp*keju3rF-Ele z-6M8ImV2c(m^M93Sr4kFq*&7`tc;tUE~tjRRumnPts|J7u(XW^O9SO=R7#h+Y)|i@it^?3#Pr%-dt z&CL)`P_Eq%D@3T)fbNBsNLM09X@^=egMre3kyX333XubEHRj}G6%`gYY#I{|qQpZz zkVGWtRX?uH$V~Fq9|H;?VK48oefKoRHo5!L!+Gov*Uk5R&@bakY}+WG8FNn)NV6Gg zmL;=;HMJv0ER7;TBs0Qe?z>0C+-rnOhs1#FsZCqUwOfshv5m3siD)1NWoFli2Qh%x zAZbdtJ438`7<2BqH*$qluCi!IDG~yqq|_`KY(xEuWnGld4iD?4UDtp}J6*3Tm3hU$ z;o0N$BRfZ&yxK?Sb!*qB!^rpIO=irL)5BM@S4$vw(mxsh(-)uCqs2J&?d#us_Q`Ly z;m`Xg+u`ybelp)H5$&|?slNFT88Y|q*2{F9=m)Aa6h)K1h&P`ValN3o=r|Zz0ZE&M zWfa&oQiIqf05Xdrp29>GA~M-0Eky{+%IfeA2@z>Y=Hl7ltUXnPxUtZ?s{)y=#41ae z%o6ohC3<@H-8?_aHF;k4T*$qjPaFGCbUHazpNLo?NRdeeORQBbJ{ls~1BX>rlLe-G z&hwt?7>L+s+mc3+CyzRtQPzbs;jSv>s<7Upys*>VeZ5#h(2`@7YhDhEwxwZmjadi@ z(@KWSWxr=syY;~sR&42(p4c83ZE`*D`y{(BMe2uBqrT>%BxhHP--G^M}Z^+aDr;NO6j%VlGuB&~fkjsc_qEUp zKqi}%XsSku7FwoNNeL2Fw+*96vYqnXPUdC1`)*Gg#l6h^G%b2_)4G}@q9K~4jicj8 zR@>>ayBkCnJ06;miYmms?AtyOJ0FGc`@NIl6&Ik1=(>i^C>(Q?MuaXxWUI<$qxre( zYl_~&|2!<~^Op@o2+mdedHR&)uJ>w6Xu^W2AX6_WMN44{i^`is$WowXOiGdz1t29Q zMJ*P1>s?X`^ACS~a%fxb=3oFGVP~yqKF8qL2e0Kb+EyhMp^zVqsPN&WaydS`Gc~P@ z%z3$f*mmEhUt`a0b+!X^dTm>iWnCL`41tbdN_Ie(ib{<2DfUZhSwXj;`9ZIn+-a7H zo7eJGtqlrO#aCvb6liW>0*sP!xiVX%&wi-m`tAdl*xR#hCWmRdi9uHR-s73fr!G~; zfX))iNT#Hhxkmetxclt!%l^-n$NBKxvlrKoe);}-y}bV^f4ALBoZ`LReY%bvZ% zE@SBw{MkS6|N7m081Mery}I-2T$Y_xu_~v8 zqV5`fy$Sk~N?~ehNYl69e*Y+Uui5X9Y{FoJ(;>cICCEb2wZx`HAp(p_O$F3%l3Xn* zz%5yl8U%C-Kmj09s)?l}Q&ew+K%ugTB3V+mj37Wrfdn6aw{>azs^JG)RNJ)S5YLD? zuiU-%ykeg_&TY2@vIQa{*2DcOTzR@%S{Gu5@B72`yzSR>M8q{qT06EZ_p8*h99jut zlt7u8(b3U7-TT}(j+s-N6{sRI9|SxFQmZt;k`N=*kWB82Bx9M78wDF_QBhM}@_oH} z9M3|pXwj7WS)d5R8M@fwv6~RnPx}^kT46gD%=KE$<#JDK*zPLoEuX&m;>~yG`*%NC z|KY#*vrFyYeDn3IPp>chIG4K}zj+ti<>Cev_aH^q^8j^nS}xHyEoX=$+GI4-7)e?PC^0r?29Ov_XeY#-x5z!7NEk|IaVpUVFexcTENSA8snZ4t(N(Ag; zmKWXh6BVZKfXdyQXH8c~3DPIS-@|ZR`m#t9xfLHK`%o21FkEYHA3mJ!9v)s$zuPx& zEze#nDufWcIB?$`w9YL>Xebj#oAnR#TS-ZZj9yYnW=kOp#$t+#u=ECcE&+KP z92O~px`A1EgGqh)cDC|6L_e^4vev6?a#^QtTSZN5;kjR)VyiHR=7>q2))fq(AD*2S zZIU%(+um>6^?cr+#(4CQ6e-lCPobO|7k#=QXo-%YHM=0^wIr~?p00ut1L!5CP{XE$ zG=NC$9wj@QTQCWxXu)9OiWC$?Wk9y?pI)*(Pb-#KU-#K9A%v@Z3S6(D4bSVL(vV}} zb~2sM1IMSr63ko@QQv*2j{5evzWLyn`}=<@AOCW$-;ZaB_1){2SB}4Zs+U`)hAl^Z zfJkd+GBX~tlo!h`WIJK@B~hN{kmJsf{rjhjEU)iRY`uvfB^f5JOEm5xQd*Nez%p;1 z5?iUHAbI;#FxMT@s<>7v`;a9IN>+-FWm*j_L8w;1G^tEMl%^J#0=V2TGHyT>uzVao z?!vYsrDRmkWz-QxKTG4DyD;WXx9h93T%Th~TY4OynLzf;!=Z~3j;b*)+t|;$@0oi_ zK@xc#P;gD_W(4TIxZaEsO@yh39OC`y>aC2XAJcoJ2vm+Q-mJRJ#+K=rm;TkHF73F= zQAL%v=RYA*#_%NS^4%BqDIPEX-}2sU>5(K^(o;1vcaH$@FPT|cy`Apn8P3Kbg%=dz z`@aJz9172znck|ps&fAq01@tPX1qZ28AuVvH2^_K0B-JPs-I55FT)Rq+@j3Z-D&0S z`)`~3?&06zY?yOh(OLGg#<*79HQVxX7=-6#Z?hf!<9z>c&9;btTkYPrfB*X*?qA0O zi`;t12n2atL?Bm)mv+uim%spqX_is;&Dd%3+b*&Ww_V9h% zUSD4>m$_ZjS-wlDa*2^8%jyqiV+6FiOxiFB6of@+1g_hZ+W_%bR1{gOpq%dST9Z2juF5pwDm1M^%9w?>$r|< zX|2Var#N#cqLty&uJcffSg@Q<7`yX*yXgAn@cN}L_tD;d5q$nxA1T+=0R^-SCml;5 z6FTW2-BOpeS)(38>aIc=)q(i>`P)$Y{-M?7o`orth!oW%6hcpAnxu6CCezZ=!@v{= z5{BZ?$qW%7pdmF#P*W`lxH73A)RIBU?e`;~L4!^KC3!0qy!m=_eK$2d93pG;o&HzViCxc`R%#$q=(aLVp*sFTmn=j z;Y`oIeeU+SeExcw+mq+owu!73skXfBFX*`f$>O8S)22oZrrkhIWH z%v7OEBy~y%Qk}ujy!p6NLT-c^q-0RO{=jS`6sl_sBNeCleY`RdEe3}i@#38JZ2b|U-OeW!%y zr2Z-?tF)W;*iWo%`h}Y+rD|ymZY>|>C%G6tgcttqi9M@k|-mPDsM<27J&1+?q zLznhu?-xB|X>l#8iU~Gzk2I=cY+I9~j)*L~7UDEi!V&syS{>VWZ!ErC?v9_n+&!J{ zyq#a=B|~%J-lt9}$5NLeQF_3Tk#<@Ztkw?MeD$mlNyGNzr>o2H?sQrn)DqH|lWAbm zMu|w05dw%vicb6k!J@&TV^vR0LOnu+fglwU9;BtXFliZN34oh!)DWRB|skM4$Y=sw(+!AHZ{_eY9Ki(AsMh-{0Yn53>j=o*K zoj-i-SLqXas=`t`Bc@uqt8mMmb6UAz?Fp)88zn~W=y@%Ogs26McWx0yxQ=~h)FdgD z=P@f)(+G3xi#RnnIIHB8EHjw6&eHX`s>bG- zycXIi9!h{wGra&I(*{E+K9%YzT?Lp>H_Q|$2qh4jlUYJic=PeyLIrN-?zg8am=-QW zrbt-X+LRWfQCR5HWv@#y8d5#>dD&mCm+O9x+RI$B=G60U zwJA<<@Wc#vY{=z>$5B!0U?8AlTtv^PJx3;xVk*)NJayaLmOFhJ^+w3i?O_bt}MS5C}9%W1{NbK6T8N`x9VywAd z`2B~Gto6hBpWpeHg^z}_x9#+(uiroJ^E39RgJMiwdhxwbQRh|aSi941Yjc%M1zeMU z!S(XXHIennPu~N?OvKvAn88h_4(6}`_xNS8!ezYI7LVkYs|R1#~76&F5K0SCU#Es z+_=oPjSe-rzi&krJsj$t<=n%&fW`#1F4ju-1XGb>x7aia$*jpLeZD-*6|+G?F1Xh- zROY+)=KZ=EBhqB0FU|LmX5m}^@A=;-kr*w0rB#epMT!I{3yq; z`s-s~e)-@2_shfYAO|Ba`oNOR12Aj%v^?&~SRSg?1B+DMYDa&>3Tkc5I@V zIo-$g>E)*{ua^t1+DnS~5RP$Zt4O0@+5AecQ+fsq1tQel{W_6q20?#F@ z9hA(Vq|3~d5W)44S;JB_RC-bnIuB#n156z%{XzQv-Ius#1kzgG_2mn(hFoURS1zH~ zY`%}BN{oYe@|Q~EAW;y#WRd-qZ#cfyWxJNX`1RYcKb)T*-?epc`5J%dpYIQKtEAgG zxg*_Ui8FDR*v;A28Yx(_B22rI?Dq2yA2Fe)V?8dGG9!~2NJR={YV?{82}$Q|LzWTY z36!p!5iL3E(45SaS-WO>$tfulhzTeiL4j*GWrul4!V5A$5jca9q%g&YAydIbO8d?I zM_B^t2Jto$;?mJTmAEpctgkl?rD{a(8Un!QMkyi)G9%8f&(FVneZih>Z0n8awgV-W zMHiXN<<)k%bkSslY^Bj?JPVXj$LbtB^j@VDRJb&aXqu6p;hA1%(WMy|ha@s3G2^Cd z3-cPP5+cE)azDRbkGbtN^Kv*YF+Oy9*S(9sAeQ!`ruq5A&)0{_vP;uKTvF$rL%1LRgH;^_odtEqiiMjWRtI zA@SwE{XF`w>%*^)r-fBq)v6Pu1ClJ$Gy?^R;DE-&9GU9KjF>>7XfQa1rcM#;NFgmH z0T)m*A)HhWhzPT4pSP*~&8I)3)ez zik|;^T;JOB|MBb#r|l(DG9qgqX&JVPSS@R6mcx>3B94(l|MJt{ec1NThvV_Fw3(@H zU1os_HBwz7G#N5YP*U77L{g~0gc9aDg%O;RxAY&IEhLB9)TlsaC^Aek)BtB9G#x?^ zmZoqM0LlnTDsSW;Bs0dRKSRx?5fn`jJ#g4lDBiHI2o?4SB`9y-zd1CacuZSmt%}Hb zy}W$-@h{)bF%yEa+ge{k6KmlKT1bq(xpao6vtrRoHGLT)yL(}|cn;+O`X56)yVA1M z!=W9_8o{@xw+O0zijx1p#o+w$ zNt6(|H33Q%Ngu~)Gd7lR>1{xm2RYXI=5eViByzQiRwCzo`TY5BKYX|bb851hmcvQ`M$!!JwrHMBUiZ76X7}OcemkVk#NDDFIzV0?^&S zC`r(g5;RGqi{p*~#na-vR3xJGCZ?dMU9YgqaQik7aUSPmYx`tbVVXK%Uw z^)N@VcRzU7U;W5<_`hEMaQeOL-!HS*02W;An6J8@uCVEajfth6D6NJ%tLrq%9H0L7 zv}dl%+vTBDg=N^pZ7xd&CHGc`g>(Tn8%|i15fP+^fj*crHD{RsC}C5SNX+7ZhXEOb z281vpYiL)6DgzQa7!v71B#}wp@Nq%0_7ieEs~(Uq1VAP!mLd1{ZOEd<=A*CR0T7DtzTa+cPMQ&mDN%-Ae6K$Kmal2^~cx8gZE2bK0Bg1 zLsEBJCX_%?*W%ZC@+vMvTg|spIGP8_SLXhwhp@r)KbFWJk$dc}$|MKT=uUzgPzI!;>(FiYTB108W zV98!Y!$IyvGnkSTQ3#kOu<1o00ZoR^3KKI?ECrMw;x}|f3V}SK0gV6fA@3>!gq-^OuNnr zMig)vn5(qe7h9I_RR#38{PeH6RcrUBy6{kp&XKf4VA}32q69q{3c023xFk7r*WgqP zMd{*FqU@42NDW11adB#(W`sJy5Du0M=w38HH)lEk#V|}TLtJp{Cnz17WNKz;{r>H@ z@TKhQ%uMZIlnbox+Q#x~vim6`{9fJ!ts+xY35??1U$=gJ`Q_8=JWn8$6~18CzwbgR%l9S}v^e8YY{hF4F!!kS_MTVYB@(k;_F2INLgfFg2VW_2<( zDIgPqF;VP#NDkf4Q^wUK$K zJpJYCw8ZlLy&Y6ZI$I2eiew34iaHavTe9A?Ttb=ET!m#<3g{dfp{lymkVxqg1MZeY z_)XmrDNMRorbSATQ1>(@3L*r&krkOjAmetzATmmzzFj}8D!srNnIUE0m7~^l9d(Oh zZllFm9Hkvqp;S;JcG;d@adVE7%>h4du8T$V<2T-Keb@Z-Pv8GE-+lYY{LSm> z_5I!P*MB`9{!-rj)4Q)x_K?icpgY;ip1f51qRTREmZfzm8XPYletH_GY3=U2`(oM( zT>Lb+Wa+{%k%`S>@!>bn?~Uh_iI@qGl#B$!GHtkXrr4NSLxwfbvClgG% z&B9q?ih|HyD6UhgM3%6diY|a80x&1}_U#XS^;Y(q-@?7_%Z5uW4xzn@(=89Z^=xG+ zo}nTM#C+PHU#~xoAy3vbc^cNr9?n>_m^DKn?K<*|EySyiR=}<)k-K$-ZJEe@lcv~x z6#ady$5E;cd?l0!c&n*-666R7BiD|pZxgoFF(BuXM6nq-KnWoBh3>wB zSs-eDTgz_1C26U}roljGLJd*F4FE}~GZTW8P!XFh#tcnVaS$P@nHm%bp+QoKTMkD= z{zFayfe3<#kAJgKB2lz2;iSl570GGAO}%6`t)@V3Q{iq(`r!LrY;EtNnbMX`k^|ah;!Kp~^+m|2y_OkWE(!PKD?%iRLwiKh71g3hOS|)Rr2s&+2ymgoY zl93R?W&$<@=0uuKNF$?$Fv*++&^A*fC6G=K&QxTAH#cB9MWkSu5D-iW0veW-+gz9c z^R|jS|8>(mq#|W?4&pDBpBidEvM0(iPcLE=1m-xmXO)E)x3Q^3I1JN9c#lSw8qg?+dL z!e9~zDP)LCCLKhEiN@KP{Tav^rs+Cg(aVv{v(vX9Pi47Z4#d(;59y=cm6;cReO*Sr zeS>lI1HX(`_m9tWYO#O!?&{aKYx+^XT(25<2{C@y3R7HA&<89Si!`OKcT1)sw$DHO z%YXAvJ$l&b`|sYLB-1F&Bqj;9A<;vn46%Sm!~p1?BPFy-W`+_avLLL$GK*lBsTl4| zfKI?Ab5J#5C@@QNluVEG0BBUbSqeBfQWYQqU4fKLQQq=cGGK4-$H*(QPmO6k&zq%S zWnrJf3)SWNG(tsdA<;PFCAS( zD5A_wDAV`gd2+jGw1SY{r@nV<5y*W+c-2)c%tXXA+8qg?REr;mfJKFSH(8n4bZ=G1@k`E}!} zd;52XyxNY`(puAMN+x69<#I{Qw&;?rPz0o;W(v$RLt?&cL-rA$H&u_m4zGRH zGvd9+4yhUOxO{jKrFG3#p7P&5J-y7Ot=k)Yd1u{sATUoS`6zN)&f`CR_sh$>PltYY z{oO%XzB`r64hG8ec7ver~xQme#l)r@^^m*>yF{Q2yB z$aUz>wF=9vBU0kNva)3NZNyb+GSn>=T^4I%2M6ImAct?vtPSDQXS)8HQZi%RqQuf* zx)ddH&e?t6wy@QzE>=Xd00NY-ESaRI%*)g3tMTjSY?WvpOTw6Y)r59e;e5Azy=sFS z9&~>?zWe3#yxODU@K$m)a2TbpzuG=AwH`lj|JMFycY9I}C*te(4>dExl9Co2I?OfblGfoIEFszGRuC%%(y(nWuOI&W^VoQ1zg`+zX3nZP!>u(gm5qFz zdrWMZ*Y4!9*jgKGgv|_{wq#Jk&C|E%k8CfWwpF;z00v`2TkYt}i?@K~%qrT#c9R0Gd7MDGmhPlYh%!|Z? zXMea`@7w8a)QYn-wbn{AgQ=TZ0fo|yC6t(nb%ae6YS&pJmfIgP9F#00Q!^9D0P2R~ zn$dD7>0zOfWC+b+y?~MC3egmZNDx9H0R@v(z;12;37`m>OuPAm!hiUnw5gGXWU`>l zA|e76rPX_*+>NJ6{oOTQ z`Y6MMx;1aUTt?v-msYZ7zPbNfSVcGN=JDIR&(DbE`mh@F0=~SQw{3a*^sD3g>BHf2 z{r&5wKRkZKsSD*d=hN~-U%4G4^!^tsk*+B&u7}G+?Gu^uXzSzK^>{oMJ6Ka|MGW*v zp9mH43=Pbh3?PuR0MXJCQ)iBUpq8MbK;bSZnIalD)HhQYnkkvpizJw;&{f))C81~VkO-@G^~g$<~kK9qSIgY z^YhE|b8tp2!e&~E?FE`wjiue$orlb^=Vj&wuP+g`9BtJQlM?P6ow~VC@=}Q1LoR^3 z{@!wtJ`dcOUMbCt0)z}7+q6rmCY42O)ex1C2{4p7Mv(sP7qtAcE$havCMFv_PM|W5 z&+*vf&FSey7P|6XY4g4Qw7*p3dlZUn<>fN>UjNzU;a4voeXRV|r*DsUf6m8mm&5P! z##42XkV!d)U|OuEDIW9v-B{ zFea2*kL_^c;hu*SX)4RHiNcyhFrZn|s9tQiWg^m|i3SKGB)UqJY0U6#YPbDfl- zbU0m2oS=w!j7oKxNv1#rWKaYdFa$D!C^6Ms`HzJx@=2U?}mP= zhqcUOcro4Q=w;iZ2Xv1}mrQlW9rbroi0c}qLdLqn)}|^(MEEpbSwyXvQViJuMM@ap zNXP6SKJo6d+0tc~c0IH05@H2)*=$pbS9=@J*ZX}c%--DVGLdw6*pKmY#mr%%6HpN{MGRP591cjX(OawO*Pm)Gn0T75P>9GBy|G&wD5 zwH-?y4yB-`a3)i!S;)|+8Vo2ROeQr{G=qsL2xU{}GzSYL9h9CW5Hi8^A`t?(8g56t zsZ19sLqbqwPNldUTI9Czkc!sS$IgGFnmwsS@VUh%3k z<_y!~GevOKe>SESq$VcjA`h)rD_~~yzHK8b7ORU^7D*vPA=GrvOpGsoKM&*JXnuDN z474YjPPV7B-9Lr)3cq`rOfDJJ`_o^)7^b9rzr22UJfQTK-R5Y&*L=UdJm8M|mN)b=viyVuwSOw@fY3u46Li^!cKFcMMbWEw7?=oLQ-ue!7NPP=&}R_bdw1R6p6SQs!1}Lj3h4A+JVfrW`kLP=VWbjzqpQ8Y6s1|{6R5ynMj_VYP++54pAwpiMJCnz-qD&o;$ zviZ3?uO1vr^nu0 z))^vUQw*+>%bu7^Zjk7%It5YPWzW=54J0SPsjh+^86ugIp-i19$=(uRk~LG;$eWQ! zC@DfJBQ2m7Q8k4iGysYQL=-}hAVLI42lhWbMVK?yl0u18F_|zla(IcMlhO7N%;Ip3 z$RagLfs`)kn3K?jZXA0Ixz3U{Q)cY8+Ok?*lFLpE_vqcD@7#2%Y#LLv4`9{bf-<}p zoo;hJET_BEofR!8g>#InHf>gmDwiO15-e^S;p6h-U%vHoOW$6O8on&jonh9k$wrlF zA~ELj(7tui<9>MeyZG?%{2=u9J3syOviy^qe=BkwzkA;mKNL9^g7)n<-;Gaw^YwMu zz5Vd@d@0$r%xIT8y+So3m-?{OMHiJLQY`hB*DloC_}v#5n0v8+hA=Y$8B&Nzh+F$d zg1EXki+alKX;x&&5Xo$0W+=dLC?q&RK$a08CP?)l(lw24Oc4^vY{&vJFMzlZg@QzA zh6G4)3X>VX{2Z-0j~=(VpD{8`4lV#{OcxawkfZ@JgMx#ZaA2P^8I>nvt;C*?8Qptx z8}oQ+HJ7`#h)w&Sev*jM<5@>+x?8${>x8nPitDd4=^j|q(rtY>e0R541qgM{^Xq)m zrPL~>B1x!D35x`LyMD?k9*v$pa`!UkIL;t!^&HN{9N0$D?>_a2P1k>Z|MKPQ)l%ET zAH4mz``brfwmn8!xApS=<2Y>>jP>E^=|9xHUoaWDJ{(>yC=c7*SQj=4RhUb=XIb>% zRU0bEItfWZ3R03v7%}7K1rX7!0s3u_cWdVaXx5P-Qs_YBOp4|#$x&1&bQ!lsA7IG< z4at%m7Meo3gpeX3X(0eCOIq+BR#DtG5J(k5CCMO}$T_Pf{lgFaAW^SVzpf8KoiI`tlxe|@l*6uc`> z`fh&NxV--s%j$>at9}1;UCwsh1}QeJtoM45mZo7h%{5X0K%pE`GIPqHIBk|u0%`-d zoGqewNF!976KU{*p`mUenG}t|3Wf$sBwbk|A%KJ#grg)N!kD625&;3*kWfJYbpooS zI#e`}Vxs9HE;l&=fJ#kdZ2wIoK_mC`0R{^B^}dzGIdqh&qM>lmpsvW&QFaKJiHOsV_%T zR+|b?f{Hw;+MLCMQ5YO#Fg=Q+E8=dG@^sy=K0_bpR(d(F+Sk*|RqB4Mu;=zTzGeUJ zZHmP_J@yxaBzi7k<*e=V^_0uw7g)ZO$8yK7kMBRrxQhKNe)s&GlgB3ibz&=Fau0&WN=BbXuZGBucxR1w8w zhC1qidapMDjJt-oLb8X1^`$x56(yK8>2Bf@(E!LanMg)}4hU|M(wZ6s z)`z$Mva-x_3|~R+UQG=Wp0(2u6k!O0M5vO66_PnY1}qm>geG4rbVr`HXdLV5+?z_j zJ3viC1MXpCSRdu0*vm!AI9eO{X-MD4?5U-Qmii{2#@%Z5RHHS86k&E|FZ+}|vgZKD zb=3E*9G9bN*I%K~B~#MF?A_tbcl?I{Y7bBUd}g&;rIJ;VaHtDXiMh#h%FFnSsXdE) z>k5v%KR=g>UgPNU=+%zbnDX|Fg#Gb%e|oNdEwZ%tcOw5;9`?)29}?eoJ?!%R;bec` zq}Bxsp3uu5h|c4Tty9G1T#}o z!ZJc|3lqM%s&X*(9|wU1$ROgEA4@qO6R-W~=0oe8i%yfAncAl2l3`5kW|m<^no8Mo zdUl6pn$Y)*L0=*J(XO)ZO(WV`N>woq?0B`BFY?{??N4a?mweaveEIr( zdHlD(KZMFH<~;!TrZeW$8a1uS;F={T7>-DUct%Q;OoKC2$pC%mT9MXL@c%@*IDn*# z+pXSawof8OO3udIbb)4vjT)z6~95`FnxD&GMP6zc!nmC>9=APw>%1h zL1cUX<`PSv)BQ`ILI4V%GlWHTw5C^KAY&;-tBN*AQc^M}B6iMsKIf2r)pJ<8$}&p{ zIUZ`gtJW6Rnz@(UhFtqAuxNKZnW;Q_TH(Xu)IaF%ij-(Oou}oy2Z<~h$cY&7>1AOa zs;Zcl2vQ{>sWzs3{qS`D=HF0cj`b{1miWAs;;ZX%2p9UHYd*QiyxU{_U+uqq6Kp08 z<-4l?Wxl<8=3!~^bRMm)fBbfepXGdcIBa^nd*#=5Dd(fV%KlmUo8`O1*S%=eySlEF zY^rfwhKRKp)(@T{i3L`j@{ia))*1vcs3BQKYE1-K;1V)3Lxl+uZxH50N`MJyWKf-; zTfd$2ElEr;GgCmoGLZ~S8IU6Grjr>8N}a?gXtPN2HXzniNxA7$pg9YYl>M(yZdIhI z_L`mox{7%WGFv9ac1wgQvRbto;xXNOYPU8FGNSWZ$7n<{QARFntoNo;8D$`2z{h3E z`8=*u=VF~{eOf!UCDf+An<{i>86~im$G7hU5|ZMGG3VD$5{IJISkr=XD`5&}`u6eC z$M$UHaGuel9P1ppKJ@L~2)nLP^Ze#j>gz1SPTqg@KVSdz>%lwT#CZ6X;J?J_aOKy@ z2YKDGtiLVTKa9)eth$)zbw6GD@XK~*0om`@lRec%+I?yE)>QZJuYX%yuv5?v*)4z^f!6?`?tsE-XA~oaa~$&eB$SJckuU?^L4(w z>mSb_e);i-U;huLQroI=sX#PhOftD=s)wKuVi`?FAg5^zEdzl~Qh}0%BVvwVdS+3L z6o>;k1wD~j&MhLczk>~Om~K0tIO=r=dqUxjmp_-2B;z#&1hPqWHNl4#9rr^y^rv1 z*sAM7k%*d)9kPT9&5h z)>Xn|8% zL4?q6aPY~gV&XuwEDCedDQ<&FcgY(oN;J}_KJ^9*3C~OC3HntbYx+4 zWjbSWWnpw>05UK!H!UzWEip7yGBP?bG&(XfD=;`ZFfcB~)(Zdt03~!qSaf7zbY(hi yZ)9m^c>ppnF*hwRHZ3tUR5CI;F*G_bHY+eVIxsL#g+^@v0000K-j;DP)004R>004l5008;`004mK004C`008P>0026e000+ooVrmw00002 zVoOIv0RM-N%)bBt00(qQO+^Rc1`ZYs9jQwk0{{Sk07*naRCwC#{oAgk*^-=znVI|e z|G8E~WbWL%ip@RaJ}@3Hzyrx65L1Gv^Pv^%09nCqxDAUir|h-hLsq|_cwvVyENo*Wj>yKlQEycg&R_c>6J7&W1oi4NxjP$3uc zK4@cchdj+mUb(!-*%=QX?x?&%C9f;)fu8V8xAfNJEtRj4TwF2_Ab0x01FKde>zH01 zEVRmV)Wpc9jk7RdcESxM&_)H~58od*1sDN9wI5&q_{abGS8wsWZb6M4%4;T8^>V~x za!0sj$XeeHjlcr=!0VMjUP9e2@t*JJ4)@AW|LH;b*MBGc$KQX@zyEju{saI0#{=*m z`0qa+fd9aM@z1y`Fc@FzvWbm0_JYZlRI{TcM3{*2!Wfrlt}oX-hDO}f;Y zOJmNCotLz>)NwSF9MW9a5Zt9~udy}V$4D-Q10H}2FhYS80E9yW<_s$JZWt7Xw!P)( zG4c_CM~oW?!(wk??FVgRd|b3VdN9fiU1QUTy{?=K$fgWv9t|FwbcbebIzSHw4F$Ug z#{(Vctds1+!SKk4KB}WAhY`KSEf%LlLyc$vRA*xaEQ}#5_5c_+q(ewZ1mWi=dd;_M z=lJv-9Ydm$QDjaO~CXV^-Gen6-0X!6f$4vS(hd7%`(X zWUPvIT!A?bl^OAfee{~~W6dF(J*V3<&dy=8O*S1xZO5!j00>?S0!9coxx?uW9$klA z5k2HWvXnq6IMRf}6$T>9&m%Nusi5%G8ek8TnAEkv84LpeiUZ1sHharuqFyKtMCr;1 z4ko)v6A&OL);+xd*sx$ZLPCyvtWnO$m|zpMO}+#ukYMon$ExqS3GGEp9902#ay6*v zahw&(tu=6>Ru3vLi^Cl7!f*%%CU{E8{r=03|Mvg$@4m)g;v(E6HDxy}2Qk^B?YN^0cpty}GUhNNDyf-T%#p9C;8+wJkwhB`C9&vb&asWo#_W&`UMn37 zbXw8SVyii@?3^~EZJUURmS}KQTrogQoBPCdXxB?yN0S)9SaA(uZByz5K%gm?1WHAR zWgzGr=Xg>y`!*yHpwvl}hHGNF#+Yb@t-N?JtdoNCY?xflnAD|4V5e=u9G|urAlYc4 zgAKs3h2{YQtqIQ#t{@mN4G{LseZE$5Aty#tViDTv0cXugYsX|37*nS^;2dkvNNPoA zBsgSv$*ymI`*;8D^WV>V{F4ci#@b*^qe#U0qgFq#z2sLmT{X~xJQ!p>{ccU%|eQFZ|B^*C@DTz9(C$3QUJ9rv2k z!1R(loO64rsH!x`1S{BZ59Vc{>6n(H!HNMf8Zn&{YrvA$MUq^7Hg7Z2*K!dHkG7be z&4Hs5FvGQBb~UF(7a+ijV)e*Uk8+gAvN{})dH~MEg(#6l4DaMoVFC|9BNKc-?M{S2 zMFlxIX$e*>AZVQvw6J;#W0Lla%uba7jaaLNm|hQxRF95`AVmUz5SZz!-4lojp+S^L zdlg<|qpk2$F=I%xCCtIBp|YDKFqjoP;JN?u{^h585$^a)A`DarP=yhbvTO)k7a{Hts8C@7@@49p@P2VjB|n%!=8B1H(fMjarct2NJOZgQIm|vqDc3zUZ>6kulVpw7u@&AEl>ROmGK(aJ}lc#LLwU29vKpo3vLsnKCtlnH_; z+QAqx-F7^LxWY#_k(>Zyz)lmx5$CYR!l(tH(vviY9nH~1(HOW3WX!V1$bnrMi4Z^t zVbGpkZ_EJ>&?G>tj&WvBI>f;ctB2^2mDaEz#+YLUa*Y+bU*G=p^H2Ml9d5*55re)( zj0VH+9&-#S?PVK%5a(*<0m#^$@7ds<+F*D0rtd+&;(nMBNswfkKyL2zbP$zF?PWQ{ zXWz!GrOTYv1HN2=AakN);DTBzL~PE#{o)U;WU8cc%}H_i|H2Ya9ZRt|8Bs z&V5V(^w9{274T{WqJtSeAY!tY9Y%I^f=G{UZ4d_5+hKk0Ur06Z(o1-QR#M$(FkKE|y++V<(JHWKy19;s)IJXWptoME~-SRBh6fhZlYk4CKm zN1%cnx+Cw03mV^wC5+EUY~N52ibN=vD?v86c^S;q3Z0fpyb$OvmjljO=|BCy;h9 z(ZZG^p#+5;V$xpAoRF61di(bI?|#*X_o~~n;c$w8LXT6A94wZQ#mR|DB=)S9Ca5tlt&7>~Awu%ZQ4)k2 zAI*SR@Z^|71Jw5?$UcU#&#FzF(*ru{g!7#in80Qz0j4iItd>zqpA+1{JS zgL70OFXzBR)l(y=V<%_=Inad=G=0)Q7~u)z7(VrY+}YV;M08oBf`tjxk{DMUn*yui z=uze>j)|c=7Ya-TMZyvVRSf9px|zTIcCDTIDz2!#d!Yv0UFA~0?S7R zMLyqD(jK(m>e*v=9G!!Vye4O9&=E^&X;PjT%5LUP29H@O&Uw`Px353{!`FHAV|#jC zw;lh~Lk)*02XK{~LyH@nJZ%YUFs2*SQ0NI)J170PdU~tVbjWx(4_N!;73G|BH>epk zk_a}qm|phdtQ->o!60X-=&a=?)$@=E#9%>zEe8128nmHpa#nAzA3qw%DBft*@s%(6Gn6Ls>}^k^4G`4J?`& zCaxr-V%AbeHBuIodwfj9MTZxaHf@zL1F5t&M4K%SQf0-dBn5~B!i4v`Yf5XFt35E7 z0yxDw+lBM;stC=De26}gG0d=dPJMg(`PUzR@$^KcVmDX(B~8^1MzCaXOjZDs!^LJW z2Np5tD4>hRE?iZQx0&k-UCOwQqh7akTo-L9CUqUc(5$Wh?&SFhvJ#OeUP>fmV*w~if(8== zmj~?C2O$=~fF+hu{ry6)f&aL&q8}a7~)DkTpt-lSb0yrAjC|>Scohh850A)8-hx zDjeh5hul)fy27nq8@kRYG3waE@|DxE+GEo6@=-+$y$=Uuk$y_`>ZcOSXt_DLYYk2g z#jWrFU`5B(vcT!(2oGiuR9p%hG0QC) zN!UaHhT-YTObQHe!iXL{dcID1ap>4DSFk87=5^e>+yjEIce)%EUPGqO4kknU@#Uv) zfA_wNw*gkg#4_Wbc=!~k!|NdutboGJK{HygJ5)4sYef4(wC2dbEAG0xm41lBHpxV?J-1l0g}G|ubr*{)+2qNAvg zF?H^V>0rQ|Cgi-JAh055Wj*JBut>zHQtduy0c+F`72GD&!ub4Ez? zbM6Jw#QlE32B?YY5yZ9Qp&4vA;aLxkbX3H`IEYY$<-I?D{nO_!-_}jna=x~98!P^j zILhdR8dOwXxxL&I2P6uRsbHg9C<6xg;C{?DY98l<>fjv4Aqs5M-tt7vFy9515KW^M zy8uk8@knYKH2qXjJcIV~9)(AWfx$ue@MIyTNo@j-76KxU9S+W&L`Pw{xXQ5!`(~E_ zljs6GtCBl{-N$mnGC0@mK_h3MQB4}rL;w#A28dP@jRDl2#YZ>?zkfj3kz3n=Mo5uD ztg#qlr-n2waF#R^Dvial{Oln%QiKKu7?W6*X6O-*+02y!0)QC7vC)0Ke@tL4c%N%j z*&GDn$;TYCO=C$W8j+A>tmwHufBX5Due4vjZ#S~*z^xm%OE%&(7{kn zEfqJjeH-g78qKv2`jLC8C1V(I&GXBR)P&JAIFQEoCWn|nN{>erwD?&tTb*^fPmdYhc6myW;DM7Q|-LM7&qA(RLsCWhG>5>XnO7d?15 zE-&nLubR#U_*NQT>-S&Vf!c)13LjSzVq#7d^4RORMm=@dv7vMeq(m4KlY5YsJqVz) zBVdFX7^HX5KA|xuX3aQ`zJTJ`n+k3&m-s z!KeBT6af|#~Uj%4jKG%_^-;dsBk{{27v zbdS5mIQ4Qr&SE@o0IR$}9}_UG8n6-sk&X;TVLhH2EGM8tHL@BP{dfnT6?yn59?Nh2 z^zxX)^OP?xP}-O-X=bqO!;`#%5mw?H9~%QPHe%rbjcl`*8?w1J=Q+fKrrD}d?s<7^ zsh!3cIEu52F!**bx&fQGh24tnliF*znm1 z1BuEe`YeDmh|+Qf$v~!2N{tt6Mp z9)iToU{`am^D2blDCR6i(M@Wf7K~xmG@M|L1N`>o=O2HmTlDL9qsqrj2jKE+`~}#E z2zq2f$R-gOB{HS)q?%!?LwCbA?C6@SAKP63M^sfrPi8F(Q+#pMWn~Q^90qTj(4js+ z8K{V?rOE0mH~8UdGJFk8XoJq7)VfwV;B*47cVKaXh9Ypl43v}QusLiV(QB86-Dlf- zM6)>Q=Cpboj`oTX`v_C%wHe;+7(%94A){rPxpSgsd4@!LLhbNy$Ayuf5>A}banM=} zQbIaqjFdoiK20``5=65DtHYfE&BS#Ch9fHgnVuQV_~4BZ4nl?rkR89it)^46bcENl ziHudmWDgwECuWe)yaLBH_b-3?@$(<>rK+zT@4Yts;yf}s{wZ3M-dxe)5e5W@B*PJw z40L*E`az^PIW-&bo_TCm@8nA%+>z{aA10g=TV&VDM|kxS>_kjD8|+~^(K1>fFfY7^ zWYtm=;p{JF@P~gJZw8j zSYyft29;Zw5?P?YXmbrf z7kYItl`cKbM>Z*Jd7MWN1GL-@nFV4TTtHsW}{)h|$0=mqrRt zP6Zgr)Qn9U-40g{-7DI#$Ucg-EWi_itWG!v@Swsr>u9JA4G{?S>M(`2InOS~Bpem= z+E*C7GHwe&8I(l<Er`L%?FYX;=uTbfbstGuV4Od|N7>s-G#7Z zi8q|_R`J)$S!M@Ac1MWrImn_<#bh7VgtqE@s-xjGKuur0eW@}n?9&nK!w69P*d3ut zHn)VJ+@K<41>CV_g@HWAhEWka%E+BF+ z1H|eqPHH71*WAEB0Jm}s)iM~xh8i{~fVeo)BiFObM)t~DGBn~&4}l=Zl zjVOF=cp-%cUWnn0Q!%7p-prV-WgsC){r>f*fB)k*0otC0q~s%}aqKeVuQ`l?#)yFc zb|N@f5w_@~I)*)^VM7k1#xw29?&*z(tXJd^s`SpG?xX0(5m#Eh&_OemYB{146`rUd z49r}|=rlSow4b_E8hS7)?16Y#L-m>1Le6tcG7CVmmz!e~Ip}Pw@>xg#>WP+tt;j-L zDt=A(23YMx;0>UfP@VqWVjD{)PTvzrlDf?mAD0w9C~C(XuMxv7{<&>H9XU4cw-P1 ztEA*np#`Svr~BXi{HJdt?ZRF(*{Ufi-Se6l$O^OYSA8qBQT6nG)OA1+hd}`YG5%h4H{4h zoCs$D;K*^0$2n7w`;zTtKJ2HupN^Ta1(8!=ZV*EPrvXBF?Wm~bYeXRpG7K4bniiG^nug#)B0NS2bXYNtuwrOWpwNlP z$)SdHc6QsCIkcDS%tNFp1V8|z**p4k0adahBXw81ckv3q{3)5jBY|@m=26c&cyrF&IcZkPQsL-=xC)HFS|(E zG@2YE>KM6A2!c#`PC0iWG1f%K!3mehX$oerg4O`Jht|S?b=!+0-vxjfynmIwuBHEd+Ezt$yBbWHgDe;Xusn$ZM$_1XrKBViY*zYBgf# zOoVszb0R76jAf_DQ4kZ(!Q{qN1PW0k-A}tZdmvM=s)xYxKIz|lopkV0+raJg`pvXs zkQQC{FV{LpNVGWHhp+RIMPY7zme!RkE${a)zy9>^uM3fjSp9IkJlc?F)jo4|{1v19 zG;ijbf(T)P(tvt4@xY!i*vP>eXI*l`*TdVKvQ8x@$57(XERVP@TF2ysL>rM@6qXMP z=4^FPeN-|Wy<;rLs?j9SPQ*A!QoR^s%SVky2xBl2qlenGCj8WFvT6ZlZYr*@eUSq* zwig@APP13DREln(k$F)XWKS1qxWO$FVRBM^*p4mHh3NsVm?(NZXcI6OHB?k{tS2NcRv?3Skhm-9cUIj1ves5YL;y+`Jpp#YT|JawHp^ zNmE8Pqo`v)KL6>*KfQB!>cI(<=lxg-TMzXDcKiiq5^b2g4AD6QM0i0QdB!nh%RqEM z#ab?*!MVfR#^J+lgn)KzB1CF~xMH?xlay9_G$zV+P9cpLTCU2)4tYlr+-n?cN2lST z_*g~dXf&KWCNZXCs}6FpF4ZkC@X^i@I@72zJ&B5T5yR4va2N547Hb4qcK55CwO3l1|D5*b7e2yq}Vu9>?&k z@hBYpdOouoM5jV#f6MAit73`SJy9QvtLapH;28I77)ru5IQPlUe%w!zQ?iQ zm#hl3kxrDZm7Zw++VB1;%E#U=hB_Sc;V;|;Yq5a_@DFj-r7zT)ROV3W|8XyGh7I-$o zOFi5}V0!~2#_$@_zCm^(xf*WdCF_x#K*O2coUAo~jn!Iv5mttOn@p)Al*BM6D+aQ< z!w8@RUwIwX%qlA5jF=TkghYf*1ZR2Z3VJZ9$q{>5tDkww4jUcprGjw+00u4Ejks`( z@Or+SAJ@u=NP!+a-hTS|TkV-nsyW6!}@ixnRh z?8bBYn2q>nfdNO^%fJLZL2@E$*nS>5^iB;%5TZ3MOkdMiO|7q#;^M2TW7$E%(HA&D zSdXLK@ByrS#B?;{zP3Q_jBTK^7fnKl9%kE6mt-F!#Gcq}LA)QHH3K7d5RP$hZZOqP zrTF z<~}BOh8CQo4lBU84V%0l(~2Q9MyYuakc6oF{o9Y9zg^Eew6$(`E@$1r+h&gPygK5qP>h+d8OKDi zbdD(XZ~c-S(~>*fA_vE4CLT2An#T-srt=&ol4n0PL(0K55VJ2Heimmj5rnv0fr^!n zfHi&gL~EEm3v*ru++>Ca*odByI@_|~jsj?Q+eZbvO5@X@ElW>tB@kvbbFbY|5H6!m z)5Iu!<(iPwkT6XEi-x@q+br$i8aT*0dKI6AeD=USRmWI8Rz5yfrwL_;7J;yg9_Bp9 zH?%oa38tEbVVzV{`yc=ql?EmmM)ojbuTA#ag4}s3nNM?$0IEPDT^BJ9QLx#F(?b)*K*fXsntD$weugEfE)=vE2o zy~ZA)eRbu&R$Z#Ob*xsPyX$muV0$#(F_F0@dP%ePglLS68H<>x5uPgkoVDs4Pn%xl zP`q1@C@KQWy?0jZSree06L#*gIgTzXTG6Lx4Twqk6l(L^8&0e{<0GI<1Z0A+i<8k(8BF7Uz3wbbl<#h{xyMF%TpT2yy zn_dwoBNe>tjpJf>P8t;ze_?_iuGib_aMZF66G$(Q$*$3K6oW9c0uZ`tn%7)=&ja3P zpYIhu$ee~M#)qHAB~mR!w3k6-mrg!Xj{`iWs948+?bY^TUxRcjyk!&uG7#R)a;B+U zWWqSL8)v#%s}E6jzkmMxx1T>3l6uBV=iWU8bHB_v z@^Gda@mHkRK^J!SzMo6S2))6Gj8 z29!d|DT+CSX#s(pWe~!^E@nH;!9*LZ;A(-5i5`jt08y*vD9#Y0nY^taA<+QB0I}ch zXluf4a6H`%l-545zkU1s^RI6{k8aZ)=VYwVjXVgq57f@qnei{;X>@3)4|LRePO`S$ z*rlOr)I$g6x4=_Pxbljs>;5=21LiHBxvt`|N@V|k;v%iMS?{1#LO`jqmsk< z^y3-(=qyaE>vT|v^2( zB1#^UAP!$us>KvTKD`st%x`k1cO^$hsHbi9bkqq20 zX@2|m>z{sn-+3`{rYB!M+BAPJmbrslDjfhnz=Km{@l-h1CWyYdEV{ z6ML^gK}`$$aIW68Ml*qn`3&Wo&ZebNAJ5t1^;&S4QP?qbC`VBcw4VZ-|<%6J)Uu(sL{kX-q7-sdbC8t3&(rgbrb8&Y+++`?n zz25itdp>lZWejGB#yLI56^*TN%L8OOD$Mq>Zx6th3d>qEnAmJcL@)O8EPJ0#Fd9mm zI8J{uefoWoq?^-KrEFz}oP?qHCB8R}%a zPs2HV;N1HdRQlO)l$xFs+l6Bgw`PW{H9-$3%+U#q$WD6Gu~|olJbH$|9SsU$nsk#e zW=MmVvVi9Za&VlB;%{+r8g1;lzfG>n2^}*%U;x3r-+%q`x2R6ctOgDqH%A?F&QxYL z`{`DQ%kh_C z&r*j0%GL1oc1PP3c$U{F4$VgRd|2i&6`<#gzr-<&<;Brc z#8R&waOUZMg*%NoM?<4UgHcVqz6a~!?s}z9712nwi2qA{%C4J)K5ZcVb(VS{J*9_vHX-dL=#*oEjoR4X4YmD*qZ|cKH4IpAB z_Q?L+wI7?>6JGEN=Ju&=>ORrnLXSNMY8Wx5gagHf$jIcPndn9M)-W1M)A1Wrq8Dso z;887tV4BoIFEteKn8#{EF|8*Zz%UA^fmG)|x*>l50>lGV=*(VlZ z8lLrxDl&`0UTFCi&-lJ$Iw6FqA}@~^a?F64#;ovfSw{?6K@JAa8ILo-;V>Rp8*E~2 zO@hw{dB~|%F(}9_j%iRL;56oT=&AYq77{Tu?{9Tf*r|LL6DQt2fBE@OZ{35Htb+_; zNAR1vPOOHl>3OPr&iE?~)wK)=jy2);an}>qq6w^C5h~b>2^nXzfSSR*3s*Pr(u&`* z!(1(N?%18O&o&qM3{0$L1jGx`N_VR_Rs+QHasik_6$py2jSm-MXaKm?DNY4x-6Lv7 zDq|6b3tb0%75xC=G;etMbA9(;{o#uL@;{6C^M4$-?|-0d8D@PKZ**1)E&DTe-&9H8JkT>A|r?<~PeygP%HXv%7*vrxBASCPJJzy{dvoj`s&?7ilxXqnN zjBg(DIMf?Dy1jyP`}2&~BTv8lC*O|$_3J<2KmYDa{o@by`se@I?e?GkrW0HD*E6A_X6TxIDItTg5h@=c${CjU(N{Ai8GV z7aoma2XbB)vX{e0^`WDxqS`oHYOzB_KHc#Kt=Kt&<@MBgG&tsLGOhq-nN7=-F61+= z@TfvKknhW>nI@doo4p7O>NP*Sum5Cyy#;Uc>0^KVFYxczKi=fLeqj`J!izA1|~JZeYZZgIJtRT zS>Jy7hrj*CiJ@RPg9|=9h!vg2-gaHXM!F$Q{0%%9A0zrCsWzu!dkkqj5g9X>cqA?d zWx6}xdd3gmvu70M)F2xSg59|(-*y(VMI_0{1~2DG>52fko}gAZM{>MV8j%q$>g3cs zot^c*#OVBR^5cicAAk7$`{y5yukXMA{{GYL zck%V@;~&1Ge)#>LXC;P|8(=Ftr@gjDPXYyhljuYF2qj5JG!Tc;!TGI1oXQT-W(+8y zxcZbau7FlUc3|?!pdG|aV6x?a08Tjix8p$CS*%=U$xk&&bzZc=sJgA+rmckI2{bBy zemwS-NAp#J?LjOwWgDZ9aA@I zNTA>-2GUH>t#{qeif4}BNoIL^u6fBVzRhua(eFh9Ti zPT$`C?00X!=+pWBb^q=Ue|UL$`Qdy(omqp;v#iPCgeE{1K>(Nb;R!=+4ad*OTt4&^ z$SVPB8nzrbCSQmcAOju7+VJ8~EesklgK|83?*46VXb+JZbD)WVx1Zy%i-KH|>ZdbiAx6Wf6`?>d zM26hF)ij$P9lHSsw5Zhz_q_flnD7xLWX`PHLo(B??U)u{@%^WLJL|YzueV)VSA2-| z=f^+b)5ouM9$lYqU+(!GzC4a&zJ6XW6yo*MckA`#hCPk*0b?9v+ER|Gn4!<{vQaPq zG@k%y_IRR*<;@Nc)lP?m6X7^Y*#Z7$qaxUx-voDSGDk#oqF)|HSTj`TcDKd-ycXE$ z3BqWy4HJRV8G_w|ha_=?7* z6@P`MT^TJ(VAOD9Z+pm%PG+Puvllp&DS|UqqTjCZrJfKU1Bi6m~T;lnv3 z$A{EmY^X~^K$-x~0gV9EnwMjHCq^!)VpXazSU9#R)|Rnn^`sf+%leS-Cz^xxC%@c} z`QY>QrGC;6_3e0l)axhz`svvB_w#&w{dOK?$ompL{P1Vr<b4p!WHo$G$eFfu znekWPMlSC>5Di>Yo0oweuh|(-T&Cowp(SEN++)|?uEvALB-WHa@R=NnrW!Z)G@Gqj zMGuz)mWeq-mvZPJgU&tCj-JS|e38p`U}2TO*{}Pxfr4{40<3_+*7@<~g?#<|@$CB2 zFT`$|zvox|K0oIT_aAQf^*DLozk8j(fB&%V%GbxY_anfSk>CCP565~M&w4gjiO-qx zbI8jkA*WYwdI+yk#T$94myWvES^X+njgyc*wN119f?64TQiCJ&1P=k8Cqe- z;38De>aqQtK!{j{69{IVSJ>1M&&%JSD8VUS_d&>y`yYS4HU?Cn7|Kl_bK{Iw2c}g6 z2bfZBMDG_P{)RxpS_^`wF&i`JT|m3eUW)Z}En9&gz%trfHTxa4J^eaPb4A6(nk=OD z4TaQbFI$wT$xy|H@zrKBV$@-ib7LW7gyHCr% zHp!s&$89s7cb(OX4R&`_rO{-*has4L?59ne%(l%~qw{7t%`B>8wI-H_gyDe)h+g~L zmfKHarkXSTd?iMYj^{1guno@G2373!IPM-DDLt{RgC{&>u6HkDzy0{fZ>?#Nnixvv zisNz4tZyJFI9Z%CKxf{=#>8J5nu+I;gY$yZIy*wHfObO5zXkOYLBHNPBvKuGgj`#mrr0wP zm~Ku2O04y&M|Q`2*k50Z58a~A{@K67H*@b7-1}v{IX9 zk8@tm?>?q`I(iIj#JJOz9lh8<%%o2Y<&EbE#~lxeh5pS@*2+2#bkb62h)swd(IW8d zWqovXZdk%9(=#Q-7_!m*1pavJ9CcIhqKDSxM08!eouZ_t?M^bWczwhA`s*Km{`%f= z_?W;8#6x(AY?_sIQ|S@!7tWOSn(^q!T1WhaL&(KIjEWbUd+I{XB+2B8#Sm?)XfF<# zZfur&uB+bx3A=>$4stjZ!1EKvu_^VOF*u(v)F`z(oD)HZHfIprAskfn*A<36JD0hfWXWgFYfE`TF|6ov+B-Y#nT;e|Nm&yY>F{Q~&(khx+CGaQ(vXZ;uP9x0hFa zo)6z0Uw+oh%f5G?H=&2e?e+T)_p79HH#;Z-(?_9x!t)reF`iwMgfFPcc8M8*%bU3s0q+@`VHAC}uERhtR z&#eHu-uJgJkAMHxAKtay-yIjdh~|?`t#)AI9v36XmD?!s>Lw!onfM?qEy&~PDerAm z!5u3io^hUV4wd;-=T#TGUH3bhY^cdd4KoHTvpkm$XP|es}5yweBs$X8t>0KXdUf-_kL+e;OUVeQ4zTOT!=Jocc z$A|ORpFe(@{pDkR{qT|B?)t;|`JEqL;_J6tzUF)b`J&W%{VuL5Bcn$UJfHT{htO<4 zIS?!dUC(E~?gxjZXd}n_bv@#cd?a3LYo3^HD=82zL=!N`*lL!aBc{DG8XEVL0l#KY z&)3#t2!4)#26*Kn_cgQU z^&3;Kv*Vx6gcf9_-DvOLUArz%crh~~GoE~oiRWeHo>siY)sIK}lBL)$;}CY$u(>m* z`!_M{RKZWRZyfzJ9GXgOPPis&*(8hG9W2BYFQQ&*I~rDx=5(gM|G^*8*PG+aT&_9J zEBfs=55||@z1HJ(T_wKVUh9wg!EgGseyzOKqt3T4>-VqspRVse#kaTHhvcpuXB_B9 zt=q>BxBKO}qI7C7u(JSf)xpK?=tWc-++C&XfMZ}E4<@K8d3A=tLZp;267jT%8pM;t zJag2LUYnj7NE*VOsI=9rL?(XAi((zYgP-bM0iqdy&7kOD;?j0^>5A*>*{nDtlaS5Cq()6{wpq)Ao|9=S0DCl9h@X5so`qi7*mv;J4x2H=ykQy=+K`&AM_CB)A95C@Ob-hR{uW!;e7die*O5e_ry!} zign)Gkv{_Y=l9 zQ=ZG5LxDM>89o%`)D@1QeY=1dW1b$dv&kVwm}4(AcPA#+28J!Q9K*1rogH?EHUQY# z0pmE2r;11dpo#V$|Lxy5XVmNEp8eWatp*yN#)jZJu$8~IA9-5qE*OzxdU`s_XsrQ+&Pa^>u%l*YA((?fUp~U_Uz6^4iy& z=XWp1bw?A;?P=UA3;_k{p=Y#i*n?h7A{{n`=YUnZmMU_IC}uHIm2Bk}v1SBXApiqy zN0$$S9tOM`i~zNtsbNyXC+E^eB3p`=Cahk!6HkO}@Hxci*Z<{TfAJOUV0gW}uRgBS zMBXjY#r?HrJ+O53Y({^WkJu4GQReil>1ovx+s}8EUnv?8K+GM@6 z(AQNBuQOlt78|pU^JyBnlo(Jz=3WW^=4E^w`}I!bgUDm6wSj$W9x@9RJwAQ|pR|XL znfUa-{YTD^xA#X^y*;SbO?$f5754c+ukz!3{iR>_d?0YFZ};Qn>-|%Hi+)LyU*12y ze0&sMkNz^hJC6CX*DG{w#rfT*zfgb*m^1P$Ott(&Sx>j&zRn&{Md1iGp?r9 zQ2Hz3xGoB~>*>q>D@2e=ckRZb>ap*S_xCbiUlxzGyp;Aav2T_;fQj<1d0f4#?%3}U z3unN`mNB*ED_bqq3S1Ux-S+K*GA`)2?^_$z=n{Z=M&}ak<{S+*H!GUTTZ8k{kI{Qy zyWih5=QnIN;q$a^*M#QMt&s1J+s&1)Gq3&LKV;<`S&Se3yHoEGFSkE_dHwL+dVB9r zr{4dFPag-5ZxP4B^o-W&S?BF|l#k2AaW=+nF1XVyZJ4GtMh)>81HQA+(JQ#(;6hLn z&m5mL5M{IDnL~&taIL~f5c8~uG{pH_Q`Ov&Vn<_5JTa#-E21?{9HTtfktr#jWZ%b+ z|M&mXms}lmZXd*{m_+xG&8{~a9dr6PAFMqAdW!RMC@2280<#$RaMX+oZ+qYQR%hhF zj~2r>p)}F8I%AyEhSBKvea+r;>(q2ICgQmYi^_^xlT&AftUW*SbN1P zpI7eZjtHhP0gPK42mkDUgI~ti+;iS%yOC(<5Es`lYBz3$JRbAu-tqG7IF4V=+q-}G zFpt$=k9mt1y!w4UzO322y`K6OFK4`e*`GcJ-oLIhll$S7ncUZ7-G2Z5qrX0$+oZxC zLeS*o269@aa^Z+4GPW2p2x;rdvw9!Oq>PgY~k!M zA$KB@MhfBsoKp@K*W&o^^gAFf2;)$?`rO{+6}4Vwlmfa z_Z6e{vfgw<<7m8IU+<(1pL~4v$M{pfyuQ@uJI;JjcN}_u@7wFr^?1qS*6(l1T$;PD z2%ONT^{7$-*e0OpN4Ugs*-zcZc1K|%3Kh(&5yIg2UVO@W3u6Ww%En1*xJssi6V z85L{|azFP(qB+5R^ccm^OhXD_Qmd0Al*i6jD3%EK_5Sz&kN@^fa}4ZI)tb{>B8$1m5%$NT>HJHD;&Zu8Uq!^s?! zg8laX@s@LkZo+>1!tWMQRSX{FE+60h@G|dBLpue$ya(KDLIC8&qUM-`5-J82RNL%R zf>!|45=GFXX<5ZiqdCwdsK;vL@UDrVU16OZwq>^pGWd**JPlxtvDGA)&Z0gXl!&_C z|Kb1j-~6abEz69Z2F^1o#8{7G-)n%LBlcOoZp8_;7JF6g$36aqM7cfpV7YMB{eHi< z*9RV_kMzo$SBo}?=71_sk7usZ+tr#D`cO*Ces;H>;Q%@|wb$Wsop)oCV3ZAo+ap28 zrkxfYJ2#`KxWJh;-~ZRY{y%?tzddqt6z^Ji#OjIn#QRIEeAowEd5Z~FQJQ)`^F7wN z_Urr4x7WJz_rL2emp^=(-ZvfodL8G7HP`#`3f7nR_;fqGC-Pv(+a9FOPv^Jli7PKP z*VU+_*j%Pd+^vQl+uVXV#V#&MxAaLeM0ygiLk&e|iA^`WuHP7i^Nhjqc}w^}fdEPr z=J|*?tce^(rz<$oeBwPSzE1?Xuj^0$=Ku1)+|Ob@10!+lJUe>poVaey?1))BaJp-| zB?S4xT)wW|@xRkcNe1`ywRyk#{o42vXTIclQv@APuK5%K_F zK%c)t77>CW;>cDvE7mSve0>CZ;Uq>XR#zBdz0l!78t0W`!fcNC7{&kUzx?Un&>xSN z>3n?z!l+x@M-30pCdpswy9Wig6Suy9`lMg`)0@|0pC3Nl{rc(n`t$3Dk9ogdUX1t~+Z_d;por)@f;O!x5ah87Vi-yjCz%#v}&1 zbT*S?!`pQ{tRna7XZ(4@7tZVat1tUysrw0cMy+*3@ygP3DNXE%Z~XW^i- zQIU1;JNu(h{3ZrCMMWgZAs(B=Al*gaUMe5fBGN)+yCy`)}bh1jv*7pdYno3)HjUZq>@ApTs`r7wLe3fr| zEyY8g7$|p6mc|`1%Y$X!L@!M=kLgL#kdyL^1(j}IY~|4cDDc3g_rLqaA8u9(E8T9L z4RqYkxaoE=J3aAf8Ykkz`Bv+E*v+asKJc2`$LlA5c)fl7_Tj^^zwXyKd2L8%yxp%j zKIq!cR5u?`9Mqm`9WUx2ZZ9vpHjjqGgUf`_@oa>-Wf46Y#p$>Qj)0VL2*Xrr>ygi3 zzOzR5BzG2}rc`q%gPUHbj=x9@Mu@89P2HP_yKye4;H9V>Is0a zJZ|q3Dw9VOSG-42-~#u?`;b@lnU)o8xwJ+F&dbrp3=yZ7XwHjWP;@a56cv|P(r0UT$%B;;go3R zIHIX5F7{wQ7Xm!7fd-=!-GR2rrZ)sHp~nATmj1Ozwl2%g!^W6%uC@1$h|E0aytjI* z`cmC&x5#d?*`z4RkYqw8WLbbk8#YWB@c;CWFkqX80mGC)^`*MHx~ksGIVUd>d#^Pw z{t)#oKW88_)|_*U=h4uPLdji~proN15~`^T+3@`9|KGp=yLmU0XSBfL#e7?lAr~F@ zHn!L)q~cX(;mU3m$_HLWJ&pg!@( zy^B+q60aDudS+21tI1kE9*&og84vbSn~v7!HBYk0(H>6RmlHnT9y&hf@_>)mrLDZZ z_U+tlT(LfF7PrxR*RhMOEi#j)N*sH3>l9>_>1ma5Tq~J3i*(6h@Dg$tmno%c9WD_; zDoL)U+IVN8OF_alaYzDm@fv*={ocMeB$x_^rWRYPVpR`C)l`9Kqym&^AbUDWM6@hb zB+ag$fA|mo?_cIo+9dLxrtU1=oONRC7l}H&M689Y%Sb7l%g?7vlks}^u3{hlnf^OS zW<|uT<2dGiyNaW_by{z#CPFh+B;{TW0D{TH)EP35h`Uf!x1F|BiOa0A&ICoXF{VzPL@>!X46b&s0&Ivp>@RtAxZXaF5#O@pc=NqUgPyRMuh_W!`d2T8GCgW9-7PI>)#?H{*YS3F=hG7p9BQ_2+wF5*q@LzmJm$xGl{u2MHPY?~1Q(MjV@R~i7rytk)l3OjA{fPxIBr4-A& z47l5UEWH(q?5!lP&%gcK?~V{j&satuGqmg4&RJ7xQa!@KzE%=u+iPrEM#j=hUap5v z?T`QH=ik@_e9BP;4xe-Pq)b_TZ<;Jf3k$<+li+$l?u?jfyV?=^u^erLWik5srB_pd zYV=AV$yVwmp*#R3Q8jx&ARZyWGPC8#vfynI^=J)QB$ZF^|86%)!bMb$l$KqC&OOez z`TDdy2dnqD{nDRfZDW40j}PZttV_JvML+xFX};p2zr=Z4pRet~9%7WARpfO(orUEQ z%RBN-*%nG&{nWJlXah_4x*buyR&D%8U&V3z^w*yb-Bt1w7Lbv_Uhd+p4n~E_u?ZH5 z)nFM)2wj_2N&XIZHdz?!DAG|&VQ(r^1yzcqNGyX11%oZ@UKSPMYR|{Rd4HK-KK1#Utu2N*<*b^oqp=&uP0`k@8`wqQdr=#2 z*OyS9`nmVEJbv-@mp}RHbla~`M@l4dJAngtKoqQm8g_2p5xEHBs)txwkl9mgOAHM(fZwi3exZtMAZe2=T zymxO^#mc2NgFfw%QMsUC&~EYicAJUi{ChwD=ILS+1$ueJUf6xeAOGzQ$FjEBOTg?x zhGs&kUeq~YVZ)dQszhX&E$(t*jpX&+uF&Dhs(YL~U8^55a?`^bT&R#NVx~ekM7oMp z^ejx%re4a2$6tKD-!hG2k&W8aL(5`}?fp?2`#N3D^K(1h_Vp5>^Cs)7kp8)WUg&Cm|1eblMRcr`(*Dxc6^HQz8VCtU=MElmYg@6Yys z-|1)tt>BV_>VArbd(}P@R~6MY!o}~l0A(Ud=3QE#2S&{Z>a3~Mus|QoAXJb7O9otu zu%MPJg_a?%(F+7xM&n%zl>5u)??09v(y`;kP*jD!S#@aaB{fQE*!peZ$COy7h*L}L zgyYUMv7h|p@oA&}pDO58({cFg+gspsQzNbV2~C@{qQFF2AzKnmi!9(Mq0a zDcwr+v>vd~CAJC67MV*yVoeQE#XZz5o|VB?%OR>+9MrpHQwAyo@}>UjigkpG#Ox$Y zvnrB|mv`&y^%OH=B-2SEs0yX?QIs*$881(lVS_guH84V+kQ zHmk*8mDx3rcgai77IzRy=vzg}EXn&&zJRI8N_Dyd0GN%8v;ZI|s^7~vqEZG*wNM_{ zAO8ODrykm970RbKNZF)iWu@!LR+_E0ESAW`l*Oqlcxrz5t!z0xeEXAk=dSwim@_<% z>2LdSn_MXtIF?201hyUvsOC(FfrXSvjm!Xs$JIxag!KejZPAGt%_R&qO(WSVArerF z=xK4DT$dwhkg@GDR|bvIB}ydFpe!@_^kQ(JPg(HC}xy zS?T*DuKQ)ZUYF3o0(tdQzrH@%a=h7twtP)Fb(8(3eG`m5*QTq?&-!?d+;6h9kpy-!Gen$*8s(PAyP#5Xgn?Ss*_n-6Vv`6J2jIL{2X7w7IFLtB zK_PJW1)xfyC0QDl5OIiAsSFfYkRn4=h)OA{O6))W;#a6b<x-6|#hZ&+}w#Wp7 z1SHdI)(tcFl&C|(JerCJZi>Ap6{$QR3QKW;mWUiZDkn0{7oDcv*cm{xl5t8ItYk0f z`FP`;Q``vYk*1l;HDEKJtjyJ=miBgg!0ydpvKyWxxV$LpFo_>Ql>$-}F@JLeD2 z-}X)B(awFT+uMHDrS`YFv@YQ}mW4B}bK|`Etv@|IES>jRDxG&%sFYCK{D)(ZA`C6M zi4dZ2Xo#<9rOomj3T0_`C`0q^ZEPNul`$g^yeU$&rSsl*<~@XtA$o5GMhTFDUTTtI zbG-|ey}_+SI9}g=_~mz3(WJCdx^xM3tm_+aIs~exte{bK$`nUcra`6m_AtiuusnCJo!(}m>h70s_O{1O+F|$q2}PFQHK|& zTxnyxk7VbrYmBqv^CEcmcbeDp)As3k5xTBx{5HR$+`P86=ckuuYhPcVZLzh@W3S$u z9Q(9Z`(fwP<;i-sJ0_9EJ2#S)L}uf;1!5K!{|PFhd0z zg_N1;w^_lfOFOWrp*cf?&e9YW7Qhh6mTo#!a~j!-q>6+{WkW}f&p-U_cLx?Z}5q8UGn{|~=>Me42UScA)Tb6Ub%q=rPuyw?hd;&8bf zJ*ZuKJGPy9o8Heq`TE1QHn9->KVqkQ9*4hGgoJGwx5nyikww&m)H_kYTu@<%l9(A; zyB{_8I%u<#nyP?E!H(<p3vTvUIdvWTUY}4(?weO#5VO*s0X}ON`#jo2|*ZI)=z$$Oq&i4KBHS&5phc)-x z>C(D9yPcMvZ*OustBjX7V1Jd%(|KE(iBzVOkW694@0wXu6z!xxyj8Kn;8I}$Cd-K_ zb3kmlvzo9_+)7Z1l3?`AlIhIpbIg>H**XlG=CvInOf;x4(n5=+!Gg;aQt7wYy=ewM~~mYZO)|goH$iRr%GWv3}uqK3#DaQ1+#NGu9;e+7nriLArBj&r*e*cwQJ)sPqN3QO<8$c z7R=*ogg65(T9Q$EfS zR&9X*=n3ZCiFhXjOQ5A?NwSF`57%l{s<0A7Lyqsi|IKf5aztj+<>cDT5>j%T%S{f*UkwJh5qju>2p6`Z?}P_EzzfC8K}^crl}f5k`_{T znoLzyX7X_C!P0EaBnsxVbQKVGl+LEj#b_zfds+hst2+r80#2vGiS9bqb>mO{**_pi(L8e&|mbC z=5OuvDE|7^ZDX&u(iL-my=G>fo*vKVMYJrCQ9+~sjuzOm04RgXB(?wW>7XJ-2BIZ2 zn-JwnLrS$+r8KmsShipRSXg&|EU(0#$Lo#Zy(?5T8VE46h0~B05<-H3qGTAW(9_kD z+KQ%>`S$Twe|Pf%>ogXI@&R#5D5}9Ivv#4FT9b*L5<~;*RBc%}@}>`8eEIZbTLnwz zs{ehK&)eHEZaW(R-G+p3@YZ!%RE@2~z`Fq$EQvl-D$^0=V}{qdi!IeK8QDrRTF}Cz zjmng`?=>_ScX4D&iBzGA3PN z>+QN%B3C@PX2YHJB3@P%Ow|lza-l0gs20d79n2`9O59$4`PVNP04gQ3hZS6wwVE-)*rY6Yk+>(Uje zims?oahJ#tDLV8(cmyJ6%qSIBN3m6dlF@!gG&)*VR){1dO@Wr^Vd4(T$azzVZoFv zX(hrMX;q0PB_=8&1`WG6oRI*8nUyJ=@Ocd6EzvDHaULpYgn*JPNmiwVX#k1@IJ1I8 zDiv!{alQWb@7|(2X+=`F*4Db0UmHDJRB5s=A$@X6>X;T*8t=S#{sij7yDuNlCp%>z z3ElO7oAGvB_iJH7S;FK|PU%u7X>F;sq#9r$slKF2B0}cOsu**)OztcOx=c%*bV)5` z6ELS5vytY#MN#@5778It+)9iUD&~r8he2$a`<%sIY*8(QqwK(Gov114dajYy4qt%f zyyu4NkZ#kt#&z#f`~G1WpH+a{@*eWCt=Pk?@%7-s6}Pu#>3zID=RD&5*XQ%es-f;L z^}46h1CTo;@xG!xiseZYaM}2_&oUexL9hZAtx%vT8;y&yqlqR6lO*LRW_Av*jEG|% zu~xQ_HC($3%uNbOFd6O6j!F%d7HA=sN@&Xlsd4=37r%a$1FiR?rz}A4pw~hx z7wxhfF};pb$@P(QLb0@H^YQZjLw{I|NKfQU{qM@B`|ak((f}KpncB;$YtxN}SVCAb zP0|g_LNFuyn0(6^BO)kmDPd(35!4c?%N#aWSDUb*_wKy8Mz)@<4U!_InxTZElM!0j zB9EJQ>~^4|!L<6wc<|sXufg;9qz^vOC3+h?>2ZCq(@~q}vpmW2+&8mVh*mr_zI|HF z=i5bX|FNB{+5U#McKzY`bspE#x9|JH-cay}5TI2w2mqGNx{pz!#WV@BX{Ifg{Oxra z+293>L?ki=tq(Jhs#FmaQeYs;6D`5Yy++;SIdVo2Tt$R-uS}9iNVdwB0WH8%L4#?E zOTU|N1{d_AIL0bK;c%0Ij8BE0PDh`F#{izCpSJaHi5jE?8Lz=8*P!^D-OITJe z7T}>AOO}|Dh^$^fJA^z$qWfZm1a?bC7%5}!Z4A4sM;0&f*j5u9!u0KQT#d&#bqm$9 z)3LvuPBrX&TyuF8pWCW&bX_VQ$__tQqAiMUVxl5Rr^56;*{ANVqNIx3?*jG_4tRQnplNRcaa+RVfvrSb`;4DomClN~7w^ z{2WIndNsX6VY*-{3t0ezg>-`}Ef|_0Td_xDFV^+bKm6+Bv43&-@X!tk*0Rh#!D`hG zg+{d$tWmnl)X5Z|wgn5z(o33N&JR!R)Ic!D-1W5Te~Y=#BX+A=tGNiG1dfhgO%!No zl9Hu`f)^sRKsqCog_){J01JM&P7CB< zXh!C)SuwB)t&6diQZX=908J3ehESX0V~*qPnzhWfNV~s^R0^76Zb{9wyZ3`x6Kj;Y z5@2J>=HunJfBXHu^xu2>K4bM_m&nY7OJPa(Q1{*;5{xOZ6CmBZcU#1{FX!#DZYN=( zfq8AZn*Qq;^KHDCE}#{o=cpE@SlSu7$dcsU7zcA9O)678V%Eg*ikPs$MZH8dt144G zs8b7|FX85v5U>P6@#bBkkiVmxsCNjW)Xkgk2ek%zDVJ%~m=_I>AVZq(YrS0M;#jTH zPPgN9v8=P?p6|NcqM!W0rP^EXuvf42w~gf`=kpo2{jxCT+wFEczWv#|ZBZ`(*h`A0 zt0co!hg8L#l#E1^mYu)*Fz@HNrOn@tB7l30RTL{a!E<}8&8+T^uLUFox7su2DVIyQQ#+$@0>~Hdi-)vn}B)ud(qpc!>5XnFVhh%yZvTAGQ6nYUQm6B3=I^F(Z zQle(dOifvUs0I;}UK=I#PW|%E$ZSri&-B5FIo>|!aBVs+JuR229uzXb0uUO6ir>Z4 zr7l$hQJ||F*T4V8cd2h;`xXatncF=+;9?nLAhnt(ZC&0V+Iz}DnQ}@jrpA7GxLi&& zby3OJT(?C`|5tdszIq6YPdG%RoP)(nt<{<+Bq{_Vk|kJRGVjm8NailFXK|Z_ChV#A z2#G}XAeu0-Rn{=27HN@r;uI$;s|U-nkrV^1Rv*>VB}?s;73B}1D2tFN86TU~o0`sL z^Lc5x?@v08^9jf8LcEQ&+kolf)7DR)?J?{oo7J_y)ARgfPv_y|Ip^!=Z=Sw98;cay zEHn|EWO%8&RF&sUg&{XN!z$>S9Jn){Op;6YUy020($Zm47C=}UO;@l}6wt6F6I_bw zk|@N%x0ey)IN;Kn&IfJ=)s`C45>}`-QCi70D$JF4_aO^PjQ#Kb;o}X5gti&2&S^A7 zgg)t%WW^24P9t{@E6naxtL6(XD0z51Z;y+02}DpT>{V!rahGu8ea0H`zxKWjI zS{k}Q#Y|IC<~$D6!jw+UtXcf6ElL{zgM$2OLW2`_|G7CTi zV@Oe3h}=dcQKi{)mN|9OB*W13HhRCkQiSgg3|-&$?Zg*ed>r$X$BUgeKVmtSAq#HL z_N4KwXNx$kX5;1I-In{W2VS1ffAY=NPRJmGmEN>f_MG7oH58RYSf?)8-I5s?<(cIi zGP06E(HHjsV?iY|!wE4}HY1k8y&cVjA%SUN^a=Gij@aiIUMnkGJ9~7|mT3@Iila)C z;6zqq!9uMnTd0cG%jfU^{u894^(kUn?EQez0uI!xc~Pym$yYyQu3lhPuf0@q_rt) zS6NWCocG(;_IlK#&RRR>>-y0BWnI!hi`N6^#4RtDukTcj*LqsWA774m$*;b6_t=D$ z$jlbRS=ZY zEKRG)LP|H5w}CPOGjYAQ2> zy=BJ=6#E~0^YFbBy9;dq!d$A)!O4+KKh%#D%mRpVJ z#h!waw36^{?K-NZua*6lsIVEb25h*!T`4u6%ugpye+cn7*Gq0)ukoaLdwIHy`QyXs z<|2&O{q%L{VHcgdp8S|!Tx!|B8~)?<{nx+0<R@QRG}J_V$fSk5^xpF(Bs&BclwX<^p0;E zCnb9iG*syw`xFKeY$2m%lVqq#0r~pFZ+`I-m|_So!KqZM)xMj+v)Gy1P92UJloC)@ zQDrn1ZGC@!Y^y0nli1yCgPNx3U)C}2T3Tt*oT&uct>y3goWT?yJ-3}~(qk>~8&BGK{ zE`=JI>%p>cWM{I;Y5g8P+RP{w1H!UZmt^ZxgrZFar^9WTyS?x8#TNaP>$X4}dwb*M zRHH5#$L*x^_R{1S`nbo7JjjaIftSzQKl=TX&4ovblvXSz1hOKulb*}!a|@MnccZgy zOR>2r^>^9OkUP#HQ)PMgP_J>~UM9O8)HS=9Vm0)FWm$weC6k0LF*75^7pDs^ZDks>J~SyU4(<-Gp-7q4M9en%7chg)h3Q>K7Nc^y5C3pw4jdPXhI z(V=UtB@d66hjrDvt<-C-r&V>TQuNR2*yh$`(l`Td4HKG8QoHD)$um=ggarvML|H`C z9qf7>o=St+>=vZvvLu#ZHBr!#$|WQ#8hZ&+N}wT_eYtn9UedDqB5$`T8f0p5XJ#T< zd74q{El%Y^41cJ-+g7*HI_Jw5+o-9|c;(vR`#Cvb?Rb@CiJZ$A<9w;jKDW1D$Cp3< zS+}ZC)TnNN-y5&OU9*VX`rIvjWU(6>g@S5;Mj05yUA1vP*EaOiS@LpyQNX}Pib5Jy zL>5%bl4_BtG7&x;F{6$>N8a`WGt8pr;xsl2B-6y11Pg@{Bl_NwqEZ5_`SS7Czjzzs zMQ8`2tr#hJnZ=o0bTYdx51w;I*=589xg4DhVq8w!)6+Q{)76x_FSe3p%vAm7!W2ff zJABsc$V{O$J#*FGvZaWTLxNhVd5CybX2o8f0cXgR#bmHMW41zs%#yncXPD?RkV1e` zq})5P5JwP7XSTTT?N*VYuFxh~XORM;rf|6`5wqb{x3{^yL*My+j@{1v7Fd*elgr4l zo_9tI%4ff7`22(X^xOBV5}COn&?M3mHM636L~Fw6^PnJn=_*hmN(n78 zgozZ$o!66hErwhk_4U&b))W~M)|v?xnx+uK5=o}OW*ZYT=mWVQGoGqf?w0GsM$6Vj z?&dTJNToPS=n3IHn;a7J`5%7qc4XaO7f|AmO%n$YrdcH;m@a*z?0R3?}vj4MnMYaxwb6OaZeEh|eXv252PhpoJ+idUgHL}JA-$z8-sIj}6l z&l{GpYP{A{?*}gztLydMmbtg{%YbCgsCCTTs=wA&`{&X9(^&uHi>K`lX}symyaiF^ zL^23bX!(_?ZEcciqLOz|MVf#T0y3?1q_C1RP@(Ix9p8NngruOWLhaO*po%b2ydUg= z#W|wlh<(O9jyG4Y5>|EWx(`7t$-#+uV?5kjjas`M`yjh*T$!?MRn%`}m& zwAEk=XsBdMR53zQP=wEl%v(+!9;vO=jiC-QOt?Wc*+LWI>dG(+NQ)9>5O8Ih%=8qn ze=%P2TFoaW$WFnu)ls^%*gL}LxXM>jhKu@eE={jvIlaB;BHU})@~uv0 z$F^qvx;;wEMPxs-JPskkJxD<>PE4qoSW_M$#-J7o%|(L_u!`mG4M0Ys zrmD8{cR$=@C_xkHy1=GV$XdcR#7YVvQ4^?$n0}1IPvuhRGEHO|(Kex=Kpnh`X|$?h zK}AwTIgj7|-QUk4x!&VmbhdtQdW%*TQQ@_vF!ud;Q#5lh*jyMrwh#ToyLAzB0g0Tj zZ8hFSuao+Zv*%g~sc0IC5)(vig|=9;9=ecl0jWtOh^#^|lQZLHH?JmSvoev?ERJLg zsgU1!QBkobs{qXjNkdox#!4l<`q%4kMle3ZQ`E(lsclwLy0f=F`XDa3#|o?J{q?2~ z4>7o|I55)^Z~dZv>l^cCTj4mJrxVcIb34EKF_oM1yMJF=+yE2>tDVKLq#pB*i%crk%vIuy)mWMu<8eo zKpFyhSu=vgShmv_AGT9#rJ3|&h;$>A1*WFxpCj|SlrUQjEpK%&xg_LaQ9!g*qSFW* z>XMa=f-}n9k9i~qb(F;_(9z4#qK9R_SISc}vE?-Ilw`>gMN+CsNMZz8Kl$^I&+~QM z-l1ZVVK}5f8?hWyN7a%u*P(LuO1=24E>G%HmOlKDRl;LkCk7swuW042GGEM6UPEo@ z(;uIg!d#PPiPAcJX^8adq6o`5+*av^f*jQ-lED@b%?b%3$Q4?xR8Z`oiDb2$vYque zF9b!wH5U;zh?QlcWiXXR0>Y>$pvvt9J1s;tBm{z5RC-Vs6og(%>X3VylO#p2uOEN& z_l~k)AGW0lP8D!baH*RMqOxtq9YItxAm?R|6q#o^fAelTw~nl^jFNR}rYm$bB1`no zP}T2#a6yAYpx&eP##|djnwAMGGeu*KxHHWhLF`CBszRzu8x(~gJvYgaEDne(!dpNE zZI(bKdj!L@W{ABl8aV&chrc?mUfV$96cx(->&D6(kCtO>7RT1$a(NqpP2={~whG?* z@_aa#=2fet=cyvbdH0X~G>_NRu|NIEx92vZVzaCzM}%mUsSiNA#4Bb}ZDB&IC`XAw zYruS}yHeOv+3y&)N=K6-t4Wii725H4(UVZ1ne+wPh0*VhXH{p4Bo1@VsAG=fcBC_V zzb(@OSWJ2AxQm6UlqikjJrUMwsj5$(|LzyBy%>~;+-_7$bAc?&Se-S!B-;{!euype zAtdXjo=sP7Up_9ElR&2DaA0k=5yh!sYC-=(de~BZ>Q%E8$$&6jWYGpS;b|sFh$Ddr z0m_+P;WIqKCxC1wD`rW-IO)2iPE%387r%-LDMe`CjSZnksXJR~c`%z8(AJT>HL=)R*6U zeTv*SuGQ_@n6pfETzfN^czhmWYd2N1BwdtIgvpGaFqDdrS(TBfxR3RbC@?Kb0xSRH z)fK7QP^JnMbSXix^nL~}N&;S9?&G*suzExvrzne~2f3I_rG-Q*hYKhy_5@)y-+uVz zG0}=DvF2?nnpH(aq7tgC>X0VZ<}c&JX$Dl+MN~zXB9tX}t6W86I#5T+KI4cZ z>L^sQc7%(iT7#M-2(U^bq_QX?0)g=3r@#L0txps(B;RRREy2Q)I<(GXPBEULEvlLc z^9)ulFQJsLE?+!6oturIGY*~>HA0b;R>EBS+vnprKP|5>a%r~%Ykxb&LwmUmTR!`( zzv|OZ&l^TxiJsl}QyjZ#3Tm~wHN2LcdN;MAPFSA_p)Rp6M+q7jKCs}aC z$(mMQ`t?&SXZGvIhcDo6y^Xh8W%qTB=QoYp=?{KhTAO%ZS{8LgYSgL>QtS3CTeoIP z9464LQb3}>8;yblF-!7yUIzz3(O#+zgi56fY3OHu_uCyx!`9YX^d6mvyJbf;S%R$4 z9ks_kV=$`J>M&1MR2zZ@5DeJ)ysl@2vuLeNt9btYuU=gOXd_Jtb#9a}F<8r6!&nzP}!0+g5{XiyQ^A+`AR4N^+J-!Al8P4e=Tk)|&#BHHCQ( zM=J`7erezT;H`9N>)Ig#Yuyd?JFReNK@!fI6Fw^6T9q7mN)d$QEKQ16^{@Zv>o33l z`rEIb@}|nKpX!jf{`gnFon^gpv#cW9DzH(NOO!$wr}StCG^_do?^%VMnz^2S@AB@c z^*~L%?b4+gMOqf`0RMuE{*yT6>==}8RXvN*_C%S=+L}R4h1#IV`>en|k*+&p%)~8+ zM0P7FRap}VgsULHl^My2?4YT8Q4Nl+)HW&`1x`lX%duU@wr%K?~}`c zzRwcjOUXlTPg z?7eQv>;9%s=O!&Gnut_+FJTc7Dp++7Yc^vRZac)p1dVb(hl`X{F-lob>&x5!JV{xs zvsKHkT6y=)OEfnFdw9*LnR$D2hS#iK&Uq@As2M~pzyGIydU<;P{(M^7$@uj*KfUa? zxc&CKzdI0K#&KbjTxvHQOr)lvRYV^=XUQA5G8Z2*N{hqR$FJUfd2Su>85vfscd-hE zcuDRdDO&oUwY?|jLN70M#8l=?W7D>-O?wGNvWf{CR#I@0>0#-WQNvSEFkvojRy&|6 zQYxXX6W_qOQ)y)a68 zoy2K%xYv4~_12#}ZnA~w(N4$PtS#c%Ge3Ow(|3BPo;AXFgWJ)yk!dzx_XAI>Rzn#P zX;O%zsU<{9bAY`9RdB#(g|tN|$|^;LXb6!dQe^@%WUIgV*u>bBU7@Wy3hH8vmRWSE zq*qj3_xZ}(p~9ZW8my^wwdm_N|LQM)A`j;+Ju=WQUp}4K^ZN2Pzj`GNK$DoeQY3Y% z(7J9tGyPKJG1|yhffijydLWhOFTQws+H6gFI+Sf&bg8?$t5TJzQKEkqi-g}_XfrU8 zh%|^Uwk&Z!QV>P~vrA(5o({eedk2#+Yp5HyRww#~pfBf6;XQ5WF^Hc06o`pzFhlWyh1ZGFAH3ZRGvds!) zrk+k;Jbm@lE)o?06N@d;Kq*OARzb4J(tl2QL-%4u1+5KrYMMysEK3&1?FqcVh?Rd;dXX%X+XvY>%mpl<+lClV;Et*YJRagR@?S3+@JT$^R<~(Fxvj~=n9O9a) zw{=9Sf@#jKZ46b1kV#F^J}9Y)IcewLMM6qk3Sl%H)$%AG9kq7sg65x zmLqi6E95%jrkTpnQCfJM+Q0cX|Mj=Fncv3q=VN<_W`t6(9~u-*U~f^ zWPM{FEsn=Dh_p1PV9g6ED$8nKKD>W?T1*RBmC;+%GB!_yP_$C2$fEvPv2u2GOVU)e z)!?B{T~=u=niUnoLd||hyi|yDX61}q_&&VE${>^}DH>9Q4N4IS3B+m*q)RYtriZxJ z^z_8<|EJjh{&^pqW(ZajYMZs#aZ{*o8rOcp*!PEZmx=92-9+YX;w1aH$-0&LI$y4@ z-1IsRtNxR()~3o{?A?#Ltp_q2q}%@Eu*bzt?bsJVt_Grr+`YG~S=FdftuksJscka| z?)uZ3l+-HTr*5rM(g~zm5EDQAHkaybV!gVl1Q4pJ1;IcYsWE+w++&W|b;>Bu3eKs^ zAOG8b`EE1r$Mw5oxtvsNU95L&aftl#f0nj{96hUyr7?%@b(XJppYpqNHV?^y>e<6m z$5z7S^7O^SW(r0GQuSnP(gazOK+p-W#PvV#RZraDB4*HeSw8R>G>cmz$mR_4Cep`sSx=hApkN(faH4 z(CCEgvhHu6D3{)H3SyWcjTquZruNJr1O!9!Hp|2eilEI@L6c+w)TlcqVM2>{jG%$2 z`PZ*B>S+Z!=m3?H_iche6r-|^*zxk}i73cy4qc_VP=A{IJxzbmLtaF49EmKm4kh+fBC!Y%UE$ z-7F3r?yhX5K0GgVe(6lXa&1%j{_^ePhh2YMT*8f-cZPi%;0>1=YC7Q%T-+(TS8#sB1{vLsjXQke4WVI6N;ux zZPP6(^yhz3&)2|y_~Z)X6o}%MCxc_#T{j%n`t*8a1e&modV6Q}@%gqsnq;2Fb@#{9 z?fOco<)=SApN=l8ZFs)s%nsB*En9x~+EzX&Dsdo|u9K?85Jf^OO4@L%S$Q0N)qanE zGOVI1pajBsr-VzO3XxewSjrtF^TS8K#JN#zO+#6tG)+<`go3b{?jE^cCx;|2vr4x= z{BQr4-<(f!yZ-j?@slUDr4f?JK%q>8`osTJ7ToHnhC$|R(raoWE0E@CQL$uj9pz^~ z()q>H`S%{q>r&1{RjOGNO#v7T-W46L%oNpsia;(^t)xuYKo4p)Xfrh`jZ~q9wP3V_ zg}_A|L+NwKyhW#Sp|DzNEI|NyhaHMWAe*Q3=*Rutu|OxGIoST_XUFl3_;?)F$1=QY zOPym`m^HJR?$u1>n%l`!TF3O0#(Ya*MC32aJgHX14|%n=A2Wk&bN*sS%}MQt1q8zs4V0B^x^%wDs@)9*&;-_SjBHi<&n0Q@R+X8GVU%IeGUdAD{ev}4w5dV`N-9|JngNgNo>RQ;b+bk8 z9)iJgrem1|M2s7i^TQ2zrFqRXB#^~M@B{7cW+k6+yC=f z$_Up!!4}cl!;b-OGON|r#48_$6y2*}Q+j^!#rv;%TT=7jA?(ssp;X?*SCzsnPEjQF zpJ5Fn&Jx-XCzg7t?_N+rtYtYu?K#0_z!QQyD2lGzy9d zb2ca|OlrCFpB@i{y#H6LkNEX*odrgoM8u{nkZw7&#G9?RH(j6F&?RlYT;;O(+voM& z<5GKzE5=x2yuOKE>kqztT#sfawpaSBVR}@DZT8(8&kwzZAojU7r>W+xtKLYf(YixY zc)aS=W}Boi88x9o2@eV(?#4n|mI5gPp|m1{u#_TH^VhdUw#Gt>QG0G zVhBNFiMZE{ZZk8hu{L0;eElw*--#lohgc-yO)RU0k2WKo8s1))r(VsLjN7xHSGj$h z-@Mz5()}23ak^bUdz-(;&%S;tdqjs!y?V?ov+evwe*NoDbrEb$Qo4+>t|*#f2(cfn z$;<2#WjOXaKWvx+2Yn2yyq{@>RH0<4AdJpZFhQgcPwR%=-g22`}F~*B9WSGT?x>BXE`YnYFJ!}!l3>un{eA{VWrh9 zv!v#+P{Gv}TSQ?^p{~)O_mg3QJZ2kp9LG?i8(MT(ONHGKr>P>0J_V4fpg~I&DLq9Y zON6&-fBx+_uJP%4zQSV@(W%0;&97WJOWvkm9JnOvO zddJ>>?$HvuiL4nQiY9*Fvn7P)WL4i(nRdbe3T(b=2ll)V!|Vr$tn* zw?{t&oF`>o;=9+=wtb%V&?8{k#y;0M-&`M;jjhIY_vnwj?$!D+><`b4jBQ+Q@ww`C z8}RB+^86;>*7-V8_RfCQT6NsEewdN3b2(a!)o!15d-3hbEK6EN8m5Yju*FqMv&ul7 zyz^Vk%Tg0DkjYf0t7oz;KmGY{^0s73s|iC$S|aY7vuLCCKyL0cbG4uR#ee?Cr!DvW zx4+*1;EQGJcQaL{u+%3f4XjLRYf41XrUFUmIHRs0j|L1ybk1zIhsj&Z9jz^2_S2%} zwKq*MwvrNeff$SGpk`)66^hV*sVTF2rKpHFOEa66fNfcOh=@QX)awqbpfTLT26Nsb zy~cDzr&Xf@MuUqa+l0B4X(0ewS;0K%Q{^b^HTmu@*LmQ(^T*G7^st$d3zr!X|8!fo zC4A|N$EvZXw+(o{{@9=THkTM> zbLe8$mw8+`c2OpgQ^UL7K4RJ0s!SBrLj)8AyxP6pqoh!!h*nbRv-Wh)Y-E#qL{rSKCuYd1xjn~ir@EiZhH`}U-LPY{qfryO8 zCWH#cU;RHkP|`#tG##zx4ar8dn|Yrt^kAluwKH(}@~baSrzJ`XfYF2v1p-KKK~^#p zWlT|uC3I}QRzg$v7L=ju%L$d_JqTjVT&DFY1Vi9uVa^^mNl%w0l=^z3+&>v3q@cnwLts=G%$$cC4!+du_ixcNS!#svGjyIL} zoyl4A>R2yiIr`1@>6<4yBbFlvIP5y8>z3o0@7687xdpP)A30Lj=N~T3KYtL5Mc;LDhM; z;pL1pzs9Vi{E)2Wi$DFBfBtx?tH1oi^ZCR3c0whQC7J0*H!rSA0GgE$7uTYfscvs; zjO;@o-sU0Ut%ZfjWnf}PZ1VVYIWOTgq{_SWR_anBxGUKpQDPb51aNO?ba9cC<*Gdu zBJ$RTFPe%duwr3PiIiwncX3sptVtSMTlr#4y=b5fl_G>dgJ=v8;;m#FD@vK3TEgAd z*B&_@E&5B=_d_Y1%Q7TdiP<; znTxAkb8G1(JnF^P&xAV+~xog|=yv6g{@OIjc>zwn83rWOvZCbSKZ+osN z;Sw`W5ZnzMYFY9*)tsG%o)uMUl7dvsMM@w4eEW~%&<3~^Rqt{Iv0e8pIp)#&_DP<8 z|DXMnZ=YHm`}1pj{o&LNK~yG~m~RcENKgzEYGz6RSlUd{k^0bu~vU+PF+-`bp z*PO77LW+?guV21jhIYF}dqs?vZ(FZ6 z_vhQmPCi<6582t4-fyP0+iLZ?JUqXhwZClGuiHk$bk)phtOELo8y8ox;l~P40@F+C z?dm7ZcB|!1aOJ*arI1xQSlK@4`m2|WP|`d>RFPiHHq#CM^7j0A`Lloa)2~n1kK^N> zU%k`5AW0p?()qCjL>pwy+3*+&^r>(N50dC!8)GMDnIP&5^2NJANdg{UAkEv0fBqt6sE zUtgLSLZnt_49!+b->zlnTh1;N%tnVmG>244RYs_M4S9Y1Wsd5HRY>G{Ai5uq=T#*K z(Xt<58|R*J-e%VIvBgkXw(DMv?d^rjHy;+?t1Wu$&&T@~zWV$2{OfvH&$XYb;!s~t zhiPTKo-Z%RlDzWi?b=TBQ(hlGD0w{!jnp{dV%(^V=Bs^3j^ASGi84 zOQb?hE%oJgTYtU0ERn6vY&_ zr#v+3aTUqp=Vuw~F<(B`R}bGdi&uZ`J+C`o7FxUX=g)jt7SX-VKClCAnfk+};J$_?5jM0Z zLob`?uYH<_4Xt4%k$~=~JgWLPzxNlv_u;g^%(qX?<;zQJ%mELSL?DVOK~Rk(N~Nmu zTH9_7*ABRJuO)h}_w{n&bjbE^Ue;i1A}LHT6r;2t>4Kfgf;UQe zw*~;^E9g!{bEMcl%`yyVvnBnEqq}*Vum*{=DQ!mXWgaA>kKP^kBWD^NyIwhi& zIiM|vXqn8Cun3$Pb$Z!zc|DKQULBEbL_As|JZIZ-c)VNYe#H4HGQ2gp_4D8!a|N!? zZ`#h^$Ts9u^W(!nN4#C$_xpY^1 zBg}L3%3KUJ)SGB1y#rN}BJO&%vYQPY zfjKbGkAMFAUz}{ezP>!3_Wq$;mq;K1FJ=LL$FTv_1S%!cKi`!f4N_J6hwq3)X4zP8 z)@9)|l`GotwDtV><^^MiC{jQE0HyZViIKuuku;he&YPl+&Bh<~rlNn@lJk+UWUX z%ooG}$k7d94@hC`q3z{%J3sVK{@T7$$iYRq&pzt5=cemzFMa>;&iu9@RSkLdr=@vx}^vi56Xgk%_^5t=xdy?&~_F9)E+C1haA!_?gEiK8ktm|0>QB&4E zEN8y%%Soz6BZ?3y)crS>iO5!k90tuwd-#K~BaOlkrnq58fa>3V`zP-&r}27R_jB#% z)2c0lcLJ}fC#sZ&Fd$i0sLDe8&?Vz-gU%}Sy~*jVWU{!g?#X$|xxgK?Wqbccv!y^l z(N<`cfC0-iv?vrPtcp@9jy`+nzW@m4dYDwD^wf1^(uS#RFqH)YYVuC}s4};>3&gL8 z8Oc#SEhSN{5DhFuAvI?sZ%Yuxk}e^DloU~{gYp-DH0?Ixm!7hYYH!qu<(%4i9M!g$ z&$rVTe&d@ysz~&OCDGgS+YKw~_UR@MUwpgG=B6WWjv+#QXutV5*LSV!2+a=j&3Cis5kpP7Z z{nh{NxdU2VrqOf=cBQA!q|>&s5R!GoZ0+=WUp$@{L1?*at0rPm7F7k6gNPz4g{AZf zq7tSEpy-w*sd2F1*x|lK(=y8(rYg{s5@SG|2W+Ms)vwxSdeHSy_CO+=vJgusvU<*1 zBUAQ=uspIfOGH?%hsWi?Y=8BSHgD&kPCH|o4sYvz)Tvz$Jv}7E9~)wdf->`IUL9wt zoO^8RSF5Z-3~Pr-&f3&01nNE0beOq$h?*;&6=o{`owf zd}!uUxQN?2Ki%+{pZ0!goT#Oo(NXE5{_Hn7_qo@BwtR7Efy*&CK1 zBD&&I$zppyG}X!^7`^5`*nX@#YaP-qn0@qp|SE2!qL@*LrpHZ@DVde(v%P97EFa##J9ii)Bd`kTcixPq z6iNuo(WR;^KnJ8Kw17y9HpPp{s3l8EI#3YJ1QG>pUYbTX7fGq@8VosflrvRDeJxt0 z4l6iw_9S^gBW+SdAbSDOL)Y-A4CnH`=4~I_%NfsI_6O|Jr|1#h?AYh|9i33|5vOy7 zbf4)*wv)V=!+CmS+PEzuFY4CF4~V~sab6U2YcoSzSj}a&d?Pe(+#cs`cqki;TE5GWL?P*rFA z#>|Y22zNKzgD&FeF0Uh3gqiLAzR%+vMyc6Ni$uuXTbHDvfu#j#`^n33JGFIvZglJ4 zjV}hR;u(n~%aqIrDFNhF69ff_z-b}=UQ^9tT8${9@vv51dE3>>WlS0)*>8;DTW5`;oUgqg&vi@0+@6Voc0 z%-sE|`ji$)E}bP|r7jwM$W=tkngS|okwzS0DN?SnmKDOz4u1Km_4;-^Px6tuvCces z$QtL(&FMMsB|7!N=93JJP_i29nWow^jCI|=D!mo4(cQ29G@=57Z)?!1Z%wr#06v=w~>TatA=xJOHs9rlrIIB#Y(WHQCYcwq?DAx!l+CHO}e^kGaSz0f!>{(5k)X7 zX^#}KO;Dg%1Oybp2o@682;~e%2wjr-N56|$-!00=B7M>1!D8yxHf&4YjPnzXyq+KH zewW={z0D2VZM0x#KfE3_QYK!xcg}+0Hojf-#UXUCXjX?D#Oe_Sw{63!`-)YWtzAwj z_mhMHth0|LJ=B@C&)9IfCyNvY7D8|5k2u^&j@l(<73&b|3`S6DL__CHFkK~%?(P9d zdpa=%gEQ&y>1Uhmw$ICx_GV%l*on zo;AiuU2QOjg$lE#a1<(fv%9_B710J~GL|d59oKy&fr4QQP7omgVpni4S`h-nQdeb= zn+yx2t1f#EL?K3|QYOO%No>SUM0ItL2Yd8t89GR3*oM`n4p7U|eTbSdMBnzc0!h_~ zrH3x+ZAW`@%dNDhK4eCSa*WY=tEUyO*n&54v3|EH5w3c2x|G}KRGe&m@lw5QTb~Oq zy*Rh2&R-wPXA`O|S`5o(H|MF2mlB9&N3%b_(BpAyG|zEUi5-3Ag2A4)HTpV0fw@bS z8XYydHa{-pXuPRcJBUfQnXh!y0x0HrB#F38>4OLAdE-d$BXyL!^D`qodsFSz&@IpeKo1X{VESIG6{DzY@I`D+FFHCAXH*Ry zs1CdRBot1GNG>ekt{{#uXa*&*lnCx{^%%{ONUVbT*t?Yy&BI?+GpEsl`qJwv}&pIrPOh`OhdhBJ{@XlSq-c6{HSBWz@JotN5-Sa0s{<`IP&Mke+Iz@m zJud@|yI>7ii^FS8SRKT&uNw=xEAPMY-OF0T(3IEhV9SGy^$CnKB>y`2%Boo%eduX;Iwpxy9nco5CaiWQW7#eQ;G5lB?hm5_Gc@HQ4||I zm{YF2CfcM>=-@OGmv!XBVYeGK$PvkdK$xkA5PO2)etig}<4PVWY2pw{`Qu~*Lu=DW zN>?MIOh%SURY(g(aTdyO4bt?nr%8|S%z1%1FM?3HM;J&QV#F>0JEeGvxN47*+Cd#d zAbpYY=^qeQ`F0wQo%Phm1~HQ~E6B#<*iR^u;WWv*bkcpKi1}r<``w_8)s@U5`lfK4 zAMgXU<%64)-E_#2^2rCk#LNynv=q3a8J_s4t;(%&imfig% z%qY3~v(vPxN&^t(N=rnV_oPrrP#1?&WK^bT>M1JmJbd!vlY?@9e!Sca{nEypQB^a; zlVG6KAkG9x83Y(O{K{!$5>f(5&VTZ!oph5mYqea)At|j0K*W*O)Vps;S*P2ZO=U^7 z5O69nQpI5cAaJd*5Rx28DVd|Q1VsKmn28ZCnw2C8ffyorU{GZ#E*d4i2iB;AyCgZs zTx~Y-W{c`d9B1i#4a+Oznvfs_dTEky(r^-p8!R$BfA^;ddwPC3KUIC+u(nhqtuA4m zhKbKSY@#*XR9gZ!m3<_`+^~Da)U{QP^u?k~yXno>xZP_v8;BS_$piNZYp(@E)2&$=lXNLUNvDh#{E99$SpGb1fp7RvOH z)eFJIUDc9}j7StOU+i|kdO5Y*yqvZ>Enq~XU)vfa7T2Zkbu4p@e@kQbZI?Oi`RE(=6RrcZ(Ket8g&Z8j9*1o~{rVHUcwH z$cQv0D2Twpxzgru{aDs^*&QE&g`1tHW_1h!wT6LK@KiesS8Zm#(-;xnmlpdMhpFa>f|y7+#9f#&g~^y06wF|FH3f0XKcLXyAgmJ1(sn@=bAMJ8C+P=P*8|z1-mBq6rnY$chBN=T-DQDbN>%-EY6)DiW__D z$j&^do32uV%33Lz293_1`+#Wk_0;>}^;XhRIHP$Mt%nb9KKhFrqtt>6Z+CcH=dCBe zyRbU4!l*2AVwJuS(TX0a}BpVAa?L5nTrx`#6yNfDHh!OCEy1UQJ%dqx!nGC=|` zrT^tWx4KG=7&qCSyshk|*$^?&E`2O2MzXED&8`dqr-X`Ty(*BY2SKlYXL2U7gIz2I z$g2qBkHI}jtms@y)1Y)lB?nipDM~0ZxF(_oQ6v#1IgHZ#rOUdAn; z*llj=5GgQDW-1A0s#kfbXIxPh34vXk0feBqK0g2V>RB?_)<&7Nvk5a9D@B0}Ox0=- zu_l-#6OloQFze=qGa7s68bTa}JD}+zJys$|)?iA+uuP#)MoJ`m%d-39?b`g~Zu@br z<$al~-RxWETB}o&fpsf;j{foEWtxg7Q7uJ~=x80xNC4?XWXwP+LV^j)(g>== zlHeSWWO4eJzhT7IH8hYTsAnLC_R0~1D!i^$Uh>QRi&1N0rtYd$m{T(?01zdUb3&3+ zJta8BlL=x(p7M_XcM5SW8Wa@BKxdLZ#sFni;;hO+0?tUJ0s(WhNblDA>NPV4B}*#m zRoP4t3KIqgc~0{X-`kh@im~ClKhB6J+^pZeXx6s2mVG!|t;m$(v=o^x>ntjHPK8iI zTc+C`i*PW5^+J1q8dgI~zpIGANe-g+n=$vaX9phxgXigLczqC-dca zJoC*&WXfZ`cFkck6hIO<5tLAgAO=!W?PzO2aTPvM5FGr~KRtO@C^yqA4ODaN7IpTh zB|2uFF>d#}?LkKW9%Mo!9E?Z_CTB;k2m=Hl%b1t%m z5>bRQH3_3MA0RpRy1fuU8RGS5(tPYT?_{&tjntn{Yb^(!5++hPVF;wHRQP)~QyN&V zIAJGFCVQT>Tk$gQ;P8TAzcJ*yg_W-h zWkWJ)6Be-q8-&5pMbZfxSMy2A-*&cCP-E&0PAF<}tir`<&=g_4w*4)Uk<3?{PwUj! zFbAAb7|aTUBxNc<$sqBvjGZwc5z1m@%4%Vr`1B9UvJCy}Pu9n&T#V$|4w6>9r}9D* zu(sHbM2CxrEJnReH}}19b&0;Rpd2<|y;=P*s+a~eCh@1sFj%);MQ=sPoK2Q_Dck#v z6GCauUbtkcL1PRfE1E8yba4q76`?>U>WvjtYGxk-Oi2WZ-attyf^1s)N`ocBXRm%r zG}^wn*$(UJ^zO9XZ@n@JSJAk}{+s24ccYlI*v#ElyaVY#%`$rCP2S&1pZgb;Q~6hnp> zJ71C6t}dN4k>$sK%RS<_i*NIAY_gA5v7IZ2p&SRu)o)E1sp z8fne+1Sid z{q3~fQa5slGKs`hhy?-yH4p-TDM-{ZQy7#k9FmsucSBi`*>eWL2J(VH43G_T)e;rV zEQ&}$NaXjtba(U?eo6FX)vD?e*})`9V1eg#yb+RJkVO&-MQV36{ps(e$NL++E3fin z?2$Hh)4b4j%?em_ov8J)D`k0J(DiV)$1DQqWmU1wq`!Sb<9;`Q)*PiYrRGjDgba~B zw%&x~VrMJ6Y2#TaJbD!EF#x=hbOq;X_L#y|Bf2T68U)WvjsvBM5L6l$Vn>F#fh-7~ z7|B+d+GP_F&CX%YFFw85^7(Q;<;^y!5U5rFhRo!i03`4hEbVRI#6x!ds-0y`A>12hfFej*_2s=y@gkCJc zd3_}c;H*r+85*I0q?MI4hM=qoa29wMBBEY}b9A8~z0QfDURsv9I|ZkwGz{rPIk*s@ zR@Wj#WL{TF7jC3c*@=T-C186NkWxO5!+?j&3(2QpyJ7QA23>N%D%0|@?wPIU zsd9-6S}fZ_V;3&Zfdm4 zIs9&bkCZHm3?w|kD<=pFLGdIXGQ~kil4LTD=d*d1hOkM`@5XAy$?EZcjz!AmGFX7qEmAdPS7F9JcoplLU8{9JnSSQz^t@lIlo`!7?SJRYU*=hC2byOAYylY?;m? zCPPCaLV5_%0O(jm6fD$7%1mfN0zuL;*n41E+bk;?P$DZtn5cM4QXeuvp-$9^ToLF) z@0=3AN`CW)art<2dA!5?{s)^6eLt-IuMzWd=9~RUCE(`fgC`}yd+!s4$DDmF7%H#9o+D8? z$#RK4?Ro|g;7Xt@9f7o-K@lreLD3Z^&qddDv$nqG`0|rOrN^W9@kZ84RFtZ5IvF~3 z#8ov%jKHjbWYxN2=!3}69obQwB1s3n zDdq0v{;m?TONNk08&ez!gR={<4Uq;ZX)5F)fCw=V0SHnZ;?jhcvMiDUt0tDt#!OzN zC{l5=3*rc7=arq3oDxo8bw^hIg?_H-HY zc-gFv>#i-nUkA0(YCl~tPOY!wmR8DY>-us(@dB>==(^HSWO=`oEe;BRpdsDqd^5s^ z9OKyuR@PyAdZhiqgNV_Mog_=o5_MWyV;VB7(;(`-@@3u^RG(MVIw?rV+bA8PAwwT8 zTwM}rh#s-a9t2aoeW}m$T5TMMmqUME&zJojhZoNsXP8r_d92DUH8dlH0?gDoDTJ>m z$aJAoU&#bgH=F+Rb=+k37`gw)2W_h7oArWe@j4#EtuC0rvL*$lsnl{ejF~{A=uAvr zuBeYxL~^jlHNX@kM%URBQN&eDPmMLeVOm(bim?rW#(}}f+sJ9I%n&%6tO@PL#I(Xe zE~N0Gqg*uDl}Lh(iBs%E#MPX8-6P@1=J8{*cKPTVtd88qh)QHUz*#{y-i5$+| zy$p9B!xc2Z%YMG-sUKogtR+iLHk>wm8A|e+>ei?9;9QH)^JYkvzSexYmFG|Q+Y$cZ zG7q<@P7Dl;7JwsK1fg)Jj2eYNfH0A#1O%J`B3FE94k=qL8~Vk^B9%FYPRcALSQP&?A?CzZ(%j5R59 zvw8mOR4-f3P}LGGGS@zo!sR3TT{$}6$?>IcaVhA7j; zKTsW}Vluebb;xy!3%0F^q()<2d$2RfTq-WY-LQ6^qrAM^9^z>}(YT$v)WVa190AQ- zS7=rb5>z4(gDAxqtPv~%4hhoBw=g*!Gb zHCu`@k3!?kVJC&q1yMVTNNQ*%0ZLZVGY~9J5|r-Zn#QaV0!b&zR6=QvB*r{-LW@DN zi5Pndiz!GX)FUN`C3^@Nafmxba)<;+7PBbQg^=nqSuvLM?Zpci8f>VD!4Z)l3zt&7 zZ*qRRwLF&IzMC)~U+zw8hA&h0#@qYLnc;Sf*RO`ORBe~3F1(4>KAxwcOndV*UMI$p zc2hr(JMM3OG(f0!GQ04kzSYaJlmVC6O0VUS<}I&i$e8Ae7ClBxGR zZw1hGQ`_R(plVSvnvkcZ%FwHs$2#fF%}!-`|Fj>r)UcJT1s3jryI-P8a-girK_E$7 zRcVAs0GUJx&9|qHjbthKi*HrScBD>GB zVZAR8lbnyQ(``(|G^Uq6wmz5r>%oIu42?Fd%D+DCZhhHJF)ramvlN#Yv)jARp1o~c zm%`pJRdAkGn%cRq*enYTD&r#a;1Q|HOF67hGF9s9EZ$!irA7N77FP^^xunK2C|@x4 zpf*@$+cejHzF8Ntw1~~&W~#@hK9@n~G96rp|G!hNXVL&BWKakL;*>-Ylv#oed_ByA z@br<&$fXqi#do8Y%}^A<+P{2?CZMJgXwM2dU)eNs+DQ^$WE%;PUd~7x7)Q|jG2k% z&|S23M{@BNhEN5js1hCn_petjJ8U(mbIE?0Qh1?~Ywez+#~cxc0dCwV1GD(*=U{oU z-*4mN(PDR#BpV?SAT7h(gFFk62u^TGCZR}9Bxw*c6A=+akiWUGO5IHKi^p-eDYqIK z<9>7bAAinNVocH`W9>LeCju(mp^9NEhnM4K(B=_Aq6A8!5U^)vdZZ@DmGH&M7K!Wl zU&x^3LP16Tm{w5lNToz)NRrgxh)Gcf5e1PjUxiZ&I}C{ZcLoQ zBwdKAbZ|mxuB8t#uGKDOF5X!)ImAL) zhURYH*fiZuaiS8M%0UZNl|>l_ZLDeLoePrLJA}K>!`d!7?(a6VJU{SZ)EtMQ6iM!3 z7U>yR@H7}GAZBKUnk0n~G=dnCEJ>~pZz82`ihcE%`*AaoyX7Y+|6BL^X^ zW+I7}oV?kF&F`lCF!9Oi{o@)x=)N6Ri=o3AXYab%WN~*8HJ72v`uJh0c^P&!_-r?t zf?&;Y_J?(|O-xIiHuk78mCUvFq>Gwt@^qG4&_`mA5RM@;YB0i2Wgd1IBlgd;s1C47 zXk3PVIp}37@mz+X_2j#BC%8%#+!08wc`?-9X)LKNER~m^dxu6vOtKEIWr|W zB*3l`x%vI zVZ6yVad({0pBLAAG=2S5@P5v%wVIgxtD8}k z3ODJxtiGG5b6MJCOVi{bZS4;ueMHUqo*;=L!NBRV4!6o2bE!jLO1gj~-TS(Kc-ZR7 zL!2>+Df(%o2r3sWiPPaQY_wb+ma>brysWw?FKq1OJ$lvBnZPbgPLY}ll7u9OCQ)!Q zO2Qd|@16;D+Sr%pZP^!Ym$i*D4dvnAoBE=I`jDAES3JsA7lHCJSIG9H<9^&K8+Ykq zRVrIl7YB4LY(Qs_1P3EKDIiT7B~frdB1@34$vNXr`b-7=qG(w8pMBTo)zZ*HDaT;Mr0#kC*HF6Z{ zaV;1OiDYDwOV{K~LKmnz*Z?&!*n|hpnC3+7wT;v$ID6?Mg$F9Bt4n5aM3RJYGFVhg zxOVMzah6PpK&(Sg3CiJu8p4zySy>{=)mTFT(w&T#^JcqzynKH2r^CjcCy)7VXfmx& zJqzY8uLsRKKF5v?%TCqbFVkQlcRH_G5tEz8NPQNTiw?2I z(_SVBsu5bA&t|uqhpC*#Ll6&h9WSLa&nOy8x$HM#(|CN*ye3*x-QJEBU$v- zsE2qwqHeL?s4BAsEs{MbLx|EVNl-RUWC`YwBqE3*DVURkh$B;-zP(i0O_w)q+K<-0 zdFq>+-C;Y*SDx<`e3v5kG&AeR~s*hV-9;SVns*v=-KuSWaO{BwwJtVSP2`37Q zSvf%*o_TGbMMX*y6Ub8&M%}6pVR6Y~tOg3Tu##PaMVY)daA;(bb|#~Ajxo>?7qDls zNV6h>aJt$8sCmMGAt+#yGb_n+b-1($Z);-M+BrVoJU)EFr-x7Hr$-^8o9TVy^mU2* zm%W;c+N!!}%JO{PZE`Jl72}*Skj;$;Ilk8&9Vl46l~bp-r^INX9?9c5w>+PbB7}#t z_C$*|ezQD6@BZci=Uzr%wIR7QvNp7s#n{Eq(_qIUXjXWgQ4Q-dQ8Dww%gKiM^cZ&@ z^=0=xv0GR;!HSd=38tiABqwtcARr28riL>`aUyaeH9dYzY=+Y}xSizq{+m`xo2J9A z(8oUuxH_}h2v^o6{QBKx={GmNDj{!z@~muDUfhk-^Mm`8ZQ5|IHN+6J zB$B3J6GSDu2Bd}Py7CQnj%)qbg#%X#TxkEQ4cq$gAUFBu-F$i6mNL*-i`chcd*Q~T zmEx6GkKtL?+}72U$gKcm_cL0Yjl4u)>ZYCn{?}Fo_X7B?Xb>>WP3j78H{V z6$B>}!{gdiW-*g=Y}P^H>Xg@^p*uu908V!HbV$w<!fFg$6=-YBibN0;?de0aICu zDRHt9w0A<5`(Z8pUA`R7-@c^t+n4_QG`v0;KKo$Uv1X1p)7rEIb6HIW%JX?T7<_-@ zYcy4K%Fz7KWzt$NA>zaQM8jsc_9}Dsq0j63-MW@2Dm)R#Zs-fe?Q~hUub*)E^5G@8 zrkRL2Eq&5n4dYoHUKZ}K?e^*ItIfRbb9uZ+>8EWUKHZdI{rI#amOEKCWu#W%4kiRc zgXK!tO#NswBFsRUgwRe@XIqKNDlI67b0y~CQbQ1puD>q`%G6-) zPF~3{EtJUA?mfqTDtjE?ZEm06!GSSGXLD*9UGpMO==-&QvlB zd#}s8(BZJQ^crFs>zt0`FFyU_5zCPCv4kAQo5QX2k1e(4W};S@)UWo0RfMngT7-~X zgZ@NdXAP^ANH8)IA<22wsIOlRlRWgT{qpVmq_twYz1weYmGI_&^G+EE%viKO$FK-e zd$AyXrYyU0SA{?kk}kzHh>aZV8S1c-K@1{8-@kmDa=%&uxrfZUea9+NrjYG;$A5fEAHye=PKT(s>9qvEb2(@2+eO=yjut1%A8&OIx z;b}20+veL1Mhc`$sBqFiuA%HnN||tkW{Ob>BJI^Z#GO)%LZW1Za#9wPzn4`yghL70 znJ6U_%vr>$aAgrx@^sw^!(!H{N3^@AJ+p;-|cVO$GVAUn&^OFYE&bvO6lk4hvDFD+}9<8rO({P zT%XQm*sUTGyy>=FFbtJNLvvj|d^r!Ve>_r|04=+*kI(O|e>iNI(NaXLIdJ#L~I365|VKCAY7Ro zt^!;Kv_>V1OYK&J;XD8HdXhXNT@njCb07vBiOXm#h8(&OqNHlL zG$rjNH6$5fo`VQ){o`@JzdV#r@-n}o=Z~-W`MA6Lu=eS#HeHWo<*A{Kj723x>3H$`v#zYWwbu1`ZpcAes_%6X#HW z{HoWR*FPEITc+W8_syUDV7mOp&vx?AesX?&{O0TJ-Q>0U_{mNlT3hPOyTNTFLPG|^ zh&Wi8Eg?zd8XCb2Bp|&YB-m3BpwNITfs_2ZCvKqMeEr~MkDGO@b-dZ_4n<@BcmLU< z_923eFFN){!=m0eN93sz$^Nk2%CxWz@FY$`jmFX_)kv4(Y}$yp1UYALW{@F-8?J*% za`qlq@>5WN6zt|w0^yw-Dka2OApr#>0YKT{8QPL4TOv7_sOKoCD{+!hF{&#q8gd@i z!NfRgs(L4J%d_k~ zm+f9#Xs5-px_u}bhxC*IUhILxHifx(j{={cx3@Q%bM@nR4$4Qh+BRr!et?`ZIJxJg zO`?l$^!|J~efQ<m<#+z@vTpacdwh6fTTR`L z-K4q8wHC>Fy?$vJGm^m|C#FaSJClbJK#_zXlcYq6ygWUwi~BF%T*eZbW1^PB&0!L8 z`Ncn7bIASSgG5;X19Em5ki*J7E~9Ry&B$tM+`W*Ax*#_zgn|pVAptm2;q2Na2*eV0 zmEDqaWCBPaT>+{1FvC!kkZ#Kib|Ibf0-z^!x`b5W9+wJ`BNyfRn zqH$aYkTJ}H37jDT;|PKC_4_D^UOXicornlzA|V+9BGT-~ce9-zzj>fW;LWL=G3@rA zyxb`PAOHEcMHcE$HAx)M*>PQCT&%1jPIkE2ZiqRsQpm8eVy-KLgI$~wn(E1E>?Mq_u9Izyk$Kq`?wb-mow=f}+rJ-1ic9$(gnhxxNOuAkn0xn4p~ zm)EjV#FpFRWjF|pW9?b778eQY=URs9?4|UGUVATx5*aR~09`<$zpwUWpQ}=_-q(v0 zm3ChG>bmJm?RuPVWNeqyu(8J}AJEq491cGG=Ly@UT>6Dx<366pw2or)h1Vn!RaCtsHJv}`| z<-)#_78<8lFUD~~UjF_6;%16Ium^^d!V>_mBdIhtkx!>Gj4m_>aVBwB2plA|q$J2S zJi&0e4&_`NfkbKwf0=O!rXagW0jm%puajdhq>@&mCz5&W zW%G<-P8JS?=XRm&+S!sCfua=?BS?so_(}#T7bhpfemFnww)8&s)6?;X^P9Kh?FW7S zqMYBK$`M;zw$xFvKD@gx@;q+Th|fH96>iVVsN%(P3fE?2t?b5WNn^BZZyvs&%9noW zPfxKg^Kgl>vEHA`YruW8ruAhMn$K^JcF>3S_6mpB>+>TG4^A;X2(KRAQSIBLA?d~I z+kE#;XzOupXd2h`uaq>%jNPrho|@F zld5xVRobA>%fm3$sQZal7c}P7e(VR5UKSl7eegwRnW#~!HSUlWbeOe#B=J9Znxi40Zv#S}AWu*T8@BL&ue|*!Y zvb!%JO;1m-AwyG$K-q|>s~5>gmaBHf3L=?;IE#^qm`13_`J3;aFCW+0IY9#n*Pcwn z%lq4Xk`})FuYaY+Z1vjgB{Fud#k^DN$zi2pI}Xk(dBO)3ji3}_tOI0wlxKYsho62PzY0WQt5zAK?#HgiKH=6 zunPslL0ycH*V8GHlFoxs?WBOJd9at@)ZrML)`cP|3Q_{0qKP!tU~g7F#s+7ExP-~8^+ zhR1I|4&%*>Jv0fKN#q{Vog2ik^w=O@S4QjKoCZTJ^te1-Sfho1eH$%#`fhIf5dI)G#=i=B6PXYn22$iGwp^<`I-WrKv_F2kR>2 ziIl{mrk0jQ15=`;WbfnR$uMxQmLf4+1l&kc6Fw864d&+d&Br?0$?i9&kN5TQY2Utk zAU)0NFx6+3%z7?_$fldIWtlj{Pc;CVTVr0;ikH(O%;D`Tbd3K7NP8rvBb%-~O*3cQ+;F-TT{RKd-#IIQ%yr z{K-$s>reFUax91P>JC@zM$)x+D_7|n2WJ2(iKrBu-~hyd1Y&RvaWDgy4`2QDo1U&M zY6dn(&28pE$K5pD?Kd%u>BqnLAOCDA&7+Q4h&wLOv9`3D%w%LA2{i6Dq7fM(k%dY9 z>U3O@1>7S!jcl^aNOvM3CxNukfb=UptSo$1<`h*pF;J5@ILW}1r`uquiDU{dY?bKR z`;AbOWHxt%N%nPYyVXepZRb>Utw=ypgL@V86bli`LMHgw7*%SxT{kpI6@^g%7oR3Rw=WzW5dBF-Vzg*v5ZlxOFnWld?`LCV9;UN_*zNjddG z$;edhbPbs&D5-=xh^|#2jp7s`a4<9}jl_l!10?mjF=(x{n!0kP2WqfS$XbxZlCBQA zy6`BNk<^7~X6j+m*xWeUSduwy=!ulnRn(da=Wv0S4E0RvHS3yScg@NduI2JHZQF;b zo*u{S6o=nAo$$g>75Ft;BKfB9J)P|NGbf6JeYoA=+Q^`9IxmhU#} zEYBr#*!UkT{qEM2FIvCT+j7l6fBC&2SW7oCf z3i?1uut1E78kbCtAV)AFAhl4^3(7Bmw6m6 z{^r$-&87Kre-==A^>_Z@NBa-I{WWer{pkj?^dL_`0*S_qo}Obw#sET)uqDy;WM}207;7!m(T@q0&_)5Y&RgFX| zrUr1jIOPz1gOsKvDrFZgh8Q`VO%~xs?8Mx=q%ns^8@*FmB$W$cwbCiH7n-$4ABu;U zwM4WO3N~DR`^C-rwC;z?huar#&WDpV;_V^EyN{2b@6T{!4%+U{d#*yKEEb{lW7`OK ziP}q;SQqcK8-r>i^rz^-#WmA2TDy~vu|5y&@pwf5^emlyxqWe1*Pp!n^ADdd?@pih z|MIKXKiHoCB&Sc#2i?eEmsR{jtwY)W*T4S*`|{hj%gfJyxTToZ?jb~}4hp@lS>Rov z(t>-505Q_lm|QJlfDu!Aw`vhbK5Y=~SZ=VbEG z=&)@!b_IbbqJjHBUR}t3^E$n!a7P{6qgBJ9*HQj(3Z_f|*WHKl#gd zua=MBy{hle@q-s19?vfXcVB;a{#lb`&S>KgZh!p8pU>ZY_29cNKCK}cAy-gXB9o0A zg4Tpl-8-|kA^?!8Jvhne+B-z==eKVj?eI?F+%tgSP0;or+u=|EEi$BGr@#4Ub7W55 zgOVzGj>ImMePp8846_g-$6-IJWEQ}Pq zbzUgo-c=AC+~MS$#sU+IfqbPQLP|2I6$U#&BiJ;E!%CBGNQg_wxU3svjHVG<%0-O` zy<{-QDzqpXkFCsOm0F?{!hPrJrpfxhmY;Ta1|-zVK-_Ss+YNv#V9F0_LRuZDAq+Ac}S1$^;Dm_iw^IO zyk@BvE#<{e-z=ZDw=ceZvzF=n;qG<$ldk2k|LS;t+M{1A$(i(rfBVO;-hcdf;+H>o z1xau2DZw#Z5oyWD?5srB6Oe)x4G>R~03@9`k{HMRWIWBd#zN6dc51-C? zdiIIh;mPj(H}AFC&D6t-%$l++JRV`aDx^_eO0|ZhB?}8ECF;co^Sai-gO}sOaPfz) zZ*RBzF_!0b)$GdDeY<`Ay1l(Qd@bL6W2Voz|D^o8%j@m^^6}$ZsFls14nAkO{rx}s z+3?GUV;^7q&b=FFHuoHQOybGcforg7Noq`R0AmCd12G`TgsWO#zxe(X|Lv~=L6VWvrReA_bN^(ed2!G%)^Z{`E_)na9x6E-)wysg zlwc+($z8I9yCSa;N=k~(nGsAO#z=0Gnwh~V?9!^$9x5PL7w4{2nyy1v=j)Ope3#)8 zDb%%7a0Cb7&^2OBit8({)$}^7)a%MtL!3#ilzH8?N-0=q>TH`8NyIL}#YnBaf8Ml> z_6K>9?{9Y>zv;JM`~8;cx3BiQx}KuW$I>H%T+M`pjEiJU{06i?`*$(f6BwnC!fFzMF*Hd1_bp=#vEitIM69I!PHhqts)(5bXtWew_Fogk^#MY9X1NhFFqzNUvGeMUGTFGc45k)*g0w%+SwTp76SxYza+DW`d zh6Ec&348wa?MUb6VT!lg+slLhXk9+66nDRQf7v1?HrQ^g*87lImX!`P&|1piV!<+; zyNZr!ekrA=4q~_oupfeREe=L3;BNK|q3FHdt7)qua;?7XpZw z!UX|BR}NTQ{`{}rT&i+bXQIJ|o6|U8s6y2!bC5LwR&2)n&42%Mc+r`*O^LT`!YwgJ zmaIV@I<(`_W3ZSGJ62~Wun7Uq=^W(Z#lc-#B}!*Vpivi0XF+PDIJjF05I`Z+nLJjN z6a@%t^&BIE3`liW_Dm#)&LRkqi*sfsK^qZ?WoZmO`|8q>k-?PF#aRkDi5G!x8yf&q zhNCAzRt87$(kV)Q_{%@o9Z#Dv-pWgVjvt;bKakV=-Tmf7RL_-$7^Cpy|ISoYIg(D6WS>^&}J5 zBv58F7D7zm+#goe0#_MjnJn*Z09DYJaAAa(ir(JpRyd0mMH$92d zMCl}XJhgkC77VLUT26hosE=pXg;9(kgf3-w$S2a#8q(Y$U2ILF%zS- z5RN4ofmTSk2~#?80woYc%r1!2um8=T+s$!b&i1@nmbzbWOVMIXE|84mTt=~>l+8xp z|I0r;Gn-D}HgOx*i}Ab`Z4~7)hH&F3-i5P!5}6RJg+r89aS{iW6~(fjA8#kD$8skh{2&(^=KCN0hVyp+ z_}Dinl?y<@bv*Txv1C)z>{%#NbMf-o+8#g5e0LZ&#^tQ7y&FD!w7L?#eigs|I#uRW zIc$#6X)JU3o40rW`JL4dEs*2xXPF?80`P;%C7=|q@00at3SO>drQt7B0RfKaI*SST3*#$a*~ z7#YRD>(Ey=(Vz@7Bp~ zhem=}8_94U+l)jXl0l0WuhLVKHB&&D8R}K7m@^HLt2miUxnwR+ygxqeHuCQLIbYuK z{&K#1{YGEjezk67(jiK1>>XMkR=MHQ)ray#hJh`MY`425U-sj}m*sc1e9GAf-+X(1 zv3rQmZazGmd5cFO3?uc736w8h3~%3@_UnU2)Z5?v>DQ-|{3t&A`M1uyzyEmZ$Inao zqd&NR{r366cbgyFEnJB#6TF%htec?7K$MgoBHE~Q$q+#ZTLRAP1|0wGzrB3+!*(9l z7f+6S2Ei&wJEy_bmQn|o&9doTbR5gT zExBLaFO*R`NoEpfa9Bk~)?{-vq7-x?z$hh*2$Yl*8Y~&<5XxZrN61u@fTnXJje(>y zkUWYgsS?yRn1e{ZZofq%_>Nx(e^4C8rmj8+%PMqOj z2XWU{$N>R}MFbd_Q4sJUBq_Nwg8TJ&v2}F|afk{DClhl_Zp0Z(iee5jQA=ebQm;i3 zUL!epJ>2Wg&&y%|{Lnqigh#F)PmfQ@yf^PoMWRJ}D!WO6v8T=f0f$++lk5!ZvK!0o z<>Q;x+lMzk61&&)y1$qyuhaAr-}NZKhJGU7?tb&mOT3KO{o%`ZzkdGo2c z)fq2tZ$^Fa`}?vqtHa4^*+iy|k|KdxQYIc*`QyL-7so8Ot7r+;D4afJrl&f@GI^RS zap~ClHl~-m*Qm+lARY=;7Ybaj^~3;E2Bk};D;VI+fF**FELM`4Ddc;8FT)A!+QB_F z1e6ei*QPx&Tw?TA)*7tvL4pObQopjzGg(b8p{sY9d)v%=G@9n(Y+}5!7*c{&p`Jpy zj4k0+vJwEVuCB=s|MBI|+S>0n&(9JfMz`n7!QZU&c$i4DH`E@hKeitbg1eNXa?dTV zHpoPMOnC6emh+2G-?z7I6E_*=<7RYsDzvPuKOVk4cW2U(>X)C@St{}*e)Gj|zFS`2 z<*(1jH@5ryZ}Kmk_pe{mPyH89r>VU9;%-V(7)44C2`>OQQ#OkTwxLJm%p_g23J^m} zs}46E+3H$|`rs&$te!(H$N%&{|HUcEpD3hDqBv5T zSZ>;o7fDIC;Pfteg7{{tUXdPY1Ie{`BN@dcU{E60h^wB{D6VA`ru=>yAgh`n5a8fm zgIyS1<-cMk4vOLkPl_5yOsz7>s4N3>5g|@WP8AatN=Af*akQRi0IisSP=hF0Bq9dV z8tgEr6NxafYer;fkHN{c8C(1OGhX-8>0v|j$u@}TxRrOu+}SLhU--u~*%h3KhA*%e)|{bc{~{0zs#QitF9;{507NtCa5uYU9L;kUH5 zzAg$J&8Jh#_I$)o|MA`Pzi!z4G$)K#5eK|zR8qo-0Z zGbK?F)X)9ffB&mX*=Dle#oC%XfBjFsI_Kd6FhHa% z1Olt7SQ?drK-5gHjdY^=VmgdtBueyJR9KTJy$g3xlB-?Y>B^jhRufh!B2$0_zyJg! zl$m1U)Pp#bAeLG>LYO--oJm(Y%YlQEY@kpVzIq~plLDOHQk)kj?$WG@#^js^^gcX)nSwf*$f^Isd7HOi*uYVSRLimlQo z=KY~>Z}gWJjGz3@hlhnXpa0JE;jcF#yVsxXSQwrpY+z)d7Q0f_qH!@N9;|vz5HmR? zainGI=M`G|^tyfLZ(hpya{uAY=exV(^B~_WPGfQxE0T^fj#K>lpZ|xWN_%vY>fdwN zb+oqL#WPJFy&@H)ZIBYN-YAbMX%xNys`@wiPfBHvq{%vk;s!Wc22^4j|5W|!~Jhnac$^^0B1>$K!N6{a=_qcRWUewzQ}U;M{2Qw+Oc zNh%ufK$4AE$Hix}@eD_2Ft>ERp=mg5tD7gFwLmkt3MqM9z1$QjOzA;<<%0rI9YIJ= zfmi?niC_X!frN|e5j9JQ3>S^gYFDcqoUJ0508Zn`3gMntYtI?SA{U8@A*5%lAL}eDlL^m*n-+AHEt1B_o1?#vN`N7B(>jyo9aHC5N6MreqH< z=%ux(aP|Jl`Qelw?e(78V|C&EU+p&g%ZbgG< zA}+~Z`u~rnKkJqy$*%Lzxf(NbkBHrzF7src)u0G~4Jhb}SNC`8L3a#FPa4z^B~q6~ zpa7y!Rauqo>30_q?ryf4`>;#@ARgSq&DNUp`+@;QP{t!5!ZX#UGrHBaFgaiz&9l!y zG9$dCLNge_y>bWf<3mIV$>GSt1$w5?01>;D427)3C_-Be?uEU8N;q`S7%Gjpd>|@jW zV1^7pX#^KIZ&P*~U;&%E)`((Ac<)1~ksviLpKho1{r#_g@!_ZWiLV#OAHJ&DtA_Z- zj524NxNJB7>3@Ao!L;%=pQ}Ph1UeK>nwb=Wt+y7gTJ3OTEt&0tIY&lBVPzyCkVZU6 zG6e*V1UV-MJBJv`V9%1qgTVRdwI$<-Obzlf43Pg1Q%Vf6@u;*5A?g)OP~shtu&`u$ z0R`8`jUZbc7Q@YbbTjAR;4E1{j2Nnu zYl-s@|M2j|b$@U$XHXr5l$a!~PT?FzeSnKGQzLHX759#`hrV6X(@Sukd0~SvUEtGc z`fu;8QAOwHH}%|33)w`zdGXWOEq!2KLyL*m0x2M}de(0MdNd)@EvkU*{ z`*1(h>z$o%6&vH_zH1V-A^P#tSH9qjUv6)oe);4~uWmni_VN4?hmun;TRt{xX)vjg zri2Zb`sjlak08~K5mXDbBthA;Z$8F+*xp@zRwxbt>7}^M$V)C|+Lf98`~TxV|N1sl znE*);Lxnthz=gb~L5Bs48`r{&zD+WwtBYwOM+UXJ(-N8z#hINRKh;D?q)C7?NCO&_ zA(6zK`grzp4tT1A2}w{$XdodGLMfDyVZ_0MGF1qm=q#L4%!w(;n7w4@?7D#6jD&dz zAcC@ri4g;wJ(+lGPCAm3OY8>H$vFdzDWK77F4pYzZ=bdEMp@1>RXc6hf6>khjOOT^ zqs>f%I5>{*b?duMTpn_{d2!M5xOqJ;_1ebRAI4#H$+u!iw9YoQ{pDRf4`#7n)&F?i ztG}UoI8UGI!rq>|S+6Gd7w?{Rdw9}*|KvU|uD^Kt0i%S|hAd=BNl8PfZka?|rzi|$ zU>ZV_z&d0mpmY|>9GR%oJogPBefaIw^Vb~qA@BAVz0~NNLT6EX_w8@~Zeg2zaEY)$ zsXm=s4JwQ1ptWhoC_Pma7!oN>ShGw!p)?Ft6%|716tX=&MU)7XATMxAVm1l~h@nVI zNtXz!K!B-hM5gog+)Swf)fGaNDho)G9q!@q;sT8 zNatp?W=sa=mKu#S9YMh`XC@^wfn){9h$Ea+)_C$scUD(Z#@pA2U%nYzuOqRpo797c zLK2(yWi^ki8Yt7QZ?_-Lx3>DIzWCLgo9;-CZ^_XLZGPbCX?-Xk&U1NT7x|N87||3m z&we4T@qDqre1IHoKJV|h_fz)u<6nI~a23e|PUM+kVj~`-4;W;jL=f|$a0x;Z>Rdvs z2t=e1TP0tyjZB>0UOsvFw!D^C^$;GM%rdjwzWUw&{ik#E@E}Q=kjV_=!Kmrn z9%b={7IW_;`#BEJrkZXBpXywS23#RsJt>J8Oi2!cd&vx9xJW$OiIn0|7U@A?g$shj zg&lzW49#g0SzvbBS@T2yz_ zfmi7LtJ?>p`hhQ|A+JN$c|CLr-_3fy*&iQx^8Hue-II!9^L2lFciwK^{uCd! z#{X34Xixjm^z(M=|KiKjecNS*#o#0i2_GAP@Dfg0T!TuNq(Ed^s8$77HANgsoP{um zSMQf=l)^XL zP}x?R=>aEJAG8hu?KP{kalSe_K>4I+g?BYboSH!bG!4I zu%@}HGs1@%!y;R3Fc~6`^;&i0Ae!qWAsO%%l$w+gkQlx9*qr0TyI(we7q~cXPxd1< zCJ}!B{>bb7nuEAhPZ<|-^clz`+2 z1sey_9!vj}N=%;Qgu%iBAi%~MN$f~@l)P~STFAdcMp7q;ct)}r2m>5dQ)-PW0N5Bv z3CYLOK)M=wZs~qZ&jcg03p1kW5CsnjE>6M5P@-f!?h|1JS%wT+WlKphe)@ApeeC`D z^6cgYqe%%o^irvo5DH$|vs_$Mtm55&xkFs;sy)Bk;$m4>ty2P>3mM!;j5@MUQ!cCpS+c7e z3CxM*z*Rj6j6d&Y!^t(AR_}vO50`oO>hou}m)myxNeM5z^BhYbxo)>-tEBL)q(s%; zh!sEt_2l9-Z0JBRH?`s(wQ+lPxX$9k-5OfWn$95)}vfW&f1FX=tH7@h9?uXeXg0zkct}4TiH>K zZQEUc@uZ!T`uoMT5MS&S45Q)!3OC;w*;H*4bt{jk{K7d_xBa0u0TU5Z0w55G8*qm0YX_K{SgKL6IyG!fH$;PK9_L zZoC0OLJN?KGp>;hc(VVxZGm$ zl=I~YWmoLnmK;;v9?;6X+~+x|a2?{sd+3Z+!<*CLYIk|{K~SdauiEkOJSsKaYI0-Z zKx`!5xriBykRWa2tmNLKUTChRkeV6^2|ygt5CK*yC2T&t_98#!zj{C2Uwr%QdB%D* z=FCO%Y&4O3CJ9BALXqr5Sv%D}mopiS`BaKMCX9T)PV@fIki(R67LrWUxmkLYNu>mQ*acf*esaP>K;y!nG-H_TkOl z7$>-&tz9%JWTOx4#HWigw!)n2dE21l{Qmy-*ti~2O1~e*e)n2NxUX`3je4|Vp1i-^ zJ#Cje(m+KIN7E4&?%tD`o_+CfpCVTu{p>kkzj!i>RxvKD$})Pw~@PGZeDJPK&N>)ownkhoLdyd#;? zaq?@M&d0H(OK)NwNr{*;cRbaNLormN*3uj~TnCKEiE5y%5o`kLGN^k7Ju-n=NJd70 z6-9`dOD2ib>d|sbFf%I!fksG>nyZ;cgcc~0ECUoSOd`aj1&i(nMZj)VWb7hpOS{0tkxwwmavV*G);?RRZSp;Dd_2Zyo}XO6YV z<$k)XH6_+Yq{5t@FhnMDxO;ke^mU|m9>Q7?lBog^u{ju?#FY|*5}h-cyQc-%?9APX zstSsy05Y7@v65~SMKYNT=pmFO$rkRMJtPGVfhh5VCWDoXiwI4cP*Mmc5CKi8j7M0l z)XB&t3Xe!;Vh_N{C5CElZ*G?bEGa8by<5_-q%M~;aW0+D3nj}M$M5cb`r++TuCnLI zI-C)CwnIPN;u_;(x|`Bz>GFFT<@(7-6duG=E}Q4*KG;{HuRqG$(^mISzxaaSdFT$7 zfszcf5t|K%So*q*D1qp!V|1eVa%N<35{sxr5*%5pWQuiWBK0Pf{G1``-#Wy{n`vw( zCa*XhSHfsnL|IL|$RZTG#WH7Jjcbm0?Id1msa<+d#1sM~KN9TxSWZK4$fFKFBU6HU%uAQWxoBH~;m8yne};GUeyJS-zP zGdLK;4$&YAi*O?Fu8)?^3;}`3P#A@J8WiG~gi7H8aqfdeOEXewPE!)NSO)0|jfWq? zydZ3YW>w1AR^MGrOg)qY%ke&@Ip5#EeRCSUmhJBSgZFGnDp{2-uQs~zZ8|e2>b`6b z?{UjdKfcOv8fVO0h0lE@F4uqc>9ZJjd3gEDPiF^R*2olA&iW{J85W2b8K}e(2|IJ$ zqFn9>AP^}>W{N6XGJ8Z7WvMy?Jj8j|R_4-QeF#1B`+8_?=cU@sd98EOo+=a`OccG$ zTdR6mi|%C;*~p}YIFA_4vg0}{nk0J9Nm@xu@61UOOjIGs@&8=>LFqysuA~&{{P;D9 zFbaxDB#0z~K~kh}aD)`7#|GO<*0I$vvJPa7MO0xl5LzBLMeZh)hM*qiiNTBjk;{^U zMnR%SP!3x%JUI~|cBT}v6is7Nz+FHg$_^H6r$R2&(Z+|HOdDaF_e=@dK!>_7tMalj zjH-I#^!EOI0Uu@mw$U)J5_s)@`M$;CT4)ArHU&#pf?(pyQN_pAxL7 zfBDrH(T{rh`IkT64?orCLKGCqT!ck3(z6?BY9VD$?t_&t=ZTEWlhSRZ2Li55oym$Q zNg<)i%o4&;HZwmirOfMbnVDzOsN21IZPQ{aucL9)(jxjQL0yOGK>AE|JGV-1F+`bX zrdCFxbx|oCiRB3I>;|N}kVFnHX&E_eWA4df;ljbp2{30oCIUT0*$qx`Pnbde`%E}N zZAxofBt>XIB1o^4RHUJRputdQfYL!8B#|8%-pypw8cG_dDTb1&iYx_U?4+I(qB9pY z^%4jPcLpISok05a3s@nSyTAWnDiAg{G4SXCsXMrZtz{m^F|+v?H|XJe94;R692_JL zo`M~_^X^3CymBY`w7)hfui9=#zuv$2NbKIABa~=d{mWl{8Xw-@U%dGGD}Fexfy<^b zq%tcL#fTGu9_#lds~{}EwQ{0RijZW4uyArRvOrlloS~6!BWxKx{ghVB_~{sDc{!JD zrzLORyth2}twagdU^b4a@58u+Gm`F0Yyg;ScBF91bp7OF-;h3tcU1&rAx<8mo=Oy) zL<|sR5r8Q;1k4ly!cY)K66jGNn+ey!93{wVfK@3f>c$5Dp8rIl~^ny4N4Be zCQL#J7DYONWW>r;JYkg4vv7>k23ZU%VJcPPahN&nW*Tl$h&+38$%GM$GWc{COel1E z_1-xZ%Y%bi!?)v!b~~+>&;e`Skuyu0Q(Aua>u2_`{t_teL%*bi}$Yxxr&# zBg9-;mL;#^ez4MNsTs%ig8r`60--?9E50 zX$EX`y>p$S19=`YW)U(O+BF*OCz;!BCKjg7uu~!{M6fliw2EJWxzh)n|-TvCe^M+!pvEcwG7m!8$%KDbaap?iZBs_k-L zGIN&6@3-|dG~@Q2)2)xf(@WjX=rYdbuw&=se)sNNX*ZUKGp6}sl(xGPT5dc}|NQ=U zzx(44LrbSb(qI1VbNcbN?qB@kQ=Dq-DyCb9lzTRI_YH}PBoqg=Ml#~&9IDh=Gy@dr zL?OyX#6$_oXe>&qMWpDSs*K=Wj>~ZiZ5~I(8{N zv9eIcs)bw;98pZ%kr}}pnk*^FN&D{k=G~ru3}QQa9?vLdiO>EL(nCrR-Q+KYjLYYriJ<9ed9MhH`1HU)8qb zgESmi=Q9&Y49K~rgI6AumXZ{a>Z}e9*-V2d;Ka!m%n_MENOgsS9x-tolaX+l>rWRlK>fKy^Ieq ziexXY*_r+L{uf~KyQO*%Blg{kbbf!>wLImf718NF*76}v>%>`VcBs(ZNUsLg1x=8B z8sq&Fjm>zSo^5LnT-?Up7iX5_9=je`jHrC}S6@xvzg{k$z5J+rND#82^Lm;Pkr_+w zMpPFfF&QA~ukUuXrRd%aSt!Ahofwp^$VUiU6e3qH#3Lu&JO$misr~rXRrSi} z8KK~kl84KCYMUdEG)PLJrLg8uTTwM%1B$Jv|?t70MQD zqyb6-GTN%i+)2S8NwR=Mu>=q<?;%@HR^7J{TprZ^9k5vu7K zER@OXFp+ke)}1x#g*aLS@Mu@9F3MT@cWBUBFzh@>d1I?V>li1%KuWH0t zsVE2yLrdCnfN`#P}>l$o|-hJd)~!WZSU5`g{OG-YMXSCySbWMCn9kTR*`i=2vH1< zs$Ozl7B68lrdHD;YBzHE5z%s>*B^(3}1hd2R zad()7Rm-+zmJMTJODF{oICYef$Sr~aB8Ep&kg@@kCY~%9DFdCTjvzK+E#V{)>O_AY zBbVGtv6MuT*Ps9L%{PPUUqog)X&L;+C(1&Pz?X5mIv;N;9I5;Bq!?&Jw#P%wm(m@-HO z!pWLD)!bNing*xsuD5p|V5WlB@Ng6hyB|eXC`n?&!qCP^KhmNhrlYA}U1AN=)PlN>XMB5D_FrN>wJ}E!-?qG7oYq#lxk| z>VeBjr35oPhfA))DTQ26Fh-%AVj@`>QLEHFXNW=Cl%WhoPK8ogh!iT3S*R2zz|$6Y z^DqJ^h=MYx26M(>5@Zlb8kJ4Ed%}|4rLsr1$TT5NNTEoWa|R-bn5YRS5*~1-bf#hI z=>wYwz}t4gHN7J3zySs$Lcva1jln_YwLp0K=KG##+ZG(8oSBI9$!>ptlKQNYiS%{! zfy-wiu^n|P)O*@#8xlHB+@?0!lBsrY5gy=Lmi4eJ!#eSq9vIs4#7gb;QI;_up48=h z_4H-g%tqV&;#b%2@77g6`l{VNo~fjaeMyRk-rGURO7RRQnC0llJDTRggfs#xkqD>; zhl51}kw^#%5{9M@5TiIme5(phsdGt=*1{jBUS?`s@9e zJnLDLg)`Q}`D%B6zFfxSz7Df~(MzV-JuZJQ*9SV{x z43Vukg(s!cDlwSNX-J$YO@MG`4epS^cobFwfH9eHgp(sQoD3-m2#+C_gC)Z$9}xy) z%it#(Yq~iFRzfCwQcxkHV5CCQT;iqxGi85BK)`$!T7`JMvy$UUA&qb&}l|zkH#uR<8B)tMdm1 zMeMa~%&YQ|`sOLj+v-lkwh?lBmYFmJkc_BJEW?Argfsw?Ky1HHD1pIgB{(U9h?rDK zQpK|wTX z>mgQD=-f?%JSam!kGWtD1jpk#fI#BB8x#t0ueB)mCAY|cNK!HS^G}0#^Py@Y1`WXy zLJ$s1P8L)y+JAhTQfA|H7Md${sM`}+Bm42Zs(-k>oRcn}UEFr)q8V$yY|meOw5-9U zydiZi>_pJV!!sD1<72&f zHzve5U+-BuY9Y?0*Z!gN>Bm>R#`NVgy?ZYy>YU@^d7QRo;OTB(AEFn%I(n!1`py97 z`Z4~9z4TYd({|c@wEnQ@i+}U!%kS^l+siK>mQYUYim{OPSMBIeXew28JDNopO?~yk zjZ&0_#TmNsM6O_m6$+-ui7N;c2?&xi0RU+^M(0>I*+v$UqJwu2_=^HQ|8RAC7X|bP z=t1xx264CRMRqG`l8X?>Hd1Rod%E9gns27MgBE~?002KqV*h*xRYFa5H7}G1P#Qqa zeIP-QP;w25;AsDVaI; zd$#qkzW%4TJoEDDmpHt$6(K;<`+RB-9|j!{&qoQCd>Dh}f^SW>#`gMTudHlFWd4ux z^b48)?Ux^YxXp6;>1Vh1M6B#i8C2jRXRl4GVm-Ti44c+Fw91p0A|Qc)rGz;KXGBD5 zB!h)1nLSu}}^(K}NN*-=e z$dR3WG-|Cx2&w8Ml~b4~k(r)Og%pop*JL&tnnjWmOyNYCIwHHrh}CQpfFVdw=cF`? zLFi;`rcRk#&R}pwid&~1EWr~vGl{~?!=SE~iFBBxGAorBmIL9M&WiNG3p;3H35KLc zuT+S2h-Rzlx981h76!4woko&YUcq$!(@*a<4#M=bxUZwd$n68qi#P2idqay7YHWPa9o_TRq~CXRI&wh!Ozub%w%XD^TMPZ-xf zUmr?@dyyDPVB(tFX3;8d%hA?tL$kHyU|lMK3I|XCVDqF7Wpxi0v&>A&^vINC0R<9Z zq1sd%B(qkJ2K2tgr{^CdqlibT)owbR+NiN_(ySC38??sILL|f7Jch~PlDG@V3CgU5 z;REbUL6J^cnz96#*$ItA3MU~Fm75?KR&sdX`f#_NTm$S89GS@_lSo)(1z~MD*p0U+ z+=#OVcp?)?p+Q4QC?TA{W7HVP)RYcZLu6Qmi>Z{cE2%NkYL-+*ju@IzJ<|!4+njlF z9zrcMM6)rMDz)j`KOMIdm2#n@P0ojzY`H()J)Ga(^xdb@gWufjzRAG;%Cb>Ezx&fi zWnL~mCet1d%mG8K=WV)D!`a_mGd+DYyl%f+F83*?qS5hLwg9i^CNmml5Vg zCDz3jSmf~x2}vOcA>D&R2u&VMswtF@15%Zb&sgg=TN2$3dNxgM zeec^2oyUPUB^5fJHIqLaw|*CNdHK!OORrO}YkabMzuSLEJ7T_&@zr$qu&o?21v|8L zJA1SdqfHB5eE61l;P~yc@;9hIozJ_=&)S1)rXhz)rkKlgr5|;MV_iGkOFWLhA;yvt zR18iT#gi$Gi9nplY6zkPNk|}J?36;DOsI`@n&UCSZOIAZixfdCStG6c!>(~BmMv0> zV_w$~=1x-?&H{kTllG)EM3~TAh*8}^4nmg%Ig@xw$pj|@aLp8CKbV%ztExLI%FrB~ zFmXgok^qu3g2SNd3^2&0wXhV5!gO$nOeRl}P9#N4YqAhXf?b8cs0Kuco3QoDOx-{M z;wmeIIuSExb1nRspd%26SaPaxSW-~W#kUUH^r{|zy!p-DG>&p8=tI4qA_V92IBn-G zpYY-W-<7iRvzLEd77t{u-=DAk`U>y1!ql29Df%?-^Zs_fYr4m){`~3Xl$J!x?+WJc zjz@j^)hA<(OhJ;{0GI?UyShh_)6GaQThi2OL4tIMRVOAz7UE2H3Xe=s_!@8@9O;qa z@n{G_W_FW_n?`O#!nqnlal39e_knytmv&Yuwpj0-wor{ASqBByMPjpJv^oXjSgSyS zA`mE)p3Foo;nUgSe_7JILq-o~xOb{%#4j!v#3CUq;sT6~i;UeC` z6Rl?eou-wOHmxq(jycmCJ6r@w`q&b4c-^*$)RGh!)ooW#i_dFJAs*i{Fo z6OWovf@@?Fsn`KL)hN^Q<11Yc##gT!VHCR!B6lgVS6iL0532{85?_p)`hFQ#@#0*v~#GM^Nq9Vf>1ZQ<-<6tDiH8b<^ zGG#2#URV*5Ryz@xyLuWsQUOafab&_nGX)?eK#YuyOLZe5XOo}9& zCCEXk3*a=&2Ni6}A#D|Qf)NOun@*=j5@S>X9#P}OIV6IRAt0BQ0_HK%?uUQIi;q9o zRd0E7QtJnHjP*j8<0Sg^;q6ExsyyZO`MBxsMy_pMuYaY#UM{c=o`Wzr@bp_RynX~4 zW0Rlxe}1Ed$IKu9#np!&w%ygoUz{GYC3{a4Fho0h39XkZwzwoM&P}uj12H*38jXhl z6kvyNB)ep)GX^*SPDJWsMUw5fl5W&TKLSq2UocCU`PxXBQVlKr#RjN(zcEV<01tmA2Uk zQ68O&qYPoq$ruSIHYsq~S`K365ErB1+^AnZ9WO4Y>&wGaySeLqCaV~+2K4j+HzH`EYPWaX$}7)faOD3YD)`Mf}CdXfZjK5kKD6h$!jQJ-rvTK4M9Mii3B zbUfzmhY&e;PVI1>=MsGzVQ@6BB4taoko`)uyZ55RYnjPnw~$a>7U6RFK+QoB2-?q0 zk|hn{bp~^Wi+IdEWFs{K5dk^`i6A1{3Pmyq8#9}uqPiy|8J3zvA)j7W)Sx&noC#)mcAM*v4`tl> z)yw*a?c#X0QA*5p@C0#ljIByO7=8BomJj<_;FhO)z^<5*(V0 z(y*4e{r(TP=dqmKvPXilKBilopryESvSu0&2RxjD$>5m|jz|wjBqQBNqCi058|6#^ z=cC`A9=Jm=pRZ?^nXjW=oNosvM}u1m1wGh>>mEf1=CV7?CEYW*NT@JHWO~}RHxKd#OSfW_XDVxb z_Bu?U#tsZ_dcdCzrK9G)MmnFWW+8=AM@f4A!M^A*&o zG-MEWpCr_Yi7aFgLP8QM8Ja;bNrRJw6Bvn1Byk2fsZjX&{qPZ_FrmIZzc~`8%ry3f zhr@f>Fje!conmEUL{8&ovMn|bNu77h8Zs!Q6vAL#CkhUtA@a!WPk@-65`;h`WgR5p z3d?CE$cbG&)dZ4-ojQ^wM}~W35{d4RKA(uZ5H_U9ni-V!JP%cyu@)uCmf$3$si~op zK{Ap?x)Tr$DZEi8yOW4>>tUf;kmSN#VJfPY=iSf%K!@!^I!Zj3WCdUH;g0YdXub@@|du0S`kxB2|ORWPZC4>Pwq5 za4q;`|MsrWpZ&$BcW=k;7YuqQuC-mMir0LNC|;uriXY6 zbL~<4Iwi+ku~mo?5qem)MItpRE&4zG?`OW$CCjOgqLfW|-}_{> zg(`?jqQLTT_m9X-WCT%#Q)(}gfKw*m)cbNe_xtm0PdIOuVcvMFe9z64(pR5ZPI*%m zofK>CPBChxfjZGSNO-MMNkPLSK~*`uJSqSYX+hIcoHDXR5}3DA*C<9tX%Y^w0&J3z zHBCxVIe`NilCn)|h&l{pt^5HKZg#;t?W<1PDNC5G6n2hT3gy zqb2u5j^YxeLAB(*AXz<&RT&grl4GP7+Db4oBzXSh;~)RaxBA^Z4HA;R|1vHv>xb`h zF{ADF?Na#@9Z&9GdsVAfJFKT{MLR}X?(TNfLxOlNvUnx9T&+gaIDT9j^t*>KyiR}n z^y1sMF@5pnxVJWytTcELt27t55GR=4{@=f^6U|84?g|X|*HdW^yIr(S9FT-jaiFda z(r`*R02dnS&`pDhO_L*#o$ki@-RbSAN2ZTKj3OZ_`wxSW{OR#ee45&e(~Zq%nod*D zLu{>U2B-z8Z-eKyufin*h}se?;(uo4B3ef00X#-Nm}m$(a|qND7!~dk?2HnK04UOm zM=u4vjW&|#&!bsa0+QG@6sfC`f{nnf#LKG_*LF7r))7g+oo}FbW+N+DA z4T-_*oKD8jm6+<_WMtJuS1Cww5qJ&BXyg4icmGIejN0khOPxOY7616{=~vN15ABt+=P13&|x$S0qo)c#M7-rfRV!KDM(FAri{mzPzjPw$($jaCCUI1)Jmij z;}K#aR@gE`feb}v8N?*%0C*7FCeD^9gd}Sz21ANgv ze*RSZCvQr(7N@4vK7DsPpQeik>#WWN^vXVZa%tM9ZJ6zm*i z$fQ5lLVUYlPq*jow8eQ4q<3SGgkZZ*$MIs~sVp-uZOji^xd+`vk0Pc^4Qyo(cThFm zQxzSV9a=I`+~G+imK+>Opmahof<2fdB4`lC+%tO(a)l|w6x_km1=S+QpY=aUv1D+j z5=4gPNTxvu4R{Stg!%<53A1{6tcO5Gi1J_rpo6t5OG0RqQU`l=IN4}|`t6fCZ;PCt?*Hw}_U+O>{`$rJ!;VP` ziJtq}p$DoIvm>^Ddae6XTkRn1eXQG}G}dK*#P)Eg%Q9akS2C{d!H{rhZdHglG@HRB z6GWaJX2*BuoBLA?8V{S8HjGnN0}1lX!-7I)R?cEandf0Nb%Mb1u+)1}C~ZQ7v8%q@ zs{@v3SqfQ5n4}{m)Iz&BA(A6X7w6GTBmybML~xFhT}D9-;bd|y**io-JgX-~L6_vz zhTdFUiB}y|Wn?|qU?HW^Tr8kcvmj|GJ@yGOAlYegJr^o^j)F3#VmXQth&+f(@PNBF z;^9Rjh%jZkGb54HCL+5SuOH;%XE(3LK$4=n-JO2?pcfBs@~~UR#s|Is;=le_WXflI zUw-iGvI#)*lY4o0_w>tuT*u+vcEL_#_H7z(>PNr&{w2?%cvwFy<-@$g{<;SsH!TGKWjK@ZF!Ja7sEE=| zv#_BNGD+> z=^B}tWgC(lt`2f+9L$Zg=V+GAB_XESr}V0;ibipfPzMJwXLb1Lv-we*ow2jO9eeJPYosZl{&)t{FAO6H0 zcVB)o_J2Cv)hG9Adwu#mJ0EcU`Syga9@3LaMxn0X<@H}(yrmvr{pOvY+S9*yQC8E> zztGoo5Jgp`vH9SlyO}GoefagNB;hmB*xr8zoxGUplhcQ*Q$3+<+x_{tUR@ljcC}PE zmp+@;g}wF^Wj3{l=RWA~oU8wI_KUL8)#G!InYf#nZ`)1yL$(0*)?1&O-tz9q9>pjz-=B zTxJXH#i3;ra?wmelsrp;Y{Hl}>6Iz6%==o$;I{VTZNJ4u%KN3I_&E5&r(f2ewwpVd zN?k91Z{A2ge)|6PYr6gXt9M)B2jZiQ<>5cJ3i@)h(*TGxn#Ar%SCR4I*|r5={?#WJ zH(fscjzJs*DZq>?-| zk#I5t8E1ixL@&PbxAn}MbpeAavFv2mmO>PlkY8y-#_`$ zDYvP1YAaU75UQak;uN2Y2(M&hRf-fB&aRf~MyZ~e*#?lvES*v_Lrpw`xo4q`-Ni}3 z8IJ@g%5c`<2^o^|SQGPrszF>$-CLBcCW2jfTSPr8s!brT?nxRF0aAf;))7RI?lI*U z6kU}iV;Vr#>$8nWGKMn`9|$<+V;#`IC=6_T*v-NjBWqmBXYGs{IjjMq-nJv9on_OY-6vRj-aT+Bk zG-<0A%@III(Mp#Hbb((_E02JVnHG{jY9+fAQbF zI$tbbW6AN7R*`M>n^sBm>iwZcX?t3Kc;M69x0i=CJ58TZt+l*%UoPH_ak^niv-aez z%-aCC@Ybn{c)a{!Xe>JcKtU(C65o=aiHh~L7PM(sva`{a)0jfz(X`MhoB%IQoL>C}1@}fP>+jq{Em;BNpfK2pbvv z*n<>yburGKS;PmO@HlJjh>%FdG?-G|T@7{PR2{-F!6*R+VT|d| z_~8e-Prtr=yU>$gUfdk3)r5*TyD^n4GV7oI=UW=GswBUm z=vT}1X5iu5etQ2yB#-x>MSFL-U+M_D6iVx;k{Qk_p^-tX8O+WE@8>*h-j=sZyZexL z467@%)n-}C@uU{LSp!zM@R9Y%lts^!$vncnaP7J5R-uw`+ws+9(QsIh?#rm?B@==$ z9ZDbqhm$)6tMOn?go#tiP-kNdjU=u~#GXN(+#PN-NG*{e*1VH}n(jcPV^oV+IZ*0q zAWnKzrEqvWW)_vAcyI#MSvE>Fnr`Pa5QALqs*>xVy(PtXJSmWj8o9wZcqD39YSSe3 z$rvOFC#@EE@MSw)wi@sM{`>3Gn$DUpKKuO>#&jWnd`;)PjtjM$;t8F<`{?Q?)?Tt( z0vPw-f3llv*+gUv7EI@Mj{N?GQ2Do){$}icb@lL2F-1|SlxAuob!zRO{=at|^Xa_O z6F)=7Pkig<{rk6r(%%u*{LAlm&n6m5L<1^mLM6MvD!d?qlSDGfd>cLO$M)Ti#|TSy z0T%TVG%U2d=~BaD!4y5RPuBR|^IKo*R2EEUe^ftm=m;4>!<5XV)p|tZUK7liyHtxz zH66tKm_>KV2vTyGWC}59S3?p)s0T)kT8%TMWj4M8c&7(5b{Fje`l|NcWQ%l(?m zdMay(dEH1FpTCBA66<+HfN); z@Abq?^GfeW(am_&gq*q8{b6xB;H}zOirRFlJyT-dJY~#m8n%@~%MoOwDkCP(Nb0Gb zL!&r4Bz7A(ApmtDPGKjF$h0Yf)Yz>$U?GWgb#avL#DA8_LYY!>2q}R}hD2~OF=FA# zJA_W9yQRBuR2hZAjKmOecv7SRj{riccdMX?WN(r}0%lGRAecCzI)-{|1fQNh9fz0v zf6-hLEJJ8e;Zb~f_4e8P-IANEwCrC#e|o+_!AE+3aROh&aygX>PpslUK7aXRrOGKW zZ+xP0{^qNX=RbWnT>E|0&<#^NcYO3$SL>P|e{uDiXf{$1BZfs#w8nq`Ki$=J^RzK? zY)Rp?aG2K9M81D39yp#ZpKYyll2ECJF%PF99?V~@J3>C$tbY3vdfaqXFr;UF!tmkr{kS`?HikuG9v;;V)9P)YZsCqa>I@!$i_^N{n$iyeV}ZV#PPrj+6~f1EpR(EA3bH_B=Z$ zuOY!DIqluU{qgkT^9de3>h$6lS0^X<)As9eHO}?&dp^uy%W2CozooApPJI3pLkyXD zy8frWcEPqtV4|n5F*#B*l!khO*ntQqG0u`9gNi4G2|dzCvLFzG6->VNssZ~x))vP|fw-QoEU-C~xyWq)}6 z*{j=fwF?kMVm_5$|K&BFw&{<-!zzzC*2-V~>dC7Qc=1(vO%4*~nTmr#7%G4IU+xFV z8fi`i$&R{a6hJ?J`1-~A{>=jnZHwjm(92zgv8GUzV&uvkK#F7~u$A@AZ+~+?yl(7m zlgq1e`{0WcY3m|B29Mk*#stP=FjnZEAZNc^W;?+>9g<4G?kIFvOoq;Lr3g?4i%O75 zNI2yP&|ni3W2DN`bb*Mmi=>isB(O`N{8J>3S4gAHg5Xh}M@w z-ME$EpR7@?-cP&eTaB7GzxlU^s9)}0-v-d#HF5nH&&uz{SD#-WSC$MVumZ_O8ud^A z)0=5J_0}C_4CJ)xpj1Sy%geufd0c<{W8U*%xBGUnexy*hh(c4|g2&ne*or76O*%kDC_@cXM{+f+T0GT14J`!4wijjD(J zMPbWITgfB@857E&x^ZT3dX=QLtZLNUoSm66M1U0Pu;!^qJr_z?1aT%v0!SIbIi$0Y z3?UC_1+A_kzfiK6sVM^H}AeIwHOQTwl~-Gw|Bqpp2U{*>z^OKIo9VN`-jqJ zF}4J}m*DW}$AAB}lyNbR=gP)euv!Z}SNi(Cz5Myhukxl{J^!a0cS790-?_Latc1_5 zsbCtSQlac@RbEhAF{r2X|?eJFp!^Tl+gj%t|8j|aN@I4{J4cML?ucPv0 z4;&OILnYaHtv%Si%Ko4t$dPrg1e6X6gm?-CA%llt2x{bzk(@#i!4~p3c}F07&{{dz zhJujhI@DxBP>*rgua%rsbj}l}tqWj zE!crU0$sC!Aja$*RYtZP8nz^}Q_Vhh_WBQ^a3#uMJH1{8P4#pcKl<>i;P};--+uVb zeY^Z?|K=g@_hUStqw05xuSN)q6ASKLFMsuvyqW=A3S0QF5HVIBq_6QuHx(|aANLc zx_D5GGm8}x0!I_qLCkBEQMsc6>B$_Nhve_8(VJ@P=){LFy!)<3M4{MoA;jyRmRvhsF_?N?pJH zZ2tY};ukMY$C+6NGhL_?AYR}7FRyC#Z9Q(v!8kmb^k(-okBR)_&+)tazh+Eyz1{8P z$e-)0Wx4Fe1h|oI`vsMw&0H#Til2V_?Y%+wt0h;vA9Fi>I`-EO4}3B)2bbWXa1hNq zOq}46Tdj8=y~_E%CGpwGhzBkEx=e0N#Pd$upY`O0n8Qo*5E4_@l@(6x&`OACPU&DL zAp}zpgeX=r&`6|9H1lNYNx=aQPcjgPz{^76B+7`*=d*x0LYy+4QoV#uv)Iq*q zG02a-pL6#qf8d|*-@mr6eMK<2qyvCl#6MLBx5hYl%k1kfTrtIKwsU zv9b@JjB}I7EMdry2pLjG5(^{4DKiaS5Y9+7Dh?7F+#wXkMjJ6h6_MnmgQI%s#D+2u zh%E3Rl1CFUN;rjz7jFY8!NoHZRZbKL$`H$mmni|sqQ(uVfTmg|m+k&sZr4}aCx_4G z<3sxSBAv1FH68!>+P=vyQl`JyZePC}yWPk8e;5~s*!B5*U0%KYiV9ymu)st-FHZGL z{O;%b(jM9aF)hgCIh7v}!rxp-ygXL)=6Ft**!R`DR*O68!z3`!+}2P5vkJFmO>hw;*I ztcQ#H+bwG%%l>{E+jM7?_f)JLcOReMwjCRqDHon^E_kZ>Bv)-mBrC5OC34dcDwIaBzlIXAWpOk)aIYWF8cm7@Q8z2r)PyWQh@V zt5roE0Jm-xEAb)-Fma+pS|&V0Kl^6tfayYaL;TEn

F+A^7UdtnUvEI9m4W(_lx`0ym3UeZI|hMVssw9ZlAaDo9{pR>e>D4ZN1a0QK>S3 z0m83;SIR77tWPhG+e1Jk`0{i6!>5;*DC_U;F8;-HPUaNsU%WehxP5xKKPp^=(xAmz zMU$9F;kLdRr}nhpU{~kEdi50Nn=dXRoM-D=ZMX*Wm==vcx(*l6xci+7F!xZGzBII!WQ9s^( zFG^3_w>wB&)Ke|(nNA1$Xd((DIhb2V4{{#wKAms4tn=9>Bgtr6O^*rAbbWR6&Hjm= z-k;R!%&iqk@>I`%`1@)Ht)rYhrqx!(?8~$37vH@albrl!_cwpDVCW9h;7C1#@k~k9R98tKs2{|#0Q*=n`NFqj%Y&=Lkc#x@w zjY{GU4kC3^LFlR^odQHVsyt1u1x5xSLMG`+P+I|bM)ss6qU1!T8d;>ZN6wKl1-0gXRp=|`O+WupU@9)ym|ZR%fI=A1}A&0 z9n*^&$#!|KQpz?85s1RJ#TvDVtdnR2{&r@A$= z2Z|P81J*l!RlhN80)hm{v>*ynQ);s*Q{61GOWj>_)tztV&CE0Hz1Lb1|G_VI`6C?c zgIE#I@Ox?;-r{BuzI)_<@zc^G7B>V&dZ+ZAruD-5dL8-*2#AsUip5bl$BL1$u0bxsgStQss*!153&%))DpkpqJy zK%S+92FtDIPIu2-NdBQ2XWoEI0Ki$Sx@S z>GeBI&$8amInq9G;l7*v{nhe_hh4)|NomuK*ZsS^I2GgNXwqw)TS`hRky9RG#;$(w zioPuuKY8+cu2P(+0O-=hfAgPWtFmaeVMDtWw0Fh?R_JcnKcS0fuU<^1!c2<8;V|me z?^@aE$-R$BYFNYwLrxV+@K}=`Hn!G}{JJQr5xMGdRtOdol!uv;Lcvw>hGg!IYQ!~Jse!Sv*YUw(aGcR#xF```b! z|G_Rkm}jh1L-qNSX*!L!{uT?*+4rNa`6zc*8N2tBY#w%f-OGdb5w+c8DNWMoVrM># z&61g-xp-dQ|LC7T`5YHN{8a8!$VL-I1{#)s{6A#cd5(-!9wRoB4Lf7|{%WejwB<5w zpOC2&A^qC!dzni+S^Wxmxt;aQRfiu*_~ubBq_O zyF|zosTDR_X%!@ujmK8rKY5VUHG_IumI9!AQ7cVFWM$8q;-rm|#gP%t)W? zx=R`5v6xiv<8sn^GavTzqCwlco6mO3m-NApclUfDBvcD=M27$3Kl3#kl#w7VJ|M5! zW?t%>cR#H~E@cEg6xpJRFQ;YaY_~_2>eVz8X$8@$v=giB#0)IumE#6r3R70XnED=2ATjT8!~Ck=e%*TM^v%`t_hq>H_~}OMyVK=wkG^R#Z8r~u)_I(-AG%#V z)UxG=?Qna-2fM%52Y1reV+_sX&}=)Ce{+Gy+#ECJ>BaMl|2RMY^ts;^Eu%0CA%gOk zzpyJ}N-m3}2}m+ZEym@!49ACZjm@aH!*(te%TRVa-1cdI0Ck5Yw^Atj$_YPluNmwV z^3nR%n;6Hgqh`+&t%u%@%iX(KH{%+V)h#ohzU!3`Gm1seG7!(KgUy#xze~o&V^Yz^ zyHl&XX(CYxrYf*afRZG$bTO~1I%Ji`0J}(iACyT*B{-sF0@T47VjRZOQQT3CbWY9Q zHdRMeDa@5YAQnIcmIjR&cyVV6kC;J`L$Y}|Oo@dF&Ons&enhARJE^sl**v_85;dwE zS;-1v9iD97%+pe*@$%WnH*z}EVcXsvdY^Cq@&EHhar35!k3YS-+)Y>X?YF0V{@seY zj-*%H;^V^Wkaw5;@cj7UwQx^8F2k$WgG*^^6!Bpt!qW3$Xcv#PI?WQ4`=7l0?qU1v zqw)Q$Qb1go!r*`Vf6#8qN{v)1Q5qq5j2L6sQ66X>AMamnWwUgCy1u&+-uf;jAC61w zEcG}JYp`qtL10P(bfImbn?|=MDbZ)!ZzSaNgcN+n(T|&K7Mg|+CCYX9_)JQbp-gOFf=rzWL{U4-&FQ@^C+YUbA8 z(DTQKS3jUNcZQZ`tySZ(xBj`N`4;H||0gY;p z^8!lLo*XQhk$}OA+hA}6_aLM&HPWP{K}s10Xl0fl21zE6n#g4BbflrXq@*-$jFsSF zGmDs229qF@Qi$1#mz9c@mYoWhxdp`rfs$|q2REdZ7@oZ;o10Hw)_tjbyS5xDuP(p% zn?J1kZEug;H6MQS=dbR6`MTWc?gvl*_R*!F*0tvq9j`0Cu@6Pd+uKd*!^z)%@FV)e z!CSS$>kytKik7A3iDEH!N-7_Ha`n}tynG>Vd?1Baz>?cP{B?USb%Y9(CszZi!$4)8cbBir(UVjXT_H(dFh= zZ|IEi(=|4&wMlG4qgvNt4Ut-=VfG<&2`4f!URrT_WNx7S#ULevNR+h%IR$&1dBqM+ zA@l&}lH6S)xiO3-5g>RHt*nXUsF~40Br8kyf(z&_s|X1*3y_q6IBNo{C|Hw_RIGy| zFe8|aoJ?7q_)puI6bu%tjXb1f%9;tG95Ra3x%9DjPFH~Z{nh2=I6iqX*?ai$ZrJki zWWRZMcTfy=xKAm)&E;Qim+8&;^anrsez{!X#H*dmU-kQjg(z8C^RCG0VVDjTM$KZS~?-%W9vHTP%Eh_72?R^AaZafNC`AWQtuLs6@G>% zm&~w{l-xB~GlPi2l!6;7B}gryw>BFQ+BA!3;G#wu=$BXx;E4kSG z`hV}V9oJm>T`hSk#iO_=nIbq>F7mUFp8nyeo0tBUs<=rZf#h7-gy=Iri7XA1A&Ynmp;;7o{_#zFkIe_y_co5GK9!Q--~QD}C#fYgg*2Q>kp&^c zGKL|D${3^RkTfuMK1|q0*3zsM5iAfQiQ>w3&TW#gS+C$!syz2VIgSwmtQc}u8);i+ z;WG8LmN}>(nCW)!08+hEjlz2WlqP$;lxB0KGV1ZsZJI18DWoS0#ZZ>PGTIPH92|nq z8O5Blj~Pg!m5CEpG9l(fLA5K$kwU8!X&mWe-BPKdm6M56jM0T05D06+k>ChzNvk$? z)P>BuR_=parSn`cOD`#u07>)OED0fAmU2o@S7f?!GG!c~MA6@0J^!{1(gV>8-DCp5Ml@FYo$K z-rVlqEfzYq4588I@x*=Bz)btzsr>kI{M_~8;~`jCh-*p8&;O@)yP~fm7beO0dY{W6cQ*iRhyJ!ju;2+Gpz8mDmovMx#`67-c1?!tw{Py(`-gEk(dKIR z(C_Pff=*99muYORy?ryahvVS%`rYd4%sfZ%{QKwEvVAxlw_oc1UZ2=+FujtSOZ%L4 z5lvqEAiQzc5JNX&dhx-F_xBiIzPy)`nN+n?z8QwLqNL64m4IX1l#=@8{PcN%N9EY+p2vqnXByY&Xa4 zsPTONWu<9Z5A~bldRn<-b9)iU(?9;~W_pj8Qx1>o%AWvfK$gFMD<8>0zGHH z3{6-{>q*hIm#t1Z4k83p0B1cX5eN!~vl>EeDUCh5t1)L1Qo3YiMVnZ%3mYq;No1kO z5U+EhJCj>xJtYl>PzXiSAo2nVQ2YGF_5I`Rt&8@(?9#SZ*Hp_pd77~8L&E@bj%pM z()i+|%dg*&?5-Y4l!6he@%T4CpX#=5Gp*K=2eWs3$=P6CNC2g@$hI{s+0*97jg-23JOAk*d)#3sp- zuD(_XE;rMtszOZXv|lg)i39~R0?KG<+%@Z=P@;)&S%{R#ZRtQlQbVc)v6Y_ANg*wv z+GwRjiZop|1QF*7MFf0YK@ha>^R3y&4_`dyg-@GudOu^=xyo+r+tdC^r{%@Ny1ti> z>Pfzzp|ah*-NmNe+_&%6e|aJPIKO$I;g{22{PfLN>a9{)MX0D}39|j_fGi5${`hMC ze&x-F=M+vVnv}Iu%F-xTivuwXXpZjF}#y zU6Ls{d6>WfC#nW#8Vo^7U9EUAXGkZvpjB|7Iki@@4ag4*LTIHVY)-3@S%|?4hZ6U3 zCTTk@pp{b0CoUdIE|eDF9jd&ynJ!}+eM}iUc9-`nh;~h@BZI8 zssyKsP+cYk|B13Zq;CjTymHozu~TVEMUvv6&gh*xPRi7XL&Fd$yh@UKEV!m{6c%tM zSBCX;hLAg{Gt?Ponx(c*PP|Bp;Vigt4xRRWa*o*>^Y$SVLg)mPaoh~&4H}UeB5u{R z3x`KA+=YVM#9--I+2NA471K_pUea=S2A`qpRAT>Y< z?IO*2a4*z_n-42^7^2(cspwOHO~O_G6mo6}tL@CG>wr_CA(Df;c3OpFXn9}o{{Es~ z?%#~hcTX>!9v|`{3uO#_d~)^pxZP|Y?w`Nur+xj&vv>1%0U>g#bh)`)hXE@*AJZUAyjc%pI>{|3P3@mFN*3}`h22mgd%NH4Oo*yCK;NdS6G) zK~f-*PJkpiNoVKGa)2*uszoGm<)rYgYhjRpwo}%dajZT(%Vm8>Z{EMQSZhuK^LnX| z>(gpO<71trFTSi>kZ~C2_*|qX`-p1IYXjQFi8x~DxMvr++CQ@m|G%Y4{=6vvT=5m zK(eI8Mu$3XNQetXq(l;*g+x$tvKR$ZXa#VwuBN&YvCt||nYFuXN^lhdfdc0}P^Kga za8d?AEJ^4@NrSlbG0min%;lm~y}+_TmB*D{zkPkX5^w6^NJLr1+Eux8nmX+F*i3wJ zy8G^{bS1Z1L2d5C`uuuR%k^U~^Dll_=P&;0;h*2=ad=0&`fjPAvy6#adYqFGHy_o{ zms)RLoQ4qsDcpYkZ%nuh(=wuH1|bv_y+oc@l)M0pw&@D*sz^|Jcp)-%1W{=qafLWY zqWN^LjBrEG&^DfT1PH;k7aMvDNMoWb#(>l%)(6UFMXITg%>!HOWTh_yYqVvB)25yF zgNX)_Z8nuD$wOoSCzB;nz}eGSvax|ofMVdZpsqu=AY=-y0%Xf@k(N$WJ@!*6R7o@` z2_$X+6958;5p*uP8<-3$Thq=k59&tg9*`J{fRL~u3b_Ia(;&9u*)w6ND$t%3EJ0Rs zB4oL~+H(UfEtc){u>a%#c01mctEcmuF2bP1XydrB_KWrReEnpo>$}HRou^Yl+*Qlk zAE$2~<)48saorAo{l1wiCMNTUd#Z(lw~runM_s|LA8sEWG1gDY-K5DFiv97wKE(wm z^&LxE5%P?}OdL+qHPl&#sAj??u(p9R2af_b%7SE)(t8x7bAnPeiI|hZ*@D3!BL4rQ zxTr2dKnrpJB5S6lB?YVVI39}$Ngo$~^g&vVPX?E5Pg^33x7rp#ZZ1@Zw5)SZaAI_E zP)|j%bVvXoGR~;n1H6jcGBlyASR|R#g@YQ!=143TQ`wY4=R-d!GC9ee5t4}{fRP|| z7(WKNWGgdOA%gG<7#VWJsxTkg)RbRB#P=7QX(L-6w5)7{?n5HB;vj%xqw%`oz1UTtAJSlEx!U?S!LRQ0B5{N)1o5F$_yhes2JB0?A5Ih7z zyjmMe4sJ1Z9_J_-v_xIz4XjOk^Igs>V-0MSv6NMWOC6-u=E)_8;9w5vR02jI&kz!? zVUp;MBn6r#QKE&k!Ni0ejf@Tisyix$1^g#20g(Y9a^mbt%t#KQR7UqYtl83{>~GH` zd9|nz?sFL`GcbTCeCX2Iv!HYiNmh7zWHss=XAsxi><8(ytyWK!+2`Z;hsR^Jr?2wh z*g4zj>R{X9;^OZ8{^Env`1IoiyKjEqVHIvxChkKlqfwk*j&J^U!qXRDe(9(a?V<-b z{ce?3NGyVqt>_6<^n>lYM^t|@yuBy@2ATirAC@6i#)$onrAUvWYxzLFlGXvV4Ndv2DauNlCCC-|QMCwWeXQR|s;M~=PdIuHa$0x1j z?vZ7jnS=Wpp1W}+lhkE1&lCAL6YLpRZW>~&&cWeGK*+>YBL6gE)|60JMkY_qIGwC! z&tPb>CpoJ-k?KXADl_MK;vtcgL>$SPR8qnPf|B6gskEM+St({FU(#EF^spdM1}HNE zDTDvXg{F?hGdfv=M3P92T15-1a(nys{{EhneO)!fwpULtKiI#2+@`gF`N^N&Y+pWn zh5dGa|Lli;=U+Y6SX^T9fiR=dl%@E?Z-*b0ckhmm!rJDeT=Oa5{ShBijkfj|w z!9VbtfB`BEEjZ2~@k~6brSVk+!kT@DKN0xA|P9EVx;536WZHlr= zNkWo&CUMYt@`Dh>$x56YlxnC;5Ma8J7*jAzX7|A|97&l$%%n(Tj#MtqhFN45S-_cN z@0g3A(G-1rh&h>LOcGij4z9GJan9TlA5i(eZDZ2wJ$>8t{-!;BX77I44j;X^6{(#9 znM6UH!pkb3fAEvvzgy|fV(QVRJUWr#2kW=oedcU#JEBvcc=OTaI;*aqefZ5rEs62P zzdA_Wxa|a*65<+}XACBr2qH_a$|Q_LND^2B>C%{}b20}Ru}7P*Vn}u6HZ}Jm5#-ST zB{HE1P;}x&WR*smSv~vEnbz{)NI`H}&FXy7c{+g(E1-wEuf?_x{8M^Nzl0xIVW*2zzGw0QkpuW6ZO)28TX@BRxqU#Cm{&I5e#Cm zOL7XplElM+tf$^tBO=3+sThI6um&+jR01sjtg)@07!IXZJ{EkVWQcFsu8 zZk~C(pTGM4fm`a+a(jr2{bP>f?&jHrzFv##^)x;F@$L8be!Lk;PK~4yl|XM38*efF z{{Gd~+&5!!7dPdJxB1!4amoGFZtW1kGBdT|M=$rczByifm@%@34tM|EH$geao+5Hc zN}!gK4!}JK$PA0<5y|9CXiRmig*?nWEp+kh;0WrL0&)f@!V7~^Eu7quOvFwA$W%!=_SkDvr)rb81(3t zxlth4*{mp0DG|yVSxN&oT-ll>iYAEMgW#FLoq7m^(lQHcigA(>!AM8m@|RR2;p6lcyybCEII7G$hxFv7UFP0Qg{@~Z15h* zkVq+|w}pbphGVR~Ai`)wRO+;>WPI@5O&mY`V7nea{mC@VJsm+v^?J*R)cu+AS}$oXHW2D_I~+U zcU7lRzxY>e94FE23@sjp426wFnUjZX-aWjfgL=;k+i0)gjBSSt`o(ae&81q_0_twCYEB62_IP*Dn#0+dMv5K~e{ zWEN#o2@>WKqyj1}ZMQI`I3;GPL2910c2_W{rcDy5mbGUFJ0d-5;l70v0diCP^-X-WoePE8t!{L8kC{dQ;764L9 zbha`^IL-mDu9-1l1t7gWt>>Pgjx9v-DDx6Gzt#L25P>XbxQZ4_FiuZ6&lafSfM zp#|H}6UdfsM5%go+uw(ZclL6|>}EWMNEyxQes>_hbtG|=>O_c40=p&3|yX7xcd~mr=H2Z` zg6T96=JxK*X87QTFH3HBgL@7tQeHhN@4&=}NS4;zIj6^%YTf80gDb6?Pp2QJu^SUm0>lgv z@8+3Eq{?>cog;|gJE08Esu1r^bv681sVWmW|bro)eO#H5?)v75~Rs} z9L1Do;u8j@LEfhL=sR7GiVpoE9fAuduzPQ+a^Z8r7 zz8pZW>B;4jw|_i{>|(oG+LOkqM* zrozmck%=jDa4vM71r_089HpdifIO4(PwlZJ0Gv!x7zjc#r@IyeTx*|tc1k^e8O^hs zY#<^4F`JgId8Suth6IJDA;=?%#cs>6UTyp#q)TQs5a?pR|7^W~^ZxS<_8;xvwlD3| z&-_=vOXsVyTs|~f-@cUnZGHasR5v|}#427annWmVR-y9b5FN|KV6|;bV#~+7-~C@_ z`Da?bT03R64dtuL@rynT{7J!}s^#&2z0Z`qQtnL4h5$I{00b>sgb11e(?}sACNYqg z&W;3?B_SPT84+IHDK%pii|k^oNx`6X=xqQ6duTLu6h2B5D6wg{aq$caA*?ZqB-a93 zI{_fIHngJD^YXerMj1|{uY-wHtuSQxwytqFFOh=NyMjaPJZK&ga6gZKSSldkfD5M~ z4QbSJoHnBtk_4rCGBVC)4uC@Es~;sK5)Mi=aA8a7C{B8!BHUuIR=kHqc*F?sfPvGr z6QQRvmIybJP8bfZ%eKth?X@2~Q@NYTb}D=E*Wdl|@a=WpynNp1oBrWX%76N5Ws;A- zs`~V}?w+YmTm9tAFR91a^e8G3r5p&B)6%E<`yENuMJ3DjNe=t*wEp_(-K$SEULW=c z67ig#T*U#1&GVQwlK1#vb#CTb) zk*?v`d!?(n?T@3+owrxl%4*5VQ!xopf+)mclt{6l063V8fG(88o&z;*OrA;T;;y~q z#7cz(96=r&(gmDgrep$vgefSHP7GHq@NQ6pSd`g$A*93_nnDl?&@v)d1(QVavmcUR zqtb|i-Riye5Gti<_e{rdb$MONdjI!do~U!3o_|umdH4R4A8h~r^JDPv+>*(e-Km*Sq2x4TV)D#x8R-cQ z<-tf&Tmoh4rAU~lACKJ~boJq%eR{FJee;K}zB!oc_T`g{(H?F-&AqkD)v*HI3g44HGw6I6LOZH+F;E}qAX z#zc%&y?NK`4QmDx>`WynOJN6-P=@D#T0~7jni&$VAAAc zy=NPjoy$0g+OU1{bc*lqA2#!B&OBd!vY+Dnw=X{MpPxweetJIK^&dR+al`V^xBAuV z=O28B+UktH40F&T5g=&UUyajYGqxqKULB85u0|ckx8I)b-ha8goso$~<=IcKzFbi@ zS68cMQ2h4)btFTaHqJV_tXdLIgrNA7n<_CzW`ssHX*ovFqMo|CmS~X3;swYo4Razm zC74_gWW-?wCBl+pAt_mFNDX7tM(kjb?j^0q8irg$l-C{8$dv3PEMkr7F-BXet|xMK zi%xVksg~N{u7b>TP)Y;^2SL!zl&dCSXKo@*APt$ChMpuIR>Ky;wAU&~uuCL4fyo%5 zq##K!frEi0Cxj%xB0Ldl%VgH6a&Ki`!vbrQ*}xP*PK5$~-jSJuI%!HTfdY*ba1(2f z<;i6qpML!Dboj$>-j+H(-pST?Ke$wS{U7gM;pYdc>?$|Mb@OMJmp3oxceh8q@yF{I zWf~@u85vF7*7S*b4OyjsnhHW%lr)9E)9Q4>7QVn_I1g zvx~55QUKA`kPNKOnNFTr#^mJ8BvB|3;N%`bM0QB<@))FL&{Bk1QX(mlpkQSYW>z8+ zqCh57CCXBsD)3>0|ye*fW< z;reR*{P(Zv=F;zanZ}!c@t5I`zkYokzwV&z$*zA~AHIKSZyH}8jG1fsUSAaSM|%)Z zS8`}k*=$aycKQ6-70(YMefjVu_iK{6yF|V{dAn-gdcBU^0qGp`+@kFFV;#fTj3%&! zB$K$gLpe%7A=Ir)hB15em59M4T4h8KPePq14-DflR91j3D1(GR?96mdu$)CffPw-f zoWiQGAfgpSM?nfl<29ud8p*qLeVLZ{)~)0=woH*e>n zJ3e&P8sl&=eczUEZpJU;$Nuu)h2C7<-1$Yb8U|MeeDkl+uV9N%+?Je^1>^KbsnOLF5edJGDtw5h2u zw>`C1guDhw%!H{`FJe`LYfxZG5s!0vjupX9YdVEPGT;bGM=%IPnb~R+Kp;9b&7@E` z$UxfI+04mfHXz4271gsWyK)jD&NV{H0T_jS6zRm=V$1>BIZ(-mKqN!0IVyoOIYkn} zAr6?5aAty$SS66jU`GIjDi1XZ7!DwbK}k4Ygyif7Cjg{&4xvae6EO=XxQm!0JT$vU zq6d{QTAL>rMYKT(RFjy9gLoAYc13XArk8&Io7Yf(GtVc#edmq#TetUz+atb<4^O#% z<-b1cZ+3ImAJ=aZyIAih*68b2KDxKHS|m>UjC83LO9N-y9MeMOQc7)Kb~PlaQ|FE^t>NB*v1B&>4}- z>KW;9a}UYr9^J%%NM|eEi98)916YJ80CISQcP3<}4ju3m2h=#tYf`sJi*)6(?aUh8 z$aZbza7jI-KzmMYK*@~}YHX+Bg2NcD>BP)n@(c#VB8+XNHQijGnhYUX(}|)}kxWX7 zW<^YB7$zk!F+cn~b)|^&bi@IZP1)Y?P-)sVDV^Gh_PW!t#f^T>-KI?x%l{>e}3Qm_Tk^ppT*;0#jL$ek18h5 zUToh+_37nxis|eB`}-IyhXvxbw#q3wRUn|zV`KykO*@LWLI{g;%ULo zZfO?e#@!?%xJt68qM2_)LP*#hNyNF!&YCGv`9N6@6hy>pKb_pg4-?neoXAQmwSmpy z0SQVQE=hf%E{9ra$PJ~W#580$IWu)mDxh8{sf2O>9T}1UWpy$n2T93}q>z=wr(ru5 z5pX1%IP$C}NR%W7zz#wrA}QH8Adwnq;o!lAB$18C*cddEjGpHxB710pP@OsD+$$yt z(i!liq>YoT!{d?5ur2vSGJ9Pg6LPhE$Wwb+HtpH*wmg46-<|w}@#oWa5a}n>RkyhB zAO3w~=3-3BZSsv@t`b|FzJ8Q>dwo@Q_jOfz{Xc$ueB^a#^C%CxzrV1T!(AI7PhJ@J zWBr?N3|`_?6Ecd{avFSWnRNi762Jl%h?Us_45A1z)&zM#(mCOZBv0oK^3tNG5oJ<| z6bk~>i?MfVIy-@hh>;xG8BL9>T0-IxOP@`nfc#31 zNfII1oe30_Acj~VwZO#;LN>OVf-ovs)8jmEb$NIgTO8+k8GO%WdHaLw_f(S0d`}Z% z+x&z+ynp)nTo1k-x4%E$^Xbjq&9kzsv-N#^g3J+hwB8T3ih!1gQqzG9XLI-ic1(6($6Xy#$_w0Spsz|OOPBbKlK`DHG zI1m++bKH(w1R{(giKO4I2+oZ5{eD_xd&_zCUFqrReXXQc^78UKua-V<*GR=9*UcwhIE?zf6EUA%5K#Vk#SO`P{K9`pworCFo z6%azOSp=liA~FiuCO{Su+{M?~3Pqm(Uwj}BfCnb^A~dM2k%`e-Z$Jx?vb%UPp5V*7 z(|hxW&-=~G4_)8P7gs~^U-ws+{{8#4fAI3n;q_Ot6`cc_b&#*dkA-HwXCJ`nuR%wJKRez@H=vyxG^yIRvz3S%Nk zp#(|k#KDvt8H=?HM^O<$1TmrrYbP@b)2RlfRvo4d3y3olU=7dY6b6AJGZP5|7@lXR z31DSd5WxVftaFl4fcZqOQ4w89Tq#MMv=u}LJ0r=!Wo?PhNx6~vTdhwAJ@r?=TxGq_GJQ<^*1Z?mvmI4Fq5nib zp=Ve7i@BBf{P8fKlE4Q;{`hCxqnY;su&+*UE@bo5@4q|c*s6!eHYj*hVdrH#xZOP%gZTU>ft?BfJ}(NKY1ElQoL($gk}?^}n3}jVSxUEP zAO(3VCP59P>L`MQWd(x>NTP5mYl6$FoE*Zeo9A^ehxZFOX=5DA@p6j8liIe=N27P^ z1s@-`eU6{pym_=$Hgz}UJ$ct*8NT@N>09kF4j0SPNXLhu>w3#Sym|WSoA*Ee)#aak za`pBPuOG(uwsMzk>oolEU+&l**2^Q!-#qH}+4lC^-#wW4qOxv3`2$>OyDYRBmmP7C zM9Dm3v6A|b>_!B#YDkwM1&~ghViXL{l`Of3uS_IRhD-77$_ZbqR|%@=ZD7eHD{PTK zg2d7jnRa_{$3(q|PAOcX?@mgb!7*#&0;Ck)=Dz!}jKegPpmoH$g`{aGBw3+st`S)} z;3VV$_RPAZB7`A(lW-%QDUqyYEC7I@z!}(QA|xOJ<@xsqG6Nipb6GA(8KEYLtVxVjWF!Dm$T>?hH6{X@r_SRrUR`M(zokBkV^uOPt3C1)d;9D|8{R%% z?6GFC!}Qd@Bnh&aMUTs~EJVxe&jtvOm-;4}_iH{Hy_4zm!T;p}*WZ1p9$thsch%(Uv>qLF7N#K~ct8OY$`hetmZoUl1n zf_ZR^SlXs8#LN0{1$7+Ab{F>u6i-nw+u%Ud@M;Qjo=!5gGBVlcQCh|syS7okWBMKbZ(4bBh;C6luRA)N>m(13UvX==kks^Ke|Z_m_0B zIUT}kUu)84{`LlSi}HQ>!FRaW`qHD7rYnb^7@$@`Gms77CmYnTE}Ll-tv9F{{*Ar&i}0V>k_ zCL~Qo%itC(8?nrK`LMu9>bkEbh+FEIU=xFQ?-Bt=6LE2kB$LjGv4Mo05(se?r;HNZ zbQq-;ft+{ELBTLj#QrBpyBIfN$tcX7{wnu`J4l4rS~@n+8$S|hjF_4WdCbFl;&?gIWg1Q zyZx{kj#K>fx3}+GU0RVsLmN&uv?}x8&2Y!j<>QOHPfy>lLi%J&fPXd~_c2Tjb)yhG ze)0XoNrFK$@f0(K=fP&%Gm{lf46EuoWWt$zl;}X|HqFINJ>dgVY%SU-6Khg>P@6o7 z72G{3&4$(oLc-9!tz~dShTVyDm!7HAtez;*^8PrRAe?Au>abz+y=^j`)otNpWKML8 zCP*0>xtV+jrT|w(5E5xj4yRSdHT8;nhp1Ga`_s3&>Y84x&0^ zqmRuOa^dsQ6jIjG@?t*91xtOb6i?s#x>-+L{_;ns`x2LLyPtdd3{;F_KKC zOb$)Djd!?~WUV@w>Vi~VK zuWMYnwDE*G?A|xX@sZ2$)B1;D#?>SIq_ivPG(P{}tNGTS4y!tqSGT@;VK{aVF>GU8 z2L0@xk8i&CDnisM#o8Tw^Sp+{_OL0%nl0^r{d{d<3>9Z?NobJ=Au*zoE(sS4apJC= zO5C!7B&4n}HYvOk$V4ePkgyu12>`h~Xm!i_{`X%6U0v;Wq(kR$K5Uk$3(3Rx#HnG) z9V=VU9T^Il~3nl2hK96%lgh9|CXLb(G73m&KiBVDfoTEW4ED5kG*5zJ3O$8)6D94(|-_c#{CK@je55w-d zhU)gHh|4FpxAPm>O7wK)YoJUN5gDF7gC&J2 zg^t16=8_fRI$5@4j3Yxzx&+a=1WZCG8B7R}fr-vV5zarELK>9BTx+JH9Olt?z)N(kHPBq%Kywk$*Alp)E}gRP`HJ=|&?+OV1oH`La}ZXepd zJYQZPzg_m%%2!9{1Pzam^=dyXr$M^cllGS{PD@UNuFMg~_2ZBCMs1nuG%AzSwBF?6 z&*q~?BN@1$;IIGf;}T`cq^e`9CCo_VVq;ZJRU^*GX7(V?NDl~+Xhm~T_w;TV#6>s_ zo@t;E)d3`GE8Ie#KixdLeyZjV-+i|%PT5au_c%EZ+icXrmq>5{5uM&!9k?N?BN`Ia z+oqBUoX3D29zo)(O@$Eav>7FLVU7k(>%kE7bXtWoI{_&a!j&?!2orT?Yr`0vl!6&d zfyzo!h?O{jbC?@)wl0YYLSUvKB1!^*nHfMvXveTn=bA9$b`D5l8t0UWNup?yMrBBr z%m8=z#X$(ui5~pcVef2+zkKo4a(kLyL8%<(fgZ|m zdcS}A2=A6`EWy6l}nHBX0s zx@F|~azj0c#CtCxUNb~pnfqktSU$iMn(QN-qeez@Q0EfNZklvPd}S-$0QEXE8uPr7 zi(ZGV^)~C{?Nv3g`*IkUN3K0<7>5^k@?`MwFe^6_cBC{C(Hw8Ba9JWoy-W8d&NMWs zF$_Mx;N2h~V}hry>WM!EkXR9fP($HB!ZRrYOpzR=lQed!JxIctstPeXC^E$nl4txC zCx--ca^$%UmN=`_aE?I<7_$VC)ife+TGgW!NaaEb6823<_7dnEF5=>n5-G9}(idSV zg=uGzg>&>IrD&wlm3@sr(kF-85gpf`{`7cPkUPo!+b=#GbQlh4uV3z-yq5XdrDf0M zP04z_yLo-Y%+WpS_fKB#zWmh}Cm*+1d-G|G%k9fPZ|WG|tB>n?{KGpY^;(R^7Rhp& zWK0qdz%_*@ZcYVVB>@monua7M@X*2d6exH`M0OJtW!PyQ3@Lc+s_1<5QHoy=vZL?N6KK}2WihR!>GNKFYBcSTAd zi6hSg10d4`_sp|=933+Cm8BQyNrjb(L1ZOKGl^oLjAG2)%{%GA1G>6*p<*R#Q#HYc z;ALvZ)wH`GE{>l|Pt(`0cI5Y3y)5zUCu8~Q zotlSQllbBNZ+<^}o8&$|zP)%A>rEZL+%oxNsnh$--T(5-pe98py>m(}Z1KpZ29I|T_3&XPjF7?x2tH`n_J z_wbOUDBUPiT^`zUfHt9Co7X6zu7VmB&YdtzqrMs`sjqam?OJF*jFB2Ws-BBnCpVK!ZU&HV2ZSX%uwmap;oSrmY_GP&W79 zW_cKk-p1j$&dd1YpAN5&Z%-d|IrUbT!L`5c$LFW7{`|$0+}=ICy0u!i8N|c>diufF zuXA9b;e*G=rPTw!yyoe}hsR-jyu7?c9#)+8PxmSR`tMH$W!}G7FMEDVWTfM|94^M= zmLj@{jTspTan5Pg9>}bn2Y2?NvFj!i%vd{dkW*=0)YzFr)D_mFRYY+n4;R$kH12lW z`X_mn;V36a0L%;9*WGhyL|wJHjce-FU9MM5;M9|I#(e-V!mx>}w=3-`F@YnY66Z|; z5)$-K6LLzd=}84t%(Xjkk<}M zB9Ib<$^uu=L>chRfk<6dQFuBFMhUo_n}Ccg0U{D34x(u85d%pKL~Hdrq6;(M{%$~l z_SCp@Z?yaP`TgM!bLQS|xBjfP<1p_nrqh?7T|7U?-SF`}uTob@Iehf^7wr!jCzjzS z(-+^p_!PNY73^q4)u^eAc>{tsyTAl*yey!kHR$@*UO9RX=H?3SY!jS zg<6oys%yNRU1A>QHg?m174*1i-nwZgGLZwd)megi_sP^{qVxBig+S>FQfmqtI*L(( z#KjqF2r#T!$i>tsl3~GaNYZ{;l$kj>kV!!T1|`S26v~l|pv+*7luYz=g)6ak0APxi zQ!7i<2v4SxC6h~p2%|U(MG_>57}*4tnGVl%;ShKqGRak(BYhPr!y7+@U+tikPDot+ z8K2q>gtoL92aQisK^z`C^m=@4n?ymmqcO$@pC!c-yPjoqt z+ncL?Nu4jB?5^@}WP9(ETz&FVU;pccN+*||(H_yMCTZ6>b=6+2ajz539wo}#xxMyJP%szr4IoGF6|38VywvzGuUN*8uc;7v-~7X4`9^>AgHNZ@Xt(+J z*$2b#-{ZLOwB3F}hyVWfsyPf373z0ouTq(}N`p9IWnrw^5=Dv%f*Nwn=1V6;a>T&N z6i#l;N?`6(3X}DsOsQf-Os1k@QpRyJT|K+mi*q56fUUBo2_WX2oDPaNkHMMEq?CvZ zRp0E&^4KyPa<>()gVMv2Qo1Jdl>1!~s_-g6B0Rmp1<8)|=*fyyl3v6*73xVMOb+6( zaLI6Oav@x+P*O(E46qPLgAj~hI8zXqki>}KE`-#xHL4vX&Uw0a2NR5obpk8b0wFIY zB%+vdDEAtf#DGVJhyhFrJ2UPd2=r}^7;f8#Hwb;q5@XZvTQU;XEC zce~ry{l}O1$G_&1gGS1jWxtqq39`x<4C6rJr6f{<(3p@k7aA=~+DP1lR}L}>)3r(` z1e0cl8l1rC^@I`?tpef%uES30XjN?RAV52HlZ@;L>zU#lkHxeX%WgcBW0}G{O4`My z-+G_Ys=J-mZdF^TciruY3TE))BI=nTF6`_mUD^NC#_pOOHJm~s15_=9g<%{BLE1<} z5$aUj&xK$@3OSw2p+Oq-rzj9nA~O{NfS?s505%cA763QS@FK#L2qCW!_~0SN8d(xV zNu_HCDR`K5QA=%%Rb4_Q>aZ(ip7)RJW;V=w=Hbt;e)sxNcy>C~b@#|$*M2bFtWsqi z+R$%rq`$oV1|1c)I3B+K`htdM^1IvEy#DMJFKxK2<8|i6;otkN>E?=Gy`XRY)iD_c zI3CBI7YmCA!d=bmfmm}i8$(l=sTE>UXK+DyQVFLNFJ!QyL^gCtLZve@DKk>w9)%1g zWI!1&hSDvF5^CrrJOdOC2pov?{`R3u7Ax$zGN#S&kY0P8=V|s$%1MVuMqkkP%m$Cm z@n(RjL`tdvB-#cKW?mYz@pS5HB_=CA#LAkX6q%q%6JrWW1jMH?gU&ZeB08sBD9W-CzAt0bBD=Mv()Iqs@85o%?h{0Ox70(wG%XKXrt#*n%}?;|=IO)5wLEfu zke$CQyS^P??91DEh{~qBVI3~FTdtbFdwY2}O}v{vo*w_ryUK}e#tIg0Hm!)px>VyZ zib7;csUY<86dq*}%9>(|4kxgys{@%9HHm~!yCerqG7O_^W{5%zkRUR^ zEF>kssB>AqIFTth3WlZxPL67sHIr&cS;s0yao3Z0FNr>u?KBF`;D-Ras|0)3E^dS{ zrjVpySFB*yo|z>hnUTa@lG3G(94gG> zF)Ovz3^EFe5`Z!f;hK^XWXjAD9O>Xl&h8;pACc<84X&qJoyn+NZ-<9JJYemcnET!P z-S}L$@4oydhKJ02NUWumQ`OVsal5{Lm3h$%Nr7z4f`u<(X=T?S;R6h$vAnW$X_ zUOJzHahB=o+=X4ho@{_dN(3>vL@*gsI0hjuWymsmarP7|z=B9R^Zt`0W&ZXUM8+W= z4ZW7jLtszq+{-~aN?#&SE1lMCT%(RMPSb!KmQGcepcbu~bLk18CTF>x(xt2r4-RB$ zjucAikpz_HS;Scg1V;eOM8rgtNtqN#Lh#xC2a?WZ5jZFr&_D}HvgB3N&s;Kshdo}2 zfQ7&m-~tLIa*|{N2eS0@s8y@RC6Nke@|-R=)8kjB7#nnIhw-B)7yaSx7s78ygUYs> z?E5kEw8X>B_f$6hS2tsM_;@^A-j;qL7sJG|l)Hl!0#kkdU;ah;J>L|oebnW*^95-c z?R15|{U45-BZiasNw^=hwzSMgb${@-E^=HkpC0lkLHfH1QYemHF zPM3Y=?TQ5yK$971ruIQJnejpYQ)V*hK@udfktm5Uf+$d60YXz3g{oV($(!BDJk4$+ z)>`hf(LI31c1U=t%4JOr?0 z5Lh{USDHGt%}IzzfQ*#xYTiZ=GJF3%vl+-ujU^*DhhW5HqHEnq!g63-9v_}ltHu#8 z9{UCHAWo2oZ4euo24`m_CwLU&q>(VMV^q+V0Ki)z1(|q4Kt=NJntP!j5T~6Pu^>k> zK;oGMZ~`D5!AJs}dj}N|W2B}fbxLHZB^nd_OcIg=E1|={3@Anhfg^)VBV|~NqdReU zn=jh^4{_W?OUwWOfB;EEK~zmczM4$N^wp;?=r@1)TU=bKUJ14=>t&9zJw5I)m0f>L zb^Kv|aqrI{hi)`K+nwIMJKDR4(^e+gA9kN!=Uf_J&KEbZzbf@EOWwRH-~6BM*GHMM ztV5Kzv~t)BO$QQ`sZr|~;(l}{iGVx9k=4c_>A zR|G_4AO=wegM?iv$|e&Cg#`&r>H!qvWEQeCOL&rw5SA2_%93Cf5{3W-AqF@znK=Pu zp7oy~=G=k_K_KC2lFdkmF(pY3r6dpcNz*8e(PbW5^9F!zQz@Dm58cn+UGU|@R zb$|G1_w>WD1^e9((PX)Pd4X^K>h+Vbvl>b*Jsz4{wCOncw>SFuzRyqn`R<{`Ty1&W zU+&lS{oB#UdVA8(zxeobe19i2q{&U-Z;me<(yu=H>dilTmuMP7>cex40C7N$zim0D z*yAaVkLk{h;{x%JAyh>FM}*_wJ+1 z18r9yU0%&UzCUs;I_AJPzn+PbFAiVPfAyE)3g6~u*l9*m*}G7wWbB!}uO*HXI|d=T zaqTJWm}%W51zd9XdE_@T4T-qf?$jRWDc|iA1Q7dAJMI9o3~131`t!l0qq~ z!Dk;C!@K0YCPTbD0)7ne8t=W%~}BJ98u`{SQ; z{J0SxzI^rTzZh1_#ZEV!GFaz`oXxWu1r@10KOW zx&vvE%+a?L+lER6rBh)cLRK&~Dh@8&;B;mLfGCsUAY!7V44O8fs;b=7Xw=H)o?|mlNq{+nnGIk` z16)X$ly;yb9&9ZB=(Rq3CcigVW%RA5KD)_6wrqq}`|mzxse5kO`*N{6Jlbp#@AVV* zH@~$$4nJ)7{pFXR?zSI}+cl1FPk;LNzq;&cu5+0-ZnKPk`Y=s}^5*A%`ZxcF_blC$ zDW0-;RBb1%0JLP_h?J=haO>B_J#UU)I44A@*E8N396geC~bQ_2?KNFUi zL`E{IN(M$`4igdP*r|~K!+iv&@W_X|l1mV@vn*RZ(6U9nUgK0N)xK?U(x8+i*_ccw zt=xk?fSWSY9a2QX5uscMGgGlpn4gb#EQ#S(Vqt=If|vx2Aq6QQCx;3XqfjDDDCq+$ z9s~*om_Zp4Kr%=KnJiLz%IdW%d~~eCpo5}DAjuNW=Vc^%NMAc)9xf zm&==@caH|K8L8?hUQUvj2Qa8m#W6VdG5oLdX-y zsBm9s2EwCLrI=~a5Y9->KpF)LGttHj%8|6u=nf$YAKqh&kZ|?^G7R5XfUXkS+SRU< zEQL5dUAYHwM*Ma;0&20V%))EGQW|cK;afzfU7(Eau#7cM02waK5i&A8cqUBDF{;VV z-FXC%=x0$V#3(?KAt<>?z@!u-54*T0be_fO6U-tBX?HBXyhu=J|FO#L>?Mpy=~5`BxzT09n@ zPcS8D?d&Z?EIc?fC=-xW(@lbdk;BtTMGa9pEyyHN12&KojqG;| z*raZGxJwxvPaaxp5T;{_IAxt46l|2Mj|?d`Rf%R5)pcxBbRLqXv@$}B3_O@JX;j_> zf)Ye|hW`+|1Mn&XVY>hYD2PNLDG4M85(G(#5C^&7eDFU9K?sz@k)#dF=!)TPEva~g zb5MHOCQ8XMA&EK3+NkG30R<=>JQBoNM-(S7snheD<9A1qBsra;1^;wcE)`GdsGHtQ z_q}eH3FBw)j?Z$Ro3Q4CKL6F%?~h(DKDl}wQ}E`mEE(C?^ipuPp*-> zeEi4y>`CY8;?+mL{b#Z7+IgNXk5V@>YKv{VK5!F6y3~M-J|)U^q#)tKlZA3r&rL#{ za-|?S)6qjiDAm*vX?5Yq-U#9pl*%P4lj{?&k5%*X+Qz*dDRLhat9b}fN$4}LAc_lvT$8Gg1UV5UC?zc#q zl{rVHs!41Lkx*FS@HvN2u#UNFQ;4B=oI*YB{%+Aq7TLhP2kCUqf1$aFGIP9{X# zLQT@Rv74zzG9VIS$svqF%rKKafE}XTAKKH=hIv^UE%8K5G+S7H|B!@c3cMd6@*LV| z-38Nha=)zi0cpw5$UG@+)t7b!MFENz!Qg5dkq~rdP36{-NGm>}$4Q`?_ zrT_v~JqsQW6dtMeVX{25r>h!x2&GH9q$nUfz~XVXfNV$|p(GKN zGl>}x5Hb@<&Kz{!1SV0QHv<;LnG6aJ<|G9mVX>MWQS;v7-bHBG~LXd^NVDhyBl%-=D6(c>Z+SAt|w&L$-4K>t9d1o^#uM^2I;@e;z9hQt8WE zSr#Po*wm4=wj)nMorLr-17mE6Eh~H@2!klWh-7gIqQP0xl{1pWjYlRlda*$9k)Vi3 zA4=HjChmp9Gomc!M!7aW-5&XJVutzgYgo;pog!>rS%!>pNhys+D7E=@x}6S&;06h| z7P(%CsKPl2so)@n1TU22X)=J6L7WaDz|qwa4(D(MJ4+(dB|TH?m>4V|5CI?wN}ur5!)<1%GF=L-5hVw=AAWzJo0X~wg2ps$+a^WwF4{nhi#XOszuWF{a@_&`Ubn_&wus)A8kT?rw&@z2e6Dyjl5qdKin*P zE)QVEW44s795c08aoI|NCp?I{(yC+_%@wE{bkwrswwxgQUO0#xIgkN^k)x<#i#ks0 zUe@V;?#IW+Nhj*JTWKi5Wc{07$cRRn+~_!W->3Kv?^Ct=vZoyN5f^^_Mtil)qdS$Y z?zxD$Xx~VJo#EonQQSzldJ-7y8B=FMW=Q^BGFSi@a}IKsBJ2&sLIh&4QIcdZ=nM<< zB;bG4he?0{S0_g53E)}`WUSHoEC5s>5*RtEml(=Ij4S{oGo93hh7Qlb!mr{VP~aPnAdom$NsTg#aF-3$!7|K`gt>-|e!w^a-N zn!ot@{xhQo?Dt6~y=?2-|2Fpf2Wsu&=ktI4hAyaZ8xg1Og^yaOZ6e@Ud*QOXOR~a? zELtw#)};nqG;*8Onw_|8dyES8rQ9N_};_*US6U-T1}N-@M}G%|&^Z z$GhpJzB#?~kG{H)4P9}1`q!_Ymt}~&`uV5d{^Lc68cHlNZJSk}aB&A)K^mmR zX{(jy)9AQJN}>!C4?%E3yihX1Xr!=Y8V`>f=cl_YQ!5PuWQ%y}5j<$~CN#;sf*<|< zzFag_DwUh;4w>os-Mt?=dUezjX#@!unpkw-g1kP*_njKc-e*^rP)7+N z&%JL$vkQSOnFw7uR+6wJ4^|E(hZB?6q>VaRkO@%}h9)SK&WwWu06!Ze*g2TaFC>L< z29lDAf(I#Mw9VrX4P}*)3d-$*IVNfWIwR&Xz-TBA=%Cc}gr|k0!&R5(uP)#G^mMGz zro)Bpei~!hO8eyLcCp71ZFiaXL*>3a>tZyD&l_SvnV22XHxub2IW;i^EqHZ9_n6X{JD+9`;hM>R)A}AYi5@m)ECx|F1h{ZCQ zi~^|%+EQX*)U9qzFkx6t>2qeLvoOG{kpMd)GbJJEXBU+)4?O$j=kMP<42tR(SGj*X zJoI6{IlWUlto^baaA1F(?Gl=uDJem~VJK{CF+ zITVcS+aFHX^ey|#FMfgl@4sm}Y;Qw7$a%oE&V1A}0QGT>D7!(rv2-O$nmXs>L9J!U z!Ri{TBtk%GF1>U;$J-%#btso>_r)kBcjPk|%H&o1AxS+*nv#0EN{@jZ@1IzTWOV!O zldJYLMe33g4ozv9R#;CH7M`gsXufceulw+I9b95uY@iI12yzfMB%35Czz$PR49?U< z0UL@Jhk#7ZO3^gQBq|}zS`}siANMx({>3Vm)dvS4)JYl=P|E#6;r>|dMUmSD) z?8`s7`1k*1cgeOzHJVRE*2lCRi??axu-!(h&xN1}pO>rhgp-bFa9;{id+ABa;S$+* z2B)QJh9Ei1E|ToRW1`^<6_=th7iS{Ns6nAcizZj`cTuv)Xc9;o@%~#A@~LZ7-AG7@ zloPQeHyyfNB%~Zmt(SW1m4g`WEROj$le`R7OM-)=ZXp!nlA^@A33Vppb9^Jf{Naki zd*hJ>$?Gh_r2+~t5J?D}?}a#nL2w2L$>1aa=YdcrM@m8krql&idbCY*&^8Ms>q#2} zULjTiQWNBdRAtxDK}OomR@r~@<@n~!(O8OH$Yl4hb)L5UBh9+5_42sP^4PWrmHW@X z%Wax2#uh)y3oAL@xzC4MV*RUW`Q-ZF(aq@#zIh?5yNvw$=d{u7a^bDk z1t^E5%iW6*CJVENz$}9bBsrMC$Ru*wyy#Yf*8)&FLWqKlgEUf*#z_>OeCVmtL56jr zOt0iZoDxJK5gC$jI*<1&!ATHFpb!2qGIkU69SDZPHvwMY%xcB{wiBWILQ!K8HF8Nu!W>uU->!#%FjbB7=Kb)0uc0k-^>o zNtU)RO7p1tRA2RmF0qn~R>)aAt^4cS!BA_!i?#Kxdgc{-NRGAQ(@<>|H zm#J_~ky12}aaKMgM^Yw1-KKQfg$MIsK3m?QBSDc4ZQ+6Dt06Oto#8I5B#<^Tz<~g# z_}o}{=; z88JG?n$0C+9gn|z4EIjHGZa1bZoY$sJ@o;_9vF>AE{{hXPNRW{9o7}Z6eTl3?9h<} zRZ&N^ln7H5qa>1&teiWB5fx4%5se_#>`}Oe3cI90)gT;^`Jv4h0OGtZIE=!;iHr{% z@k9i|)gWm>WrZjn+ontFy9|y@p$tS4oP;D;(x`RKhy*sZL79BH<8S}?CR3BL-OTd( zL>HUJ8^Y7&=a;|bZ5YC1K4_uAzAx)d<3KT4#cN-R@(s2N2n_dO)Dj4g`7N@9>Jbsi#XK@A>eIiyrDu_h5RK_D8E#13N44@d}wz>x{cAjDaW9_)%UlGr#q zIyt9ww!LUH^5`vVAVfP=%AvB6k`;tQUG~dX%H%)(;nu;x?_4!ix zr%sKmT)niXIpXnh-)$PrXnr%cX}lv`T;xNl=SSZk4|lNHNd(m6gpV#?;`U#?{ix-~ zFSXtt|K;D3+FBFFDK>eI79MreI>METl^NDzlr(F-tCyj*t4u7094TcjgRRO) zXBXS%Oq6tPy{1`sVyNicR>%nUMZ3f%V=VkI#q8-mnr2MtCQi3sAAxmZa=Eze#W`V{ z*UO_>9G(uErCIabFQB{2PzZT8Uf11LvKNvhVGjYsPzRuh+L;oa#i=YPh~UX})ih?f z$8DCPk8skJ2O^Mx_a5#PlRfDcMIMfKRUeGz3yze$#l*B z_z`aJzPRz1WwUuWaXi;?DDir8bk!yN~Vc( zT5<{)2}#Qc@JJC|3D$GAX6X_!1{IhN%58M(DaY0M+`0CM_4g0cwh@I2EuIlI)>+Ne zi$^KsY&H(vK`0}NX`!XHI>%WSNIiCMApOuexH|p2Bi@r2nOs_wxcmMY0X7~J;{w22G{Q1f) zRwqW7w?aaqyTYYXp%g;fD6qF8}&I+Zm9Bp!-xJv+jI$~De)15geM_6YLK zczXZi{c$-3iE_*N#j9tJ-!2`sotDwpZ+17f+}^Gx2HqEaTt~aCtLtZn$G7>ueKxC_ zT+-v?H*s}y`Lprj%U9R?)&NSH? z-gETfeXtE*A2y!aln5K<>js-M2mx*!+!>Lx36sd2VBL&35VEhd1ol`l(Q0F#gleP# zq7>4k~nF&Z_W>P>QASK{`Fogif zBxFV;A~F&|$?LjgSJ<#A;2bVQtys2ec0#68cZ+ml3JxM7S52lNYhP~HzDC!X3eo)W zb^c_7szOzFy+7X#wXsFCado(&lP|aO?3Cpy9yWhxUw(R(m)DmUySvAKYahoq_1UNU z`QrZe6c;bn?n%S%x7+#I?(>w-zx%_#{bsD{k3RA=>d|61_SS?WDAWOxI{cz?iESfk zeXI$;&Ew2t6k5zy>KOAG_y!05|voTzzR>_HiSi_kFl(y zKqws}lh)U7kG6rlG*KBvrvr0y<}|7c(>cQ>R7M7Qs%eYZHL+@7h9x4IkR{RyMre|8 zMnRWE22!_FqH+E@=h%SkTWo{`lVqlHxKhS>@}FRkKtPg)q%$-wks0Cc;TG<6-Umo< zfX!-P%Yh7w0AR6=Y%=bh0-zj@bQG{Nh$%fS;83p;IW`$w*7TsuR=>ULmC9`Qu|4I* zValhW*OiP;m#ur`AG6TdUDI8$cR$I`Zw~D+T}|c9_rH;6rwh#u?d9Xwy-vq<5~ZyQ z{ru(6u5bTj{QAH9D=95_CW<=I%s5o9phPQ@Q{A^(IYWHSeYxCC)$$Q+ve!9^rklB2 zHwTOjZ00QB;c4tF1x!v(Nz9!iC8?1(6K!jcvHIv?{&0M{KaQ2^<+UI}at-_aYjB!) z9y7bIPb<^NYEkPdL!1j1DIAsyU7j*{w5I+P+xj#}^BhqI5m^>Cl+2+VK~yQod5{$^ z!V#2FC^Cf8LLKD8Y)fayDWS~CN)Q1PA_K%hAxRJt&ZGzrN1R_H=LAEI!NfN=sogD; z>Mm3wB&wjPug0)J3C^>5kqK!CD3Byj-%O-H>fl^$_v~tUb0R0U)5BA#G!|wAN`6Re|nV9%D;O5{`-40s)ssp`)L2^ zAO6GoWDb#gWD#hvJcLUf?LllQr2~>+wjnlTj{9momT61%4|y1HyW^k zEzEn6nS=WIC05F7z83-bH26H+wtLebY=|eR)|oVlGjj)#ZM3S4cE^zj*WKzdmiw z>*AwU3_p!~zkf2iUr)MO($W#@p{(~YXwE(CI> zC2Fk22W3LI60t}io&Ooq+ zM^JjQ2P~5tCs!xw!l{%jj_`z%Z{{l1)_0GaP`SwUw(I0<%6pd~wP3lspP%U|cGvrd z+q`*Jtj~Hm&2{?3-?Zto=RbV^SWesW?(J~gT==^`>=3_r`_KQ`X_$9$$8vP%smQ#) z2%}V!D)OoO2)aV&4ZZWADB;viy-kv%YO}D-%pn4|ZbSw>f0W!ikpGjY2F z%QW#svnoX5a^CNzo9EY8Q&%2lV_WmPx8lKR*t24ID@v$lk!qZ@XXz1KyOu7lX z^ClYY1qxeXkk%B>l4GKoi@o_wnKxUOzp5ar~`6yqb>(qRSHH z^N;55nz#DAzdOCiLH71?1vh?gpMUosZ~x@~u~=i9WcE=yGe@Mynp4+=o#wb3Uht&J zM=u#`E1}1_6!d0 zb@pN;ees}ru0=xI+fHv>?x3?EG`bD`t z?RSknvDLRn`1~vUZ1->fy9aJ%h#9P;L=hvA5*jm5s1#kAforymiP=?3*_bkrfhdcf z=1M~#CaB>pDo}%z1TKh{;h?&e7&R@jZL9_f6sAHnm6(aj(uPXRC_d-9Dr=|s-CLFo zE<6CmCYkFj_E3&I+*aO-`blrU@~G3}-NR>|CH9vbx%-lqPrvz_ z?;K8!val}2Le4e5uu*8Amfantdreb}UfH-akKiG7-5+IOOCl?y#+rxRNCe)COP&#$ zJ*Y(vBxweSz1SeYD|B+r7PWXYjjC%A+Rk@@%G96!ILhTyzj<`fC>qs_g=uwiX-GB+ zt$Yr5Zc(xTmDVVsN~_1#R)!-CQU@WUNFo4sPI!uYrB#E15T>EV#FVJknRURk6Ga*a z3`J9M27s_32#lm80>T;bp$G~AQ4*6UGKrF$otK4V^J3wI;p84oqDeI-G8J@jWPs9) z)7U7Jdh*E3Nl-@W25Cy`R(BViZ1yH%Ib$>0_O5@0x7XGbDlX*#ZWS{hK$S%)=kJsf<_R6kSRihKqTNn$>$_Ul86#O zESY@1EX+iJGp%UpM6it2vS|~>AV}KIoHao~0!bkkQ&4)#kVx-gQG~0+s>9YtD;F0; z>7MiTP8YnLCLtP}v#vb4`;%fw6BkvsEvZp?CViWXiq=FD6O_`3!cme0lw@qw0)a6CLz25tR!RzH z?Ji~vfj{b2#S#`oK?-FefS^Q)3_fcjBRbWj6ebY{Km7L%b{pQ$P{n!7++s#e5f?B&q zMbBiX^jJw*TB0JEMf&JRhhyU$bGJ!iBxHE9k*d9xU7>Nz@U2RLum$oKty$q2WBxueY5kw4;loV$OgAy&k&Oyqt0Fk+623JTVF~uku69LJ>KpH3m z2@41)0K}U`3<=qKGPF^i1Js@5$ruBF_HjU>O zUtDC&?>oKwtAGCn|G)qJcQIvkMAGPvtW&Yj5h~IWvR0>&rnxy&8k5kPWe_=`q?E)G zk<@Ez+j9F9+i@M6M{L58g9-?Kj`L@pWxI;TQj4@wy`=7BrBX=gf}BN!C>&H0>+gCN z<>*2U+vg<8n+mu>Ng2ssssZim)1Xw0sOu6McVx9vXnS&?lPDD=R9s>A>{XB-i#t4&72B!1$t6!jyDjSU=-aMQrm<2V zE5~B8t2oIzES{Emx}u*>ZFW4{muD@AES|Zq%{8|{y35zc^>5yKDq8`Su+vH#w!2n@ zg4{Y070S*%D+#JyOO%u^>}}N&hdSpGW)$gGJ<94_iI`*)c}ASg~Nk_2ar0z7Uo;{i0HAM z(|4*(oZT`M2ur0{L(RcCg$brfNmzx>SG*a65OKZ$WSo%^nF#XmILpo%2!?~fBIMx~ zLp+Nw-BB}?kfm=v6qydH4EAJ7f|pPTLW(N`tTr6J)u38at1RyxyxreMdEV9zS4pA3 zHpbE`P%2K{D&GC{?Qj0_Z}XKL$2IkB-*#8KD7oA7Sf>lZ^5DDW?L4|np9iANwbfEQ zWS0|vyhT$I?@Y;AVu%Xqa6zsdbCn7jA>s<|trTp>BvcxB*}TN+spM6&hM*@zWP z1tO#x!a`b9>eLET*f?#0P8~#$L1QRoZhtuTEcMB<(qR%~@=V55a59eTO@%8b1u-t1 z*@L*&EzC9MFprIkYN}D?8A%c9U@ll=WP({z9TJx5X*ABnKNyl7oq}>BqA2I1i&6%h zDbBmQK!5~9d@hD3Wg;?666qcZ`mjL&LK8ySc-2AToJ2dxB{kB73a2tM(}cn7EI~TR zh&aQ<2d7AC59pxkr{RwmPlStQZ2jW!JEM~n)Vg?zl-#$6W4V_7V&;8gq3@SpUMVgw z?%&PD_ud|kvfKCNRXqEXhqpR^_v^3twtYkktM;0dCbVguu6|F3q>|1|#bXrSrnPgd z4RI{)<)m56rK}EJm3EzTo!aJ`3U+qV&@Ai0l{1+(O7&t%Q&2F8ND_=Vh0{4mz{Qk^ zL=im^l|1_EC2}GkK!=%oLl-Nx7tE3?i<_b%;w3my&~- z%QCq;C0i*&fN)5x_t7WyNo0-d3Z~YNbk$2|{cL}`K0e(4 zqj74V{ic&}@yl(?pqkU_#m>YIiYzP2&No!9LyeiKX5Xhd3D{XMRGo?~H=|7JwAon8 zz7g_C9`?)|r!bC$dF_a@jn@r_Qo~XuhAN7)7+{QHH3i7mCE#k&`nK8I*@7C$mH`bs)e)6V-$Q zB|6wcp;+7SX#=q*bMpC+7eUGScN+jCF_7mxh{IuWHi(#{2PneQm*+ruYaWVeX*Plhr@pQVeL1c;`mo@o`0gZuja2`WB=O|Gd3_0rI!vb z%%Y_%%q+1N&z^G*%`o)nj^u^BgA5rLa3iop`kKaDNCf%XAHApg2qzkAq#LI}G)zGq zd1BiZ48$M`g`bIg1D+n8OX>MEOl`M21yo6aR&o`{)&eLfT|m65w0+NeAvUi?xXZeR zUeJyU*ASR#*Agk#Ee2=8AnR~KQd$^UqyPED%I2#>inVuqg2vyqM< zNfOBqiLi__|2LE2k(q!Y;p24bkGD#QE|WR$jLj0$*mSF|Ow24%*qJ1V;B_zq4#`v# zF9Q^i4zxss;8e=P*BPns(}WloS3mZh9C&eW52=g#khl5qvcGEksoHXZoaFuWA74yT ziMMdq`%Ffbt8cyR_pKrhe&^7W7hbb<-n3`wWsuU4O=~13Cj@4AI|V0vvzd5$;`zRV z7ZkU8f_IQl1J%}vQm4l-OoKrSg(v1cWEPV~% zs_QTf6Jb~~6K#9r0N2=R8Als1kW2!y-$JTAA& zAZ||LMlSI2s2j^@3EgQ$4xWV1vp}N&0}POl!g-cQNMNkW&C{Rdx9lmo&Wj)Xu1+;_ z)M?SZcTKAs`HIE2s`>2e;h4H!ye?)_jwjYPpkxv+nZtFgDZS0#; zaHD0)E#|~l3KN{7(us?xi=Zqb?!ds1BuY+>013QzjX>rc-CJQtCm%uXP!|?UCiV;$@Q`3#m91>TL~yB@mf9(ynLu$F;G_XDLK0-2 z8Jte%%134r01CnRk*6d(_XoVY4eHN&HkGsv2BrUkBhfYhYeXW+Pu^g1?HrZ)7z_mFzucW zyBBYdQ&}IUa{tNicZZ|!fnVls`~EmdI z#AzSMRkN%n3C@iy5*!u-6{;%W5A=OWq%3i5qd85t*{2!2&DET-%cDU^h*h#2w3f+8 zvy3Ej>u^g_1|$cEQXsGu9v@mB8!15o!nPGQxTH9c;x1?w*~RyP9EN0 zfAaFO|KK=>7%w);o3&oT^^l{n`l{h)%}(c=u=cHZL?NSFV0yavusKpRE#LnA!*GZBR~;U4mI;kaLgo}KMChs-!pOqNI%~PMS8{< z{jop3zkm1kwDd?lB6k~@)V&5NcT9b@N-jp*M4T*49BPuJ;YB5umE@p3@&e#475?_z&3 zi0r+5@~U0l_UYy84OkdbS0<;k)MHFueOZ}&95{XMbPS9nG7y$gWRW3WR)SMu_JVHJ zmuE}F^@6qCHv^lzZR&3#y|kyQn08X`C*F3vTCo)FlIvlSfV*U@iX`OG-N-Wg^43Vl zhDBMrYo8>SKA)ClB-sPyqsp{*rj#s+j-*gcs&U-OB-JT~pJkb~_sk2Yl66C1`wuN37>&C3r88U{0hC`SZn1X$K1qJI3NTbcr(MDTc^cq6~MM5nb7U5pWlaj*7T~bC2m)IuX);gijt2fdWstP7#mb#HJ z5{f0~(Kr*cRO+dlO}#o5+Ig>>!T}kj-udW0l1g#fMoJ6@k<}q$AsdT~Ob`u{bWVyI z*?AZQLpSHHW!@ELl7xc-NTPEE3<+RxBEdnP?&jX@czn0~@ar{-BoIsKHw= z7t!zO#+i+VujRX+mx&KwY?Y_je8EM3{^r@OZSM|!ijq^-V{C2PKYxDb{EHt>)2hi- zcr8E_4-_POjSSv)g`)UjiB90U6i(3^qecjY)EJ!WZY@@}wjC&Bx-a?^tJP$m;*eVP z5K+P9B&`IU3HvfgHwsp)Q>Y9hOStetoAqMA+GVS~kt*rXjMy&LC~9eE@_GW~KD(u5 zu!<`NiE}>iqQl`P6VXzb==!dtNy(*7kIaj|%PNSL2xM?BT@&=mj+M zokn2ZDDeb}800VsWDah0lA3iB<`}?<$`goeBYN0}=OvcPb}5&QO>4x=q*P7ll8LYr zUt}+tc}*d+gVaShVo&hq(nkq_WU|uc#8KJzr%CUob=Up46FCfmvhI3}kkihXyVYhP zK3Z9sHhtPVbtO$gh~?w)bU|)TBEiGivv%WAm|8L{Y`lCx7gU0$|<4E%Ilr}Gicl+~L zW%x)RN4{$pcKXBO%+gND7tci-Iq!<+kEdwlxM)9b63mpAqqee>fwEQF|# z6JU`W%SLz-pIdZw>B5d+iFM~eYLp#DLUl|&m^MOHhhmZuE-fdm&(7GZG8ydxIE)eO z#b_2x#G~%82(uGqI5QI_6R%jUgwQyacRyvgaYO;TSI-_faop#S`50SWT2G0d8M}ED z=P^x)oeeovqD4w;O@|>ixPy3O$t^iN31h!lP^bl4u4;7%nA9ksnb3{glafZbBcqlk zq!g4M0T3AnQy78HvU!91Ftcr0-@g0l-TR}g;cJx9N+^W_(-4w8_{zaiGRULIrhY#a zkNms2GFgfsQ_Rm#L0g?2DE9If|KXp`|F8e@wBY)xe&Zn_8@T7?#zUuV#@6SO)tpm= zNNqW+@4u{TUk_Z0pKgoNd%|@1#Od*e`e&fsl$YPc{KwDQ#YcSe$G?3_*(N&HhLg)c zPf+$?k!8{&`P`XdSi?QUh@-?7!qWMPoJ}axS00CUlHF9wvTp=TsIe!OB%qSYChSVJ zY)+KChPsnUMlVr~`H4#!A6OK{{j+zk-rm1Ep0>h1yozTp5}~GyBbah_VbLr($mpp} zW!PY*7VWr+?|W#8;T*k>)n&5+j8Jdc+e+w?VUeQ-Oj=;TYEmFFF(@T5G9)F9bvIX5 z_*o+hazPL|WhM~8fe5#5TRtxDU%&t9ezCPc7=8&mB(Z$PZ3?Hld7cBQUK_!6?I`<0 zRgxA8ZdUUwv;h-@sKd4~R`<(a{MnyO|M>rWn3nwLfA!5b%-6Zeyb~uB!nWJL>D=19 zjMhSRTz>K5X_3ci+VbT4ShLf1jHB&8{^XfI98W$!<7o)rkM-UA_VO8CT+PeTg_L-p za4nj%K0T&qm1pyNVn;YiDpe!7m}x4!s?!FgKE-PDpUhW&u+Q z%E*MF1cG?up5_$hGz__tP_`^w=fm~$&z`@W)p-q9Y|_FrvJ5IK(b`2kus1ZhibqP7 zV;e=oTU`rJ9?N|5)qHD*?IHU%CtCpS8JfoFz96j!Ivi{m8^PH>2tcz$@$iJhd82mu zyjA_6JV=5DlJ&z?A1EWk&HOa_>EYe&-TPDIjwo&(i|b)mxX916I~5(q>LdwdQ3Y{i zaG6RWNg-DHyL$x=aiVaTZI&CCU;fFT;lKXBZ+|aOE86cK?v8Yn?c$^5sceJ#^i_k7Ws-n$%6K|Nk*y!u(yAHF`$r)Sm z99B}0!aSt|2{2H|oi|GFF=bM+kdl}E#r3OCo;^F*lTAjMK}Oh0A2xS8@U@S$Lzb!1 zF=dan4U_H@9&DeFt>-5n?H`2utsF^cj&(LpVH*VGNcJ2aWl-Y6R;{8g96D$$_tPJbAYQDX?tGr@DWuP_yV|`@g0N3PEEH}TVA3v`3_@-hwht={m*Iu7QQ1veskR~r zlFj5iE2GRZG*XDDsPma0Ya!NQ5s6d@Wi81yQ#nE9^5v`Rn|*Y$7R9(%D5a;H<+3!V zSIbVPcH4DWzk0v#y(%q|+@<=bUrdjp%W63erz$v2QP_M6gA*n3AR0DOJZQv9mdGF{ zvM3g`F(J*9>gB~w&XBQiM&_9gnV=*xAe?)QVg2dx?#PQo<yRs&!4^8=jAiK`)j)%+r_Dm zaese%y<6XJT2FjC?Nshp5vG*JEIQe78!UOSJP{djdt!JJ52k|bDa;%xMGFfLI~kyjrm~Z1+Otx+ z{7O+LFTo%UglUQ@Ro|?d7EV$KGYMrX0_id&Vt57*Z_mHD`Q3l^m+z;Gk`MW-|HbQH zKRMDDsZ*hD#gtf{G#OuxjqGuzm;t*?nQtGbQs(22((1>9Wx77l-~Kl1emzkyWk)}b zG=4hh;qcSl;qc6V=wSxMwJ~2V$H*RY(EeW759!4Lwpt5WPSjdW-bgvQ^%xY`*+wKg zWuQ$`m1gQ1ygnm9IRh}5Cs8O@%a7i5BK*mijYoPSSQj=%pm`u zhMq!`vbu<%iO5dOGNSBBCK6F8!lXHfc~z9boN0hhFaMM5>;C@gBe}bW>{6ypL%A;$##VQ`O*WSjBV<(OdWsNDc(?~7iuGVE zoK_H3l&PWA$svQ}tjfeWLyzJ$S%GjCC^Fd$(ly~p!lbDxBv70$L>cN70hH?(FP`m7 z4|n*WvTQ^T7+eV#o>cGG-I!0=kz-dD-^O10WBd6R>xq1|MR^}AN=}+3h=9=S_ zl%B&pMq2o$gFR1{;l|y_bI5dknEC7+V>&0nLJ}XmkQNqW8>i#l-J9DVP8O*#%}nhu zbJM0pH7pMEx0q}(JBPuuBopVV*fuNxm;-8}zjzWAuk_y6Xu z745I)rLEa6>FJ?g{zuB6K0f6ie)scddQZzxHtt;b_;_47b3W|vmH~)CQ5Io1vJfaX zsYou7AdVzY=APC=dh0w z)g+>xN)F~tGXPgBnU&H!my94cC*Ev?Ful5H0*y?kr>1bTXHY^eQoP~GG)Qtw#HXAb4^P83 z_20()OdtDY>zcd{3%&mI#l;ua@#7y3e{#A0a3n(;)^zSMCZ8eC{mGGYj3FH;I+$b) zbd5T!ClwawtcYl_6`8c9M4i|qF-U|HOo3FOjs|j^iL8h~1anxP)Aa>Zs3s~C3lvD^ z^T&ijlFQYrm)D2Gx)5iQtqIRo+Fnn3`LIm6KeeHC*>mR=w%B&@^H;|na`NJ>ZNX>m zEM*xF0mL#o*OX=79a^?Bq4AW*2*5;dU8v_-wQN@%Zn*Ki)0z zeoRfj{@tna#U!`O%_VslFZpi=Q5Qi(=AhvnLBvm8<&x1gJ+! zHAhHhl8bPfaH*}tv=QW#n&JuCFFT(m)dDO<*^|#+g+W{-2LdHrkO}0b2w?hP*%nbw zp;DL$Od%AMl)~T)Cf37?7Z(?@xQ_^pfV8dE6?8rBpxSk%lTJ#)ZE5X!c$&YRs_&dPj#zl{_GKU<-R5ZPn1 zIM z)0HnjJspR2TSBgXe)~WD{QfV$U5#VOWRWDxYu?@XcLS`b^YdOfLH;U!G%L&X)#+mH z+k-93@tdbl{qdiSPwSLZ^3*@xSzY&;bE6->%76XMH-*L@=(GHdleES)=HopvI@LpY z+Sr9V_r@W6H8`WVxtJ753bTr=lLK24?P^w(S1+GmYF{i!Jc%TCbv%!0yJJ;vaJHI9_T6c{y8Yyn z=chbrjKjI|OArdEM@^lA89b3Bt@X_R7RoT*+-2n$G!dZPY};~osJl`K;hZEOPWF*>o zNG4IM_4MYLxtRH4+wKd@|1T(qRaC3ukq^nfG@ks?{~X(UW-Kd`zt;E{(f2y^8Ldv@HUmVO?UIHyAPLX zH@|VCHpp4yY{=8%=e+wa(ybt{n|!ev3C>DXbISA}R<@KF#AFka!K0dF64=$f)H79= z)wv*xl1PV;kNpq~ z*l8EGZL8-PIhM_)o1g#q%Rl@6zdFVylMyJjbc&d!kL0_zL7t@aS@Y9c^u^(a2j{eS z+<#R0dM@;GdHd{U_x5%OacLK$9uC@X-n@Bs{pM%CyuH)NI)`j4 zh?45%a?ch@&Or1Opjsy)N68T8P^j!+Mi~KUQk@IMM4@a%$Vg?^vk%>o3P@&g^~^2- z5l${lN<~3||6y86WT1dUf=Q7m#wpxxp6^?K5b8t+To06(w_{LQXe6EX))ft>a{Tz! zp$|)^gA)<4oZ4hb0YC+=s2tEJ!s%R{$k~NxL6)VcPLZ196rP9co4H6LgHlo$$l!>C z`-p9QJU+bs?nn1pudWWIDHT#LC5!pwRg+2nw-Vyo5M|;}E-6~r17s0x-esFhsRab2 z24%v75LhD;oleKG#j~&M`~UUxfBH8aN(reh^T^~T`K5ew3#AY$U+l;GfP7iLcdY}p z+dPl`tU3DO^XKKCWA`?%ZniqaXFYUK)dVVs!{*V3lfrK`C#Mmrp zf74H3sl`1f3TiD0s(m6lD|8&%h}2+{3=u6;J%|Wo7>p^ERfr0Y7RizzR+9n*G-?=w z5e>M%$9%?tjfOCn8MB6Tl?thLgg$L7GmNIN+uvS zKW(RnAAkJg?a6fB7bRkGD;zCZK-Dybpb7Y{hwMj$h2>1tNj-WaPWT}#01yLg6sQ48 z=k83rMwH29H+}U_+u`>2_u5WDtta#9xR_HHKUwK;lCs;)a$@Boqhxjjvz+ zV&^|iU%uGh2kq^<{tur;vADYZ|MT>xJ<=^%mL9g&-rMXPcaM0-``#h*W@T1pWp%N- z+0{}vML~ijh+p)V1qcEpk<>u4N%mOPRh3y;nfKU_gNT@WyHK>KD$OS^6 zZuka33q#5+c}w;xSpj|4pB^-<>;e!nRa)~omt+eg6IM2 z?3A=@lq$n9cDKpX+*JgAHwtU)p>eFGYp-aC;TT0t!Hona6x7WGARha5-`_s`=KXh% z)pPA4SjXtm*aV8k$jh2e{XY@LB-OI3h@eCn{aSP2Aa=5~wbm)9o0v5rqOQ!0%DG+h zBm2|izkT_azxlrguh}_!I$`tmU%ptD)6;iPgD!afPhZF%-s~#{LOFnI^E?%ePq%1MI84p$5pBGdmi>Tuj0Gy@$v5M=j&H{Lu-%2CZn6Z ze2d32O&9cea{-Cej#hRxkqUIy+81sUjMC$&bQPY=JQ-F@OOf=Dr9p&-7Fx4!Iz%@z zND8%q+E<7)2xyX8RaU}a$qm9v(VK}w?C|<-c_?jYRrOl@8jA=k)_f6jYdW@5{OnI= z`N&$jBhwT}shV9fC8S!4D`8$}OE}vOoV1*wcT4HLK*uIeS6`q1^w~-5<_8v0{OASG z8V}ot@4o-LFTNVS*s1rfa#d-!6X!CIm8cX~{XeEdJHhIqxQlL!q|UkqY+d@Y$f`yy zldxhzsRrgfAQ`a|K_hHgxxWxaErBm`pNUVWlGE5?|$}|pDthj{nqZz z-(5~|E_wCmcky=Y9!L4f`u0D5@#sg_zFp&u2%Y`Tjxr`?`S9(tx9@&_|Lu43s2@H4 zXYYRSk_{0FDLvd}Ww6h*V2PNoS#oG2ERR)7Z}Y%`m5Qv{z&Pgp=u9beiioP*%q%NK z<(9NZ4-tkY!&ctbRh0&aW{IQ;GPNW{Qc;$|R7t56loZg`=g;ivAy!_q-5u(29!9il z9(M4om5;KHKl|*_e8|%KewR!LOJ*Y&y&4&9YH?bjB)FuOnYJm5AF>~tcI3{>hI#t< z&8tNX0!bx>H#;PeR0XU_k~pVI=_pRqgLiHxfzA-C(U&pT zJb_76g>?oZ1;^AXvQ*eSboL8FHQ|)1CR&zOGvyYE3nB`L5D?QsER#v1=vGp=`+4vB z#eOKyYx7ZC^0K$5eU%oF5aHTfLTX=4C!%i+>LLZx9~&5{ZFWP2>;3>z3El;vQ zAq&J;Oug=mtfkuBx*QKC2i3A7q*Oy)sP3qd9{uzCpKbs5Mm#)5B4CDH&Gu5ij4|$? z-ydFl^y>NbAAggl>neDS*v>+U@BMJ~MNop1&3j_)B$ zOq|Yt*tYLJ{#AbSz;?I&#nbO&!PT=ih}i4#n7P{y+m%^5l;~Ub%tSe@U5{dOJ;w4u zCF!T*6n3a8Q&kt;t<-Y`s~4#~k>#lc1cRL=Vy!e<6|B4)SVT$*1;t3*41Eep5&|uj za5=uj2HZ%G)Dj0FS;n+NDAnj-Sz#rK zrgF?hb+6!F?fECK?^XjKrIi#^NM&-4^V=W(@b<&wJ(lD1brIH1>8@?DUQ2UY+aY46 z|A(xVR%S^updyutsvR@iVQnW_**aPpO8`bC@8EB^7ckNyiu!wG8ZC%E;M~oyU}9=3!5T$t-oH*ZT91+L!-xK76@tt4B4t z9%phUjl%x)9ozBMU3=t1#8I|NZO4}%^+SI5#rqn5`0VAoFN1P<#Ye`6(`miW`PHdT z2mjD~Twh?h`|Q*I6z_ib`N#k3AAa+=&u@P5lcz`3<=Qd_)?w#Cy+m~#9dfuvNDsTX zE|ai0J><1?!O|9gl5M|I45le5+H7FTldm93Vdbf?5?7lMbP>8JMOoB>3ItLC)S$A; zE7qV2L1%*UV+dD@fUKYXEBzmSgC&Rci_Wp*Ak#+;Zz0te01QZ*7Cj?%N+VMeqlIaC zDdAw7jI>&=b=-Kk9!6BP41|>BGTXDegA^;3Agh#|vRBo<$A|Zim%Vp?PL_J?);LuN zQ5-MRtJc0RBKp6p9?}bHg+?jOD*7JIna5LKrL|>M659WI=0{Z$Hg9x zUvHv733@J(X6^aQ_V}LOR=&Go4BTM_K;#&p!UKDA;H1lC=~QXQ)>^Lc^?b0`zkL2dILsI=1!>hCS!+mi zK^7W9t2Ge@jg3+zfH|~l>ymo2x!k>ab?Rc|j|(%37K`2987@^bB}J6Soc z^w1ZPa`Q~criaB$k;RToz<@UAQ8d?jOgB=>6F{g$%OBguR>Go2L@wi?HNSoKW^F$_ zv~em(J`0=vSKP87%}NN=q_oQEImZ=;I;@A2Ni(X@1W8GX_i*uP6LI|6;rj36GyNxD z{KL-mU8!_Pi_p8N%V0*XAFuQ38yXIW<2l^ljR#*Y)zJF-lksqU+E|O3aG8md>@q6# z(3ilh9{=`Lokp(tXP2Mp4{zSSef3Yi|E}?nO`G)gVvktM;-IFLOA|FH`Y0{)j{Yh* zV_6Sf5___^Jde|TFGIm*jTay$MT7|1#Hr}Nvl-=7uh@mVXDhFMZl4@)~`LMLUq zTT95cO-ZkuH=EdEiyYRI-8DC9YkGt%LZzBypl&=PfujYgwvCs!fB1v``dHlG#i+#{kn&*r$b*lEfrBZ zR1{ivly-9re7KHbINTkVu8ksH5hB@BS!{WOQu<6gJ^kw+zW>GN|L5;otz0rBYP)c* zD}Br6hQ|&2MdZbcmlK(ei)G+=dKx8<=e<9Z$3)VvRmVNA_oscvko%Khs&3;FZ}wMm zJnHzPEPwpR9RK;7-+d#d4B1s*Jnk)Hy#%kAVJxv3wJ+nT>E&j zkm5!6c)l!Th5@KjN&(RFrqH5LEhr_eREtEGP&*g}R4BdRMS|)^++d0+B~$@{RP@u~ zhaUzXgPEPD+L|~XQ|~|d#ePjMv*i|8C+97OUa3h0HA98WtPpY?XB{@FIgp7NPhB}T|YcMJf7qJ&sRUsSwpDX_}=c8-Y+aXqLFDZJw7REOe#hJY}!C_&$l9Spw&2sowV4Yd3pzshaN7@63|Z z6t-w;WY5fj9c&nl$ytT6n5-zTLRDmfjVQ2zB0yzIEjKs^5P()9>c?y0!=L}JK0zHY zW*eE;8vZ!Pp7ETSFx8f9ni$teqy=MgqHsI+r&5s&=%PBMsRhVRQCgPtMcZ*TvJ@zl zgcMQXF?@{eag0S&4he6fDG6)6g^!3R_r`UFETFu7`~G^~hhNI3i1nroy&n(Vz51ZX zE@~_`a7rdU8e8~Y5)}>0w|~>t_~U=`7Q}rEo1;QIVwK_Jylc+%4SVxdDk>1JZ)!hr=MePa(~j{VIRJ+`-9}PwK4zxWmE%V+uktsQfR_jornyq(tlp1j~$6#)byTj5oavGzm)Z}VOT$|Qq z3Z;ikk~700r4dnS5+O`a&<8Rp0Vbm4M&(Mmp*R2&fs{S}7ysp{V3Lp+++wtA09=G6 zEPBdJrZv%~WnwJ~8afL|O-V(n&0>L!YZGdksg^29)!U>#Sx9I`WdIWS@bvU_-o@^v zi6JKxsoJHf?I@9e%-DuTP~?2R?mm$4sivyxyF~8?(3sQNy50!X>@3Pu35HtB0JZ9_ zeQ|iLhu?~+o%g=OU4uKGeG)!vjKjek+5PVIT78$(-Lcyek>}MM#;Wu7;q((dbJIC% z<>3#zl`eLP>2j6>Ob-3U=bw39{?peV|1XYsTz>LNn^@El(>I{Ri;~__jpT^t*O`lt zQPD9khi8W)#ZpSLYEFMB%||~S){fF-M9H4zYXV6%`TTN=Bq)WrarqfW7*c|6=XMz*a65vd9jshw>beO=nFXR!*4(uqf2hG@}rb zQmaHjbZCj*0VyoW)P+k5`a*_?kT?1ttFnqd&)ehl)_8vq#E_ z-Z}6&)>+UYN2T$zIQX|<;%DG+xURq<@oBO zUmrev$o#+fU;J|UaC!Zywwja8;8dfS+G=7#%2JAp_q&svq=}-Kx~bc=(zTb!qGjWJ zk>~5dR5NdBM=24MB&$@iBuG!OoIuO+ECCSdNO(G<#Jc2_YE3ILic(%#g`216meMN` zu0Q{)*HE=sDA$O+v}-%`>8!Ntt%U(uQiSEv8ZCp3oPi#8WnOr`}Q=eW>XOdOw3Hh zbfHy=tt<^iCaZ4PX|c#2gw~VHeDmi0`?*hihQz z2dc+q;`PhBOYM7;^TYPbPwCtJ-ACN7{`DZm`n&hTF9*;0s;$T8*Yo@B-T(YQzWDXx z7d_2A%Q5!7Mv1o=BXaJ`Hu$7?6FFr8(yw0Yg=JQK;*W zNEHw)CQ^$O53h-w00a~v5Y`-CB^5UiN3jxyieg4)F#>=glU)D&pMB&r!KZE146mJd zwob2E+6F6UL!w{XSYR6TQeP(ee5?ry26^OM2v^I?_1KWN|a<+TC2>>5$>gIQ7uPVHvtQw zxr>)HDf>2_%ZGgSYP+;O7e;GKXe=*qM(0C)a@c#b(9X7!3*Y9G=`PIo->t6>OXA(i z>ksF{r}s~;&v1A>xqbIwZPTZ>elk0MM=kcl;lNuV-rDB+9}=9v5WvJXiu&fLfw>syo& zTW%g@380NAohhWxr^|Wndyzp+lUCAXQR}tuDiox!)DSzsN>B6-G_Qhx^~L*-Ug$4A z-^cDU)g#(|$v3aQ^Knh}A2bBIcDEyJ8H`K9SvlT)^Ym=#W#roAyKnjVXWRQbyYC0p z@85Y&2zd9pzB~KnU3T_jr2pZ+zWx-lyjh`Ll-+^%Pi~Pq+&X0KX3?H4o9hXg^XS!8 zu|^K_v-P#=2MO9yIYj{=W7dQxN>U7wngNtjgbecrlnC@k;5G`VCZmD~Wf|PFk{MYZ z#=LF*C97|C84o`K_S)rutl8EZM zi=Vw57}VbTa(LDiH&Ft68Ngssd5<7*C8`cBw;C6OEn{5!;7% z-(QDTT33jQN$0T^&)kF+DJT?)RFA~kC1)jLL1jJs_kZ}wPvq16s3m$DM`&CQ8It{L;lGpr|aXTQ1emxvybYm?f%VY&*pei+lqFg?0$b9 zD`tFjr!lrK`B70`w|th3GM74-H34?RmJ%tLk7M0ybv~t7N!5LCri6wBLa6&oA?6gN zA}dYMmb9Xl&SC_Cq%M=i9+lW@(#wHjnriy+REnbclqwgIPTU~Oq@bj-MCi$a7s1o7 z|Cucn*Z($In43T_XNRX*waF4KR2HWXjp3bv-_R{`$p1 zA!NlZ1d^33WS%c$lC1|zuh}is>adv7=h@?_0O6ul$a0DRT6x})kshk01eaADn~2N# zA;Fmiz@rjO+a1sZbg(Uke^`J0ivO>FH#83h3E^(*i|yNoNKwz@yjH=O_d*_@ExI1_ zSwflT?|v_zym{##dU(Z#b>Wlg;qLRF{gmJD*Y}=m9r^P0b&cx}U-D=7i`|?4>J_oR z)NRQOI&I>(oN$!cDF@|nsR4Ur^s@^*YcZ|4?V+C6h|s>3;#v)byf`HV#eJ8ooT{u) zB4mmR5SU59%;fy>E0zQhh=^$>k<5%egG2yXVoCx)sbwO)3hk4B@%gjV;OG&LKE+-u zj7Es=LY0ytW|A_&LJCM`PIJLpGv;l6tz#;(S1fH^4yWfYU!GP)R*2|rG+~wDPuqio z)>>cdN<-@@3w1S5%wd{y8Z1C2t_ zMny{~h>|Hm(xO);=D@AHXl-3|xm%W{_uhm+R>jQ*Gt;+m-L6y2RD~3vYX${?RorqoCgp8V;N zwWMfkmad0wS7*$@VByNNsg=0SCX+QMyF|oN=W!c=BqzCH6g$ObW)=2eR8&bM!W|PL z31rf$1W4X$B@li6FP{(Fpf#h`6}=BxO{WS85?L;Q1!Go#)5=?vXnMrP9kVJ^Z0v^- z)9>z%%VAv(U1@|6CbxqN3h>&_`(vDc-E!Di^6I6ob{vj%>EPo$JzKmcE+6#S{Z(F6d;MmeAD({x zv&(tIi|&{4;c~trsQd17IiNH*Z5z^bX0Q%Z+VbLl6_e)&xvS;8U0X_Pe(#JtR2>#F zAv&vSu1(E=rluP!39>kwsb}uJis5MEmi>ttRZ0-8jmRb}Y7r2Jw#eiNY$G#p;ck5}fW$l1~ zM6p0YxzMk3d)l(MYK!KU+L{Dgkr@E#XvY;?+C=R)gSC6wF3>%ECaYCKvBI`%RP;4n zz|6Upm{q0-P|_p<2v6zFzF+>AA2l{1qZJ}`J7YwXF=p@bT+3^DeRqmn$L4van|3U3 zPsRP4FTQ&EVfK5Tp3M&r&+gwM=lSV_=0SZCmYmC9;C%n;6Z6MIkFEB#;_zl{2YKMMYT4LXLJecCqB{s`+(0XQ5$uv`lOo^D#S(PT` zu-K;bl2~R!DC$|3nR2645;7&FdY0v_%s~x+qM0SP@toW~PGYbB@;Mmi@{A;&HIbp! zP}Zh$U4}#-bjECC3tWAVN(XC3m5}b?(hZezSeIqFzw2EDY$5~-Hz$y~=XQPiuoYnG zO15Ru5~IMF!^1P0Z!5B-s;;YgN`#iph`p*ZBxq7Xe}FAPr-~$%Rt1e8yU~OXs$_5M z?Dx2T_B+3~0|&FMrx)s(YGXm`^U^NfR#$m>m=1wIT~9A;dfoRJo9gwCzyIooho^ad zwmwAD%j4pgCRd7QUkm5VL;m(vt54|dt3P^0EjYiUk0xCpN6WUCiLL0mF1uK35;A;9 z=3E(zn$&*2$l)NB!}`j=)zNzs!J;IERYF2pLZ^^Z6yi>Yx8&?1$}FW;N<^FK3b(8w zW?42<92o(a6tbvUA%GyO3IwqJ`A^bAqI3wXUrXvxKl(vK_Y@tyaY9gHjoP$Xr>U|f z%7ap3?$q}D{&c^bOtjRRL2g+lDXFYT-^auIYxbbf_N{0WVkIg>W$qc6y$O|M%+Ben zw8kScH{`B~GSnV%3A3e2vMTn>8YavTBAkF!>kCr$s*$fg`=tHDZ^nha&zZ=|c~LZx zD>K%m9d&xQ)3drHF*X0{wP*S|fr!+Hq8BIDFl>XC$S4nu~lsNAn!r@OVec;D&{ zrx}EMdekTt%E?!h>W12={BooRp*Q(B2$qij&PJz<*nxB zKv60)%|81tj>A!$O0|=hjj)KEK}yg(shP(r8d>-to!X+IrsczNBgKQyVZ{ry+=dLQ4+KRxVno!btVfBXZo&X?hY z@M3z&r>n61zkI%xeO`EOsN3e#S&bWXU~r7vdRtMokh8|0SHV^e;V^T3#(hXIK(1L z6vpDd-|DPlWX*IHTU1;!t1g?3U^>!)EQgDA6+{39 zwq|C@xM87hCTM8T=XF0nO+hA8WY3=L_D}W6M+JT5 zb*oU*HF#>5@8%0@u|uzK-yL`IEzHaIhq3Cs?0HzvXI#AS$)|7r>BlP8K5Cb@U$y`8 zUl48VcM;2Bi2;+0(7tf8j}LqKv5R)9tk=1;!{N{hEHE_grPd@FDcwZWM|nx2YB-me zM0oRo)|iO`;mMS&suV5EU4K+>-In>1DFe*9ML`G}6H*mX^`pWA2|fL*Pht~97TW=} zH)(CdEHQyLibBK<;06&Zsim_@*mrj_yR}}let$Z2>&;ZP0ld99$*O?++^?7O%oGu3 za?u<^6NpUN4nU-=Yc+wTqAr5)DG_jSY>qONW)py&V=GspVnVeNjHxA+ijoj8CIV&9 zYd(Mc>(?q6*S4%OJ$em!!hT6D#+KFW^IyqkrH9iY+A-2$M@*?!vDxa~+|x^rGJLni zmdDHfb}kQZ{gn0kqmO+1yT5*V{^$S2U;gs>%U_Q7Uw{2q|K+dy@Z?=Xrpe_gDPecV zxwke`_%80nz=qb^-Qn0;u3A)RKwF$Lg05gt!XsChM0KUpr7=aO5fdw2TDb_lD%5F# z5Up8JRS2X4!axwvgt?G{O!8LKH!&=zEEHw^$xoi1wvR zd&^0Gxd+YW{>jgtzdavn!BZc~<*eZ02eePj4`{;uZpFO^P9RI^_ z?|ya4_VQnS+98=+Eb+KWmG?uBTws0f4LTh$%q|*b{eE4zboCvqXqoH8lD8FGWRU1( zE)hgEXd-H8mMTNik(DWg2t>e;A}R?NNYGaddQgiY2)bkm$t+~JXp5=}sUou=hhILM z09gIbT(K^og-he8<_ivPIg>j@F>*;w<;rYiGlVahRfYA?Z`<10qSx&EqGXodWt}~iy(#^G$>6ru>D5nvYG3~0`r+*l;uceLY^T>t>{k(weX~98 zt^hoZ{Mi;1LFl}1Dw z7Ld8CkQ1dS2SbHfu4E>HIipZoyalT&WF2$0v7W7+pldHY!OQNBhriydut;rkP zbMHZ$HdUn3TM8AdA5X@bRlPA84Gd@@+IV)=gqBtj!O)p2Ez?k7rBxv*P$($yqOmF@ z5oF=U>?9!fzy1${*>X8#p;&>A$YhmtaN00BJYy)MWfnLR1d7cA(aX)uSSeEQA2*nJ z6M7>ueBWj|Om-9aQsQ%I&`P(mD~8x;bpuHxbdTUQCe0?)X3vgdD~bw|DH_(qMd3rN z_FO3rgL==B3K0uP6x;4kPul0QXkMmCr{${;u2sQn2J`f1zu15KD%XVuOKYVg{`e9vv`Q~Zno8yDDbE`5Zo*uS0_R+n{pZ((V_s8G<_do2* zWW0X;kA00XTD9fv#P?kx$T$P6DwtJEgE|Z zRbgG|!Ko$ajexmkWOSL^JahptdB#>PCWbRBs-<+zFd$iQwgq(RM4>7us+f`iinV$| zv}ILnDYx+G_dzq=d0bu`+RM+kzyHVYFVBuo`N=0$**e?OD79vD*4bUO?m!>&O}}&5 zJP{|bT31dQmLNHMonx2HSXccywya`Kw zr11$wGO~(EsAk>1^HN|`l0cE|qmMIF^sq(=gR+N;#%Sdy$O2#5Exj1D2Jfwu-vhY)h&tZnly1tRxdRZkraXDv<@WH@_xO zd&Ml9G#w?CqNy3l;h56hk|34PiqLtZL_!)wW&LqCk(m({WxQptQ-()-IF#yVvdIk(f&zDZ?a4k;$p&VyAh z_eUS@4|q6Ev1QTij?njbwx0j-XYEPu+~fYIzxev^e|Y?ppZqtMBXpG4m|c-}^224# zUP@NlSXZ~ag*74KRSlPsWO`p<>c^`QQBpcfshq+*z9)eRNx2DRVrWY#rnNoWTz1#E zA#))*Z(IiysURgo$f6~K$tp@HoG7aTnLQ4lud~2oXCFq7gX$HbPFQBFn`I@fN^6pt zlBCW|3ot8SE&8e|rJk8}duul+d=}?8$F^0gkX=0sQS8WTk1Akz1U0j@ciP&fk9aYJGWs|NZ{)x6A$d(pj?g%}~eV{Ceny!*=_fHh4FoRvP9Z(kA7~I*3`5 zg?Tj~RYF9TNrCNs#7Z5QOH`#LLvL4Xa0?1Yb9gIC78o|AT7pxQl9CD-LO?LIN+4B& zVo_L0!ZO>>fA+VcTnat2ZjYJbAagKVw9(qRZ^pWz%Vtr-L#vHl1eIx$nkA`Os6-hE zR3&P9Z2M&l(CR8V_l2XiA>%-VFx^pA(v%1>UV*$J&quRDOP-+eSG!X@1OcVes=ou!@Fl6 zJ;mp7kAJzJ^0ED}-%G08y{@a~M0-NHu$A`gVJhhK;!e|n4~O9j#lA?2rz(?xSLBj_ zgqoL)WF@NyKx6~VNhqu!;w=%vYMHk_ro&oGMW7-{fD%fE7PEv{hM=MZU;^#sCx2Iv z=P@ayH|(cnCs6?Rg|YaqgJfk1svs>Y`Ulzt?ZL_Q;rh|&SDE?tQ+^fp?)U#3|L?WEzQ%v?^51;+k=gZl_mLi-+Vf{) z{=J%ylBKyuNv;s-?a(Y*s#tPL!Ipla9!Cev)k>stE~6B5*bouyS|CsXtrTwvP^v@) zGpbi%P_#-?AxuUAi7Z8FvC36aqQF~rbP_2VyfL=%>R11LCdIN%6;@y@yG6N1t(xmD zPIDkTJbOmXHiF(pt7@oq@4bmsRb>Q;&qa$?LZ95#^JsW%WQ(WEn002yXNklbp99`>(%Wp8dt0wDt7a-Subj z@Xgz&`{NHMOkWVve9?^iV|JxMixo>|gk8eApS6^-psd1%O{oagbYmCligFu{&<#pWZH?rr%|M6*CDd7NPKAnqz#*3suOlwsUi)@|K0A$R zQmljI7$qCNkzsal**iWkAiB5b-mVU^>q=|jsZF)Ma7D@2~5lhsU{O?S>@A#EHo7&CrU6`*^-q~ z7`IVynF!`gFcpXdQUO4!C@3JZNF<_Q_Oo9UmOBlID5{LU_$Wqcva;xf7DCY~kVlmH zGEA41-9(jERY+E)B#&Ox_S?RR+IFD z8N823yBuR5QzL6G<&X(+@o-cD*;2h)K#06GXs7DX!*z)7TTDXf%W}>8vkpm#ko!@a zo~&I5E-(E9a>K~HPeZQJt1pkpB~IrTw7JA)woiY1`1}BgKz6^9ac65>*VrBz${)V^ z?B{=b`tz^7>$zThfFF*3vzN)1*C(|9`2FJ_PoMt@zu(_w+0J&UMBdHiP}!1+?5?Jn zco)1rpMvuj@^Hcc1*b=w7Vyk*zuRyK})ZsgYPWLW>hZFj@eZr!Y*LJ;U0B!$kyy zM5QP&MP?>y?h~HIsXU82Cf&Ge^Ok-~jZ<4sMJClyvkkS(nujUwl54`w*oi;^mXSo^ zD8c9DuH_lbuuNqDCO0JSGz_06%bfW>(rp2s&IkkskG!nX?+$#JjMs2o`nvR zHc9Ca013&UOjM?jRnuLn3rdR=&0(6*%3viGBr2-1Dv~HE6#xhTm4!$^c>k*|wZ<^O zszouQB|NL42}9BXC}AaPYBc!Ol?Zi84)Z!YDr5dA1}(4>%!u;1PAO5J2Q}3+*)~On zOZs`Mgf^zC3CC0%ESh*tJJu>96~XSdDJsOAk~7QK&Z_l{gHE6nVg(|LS_uKGYL-tE zim4ndv8;ROoRi)UI?c{{=plgj>(y-_}$~-<%`St<(u)RpK4#PF9`Mbb$>dvRlA?F@sFYpfBheDsLu1A15NMD zm!;a?O`!d@0{fhGO;aOHBmqoSNg0l&EEdqECVip+Nww$#W)xwgTp@}?R8HO`rb6L> zBIk|IorOdbiXbw}0?14eao$EY3g}N(u68wwu%(FL>WGGVM0I*v7@DL)RG^$-OL()U zCZV0%^l(;$S7Bk?@XG2>@2&8ve+CuoE zV`AT{8~`=#y)AXD`6C~<$W)3}0NhJd$?9s$#1c}u#IypMT7vsE>Fx01uH_sHIpQ%~ zpZB}=bj>)&czUc?xTN+)n{8Qluhu_YkAL>U-hKQ0jc0#3KKR6{PhWj|u!ryZ@zr0f z<7s>>T%I0f@6Y7=lt)qQzC!ZbfAgJ6rt%td5^M@vp~+rxi@(gvph_7I9mrG`qqE9KlThr{hGb@vnJK>2Z9iW#0#Y7DBqF1jH)hC`+of`$ z*gyHaB&CrZ0?o?FCR1^kqD{03Bng(yiVa|9?Mh|$I^;Ds->w;RkIZ60m2_kvCu6u* zOL%xIR4%O$(zgeXYXt7PF4Z@moO?Fg#U^!QRp@KbhBFsCp4R(hztxSe`-i!q*>SzI zgJ>5f8AujOh(72{e>~jrVe)IsW1QPIrRZ5FO=io}F@3acN^|Xf#4NKsqn4Fgad-DH zQ;X{o*R9=u65nojudNPeyneo)+jn11e$J;}+ZW@s@GxJFAC~p*H?m%{4z=36`tsOY zG`rRZ@#|CHtu_^Qecnv+*q|nG>Ct@7>xcbpFI!u9S{N3pka2@Qs*nvFVuH$~W)U!N ziE1gOl`XqDjTB~~83}5lp^%30EAL@}dqxjtSZCmhu{ggb2ds~*=LVmFX#K$ z@x%7^<>&Ipr@Q-akH1ijncu(r);xK-9}lnkcSpbO5})>m^)k=n`Qdu>AFc0aY!6Sqv0qRtjB}8G4gOLu3e&i&hAN8Ahs9 zAiF@X?#PYhG5+(8!DwDKNvJq__%@NlC3A ziKeA8Rd2DSj8?-lok|m}ipcVK+|F|#6FMWX4@sw}afn?}NG?D_o%9JQTZ^xhhzD_DpUWtPYYpHYsMVe>cRwOzM+-$W-^ zr^#jc>BqG1qd zKN+9e<7vHq(0Y3Gb=Whf<{#S2c4k)Rq!kW6?yd!w@aostRxexoYOC<*O|jIiY02&V z!Qtsi^i#YnM)|Lywbu$0Qau~i61Q$h?95lvjB_ueHm#`LWQ zva*(@>9XJVKCI=gp6CRi1+y6?R4Ks3uzNfBdyyB1e#8|HF0F5|e)N;)*DwCC?VgD| zwnoKsysHYvvzCp^So!j9Nju7e-#vdOf84A|>Wh2uoBwY4%m4gm@#3fN|6ca?(W^I2 zf2j2j`=`%ezqTHKxJh>HG*~W;SVr^|UXkt{E7QigOV$MAFmZ8l8 zg|Ntog{gH+N)1E+PB!QjnznBc2vRg5DV5n5Z7Lxo8Hn_ex6yD`W)>?GnV1X~m<4(T zNrD2DDgye^FAvESueohcTSV#vs-o4}Jc=nKgh{hfnHE>01Wn1NqB1X!j~|{cmn#UC zCW`Rs7%7O5xtDnrcc|Ievk-u_MOX1kO`kH^U8uaEwB=4COn1o^HK&$li27i)zO?)E z?Zm^`2{1CP+$t1N>!t}pLKa?DJj)zy5OcY-=kxgHP~U%ZZfCW$p=jla54-KBP4Y-L zkL8N%vxoaG`y8+D+J_(1<&y2^Kl%3U_S^oy|LHvQ_0!Ak>6^pjLzP^gx9@-bKbRawn9@xutZ~swowVr#u}QE zL)#FrAZ4>x799peX{6Y!r5p^7V+xRMQxQtArIaHmV6-fmOpR)lA_7)P-UyUTFqS|0 zO<60D(-R#6sHW@V{(RE6LeGpjP( zyNJy!Zd>BnO{Pn>ky4g9GM2460-JBc5jdA-%)EQ7+XPTCP%2D26gv z3{NLL8#Qf8<5U)7{pdOFe*}W_xx^- zCgAz{=1(*5+xgS`FF*V0LmMx@e1Cnq*oX7}@XT!hR1(=j*6)~~1ShrayctNP|TbAGsA z<@xKc2j{?d`_Eqd{-6JRv-OML<-zTkVY3~GFpO5$yARee>X=dZ^+SGOcAgg~r_J*!;^JDlOlU=HW0(Tj=`svL~&nnGqrDV;EcHKLgdEc>&MV@~6>WBBK3qw2w-impyyJ=qe zl!qLTV?WvbaECY|Jc4h^mHZ;dX=MmF1CXdnEEEAp+n4SU0FwLWQWJojybA zzMZ#iY}e~`8{0Mmp4Ty}Dx$Qdv^HtOFiJIbU1=0BkTi;kW;J0G5Shr>GhA|3QSbCp zm!{gY<64Jcqga&cMJAoG^RNqy439b!KJ;Z-wn`g(^Xm0U6^lz^?wD_{Nvx-1*QO@b zlAva>l9G_UW%<~7x_t4iJ^PZiPnfrT+0tj(Uc|)R7HpQ=!OrmJFZ20Bdy@9x#JcCZ z3kR{hmfw3$QTycCn}f(7Up{}Uufxv|4`=@D{@aJ`uzalF#PZ?e8vp*keju3rF-Ele z-6M8ImV2c(m^M93Sr4kFq*&7`tc;tUE~tjRRumnPts|J7u(XW^O9SO=R7#h+Y)|i@it^?3#Pr%-dt z&CL)`P_Eq%D@3T)fbNBsNLM09X@^=egMre3kyX333XubEHRj}G6%`gYY#I{|qQpZz zkVGWtRX?uH$V~Fq9|H;?VK48oefKoRHo5!L!+Gov*Uk5R&@bakY}+WG8FNn)NV6Gg zmL;=;HMJv0ER7;TBs0Qe?z>0C+-rnOhs1#FsZCqUwOfshv5m3siD)1NWoFli2Qh%x zAZbdtJ438`7<2BqH*$qluCi!IDG~yqq|_`KY(xEuWnGld4iD?4UDtp}J6*3Tm3hU$ z;o0N$BRfZ&yxK?Sb!*qB!^rpIO=irL)5BM@S4$vw(mxsh(-)uCqs2J&?d#us_Q`Ly z;m`Xg+u`ybelp)H5$&|?slNFT88Y|q*2{F9=m)Aa6h)K1h&P`ValN3o=r|Zz0ZE&M zWfa&oQiIqf05Xdrp29>GA~M-0Eky{+%IfeA2@z>Y=Hl7ltUXnPxUtZ?s{)y=#41ae z%o6ohC3<@H-8?_aHF;k4T*$qjPaFGCbUHazpNLo?NRdeeORQBbJ{ls~1BX>rlLe-G z&hwt?7>L+s+mc3+CyzRtQPzbs;jSv>s<7Upys*>VeZ5#h(2`@7YhDhEwxwZmjadi@ z(@KWSWxr=syY;~sR&42(p4c83ZE`*D`y{(BMe2uBqrT>%BxhHP--G^M}Z^+aDr;NO6j%VlGuB&~fkjsc_qEUp zKqi}%XsSku7FwoNNeL2Fw+*96vYqnXPUdC1`)*Gg#l6h^G%b2_)4G}@q9K~4jicj8 zR@>>ayBkCnJ06;miYmms?AtyOJ0FGc`@NIl6&Ik1=(>i^C>(Q?MuaXxWUI<$qxre( zYl_~&|2!<~^Op@o2+mdedHR&)uJ>w6Xu^W2AX6_WMN44{i^`is$WowXOiGdz1t29Q zMJ*P1>s?X`^ACS~a%fxb=3oFGVP~yqKF8qL2e0Kb+EyhMp^zVqsPN&WaydS`Gc~P@ z%z3$f*mmEhUt`a0b+!X^dTm>iWnCL`41tbdN_Ie(ib{<2DfUZhSwXj;`9ZIn+-a7H zo7eJGtqlrO#aCvb6liW>0*sP!xiVX%&wi-m`tAdl*xR#hCWmRdi9uHR-s73fr!G~; zfX))iNT#Hhxkmetxclt!%l^-n$NBKxvlrKoe);}-y}bV^f4ALBoZ`LReY%bvZ% zE@SBw{MkS6|N7m081Mery}I-2T$Y_xu_~v8 zqV5`fy$Sk~N?~ehNYl69e*Y+Uui5X9Y{FoJ(;>cICCEb2wZx`HAp(p_O$F3%l3Xn* zz%5yl8U%C-Kmj09s)?l}Q&ew+K%ugTB3V+mj37Wrfdn6aw{>azs^JG)RNJ)S5YLD? zuiU-%ykeg_&TY2@vIQa{*2DcOTzR@%S{Gu5@B72`yzSR>M8q{qT06EZ_p8*h99jut zlt7u8(b3U7-TT}(j+s-N6{sRI9|SxFQmZt;k`N=*kWB82Bx9M78wDF_QBhM}@_oH} z9M3|pXwj7WS)d5R8M@fwv6~RnPx}^kT46gD%=KE$<#JDK*zPLoEuX&m;>~yG`*%NC z|KY#*vrFyYeDn3IPp>chIG4K}zj+ti<>Cev_aH^q^8j^nS}xHyEoX=$+GI4-7)e?PC^0r?29Ov_XeY#-x5z!7NEk|IaVpUVFexcTENSA8snZ4t(N(Ag; zmKWXh6BVZKfXdyQXH8c~3DPIS-@|ZR`m#t9xfLHK`%o21FkEYHA3mJ!9v)s$zuPx& zEze#nDufWcIB?$`w9YL>Xebj#oAnR#TS-ZZj9yYnW=kOp#$t+#u=ECcE&+KP z92O~px`A1EgGqh)cDC|6L_e^4vev6?a#^QtTSZN5;kjR)VyiHR=7>q2))fq(AD*2S zZIU%(+um>6^?cr+#(4CQ6e-lCPobO|7k#=QXo-%YHM=0^wIr~?p00ut1L!5CP{XE$ zG=NC$9wj@QTQCWxXu)9OiWC$?Wk9y?pI)*(Pb-#KU-#K9A%v@Z3S6(D4bSVL(vV}} zb~2sM1IMSr63ko@QQv*2j{5evzWLyn`}=<@AOCW$-;ZaB_1){2SB}4Zs+U`)hAl^Z zfJkd+GBX~tlo!h`WIJK@B~hN{kmJsf{rjhjEU)iRY`uvfB^f5JOEm5xQd*Nez%p;1 z5?iUHAbI;#FxMT@s<>7v`;a9IN>+-FWm*j_L8w;1G^tEMl%^J#0=V2TGHyT>uzVao z?!vYsrDRmkWz-QxKTG4DyD;WXx9h93T%Th~TY4OynLzf;!=Z~3j;b*)+t|;$@0oi_ zK@xc#P;gD_W(4TIxZaEsO@yh39OC`y>aC2XAJcoJ2vm+Q-mJRJ#+K=rm;TkHF73F= zQAL%v=RYA*#_%NS^4%BqDIPEX-}2sU>5(K^(o;1vcaH$@FPT|cy`Apn8P3Kbg%=dz z`@aJz9172znck|ps&fAq01@tPX1qZ28AuVvH2^_K0B-JPs-I55FT)Rq+@j3Z-D&0S z`)`~3?&06zY?yOh(OLGg#<*79HQVxX7=-6#Z?hf!<9z>c&9;btTkYPrfB*X*?qA0O zi`;t12n2atL?Bm)mv+uim%spqX_is;&Dd%3+b*&Ww_V9h% zUSD4>m$_ZjS-wlDa*2^8%jyqiV+6FiOxiFB6of@+1g_hZ+W_%bR1{gOpq%dST9Z2juF5pwDm1M^%9w?>$r|< zX|2Var#N#cqLty&uJcffSg@Q<7`yX*yXgAn@cN}L_tD;d5q$nxA1T+=0R^-SCml;5 z6FTW2-BOpeS)(38>aIc=)q(i>`P)$Y{-M?7o`orth!oW%6hcpAnxu6CCezZ=!@v{= z5{BZ?$qW%7pdmF#P*W`lxH73A)RIBU?e`;~L4!^KC3!0qy!m=_eK$2d93pG;o&HzViCxc`R%#$q=(aLVp*sFTmn=j z;Y`oIeeU+SeExcw+mq+owu!73skXfBFX*`f$>O8S)22oZrrkhIWH z%v7OEBy~y%Qk}ujy!p6NLT-c^q-0RO{=jS`6sl_sBNeCleY`RdEe3}i@#38JZ2b|U-OeW!%y zr2Z-?tF)W;*iWo%`h}Y+rD|ymZY>|>C%G6tgcttqi9M@k|-mPDsM<27J&1+?q zLznhu?-xB|X>l#8iU~Gzk2I=cY+I9~j)*L~7UDEi!V&syS{>VWZ!ErC?v9_n+&!J{ zyq#a=B|~%J-lt9}$5NLeQF_3Tk#<@Ztkw?MeD$mlNyGNzr>o2H?sQrn)DqH|lWAbm zMu|w05dw%vicb6k!J@&TV^vR0LOnu+fglwU9;BtXFliZN34oh!)DWRB|skM4$Y=sw(+!AHZ{_eY9Ki(AsMh-{0Yn53>j=o*K zoj-i-SLqXas=`t`Bc@uqt8mMmb6UAz?Fp)88zn~W=y@%Ogs26McWx0yxQ=~h)FdgD z=P@f)(+G3xi#RnnIIHB8EHjw6&eHX`s>bG- zycXIi9!h{wGra&I(*{E+K9%YzT?Lp>H_Q|$2qh4jlUYJic=PeyLIrN-?zg8am=-QW zrbt-X+LRWfQCR5HWv@#y8d5#>dD&mCm+O9x+RI$B=G60U zwJA<<@Wc#vY{=z>$5B!0U?8AlTtv^PJx3;xVk*)NJayaLmOFhJ^+w3i?O_bt}MS5C}9%W1{NbK6T8N`x9VywAd z`2B~Gto6hBpWpeHg^z}_x9#+(uiroJ^E39RgJMiwdhxwbQRh|aSi941Yjc%M1zeMU z!S(XXHIennPu~N?OvKvAn88h_4(6}`_xNS8!ezYI7LVkYs|R1#~76&F5K0SCU#Es z+_=oPjSe-rzi&krJsj$t<=n%&fW`#1F4ju-1XGb>x7aia$*jpLeZD-*6|+G?F1Xh- zROY+)=KZ=EBhqB0FU|LmX5m}^@A=;-kr*w0rB#epMT!I{3yq; z`s-s~e)-@2_shfYAO|Ba`oNOR12Aj%v^?&~SRSg?1B+DMYDa&>3Tkc5I@V zIo-$g>E)*{ua^t1+DnS~5RP$Zt4O0@+5AecQ+fsq1tQel{W_6q20?#F@ z9hA(Vq|3~d5W)44S;JB_RC-bnIuB#n156z%{XzQv-Ius#1kzgG_2mn(hFoURS1zH~ zY`%}BN{oYe@|Q~EAW;y#WRd-qZ#cfyWxJNX`1RYcKb)T*-?epc`5J%dpYIQKtEAgG zxg*_Ui8FDR*v;A28Yx(_B22rI?Dq2yA2Fe)V?8dGG9!~2NJR={YV?{82}$Q|LzWTY z36!p!5iL3E(45SaS-WO>$tfulhzTeiL4j*GWrul4!V5A$5jca9q%g&YAydIbO8d?I zM_B^t2Jto$;?mJTmAEpctgkl?rD{a(8Un!QMkyi)G9%8f&(FVneZih>Z0n8awgV-W zMHiXN<<)k%bkSslY^Bj?JPVXj$LbtB^j@VDRJb&aXqu6p;hA1%(WMy|ha@s3G2^Cd z3-cPP5+cE)azDRbkGbtN^Kv*YF+Oy9*S(9sAeQ!`ruq5A&)0{_vP;uKTvF$rL%1LRgH;^_odtEqiiMjWRtI zA@SwE{XF`w>%*^)r-fBq)v6Pu1ClJ$Gy?^R;DE-&9GU9KjF>>7XfQa1rcM#;NFgmH z0T)m*A)HhWhzPT4pSP*~&8I)3)ez zik|;^T;JOB|MBb#r|l(DG9qgqX&JVPSS@R6mcx>3B94(l|MJt{ec1NThvV_Fw3(@H zU1os_HBwz7G#N5YP*U77L{g~0gc9aDg%O;RxAY&IEhLB9)TlsaC^Aek)BtB9G#x?^ zmZoqM0LlnTDsSW;Bs0dRKSRx?5fn`jJ#g4lDBiHI2o?4SB`9y-zd1CacuZSmt%}Hb zy}W$-@h{)bF%yEa+ge{k6KmlKT1bq(xpao6vtrRoHGLT)yL(}|cn;+O`X56)yVA1M z!=W9_8o{@xw+O0zijx1p#o+w$ zNt6(|H33Q%Ngu~)Gd7lR>1{xm2RYXI=5eViByzQiRwCzo`TY5BKYX|bb851hmcvQ`M$!!JwrHMBUiZ76X7}OcemkVk#NDDFIzV0?^&S zC`r(g5;RGqi{p*~#na-vR3xJGCZ?dMU9YgqaQik7aUSPmYx`tbVVXK%Uw z^)N@VcRzU7U;W5<_`hEMaQeOL-!HS*02W;An6J8@uCVEajfth6D6NJ%tLrq%9H0L7 zv}dl%+vTBDg=N^pZ7xd&CHGc`g>(Tn8%|i15fP+^fj*crHD{RsC}C5SNX+7ZhXEOb z281vpYiL)6DgzQa7!v71B#}wp@Nq%0_7ieEs~(Uq1VAP!mLd1{ZOEd<=A*CR0T7DtzTa+cPMQ&mDN%-Ae6K$Kmal2^~cx8gZE2bK0Bg1 zLsEBJCX_%?*W%ZC@+vMvTg|spIGP8_SLXhwhp@r)KbFWJk$dc}$|MKT=uUzgPzI!;>(FiYTB108W zV98!Y!$IyvGnkSTQ3#kOu<1o00ZoR^3KKI?ECrMw;x}|f3V}SK0gV6fA@3>!gq-^OuNnr zMig)vn5(qe7h9I_RR#38{PeH6RcrUBy6{kp&XKf4VA}32q69q{3c023xFk7r*WgqP zMd{*FqU@42NDW11adB#(W`sJy5Du0M=w38HH)lEk#V|}TLtJp{Cnz17WNKz;{r>H@ z@TKhQ%uMZIlnbox+Q#x~vim6`{9fJ!ts+xY35??1U$=gJ`Q_8=JWn8$6~18CzwbgR%l9S}v^e8YY{hF4F!!kS_MTVYB@(k;_F2INLgfFg2VW_2<( zDIgPqF;VP#NDkf4Q^wUK$K zJpJYCw8ZlLy&Y6ZI$I2eiew34iaHavTe9A?Ttb=ET!m#<3g{dfp{lymkVxqg1MZeY z_)XmrDNMRorbSATQ1>(@3L*r&krkOjAmetzATmmzzFj}8D!srNnIUE0m7~^l9d(Oh zZllFm9Hkvqp;S;JcG;d@adVE7%>h4du8T$V<2T-Keb@Z-Pv8GE-+lYY{LSm> z_5I!P*MB`9{!-rj)4Q)x_K?icpgY;ip1f51qRTREmZfzm8XPYletH_GY3=U2`(oM( zT>Lb+Wa+{%k%`S>@!>bn?~Uh_iI@qGl#B$!GHtkXrr4NSLxwfbvClgG% z&B9q?ih|HyD6UhgM3%6diY|a80x&1}_U#XS^;Y(q-@?7_%Z5uW4xzn@(=89Z^=xG+ zo}nTM#C+PHU#~xoAy3vbc^cNr9?n>_m^DKn?K<*|EySyiR=}<)k-K$-ZJEe@lcv~x z6#ady$5E;cd?l0!c&n*-666R7BiD|pZxgoFF(BuXM6nq-KnWoBh3>wB zSs-eDTgz_1C26U}roljGLJd*F4FE}~GZTW8P!XFh#tcnVaS$P@nHm%bp+QoKTMkD= z{zFayfe3<#kAJgKB2lz2;iSl570GGAO}%6`t)@V3Q{iq(`r!LrY;EtNnbMX`k^|ah;!Kp~^+m|2y_OkWE(!PKD?%iRLwiKh71g3hOS|)Rr2s&+2ymgoY zl93R?W&$<@=0uuKNF$?$Fv*++&^A*fC6G=K&QxTAH#cB9MWkSu5D-iW0veW-+gz9c z^R|jS|8>(mq#|W?4&pDBpBidEvM0(iPcLE=1m-xmXO)E)x3Q^3I1JN9c#lSw8qg?+dL z!e9~zDP)LCCLKhEiN@KP{Tav^rs+Cg(aVv{v(vX9Pi47Z4#d(;59y=cm6;cReO*Sr zeS>lI1HX(`_m9tWYO#O!?&{aKYx+^XT(25<2{C@y3R7HA&<89Si!`OKcT1)sw$DHO z%YXAvJ$l&b`|sYLB-1F&Bqj;9A<;vn46%Sm!~p1?BPFy-W`+_avLLL$GK*lBsTl4| zfKI?Ab5J#5C@@QNluVEG0BBUbSqeBfQWYQqU4fKLQQq=cGGK4-$H*(QPmO6k&zq%S zWnrJf3)SWNG(tsdA<;PFCAS( zD5A_wDAV`gd2+jGw1SY{r@nV<5y*W+c-2)c%tXXA+8qg?REr;mfJKFSH(8n4bZ=G1@k`E}!} zd;52XyxNY`(puAMN+x69<#I{Qw&;?rPz0o;W(v$RLt?&cL-rA$H&u_m4zGRH zGvd9+4yhUOxO{jKrFG3#p7P&5J-y7Ot=k)Yd1u{sATUoS`6zN)&f`CR_sh$>PltYY z{oO%XzB`r64hG8ec7ver~xQme#l)r@^^m*>yF{Q2yB z$aUz>wF=9vBU0kNva)3NZNyb+GSn>=T^4I%2M6ImAct?vtPSDQXS)8HQZi%RqQuf* zx)ddH&e?t6wy@QzE>=Xd00NY-ESaRI%*)g3tMTjSY?WvpOTw6Y)r59e;e5Azy=sFS z9&~>?zWe3#yxODU@K$m)a2TbpzuG=AwH`lj|JMFycY9I}C*te(4>dExl9Co2I?OfblGfoIEFszGRuC%%(y(nWuOI&W^VoQ1zg`+zX3nZP!>u(gm5qFz zdrWMZ*Y4!9*jgKGgv|_{wq#Jk&C|E%k8CfWwpF;z00v`2TkYt}i?@K~%qrT#c9R0Gd7MDGmhPlYh%!|Z? zXMea`@7w8a)QYn-wbn{AgQ=TZ0fo|yC6t(nb%ae6YS&pJmfIgP9F#00Q!^9D0P2R~ zn$dD7>0zOfWC+b+y?~MC3egmZNDx9H0R@v(z;12;37`m>OuPAm!hiUnw5gGXWU`>l zA|e76rPX_*+>NJ6{oOTQ z`Y6MMx;1aUTt?v-msYZ7zPbNfSVcGN=JDIR&(DbE`mh@F0=~SQw{3a*^sD3g>BHf2 z{r&5wKRkZKsSD*d=hN~-U%4G4^!^tsk*+B&u7}G+?Gu^uXzSzK^>{oMJ6Ka|MGW*v zp9mH43=Pbh3?PuR0MXJCQ)iBUpq8MbK;bSZnIalD)HhQYnkkvpizJw;&{f))C81~VkO-@G^~g$<~kK9qSIgY z^YhE|b8tp2!e&~E?FE`wjiue$orlb^=Vj&wuP+g`9BtJQlM?P6ow~VC@=}Q1LoR^3 z{@!wtJ`dcOUMbCt0)z}7+q6rmCY42O)ex1C2{4p7Mv(sP7qtAcE$havCMFv_PM|W5 z&+*vf&FSey7P|6XY4g4Qw7*p3dlZUn<>fN>UjNzU;a4voeXRV|r*DsUf6m8mm&5P! z##42XkV!d)U|OuEDIW9v-B{ zFea2*kL_^c;hu*SX)4RHiNcyhFrZn|s9tQiWg^m|i3SKGB)UqJY0U6#YPbDfl- zbU0m2oS=w!j7oKxNv1#rWKaYdFa$D!C^6Ms`HzJx@=2U?}mP= zhqcUOcro4Q=w;iZ2Xv1}mrQlW9rbroi0c}qLdLqn)}|^(MEEpbSwyXvQViJuMM@ap zNXP6SKJo6d+0tc~c0IH05@H2)*=$pbS9=@J*ZX}c%--DVGLdw6*pKmY#mr%%6HpN{MGRP591cjX(OawO*Pm)Gn0T75P>9GBy|G&wD5 zwH-?y4yB-`a3)i!S;)|+8Vo2ROeQr{G=qsL2xU{}GzSYL9h9CW5Hi8^A`t?(8g56t zsZ19sLqbqwPNldUTI9Czkc!sS$IgGFnmwsS@VUh%3k z<_y!~GevOKe>SESq$VcjA`h)rD_~~yzHK8b7ORU^7D*vPA=GrvOpGsoKM&*JXnuDN z474YjPPV7B-9Lr)3cq`rOfDJJ`_o^)7^b9rzr22UJfQTK-R5Y&*L=UdJm8M|mN)b=viyVuwSOw@fY3u46Li^!cKFcMMbWEw7?=oLQ-ue!7NPP=&}R_bdw1R6p6SQs!1}Lj3h4A+JVfrW`kLP=VWbjzqpQ8Y6s1|{6R5ynMj_VYP++54pAwpiMJCnz-qD&o;$ zviZ3?uO1vr^nu0 z))^vUQw*+>%bu7^Zjk7%It5YPWzW=54J0SPsjh+^86ugIp-i19$=(uRk~LG;$eWQ! zC@DfJBQ2m7Q8k4iGysYQL=-}hAVLI42lhWbMVK?yl0u18F_|zla(IcMlhO7N%;Ip3 z$RagLfs`)kn3K?jZXA0Ixz3U{Q)cY8+Ok?*lFLpE_vqcD@7#2%Y#LLv4`9{bf-<}p zoo;hJET_BEofR!8g>#InHf>gmDwiO15-e^S;p6h-U%vHoOW$6O8on&jonh9k$wrlF zA~ELj(7tui<9>MeyZG?%{2=u9J3syOviy^qe=BkwzkA;mKNL9^g7)n<-;Gaw^YwMu zz5Vd@d@0$r%xIT8y+So3m-?{OMHiJLQY`hB*DloC_}v#5n0v8+hA=Y$8B&Nzh+F$d zg1EXki+alKX;x&&5Xo$0W+=dLC?q&RK$a08CP?)l(lw24Oc4^vY{&vJFMzlZg@QzA zh6G4)3X>VX{2Z-0j~=(VpD{8`4lV#{OcxawkfZ@JgMx#ZaA2P^8I>nvt;C*?8Qptx z8}oQ+HJ7`#h)w&Sev*jM<5@>+x?8${>x8nPitDd4=^j|q(rtY>e0R541qgM{^Xq)m zrPL~>B1x!D35x`LyMD?k9*v$pa`!UkIL;t!^&HN{9N0$D?>_a2P1k>Z|MKPQ)l%ET zAH4mz``brfwmn8!xApS=<2Y>>jP>E^=|9xHUoaWDJ{(>yC=c7*SQj=4RhUb=XIb>% zRU0bEItfWZ3R03v7%}7K1rX7!0s3u_cWdVaXx5P-Qs_YBOp4|#$x&1&bQ!lsA7IG< z4at%m7Meo3gpeX3X(0eCOIq+BR#DtG5J(k5CCMO}$T_Pf{lgFaAW^SVzpf8KoiI`tlxe|@l*6uc`> z`fh&NxV--s%j$>at9}1;UCwsh1}QeJtoM45mZo7h%{5X0K%pE`GIPqHIBk|u0%`-d zoGqewNF!976KU{*p`mUenG}t|3Wf$sBwbk|A%KJ#grg)N!kD625&;3*kWfJYbpooS zI#e`}Vxs9HE;l&=fJ#kdZ2wIoK_mC`0R{^B^}dzGIdqh&qM>lmpsvW&QFaKJiHOsV_%T zR+|b?f{Hw;+MLCMQ5YO#Fg=Q+E8=dG@^sy=K0_bpR(d(F+Sk*|RqB4Mu;=zTzGeUJ zZHmP_J@yxaBzi7k<*e=V^_0uw7g)ZO$8yK7kMBRrxQhKNe)s&GlgB3ibz&=Fau0&WN=BbXuZGBucxR1w8w zhC1qidapMDjJt-oLb8X1^`$x56(yK8>2Bf@(E!LanMg)}4hU|M(wZ6s z)`z$Mva-x_3|~R+UQG=Wp0(2u6k!O0M5vO66_PnY1}qm>geG4rbVr`HXdLV5+?z_j zJ3viC1MXpCSRdu0*vm!AI9eO{X-MD4?5U-Qmii{2#@%Z5RHHS86k&E|FZ+}|vgZKD zb=3E*9G9bN*I%K~B~#MF?A_tbcl?I{Y7bBUd}g&;rIJ;VaHtDXiMh#h%FFnSsXdE) z>k5v%KR=g>UgPNU=+%zbnDX|Fg#Gb%e|oNdEwZ%tcOw5;9`?)29}?eoJ?!%R;bec` zq}Bxsp3uu5h|c4Tty9G1T#}o z!ZJc|3lqM%s&X*(9|wU1$ROgEA4@qO6R-W~=0oe8i%yfAncAl2l3`5kW|m<^no8Mo zdUl6pn$Y)*L0=*J(XO)ZO(WV`N>woq?0B`BFY?{??N4a?mweaveEIr( zdHlD(KZMFH<~;!TrZeW$8a1uS;F={T7>-DUct%Q;OoKC2$pC%mT9MXL@c%@*IDn*# z+pXSawof8OO3udIbb)4vjT)z6~95`FnxD&GMP6zc!nmC>9=APw>%1h zL1cUX<`PSv)BQ`ILI4V%GlWHTw5C^KAY&;-tBN*AQc^M}B6iMsKIf2r)pJ<8$}&p{ zIUZ`gtJW6Rnz@(UhFtqAuxNKZnW;Q_TH(Xu)IaF%ij-(Oou}oy2Z<~h$cY&7>1AOa zs;Zcl2vQ{>sWzs3{qS`D=HF0cj`b{1miWAs;;ZX%2p9UHYd*QiyxU{_U+uqq6Kp08 z<-4l?Wxl<8=3!~^bRMm)fBbfepXGdcIBa^nd*#=5Dd(fV%KlmUo8`O1*S%=eySlEF zY^rfwhKRKp)(@T{i3L`j@{ia))*1vcs3BQKYE1-K;1V)3Lxl+uZxH50N`MJyWKf-; zTfd$2ElEr;GgCmoGLZ~S8IU6Grjr>8N}a?gXtPN2HXzniNxA7$pg9YYl>M(yZdIhI z_L`mox{7%WGFv9ac1wgQvRbto;xXNOYPU8FGNSWZ$7n<{QARFntoNo;8D$`2z{h3E z`8=*u=VF~{eOf!UCDf+An<{i>86~im$G7hU5|ZMGG3VD$5{IJISkr=XD`5&}`u6eC z$M$UHaGuel9P1ppKJ@L~2)nLP^Ze#j>gz1SPTqg@KVSdz>%lwT#CZ6X;J?J_aOKy@ z2YKDGtiLVTKa9)eth$)zbw6GD@XK~*0om`@lRec%+I?yE)>QZJuYX%yuv5?v*)4z^f!6?`?tsE-XA~oaa~$&eB$SJckuU?^L4(w z>mSb_e);i-U;huLQroI=sX#PhOftD=s)wKuVi`?FAg5^zEdzl~Qh}0%BVvwVdS+3L z6o>;k1wD~j&MhLczk>~Om~K0tIO=r=dqUxjmp_-2B;z#&1hPqWHNl4#9rr^y^rv1 z*sAM7k%*d)9kPT9&5h z)>Xn|8% zL4?q6aPY~gV&XuwEDCedDQ<&FcgY(oN;J}_KJ^9*3C~OC3HntbYx+4 zWjbSWWnpw>05UK!H!UzWEip7yGBP?bGCDFjD=;`ZFffO!`2qj{03~!qSaf7zbY(hi yZ)9m^c>ppnF*hwRHZ3tUR5CI;F)}(bIV&(YIxsNy_CdY?0000m zfpPN~ydT593I6ta;{F7uNFOadHw|-7Iwu!LYlNK@otw9l6`hqA!Wsj^>zj7$z};Is z*wTAi2_#{09m%BjQ{x`-2f=GG<$hR{F{7kz{#6oHI8uEEZmOP;)YOB@(Q36j%Y70wQ zg)`n>n4Ay`6)r zke4XK-+qO_d-T`b40L~+xV;c%&{I~UlX7&iqJwe4xS)^VUI-6f1~FVZ5f@8qAq{Dn ze{}&qi89!_xj6}Ob9;Jva(VJ`Il9l9yz!&qPzH~ z4{0mcXD$dQH-w`D9lB3*3rBZ1Q3eKZo$g1w#;Jc)~CEx3hm=)&JkF@ zN0KB{y1NLEex;l7Szmt|MBW;-Ou=AaF@5TmxJzkKIOcR~K0^Psap<>*tcPYsb?Va7 z7)cpSa;?#fy2;Y=MZYh|!=lz(i~2a`!#A>Ds_blUE6|4!Nn+0kwDl-H#Rl(@ zRFeNcC$%*qNfZ%Woe1;6>0}UHL_tJ-I+0|GRNoYFn0fu|N6rEFxw$#xk;C_M?sE?H zv%4OC3nMRPx7?_D^#>3Gy?47tYsww!IUHXXyj$3-pS7QM-qJ5#?x5A5>&nFkRu;aZEb$#3D~39XJ4V6P^EMjuf3o-<)8CQhx+E`<{g39 z6#;P0QNhY(yokKkfb<-S^g1`qIh0M3wDvgL>FbnDKChp}(KVn9Ln5QZ{T80!cR}&B zwPgzviV;x-da3;PWAM9vi4Z={rNa*E%HKO*=CJ%zxYJaOXf+u*_FFhMo(|RTt0{L& z8q}fE3W+Csnj$6lFy$F#Sj*e#9rMngM?MlnPdzr9D%qkCnWIEzP|An^(r)J;=U29{ zOqG({jSjJ*ou<8W2_j4hCuj5#IHC^m&c%AE0f7^d=WZY}J>1>-sR&5fZJ?Ct#Sf!t zqjhpOB)p%d#`HeZ);697qJt^ZOOsqmt21$=3&d9QK^}yd706q25U@*PYZK7N z&_^+RHFGmo)#JteG>k-csuraTm#e0!dmO61CXk05-`L3jG-G?Vmi-!HnLuS4Eqn)gBDDZ_5; zz(Zrxq4>f%1Ox_eGL$B$Vq~1Dj?ewPqH$j($ZKm)z}BirdwB@xm2}$n@Q#h{p~{3L zvGY;%MIP*|vCpbc*zmjPu<2eb3MybHi^M6NYHzmfWfcoj;#+>C*U}=wgl>D~QozT| zpy^61J@*G-%7S0+(DMq=c0oA@B-K=iFjK8&>K+Ntkz7VN2KqzbTgT^xW7tCj^+1oT z4qvulh9sNA?(3(9Zr;Pj>t1tfHWok@u-%XAjVcg`eKzY+yjMKCYtgTL&zM>E;H-_X zSEpnG2*n&0RbZPrwRcSXQPa*Zuw2458;L~bZh)nlPA^8(*{?X=W|y9JH=cHOfZ_?p z-ZGtZ68ON0hd1hA*Fy})*1u7aIASCj;bQ+GK3QU+e z9@$y3^~r%G;!5YvR@Pxj#-AW1OvFaxZ=P4+};NE;O?E^-%ED0 zH7+%!sdVa80n{nloIcS|7L;);ut+Q6OQI<~kqUJ0`s$!@+T-ZFgbVazgR> z(ev#7%f7d5yvOt*qtD<932E;~#ezbnsLwb;_7aymvjC zy$n7YJUVFvZJOskmzkGMDtHD>3%4vSNjXP6UC~mpE|?c#PB@K+Kg4JVF|$>7Avq|P zSEb2los-MBXkSaZPMqYUA^_&toYI_E&260?C!$-*hl+( z$%=k!yHePt*)r>5Q?R>L!CSordOubKVt1Mf$JlDI_T655GS`axSs1B>GQHR zckdjSfZ-2WDt*y7gNGszA}1)IEh0M^RPkAD}I`| zHD=vnL{lY)Tlxj&!1r*V>xTg&*v8Yw(~rEw?uYS&$5}rcb@vm>v1ZwZXG<7R;CAyK z?0exWjyMTG?7{rKD8fJ5@n$SWisz_wL6h?qBX2SLDCWfp+;g@e4exr*uyH*Jv**o7 zR=rY8sf`%TKwJyN0=up%+jldcokX61$A$N8WIXW`hSve_KSsoS1?SGFBf4GCy#HscU+ZF4-6OFuX=uG#4rZ!P$mDjyK12`) zAdv>X-GW+j%T5jLk@(C{Xwu4WryrYnX+oHz3T}4wqoM+aEHAPOPtxpXu^ZI=>px@| zZSO>Lw|SlXGPj_W?Bli7(0RIK+=*vFgn8*7Ae7_LY%D@+Sdj|7C`c?wL^+46ba%N; z;d^CCxN2tbTsvk?OiWCAmCpxUUkctI*0O%#jDlQe9wo1{U1=A8m`OzC5lcRnUSpe< z*@NPTqT~Z|cC`fi`Y3vNG;T)Wd~!FIqq;!M)_Dn?w-GY7f0wrVapaS+Kd`0qi$`DOjH4#lfXWkYCSK0VFM0*nWeY5hw-#v9Zo(g!Q%V?u`&CdKZq} z`(q(|H}tDe=KeP%>oV*k6=slL1e_Z>5V%*ln%;8(ssgoBCjn`n4_j`T&@IOGPcUV# z8sJVYtSQ5Q^9an|l#L}zF?^f#%cf4NuJ;-L!t)yO^ICDfswG=`%h{9GN2j^7o6Vy&9bA97y9{Xz{N7 zQAkBYBj$VZewck@b8~ZTAWd!QiFGf1h}v5G9q0>oKDheXr9V}#+>5ZBgdNooRz^+# z&c{i%DKjDU!Q}~9gftgj;upa{`AkE7vRgPq>~NHkzZRRgkUZG3!sA;7W+weCRtEO3 zx`{&x*R-rr?vlg_nS(W)MZ8inzUpyAeL*soFc}vAAgG8 zQqlJHBUbF2dereWCdrqIoOtXGK{a1{DjvTQ)X0FVub#Kb-F`9q7%3ZhVQo&S!jdHI zQmZO{2^&*Ti40>IYJEL4#4de686(rS*HtNnMNU8a^jSe19G4uf9)E|Zv`PB$F%U} zOJPq9C!|fLlivLH-~++35kC18zHrnHC*unL+vL2w(9kFJ9E*m^A_x)2Zee}k_}!^B z33MEOAAjC>!(6iyMy63djR0#rB z4uvQSI}C5>er~ThhqU_F@%jiQBLd#xNK4PY7ilKsOolIbv)J^bBe4@g-ebi(a9;g8?@fU|~wwY0CJ?{-Kli%A?tS_D@d_ynUhfJ$}&Q^0K6QG8oaCBRa}_ zlA#1s?kal67FCSU)zyWnj+4+ej6FZ{2)H<@X1Klc!JxuQ_&rd;s_Cu)GDsXE z6FY0RGsp+%CtJ-C{B+I-W)Y~mOwW5iru#kvvvwy-Eg3y;*V1U6y@1g9<&~2_a+zQM z!%*v*@U12SG6D)pX~CQ6L}WDZ1Uq@O=~M%uwELV%)rJ6pLNX`G@!^;(t@g{twyU$9 z-=D1~TZ4L^&y)?px72uO?gZcX*j^Ror+x?K>&aG}b$s@4$@QpF) zEU>g5!5I#e6|PizX=m6{f{(HnO+}NU2RvbvM3B&FvQ+U zOpn6v`ebKG8KxIe&%{B;;2$DfZpJbN8~VpB-A_5={V+T^N!Fq}fITH|xCpI$Q?e9K zGWHXPFaNuI=RvsojdR+Y*XFk&19JSzuEw6Q`}VIvwuLP&<0~5>c%f_UZEa+JO1=nx zJNbM`Rf+UnAfG1T#iZJrR#-7&Vhe_Sv-;#-2eUW#kkehJOh`S0w0g2Ytom=7AgNXL z!4Ee(IWiwAql8lyuSs^UR(HQfWB|9Ttz8Z8bJGwkGqsP6a#7Q|^am<7TX#4Zf*8m{ zWX7)GhfA%lh7dwDYl;z+1zT!8GPkU5B@p*Iw*$jeve?1(g0AH!Zg*bn%2T}IZ?{SX z??#I~#(y@IJ|mbJ|0p2;34YBC>armI|lXC;p(W~s7|90J&=0zFbHVf z?GmD6a&)7@GDrGG8vUUJn>}8*LZ=J~33_Lmm0poh`;;<9O{o4&5)|LOQ@yf_XsH{5 zx5A?nI^aK5Vp=x2t?<;N>$_gOyn9N=Sp4}iE5;UgJI$bpxC5lxf#%j1Dnj^ohCV~C_BBc9qx022XQ5`AFcGemei(?K;rnP z@7T><#P`LjcizV*wi0?y_m-tnq^7!X*;SG-y~IssmR6Yt4xCB*({z1xq}3q}(2yzp z(Lj(Y5^)qF**{>DBt*YnVhB=GIZKIGV5k@13D;WExSN@@9x45Z&2YzZ8!EnhEpIh$n5KK$RGi4GE1|jN-aMMO5O?OmT$;r zNs?y>f|{!l8+1Tle^?_NduEXsRuj2G898SqY;iBdP+{VONmY0y=Rnko9(Kau;^qU! zLi!eR{8)1BQ%gU-V+)QjgvJ_CjeCfBgy&HAfE5H@xwAYIBW^#d(sKQ_kZx_6>Gq*Q zK}vRa;$SZb-;R%u@jTKIcSS^Wu#-r{%5jJ zEsAr1gons$S~Y!0U8CaZ^5FFId#i7U%gC9QUwlxPO`y`_;JTZ@>La}ztRSbl-Rbfy zlO^@lS}P5c3qxPRSf^0v;wJpdR}dapzyz+O-;iA4ZS6U~5me%jK7RVn1-q0xLmfN) zYrIO=p-4-d#SJLUj+ZDrRlKp@znyy>f8luTdClgU zO_-c6XC1ccGLjutA6mHaUcMgX>Fi4&h;8HHy>HWO<^-!GW7s!$N)hJ4UjdfYvQ+`5 zRF2a(_(W8bFoZokJ}lv0=%P1`28lpyaQCaqou*3R92Iz2Vuu;sIx9~`|A40QgmjM! zW~#+XOhrVw3vcLfnQoO%0Po>jMV0iQolrL_+2mKDhFCb?6J(!81oH>EZn_B(vEA+% zdm;k@=sU6$UjxYlnNz0e5CML6k zIz@GZP2WV!n@E|>#>m!RCM@Fx(T#|HVB)nW1K7>Bc+Oo3+nX2D=oRej7y}mG?zZE6 zi=epphC4=;Y5VZ^t6xi9r^S^mY?ukS`rSKyH?VjkOv$a}&FUJ*#PVjMj_cQxJRt3&#Oi^N!36K}w*7z$H*f(j>?f{tz6Pl0l4$PSN;MDIWyv)0QL)+}Y{&Gy;t zps7}oAIljyoSSF`U0aAaT=-`OkEg+?iDjq--mmM~bEUnSgFY}>OBmZyOv9d+?Fct$ zygPLmLnpldlSm~8LZ?kx#d3c5AsnsazwdYUtPwG3Gr1t zHr2rSs(=|H7ep5j&6`1NnNs_uZ`19USWw{9<^iLYV91voH%L$c+sZy=Z5kU{vj3Eg z3?=r<*C%wy{!|2q}j%jboOCjo^2GdfXoL4Gi<{7z)U1+TT5Fna?!o5+M|Lf3;?M z)l*ac^7!ZFuW<3~kKrx0MG9)#+R0r?dJ5?)uRwVGJcNMzCjA5aa)E$j&w%6FyvrZ^ zE4|)jLww!`tC0n4v;h}9Qwfjy>7=942vZ0VuekWte%v0gYQDZAnjCu0{`=9U7yWq` z{k1kDz6)tRnv!z+45VmSbq1DM^O@#hiVcZS&C&*|_-Uk*asO;}5r^jG7vE4_mbSg? z74fT;CkwtwCz;GV%C6o7VrVJqcYV*$PoU%0K`?5oXij|{p?6!|GF4j2IAEstjJI#h z-DdSeMpA>s7%RWFPn!Yg8jDmrxlj+frOHmmQAg>Vt!4F^&Ahay2tkE^Z$N) zT_%kdzGbtXhw(@XPEN)b)xcTBpY1KPY%1aVGx*m0<;$0@-C>UJ;U(WD3gO_E z@pgZXj~y4*YVbvH)~ zG-Wo~K5W{Fen1O~F?9I*5Mu1%LpR&88H~qMsfTN6rv9gEY0D!Z0Tl82_3Ai_s77Rc zfY#5;OCWsc6?x8qq^$m@0W2gXz~*CKfDoaYvO=0}RvBV;oLYUe{OM--q9idg8_pa{Bt+|fvNSeE z93#Yx{(Z4iA*xiKtH4J`tx7~!^W#?Rws^JrrrKt_#bZ{kjREd<&UgVUOCtIZCYG&m z{V!^pgLBzDLi~+tA?zhLBc<}C`pUnL1nP!KmRxL2N}H%{s;$BF){35pdHq^EJ=_?{ z6IX41$L5Aj4-w+XYNtq}(0=4uFq)4-&>;G6`Y~F>#Kp#rJNL%Xh%WE4hNx}ABsaAh zDzhYQ%4~gqJ6rS!FsT?!m@#`>jL62(I8Tz%Th2hLY6lGOKkgN3$i!mgro3rnUMzNp z(UEYdZjFv=LniXpcv;!_5DtBj%OAYcKlSaGT+yeo@aW;^!y)83#iMqHDnfO|UMVMI zW9pr)w>62TQ@~i%dmpY}T(ltPc_*kJW*H)L$a5yMaUKb22`Z)u;G}4> zPz;ZajfKEv+C`jAb6wRG}&> z!y$HssD2~SHo5S=H%Xg$=6#kikd1!h#~Jco$A8erwv+Qeo6lI=(OW)z=g_Y#6g^G$ zk{j%@SFX;2iCgsrDEgh8zG<)DEy>ON8Ao8J8t)#J{yCotn7fA_Xx&)R<_hYrV1`Dd zd0$BU-LQ_n7-7;HY~`9YEr&khODKLuJhE>P@8axe=V;xB1(9DnL!P66@*FLwy#f22 zTFWG*VxkM%Ad-A+0u-_3iaZB798XS-%$_WzIvqht*^F2r#HnovUNj>>^As|33zqYip40j~Hk^`9?Mg060 zZK{1A@f?d5!34OM&S1<=-@#Pq5Efe8+QUNHD)ZN17ln5Yc0pG^JNx=(AHNq65iuH7 zYArOC2;klrI0BBQgU!j0YT@%P&(n8YNF1g8>%M?Eo zuUqIc{(u`WzdSr*uo z1+3JaO0L5!ICOAzlD792+?2P8O6mVG@7!OPj&`PRC-H=;+zlPZtt2b0LS=j`lIo;k z{PDCl3_38CBkeW}Opc(%eTBfC=PWmhM)72(x=&BN_cdx-u5-Arg8wS4%@#W=y@mDj zwuX%GGE|zfb-8l|=4gz`dyi&6Z|~C%ELuwi`x+0iv(3Wi!WU;dRTB>m$)lbC?}iIB zjaeZZS5auta$O#C(@Fc3w@*pJ!^5K(?T?0SVaUkV)z8p30|NuVBC}|?&Gs zfPiZdYeZJN`TG;}gzY6FWPSHqkNwYQ7ucg*HioIKqFc>?pUjwboNMaI!wDTmt@bP} zEiLafJ#>5LvR&YUE3Nv?0O)Coy2ecMu`4r*Shq4;+9bGJPl4$JnF^`xn;qvU-?=g8T{xf*{dF; zWQpQNJtyNRk&br>^mz$JHa@#FLUM67-F|hsaP7ChF znX}uZgk>j=hp%VfwN7wf!I7%pJ8#=#G{Gvq|9140;m?ihL-FfEHdMgXMnLL!+Hlf< zI)g{PeXsw-pKhrJWKJnDH@37~{HPrfuw!#Wzuvj9#|!YQ3&J+yc|kcZbA2N(fXi{v za6L)4l*jd&yZvJPuq6aVd+0ldfk7dH<^m93Z0ojXZix^-#(d)rmPsKhx3-o~-S&s@ z!YM)Rm#Uo0%S$kNiXTosKADY|m&XewAOrw_b}gzjGX0HUc)1_u)!y}$V<@#`DP7;z z>MG`$yoko(_n^YD&Bet}HJmWt{pH*Ea>WStkMeil+kbEK6DFojee;dX5G@5QK|J|v zT#9&I;oi|~smF2B`d%UlATnC5`ISK<3Jd8X$n#rpj9>2OE7G2wjj8Mkt7#Z5wNxez zB|sFR4pR?yX4;8qt}%FJ<`$9F*Bq8t(qAxlZ8FEDPcp-=kmTeA+`I0 zb|H?6u>Z+0-z9=}b+E6|OwhE))!pKb4N7%FU)2z15iXRr#yeFJHa!Xf>09 z?bAM2o%!~FfY|x%_MflGb3W(bXb(r(#y7L?;or*v(a_-P?9DvigZ_Za>3~RvVnuBc z_d?>G;X3Kf)j2%00ns2SA(pqb9j0fVnVnsMHzb5)u&VynOFe4c^CLXJ*j>1)C}11O z6%AhQD3|Ib2c~YdXMcZx83(9(oz@!cHdh@3b4DQxL;s=uB|t(yel@qTkxlm|+Khjv zEYTyCpXBKiZHq_WjWz%Z^4WKKs9Axw#!sq^*Qc;aoUQgJv8v|UrRYXWmbAPk&mchW zp42iIlBRsIwDt3a>o&b`v=K~39Ha%DrhPq}EYm$1g6h z`QDEoPxqgay$#sPKm={DRMq#!(TX&*5%X{z{0-6F1hz({ zNll7zUZd?~887<~eB0lT^LW0|bpwbU$O6juY~$>KK8V41Lscqhh(Q=lE);F^J0Dg0 zbj=PFg;?{p`cW^%QnkeUV)NpKakdyg^X%@%Jc~Kr8O{+-OG`T-zsUH?Rz|yj+J1fB zJ~BM~>-6H{q9>Xns=%y5^QNGT-g_odSZ|NgNnJOJ6LXRpWQoj+B??vKp(?c@D$Mu% z9tV?OOhiLX*N3EQ?wJq1BLq2w`Dv|!Z_a63f|_{1FRTCzQlI&3p8GLv$3Tk@hn}2h zw!97kxxXK9R4N1IE!%$HV-b@ETTir0S4BNGOrE9alA9gX-x@&;UMt`?D$%FB#~}OB zA|eXg>5&e_+E;`)GLCwy1rBJ69D0`@c%A)5tnW7SoC%CrXvwdawA310P}B>6)HoWC z`t?T7+HI~cK=&BBUQ628*JXbutIV9t=JRB2fJ9 z68^snf#elaVLH(p!7cL4t}oX=f1n|;kbBHGLT&Eq=EgMZ56tCNS`^S#o&2OJn8jx1 z^y(yy%~$0)ZGv2W97U-K?cr_0%;WisA2WPj<=ya9GD`mkHh&MVK>z(^_ zE&@JwlZGufCnpD}$Jpm2qK0U;NEvKuKrFKP5tA8a7mJb~pyut}gYLB-klzaUGh>r6 z*4z2#mUEI93T(^>wMfv*hpy=H@GlvI;Yt#}orU^)z;OP?MC12iJnmMX%Wzjls{$@} z%F4=2FSm8UF8DQMe%?zP&~mdU={TZ+NB(7rF;5ZpZ>Vt!WN5sy5 zV2PjH2#7R9y7V!K=eCr5EiaotuoJ)Z7vGOn+>&~ntK_L&{RC_MZHT^{da^jE-VPd7 z6ZSCr^Kz@B@(yztCM{CpGZ>z!(<{2*OUqD{6pY`R#sL{U)K-`5#hS2fQj1W ziU+iP?u|D}YGDWXS*E`5I`9S=`ZqG(yw!nreZ}QkpEeDc>#ovN`|YM<^~UId^xpTz zTHg99-zz{|aE=C{6T6$r*mpUA;?ZXfss@}*NOL`d^OAE7qsm{WSD3bV(bx6yTn(_) zI=oHPUYGy!bV%!&Rjh_N^Ias>U(C=FnBQ^uoA|@hHlJ6A5wJdulO@7{^!XDoAEENCfh0&xa!2@J-_(fswQoY@u;7ztrlO@~ZL#Z=)6^LKg(Cyd!93y+wV`s&A&Ar7 zd@Jq6B9?0&MxGgf-$1^by0Y?&Smh;vgJk%-;J$yq>=R)U5r}*%#qc?`g9FVs5cCGz zlJ$cSkiB{C&F`NPp%L@J-8EO)w=YJmkr_b2-98;qO+i@t=j1kf3IX~T&mW&Q&QeYN z{LXbv(fxcB8fT3!R-nS1(n^07i)N-_(|>$*7WQ3^3NY;6AyJCe7XPBJa^mzldsHFn zXSK<;6LEsx%%@ykS`DtCfA-slIbeQ&eM69HNoVn=N;e>=<^_QJ!iyM?B=8qH&pn|8P3QJ$!? ze+SqYRJ~gs&9N(=^2p!`8{RdNB%PHDdw`>8j-_B1xuVBb(&Eqsl}`HbS(0?1rh9Bf z;4}HOJDyPg_Xx+iT@U!|Z~9+VD+20}$Ruv>(Lubwb1aHzd01z5-Tfs!_nkxb{Vpg( zb6Tl(WhCIrwb8tP#<>Sm;tiTNdhof!Y;@;nS>UIeP*lO!I%>E&D9s}VChB&Yq6$LH zZS_;pb)w_*OFHavL+P#-2jl4@kr9}(wl-<>l{D!DOmrmpac3$h^1Vo(mS6wuQ2!u| zzMHD9i15aY4VuR)aC(5H9B{eZtS0e$e}0~ZmT0nOS@G=Ze9y*#JC89We#rX4!Odqi zTSqhg*mnx!X>IKzKk;hjC99w|>o%L( znwz7q_=M%{LcU58uy#Se?Rrp#Nf0psrbnzm449*7y!JaP02yN=h+Nd7?PqI!0>(9; ztxF$mmE@7D#sFNoLPxQY>x;I(2gLCgpK?D3nA^;2%>BTIs~Q^`A>F*Lnwb!CE)mUO8YK^SG--=d&bCu-19$fUc-82rEmM7*SUEvSEVFF zw*Ny~AJ(M1pYhUX#GT;4ohHy}1as7imjIPd?)1))P!2&|ge_(FR}Ud-<%tk_+?Nd9 ztoU8~Ua$RDA4$TkJPhq7BtLKyM9sSyKf#x>3tXvMJw{WThor%lGfR|MO>Kx{Cd_Q3 zLl;euR4%vlekG<`45-FrkWSKGj?q3scwB(I|4`qi_v0HRJGnMoy$H$vgOqX?Ff8z; zlqa0l1$O%_Nic8xp&|$;O8%;u5M)1L_~yEM*rh(R*x1-OQZrFJc*zMnE`L+mPC|TB zd`^B{X5SA!J1C{ZLi*#D__NbsYm@k!23y=p_q#PXNCH4E($d)jC|uU5-nx36nXp3~ zy5g_A!mR6$ybDFThAfp724lAh&GK*w4Z_18>C>P^i+y?x0D57YsQd#SDg>{ULO~br zIoeh_SU+(2OYt{r_>7zx4N}0S=XjO>>~E0>6!d^`wWNOYo**x>Na9v0rGYD&AIEpp z|NZ@%Xa1anrx0-I9-f|fBb*PRdq!1g{;riX8#E33_D^6m`lnF1YUc^U( z9F>yE=kCpO%*<?OO*Y2ICS_#H779Y}KgWb`-AgeFowj-cYKTFn}FZClbrV@<9 z*b>%zUHnp~=z!-dE4~z!;#U=E1HctqJN(|+(egRL=sJ+;vxX>^2G7d=iGoD}ui@-t zUXV&7J2Vln`}9?}#!cC$`E`~BJg9nWIH%p$!VQ)aLLME|KCG>{z*Z4?zRzm%WR2G@ zQssaqVyo9#N+Rg)K#g=xa);TQ9Uln%K$mn}$#~(o=Ncs%{W6?SB2aYXFn)*HLXrw^ElAhM z%zMA1D}A++3(B?b?d^*sVRi zVg%5MWZr!dM**t!k3+XcmP3}F%=MS#`Dcpx5MiDuv#&i5{j!kF$Vt?;x6%sbzSq(+ z2Yn62x1asY@zI>}m*!%PKrAScQ-(2XR-u~nHvFkvO%~&&8nX`v61+XV7Ub!e&L*hxc`NKbHr^~mi%61>1I)F1wX)p^4BME*Z-`f{%w3^0}`OzUVrX|1-`up*rL~=8`M|2(%h(H$*b4D zp6uIL8xn_xe|%7ku;6NJY6>!@ZWQfyh(vF%92ITtNq6ez$Rx+#)E&b2bfgC)Vz(T_ zbJj%RuEb*x_k!idA9Q&Ue@Yh%f52$MI!$*~9U1K1k-&Ke?Xko+VpdxUb%oOf<8?^= zvIX&R3*tyuZX6e^V)sAzfK8g3RYF+Z*T=;1CUihK^_VMYIw3^<9*wCIW$hpR@8s15 z%ab=)<6|2*U2j_KpWczCoereKHk$6~a+ng1-89zL79AlCj8Uc?}L|DtSE(rL5u+a0I+1F#Z>_SpdbK%V1|YQ|IMChU>y7d=%_07 z1yD6fdI$iB0A$2P)!l$6S*W>W8jY{69@W&bvaINDJXjG#!_|KWpoO9-;r{;i#_b#V zB~0aQVQ5!KDB7>t!Y~+4rwk4=B{elte5{B^_sENHx9wDRCcyvAS?frr+4+yN@srM5 zZOiJko2r-QlSq>YN~agj z|0A9VU$HR1HyJenr#PIOa_(;hf70vVE7IH6TWkMOB)Yy7gm1vCtOj49sg}ae!wsiM z8KBpN`j4ZZqwp0!j~osLP5&`GJ$47*ph-kQ3%)`@_iTOnA4NFRKHuSW1 zca(6GWb5d1fif=&)XE3jKMw1o59=y~cmR*(F1 z_Mdc@bqA7Wp!uqQ+B$2TVxA%>k@=_nk+JOmZG$VzYu^UNFFW_p*Ku}z_q`-oi170^$I{q4;z9U+#Dmdka!oy|I$JYR6j;SM zK98z%W_`hpa0IYCL)oqU6S-SNtJ9>phyT0-Uo!GNuFHn=(r4?{2D`s6 zcOi5+UhJ5p;Ll#$Abm6vtD0V;@q_U+d~&xf|C*QEwGbBFw$xjSzxPrl<>jCZn>LGO zoA%Q$IYQn9<^3a_cbg=^m_(PgCg+`ZdTwW}2Yuw8C)*x(>yAophrd($I^3@iI%Ei=Y(@s zJO71k%jrL=z8CUx1K)22^y_(^zRUJFq7RsN?YhdUndCbT{Krr&U*<{o-&Z+Or9#H` zyG_p&XZT+#?8caz1Bp0H134za{cFFFL8F&m%HAM|boC?mBwlg>awrU&51MOtT-hAV z+`L{l57F#?)BwNU@AebuSQ!GCKu&f?rNzNMFONZN#)E;1S$wUbpJ0hA{BfEbfGin9-YH(nB>JJU?Wjzyu#_qFv*DLL3n4uq zJY?7+x1ebSy&FTQSkO@==C=9dIkq8U#b^9S?JvZ1=_iJP3`wxA)GO=CWPb`vS zBgB>!xJ8OtN5$eos;L}hHvS#p)+5?Ug!FV|A6Njz`v)L<^;&4Aj5cRMXx8;YHc|Vh0Xu1u@n9P z1=cKTTe|BI>%iiFRW_~uw2&4%UaaiL=0B-XZ%8XKWR4xWCSJ@=(}4%r9t<0}{uu9( zN00s`3eF06Y~rdAl9}F& z>`=JWQEh9Z`;Srx{GiXpP)3UXMf-`he{x|+ zh~;*d=Na}8sizkdMjumM35&9@!MHrJR$M_~EJMELj(?G( z&{5XqrOyN0aW*d-eUo3=2)1^Y{@&>Sedn@nFV$T~9|yyr+w@a?cv)3%`gr=#a)&EL zs#50Ehfa6DyJ;dR^sS0uxH?(8YJaLv*b1oEUUg>WcE24m_K_T?{c@DC|3e6=>V72@ zHGx(E{Z52jzrN4Io=>|&S{zPt23*6;JacBfBM2O(<7iI0?pJn?4Ij@l3L-q=QJnQA zWeBhPory1;hY;`Em7yc^KFaBdJ*;tFW_=Lk>=Z8Lgq$xto(a5aJbWM*YH)<-fS}6e z&9;%XkY={I3FKuNc*wGuKCwx#)l{<)iM~$1T(InGWBuOpIn#C1-9K$owr3762KIb4 z#RKZuy@cnCX0SeA+WQV(^3oG6F_;1SN^80WD z`MPS*xbPM9Zxg{HO;heGL|P6MEaJDD?gwPe*Pef#^zLt}eK*E+I(N8Or92onxh%Me zYvp(QK&+T+R`nA`enYcw7dJJ8surw>U(m4**IVnmd*h_PRYa0G{QUke@7SN}a?B1! zkq|};Jwol^2{YMxpX6=#!-Q?7zUkr?5T9s-CDKgja+pft)%cIXA^W~`HN9>nZT|6T z^B;2VRr7+`T9u3#1NdQ~SqkEAH(IYPn!26T4)rZ)>gyiUTFl?VYaDe)9$Q1l{qYNq zqNmel{jC)>)qm-S$Sf0=-1~awU-00vMPxELUetBnfW4gib{7i0T+dyNsmNKX|D|-b zEw|lGkA>|-uzJ+(?4{_ltnnN4`1O=0xxiJy&PpK;`kW!?2HWZZ5l9zjdz1|c8(X~U zDEt#JeX$aEGv&KOnEstQx*L-M5j=6DbkM9LlHG9cfmm8{nM^7i{|m+4a~CRspFp9e z;2O8*BwP{M`fu%)bX}9IPv=V$QVdC5*X>R8guc}wyR4X`T#h6@7Y@ds&d1WgPklC> z>%WL*Acf;Nn_*udx=Fc~-&h2~qK<7RoHwsJ9# zDMT~INqTTQ$&7ZxeLA~>l24}8_D|P#x@8r*{__r@+Sg5ANf7MYCcNBG6Uug-ksu6G zQ{>&_a2SEeS^jf~%HQd1WUOcFu7AA6baglIbVf*&o0g40N{ZAU+YA8)C>=lIOxEsB zRyZ=@UTb2aCw%kzbe?kXkn7K^9FgNUX05l5pe=QvM3C*gs1-p7mH*>bLP(jM!#RJd z`6o{-#G~`|nW}-;c!l}1?PiBZaCyDj`g5dSR||4#eY5UI!^_GJmH_0!~9TjH_F@3yPohtn;$mt+0E+Ey>i#WM$&!Sw)P*^PEr9x=Uo-vtd# zF48OFgT(e`E;mGVA;_!6#DTY4e=rt^|FmJQIBx$ErKyM2_hGE3{Z{(r>F(~%f34Z} zPmk))7~SaWpC{>852A}Z%+|7F-x%n4lACObp1cU|&s@7n+{R=68wzZoe7<5EZ?uNn z*}`;G4|pS4$41M?$wNk=SZ6@9ec5e>hJ@l`+rBiDcnJZZOZ?|}piST$H%P;3y*`c^ix@3G&}_LhIhp!V6o5~xnqR=uP+BE7U~G7CDRDVs>0gmA zwOsS9Yk_*J!vTb+ zhBvy5N$s5sVoeXn?>CDU$Tt%k4b+I(XPu?_jHK`$W5?y(_ZmMPrLqcO5JP9Vl&oD0 zCER~k{5N$ujn5yN+=i3gWVuy2{+$B)lYZtEi)a0F$Kz4C4L3*oL8hZ3b6T$Gns!nc zCJP=eIfnwN<}aMp;*4aH?2J?gZu6B-X0~RL?@sKVR})h3ntd1-Q2p$*1MvI`j7f9q zASIcIPDWN{2uz`*fUvLPZ+4PCq95fE0ub%C24N^~$Ccc#Kz{7{Z&lOY@}T8WSv&GK zpca-KxQG=vM6av~&6YMsGb=d(7;lcl1>0H`ATlf>5`y>ngbo|n3krTxPoK)?oc##A zw=Dn*e;-GVGvP zCB~IV$xa#!4FQ4gleS?HUXOh2Xl5zt$uC4h;&${?TPWXTv2&9EGX{B%>nt-7?(_cM zd8j>Nfe>}Do#jOxVjm7!104}K-1tC_@HUawPMqLWjxtCub4tu?#Ge&ACXziYq!;nQ zilMxL>@*ma_o(hsH;!q=pD%S9d9s}x?a-soHNtLwwLtCTsRp@C`)XdVuaOPkDG z)RYkKo7~jN1bn-KgpdF`d2iQNyV<^N(!8xu2K-u!Jf4zw*hmI%dSh+x-jX#K5d*_L zrpp8le|G+dZ-$&I4HbDSv&7^7HX1#5HB4i&3v04m5KxN37h@iWhCb9}l|%;%WNjEO z^oC+nxHYSgLFwh(NfA*R2DpE-93Ye3VA|vtkeYuX;6xG5>K`*G^)5>R3<}hSKtECC zQLTmG??LF4e`h`}Pt^TJL~r{qLePXhr_+R>&YXf11_{CSd}@=!_K?dxjk`}%iF)bX zPhutBJGS6m)oIGeWynpjQM_HBUf)88#HV+q&4t~DMSJnL9&HbUiv;=@M)u0r zG&81B9is&-2ALugxb)UQOm#`m~&)!g{E5N83woG2<;VnHWL3rqvpSxCt9vn_AMF}nYEhF}&QU9O%9ue069 zO91A_cbVCah{^YHB{^<d z+xgn4mm|9!(`#+zEDq~>BhDo1lj7L!eo4+Morz$x0wI??UFh&2*9V$dV;nM0DDq3l zm8ws?l(z_WO>xz0tjWs^SFsz84|sJfVo>-gOT~FwjK;>p#zBfch$=RRG;B99mnNrk z=ok_R`04|(lfgl}u%)uJNqDA*UZ zib3D``HcgiCG4b$6T#|we8tgZgezsoP5Gc9D?V=DnY@4@Y#_;f>AFh3$gr;J;odDH zg+VUq=I|F(+tFe{@jet;x3F=S`OO=P1gK0VUC*ygYt8l=W|OL7ub$DzUd^Fpd=hFQ z(;{JtuBQ2rY$QPvuMxSi)bAz2VaaR~Oo73W(qDTjti|TQ{7x+Hqma>J#w9Z>e0|6J2xo@@H>aC z0)eBI2j}d37XJ97T5*&OX&68tZbei-%Pc4J^97Jp8qB!y4S+!@JwxuHG0MEA0*$V+ zslV=vn@Qs)v2s4Mss2HowT zWfAJwHcT6Bj{5D2AU;`(uJcn9;q$#(4709SErVKqv%p@R(lh?le@kry);q*cZJP7+ zX^Z#3+c_QuS;p^P7XyZakwoxv`rZko{_c7cBTLk+sM8o5Vd6SZe;%Jw?TRiF}br@ykpxSR(KC0i(g zO2(;TRv$LZNmKt4?^|p3Wi9%MbA!_97O9Sw(oEs;pnJZ3#(xE>cTSj7;+A%dM>IaL zkgwuRG@eUw72>;*&qD;@>uIqUU3|sV@%vL--wfs}A|_>xX}QT?LS3bx0r3955|8I9 zotf;U5kQ5k2f(vMDm5?ye@i54a|)GHIdKb`qx>jgG*6Xpe8O~5$g+j_IX0eyxMi!F zPljbO#c9Exj3W0#Ocnbx{P1g+@!uKFI@%_hiE2iiwo8*CX`ysQU{-k%woReNXcCLnu=}LK>7zhK)EN;oOIzie;D?nG8&R6LV{t!~6WLOot;DhyP^TEm922 z;NwO0^b7T-!O|^*fWat=BMRrnY)5Maj^L-UjG*Jc#woDnw5OmD-wq`=n3QM8-={%E z!;nUgp)_3y-|^VG&%_1+6qINp6hAexHkr+Wi9iDBBdz%Xq>uB6itEk0kP+EQoiIhv+*?WDw79*^*daf~1y4%7{X&I_T{wS|HYhCZzj`at4p$cGXSr;M67L|=_Tq|WmyhVagr(7vU!roOjx z)3~a3Zdq;!N8L8&`tbUCsa#Sf-Np$-O!JV*Cg7-Nx5j!Ao5$B|>2rzg9jvGPJXo#D zQ^4z`ETqrfRfxiLsvML;+UgDdTVs8~Qy>g1uod5V>P*)Kf@@mnh}A`dV6=a2T$9Co<&nC9_wu`vNYhRWTrf=+G>oXGct z(T^`;+u=|8STP+!ECP3ng?4wa=6=^|&yShj#~g-JAIgKzPr7QeVr5WCL0#g;U`2j1 ze8JUib%O1_pNYP)=wP4+`n{K87k6{P7LbBFGr{ZX9o@AOy3eF$D~14WpZkg=E?$}u z>Sdl(73vj8C^7H&SAIK2u4*)c%IFdS=3>X%qnF+KjHOfuzq~@b_!^rEo_lDQ+j~(J-Hxtf)k{db*^h8MYhq zxPrNS?|C_Vp6P>z7UXFDvzE&NMB9#w;O^hGUG)Al@4oqhs zUGLDJV0OR~eX2Zaxzwg{->HK&-pAwEaRyy{x5{$+e!lxEsJUO4wTmoz-L!JL z%i5`l8u1PAJtk>T|HHRSvWZfm1DGhqF#{iIngBiF9Un_?*))&DM`+Gyu4a%!2eu%9 z#K~{a4>>B{S_P(nt)vSb_>U7t#bAwPo*LUwtFGhiNHU~-BA-f_ zX3kEvVM3`Fklc{aktt*Z)a!x4BVzlw@ZaaFv0bm4AE5u7N#t1mey0JW>V&^sw{E4Y z+s}DV+~KX?mz%o$4BeXV*PC@x**$&SEKX1j?^9*+qDR3=_pyt5tr1IrE`i&Z8rkM( z!wfD>Y|DyuuE=ySvp^oye752Nh1h%v&zk??L2kFmTio`(QGLn2z40ryt$Zr+ph6hV z_}sptwNB8)fNM?Lk<)~}yQ}Pb7VrHDLbSI%hHvWk@u*(_##VJUIW`DKLEBL>9HU&` z&@WovFMTzqeBS+X=U#7Um2wCdDQZ-|b!vKTLnIMBgIP|sLo|n!&?)3|@Y@<~$+)3^ zI0PQgFHF>jV-O#m&zHHa1ahUmb^FGA*4?^~x4Ou`?*E$TNY+|pd3|;y?Qp+#9-^na z8d5o5bo1zhV@x}RsnqqL=cf6D^zHkdY>$}Pq#F5S|C+(njYh*^sHVZ_xT7M4t$%_d zAN_Z`UgYTUhoX@H9HCVG)4vx*430W4>ZJmfxrmv+&Sq|=x{fo5QMZF>Y3R0SQP=H) z6Q|gmMtXtK-aJ}d74xm$EwCI`{_qcNc`Q0AwMa~Udu?=^nCHVQ(#q3WFSD`!+oJ`| zI2jmk4#ulN$5pe;q@6E(hC?@xfkS@=nN6clRWQ*?yn=8-vE|o4*%mwp^x?_5aBx ze^)dfPBFh}*y*!fw(HV#!nXhfN5B2k$wU60+}qpB&9}|1+*&-K{N@brcGcXV<)kZR zRQme5lLsrKqDi&oJjr!kC?FUKfnePHkNs%&_Mr-XKfl^RV1es59xwMRt}j!Hr(gb( zll7aH-(gS2&1tFd2_Oq>3 zlXSI+{)MGlahaHA(ukk&bbbDG(tP;SP;sNrZe^*72he1*^6`Ydr243W>T?e1W?W?r z=ne^;q}VbA5aaa+H3&P}ZA4vm>2WLSE4FT%lRZ-UkyQBVt6alSIRt)fYC&T3@2WAB zD!RnFz)SYHocNHf9St^pgS(mpGPFk^&B(~^_03Pel>C|vjCWYjb^bkR*pQ#Dj><>+ ziC3N&LQ6q>)Yf%`fW!|9^kJ7Lo_YdV#j zq(n~U?bB@-EL7AF8 zjWM$0ZqF6TrhH(JWycagC}@f1x@ITRve!C;8wk?PCVTM#|E(fim!Qf2fRSA+eK_R% zk}}A6+&>eZjfu8{8})TrvKaT{4lg${H6Q|y5>x|_Prx!~9I0=ZCiKFqb|6)0%j|fH zg>6~x_U-lSHAdmpOr&y5H67*JJZuwla4A)lHep-qgmBpU@X4q0G44nFMUbfR)ofoI ziC(Mf47U!_m3}q};F+vuax6uw41}iNsH5&wn%PA+YNb~H%i35OvRlmfC}E~=JPwujUi=wIsUp| z45>QZUF9~nbvIQv=&*{?(U? z<|Ci3>>RxJ82(DN+sH7=BsEmO&y413S!W)Dg_`VKqNMqk#`z)aiwrb)B74s5kSR*j z#kyM4Bu?E%j{#paQhR{~&v|*8t5X++@_@K3H?l_|^RHJ0vZBxfggs|z?0^tAasPf; z)LB%ChdB<@_FS4rFj`B}ukFEmGOBW7SN3EN6O0x&?k4f3yrevgYWuB=(J8N4y>W>a z>6J^O)8ri5OS`LGz~4$4G|2KH25-x!p3B824nY;8gM4`>{Q2LFLVWv4isZ5QAGCmW#_qwr|T0AB|Dya^NFly z;-*o3t%-+-_d4Tr^%wc&^jV;GF_J*ndQ>gFME*ww?p`9@^fWUe^9lG1Xnb zK8~q$d=v-4baxbZHs(3&O(z^&@9-Jt?F@qsI6K~bGwPifOI2wb2`d5LrgM<0?oDrv zv(e6oI=mr^Udr|CJ|ojDp0Bang4~PCm&$bnqx{th9g9yUC+0ZVzF&!E z@KdQdIvhLceRVzgEb`W_lz$*rksM)L9+~#oN>U6qwGU@a#*~EA4l5;)iMM;2BT1sn zNFYi6(?9_d0U5uhb?&>3FukOrv9BE#gZLmm9=BP&k*p&2>@D+h8S+UPXV8CA9^f## z2l0|pA13Jmwsb}y#naIcI!P{8MsMrZfoHJS8t>(>FT7MAH9wz~V`V>>HO(Hw9~fi$#v2{B1qa!I3%nue$iYNDI<(6?`c9UBpC3hD?WkU z{+J+UyqQTL_IpEO5Z=+i)+z>3XaH3wPH(UeEG?-YL{B%Mj$0I0vt2g+wlpLeo_rRG ziye||h~5-`jVMf|{`-IgB6V3d+&kbOiY6nmY28a!%B|YShj3`riiC@|*sF04Evw@l zk&qtr)rtpj+#_c@ARO&{^Y#2$m>j@_hHBO1fu8*dRCx%p`*^O5RX4S`Jon-ukL6Q9 zt4POh#VJBjnv5w$U55IHz=7e1b?x9Nad(8%h~Wh%VmeeHJ47wt7)aR=67>i^b5n2= z$aA*PUolc>PB0;D{`5%oVDV-K$PjsfHPfPnpyp?iO&-NzJ7ZHtLjye-K^}|r+iNN# zeKFV9m*_&lJrvhWcW|q!ypW6U75C_+17ggi98%+p$i}g_Tk|`i6@aEm@>jlzOoC#5 z^DKRk2+{e8fU2WHHyY-7eL&ns2GBGtmVP_rgk=ut$I)$2TFSf-3HToW+fgb!|Eg1U zn4|mIER4Y5`%@sk;-@jz_LI6xFa=YcNMDWwFP0nR#${)Sm4^qcsOX9-#Wihl{^`qJ z3(lko4}*KW{9~W73+Y=vCv%E52C`N3RBg2Hi!-aedD?#l(}fYW zgFY@t2MP}U#M&A3zy(h2TzEgyGv+L{NRObEhXnA|^4B{7|C86H~ zs~^%)k*ew&VGk8A+;fpIe#5dJVy)kZCPzcJxJ}W#V1ZH`et){?!6M z+hMHC3|$AmYf%{Q2^Z`18j#7(-=?zf-;*)tpXJhgc=mH51Y|eZ*He|X5X10X zibaIIfu4!r(4{hVec1v@tB7c#SxS$7T0fGudmm}1kIw2$g7Q>+Wa2$)@T$$s9}cVv zM#Ki^Qg=OHj=^6=-!LmL42*=<>>d{ll->uK#a!_n7Ababx1ixutlzt2Umvp&w>i=2 z{}sQ_UR?KfUUTjXYq!ajnk7K{LEwhB6OiV3^ZkrNo8&fGMAjg0IE>5VKWC;=@Jaa7 z&GZZH_O042ELDrHk~yPb__*1FcpC>NCiV(_o_dH4L-E@^BOm)=oN5{~u{qXid=UPW znv;7%-kqNVy4Ja@CzU$rT8J% z05WSp`258$dl#^)YAamqbt9|*MtpAZhN0I#0o#8MHFN-ty$W?)G5BZrv32(kA)dB) zRbE>fSVWQ9^BPKzhv{CqHjkp(vEEI7Pss@`I2?_D_JDk$L0FXsv=PS7tZn+008n&_ zn~A|MJ(Q?QBq{5mhUyW((;(pqFta**5^oy(`V43TVTz5K{K-t-M4-!dGirgO; z*Vt;{^Ny=8OI7wz!Up)WbhPlll7__;oL6Y;|h&u-GkI+MX z5IjcE?J$Ldayy6olr_8_ofp#Co#o7?DnV3SD7RI9Q7qY1A-|M}``PbRl=gJ_nn1_q zr<>HwGDPKU6>s+_g?ZDR<1q6TVlGNq40i3gp%~hi@dB=h5+P#!9R3KW_Uamt;-*=f zY=>`BQ!|Q$Z=!$5M15p!Z#qg1amt;5Dy<*e{w*7KndYT366kAkXjVMCyv$_0mDSbN z(cm*;g;bSZbe(1K2QCdNpmUf`HJ*|4;IksW;h&+|crg6tnZ)uKR|2v<3d8G}++y~j zZ+#hX=PR-v;U+ESvuQWa6GL$+#C%dlsZ`s+VSZRudtIu=LVtO@0g**$K1%I8yUGx} zXa6C+(r7|UNI6dbud~>Euou&s5rpUv;COXuP7HFudILE$MMaYF3-Om60;6`r^a{%z zr7*$4+@|VSUnB%GBaxKw4qyYN%!G9KtYZwBn0#~POcL%vYiW}=vBgNjuKgf0L@ok}f@9!uy} zvGKVlSV4-KHd94e(_Bk$;qWSn2bAO}?$u8naP*j*Mm0fbxR0rGdN|3JI=Gf+<3E&- z8?eMU)K7NxyVC%o1C&om+tXldPgMlmWOorW?ISU&o`!&M7K!+xy!_GAL|E091bH36 z$S-jMm;7N>`YKWCixjQVN#IY^M-L;(y+yTyDmjvcJ(@J(2AFE=6}52GRqOWyXiT&X z#Sm>|TP^3%WVOJW;&VmDEer^530)*0_oFzFAThT^pjg(9J_3iKN&(*ZNs(3g`S&#NBGT>4i79ht%{_30?n2KP znsk2%4vrGMRyQ-7mA8ane6*|p@rrkX_lsD_RQFyrSZ~pv*Y{M&$8@&*jREZQ{cOss z(Q07i1R86kKyZ1&C6HR!n$jb4b>?@^rwf@$6eUtdtOgPTr!zsmVbRh6a`Kq@?6zcj z_Y;|Y|E_tOT0&-BPEt}pUiMvs1htc{MM!&^gpQNyD4?h0!+$%uOUDJMm-+8s#lu@)oy5$UkgRpx)W!a8c%3^bWw;|0D z;=`i5C>EmiVQ_Lm{FkBv%uIB;*(jVEWgDK}xM5Afrnk&s(;olf07=guTQD%a=lxdX zy!~4#ArVS#{*Tuq^dP;GA7<~edd2p@96duqBRlW=fe1;@6*vMkAn$2GYZs><<>RL+ z-ct6{3>2~U;^mJcdM6fQ@uF+0Pw#p5mcyE$fT#HBn1Mg97t_2hTrKf*%0MfN2rA{I zjA}@o6rC%FMFIDZ_U{kN>?H>evClCYer(Dw zYx)~gbJ#a|6akLO@{)0d!EJx;X-V z{#eCk2`te~09xx|R?)xgzFJR{SkdD%U!IPyCQSE|c$KQ1%TFUpuC zB7W0bXI`N{lGpWxPFLb3;(g*{C?ajQxXNy_t7=N*o?(0RV02R86GQbbrQ-hNW<(P2 z92|njy=^_wMLrp3O<$dK*|NW!MLfy+qkqXbayk6+S24EZBPPMJ$8ja%u6rRIoE7{J zRg;tFaz#_g00j!HUsLx0nq3>{LV9Y~_f)fOeM-?dO#NBTsG# z-0xBc8NZjNoNX1Aa~@aX1T*7GJFFvdLX$pzMz76wG1#LsgN#JJ6%5aNPz!OmRuY&d z3gJpE%ZkR`)Qs zcyDP7BT%rY{!&z}U|;!NvjHai`1Op}1^CK#=&mH zSBRKcKU9B5)(qp5;bMc_c@?pPIkqw<)mlaK?L4#tuHM^)??MXaKj4PhjiWHP-KRQa zWkeev!cV{G%(^TAK)M31qar`-v9jAaU=zG%S&ef;WVeFR#gw3Cfs1TtQrlRp1IUHS z!~!GaPhNX#W~vlA#*B9e|ins4liq$a{bm>oO7B1 zSOkvi^}oum8p~B7lL8I1K(-BDKP!Hi1LU!1&gDvzkzJKaBVxt<{6L{~b@N|n0mFU$ z2YrFKIa!rxfAt{%zt?hTlUrA^@k>~o+=mcH*Ngv#B61t)_y$>2hn>ya*Ca^>#zcyZ zO>6L(DSLy&rKEI_%|DeRaRd`hr?~uWQl3p7oL z(D3Yf@pa>UAiMX=gCe868IxpDy%e;o1v=<_666mszv_ZdmvJAon~+$NahR8YdeAC| zBgFCSlWi&4A?mTbiJx?FU+U;@)Oej|xFiBdi`lKj$c{DV^Dr@_o+LagarVlNZ@(0Z z>#h|o53N7DYBAZ3vkfIKRKaoP%T)A^KhNPfm=Gd+;(P|bspww;^!D-%zXF!yoYdAV zAV^&!A5_VAja<-XfM|NGQe+oMNCM>4#1Lg+UUKIxg)TBeJwCGn%mc})2Xk9{C@m^s z+~KeoVOuP{3SlQxd943aI~Ht_);}42nKHw1OjS^1ux)1Y7k!5`dc_Reh0>|C0T$~u zhwX~UxE1RC+)eZAs2I-4Kp@VT4wIPsaC23>=4GJ*OrtOR5Nif1dWnPcEH32<=#lMF zbP2M}kC9S+*Ht>P6K8HscX7qbj?q~XLpD8RLRwC~6?QhP;E+3EamZZrbk-j7`tsBc zN8jT2ZMgpFyiUsaVA8Qm(qg!tDXv1EGcz$NhxCj=Ga{qA>NL08LG7C4lz_+??co%O zC@OU~nhTVE8!bwfiA(oI&jEwqX?qw}OVz8-3CqWRY&iz`-iKnh4*Qd@BBffaM+*E% zh{3#9mXyWSLLhM6rH>WhK1z0n`s+EG1!)=UgX%Zk1;^7k7u!DYUr6KAK?5_X%jY#4 z7B!zk=Tqqi34ZI&)!vd1iTzFdRNymXbB!pE70ah6{HcL)W!xh)+eMRh)S}>&ragA6 zKSpjgtwWtc+Y0FYlhG5;WBGNMIa-Y*jC+oY&HlB1o}kA@ip*JE#&?2iDRHRLEtkUa zY&BS6{o1R5fIBB+_^~G$fx#;w~wzf z@bR24Q`v%I@KK%J8fjp>#+wx@t?2h`A2G=VmQVYOc86k`bu+93g!2rK=(xOgOijK= zW+drD9bnzt5?or*&y{eXAy@v1)d=Iz5H!G$4?ZlG6at^mQqkZE5_E{Hj4^J&Dw!Y9~{rDb!qV1t6Hyf z^vbJd7-3!RIn=aA=SPBxARio#j^#0L_NCyfXf?ye+GvDo(555J6RqcXdGl9o3z}mk z@l4^BW{4a*Z14Jk`LoS>%V)bSk(ky?F?Q4OREJ-?SB|!Pq-E@JDl1+#%N^eHC;(mA zx#FR7#UK3M^NK{US>4NryABO^=yaZ``1$caNbG^xDiW{yZ_hQPQ)P`L_mmYav#dsO zqIEyG@tsSJPQi!fYT&O%zSP2IKR`_7$ZlVDH$Bgto%O!hty&Z_GnUipR3B}u(ORaV zsFN!1Dl}DhT#l+b>iWLi^hdCEK`$zPS0$p?BMS{6$mdqpjWT3^4|IYI$8qt5eZ4t5 zE&d*m{>k(i0-x=AmA4Mc_JEIBauy=Dxt^1MtH@M+OqS%U4)VS&lWZIPH=sx9p_7h8 zb`4*o-j5JM>L5MB9iV3s?lnD4aL+WO7kx>*`k1Ew8~OH+@88P_#)>u1s|g;)h>REe z=xgE&JXVE?yZt*W5ZzxMwa zPwo#Yv5yGU(SFY~%}XR4VJdP34O zmuuUN=KpD=;-z6~3*_0%9v>51xqk7%;{Z0kB)@6 zC|jq`oUv;CT3cym+2|du8UOKR1teWN<&~ z$NSkWBDyzkxqyKo^3kW?$p60OkogUErO?*~KXw(FA&))d750yWE5AGrAx#n%Ygul1f6;m?&gvr+WP}oe1n$Y1di>3p z=iPTeTRVxBNOrHvaZqgxd7WllL6e;@y-FQTuNS$S8~2)$gbrSbYS7*=xJo-j7H>kz z)|^C9j^Di5PgQ`IFmq%j!kAZZ&rcF27|{-{MI1?F)3b*w7#=c48=OT9kE`4@#Y)Zm^%LQozF z5EOeYt$2hb-;wxXh#*8Rw>MVllbnQ2)N-^9mNkKz*kI+SO%jHzki7o!G!9)G!w01R zEkHYbT4j@_8$L-}FJM!JssR+t#8;;LJ%#c(NEln_INEZt@`*|%Ca^#5;T;cDrltIl!#pzhuxs{~FsfOF zVkl}R^ghgYr!lnpI-#B}H^?M>a;q5O7=LXtW#Qj!mkqP#ZK@XP zN+nm%Z-HY4Pvmca_aallQK8vA#t-@$6I^)XA+`; zfk9RXLIO?iu)o4Yx`gq=#0cDFg5k%ZKo^+e0Z+TrlJXQg1 zK~7^cE0Q&O4@&)72JpNUUDX=m4($Ce3}5Vgvy()z2V)Gp)b{_s3t&*DS+~E~$+0Md z3`TV+_aKe*hCvPC%O$TVejFLWw5kdJ8$wh6wx5Z(?_$?0ncJ-C8JwDx6y-VJkqJtE zoF<8EpzEU=bx>EAByi~O+s>n*$(qhVLn*0oL~JNy-OIGiO~l_l`^4|-llfomPMKUF z+H?ZIyjfxkwfk#wHFs;3!`lm$K3|be4U)EXYcEH3lu!#*>Jjpd=>#-D?^?vOmRn&+{J*Ez>N$;b(mV=5N#N9Q7QM-4n(#1?q{^oHnhcQ@AMFezo}wWPD#R z5LfJs|eE&J4gYm69C_%fNGM&KeU7m0iZ$@_s3{M1)9hjg&~qO zr>egdd%4yyXI0p?5lO%E;DjFcVHxk-XkG3AdL9PwF9^p}O!wZQlnl?e@9gWc$VdGj z0OUX$zrE0xc3=zJUiHdrBB?~n9>YUl$(g4gCfe)B5?T6Z0MuX0kWBajctns)=6JXQ z(9}P41?1){vIWq59V9*iq@sTG0ThdFda^I_{15%a!#{Gx#d2hyE?nMM%>sMuu}8_f zxp#4^4tiLUn;Ykgz_n-$4@Y9FOwf|Yp6(h^9Y9AO4vQ<|OzqpZi=gFvxlz0(j)M)V^KYcG?&Af)_jmNc_N9N6|SV6mX#_@29S zIwxAQJUM*o;u!!`#w;*(aVkfKqNUr`p<@U0fi3|Mv$=pAy3EB{H5&?0vbTfFk?H;+ z3$OK34do?=#j*Wgay_P{5`z=;L}QYR4sA4+M}&vmIOD1^CBO`DjbJWtE4qEw50FrO z;xU7_08|Yy$YB$=L;I+w;?Y_ z*u}M#t|`%OXrSj>B|C84U0-&EFV{Np0+g{;j0R(59`6-p=2TS+@FDQ@?d9>~$A_0+ zez~ghmM8P7f*#{|Y`)QTbCcZV(Vm;xAmrTm2Rh1A8RsPSi54fp1#r?ibLWJ!~iFFCw*RYi1&>)oiY$V31~G~({IfP*?|vu-{oA|g5k z%%YQ*-9#K6Cs&t`66(;j*maAb01&!MTC~??(5b_ly3{~UoV<_-0Zy7sQFi37HFKDm zb^%%de{0(d88P}pcDe?!D+^G@h?usLqK&bqPYrkg5$)nSIKri{u!E`4K_KT1CAf4+ zFCAbnN1AG90yo=G=W3#VI1tFSN(p;#?x;0o=6zKxz%}1_=bcO5!-fqjkDJ?pZnx?s z44E7ZXG_UIVW$-kDBpmfeFCa!rph>a0wzF#D2&C(I3IQFL~nWl?dlNVsrfd{r20JwP-^Ig)LFPbbv=eo#ht7$1iB>%UA)omLt~aKbUC#<0N9p+ieC%^CC-jqaDtZMXw&_>{P@6VN0uv_mK# zCn2ToD*1o}&g)-(9RpZIaR!f6rhSSGVwX@3Cy|WHAuG|cHV#LE2YJW`B^dvrODWIv zMme%Q>7XbBV2YXvMD!0ZZQHiBx^#dRC5*Mn^{Fr2NRIAsQ?-d1S+z&A?30Pa<3CJS7$!bB3MVHUSktL>u8xzG_)CwzDM4WOG*}gLYU4 zh9P1bAf&ziN16Tu*`95c>8vxq13GTqLeVlt*ME_?%ujJBLs!f+bpQSIhh$?PPh_}V zy3X)js5Z8QL2NVE#*;NZmkler%_ho!s$zkmLx+}pAAIn^MZQwzHjjgurPVfRMFtP zcw&qg;e*o>84^J-mNkFwJdd3LYIJp57dikKB=j(dsa(D({piw0z{9EQwZ3e=A{L^u z`uYOo}H3DM@Byx{`Si41|+~DMuxNtdx>6b_F8whu>HU-!WsAd!eC~wk$Nn9VF^o=%sJzO z0&_r8xhxN9rD7taK zF8&E%nJ9r5*B%)Wu*FmS7BZQmeDe4)tCyV_>ugDcnN!s*u-`R&Q?zWZ+A`?$|N z_gwiFmZ}SHL;=y;t0WKyCb4G&%n}d+MkL?#y7^hYkpM4&UiWrg!_YN$a1=9X_T(^W z_6Om8Z7hjcv&U-TJ6nAt-1*f%hXdE&+h9U;*GiEXeCBD=fkA(|fpl?OYG$!*TTNaN z@yM}~PF6yH26pWyKKs}aDI-b~Qv(-XZ!nZsGuuixFGW-A-4&#bI$nR}^}>)<2AeIw zvZ#9;!H0+x5C&)sENXjOCQ95DrppQ9v<$0s=^b`m>kHw>JDnWX>9rO{Ead<~9%Cz% zUt6}=an)_5Q_)ovSUa*6E21|5xlVvzj;X1fo+MFY>~h9yL%Y$B+10so=4vc+o^>T3 znbcg7aV#*jBHFwE{`(t8Xd_Fh>Q5*)b^1jIh?0}D=O!mFl_x-~JWmdF-HSJc=f=O} z`i!};mP;q0eVg{-$2)vCoUZMK@h^u_Q^rI`B04D&<681eg8=RY5VE{Qz8Rw%=|SW( zxc9o@``djx+%Wt$SQiNo<|OJ%G~%wA&iT*7_B?G-MuT+YOl?VSqsO|CtEi}@x^T29 zc8$>?IzD@%Ex;~1cmx5Icx%er;pant6uy4j_X>al&@3JtG*EaCu@d~TFSaGcXjL-X zsT->E`j$jk(8WoQ77JqZXwXrCqd;bOSsYz}oEImvl!b{HLopb%;9EH)4?d>a7@bCC@-Bx`F0Q)0U8orowdBG>_vcZ_fNV z;ljtR2yNsbTlL$-wD9+G6zXcTJmn#S^=?FaM3u;eyT`gzUM6UZGRFJp7K@Sj;IY(q^7HWgsvn7w}hlm}mGr?#K}=%ry`xBlUX z4G%C4Kmr)WNUms~YLI9KAjcZGXhT2-UPvtn*o%LhI3brd(H>M6u+d&+qc?5BZjJ^4 zDE9J2 zi=|gijbniwcigcQ#2Z(9jmn(naZuGr4-;WDoCN3L7-vk5z%gCYWLO-71h{b=9oK$j zu%e8-M32i(n=>uUt(zNqcIaV1#Gz6>=-2JNmH=_Huu7+1VaD7U;gw1M4v&oamw4dB zQNL{lZXVX@xrQBY$2Ijhj`V!u?PoMD#S;riSs1#s?;JK-dHt|)-wjMRddk>v-^ho; zTmT5i$A6_8N!6XVa;KHTR{b{*YxZ0%y!pYX@c5Xg!v}MxYM6{r4KM(Raesln{`rwD z)%OI70E6`2^hx2rAN+Or*{(kd!$v+5-kLl{xqulg;y%JgagGYA>IKar>eZ!J*kqOU z!+Jf}_VB=~@4X&ge*blki?X)Quq?e-TWO8ZscpwF;{AVzKAl%qoeey0`t-OLLdP~8 z!e)Ip3QvuDUSohQ!{+@r4x9AZAk3OSJ3R2#V`22vv6k7nZKts5Dnr7MK7+%18gu>E z*yqAq)800SaZLcW^y6UQHr%Q8MAKY)>;^z`ujtf`q&XS%utuXK#`SpamgjHZfB*gP z>Z`8?-t66+QdNIK(<*+CwF$)Huf6VWIU~SlK-4cgDFGqJ?*0|!v8;$T@N_u@4n)+{ zLi=@ktr^<2ZWl&Q9&LVNWH~%(K)3Mv1AeRVuB}4Xc3r|?jko=BxBm>+eC0QxQ@f6e zI;4yI?YK?98una!s2A^kck6G2leBee+d*ZqD>|sxI^m{6uL}RY+nIsm?FMccezEJ1 zHJ*5F*tpO71}!|+6C&uSbdbge|9Z$(;frhT82SoCPT1n8aO0u>8;0~=uXJc&4Qe8( z76Mn+)fxEd9;$sLAo0%E?-K|=9nRVH^w74T0j&5jQFCd6H<(2L)L+?VpLKT+cO3qw zaLP9S5e9Va8+Kju3*n0W&JS1ab3s_CU3b|lA|w+!hYs04d~cg?hJ96sank=9dU{yB z`>Ns-Lf@{dgv<6hFAQF3?Qq?}zYQmDb!_ON|v$^`r9Fga0@D$CgLw z2c~z}cfCErUk<)9Y}I#DF1NwXZ&k6TM3w?O*_ZZnANU7@Yp3?b))4*a2TWzOHK)e2 zKxMQ?7q_{ksz!QoEf^6^1USHouMRmV{O;*%1hJ{^B9ed30~dvx55GDbvC%=A8UCw^ z`Qe~Ds3Xx9Jvmh+KFAC`4}G+4|UU>#KK%YoGg@_{J_cpv>&|DR-Z(al(FKzxBVQDsg5N zo2{)b{;!|-UHIo4!@^um(4aH+G;gtgVAP}Gj@R|^n9|N6414q8(5qw5KsWe~*Y1np zrfS&q{*e!d^%dFD?KOz0o}*!m4qvqkeUXj*D)F93mmfsWBRL|afjKpX1pvL2o_OMk zbl7b6_)gUl_bLm3S*Bp;)s0T~%^)X-wF7YT`=*aTXz+8lGdeTMz5f0i;hAy6!_)6P z7oL9i`SAGLPlfvxi9GY}aD&^G`<|~ZSRVlhkq_}lefa)AeinZ7_*Hf&FN%=g1XqaRmvyOY-|0=6`tF}i=e_Wum}UL0K5 zgb4}KgKs@yP=g*&gWJC+k8;_=qn|K9c}*fsQ2B^SZ@R2&n=a;$jr;>cbV@tnFD71; zjqYlQhc@`J)G@YW;)-jRQ{!1+lT9}9ThEdB=9_PNe6R7OS6@<9ySHA}pqo3s4k~tS z0X0B|2?DyS00=iX$-nr;p7V68-#X$S;TZv*U-n6~;N=slD{$=Bv5z9ai^BJ|K0cg& z-+xh!5GYKT`JO`u*1K(_LHAX=4KNT4)|lLSz19vdO&lRIBBeNs3m_oR;7ExgjXvFb zyPNx}CO@3S*W+L!H0UgxA6|U#6}ZUB<){Ft9F#$PoZ9;94;?`qeD;Fb5iATo=&9)o zVNy%IV$TEo;$No-D@HtYQ~A+Qmrw8I^Ng~1|NOxVJ-&F@Mqdus4ObULeCgtnz!AEY ztMwQl9t*>p>h^n#488Rai@LSyPLKLvO!%TeFJ2E7iO;*!#(RRJjox5GJ3Uh_-f3cJ zf);}t>BNVt=1VC$(ga1&09`A>N!nKdRBg3b+qNil6-=8C!x$d&P<_v$%T5sh1$Y<+ z9aJZo%YyQss#}2754?cjvBw^>tS6s*GVs;3=92iau3Adb6%!ex^oz|6-lkY6jC0Vf zWwUePxy5FOq@r&A7Fq%k2fpPfUgn{(9z~I(C%+x8diFYxqxq4j=>J|M{HKF15BD5( zV>oTQZ-qg<*A6r1%?f{b?)n(H;ehZFkMyKM($Nv9z_4fgZe)eYvnGQVc4R;j{9y6{ zEaMo!qbtbx96Ha}xRmqhIzq#s6d+(AKtVaOY=DEe)VLl*5%7urB7ZMZ7A17lgAa2X z@K~D+U6@tierANhzigs8fN@#+T7`)>#7{t z5rCGADRVXcs2>!%-MrF^CpxGX`rzy6>*7{5(!*iP$&12y z>B5kQll$hD7xA=2bR9)J0!RaZ$}1Cj;6V(U0Eg&!M2oM#KQeS_*V#b#q9VAJ+I0(; z?|q)TzXxcro@EoRkMoJopx*1?V;(ny50a969Mpa;$D26oeXG!0vyo$`(Or$8WO`Kq zu!uxbU9G<{J?BKXG{NtulgATzIRh>_jLTD^4ccfT$NEVZULvr7wxMfEI!8nIG6keJ zzj8;|bDdp0QE}X@r>cl@A}?*C8#`m1$I-fU=q&J?<=+s-Nugt`jCFZL!0)IF4tTX~ z53tI#>h^oq*m~0z@e{oNEy(8wi{gsJDYNZXLHc{5LYb^p z1PIaI%bHM;9|JQWmyL*-eNK&Ofo-T({U7ko>Vy|D(5G;!u65iJbcufDaGsB{fK zdEkHal*VYw#^L=Whv?|)!VhPR;JL`D(93*P_U_bij&3&Vv!TwQX9}Pu*6jHQ&Q?u2ijWuE7Apx0>BJ@EwV12W`8*7=*7;1T4B-g<8 zC7f&E?yVwW%p8Ah*sCs}rOg2AI;M#9iuTAat!aH+4TDHe=^&bgnvFNW`ds;{gFQrI zMg7BLWyt3qC>ZG|r^c~BCFni%)Kk7jjU&1GQVLY5jv!_c86V)LCiyv3j&T+NA4xRSg?e2J_y76#bp zJUUKvo&H_=YQgZP@kDym*$E|2&TcIWfX4A9G2HsfUEz=o_Yd7VbQMU+T&m+FVwSmV ztntF9G`WI|7^R4{85tt2uQO;Y^@|iw0T_XZWb=Yjk7K2B2uKD;X1R52@MpF=C`ub2 zF4j!z$=jR|`e_{<3lHKqktU3Jy+<3LlVPW6OFW6H0ltVLc}B`N;p*WJymtp~cb zrwa=pve5CEtCh}EA(O6!#1mK8Ma+r+p3#~9ai7QfOFiYM}$9X*~%7r zLg38%&Xq&TK?GV)>&XGe+)my0KSJkroh-YZ2Gd!9{2Q&48>1%(c6<3wqaAx44x)&LbH0Qwc2Qz5lI8^(K_Zql4N}<*ZVJ z2oIdbopD+69O`Hn<0qmRo?m6`j2ErSwFQ9D*#R06DtSgz<7|u>dM4K0y%;_JW%w;& z#KeDxJ=Wf(fCXd&CN08$KXh@}K+AG2+2>p>ap~iHy1RQ1+CBWwZfA#^)J1-I;_DHY z48|yc4%(8g;$z(lWq9ie&n`>5s4wkx!y;huB!w|hOvv{bEsfwuj(_6Ik4bBf=ZdrI zvPY)w5$uj31gwsRbxZ_k0{G$dr{8x@=-8@*7Uy0Rp8Ah_!&k09#t-$sJpMJ$UfzDhwPCiN>HX$yC#!2b zHjJD8UO4Qp-weO_;+cAq@Hai_K?0)U ztayts@`KUgz`uOM%UkX~>Mvos9>L==v)R)B*Nn;gCZPX=DwmBTm7We{LI;JI~Heo;*2x>DI66rjEb*fEr_a zJn!l6QUC-vm^RAzg=Z$!03mG{zak1^k^>%qrpL+XUg_x!zn6`AatIHe%S(s~aHljr z)uC;>uvU-N^~hPL@T%6-&6qojki^d1O*5Ar^i1h{vnJW`0U)>y(KDyB=grnr9wS4Y zJuW&r0MSvPv2Kqw!#q8y0I1Ban{B<(-vj#gcX_G6E-tH)E()6fc>`MXU;`R6x8&DB z%Qts{9uMqGKSxrs8&`$PBmTCBy8QqWt@OfS*~DE}@r|FKj6mw)0P2boy}P#Us)fg^ zd41j(0ePKRril%Mt9ZuifV?D6sf+^;JkUaR z-F4S+-+lL0S70M?uX?1%7?5vf8l=0~OB4zq^iqkUq0Hpct&K}T^s5gI{-&sa*GU0< zbUNh&>1?7aVc};290idCO7QJ;=|aFyN~P@MF2`|+G&Na_Ns{Y#kFSO zQsGRzLY_5hDN1p4Xk~Cj@nq&0&_qw19o1CMXCKjtNJhvc?&!leHu(59E!qE+2&GPbyNXPG~0U87V`OlV^YJf z#j-H| z;BZ21I4BNm5D|eV6v$USZvqRshoTCcJ~|Ul246>%a!}7AIxW3Ww0mP%Lp9xmm0Kx@)j#7KLqLA8V`->NL^OGVH;t0*aB^_1Q;WuKHu(fs54^(`o zAHr#y?g0p}2Z-ns6(I)#{Sa^;UKzia%jsh*u+c^vmAS)*4=<0K z@;D;s9ib>g+_Ki~fWh{0qlJUc79MI7E<~4ucT&#hGOm3rGDIs7pz-X)u)2 z6OkDl;IC-U%#kf#L`9|pJoS%YM}O_>$S$295P)91&>K1@0T@vZ?QtG7Y7XznV?i*o ziG*kbfa1pJnCOlOi!QRqKy?m`KuU_yUVL4zEsvHFD&~_rgUm!ddNT=|%@608G`T9*$)vSGI5> zf(?!cbCLl~4y8ImhehR*CI2*Fx*IEw6noHLAh|#bW*vnfLu?qo!r>TCLtc z5UfjNsE-xSVflq9eX95u-JJ^@)%i z1*u*fTas$3gM;B5fQTP^;@2M!!Exmaj+BZn8(R|!Ao(gJIy12IG=-v_*j+@9W@YK(ijaTk@9rhtG=L2T zB$~k=<+(QuumV~{Z=x|s8|*|S9#)2GlDj}-dj>0IwpL{69~XG5lJyo_o>vAq5I0{@ z9d?6Ge++nTP7!6opQzT6oA_`&_<^Adty3p#jS`MX1dk}PARgG$X2NwTf{b2P-WO7r{!XS9O->Vv(K43$2WI!5^iXYiJ*vr`2GRO zH+2jWB7Ff0$w>hTq9q3L<-_=$fx$iqZNXQS4H{&*y9kmgk8_-o;x>BM9o;ztlAM;V zFa@p2Lm45){CWDmZF}Af5~B@#yJZW>*V7`7qEtuR6m207k#XkPQKOD|Ctr-VRHn*| z+Yu=`x8d8=#aZx?#?jM1N@CfDoQ4C*b2eb}9fzEA-u6#JNEMB|rlQ zNRcAW)0)9~mqtgXK7Ior#z_3#!L zL{@Z%=~e@Hss!*@2iX7sA<;A!>R2*qGZAH!sY10k;w9h$$VXNZ#HEO~ppxWAoeNN> zPzgP;8Ovl^3t&ANV@1&T zyP&1r0JjMkwJ%Q&Bvj)juL#?j^eA>3Tt$Q{!1+&>+2KyhtNPj7Wz~c8_~D zc(Nk`DsnEO4};d6d6FY1#^H*tBtV2i;Tt#;=QyfoY>Rw=Xn{Zg-z1-|E>4i@@=XPR zh3+X1BsO+%8kNSz@HrSn;A8oUoJzdxi~39VllR9V2mgjPMSuP{Hwuz1UHp8hoEmWP zauby)t`V0AK+)l83#~1{UGz9_;l^sS5L#^z0u_3R7JA7xNQ#~=1jnq=W1Ni5h7wpT zTAmYa=e37K(c%XmuZN2&qXGB}<06Nhi2MV9ZTS(1AV`Et7nN(oYot7;2C4W0o}Xn7+G5hUZo zT=xuoGF2m|!Gq(+>k-S>(VBXy%Ixj`XYWnmJ-ezp-(7d8%1}vVo=M0+2nk6DnVDq< ziD)25;DaDOZKrNW)PB-=tuOjo(GO@VYIke5ATo$D&p|-O00|@^i6QemSEj0@hI^~t z_xsytpZaI6g8JWEx9aSw|2^mIz4lsbuXEP#tUa7_yf7Ejef{_=-j&DER;*Z&Z=^1C zV{K0TFTVKV@{V`DBP<;^`ITS!mCeb1tKcQbZMWTaW!bW2#mCPw3A0tSY+*HG0KJVk zUtX+&o)@ck=zOF*A=E}x-bP4nyY03N4BK4obnw9kZzC<=_-3{qgV)mb+iyQ~aW~#{ zo0W33d+TJzLQi9h^t>y3m-d3~muM_>Yi&mT4?5_ep4)x*-BBR~%-91aEx%&`Roy_OdG0_Cx+(`&{Vw$%cTZJu@3S({`I z>8&@U!2(-?1?=9oboJF&x7`J~9lUCePTLu0oKcM4HYQ0Y{g4I=Y$+BPU2SmfwbyPb zYW+ZZ450S|nQhZ6ZA!E^M0uNT-=W5MEiejt*Ijqrc!iCbJJ00%;L?!h!UC>Wbe!(7 z#`cWzd~ey%wVjJIGRW9i3%Hha=bd*Bx$AEqcz};$EzmSXdUJT%@lL%(X(s&ebCw{CRZEsbyhy*WN3k2SV8jOESo$r!|Kk_8St@W7t_`s=Un z_ZQmE0D5zL#vUu$8=|~9J{g0!O|rlN2OQAT-+1GV{r*DR89;9y&e$VGdqb2r4<}*} zxk(oAakQ3hzWL_1yWqA1=*`0^d!%S@i1Oy)L<}M~$pWL#i{Et9O`BAAOClaXZ=TM^ zXtXy(dGmA<2C0lFo!?#XU2^6%P;4LnCL`b2aP_p`qwsqX`H+m?obXJ;BVSl! zH_qW!S;&SRIsmwSH-de?R^~S+tb-!So8dbSei6;@KKKEiwQFYTF>+1H@LL&8*ZSoz zJ^+OL=_x+u?YAzZfv+Fqk+0vPsNb4MQDmxOTPn>?|twwiYes!-H_PI=I}j#wj=|Rt`~+I@N{$=X$H$_6yV2~#ufuid}hxw+f+ebfB^i$laKR2+hnQV zx=Cm$ub-pz#!)}<7}>OW-MY2#0^9%+N%?(#w&8ICV1xE5m^{x9l<_6#kK&TV+Mwfz6YlCIVShJ4qt-A0tD%Cbd!7T~G z6YIOrAa;&lec$#}5Hi9eR-&#rq#d=XZE_1uROlktv{d0uLbbQ{nV^!{f|lT=jn)Ci z+B>#Uu#9QbdH^aB8^>vl=7*3vmMh4M+7AQg&OM@B0~>+CG6AvW zwF^HE(E*b*aVU?eV+vU4Kz0}L?soUrA?*U=?g1kT;+Szn^ojRakNtGZET@jHDmV~l z^bUp#5&;=y7NWuFL{|;$^z2z2Q&2HXQ9e*qKXZwW(^RV9-oOQV0fVk;KI4ca`OXk| z$;0;94u#vsX`>vrf_U=T?;|T{v>kC1fF%DK*+m!f^8H_+MgH}}+kXBL+xc%ImY~c! zf{FT*XWQY$|5}F41#(Jjk{L3?lpN2GJk-18dDHOhSSO&_(LtO%>!`POPxNP-sPF{8UjJc&>FcuZJezszaK43mEOSr!nrhB0q_hG92-j=%5=_jD|IYo%LDq< zWm~`FYL^vf)A22YqHf)I`rWBB5sc0~oOR8|&D)~;Q{IAM*D>|Pte zP5WVPiXC6Gt19^Q{Ajy6N-!%J@$<+i&uDdun}m^0y84g`*0!-mbTyjFc%79@VNq=) zUB1anc0fM1z&`MET(f?tT$HIg1p+1pqCRXLtk1bhSN)GXfm8aTp$ z$L;4u-u5kP^bIU6Pc(r;&M?6sSXAc%Km|BH%$@Ef6(NO}4oPHY+=cTcs-R4#j6(`Y zIu3b8QY|n0>Ox){L!0))(lCodCvvLJ8Z7DB5S_bvvyMX%8Op;Hy6g+OwQc4{fAgug zq#Gw|Jk>2WfzH^`NeCftW;M~P6A!SNaYeUB$5YTOY9Np9cFUD7wJmmnLlBhS zc00DJ&7u$Gu{ZT{a}z9;N99?@BxT~cGN}+Qw?KR8fSUMimxY+d0(#95?Lzg! z)&ace-5&+EM%%V=0-X!GfPi%YzP7L9>HO0ppO)0A?BYoynCTwYH!^C#8j$mtvb8P` z(aCW7St5%%Ha7tP;Hb#5j?Nc1V_yfIq^^!R3nLxT$SqNy&ZvCaXP2!9KEuuc5;{pk zS$^!RixE@60I;c(3^mde6r`BxBI9(c<=g!emE5cVfa|_%p8-*kzYpdiewB^`_XcV^_?J zUq?w4z||WkghVH3fb`Hj=`GhyGRDJJ8jl5+^*R{591~m(fa!e6r`#@8oDA8@Orl&q z;Q?Ql$mrC9-?THj@G~vhVM)4G4RFE-P;j_n!eHqL;{u` z8=qANXay1Vu)fL2ZHlNaV^`2*S&6f$M0ZAUj_tXeL|x=HqaCDk&*%BXH;#uyDd zEK*nMbaJ%fByGfU=uHi(2`UCq0t)P)b&L_a870Hd{MZW}1+f5@@;l;8ZosicaWb&Z zgOcs-boN}ew#&=5v^?v2F60#+5T>mFwkdQEVf`RE!@-zS?yMbQ8V~pwwC-FZInh8@dL})Vs4o?4siEGD(~B<$h~pvzY{)ZMB6mthFxZn&X&S z4)W(f-RoiUhClObfo02<^$HA;UT=yGJ1t@}r-4J;7x)^ewXy(_4u%(7H&KSpfRmVX zB%?4LsqqeI7>(#~(%~RZ4!9mqnk@b$B22vwd~{X;BeSA7mQh(8T>d&DTXoPW-Kv+1 zm+M+M0FyeC(=1Ll@>8yLU|^Nhi?-@mqnO4gZICBB0bkpM?pAc>Sspf^^07G`(7DK% zGUdwOF1WUn&hEMGX%iTh*L8q`Ze0)!g_8JR^$|?cCUp-FXNqftC$F{IQ)T3({n?j8 zB3x`?vJD6-lhUzGyF0p^AL=>I7hvq{D!65wkYl$wCeQOA*F>1)XZ#Vf*bbMi45){3 zwvaSLdXIA=yx?0B*}5~u7OE?}r*Sx2Yir!%&(A*HMXfYt#3 zdZUYJTi4pUMl`*Xa~yy~ra+j*#OkSoBEzi?teiN!im3+xG|K|v#ek(fNwjf2OS+&! zLId!oQydt6ae7!ZAdO9QZ1|^4*-3yIz|-=~R*&c+NO|lpPg&F&YnjDX4P|HIg>f(% z7v3&ksX7VLb{Pe)3Y^vEIZQh$q!}SXLxPMy{N>m5*XBJ?kspwP%*hM^(mLjaULdzV z?HAZQZ|M@lL;Gmg+Ae4~UPn6YH)Z0+$&Ddx5f*5#j8_?7A-@pQSSK=i zAixO(IvqlXGYN1Fh|Cw5q_Nzs7k?6EjgNGubOoVrUCq!YTGQ<+V97^Ubjb+r8mDvo zPtX#O1iVol^-L0C((cB_b zFp`f}ua->#8Qd87S-#%L+iZc?t>@W%+MXK#dD_gMc6Y)mn3%h|;11|xojh~t4vC&xrJe@F3fkpFdXU9W6 zIuvLUP?)6a6Ni(Yd>01eSpXlmUIvOJSS(8ppNE4xO=wcDP_4oDqGtns21hcw?77(nlF&Oq<* zID!{_97Sj07Y8G+-SKrg0dVxV(M#*TG#O0C12aLuv5wdr1_l+J3{SdLfucI5uDcFE zbgWG$P9&zYb@c)sOcEffmO*nl5z^h4eJ|W}a>w>SUc}Cn-HtfAobm^MUQYTie^kEw zt8b=W)jtdXBBPZ>nK?CTL4S^IgU(%PYP$phv+}I4z{0V1FxkB`xxB=78vO-;$m1}) zjC|9kY%3sX?y$_?tJnYKydI_%p8-*cw2u zdeoTAD2TP0TOCSA^uljoX1PCspgDzQ8yvpYG0O2-SD)uiM4=P$gD?)GBMELvyxzRbxAO3eB|X=85Q^~D$6gsxLp2E?=HI^c}!Wn zbf?rv+uQ@J@&p8Rq6>A>^=0cs%lbsCK6%iA0W903hP)%U-}+cz_w)n6+4Plf+NX+$ zv>Ae;wAF@!j3pNOpFc?zw9_>vFWWS;Mrxtz?2vQAc?&2ZPr&j#`s`(%vf&)GSzYa< zG{M_nA~*B+Gv#Wf>9swi=h)G~n-)A2#!7fvo}b#@fC0+~|}# ziOv(y;DQb?aPjMyPB_GIq17==f?M0KfZ^ms?JVgKMiQp{r;Ny zYw<3-mffHFbh@ukDGw~aqb$Gld*vR05@DSUbo8K2r1{8}sG%N4Rt~5sJ8SkRNV99x zJMDlmj+K}>9Ch;;9+QlN)q0iGh19Vdd=qIwmtg=wkDJQGEH@q|YGN;#+BQY?wkA(o zXc>XcvbNT+-9X67&B$>+m2fD+`kpiE3T*9$5*tVPO6Qrc@&MLEdmfu3tFhjjBV+ip zaTeHNhaGyt`|rQM-(N^OV+B2(SO;mdwtZI!5EQ5ah&ZD&j{!Hm6-OA2u96RJUM7&} z3D9!f34f5hEdbW>@hiGTI2QD#HV#&CWdrEy^g3T07l#K0L+>_^R>3I1K(5hRT#txM z;I$1Iq}Q?OvO3|hcEx>V<#pFYu8|hC%6`v&K{?^Key^+o?C$#hrDgY{o>rdvv%gwy z{NiWIci!=bW!;)pu}wvg>fCwRfc*Jq^duh?0XV!NsK0Hlk&_BLF_B{rs_ATW_HDb0 zhZ|dIU2@~(uK-l@u{AcG=CxK*+NHHDf;>N=GwKY>9`H1LER0T>KY>oWDB8NtFjJyd z0X+52M2tFm(xC6#p^m9*y&CyDEC3O8uzlB_FdP2Ny9Hd>-%@*%QafHK+p&UP?&h77 zCYsYZIJWDPXbCIjg_}fII)QJ~(4q2Zm>0ctI>egQ_(>hy*RX*h=n}QD_&BqYIIZ2I z3Fs1GQ0`15D~~CsF7K*qQH!$T(D2r&d~VhhKx65Pd;_M*RUVFtL#B&o9_4n^b~@mo za_H%=FSnn6F52R#>I8`Fb;2{s$!Gm>x$rOkxLp154@Q;{u=K!#%PGJA_HxWG{6_iC z+y4NarpnqpTU!P7UF`rKx&W5vKmbWZK~&;Zt-}Rq@DhPau<ci#AkG#*^03_iqGrdwnv#K}cF*s?GXm4%^97KBl=<(=n9>>wmouq0jA3ZZi0G}0*rG_SX=I3AK zqg~dmg9f`{RcwjPX|H399@l!-q&zmFw&01Oj2^{4!8vu5L0ts}kfHb3C{Q5wUu_wG z{V%vuW{L!Os#6bxu0@V`%ER9MTqHfdTX$=QMb&WGi(&_43P;~0r^)Uv5H6Ur17+1rAGk(anK7Iz^5Gha? zIr7n|15R#n-sBmfbYzGK09rYJHmIjnGS$?V9y^SAOVyWp>pAX_pSa z?C>Mg<^9(0|CX&yz4hqhqizD}?H7DI_4Ydc)N;)y|0N({+f7DIf=SaeKxCMNZ2X^g z00IH_kn^XjY1>thSx#TZ&~79_mQHVNX_p;qr*a~1?B-B`O;_v$OId>T+6I6MdbvTk zU0RbT7cT>elez!`GRuS$_}K2x5< z;my}*Rk%)i`IS~LJCIDnDn$Fm%+(%qGSeF_A3IKi5 z`K2M^<1GMmkts`5(9uxjk``qsPukYyjhAt3L`=PfU(;{g_Dv&=Qc5ZyAu(wfT?3>< zS{R_TFpwB98dO3`T4I2JgmjG#ix}OEk;3R4-Oqm4^IXq;{{cH+du`{wJ3q(yK8^!p zYZos;M(81OY+=V_(HM7@j@4zvlg0m*Ou{#liC7F+^qh0gHqJRJzAFgaE7k|l%=u_D za_@VO{EU8f=69)OPczlqXSPskawF~jWFhPl^eY^p#i3ugo%}RP>9uzW4cEg_lTgIf zT#~_;x<1etOeTz{hV{TpI`nG;$mQK*!wq6a_s1RgQr8Fbvs+LL4WVP=lJf`R6puAm z%VwtzPfU!~n+RAY-@Uqco|wk5E-tF}N?+@js@8}ma0Bv56#S(eFOsJ|@;A9N1q1pO zGltr^zZxe+Q_Z6_a5X^m!tdE6w=v$V!v4JXd0=q{Ud)?14OzwpU84J^;r10PD|-I4 zqgo4m;Z+AWq(Pb*f8_alWRLkX$ck8ne6BYAaePEJ_Q2!U!o;d{g;q6>*6r*V#{R?12-$~c}u+^dk(jjjRt zhg%2-3vUS;+gRk1mniZ0O|;5}Ml9U2exT#KZkS*t^N}u4uowSUH{x6yQ^cDz_E$Y3 z=g|_UJ17#7iv2xW`>9*`>{dRA(aY5c#VYQ-s!jOLGza@7A~2+EujzYv^Zr6DomkUU zmW|3Pe$K#`VOU5Y<9!aW#@1@a0(F}OQO1-(_lW$jve%-}h{>~A0}-2uhqYyDpT~49 zVMiwp>1?NSt#a?z+3+<1N?F2CZ^>8xoLc8k`2^fs65E8sMMc%z@Ti}AWxE~vAgVyl zAfLCE7B40eR{Gjd!;&Z~h;2SZ?{k}^yf?Bitj4I(;}`EEm}+23Et=>9Cz z?X#aUJ|ZW*kOB{O#F1Utg5np&t%9S%AsTK(gqY&X$)2kEG{CpbV_+ePXW+2CV7O5? z+?!q4jqRyHXy~s`3ov&j9WIL^!a;2P$9d8D&}Ym1)?V)uSl3+~v7;aOvXXK=rH9N? z-Wkd${c+n!N!+3G*K$D4>qH(aHZlNS3MwydnmLkBe%0rMYed>{+=NTJrmPQ4W@ro+uRJ`%RC;p5$~(quOP1{f!n3T&!N z0QmsF^^3^qaRNfg6V!r%RGn%06otT&z`8kg*w_;a@u<3H7XscS4##vFXwp8%?At;q zOt>zxu=xrZGThR}dt_N@P>we`3m9Ck3hxUn)#7VZk3a81B>bKaRCuhoWb!O9Gb&c8SGzk#LDy&x^=Vx{|KB^R7$={@u zk|*TbWUQqWc)T+#9xC?C0VfmGF;DJ&xcwL2ZjCA z`bZKLt`aO=3X4e>)Pq6q{qY`J_GK;dFjB64WL0ogwqi7?Oiaz@@tNr%pMEn^yl=cs z?I}=}TCNTOdKQ242^2K){kyu)GO##i+aQOJh5%FEv8~tgC3eN&;ey&brkg=ovohZo zGKao*7N|G-H=Mp2Ji^qshtp}iH>)iD3>?>yo{J5p_Au?B1a>-xnDm$H6SY0#dV;MS zzHd>xGjuTkikas)`;Vz*)0nO&71QJs&&z0^*bk8x)xr*bhh_sg=5&ZL6^7{?^`jEgG4PalD_BckZXp^gXQ=fL%M>Wu# z{^(tp5aqVy1!xqx(Q*Px+4^F=iuND=t0sem?+g8hOdO(yXM`mp6}=!~X!p+corY5oDpZ)m2l(6X zDp$a6`=mTHKhWz<+?dKu-C*TM2~MKZbuz^|EU1XRWH+onZOzz#eG&ecaCb0?GJo4)jdKWMo_{P?S@f z4;VQubKM))7b9=LZjs!TBw;JvJenm|HTJdYH_`dh3Sz26uc3DxbMoAf)LU$OdZ{{| zjoGkzBdtcIbxN#F%UnZh%f&eVL(H!)1#%*JwXY(9nu?#gfU2Jr@RGJ?xj)RlYhV*~ zRb;b-3yIVCb4e(V_I8)^^UzOS)V{>ewjE3=nTTe<`{Q$ETbtY~XkHE|4=u*8X2c5@ z3f%g`)w&VR3Edg`VcTHcAjCQ5Q=o|tvg!M0qx5M=IGJ;n=$So1Huk^|>C`%oKE1Tg zg3-k+xO&CU@Mu4PlGX$b2sH}C8{X4Le|3tJ^DK*-(KmW0+gGvv)icZ}|9=!)RrzPh z#77n%O|pvqm?;nAyRJ|wvX6JKnPE91NARJ-1vxGK3OyiQ4XJYl5a;M{^1!$!T2rglb5$<){j7~2YH+p zF_(Oqp@n+pNgs+>O+0oe*y%cK!u%2QZmv`3rH%I2*Ol(wYlZlNOhN=s%dNuV;pqm2 zNvY~;YlB2^8;uNPbH#2ie#n?lKL*`~q1Qic!|BVBG6|qZ|ARq%c&?vo$(8FdjX#--B3M^tF{O4t+Kn z>(&^bVVXQtWk^Q9_dDv-uhayM>T>G8VfR0SLCzK9-8bBxKCftzu|hox01Img^^Z~I z>U1YD_V<@Ruj>`__w<}I-MslhC#%4(`Eb+7rm}^EFV6#=QavdAYm%r4j{@OhpvS4x zQu-&t9*H8^{?!&1lLrZ?rBqwEPnmmQ$kF_2$ZSKcr4?-F;NYr6wTej;qZ;9VpeNa1 zTUp^;(9?TxsL&YI?S{1(CRCanXK$BrEe*@J4NICOzj!p+m=#W(rmlxU!b<12x*cbR za)~1}_dQ(Q8xhc$cfQ2yc(lybn7?V^+A+aE(kN{-hKr0EU*|NgI`*+QZCGS}=+_>P z6wp3?JbiI;)QTFsTHNHvhbuhYE?T=Tt?8>{A`7t-nP0hELvVJ(&=TUbr(0nma3v9% zp!c52qVo!&L;7kC&QaLqZwsU5-*~)VpeGuV-^k8E^tES#8fHW!h|z>+-EUHO%?ez3 zBCwn!U)L{;cWt@5ZL%O#55+7hYFGtM=+bK_4B&&Q^&op^|KkTsu30~dJJ8f0QR<|2 z9;{1gRWHUXoqub+s<7zy`tSkNN;J2$tri84IeA^OUI_}HnnbiwQO=iFg}fAnGy5KRGm!+FtavPR4Vh=+Q!1VA5lJ9T5}t`rmII3hFK?s}jG& zmn?2=05g<6a7Ac9)gqd{JXLJc)Mmpl_m%d?#{4L4^sAXy=|-|faj8q4Fon*L(_)9d zrV(ukcRkjYElI8oOl3svd;!p^nxY|TEd?I~R%InMXNcWx9^ANwy+i%wWl{*|w`R0; z6*hQ!O;8x6C&f5e^ER}**umAO{pVvY8%W03i0bvEn&iaju!Gs@nzw#TujC+CU5#&#P3^JJVu#96sjE)n#1!G03`c#VO zBp3oc%wDQgGc|2Vb6Yr%&{1Ffl&f{Edn}9xq+aW%&9)g~hQOi?z6_7*9sa2NI;nWQ zT4Y%;^UjNTFa%8;QO$sduZr9@6QE;LXJ;mTY|7Dd*tGocKKbXdS$j#&V(vh2@Y@2+ zqb0=s5%ibXzPDoWTQcdq5ErSZ=!`=!GAn3C7yU;6srT}0&BDy^%VJOi*Q4KiZRTC> z1@+>gR&{@Rr`Bbd95dA86n@xx#CaWFefA8~*D(LX@=@$Lpm#%j?J(v@x{{=1Q`#^F zUm$+vO^PY$$7h7QuS^}^$tC^F1+JOGWGOPAieP{DU3u`HZ>Av42Ta&Nt=2G3qL<1K zPl(wU_q6}mvnUx(*PtT2JL7mf-om0u^@f@zt1868bYn|KK8Ap^FskNQS6PNoJ{nt! z+m{^e*}GJ!A$+TyiP=gyny)Z<424QxQ_Q)N3gJXsPef)h38{2iWWgZh(0Ts72K5@Z z`;FqGr9PX)tt57!bOJkE7t*|IG1RNBpz#5&kmpqZ{3HXypu_xbn6 zJ*YG3&=Qs`yZ_`}h8gYSDCx|Ca(fYPM)u$1XT5y|AW{!rY|1NmPo;DBI-by19&6h8 zZDmugFI&~YOQ2BEK2@N#Kdm{}&^xw*;?SZ$tlDLqkTvreGMX4-MyIZB=4j%2!~4uo zJ&_Yg9r)F;R&ZPgk(A=Y6mz4{-%RyuH-67`8Yi8!@+k1gRh07Z(l_q&LFfQ!q(w&U za4tKviS~$MqPTZ>HlhUbJqN_o`6B7{X~jI_q!0HCh7-~IAK>y#BhIS$BM6x5XUo|S z_R@K=JAvZx>?e>%j1P(1pNs|c%7`$J9P+|w{DSH}+xo_eE>{CTr+eUmcpq=}0^@97 z1H;``^?OcgL;{QYt$J*+Y_M`fe)UlSlgq` zet4F5W1&xKw^_&8G&;SFowJsflIZpyF6dxCe(d6>xbxl}7M9G@(AOjO)PDLI+)565 z11gxcdgRRI@24;!boo<$ails(h|KcfxpupJq=WQ=6Puw@9E4376 zVPaz;s*%O3o}E|V(s|tgl|tpbC-nT1xcB{sx5}%ES3ToT%~Z zjiS^C@Z_n#*gs=+9I=XA;%wCZL`r-hI`zkcka9$9cnRzMsL#!eI0mt!qVdE1!5iK@ zhht8-O)Y*bw%3f%JhUPH$v?kq)i-#b`j~Q#pO>~iWcJ-_YX>C~SU~;QT0j~MW<+B) zJdce(DBJlC?M)BY(zyRrx>6E;&6~@59Oi54#$!2Jj3CBx_c!!#s%lX0kd&3^e>?b9 zGH?K_V*zaq>jyF6>zT{xNG)m_FDU#groyV=4HeKm^Q_+%j+X!v@zJodKi6XDc6E(( zd78|3z;I-!aHkEYwAEYz$6g}Kz42f_W)}9=L|^R{nqkUFR5Jk-b2!wweFN_EW6^(4 zjInoUrlqmNe9+%D%QxaO_80%g0Bt0?cgoPfP%jF3A_+YTOx?ZZIa1JK#MU`-Vw znbw#6X+r&CjT9$jp`YxIdd8u6?HV;-n9B0j|8B9(GSN;%Z5TXr{eZ&dqCpnlwUYf8 z{~jW@V?8N?(2P@| z)WE{fxYolzZb`%>BWP|fsy{Rh|4G1!|I0H!ys18;-GoFtI#EnJZ!EYi^E$oUf5Z4N z?)Y@pr7AKNkP`bXKvv)Jo%k3_OXL5t(OGUSr8oolV$jviCxlq&f*ibNRMQ==9R?)( zFoPqrs---W+rMD2fH7!S2{r#^OZ_(OG7Kdh!KVrcF*p!M< zH(^564Ql>@TU`lkl+KkxOEJbQ2hA-(QKxH{l$2P>zXZQN0*FtAHh2_i>t8BT;#ij~ z&owEo-HiZ}$g3d-@tv-Bf{gE*Ul7V!^EbT2*I%K`lSF$7}jQA*4i{~x95-aw36y43eS;#SF z6DIWczYWIk_!fV&hJSQ{79*5L*BV#ik4ZH>6_Q{5qI&t?vgPAhzw6d!<$5;RU0jFx z_VZ(K4T1HqETiQkg z96RA&Fd$AVpGM5i{~w^=Q#k2ux1K2EX9fYrYtJ7w z@&PW~E5m1hn%TPcm#4P{tPVeWUTzjMHPYZL2EWM=hpaz`a)0A@1dQzBg?a@T#8&b* zxNOUqZ8!_&@%A=Xu76y-a}qWI%#eh;p+5=IzG$@TOInq%q31*Ytw6zhB-*l900<%`!=U--b|1&2rCS4ET1Eqr}w zW`tXsKi}(n>HUI=7swEV#UHKIUL)S4Sz=oY|MqzQAlP1RcJk$zSy8*IeqEO56j~2k zR8(A7rNCaSi)*-T(^^Hdi}NR^6t}1F%U+|>eVtH9bglX=U$Uc1$aqcrl2MS(@+3+c z+6r72NQmziMUMx^?K{ExynnQ_;> z_*cJ_nM5kB+FKe8Tf5qublE9H3m!XmV5~OMwD^@^HD}aM?)TMdIT1Zo=C$EnQWDTK zKVqbmQM4XKx zj~yjdz&C)bRJo|i>LZ^ES+z-93`g7VIwTG3B|xHuT2^MrULU#cJDH>1*V`2%I(-J> zNENo|TWj|X@zxYmOnKdAV*3dGbG8n{@Nm17W^q(x*1`l`Og(rM4$&eV6KPu#a#2hW z63dw8EMXMNs2YDIf`bDb-Kk3pydIl(smwaV(*ofOQ9RUo%{|*Cvf6)`969x+@9Pje zJ|MG3AWa>-fIlr4urWH@npIYXQ`DP;23vnRM!&-bwr)nc-PLTJ#KO4FL#y5??2oz{b$_d4 z;DHmC;B@`3dq(ICwrwLzRf0DO#0y@OL9`Jt0%@3&bw#*e!kz z`FlKjCLZZVU9_T)pMq^*5jZ~%Rh^%DTHg^EyIg2ak*Dhm$jAwCdy0q?6{5A#D0<9jQxiOGg73K3pr72#8x7gabtP-?|B15F2 zZDS~)3*zho`?foyG#uk~yiUBWK0j76{&iY-V`{#^EyjfCn@qrdPhXl9VzH8Wkq((2DK-vBE+2 zth`Z^*$GJ}TYI$7so7P=>gcN-t&CC}WN2@7{=1R1LKyIy{6M4=z7KMdhh?~1C0%k^ zTcF{Mx?*E5rJq$jpb6=L;CBWia0iko6b@rXhLN&MyCr)43K7hk7I$ZYdbuT_hbh{3 zr6LcSz;kK5xfMgUeI>b9e1b(6 zW-%E6v&*{pYYUb_cj)V!W8L67_gMiNdu$yQ50qu>+RR2ADZBR7c1D=_n!{?c)Cs3aGpoe z&%7r>i}QX};eR{So1^yMF6p!%6L6vb^0=Z)B)0OR=Fd~ z?6BPSj8F0fd*iB%2mssbdh&hLCvFOHDb~FiN)i_k)fRY3J5;*wX>AS{u$1}b-!($!I({01tC6*rJZ7i*!>>-aGR+H6WN)fiO zCN)sIC<$-LM(^5wwQ7EDhXtqui{Wiwc@dtXM6dLU=fwL)0VztujQ*~-WAySB=|*9C z`ibrq*Ah`)-l!gby4CAhI<}eg^u*j<_{rB?TD#UsnVzW{VHh@1BVT^@amB@GgKRvw z^^z((^QL0aPic&I^L2)WA>r?wC^q}7`cGF7mm7pTY{hsvWrKd+HO4tb_|flNnYylv z_1wjN|Jm`JseQmP{J)#>&rJ3A)xF38=Om#t?Rikj&4I?8dM#k=(DwrD_#tNWTs$%f zfv;-`daXQq8BP#LXf`oz8~_I9ao)3>&ldjhhI>$gY=%)^O(1%(E6A|m(d2Ys0++8{=P2TOv;ymz45?`k_xF}`|Crtu zDelYoUxBdyoBzr+J3B{wyUG2n1_qVcx9$A*rV*lu1^iLZPi|I(=k0y{%ha5?^FlJ8%#v?4*N84SC4 zoYxi8-|Ll0_s+jo2=WtsFOpRuP@%eqtCY@-imROh8&^V!g+ijwM=Ca17RC%0Tg*R? zhlx)nF*lL>Bedr0KR}6GVSaTlu1eo@^aY*;u(kTc=lljaf}J&X%WgEb6R^p`lA!5& z3lLmyt2ih^95+cEisjZxpu~V%B?W6HVInVB1U4i{4MG5}_`R!ttLn_$g1xFop9&6= zwQUeaOlYNi!nJ0lL;C*p)p|16S|8N2@WJh4%;_N?zuRuFhTEL~`~W8}oPd4dQklln z2_i~jl>g?sg?a*}oN4eE=W9X7ODm!!X#p>vCM5$-Kw()mHn z6+lVGn8HRZQH47*M4MC2NrMe_11g|K%vG)>UhTgQ-h=7$cb?`{z3l|T9ud(1e2(N!4R{;ZE?o59FzJw9_0i>;1#c2-q`B-{8g%%f1~J#emS!fy<$$aG zT2&aThBQqv%TaHPm-*%1e(wL=*VoRpGA3}V0RBnQmMdiMq6|d|!98qIFX|O3xAPJl|b}A+1 zW4&2MT67z8lB8N}4i~5~=6ut#s{@O;)3q(gO*WG)Lazs&Mh&6Vthc46IO#-|x z{it7OxoX4=6}a>?Z*Cw)-_e|*We~37z%Nx&2nVUnLg#f<%WFvDdKM(&!OUzW)zl9C zLrL4luEx%rU8`<9|8{=%5Xa;E)BLlho3`FT7p8XVBCc3=saZ!>gek1QKb}9gV7JO&SmpU8?SY#MYf-}PjT0oG;Q%JdZk|?^q=+3_S1IHL<%rrlw9Ak2z~S)Z^_ks zvuu+dBRB1>Qr5;bNu}iOAg)42s!XP0gu*d$B3d^*j-sf7ZeBLCw>I|Ldm9(n6}PlC zs4`zf{Pf};Yf2Vt*1$izQ^J4jbpQ@DWH!v{yh8Ex*b^mmmKIalSy#FHVJ~ZX&fxa< zV#xRM*BWf`Xrl1-uG|xd*Q{>y(t5{58imtd;}K@c)38p}H8Gp{zEtpF#1zMTBV4#w zvf;2Bn!TMlF2XG7^)}2saD}BkJ6R7{y12;f)6KjoLHf@3eC@f1cR7;=?(#u`)R}r^ zDydI>8~4LF-oVBQxC?b2>97AYlV}kgdZ6Y_5C6xt4hHKf*i~UK4QYfz?j{8`YK!lX%by+q7Q zbICxT+b7l>%aqI!#!B!4>-&h&TOWsjT$~t-$cfb}?})A_Wx_S8sKP!43}W*%U=QHC z(D)37;5r3Kowz{Xifv4e%O%{v=G>@vXD)dfbIywNSL}1H;`Cl8Smaz_$@7vs<1xy! z!$UXN&DRUVdbl06{RpmpyZ8l-IiF zAT|}_ve?-?*PK+$NKd`{CO}vS4aj-M^Z#Ie7aU<47t>FP z#rejC=|*z>XBI|p7L3I(eOH14r2EZ=e(Vi*!nn|#Xixt8i}Pny{H<>jxW3$__PfU| zL_bW8X7e32A>GLo`Fr)1Z_I=#e{mK?wSAfrFtVrJKO`%teAn8~9^06sWO)~ddMQ1@1-*j>_i4~I7E5zp!@Ks`xcugJ>(dO1 zK*#dD^mRLtm))P5s);E8TWV10bfy3cmMIOq)xRQwk*C$|>8V+J9i4$UpDhSo#~ONn z-$?fE-d;@4Sy>&%4;OXl*-hA-9cer|lHE?#PpGr@yTN)6;J2n)2i_)Pkmx<3&WkYj zH1zu+?(CzJVpitrtLvvysf&J_BKX6pWz!DV+tb$96Iho0I|rG&Ewm^OAq#Fzxx4%7=pPZ?jh-JJdY{hD6sxU+q2HP#p%O^5{mioQqGF&b)?YMJ2CxLoOZKGraHT=I!rSEuQaSV?ypQp{V`@m(+8j%46u(tB{2~G>++UJy8r5s zANf7tr{SqU$oW<>Qg*1h={h&$>g=m=COq0H%bNRDY(T?I>>e+5W{P14dur0?e7Y+1BK}>2sj4QiwfMyyC(zgxsP$hlA!V zQd(c~B1YL0N5a&3Rb}6;&;G5X2UTqy6z6t)G2h)qG6k1NI7cPsiSsb!mPsxI$58}wU+-vV}QWgql;u|vF^P>q3_ zUXEb~BeEB($?JLttXl7a#Th-U%7F!kFNEjzRP?TYbu3NqtpTlC@<-w;`DJNG#xvOI zpL)mV{np-Yk#lq|Tj8Ry0(}9_h6EmtVv+|eZ}$PYix7P&&L z!$vkS{{8t70l>Nj=oyp|DyMil@6tbn)=yvA;OP$_1}i$ohU_$bc;=3E{gAjDuciqg zqP)YPP0x}kItO-+E_5EZ?IttfefFNjcS*M^&jee?&SjSdj*I2cS2xB?=bQbMn+Km9 z<$6}<0t;_8c>Pep$@7-UFGt;keWD53dPihrY3!tqPF`*yKC+Vth8|`+%b2P`vOSCIvCbJ zRmETZ<2s|+brfzH4umdDf9J1XX#Rp6Et z(m1bCpRhvxiMR@)cHQHNO4}q_d!-yRxyiB^8x$q>uP(JJTGs^YJX5p_ z#7xiM7JKnYv|w^bkyiZ({h)+oAgNn?uCVY>MJ)H$m0EXLtI*&w1Ms`(^`?!Qx=?0Y zgjNJ$p0+PVM-h4t%+NEv9Juu)@%}~G=9J7=fOJ_EHv4&V&R&_eL+rroj?u;9sOP4H zGl+Gv(9fG!jdO-4N=#v0S>akNCH)=F0ygTwEmtY9@e#L*D?qy^5!oC53wTb&fTv-% zVV$XRJ1OINhU^!4O-grPx~I(d<5b7b!)=HXZ8jhQ+C8Hc| zJ!3j*d@hY}gno*jVi(=|2gYs&*BSD*v*)&3uHUK z7lK?|yoG81^7Otc>I~Q%+V4GI;08+Gim8<#<8{v0vOVWGb)dCyglXp7(gam-4ZhEi z_M?&lxey9M)1k^O%QUJ?BicUI{Py=d{#Sd&e7%a z7(;%SeX!5KK;cQ&@6VzHiPvny+NLIKeH8He>+-6V;1svTz0ldZ_&k>v{!j7zh{3D- zH500lIiW*NBlS|+vdmw}1zoP+znZ>n_gUy@QnP#7MF*bp#ZIKRtWCJ8LY0M=07l8!}G(LdiBVHR-we8fZ|B)acSHH|te+HBTDoJUbiKAu9hiw8_iL z>NxoZN*hut0N6HMkENsOtBnN&-=(oyQyqMbcNjEhjcL)EQcu(Km%EReoX?cHkmEDR ziTdP^b@wkVyiRe4TWtOdy7`PoCLA`U1JMmPBe3a@A$}@eZ2F(2+0VtN)+L^g9;V|7 z2NUbk`umT6M}0E{p)*!@rBNMn{=7@26|mXq%g9~u^s0K%<%{3$;wb9vSOk=0>E<@h zH)7{uH!sE>9b2N?jGyQ$H@w|#!nU7nghb1v6kiqjlhkDexj*E06j&SuvZ{eN3H2&vo9=uo6&c0A1*K>^MUOiDn*wrrqn4ZVy|Ni@^?Q8QF`Kg}+M}8+ij8DRD zhfqY>7{S7u8Q)4F#go|I$RqRMq!Pm7=MUa5=8g_%$IEMe8hQ38#5Zz#-Z+??|BvzXtY>;%BPb zK1zhOJ`f7J4&NSgD-g3Edd_(M#z8#fGYa+B5Nfl4Xyn6ofnkhkmv_CMjL-h?1Q|u{ zkjPag%bt?8rh{8HCRw5o<0gtH1H4ivKRPD1e^LRR3-!4NkJ^eD?H4;8(nNZ<`}Gz3 zQ7h#BX=SZ)mYM&4t)B(1Ajz#(vuG2!_YFq2De@>rm}Ptr2XmUa+uuY&we#P)<_~1^ zZgZl�n2BmME;xRRDG_aah--nJON@!qmK{^})eEn#bhNc6&bU{)yDq-$~olrZT%d zHe^cks%oidyMYe#b)JV8*DgSOSqm#q>b5Ug03ok0Y#Fa}ybj|q^VZFRSntR4SV(S1 z2`kc&AmsMaP^{(~wd_Ifr@Aj8-P+^|zx=XeGKm|x;niMt3Fx{y6irx$8VohD*Cf~J zhY~U$xtcO%wNMBl<1l(t0mh50ok~-@+EEu=`O0^JQ_S%zHVgW zrsR+TdSEnZ@n}s;Y*Xg+`u&^^+vQ%H;kSJP3P0WHd+fKdg9HV6XIzR{F56_W#n_$} z>E@%TS%#xuJwG2fkGwl0rUtxEp4SDqwZ>_|#r)eoM@L!T^mz4GwQcm4(_MX9S9~gl ztBuau;{M~wE^t-Fp#a$4I7my1oRH0HO021$zMkw%tJ4d3eKAwj&TZ=;D{8Q`VjZGt zbY58nX4jYyi3@%Gxxhcx)}h_ZOOwodm9aFh5kvF*305n=RSX7Bz7N+Eiqq-tB4_ItAO})FlXi0kxP#>XQH6_85OQyn#ja{9b1-D;! z%1In!|^MAlLWX z=!&Ieug`NnuFk%aE~d=|_s?B3EFj58ZWcAR9V|K>{OC}eFilqN zo)10~&E+gXD9PZ>2vwK(CA!R^=vBhv+P(FH2-<|9ie;UkLBjDD~ zVnN#nJy{)X8C$MUz~;5#_tP7ErD*iEZebg4Suk~Lb%$0ITsjo%b%r}a>LnSXBT`gDS=EdFbX5NgL8#qsfrIC@85{}%H z1e$YiMeXpuwOJ%aEUq=1Cqs$3pQSe(cw1XdO_t6{T`&u@B7ue4ubIEf@Q=Tmav@eZ$H+7J<*43_HD5lr&5_M9ZWf2_GoTT-& zd;GA9k}1!EP+_y76(HX`m{$-@i6stXo_ zga&*%!xFD{14r{`8L>$zTC%Q=Wr{DV;AYhc!5*b%ckIibTSm9B?|0o$_muMh7Uc` zg5$=)A@M7MUP=Qer9po%8@yjQ2f7jk?r0&G9*u^u(8RcbeN6|ie9WrKvV>0P8eK>U zLs|?TEA*Wk;8996(uyuO5SUsv{N|8uoG$EOfpu$%xXTTQ^D$K#F&rj>hX zgzWiyM*nF7>G{P+{JDj4OndO=*NfW@B0vhjG^qE&S|Kpm+vC}G;zXHD&dCu*96P5^ z&l^`e5h-`Z#c>;+ocEA@?EM^$pDBztwNu@mI&JO((vN(1(GQNF{P`Ik=u7yFwOEMN zk)pke2QC>MH2=%}*Wbky(k4DBg4hK(rQ(x}dq!4pJ=}l%aWbhrPd_BN6g6}+qP+NO zb||bquK3jD@qTlfcG;+#!`80ZLdpCpLtaD&zFo4It5g-Sf4-_$G6*&gyOVWZ8vBD{gt@P)5Du29#&3{+^-6E32!%9(s*bM6x4Tv}|0NW8KyTnfwU(MsaBIFedp& z3EGq{}UL>oLPJgB$Dl=ZTBa~8WgihN7s6j(oEcXQyN*wSke z1e{MPu8jVZ$kAn}u_?b-88#Ov?Y8tVe0kWRv1?u7tT|^r#`^kSaEQx1>b(VrDn)v| z6V15y+5ct%lzHXI5&Tupjw08fy%(FOgD--xx&(R?DmUU9zIkmseI-w`yf&3Cl*d`0 z4-v-o1#NFmOo=q`iN$L+w}=fj%4 z_h}={c}75k*__#0?P$42G)kH@(Eu6ij|3_J&@F$We-O!SeP_cON;x%ToSuFsULzBq z{TXQA=;oetVjNNX%^mSsnALQYWoNSn_yXOfAJm}isu3*UGMXvZ5LR2kWjgHZy=hmH zAZgsFXMR#ElthwBjjLx%4#*d9E&;j4)2wP`t3Vl!9c7-y718mqpqp z%;6IT@QUIJY(9bgIoDt6RZ^o~ih6AUjB9@ zKm|Wkmc4H&L66ruBwWSoSWUBly0^n1bL9(`Y^ioo0VqxATH7%i1=(ti*z@hd7l1t( zmJASSZt(G5k~VnK^A0Y#vg4+Uj2Xn~&De@zkHwA`Up*o8=$}%M4+%?e!I%gRaT(GL zcCcW&VyFWPCk@-{X`m8u+X#UfBlSKDJv|H;TYDvD{7fmmN=GxESOti$9D#?l?|E_AGrYjU3`rVFK?cKjthZzOGHCI|1+^+egq((u2R}0BoIm*T}8f_rhdVmDBrNO70oQrz9$U5Z_XXbg47dw+lzS->VIlFtV&vi4dC9LS*U*q_NNnfPISL0;*7&Hczj~)_}WJk~B z$b1b5aLcG0@TL8o7fS{{F;7z!LO7KqR`8yFQO%OXE5iNCXNE4!p>%j_(MECHoi|mK zaXg!F7p1JMS@eJh2%sJhC#_id**9}LO*&0)kO4z}6po-P9$!gex=)lrH*;?Ld$t@; z&}wh)erAt~0nDQ^|G5&5X>8o$*Nk-^*VvC*a~Xn68WHxcz8cT^C^|Q*88j>M3+GB} zJea$n$sxx6)ME=EN%bA zJ>;5WJ5L!RGPTt1v6TT%!%l`X>PQFy9FI$iB&Eo%ZakV+Lc8@Nl+%8~+xBb&7>< zQKz+uo%JX_VWxYuyu4ZC_{(%Pm#@isu@48zs*w`>fRr*ICg`rCu{2>w>MKwKxrJtX-LX6_$j?AMl7pu3Hb24AfYIV>9 zP4;#u<-t1P^M2Dr&{a2O3~XP|?NzwaGyUatqDwZ1RR&RLE?X1{l)s+VO)w3RdYtxN z2Zwh<3zfqPUdKe;e${^(*1UgN>G@Z`zT$Vq)fmBq%JY1f_nS9b|CNR>8Al1!I*yR0=&ijyR2f{am{TJsN5lRQBW!|A4+Nc**Kx^&-}e5g zmuFiNZi~USou6+gE!>F`@=k*Wt$@Ip8p-~Se+kS!O*NOhd(Y33csXMo#EbnJ7vq-4h{mb}Ya{o}%4z8k&BFY_x z+3hU1A(WAehwB6LCZ+%0U}f|Fy@Bj?6aGb`^Lefcaw=4iVRY{tIdN}1wu{Ez=-|oL z$ZFR?V_(&NPyev$ps4enap76?ak|rJ5=Jqdwo~_}^{;do!qi^;+n3=m&MUC_#29{` zv0^=n(kuSgGyPJEaE0ja_5O~Wl`h-H$NR$rs`p%({@lecOMbC@ZgjKP|CQ~g1!LEs zhThKEkiB09zu

H&mTHG&N)x$w9!`kB5uvEQ#ETG)6>NC(CV(puNjpbmk<;xaFFC zhUaz)xh1uV;^ildxDTTJH9p!ghUC8SvcAydr5kz8(X&X|zSW@e)^J})D^B_Z< zr*-Tlb8i zvHt|%PkywbpI?f;me6$^&kd=ghng*1hf3V=I`h{BT`0S*wu_KmE9lQTt?_k^h>+|m zDl(5Zk#pqNn#I6UM%Dh(Q+3o6f0^3&C9unnd#M!AIds5CPxG-h(lg>*CH1$@P_65*T?h zv=DX%Dn31Rhv*aOy#&4T5sqbqIJ>C=l4p+^uanceBEuv zU`}53&cu0s^ophqgL9SrSq=l;6Gw-Y`#A}g&rFr%qc$FfMCeSO?+6=bg3@jRWLF4yakm_c9r0hO>x9yOTHR5h?rsQ2>T zui*#hfhzKid=r&Bziq(3g|XZQb1`wWjMyUNVP>5Uzv^;GNeL;aeIP1%yU$c??(t&7 zEP*W+<9uvrCiQf+WObm_1?zsd$;@8=Wv?H+FEq*caR3%1$aH}H)rx_{6p)R< z+jPlI0mt>uu6wl;6nAHGgCJTcWer)?fO;|J@=-su@?I61wE@BO3!|P} zyJauap+Iv6Pkv?4ux%xGtF+OkdQM8*HwzPL`qz@~35bf_>N+Qb{7%z}rBw!El$CoP zt=^i=GX$iP^nONlou0wBkGRcu^SUGdvU3dgbGS*O8Cmi6VpxHT)x053A83D5=>JB3 zvpcAOY`WqvwvI7)N}U`V0GR^-Q9=G_4&8^3bb2sF_LXIk}EbpE9P_TCX#c3MXq!#BKUr2SuW2l;l4loa?;a?2%>_MSI;buaZ~DT^ zCH($dE0?miBmV0sZKeCiEq<(=ltxl7u@zqVCfd zp50`&6E{kw#?;ada0Tj*`7xN=S01I-P|239i5;D;t8M2sfdk%&BLmEjW}K$~{2=Aj ze!@(i%(cb?2IcRSOL8!$3Z zF$OP8Jlr4U{3+n2j5tlu zVkMk8@roo8gY*#P>sW38(3*8lB5GN;F(7WL+c>TvcLm1&X~D&7s|F2RFA$;md$oeH z+O1OUvvNhT4ndG$>t~|5h5{!L@|kWMOE6mKDltfEU3`TzcU^3m2l=&E=v7SdF^Ib@ zXJaGLye<_)+FpIbdT8Tk565IQdpqX~&^;{LJ`sRv9)$I~TW`Z|6TG z1d=<)T{NY+A2Gs4@x7f#R8Hw~I^E*tQN&UFwI&1B!8JSFRA)wpTv zbDkT!eeSTnBve`b!myFYA&xnUK+KGjlXR_1ZivJe%WxDbsj?|N4EjQ;B+n0pp!l^G z`5Wm+`eH~0m6QYx4@`GBaN34adXLM)yvzxZdXJ+v6H#bGontb!mCDT&=XjP*ZTxuC zjN5!WEj!|Nkb%cHu+TJzhXR^aGKOlW&ezLtskQ?!yFaYJ5|dl>t4U6H(86;yeIKKl%XqDua{O+uH^2MJVI*=T3 zadea=$Cq?CEJK{o+uo_n`fHPHdga$JDnH7w{8%-sQWDCgduXjGXqzKXbDXW^aGTkDv?kDajLL)sV|oR$tWQx3h1(h2EX%=4WVRSmy7#D=;8p!bRzFJ!S*+E zz0bZ-#|rXLgqK+Lr}uDe(PV}|@$|1Hm_&QxQUpXmd=vb&7;dqSXe0{B>R;dYnlrGZ zeK+RC#@TS35NU%r;>0;PtXYN5z={AwQY|{n4Dtj-gvkZAvsln^IQ2>f1)wpLA*57( zH&DF@|$BxVZ6&EAzvwq1vca69S@TGzdAeanBI9=L5)cV?O-$}9!^7)hjT{227oZzL6a_>Vd1p)skMJ zJ1V4pEV*a1L*g(A;p;y(DIbweWiCta6PQh%8DW)8ONa=w!_{-6rZVc*2*_~sVF(V{ zNWZ=8;dsm!&eG!Io_v1>Vt0Qnsq;Tm4p5rA4SnN5uwK@(4r0Rr)l{TDZTyTo0WBPM z**&@ie092j{$?LkUxWL2Y9^#>^XI5A`rpoDuYlR>=w@zK9?JH=M;8keE{2LBXo zu{NZ*+WzDif>3#ShT|7t5y8Mu4*&eR90Hayu9h>L~$D9R0H- zi^=#g*P`%2U>q_rhiD%TT+;>9!;M_BLfC}XM*4u5#@n3JUuwhC+SIV?J{os zz*zO)km102lY|BKfMn~k0%7aHvO;y8cY|Jp+*t=aN^i2gs}$Mt>8`>!x~BsZNORbC zo=75B<`7oV@>$5(XL%$)vN3iDcZIOk*%4ar*y#@l7(QR>gqE&}lvRJ8H7? zPaJDC3Nj;;wSC~6UV zCzK&DXSB~5u$Z*fOjl&{w+n!u2Tg;hv!JuwfVK$VOwR&`5X~!VLX!;37+r#5+7udb z?D$iI#DGPw%@s*I!~c3|6O7_y9vv{}duKwtSZViY7XtlRB{FdFE3fA zV;hj#4{omehpP<$+#q-8`U&vq7K+z*kZYt<|L_u9slLhYYwv!Ed5|zR2>^0d{W(kL zF3a?l47T(TMNz~uY$!bZY)F)|6o{0cUc#|3HJbig+(DT-6P6S#3al-)S-k73Lo#)=N!w5X{lNNw(N_E-1 zwO-TudIa4^*=-+Nf%fBp*C#s~iL3ZvQSVP{%xR6@cPlgi{m33gWmwATX{DfcfP9WK zMtIjty`FGgtTigJy-SVfnR~9@(BVD&jukw_-kr)%mecYI9Xu8wW%YY4S{aHc^YX;Z zVQM06$$h-;V1#v+!nzH1{U-Cl@%Nf6?_Rv>uxjRYd_+|ns*=VpGF35b%&wIRA(09w zqd#f!d$|YOE?kXJ>mM8IZh%Gg_%okI>U^x&=t;}N99bOYRPxKAU{t7t(!nAXabfXP zFu6n+IdrbyCuCZm0@@G`I+Zx#VqXj_gy`sK(c#1wAMc4(hdLRqw6)#!H4hiF*w%ye z6qj|k1AzmtasE5uV3G1gOW{T948>(&8k?C;GTT8fi+U#Aktfj`=<2&=gWc9RaJ?_KJB4;U^eYbajbD*~!4Y{Hub|S=a+Ob~LgYF_A7>-{{`t55xrJY(9Y?F=G(SHzJIftvt15X#AI7C4o2fRw# z#m!P?)%6|TBVv-!kqX_Z%h)FRe19y123M7Wd(Bl)8=-HuC)Udo(8n0&uRB6^`PYD_2{yR?84GkB~neX*@>Mx>I{Ey3kX* zZK-!2btnFMx*!E1*1C)!i!{XuN4B9kz-V4d@(HUibK z5zec-n%O`*ICcKU^E$qR@->r&1}jM<1{#Sa)DrrY-OGWbT|Hq*mb9|cA=O0g?K1Pb zNt}sh3LFX5B67UuXj?1FE`SAnP#UifC@t4_FK#`l`r7p6)Q|+Ro@CSVQfKeIbGaDy%At9ID zkI;5D9cbM#6OIcXB)DkU-c(F~H{~n%>Jd53|KF^aJ6 z2}zi***dE|j}#B0S@)KFQ%N2FEUZ+L<8$F{bd$i1s9RoJaUO z1V?D*vO4SqAAF{t=*h@1q6wCnAADt3KRG;co{1PQ%APa*tW_KccJms^xov7%DE# zeUsLGINNyc)E|Dk zZJj7XujaF=TgEjS*-8tFBH9mt9}vP_e>Tq@In~_Yw&Juh!RPhdx$JoU{=t9M!s7jR z1&;Ncs4KCZ7-cn4x8VUHqHOOR(58Rf>qY)$vW_tE+3asPLC&5FOQhiQVZr`UC=3;> zKvjFZMxF8sN_p**;rAVhN5(98(QPDEJRQ*OltJJ zP?-v!q<_-gj-r>4r_I}1@5}{=jCus&D!HR(P6RspYAdmUAEQ}}+Nr&8(BTaC0?fA>yc1;v0{Ii)w$fHS8PltGxO*Qy+%)jn zp9;)7=okD-#tqayHeH&8_&^Wm<_YZFr#0tHxkA+Gwi8E2w;s%Hj?>u;I@}^ow{84$ zzCNz}FyvR2niuFVR@ELnE)S}`m_Bcr09-|8_eePDnWHF2tSv<;-_ds>Z?5!?6GWrq zfteojq4s|Iw7`oqTSwO;|An5R4<3d#A&*k0Veq)7q_xA~dvgXKeTo!||y^ZU5Z z#IH=EAo`7QCe2M?DIT2LikNOvSINZtfOYp*Q|TU?cElRwHzB5~T0=oRQIo7m~x zRxy_aHm%yr8ulvn?5F)AZQSsFX&m&h(vcCFaOly^HWj-_rAN zovBSJrkJIzO#ve!q2ZEPO_!%#Bw`<=4>Q2T?VM^K#$KkxV3tg@c5JR29{%+2g| zf0WGyGF$D(o{He$^mI#*{H?nbjDR9~r|UIbL~@>G zHUpk_;{w6ftX>C^VC;a`Ufe<;zrlO3Z-jT}jk6FVansJ!){sl4)Ax84dsWgV4G_vS z-?gZi^Q}sO1+8gPs+8r}xUlHYQ33C)+@`OF$kDEo zHwRM;*n@~Dp(DcMmPYEJE@>VKAWo;iW$oq3gaNM2TvQ3d#Td>anM5 zk3sW>6GU<2SNPE)fdC18kqIK5a!KPQOfySvpZvT1Q zTLK+PS0@w>D3sG(E4-ILpOl6AEMYGM`EeR>`{Mmo6vY-~Lh>#pMverMAPdUWsW?T6E|STCT}9Cb~uyjUZ3$NV`X>nCk)+ zL096NJ8J=gUe5ty=mPa;C;~hU`I)2>^w{8|F0-Uh&|Uj`#6 zG=`B43Nui2j6$FYlb!r9V}U_l@|>eZez)H+xn6671VP*HZo(gYI@}6PhaGe~6kEEz}e8 z6|kM9cQHda_9nt}TtyS6!3;a(#{=`txHlk1jGL=C2b(*it{Xt7Z!*c53ZqxD(}>v8Zp;8jFM1O=l`-CsnWV7oYd^e-OCX?wuD-;#tg7Qr^mxcw7(=C2 zvjPpWWp;k{fdwkte<-Xs=>U>8DmVo5O2Wr$wx@_Hhnd6VroGFBqzlvuIrnk5)sF#p zjVq(^wNkI35nvk!anl=jZ^^^Q7kd@Vi!twwO5n{JmuAsRDo~Rf!wO^~zGyr6ycLM9 zpQyY=*RQ;KNM!_e<@$!Hgl=G0oYul@aoH>4c?1+^QB0n*=`mg>L&h7T6f^A)y`BmE z1*VQOw?O#s%prAu5jYIe2`5@Doqy@_(%;^oMQ3maO^uk!XvN*{-GtP-X5CCuZQWO` zVxTR*f^A0*`A50$eYGoc%g`)Qb@V`~y*!*R#zGWqAuR!R)^q9JH@%2P=)U@GWZz;v zFGiD3p(6RLDB;vU7c!{lU)Ix2#zfooRXSAQOeA_Q zbBKB;0ucnlm;~I^!=~5dq~P{^^^j!eyW;6od&oW>2cWwlNGV+&MVjCL`qvCF)vI{m zIByUfa|K>7H^Ur_?$XUL+!-dqUm$pdLQ_wLR%S#;-MRZ4`>hJ=u#NNV%(l0#shHO# zKS`W(k|v*n8j(FXDzqnVE}!J)T^2fzZi{2B1fz>PXne0w9XDLE3+rgGdbpuwpJ(@Bt3_6*pOMI3* z{mPziG<>%j@=t zKEuESCmXM8WjqYR~>fMO{v-Ns1inrV?Yi zlcM!73Ol#)#r}M#yIO**rr5L8Bz1-D>`KYae-h{>ZX;`a&^@9a!{O=8_jT}POxr_k zw#!}CqUL=9y`ej!3VwlPt}w`+hXGWeO_`s5Gxg;cBxwsAF9JWmvYs{csNUL>k|YP5 z3Bc;14^e8baZst-9riFsX^ka^etA3Gu10X3M^U4lPGc5F^aY3sY)`({450x!1fd$0WF;p(a15$O9Ej7RB@u?YBd zeozxL0;qM4(1R9u=Lj|dam28guwF*-x(1-n7D@GtTmB-0Ge=xWL4TJk<5;)n#c$KJ z4~Z;fN(^HCu}=Ghh+p}1{F)K9-r!PqcR7|0*GAB0(td9%{=70_KpMHRl{U3Va7Z4~ z1VxTcxNGM?Or-Hy{%0Fo8@`~9TEWmhGje7I(gA6++Xxsf z{Izk5mIbE%_NG0qa&0xZ=~()M;;NGR>1$M74#rRk?G%S4$2#ETGn*sAG-#(h= z0HXpM!(#z7_e9Z72t3{ko`^93bTeC0XrRL9{+mIGAuEbcL~*m@M%4Hx+L)`p{vejj z=4Zk;kiGS#s$ha_dfG6u;iu_OI_8_#Bh1X-Nt|Yt-%o#1e9ovZ^@Y_~{CRyX^*lBq zrdTI|&L)*w4frgS+Vzge@sp!Rx5_$a^=UoVyink@dY`5z(((kNYu}2qyfEzI{aNPU zJC@p5TcLsQdiZ{08qJ37J3pht+ciiXXZ&(^e8T2Y!tQl(=Yp*HGjkQDg4}SGOWlM@eQA-k0@tRHxOYl zD$axi7lR3O5v!S87Edc5pZEtNbI@Ix4q9P1G7t=4A>e5lzjDolFJ-em#Lee8J>ESxlm`j zJr*3;vr$u_!eC|zKZ$Djd$ZsmvL^A%Z;)!hcpwN;!LY%)sQz=gQAvTQi0W)+ zWVj!}8o&oFxulYx7z7oOrUl!zWfZmb#c7$DP|N*({S>|J&(;9?_iV($9jh<3u`G7W z`LPyM^m<@=MRhx_dI-T_?{IPL%%p z+2%$tug;9eZN@;E1&Fnc|K`nhGAk18;Or{TcIQLCU=G3I>G0^7@Fu94z=fo@DtvCt{=)&qo4_q}fcC3J+g=P!U=uDx z#lyUT{1jW7!IO!-vFvd_Ze%WD#AB@tI zaZroZ20co5lBJW=k(8uym(cVOyFcqznLON|4F7Z29=3wc>tlzG%M*ZLL)ozJIR473 zvv(CF_?c7$Sqz^18G(ZfzuqRfDgg;Roc@=WO(CVzN0e!$^%~(6ANDSmp+z3t2F0jT z4HZ#B(8n!0!tLTqni_K~q&n8G>b}!x>(RIIY^at{8^0aeTN<2JxlJS_MBrNwsLT~V zhq?oDT)8q%Or(*Mn_=%*8TM|{XI=?vWjuYRymU1ba|&5^y%i^jukQH%OV*fK5Irza zQ=%;M`6zQ!d1vkK@j+Cd1M`>P2Sh54q+k0rD2{QS9;t`PTwYAIoaWR8uDDJr!KFoT zri8j}|n@Q>=?467$tH|zUM}Xn}*+&1nq`k%bGQjl& zn8-$`p~I4r0^;B^1qM=?nj}1>p=AT5x0y&|jy&D`M{9r}a~rJEU5o$HXE;s$$$aMs zsi&VDu%!rKtn2^$_~4G}`&JlrFn+zP3&P%?=*Kwuq-i{9g2OVHyf*91k9i4KT@sE$ z;3Z7yMg+whPWXL>(BO?TSxX9K| zOuO8|?vdI0+o0)Gg;d;9b1b~tZZ0`fozwKL3kPU2p?dmHU7xiGU%+way*-f3JX)-|EDZ<4ugw zOBM

_EWnh>vB@Ex6F6G_;34s|#BHIhcE&d4LWzVbg-%0|vCWl}<;ae@rztMchRC zh2hTF7Cu9jY#u?^+m#_gcq83KYRk{zvGrZN?>d(o-#}csY4#haq<}sk{nhL|bA}3! zxpDD>vx|Ej}33bGuqXn}gK; zFc>=}=8p1p$aUMiMV&)$vP)_D*?~qiW4vyxpvsm}&^N2vZ!3R1AlLZF33xk0tccnH zHq@WvkS_Hd;wkg;CExvhsMV z$oijF$%gNE9apPBn%A~M#J8UTkIj+;;n&kh(cr{j>sl49Y$y$bwzvD0NPI3Utz}wA z-=E7)8p}m8f3+#2*;$S#oM&XEJcOZJb*%R-jFWOq^5}*xsy!E2#>3A|mB#rUUD_)(kP`!*fLOW%O>s_+*&`aKWH>b-l4L zpIlYN z3hfWob1c8>94qi%@5e(4U(v%Sz=q^l`n!G_s|TQW^DiT`rP8gC6YuOu|AhH*X+@#k zBAMu^N5{XeNQM9USr}*wn>kH#Q@=AJVk$f=;uQY8L;phx7%!!N)CQuY z`#RZG03nz)KaRU}V7nj1A<)$u03pY%&pn6ba2%%%GEC@(0Q)fG$nS9WQ(CN`S5yM& z`|OoX7@j`5EL7wX%$QS@ldja;8D5bEI3CInd($IVu1&aFL%D5QXD)F>qiE>EkN})a zjInYn2bk2BK=K_}TaPKjIkUF1wZnvt}SPnDA9+vR`EJ1J`~ zA%~Vu`xMb4DaTAFM1ucAQU;<6J{r32rMnn6-JglHyn44zJVK_ zUxoguErc0#gl;{uNXSW^J+PjcxN*MyTVzpIi4+B82O!>dirA$>yczH&4BvjUIgL+s z9hA=j@B2x3pg``MGGCGl97eZTA{{vF?=f|1rOak_tX1=E%+esM$aX@AriGyyC+vx< zIvFONeqQa*KRv&F1}6ZKX%?{)K~aWk{z73u1cA>LH$0*Eh7ohD(!YZPDbj|mQ<=$O z%Rk9%WE(JDYEX|bHkNBfl9tW?omQl67by}l4D-PnzspvfXw_oqyoieLM-G}Yt#P^( zPq6-P&iLnmhkI8+TX>uDLp%g>~^!k(!0Y#J77 zF}3W*`cb3tpF;ct!awm9`o_AuI~h~4hhFf;0C3~n3a;X)8>FF&oN7eKq(0{m+! zRjGk5oTGs@&Sm^L`A#)Ui$^~$#M(VL7`Op(;zAHw!tKS49?=*WBQ+z3l~2WwdteYCJ_ z_z_u-B&$_4gg%-YlEEU=w{~O{e~UQ)H6n32Pz=IDSvmpmVDs}o(NjujfyP2Ml3`K! zm_*%ZKT$AwzrYwy<)dpaAf(4=XUIQ`8RRpnx#fyLd+q{U&uS=eHOjA{H2h%#F@lNl zYr4X}ZxVxPMbb}s63X)N18^OIikAcuH8`IA3I6$(>Y3@9`QXLj0P;d+Kc6>FYyQD{-qH!Xo6mV4Pl+yr`7%ZyQ5)1TS zE4P(YwK)K|*97J92%cJa+Zqf>(+poWOTgb^xaLs@r)gN#KXnBR;QL3$X8qu||1(s| zhQC%2&Wmjp{KvapbnRPsW!aB;)Mw0!j~q@v*JGG97NnjByB&ePG;#hK!7sgOc(4E) z+XN=ep$Ay#5ZLR$v%+`6w3Y74y4MAtRj7|xM~fOj==~6 z^yBUw>xBHwg;kJUM=DZc43dFW$fTj{Wfy<<#2})p6Q)~e6r&LO&+ny%+Nl6>`>lq} zK(-Gwpahp+#P?bN)V;e&xm}h3LBl&#pH{g5UU42qDIN%%GguIWZhHdleeR*^majf_ za4-lvrrq^f1t~z70WqLg(i`7IekGaFuW~Q0lHhAC4UNj4BWasNVJ8cTWQscaoc8Fx z&no_U+kN09M=M47eF17uHc4=3`{NY6^pD}%ueJ*o+TVg?cep$g@LER66MM;J3qO)49o`kP1O@6}4<|~BGM63b4g69QVQyVL zfR0TUUS7!{H~Y=Pnz}NPGMEJEufL0YiGH;yZ@|r`{uhYI9f|5caEmlR>>!8F;izU9Y7L0b6C<7+F5@7re+3*W(Eosuy ztAaR%ZRX3hebF%{QrHLNSFt{+tF>U)VMs<0;*5iCMp=w{0{r-%A1=ra#g-vtd}O-< zL8w(gi@Ut~@j{gWK8rAsxVb(dsevN2pq1HK!vfkxXI1-WoPT9;w*_^3o{!(4-N8g% z3)%ZL{FN-1T~0^|Ile8&VLT97$6EeRw~c#<<(lxubhb#w&YkHxsj$>Y4h@&x(wE!E zou~)@x_KSTzy$-JHTU9hni5dKSHwf*xzVznuq*yiC>8`veLBdGT^&pGQYBTiE z&$0?!@0+xZfHmip3JlF->@Mb)gg@o>+flvM=YLM%ByA8q_gO2twBGsE*d}$or?7(U zCjl#XZ=3K!)!nAo0O5aPkzPo->%qPmZdPRfTvwI%9m7LWk5huW##Ix`G~deJf}MAW z)e`{~+L|iR>-iSZG5_Q3!Uvt9s;!nG^uYV7A1|21d6A;}8+qWiCD=kAPv6zZ_ezE) zBc2PF*4+3>0qc-4>)l<>298xSij?Gj$t+7WBMah5QGM39!o*?G7@e$;C=2A?@O0Q> zFcS+xp>y>d>E|$Qgu^;4fX`VYG`!#vQIMfzfv=DdkZa?d_I~cPC8KX$S#P-s@$YTbntxfCh zmK01Gj&eX(Hz9~p4k_jGIyo;{^ok=|xXSg|kX8_B15B+qB&d zrEwQ^k5V1B*LY0SwLyd^d{SFB_efk;?M8-JO%2q5h_|?N(tpmY;UXbG*ULU^#jmsF zrdT%+&kh2}2l%7ioRkpY-d(%eePOP8R1|}5-#)3AvdacGVS7+1|g>K(dF&JJ|0hUj-L-r&B7Q8E%fmO~|m_Ie_@~cfy zS(q>WiLx*tpPe0+o0UJcl3T{XDh`BPvk1Lf^jORk;(YR>sC)SZ7ZMoYxa~B)0kKvn zN9^#pf}GsK>3^pCWB?qRVdzl6ma^Ea%X+hNg%J6HW9wfpk3<`J%?>g?;hKXg_876H1+^0&jhsPB6b zT+6hO^5Km`nYoMFKZSG*dWFxKdMtm(0RupEkdhM2%G8GQiuF6b5=CuVCX0`qKPnf3 z)tI88xA6#6mW|F?ZL!An?eI3&ErDpy#7F-H<#25LCx{)MmV{Zz}w%$y$Mfk={*r{CHRncfOrf`Q{x z!q>NaQWGWdTpV3ZT#uwM8!c3A*TW1(2N^DCU@;ezTcaP~CWto+P1nh8S~{p*LBo~a zW{B_+a(=&EU|Ft2UQG;{0p~~@AAe+BAGd;gA&ui>mV{u&ho;5d6z3UQz6Fj_(9S zl$$xi?Rco9TKAu?vR+%)HzW?D3y51vp!g4y)FVC^Y72HF{=o4CVd(bp1vh#-IzmHq zK|zjjBv|OUc3nZ3YBE4pvDeWkCAKvpYW*l2pxU8VEq@h{OWth{ndowjf$TgoW=8 z5d>QTQ|QT@UUkL;-{?^9ZjWY=!>`nqB>0fOa?7rCnJpi_8WXmkd1e%0@fSnEas0D% zAy=%7zUe_`Mu9A0ouDk{-zFABS%qJNy9U`UEp?GOHkQo67QA$h9grE|)G@9aI+6_q zqIn)XWUyqI^l5y5K53Gern6{hXb5a^m8HKdGk7cIChp3U&$;1$OT95F6C zHyOWp;Grph(N~$jiC18ftfBl)wtr)5RogG^|FHldf6$Zzy(urJaOXNifV+QTQ{Nx9 z|F5!q1y^QhMhES`diBK+OiGZF!#}H(kPOr1X$iAJs>u^M>!R938Q|&HQ9sW_D@I0h zCduZTasDJpjp^G0Us41A7s$LNgGBVb3FAbywBmXmyc*d1%y)d^!#6HB)%nH?w;q0jDQ*7>=+vDToo)ojpqwb`Nrgc7SMv_)7poP6X-Ue9B(~hGn zD9=+Nw&mBawyPj1u@t0foQ-G!2xYQeNBkr}7j}1hmd8$8<6l>3j1_pAmO-V)g30*n zPU~kBGMEk^ip?Fb>*bk`#iO1AXh@VHea1-l*(wmI-!EA%nC`MDO4p*Fm)L8)&8g1C zO-fFPgQMT0V5G^Q($-lJrfL_T5tcl8VCknu{etSK3i+0kLT)Z~1`BeFY$r&|QjeLA z>t7@7C%LaacY95Vjto!+SYZiiow&=?{A;ZJi-muVBIM`35lR!9>p@yN3$kJIkj7yl zBmykR|FSC8m=>NEKKa-BqpxE1ufaVBnd~<1#tiK`5Ur{<4@3L7K)&i-Ui!0TOeP?N*y@!Y$`>hy&_*2cL=4) zy-nQbc_s@w&H7s8Lg@V}$_SEd>Q%-y%gjI`jOvLZ{%|Rc zzcxB#3*=!ks(kB5z8#!^5*CBt^dS~MmxGj1FoM4axvp*_)@*xGw;*jRN=*bZ@5dY$ zRd0wgy$2FjdubpkOo7ejP~){HTP)ee%%0dbm7Rn z5EDZ$^fyy%YKN$e#yA&H*nf;(4)_3uB$|S=xU5rWGQFRVx*misk+u+v8&Nn?Xyj9O z-IcgOQqSBF8y`L3F{FBWBNmk5A`D3uPQbNT7Dt@mq^7+@U3YASZ;ZjSI%EI+CRfdo*xK(xQR3t78b5TB1X&%?rC6iB8~Ci@S!8!PrRJL4$#e_v2ZN* z(DmtEEHtWv7GD~o;S}9Wd3|LR0Gc5OknQ7>jLn?7=Gf54s0BtrbRl|3T9mUXQ=c95 zFW-GpyK62I=4kr95u(w#+1cG&uPEX@GZEld-m}YeA{Iko1t7V$qrzJXubW?s)4Vnf zO;s(%#1JHFO`U0SaQM}JH!pgn=cXJvF%x?m18R5fAjZ;$bo_((4LUj_vL}8TbIzLU zPDIZCm3EeKQAO{*pJ8AKhwko1Is^t7x?4axq(MLgrNp7T8>G8aN>b^PMi3Q{MjE8` z?)jhdIp@B(?=J6VGi$HC_pG&^XRZDF{#Ik7KnyR<7s+F|zpsyJKqUJkVcFBQwKm6s zgcD%d76(|D{7FXb`sCqa?vRztf0MK)|9XHOPNkXKgdo1U>iyT9a~7~!VYimk8;f^d zyP6I@ZtLg}Uj=@-$HjBLk|GU=yTggZkz}Y^DLC5$H7WZ9ygumCAw>Sz98Gz^9!bYW zGEBmI;ulwT81~qiU(EDf38BIqzs*3TVoJcMvQ$@}B>VU2obHFm_6$IT?2Exf5Jh5-{N4m`R*BSC5q|$i7 zc5Zj?r0BOAy9>FU3w&Oxp*U*tl`$dD&5?q#-J<36n_Hk0zWK2zZIC5U8hEk1{@u>{ zYlF3VDny&ioi8ljg(2?8YcmH64dRWK04ajtstj7zQON zb+br`KZk>;=>Zt&csQKQTlQ|cEdvAh$#rVkak89fZHb-4&C1wk+g%$`+U7mh7mw9H zj{~;v8f~hDEvPivTtWP0a zw}C3TfW0&au~GTHO^s8lP*H4oj@+IIFm<|+&|+;V1W&#@A7NYj(9(y4+4V6ULY3XT z-4A12`$yfSv`x5ubyKshS4QkW`5u3rN1+34h!t57hoFX7|gz!r5DFOx)a$;Z1? zLbqo~4efc7Tc%65|1HOS19sYh2W87*K_63e$-XuWZecr+)0kD%Ma|kcoHaDk4IscK z0`5|BqY~drG2mr@E^^*N7nm~xa(#=u!DNy2R|25^k!@K_T9PSXZ#Rz#f#H_1bT*N5 zaPMWUyKg)V1Uq(jmSph2*sWUU$;6Xuzfrq%idxDL!<(3>7MBG0r9aqkm1eFBw&H`bS zS1*9;KVjMh^>|z^^3?tleVI`4k!i5pCIy-d?NmaA>Hq&?CP_1j(R>j$#uBM=vk2`u zgo*#Rxg(z{_m3hTz^n%P+LiGhn1$l;7^@eap&H8Bv2~Sf6p-hDmc_Wg21fH`l|bE6Oc1h1OQiEeea*?tiy!cvg+K_ofDm|k~+{DiRvZ_ zc5H^Iq+_cd6}jIfB!`-ppyon-yhng?gw*-ZITAEYst{ zN%5!}rR0F;=Qr>|E6t1ymqpv%xW(|VFECI2C#6R8Iti7p|6kXj4OGd&hdM2)0#($f zM%1MCS%1`9RPy8N#P9;c)Z&U+bq<4yLd5wgYLNcM7uq%NJ zGIMzUQYiu*DGj!Wcxos*0L=AsOq0;})Ns89zNuSS82zZ+;*<3C8?XO7P)O}q!2HAF z?2PL!oL#%V>DV&4Cz8rBp)I4Ui;1f%<{7JYeGEx{^kW&^mSI%ko9}J$YN_zTZgQC_5Q23z|W9ym+7p_^52J4)Q)UKfy7~hIx(6LD7=mO-u=;B6RNP?g4x*8 z3z6w;R5eGhKBkl}y*;w4QY93bo<&tcNNNhLnO*rN*p6+^h~_`|`1Sxte5_*vwSuso zD36Ctlarl&&+XtVY1&#<#YH~axK-c0wd?2$R9G?836`>oAQTf8CJB5jHt`#3z@tWb z@&`qXczpL>DrI$0pXM+JdwY8q_Vh^4FD{yBQ&R9Us%I#(Pam9_PT!zeO`LB}KDzqd zre9H6d79Avdsu$_GmJn~R5aY8+wVp*56q0*!!+Gn7|Yiu&Ca1xR1f%Ywm+%;VW8N! z1>GNwMp2taOHN<^)riRWuX*3vjq0eUblAX~tZ+8Uv;t1O;cm+Ng}AGFMmIsjeiHEzsE0h3AyWUmHYe zm!#Fq;@cP)EJaGetC`$)^t2Y1yyfX07{Z^YI2P8Y|4t2tFB8(OitRpq?>*G5{G~*k zmg?bYQONn-kD)symMbdHi_1!xRr=e@0|(H=1;wlMpFiij9{2j|c}59NAAJAV*3ZYy z4-tW6Gj(hqnu9vvjC&^xaj#-a%aq)GA3zB_R<_70ToYlaWGO_Dg4^m-BVi)=-q}u} z2r{x}T3$X^kZsP*lu|p^S49Nl*vJ+09Q&+8O-0QE6;#3E`gPzOq+BNvjJKxJ<7^wG z1m<$A$j8kNKr3F!?$j~hvr2xWLFFCIfd2&Rexg}iI9inZ(XM+PVePC-RpO&QA`cu> zv)299)z!6E7NAs2I843Y%V2ieq8qdPR-dLiz2_sA`b`KOr&!jGpe$2$UaJs{d0v6ELgb+IHGr!Ey zRE%j=ieqmk&vlcfIJ)$_QucIMl1(p172oQ*+s?nk*e907!pE0^=?YED(?SUxdE|b) z^43g~s-jZT{Wq)qL68vF5p1zrVQlq2%@m}#z{yU~G|Wb|L|jPnv*G}@T0wsG13voM zJ5S8l#=QNQ3zKncX6ZyJ8BcNl z_Gj%I!&x7C9B#DB79#}@KSOp*lbb&w1=Ua#dFad|hEywp#waU}`;qeE9J>;3{IclA z(PIvZ%ryl%0*ida$JVJI2GG~fUZ=o_bqKS@$w{)xWCa&F_0g|jW(xRLSUfql6X@5X zW9Pw`m&J4>TC@izo?hq!wDsq~4y;sOn7_AINn-PI?R3qWeP$8i@3iQMz2z-wUM<(+25LG|+#R%L>dPX$)#eHh-54XcNIl&3>#)o7H<#53c27QgX- zH;+wM6cRC)if{bjDa-OeKuGIR?+Zp4VKW9$iK1M#C@Y&x8hlAIc_jTs1#mJyouYSFnCIDW6#Ogk=H_ z_ZcMUM|zq-eLx(P^%KuGRhDhbIdQDSIkX0-2D11%>{ijlvX^{32A&TbSu$%j+0#8| ztS`}jdDevFMk+AWNbJljmlI)Nonk%voWm^0YzcL&3lXf|R*T8Ae#+7rZ)JO;XK9cA zX+&Nprm5C_T;5_dPMQ|~S3oydWj~~IEy?!?OI{2O5q6Kvk|pZA*T#e}WVb0}SwiuDs)e(c79JvgzyLkLnft(lKkm=hc$iQUq?0_sNsE)89=_MzYnna_AEiKMrM7-Zi8WW5Efa13uQGG!7*@G>mwr#VP0+))Bw1$O} zjP?)iHFnVtFi{oW@sh}WDsaeHSuoUgzv`kQ0gL)itU+W>952tT9_B5k%YyA|OU{Qp zITPo^pr?hD)lY0g8guSC>o9&#bDk#W2H{>P63%CW@el-l`?v_E;w|0I%i4fd_oIwE zP+C?7nMQjCI{y5?T=Y#2qTa^M;1px90qalG3E3IwE74c7#|uixmv#&V&o#H>c4?SD zUmu`TO=tFw_5bSUw+j}9&pMlm=95}}{t%CQzVME1<$Y|AYM$anOBDu4@M&7uDn)+j zuvL<*ufPNwNQo?JX9yG(`S6*$bkqN39xd(8Qb9TD-V9OCvPM!au-Cq*+L#U#UX)4=18Py&7kZ}^bhJ=`C-9% zYH7%mkzc3s2gtGv(}&{sxy0*kFFYv*ELsL-#J}C(PCfQBB9PM6ToLBR#Vb16LtQRR z=CMgwJHJn<&%BW;s_}oXWg1u0Pm7Q_m*d}nRrsuRxIM=6n-w621tFyCz!@~qvaSp4 zDPp8`K)jKJrXh9K*iau$Djxkgfo0i<)jZOYmbr67d3T{aql-T7&o+2C039dxH5$jc zh)oRRufeacWXS-7S3A2ixnK5=E%L@Vk>QSD!cC94#4fZ#6JKw)v6#h43nl%n@9Tpz zZNpwfwn0YBe#m$&zO=|X$5~P5Y?z12t7YG_t%5NkF)v-cXBu*X)lIitYe7AJk zMkj&$+e$4^a(~p>`2gK2!SF;(i0op3ffp=!#&03XKg?}4pWS3Xc`zx%AIx`7PZn0cHfLaSkLr&d^x^@Sot{0broXg5U}Yj zy98)fP+PVS)ALOsC`jW6TVKYPn3txab&BX52+i+;U!uFh_5??8OA*mQSf0!N`g3#z z<7MtTy%m%3_y zO0n$zNO2n$^eJ!+Y`#etLI^GMI$IfUINe`2>PtNN#9tCCMgtb6E}Ct8qNKE^5;2tW z4x@95y~o&?j=%rf_L+}eI_xh+QT#M#zw)NdndkdQ?0rx3vL!UNhR*dVr*%b|p5&J* z4($%w2AE;`><_HvWaP%i!as-LC`en$)9q&3)(DS<$!L0bVbV^XWA$Xgc6t5EeByQy zoT(-Mbm{hgOE7-)#rlmN>SJ=^jL5&ip@e(mVfwevVgyM<`c?#K4Qp6V-~3gPzP*9P z`gWtab*TtWpMThZPoqng_76WKc+OU0&KV|tOa@-fsdbtvri(ztzoL0&IRrD>w3HC% zgB8a)c|_Gf+QLwISPYzkmLXL4WxRFNyJk>@F$gJQubw_K%$IY7=-3oNjJ1R0wAsk; z&l$~kM&!jseL|J-z&a^xSWDGT>gsy4{P}~LIxHiAH~c7+Cs5R{aRfOp(cdum(<$|k z08^^zNm0`0CXk-lIRtcGSQsRWH=zHn5-!X}SM9ky>G&!YJF#pulD9G(u6MASQKvl5 zKv(2QqEH4HCs?w{_(2+APopz%0;a5>AXT~z4Zgoq^|$h0-o8qC2A{_Fi@TI#SitQ` zE$?ifl4y)j1IX(&C5$k1KT@ye=*P}rEL-$HPcE#Ud!U2xK7ZK&vrVb)jC?*WfK$@L zqSwj_c5#EFg=)J+CV0`v0{92RZ_wmv1tf0&fgXdf`&>970h9Tjm(&e^{H%-JX_^su zSXgQ~GQW!X-S;uASH}55NB=z}6ypwYMX=T4<(b8lQ#JEcJc8ms_D*0VUtIpDZasJ@ zhEvQd^HY!kjm~UQY*+-j*@aeXAk$&`?0LeMF!nFfs={2c{}_sb)sz1s`EHLyWwx*R z-`rmCA0>$GXZOd$DWa#j1r##(zTX(&!KXQ`(CMEjPfExV&UOTr?3{E(L4CxlT>A)* zzwvi$+^=QwzZttzi=IXZ81wsBttnJsQ|2uDbk00N*EL-6nB(_4IDCX)z|xWEEN;iT z{WA^nTd4fG?_wgli)0yl;Tm}n+!-*VdnMnt!aI?7??zEA9y0TdiSF2BP3hdU^Qub; zThmyh1iJZqPYtBhhaLWO0a7?EcImmd38@)~D3i8}OuD3fCGqjNR?1CCKX_m2~RgsE|cit=$aUM^G97eGL!77iEFo_KMR zb9O;=4AUP3NnlDarYGxpn-B=yA8Gz)S#Hfxwq2Lck%v*%t~UWtd|aZ6icGfbrAHV4j(=H4SHEd0cMvBByq#b$-<|nE+v65ak?#JgJbF(tuVvP47ih; zoa|luNC}1EBfj~WhnKsCG8Pnh$;k>Ea`HjaAH+tjFWMp@@T6xB-&Xg!8@mgq%~gv2FT!QVfRg+iq+ z-V3!`e@-Jn`Du(#FfZVx zyPi5ioL&o?zUM;jS_M)0=}e+;I!=@~j`ei`)N{>vrch})ueluENYYS>&m3J{?ScZY ziPM}Zvi_pV1rgb&;C!GNaOe~jPs-t#l%eLGlATRe(b)5pz`M92xQ;Y}cNzv)9p9$1 z=Oa+Ou~U$tmzyS)4LqXs1-JeVv!T^5gwwu}PG`3=n9GlWl@RY1E|YM{K`hw0RRJdp zIeitN+fowP0b!16wZV{5PW^c7wCK_v?N1)M$%Uk%|0p%qP@HabEgXW3OS}wGG&2Tu zQb-L&Bz4f^`C>`DJA~3HT{=_sTv;P3Q9G_Z@_Zu?)QZno3@uWV+a|RS3YC zeCV5)%tbpSieqmmJqQhyOW$gJCtO|ivLy)N6odUmLkL)OrfVIv)RLwOJE^{sU8SE} z_s+HhpMbbro(VEiM=SG@Xj&*`rWHLJ+p_z7n7$MlyZU^PbiYt||F;9geVUI`$bfE7 z+LB(VI#FhHt~!z007u|K^b0j7erufklJKkFk1KWD+c}SMn5`J4p(%kS0LPER~9<*xrzHQq%w)+DRW78~u|j1I{z z>*-ti5&oQ0JDltJ0FpLUOQ_-BzDw989-JlMe-Do%b^-(QY^!i_EljDG$+B0V@KLsOKu4!Nb845Ep=|t= zdz9uQ3?{f1RsM!U(dAWEg+|A{bG7gX1>!_zdPS@TuvdLx;)G9_h|*(0jtHE#yeAl# zac*kN;{PH(bkcS4^T*_GLNz!;nvlFcpw}3Aje5Gg7y19l@60MBGKCIkDky)*Q&3vi^oH-TdRz-^fpD0C;-wB@WS$|#+9 zCh9BangrRda8_Y?1S@)5qgYQG|Yf;y;FiU24ho z2g&bh>Dz568m1x}R_gpiqwv3z=aC}`K?d-_$#`+bF7GdvpW7wfnHNEvZ;Y6`-J}1k zHq3Fc^VTlhtx6|ui{|2kr%g$EU_fHhe8!uuhKwa2~a1-Hp z<{$r<=r3khd8qa@P11NvUoB)vE7d)h_T>65q3718AN|Q6{SM@?QwZBCWq>s8c9bb) z4O6+4_1FPRIqfw4UuUtTOG&20Rq#mJ*nx_JcBnX2VnaQ z5*SFnNPAML;8iORnpcx>-u=X{p!76S24W@hH?sW|cF%ms1!)_}REByaax=v&sB*lM zBP!{c;!Tp22xxf6ZPatAn0l|9tlz7&Pgr(M5!#pm-gVp@pRNI-TWccZupVo;5N9bK_eFK7( z2neBD@>u#qH60ol@^SQ%JzxLEEKx~(IhN5siNg5IvsgX*_iU@sxAXKLyIcqi64TmB zo*_RkW~89sOPzJ$x1-r9us^fw)xw}fiE(w}V;r<|eKH-ro$!sWwu;Qmx?n=7Kg){W zKi2tqG#z1FVKS@#Z`#-TooEjJn{b!04U^#!1Oz9?eLg{McGAwD888AO0CAwl(o^{c ztY9ECZA+KAN9H)9I3K6V`cB(xT9{_lomM?S*_$=Ip8Qly$XWaCOIkI`oyf3NUnKA*%C_I4_Ry z*3!R9g(?uqmJ2(}W@)IDfjZfyG5L6w6wh%x{+u@zjNPD(-vLWsUB}w0rOk!A;9)B% zORXI!qxq5}b@2qSu0CLIr~sbz`36ZBz#q?TVDM%Cp{vkZbSz^fPf;|Xzt@E4ierzg zu556!ZVt`y+cE*2YNnL6P4!;e)>L<-7>D_;%oR5X@X~1EbTcNtd$i@IBc)zG`n) z&g#5+l~dJXYN~OwVvT*PQpC=?Cktz`#Phdu_$(&n3vSWc^jB(z!P$4nm}tH3BD2|Y zWE`$m^CaO{hcEiC3PK`fq&*W@ijHUr|9q+}j+xW7OO^wJ@}!)zXVMkLE9z(O(ORT2 zUZ3bnNJN_BD5;KfEDZQDc>GU8;$kidyuQ@&uL_QTX@Ec%>|^fvj^W7lp8l;z;Kw$f zX(4$cNlIqXFtMPUu*ys?R&Ngl>VaPUTDE%Hyno_yHb-r}6cbricWyKx| zew@y?MXiqa4oy?Jg5neT;>;IISiCn?A`F7c+(K*T6JMqhhs(=~&wTXJY&U2UV$SZB zo0@~=$Q!~1m}`E!l*eM2s2(V=c4R%d``$K6dkdo_+t$dnL6%TbR0BhwP+s!iKNe0Z znGaJegIiJ@aCuUDByr}9w$aa=TSY$HFL<%zWkjU6r&f7;34S`38O3r>#S8}+N&zZd zf&;DKRf@TA148V`fiy_!X(==N7dalZhiDnOT{@wx&OsOEv&ZMXr{2cfa%`t+#X-=w zP@>{5+k-Q`!@^{Uu?H=R1Ufg^palq7gem0?_{8*u3iDK{R`3MGO|3d-=3;8qFd+$(s2GM`TPA2J#GE^V; zMGp?!QY~nqb!|c8lQ24y*h053(of-*QX2ZtlsfCW&31MbH}?1$n8-=FVzvxW!U<{VFD2~>d{*bdPYv*c>%#zxBOf(?;36nqM4S7g*rpEnZw-fsH zW|nVo)Baut_LiDbs2tnWOuaW3)dA5%C+CE^2IbkADcwbBz{q6v=-k^2!8Mi6ZpqxQ z>I)zK-UZ4Z3qIv@HvgaXrLoRQ*DIT6)O{N%bW+@dzDqW=0%$#H-}trPn)nufI34@C z`rAN4iMW@O5ZJ}xH@{rj^8xoRIfgHCcKjYzU+{}(_#S2Hq9IQ%y~xKx@LF`?LqnXh zPu6{?B?I`qHg1?D;N2_IZ{O2r@BOm))76FhftQ?*4C#?I&HWFGNlz#$b=yAu#J{zF z(4xdx)qZRW^8iO1vw}EscK<^xmv8#wY|q_p@8?LqcbXh4&oP$mP+^0Bu;(S_pf5B)HyeTM`Z=fU-xn?Q~{g7G;J5fWD_ zdq&)X3N1;-zi@DYE?Qs0Gg7X1B;rxm7py=5dR2oHxpW+yM|rI{L=sUZaNO&{CHVu@ za=&RX6iO(FXfY~#0t;!swYbzufHI1o4fVgF*|)7gmh@|=QqcE))h5LyS?eQk`7j^b z#F-(8eZn$jfjz_vadVBF)Vlqvk&-b;eyguY%pcrqwCmgZYV`85U-u-=>d9z5J_k-waW)7kFmTzlW z0JeNaY<*&wkH!7sG^)=Y%68=NsUn}|*))H?F$%T*c1WTWQ}^=k`!3##Ccri2UEsA_=e*@Zk_DKxA=>KLl=J=y zNib>CO>@oA!Bj)UfL9rDt2#%n>~QdHA?cYqX}b3wK`#B<)A?ppBo z+16WLoK%%0-d=F+xuvNX_JKV%A|19cP3&&04dMNWqVt;Ns7ounf%8A?^&trMJ1F>qAKMXA7|hnfk94b1P|ZuD;v$I^!LFrx#T(e)YqzkFR+^Ut9PS;t+qy1)2BYqceqfBP-hPr4kX z;!l*D(n!{N>)iP! zTBvGFH%u*@WF?QQ~hQ6`Ft?z3kZlKval(rll(Z=?DlntYa3;t0mvD!adX_Ka<{AI^4qYMi z>jXbt;V4wDsmBnmW_yCKbgO!&6YkC1!C2EcL}lHF1k>3D8FYki?xh{%?xA=1j0j{; zxO{RsR|6rikziCj8+QRDcLV-U`z3nmis{)Oc@ts$ll9uQ z*i4F(zBLac8b#@>_qL;m$wv?UWTpJFOAJ_zp8~+{wc(n$)BC@NPe#9uTu=%|X56tF z(8uO`U1jLXJZw9eAKiVCv7>CT-*-JJIjRbg)iX8-zG157uEMc8*)3Rna4*tr<}dfm zS^hhQmxNR~6V>>ql9HE?tv?LU!PG8$AIZ7pL<}BK@TbvjJ)I{Dhw+h6I-_JLcU8eAy~TM2m^SU?R3e!NqJm|t8J!Rm63ir3%6=YKAPCBGB1KCA8A zY3!&uu)n1n>s{GJc})<>@2x!*&@;G$hEn|1&fY6L6*(AY0$5a{|;<1qQUgCXjmUYa_SmcwSbfp$_YbT z>r{IDM~(6sAyUUZkm`4;(I&?vUo0{Lt>iH{(yPCUxX!T%5IxS^V*#q;HD$NTPn0$0BZTOec+(xfuJ|Vblay$bIMQ zR(R)n;WN6g4Asc6K1(r|FeRwkrmi?e&A9UGg&8XdK8&;&%2O~H6WojwQa>)bR;i`t zM3NmfwpYW&DD|ns)+5*ECb5DdBTmUU8p^FWU;qp^fb_~6%!fEtHTUzdtPBK&gUNsW7RVv7heceAV&WEDG@uep2 zPXZ{cKP-h55=Id2bxpUiHaema!juGYbeD7be`kxFsr3O8aAfc+*as8Iw#>G<=YftV zI*x*JD%u^n=5d-yqnSYG~1qLJc^3hpN zyqNfvjd4ke)-$nXbF)HYaIm0cd%S;A6xWKgxPJ1_3$7q61itiPOqWULLDAgFd8D@^ z;2s8@w{q3rS10}L6-+S43eUPWVHlej0_;_aCOvg^%u8G$3#2p#Ed|(g62IgM#$L2J z)Qt07|2PQlL8w$>+@I{@`uOH1ZhJBreb2atAuRs;MKjT;O0%d7+43VjaWjX$?YPI_ zjETEZYNVzF{%d3iIHjv-Fr*IwqH`UXm6rkdT0g(xTGj(Ad>Pq`M6iaz^Z`TiFO=Vh|8(osjy2zS9R;-ow(xtook)$}Ym z?BqrUmmb*upi`?!@OE`|@>P>#&@akgTi`{aMTq>5NZE<*K+=b`sLJNJPO4ZDlenf` z?k(bs#h5OMsz**2V`kpt7=5~83U31AeF+vTZFP)0MLj-~7aG({tg41(ik01Auu~nS z^lJuCVp*r?=V9#AfWH`f^MXpe>u;|EIp_&Y|0f|_sWz(Tcdrv2pP-g_Ya%YSi=NGM z{(%U@U4J>0FF;q!^cXFgCpp5xw=2*Hs>>YGuYw?ecT)usLKXW=y{PzEh`Lm@_*oEg z{9BJ>szkCVk9q3W2Z=usG@8O_nN!xe=#dB`@|%Uh(x!F-a>uj?&(qDs(j?UdruzDF zN5yJ0*&D0bv_yT2wqC|GE4PK={X zy$d5HIf06SOfz6G8sDmlFQ(Fc%A)kz_o<=cM@sI|Qbh=EwSC3wfc^?th=@}vn>b5~ zteTxIGCfFaemFUerm{Rw8Y@-b{+MPtW; z)O@xBlow0H%-;Sl{?$X~9e@_#Omdx!g8ll`$u~cU6&yUlVq8l+d9B$Npop@z-<4aVJLBJudYVpI_<897iQo_M~V; zzBk+ctBDp{`@%`3+*YybBtjG2lClP@&)i2O`bT~rD{hkn^WVU#ovs6d22?^HJ4rxc zg`i%(AnIaRoLO|P=6$*+BN0TswK1raTRnTL-5ts(frdnrFCFeN#Pve=DWDmRgJ1mG z3ky-k;*e8Mp-eF2+#bIm=EBv6h@}xok-p5Y@d|&|vvczFds7C{rPsf@!Ei46_ClKj z>T-wvJm>VX=NHbv{&Y7^Xx)OnvZW*mm+vq0>Yj0nRX`6NA}6??wQ<`WTjZ4fIdO4H|5$o zHC4Z!Ilx4;w~I-kpy*R7{hIX~OJ6fk^>nJQ>wN#DJGkmuCb>`F8cg|jHhf_gn~roB zOwcjqi+oMvZ3LAi$yf~g%h9`O)3PLfQ>^eXoB|m+RAqYa2w?A2ktd~3cL!+>we`sWv3M8Ejwnfux~vgP9b<|atQTHi zzp#Sa!L?YJrN-R1wsWSY>RYfT_-kWv7P&E#my4+hDtHl;i?A4s~_> z9gmjF2Ns-FsOO-Dg|7u+#RlyW3-WGP`&xmKiNi^hY9Va${u_-xO$jvcqBmBrnhNz~ zV#G84I7DjfPx>&U{<*#(f-Y%lxG; z-ZwHM=emecR7rcHK$CM?r)Qz?em;w>a`R=tMGr_!nqpJ;DHxNw#qS+lz^j?m9lJmX zgeDh^08RZUE)b^nVf@Y?w!18)w>+OlGU~2v;)SH?jPy2;POZ6qMl|2>WnWXTCZhYP z&KHP)a6+1q*De95#LbM@tZtuqa#zkNdMG3u6A=SXBOux}_+-x26bpZU(Qkb%vVsXe zs*(Gd>z756PP1M z`)L5zEGPhb@iV-yQDOgkPh5e<1r;K7uE&NHyKY~O#(3%kitTxU`8L1oN5M-P2a~rx zC#G2{EJ9wwTz5Y`_)V{y_DAM`cwf7*9idJ+6OzfSU!R z_3Q-LhBIFc(|LxQ4Nbg~z_|Vf=40(syqhOzraapJfZ$t!roeNhdnIQ-5;8wn&-Eamp93Y+ar-a4clB==gXsdn*J!VK zq^RLO9u!YJ3hHsk>}qm=eD`#cGtCj68laOCk&5q*PbEBJp;*m(U41KjbgE5 zUzax^AU-?7$202mFMb+aN8X_&H^J2ljMCdmTjcEU4{%oaiBHC}gG(QOIBPF1=cxgx zlRq|12VSvMYZzk*WiLvF-HCTEr^_=iMIgO&Rl#@$)Y{=?W`O@FVmxCYxw2E5HOOM= zX9#affgas#ou1D4(a~?#8H1)0&zN#BZgXj(aH8;ZHq<280x<0;D;$djYR|fQteOiP zZ-_0_hSmpgl*0BS6C{1T7{`&#PPMx&I=iaIuwO+aoEF2)LoJW(oTx~sykdVu)1 z6)U!T()DD)4_D36!)r*Nu1wb#}pd#EM4&%w3JB@|6g`^L&K|0Q0sP z@BRe@>(6ch(3HCM|0O53lIc%kRt^Vj@mfE&Xo@bg#8L{exqbg}WERyxgQ5wyJjjz_ z=2hU-U7M7z-}hhAWhNxLkXqCs?xNt2nFc`NYiP;Fxb}Y^?7eHL zAz}pt+9DZe-he#$;!kqMQn#Bo@V%u6jSrm3P!m5?;bgt>P@v|qO(hnAF>Q#CKPIi0 zPCJ0M&n7pYeUuvK(M9XFGc>nzfdBiX&ixTBmqn^CVkzU(tcb@7Cp&L$1&m{MQP0kU zxKk}u%~$24noQ;DAD4n;i=sW!#lLsi9RE?>2ceYVAvu{<|7l=>!0+bLTSsK~9|CR~ zXccZA#QLNt5&Q~D(SEpOP^5v9t3y$8bzC=_DnMgDi?~BIhlftJRFn|?I|3!-@7L5Y zPyxQ_*b7wf!O|#75QXVcJEAbX_9&?jH~?>dRB51nX@LjSX^OX1T9aEH)bVO3{1IOl z|NWPL_u3TF0Y1BcJHj)ET<=dAJr|`O0I?YkU{O<~9BGD0sD_->R=a~O1wdL20I3-f z!`Jf_`KBL(Jam};9sIrTb`}b-SqGS0T>syV$|xTQ-PH2~%YPDG_h;jZ>kGPUUu6CT zwBKy!NM=8tY10QTe5JBNVbPn)=kBoWGk{hQpIqem?N@pL!$A0FJV_paDZ`WgyFuRT zaSya!dX&X2|BIEDEwVqGDcYhHykf<6RwwoE9=P8Fi(70qsr7pQ0PV| zAkPj%5n-s2#m#{1wHQE^{-d=A^to&v)e4+~P6*(}GU!5@7W)9-XR80WFaZ0DO4qb+ zM86p81fc1hBftn63m}l(f?lt-zeG`{+-7`!XDC81`%5SaU0DT)w!*?f#;%i3kEGdU zP`F@Eo{&R)J%H<3i`6^X`~<8S)&XeEBVb&n!)(eIpx0*wJ3anRNgkuaCDHt^bVVok z6J-8=-MRYy#xh7WmqZoP$;o+vz8YkeOt``ieM3&gl> z{vs`jV(`f7$fcI8LU27(<=cTBZ#@Ba#h|XNjI9k|#Ba?eoyz0rq*l66ehsVAcfV7p zCA=Ju&h!5TxB-yC)lGqHh$rA}k>J!UgQmUHad-5wxgsnch19&-WX94k{{eu}=_w8e z=Z9@S0~v2UyDL(6upde_6=E*VR9w}H!EmYU76=sPXatVkmx~#0+;_S+lhr?o zESdc}FWpkzqg_Hc{}-vn?hHDyF;P?gDHvX^^vNtr8uZErVnmP=H}*okM6(y{A*ZM zMEnyNTZ1eJQ!}5XYC(Kn0N|Zr1P(Ir;d1F%Coi7By>;1Mo#iJ$+Cd<+8u_Y)a8xgZ zAFC&G)q}HR+kfU2|~zP=o${U-004M48--&+V;w|qC&4GavzL>8YFo5Lkd zUVqGFD-uOjs(D#5P`3ywE(Ep=eQ}N24Ed?9Fm*q1%GEb_nVnI=>EVd0VR*YD0i02f4=2CR3TPnkyA0-yx023{cGgh3X)v(YrpYs%y1L}+CB*4s+&v)HTEE7!7Dbb%T@{AkOG()A%g3v{r8AjkQ7;WQq7;2;AW z&jok)YS?>U*4#}6AC8sc~V(S?jqUNv#4-6C8~hb2htbJTZ&u0byXC$@?$ zvO(XI=XX*k_v2l+hHcO}ZEl1Ms1xPz=Mk)v1z+3}kW6iW3(MBL?L_5Ip7N*>i^IPC zFw}jBYuZk!kV{GfXpVT?ZgyT8$-=^d_zRmvYRT8Gbz9M~JjJaIf|CFcm@K&-N=%bm zJ2Ks;rbSm|WbG&sXQb`esdm%{!FToEibMziWZxS2qxad<>5Cm_5|T_*4JUA zl*Y>dm+SGK&3FfWr1osWaeV8U>KA=dHB;%Y8XerakR3}OrzeN0#N4`G$E||S^Bmd; z`{E!VbVIjC9zUKgAEx>y_QQv{rssCwx;ReMS?Ez7U5m-5ZSP(HX>BAQbrh^tz^b9> z|297>a`j!@6Z_q+B*{ppJ7Ly06Fa$Ax!X^;~BV`?Q*rVy%mtPBf3r|RNvDN~^|gS+{1BjYP> z)o)=`6oR%Y(<*M{YKhUj;XuM=1bfUzhYEe9#XyWCeN~-Yfci9uik~))0;i}rSU~}V zx#~>QG;|b1#t{xQa#H!2C}mWwgN^|DX*f~K)l=e@IR+o`v++Xt$C0fPUQdrf2xXF3UzW;!T$$en*2Th literal 0 HcmV?d00001 diff --git a/7_deep_learning/imgs/resnet1.png b/7_deep_learning/imgs/resnet1.png new file mode 100644 index 0000000000000000000000000000000000000000..eeb062c69610492d75a16b7bd8318db333b5a5ab GIT binary patch literal 69315 zcmeFZ_dA?X*FQRHv_uag`smRUF*+GNM(-j-uMwjYBuex$y68PhL=RD-g<)c%gy@9m zf+$hrY|nGP=e+M9aDF>3F2mgSzSmxTeb(9&rHxRzNpgn-0)gCAQ-$k7AOz|V2+mC+ zLhzrd>Zf|(7d}!^O`iyS1rpgrLLjUVHMoMlZ}xVMpC?V z@X^8LyQA-}K+p#v*M6bE8Y%s7g%iqG9;r&Dq@?3VNTZ-cTuvOF7(x_HRv8IpmHi37 z{Q!pz@ABNbDl;qdcjoV0@bms0_6Dh_8m(U9HfQEjNr-}~u@b%hpWhT25$Ifq0tNp6 z_=eZ9sqp@fzrlOmkK%Rz*L|#EZ|;`-&ztZSh{$2;#Q*Ce3TBTKs{eHnoAe3~=l`NW z(RV;c{eL|^Y%j4W<$u!1O0@L<6ZAjX`2RJBaO|+TajmVbHd;NS`UVCCg@x=>V;`g+ zJb18o8i>w~_=Uz|xie!Fo;+cyP9mwOs6fdObhCjglQ8c>T)4avb7O8!J>E2KaG>01 zrBD1?e9M%(TXo&sg9}I>cYE#=oo3d3wjyy70kbA}XV9hl@0PV^$Js7Kts9N6>6;ZaT#2C#Iz-i3|_6FNWc@BCDXGb z;S|Bk`@T@fD>*+uKV4T>*Sa!W*q=XtaGh5?T8e-EeD@8P9pe`%?+H*hUMD`p^z{rpc+Qx`%3^-xIwdKR7su;^XH}mJt|I@JBGY zHNSP?qWx$t2;Qc-eS7rIyO2Y3m%*W-4Rc)_bha2!a7x_g7}TFc?%8#20(SD<*}@09 z5f9JQR#&Vd?o{h|cH72hze)<*b|#$VR*lI1qDmN)hr{o zu99>k9Aa}|pQ+A6}Mn#m4 zq*}*C75nbd#zpA^l5m@0Kd^ox6wPA5FDRI1+Tc*Yv%amhHk?zEDQ2(EoS^c@za5?H z-(6l^of;hzQ)ChQBkxNbqsGhgtK6$6k2VcEpn*@@vm~L`4!#voWX|4fE!)FyIUNgzxetA5jGr1ls zHk`<%m3yzPiz|KZ%RkTUA3FZ~eRSa|jqcCTvl$}R#ZQATA54usCb6h7;sXSWii$pa zueUW(T_R%rMU|72QxR?P@@2ceg@qvP?c3^Qc|raduhzp+4ZNljhc#dDRzu*a$0$-~ z&sSRa#fw_cekPxCR7+c%^t-k;bDm6VeM3X_otb7MTchZYveLzC&!`0?x+Wa1{#~MT z?MBOMYSMv%lq4f0)lxB0D^j&mD?GIH3H=3^Wj|hF;!>o~wvvPfwe^ zD=vmQl~zy7WoBmTs;Na;-!ums2GkLrxj0@f18v;ib^%YHtwoU3Ofn|^hZvy1r8wPJ z45BuwmiJ0Cay}Yvzh+99wY9Z{bx22|v**RK(_v*jhfjc{3~I0p_StN4cVW7KCEgdd zC<5G=m>4|Ku{J-X!PfZuCsHc8kCw(KCccy`cVoHBHYF4Ki})brUz+aSyXU!Gf&$w3 zvyuN)4l(JqKffU=CdL$ye$9z5C2O~sr88FYSYHTFjd{pEa2$oV?ljF@+gShR!(3oS zA3d3*I&&(Pvmr2bg5Kr*fjhu#%nXzruVvEEaDOTo`Drd*czSbd%l4eLHdM1(m$u6? zX7ZcS*)lvdE?ug5MnDbK8arzDHA{_2%A1U53|L`^$hJqz-R0hW|Mm#;55EK<2+?VE zb#<~9i9f*^2lKoEYA8iKYUS!A>bU7WW}B(0DHODCxWOuTbaWK=JYtHjsxO)vsH}l> zy5Psf*BM*LLEbV|`&_@$C-z8+AA`!o$Ox?*EWx*6PLf*oS`E)VcGU=Y3U` zK1SW^(_B+K>-UL?!QXVHH1@;U3fIKK((h2r^e}7H}Qoec*1POpy}a}o|U@Ebz_}i+Ao< zU0vPXCE;HzZs2hw12;Bca_Szb>FL~Y^djt=k|iZ2YAr1-qg5vL#en-$FMEwfr&3WU zRAgQp0d3(?#;UCwuu+`Mq2Xcg1`G_xBZWlqqq~^Bri2q2Ip>P*x1E$7!>3PKM1o-) ze7Q!usfAwNddy2C27)t>)Hc3MYpMV0_13$4fo1txP*@E8K5%m=!}{sgk^i-Rn8DnE z)pM+{Nhd3yAyL1obe(dRJX&0S5v2^drw^gx?ADb(kr^5q4qBkL*FOSQCVcZ+n%Yp0 zxM!vZOS$_Hn10j93$nB%j8wKUMPdOISvy>McIFS&3FRw!shkB51>zPb2AE3f z#DSFgZ=mjv&)&sy&n8vT*o>TS%J6HEKV8FM9-HlOKk!EkH`$!?W_485)cAzu9{9IY zIz#P^`VThS%{|_Xz8t6+;A|h*Npcv@a`=0*WP-sP*}<)dZJGN`#P}JphJvE=G?!ez zrQp6EIZhsZIr+*lfLi# zHFTG!KJ@j?&OIL3D%hD~2SQ6c&zv`pX`&pgXEQ${TCqX~t3FpltZrML@DsFlW4T(4 z+#0hrG37TO{@ZzWa!^MjKrLgw`txOD>V{;?Le%#?u!gu#tYB|rNf`to9F>z%zEI`wEq0lPmHG%}%zQq1{Xh&Df&Du&`MHE|;8 zonQgK2G4ffwUVGmO&>c`LYI0}X3ZiRIp=@G11zA`*f_j-tu0 za(-ClWRt+unQjFO_wgOr-LPwmeobj{W@TV4FndZT@F_V}x__DVCQHIYr#ZJ~Td|Mb zlf0%8+`+G6eE>DjOy>571tV%jX)^-9Y_Zw`_Z&fg-;hgsk-|0SM~7J9EbPL(?$0k( z#A?bh@h$}1G^M!;mdJX)EJV1UtGU!A$iK@;c;5bn4`#a-sdEgeS*x1mgU(V?R%6~) zm*_atH&kbL}Y+@W|Lsfr7QW(E?B}2o~#$jzNbi%0DAyjW` zmv3YMmRzKxtNSctsf$SHUE?DzwR^Fx5`To(KBdMr>|HXu-pn|d9H=j9YBC%PLJ*qT z3IgfwUE18p9HUxCL3s_1nGD^(Pj$~q)O-sS8)5{Vg)CRFR&UySrP#;yg;G*dh{CFCgc_Rz+)pWXb8@r#`7TR{5Jsdt|* zkz-~uHn`1$JG zLnla(b%px_{KAzOG~X>o!r+2N^{}{fSS3C#J@7thj@>Np_mXAG_J)#ZMY*bJGA#G# zOe+VnzfYhm=v*yUtMIq_Y{L)gnwrFWWorikF+8SLIaS_48oI^p&IDCW2*Yutp{IwL z&T5r$YX5>Bs@jL)BD*Rq^)MT1!X3i#kfm~)^IyDUYCSr73raE}sT28;c$X8k{V4Ix zLx*I6^+4#5`jp%fp=(`0^WIj<_5wpf>M;sRaL(3Z{=WEX*!Sdsb;@M0ZQqIjFV3ow zHQwMRdnG!Xc9M5?$u7J;r1?e_K9b8sVYO-%{%p@)uP!IVut~tL-=+=^bDhJvt(o>k zLDeQuFn-C841rg@Hduc1)&CIq9an-ZNQhI4g2JuGq)TmZaT2X=UpmI7@-CDpA;MJc zGsDF%ag*0>wk3RON#tytq_Q!X=&jy|np#bxJooOU)YaD~%aX%4N$pstE|TDHBt9d>o)v{?DLYJIPXWZPV|^ycuceIdxtuq4^C>O7&Vm4U;=9A@cn=DZ-EW?tuhcd9C3zhq#liTOKDQQ zoN9`()<7vTwMNM@ZZG~o6|Zc;q@aANx*oQ}>I~kss&-rt$B^Evnf}9qf9JvT_@OxE zeI(zhuUYrT@;h^sI<$w_Ar|8rlWQSCNw~e*6Wde0sFdt>o5?>nn)0X`5$IvragyhO+@n@%fS7;M4Ly>a%NI?LPM=FW z{!PV+M7!Y>-}vW|!jogIGK2CF=Zos^L z2%HNu{PmR8>Dt8cRTi~D=mUvCwrS9-RtJbMkwlDWmhU1HRaE4~%p6WeIV$Sx?CkS= zV+@A#tg!nk*iguJX=&&owN*KQ6F8<`zCB9BgyiSg#6K;A+aQ1NTE}pY;Lu7y>xAs44P<*)+*-|fP+lZEP>-#5L( z?v{vin`Fu;C#v?K-;bojRsQXy)%K}2JTgH+&EWPuR-)-dun${(JR@|jQcdoO#ozAn z)dzQ?@4bslhZEv+qVotG9-4(*U1qr+&iD!Kr*qV6r0=+xaf$Lrf$Arl9cef8Do4YK zdPf@snsiX(yLxG1Gb?vVpCcHZ5#DoG`-Y6+#v-+j&hWeRO3WM z=nvSka1xG!loaDmVDJa(6`n?sDCx%-cFN3LZ*f^D?+YDODSk3F5`j!{XCc3K3-pfn z%+IbIn`eJxD4(j^mEtIh(lLIL;-LDajYugP`TfIBNKNmj&z~wKiYT==I zVf|)Y#FfljPNcWidSY?!MXn5ULJCOsE7N$v~}^c2s1KIAsP9bK@Il3A;O&ZM7~&%b{IC z3wHSA*}Av7^O)@DSrJLFdX8!Douxr*Z~1S;!$iu4hG_s9(oBL$r6(VJAkAfvd!y%~ zQJ-U0yf&^NS{4s)iWeoVH?#QB^4vqhZnFj6I4(?Gk9}UY4qj$bGI*p+r@%Xn9l7qY zKT~dsqh|kyqN%taD@&Gx^5R#E5;?1{t8)=T+Sz^F*D;l{F2(r?&0O|M8c}XZKFbw( zV)JG9ZFTb8Q8rYq^oa#(U$ovNgF(Uz(d5oQ!+YnS+ z-DrUy#{<4$pL1`(xRBoO7wbiVKJX$UWkpYhJ|rnC7M=-llHAUGI1PEBK2Z$~zq5)s z$$3kVchkB!X|Xsa37TmiBB8d5k+%O2m8%oyl$GVQ{sWzFkIj9R@bLM(%Rq*gmsfmpOTh1z z8xUci-{w7E%p08y7OhKJwjTrF29%Hx$kUfcsaDH^rVT_zDhc8)Z8l@2nv7Lu&BNd7 z9WT$0%HO{ygv@#j2}H!bef+-t*c2iUfB}G}k})JtJqCMw(&{N*nG679i%bbj2hj*WwA+qkHKfFjL2oCBz7?z5N+q%!9Zfa^O zznXT>1hq0HK@NmXF^{uO^S`{({ib7UNwHP>54 zw~uUlFANM)*{o&vKI4JiebEqVw;Av?EU2g${Gj2jsj0d6?7meu{xy}3j*d8Mx5eK7 z>~o~!U_C(sq`0WG^h=`16z9;6H-~`0*F=%zn@D<0hDcB1K46Ob<iLte@p%=BQ6X_|~{_h11@893TyK$@c z^DDfY^+q|7)UHEPyKU4EVf*2`kG>q72F4#29PZ4}$!ou%{sK~lw@dIFtdMMT#OS;gcf}p94kxAiBEy`=Ao8p?@?(EJ)yuO(g=8*G zvKKrD2p?`64w2YlZ+p5T0BZD`#|}$wRekOUV8@GuwS!aK_?zAv9=I4CCw=+EPWr~@ z3$nlWt6pQ*9>v@iNX*N7KH!UJqi0}}@B+D+=YO{N*>`3%O0@q5BCedo{h2!h(ar2T zY{=&wr*@0hWj`K=?E4Q#HQ7$Se}czS^RyEzXIO1Y`wba-gFHS!y7IGUQxcjaj0MP( ztV|LTCw`XWP>l1%ZvKyQmY#YM{q~wk?K7oW>qf^hLI5Z60JJd$j{?$WArxYHtRgKj zvT=)^A9=0xo~^*PSo!%$LqxiWJGOIeX(Vup@Lq2#ni?CgXH=Pe&Z{)oSg3RBQXH(U}ZkZFHCmP_;(?!xSEj* z@ap)0d;DEnExt>;NJO2$X)hheYidmAqW7mqo}qI~$+U(w7CF6{|IyFu{opLe25~bw zDqA$1_Kd43-=Vnhi{+afK%=`taPaPW0RgTJ{P{JseCLf1MDpu~TQO!of?4i8wPmK6 z^1$7v-n%InqR%HGmY_WWDrgapm4T1_byUiBJW}6ri0HRwpS=<+%UOVsk^bD1ftVy1 zmsu9)F4w#HnRw#{K40`bPpNy1zLxV;T2(WY<#1dB_yC=!PoMj0UD}K_IF5bp-?y8W zJe8d+QXz+Yk(kRQ4?ktherR6x;XT~d`r?3HWe>7xKNh(e~;|*fpSiWYn&LA1k-C?Tq1z@eVsp%b`DZ%H(u&;oH+(-=0da;Lx@=%%p9?SFT z2DQHufh>F-o%wpge5@ZGM%c4~FO9$Xb7f`a^YVVLmpE(=XF#fX;{B7#fV}x@0L9G9Y=`!h!P!6WX<6lp*JrI zlL+bc-2R?z)fBb1PA7K67;-U}3^F<*JR!JW2JYs)qY zCa|mdFkl9+PHYi0GU;#M#=OG2u{nWcAGnKW_KWEM%mR>h3q5JopZpt>2wdO!9_`OaC%xmnuq& za;qyrSbE2jlX@BJ5yPxe4>{f;*M7T+j1Uox_t|<}Aq_H9bpTF*MVQLrUjt2R8vvvQiuM7OqnEm#- zBm5<$0nZz;0VmN!iXe!wMvJjCNdp8raJdOtWAm<`1+bLpD@-`~~$*~k9(Tc&trg*J1z zU-WgU3V=Hy+*7{8Qh?<1ze%xbOxwjksr3}BPbu%7Bknd^zHtun7h(5Bc~E7+&Kfn9 z)zzZ~Ibz7|B%ZAPM8{j+A}ce(hje+3PNzSHTBoJcR^xPCTm*VIsv~ z6zfL6e8}L>;`uXYCy*Ma-3&W!96>R4(Rf%{6)X>l;{;FmD=6T!dTo_%oWql0X-u`j zS3%zwxCbjo$=cf?N={l3{7JRSv7G9S>rx;unKo161v|JtVx&l=@*i`@bH=C9tNJH~ zw@hu~g;H-TU^i}d*Q-pzzab%>M{Tt4WN`8qnpQMQloDa>LstffmfN$uG0+) zwzizg@pm1&tEz6W*cvz=#^^VpEvG0=MNz)iN@3BEf94~oxi7IMlzh05#o}ZHZobTc zH%RCKR5|_~i;4fRO(~!($A94IzaSnluQCqjo54RMSUS~p968KRYlrFv;K~OZq&tXC zwt6{3{=Fe>JUkCx%kk0H)n$*pZZts}2wMMN`uE$d6yd;;#Bi7rGf+5%e8`iz9S9@6 zxQ#{)@39}aAH=i4hfRf_90<)2<@QXbuv3T<46jksvE z8$2ll&G5-VDWBi>Vv}izHu=13^gG@m(cX zv1hWO@Gy_t@=pPURHE_$Pet>vZ@|3F5)B5pfu((4{h@?N(K2q1DBDEO-TAo`mL4=C=vbFFGu-a-t{bY-h)qZ4OUu3i9kZ5LV9{))(9 zC-0sqiyP1qIyNvpCJ?VG)N=4aBWXIODUtztVO9P`n_5JQ;oCfE;*}mCoX~F5XXOz5py3P!^c?xX0-gOfgvj~T-C?M&T)m6gSD~HIe#*zmdYU5;7hOO_8 zyL)0S?C@hEvO-v|%46>^cu`SvBjEo2trZ7vZ3SA)1q-r&n?7B#3qTY@ZsiLQ301hh zGr&e2my?AqP&+a6Q5mc@*vvCaxU=rn@^Jnl6YxjqXO5Y&@jS~XCHhS~$P)(&D^q%% zArpw}6y?P$UfohC#l1&AKt6-1u^lnjxf3kbU^hP>biTvG%i9H7-I(k&TOAJM#pJa+ zn`Upk7xNbVj%SZf;ejZ(X^lWcnu^|a4sC243C02dFZ;LOnMBXdnu9udxw57s`n0jo zXsKLjoD_QQ_kAF{+(06v31fErpwL!b+;tiR>#R4?@KhLZEswEaAcch1oba{3Ti0s> zkxs+$^XxPd1s!V1kbGC(X){JUFxEiY!*3yLCXauT_b@I0fRZ{%l=GD(VOkdIcG?_Q zR`<6ozqbH}0OJ#+sd4!DLa#4|Q0kFcIb;qou_YeFT^ zMeLn!HPu>}U!thJ5_Su)L73PNL@6t{zzlxFlZH%PN`X2;2YyGZ8>J4Jl=9zB%eW4j z3JVnn(s4m58`s^f_&8IPb9FKr3fPl!#7)JXD}6_DD947(?0nf<>ah+I z_=Js`h4h~qaO zE(9XkOKoAm!AIfX5%yk4>J&{$*NUP7W%CkiP@?0T0y+V%IMcYVPft%BMvJ2={v{)d zK%Qva?Dhl`BGM^dXs`s?te;a#gUvU^g09dOtTD5h-JTmyf!n`oF>CBF(e@GpqB&@xeYw51bxlgKub~V`d^rG z)jhYSH*hjf#}_=*BcL(}r)-?O{YdjlvtuDHa>S*v-5fj~uL~t?NWw%q!i;N$$(3OQ zsi97sNm9|&5{OYFIpR)ndVnU8@dkn=(DF}fzD-NZCMPH7lpyu5FM!gD{7G+xuoZ$y zM`+5)Cf?^3Dpzj;*;a4Tds%!uLIZ>w(wa|Jvj%S~gZzt~Hugsxo@Y;6yl3au+3)rE zzsa)V6sp2kzCUh*^C#M%cPMFER5a=QBd!8N^ig2|Kw7}iUzFomDd#iOH0!1A@N3Ac zSS^{RGh)G>-6Gbv%)UWX6i|whh@;K6yb`Ry)7CUgOcOBc-tq4F>nP=2A_8lkyf&@k4}s{7E~ z&aO1E$=1Mt7Tj*V2^-l(#yXIHjhd&z*Iu|C772RT0@3R-oUa!9V5VYzBSlje*t-Jl zxx6%#lSJB2l_vlknUa=9@(B^^Ff7o~`?!}Bs?~royJl`EHT&Ne1mgtwdb+yWhK3O! z7U(Q<+Q;TA09H_|D{&54*wI{ACYSB3v1G>Rr>1w5bz0xZ%Iwc`zi(v*mX zVdbvwf~L|dqld(P@L-!;kvo>GWpR@I+)qb&oo+{EU5a>b8-v*Q>}PKjaYm9?RFh#! zBW<*9I5EM}_a_ZX*cAL{Gv5yvQ(G6q{vQG^;A2S7JiWh>wd){LINGU+TsK~|6Lp@r z=d#c-_e~_=aQzkk`;Xn|WlFF&YsObeM?`?TyW#!&U;0!%}F=}aQ##LdGau2|y zal(t`FMVXpF&31N6YQ?T7OMvpElV~SqHfYuR&8Rk&omHw6!j87Crw@{gG%*ZjX795 zywu0DuhEopPX54%5Zb?}Ok}hzX3*BvWdE7Xv6b)flzq?gK2L{dz;(4m^fiS>Y4zmv zL+mt|T7?f}>k>wN7gUyiwpzS$-;e}h?3#m-y(9<%Iv&y zl>Pmf%JO%1baZqg03|lY%B%q_Liv zYrn}CoxuSH*pI{)e`4$yL=kn7x4$yWJgc(0!ZxIr(u>AVAyF~oU-%S+oe;{^lwdb0 zu_i6zw+!3pIX8v%{WruxZ~{}4bxFUI$ZtMykyR3EvmKC7{;D<7X$YX!)W~bca!OjTNzT^6K2Sb(Gs1` z+}-v}7ZudqsJhIQid1?#ZXNVjHB!4=yygCchql``qE_8uVF}hSFhm|*ez`+m%ic(q zq(SivOzkD?8UrXjV_Ew*z+W&ZxK2RRzHnx;S&VT46|~2XkyLE8SH;QM$%zKbQo=lD zXvSTShr@4J^?4wPgF}|3Ixh741d(uXPKx?N;F)dY$c?cKI2mHx-b*^02W8^{ruQ?% zlzGehJo5)Qf7ND-2P%bR=Ta-J`mRjBz7E9^C`|3*tu2NDj!}zev|JbldW5NIR-wRy zpIs_snPVD4vi1WKAu!~#zp%6?jEJiFw}6DARlKlaUQ_-?V>Nxdue{8dllFJS2#VT* z{_J~1LMw&G&DMKK)9%J{jPfowj6RMj6YIR)5qs7S`51KRudlBU^-xc<+5g$c1N!d| zjIC`GBO_;f@I8K2vr|>erRe%qM)vwQ)Rvd?Y)%Q{GB7X<3=Q=Rrt;ffBW?IAz_xY{1E zn;ze>O+3+I%%q*mh?|fzdDmtD&kzxsl=C}W9|6HS#YL^m0l?HegSlCQ)Rd8{kP^D& zQ23aY$4)dHnk#;bo!zJw+A70)gA{roEc4Jd`bDavH)mF^brf@4Y|w0mX<{ z1|`5VUhlnrK4~-<%bta!ETnd(v-OxxCKNht!Ct0G0czKai;KiqIYQe+ID0df4JLxB zx|caWg!R$;V9`$w{HZ^q!mw*GnJ=LJp9=Tr=29sxanXs$X}Gfyl+VLI{`FpM)b}q6 z&_Xoz7*hQ?QDnsE6cf-PRk(&?KD2^$q{4&P3lPzrn5ZI@&K17-#;5c^2KwroL(@6~ zR65Y^=Asc7=tP3r{$yyRH;Ot5IHp?b)bn0lLN(8Uj3Y2Y{|Kjxbz~(fM@3x*4KFmR zu~600O85xZ{lxCqT|eb}F7GK*MmWNc3-S6(LDJ2iw=n*Njp!=FK*E!m032LV@%Q)d zJ=Ju*`}zYEza`dHy)ZgVbmj(vT5-iUJk zCu>jxML*>@3zwS4YRQy_!s{8|v9m^w%7ne%`@;i+mg9>@n#bUdA{9VVr2`sSpbSgI zCfD;*wWLXmTD3v6)mSJaCJaUSCH*oo=vA!2aY|AW+r=H6uI0f9Tx${hr1e`*yaJHnMvH2SJe(7iCp>*7dt z;L*@}iYN*$bdK{{+4zJsME{s0!Mq9D?z>y2kuC`OM!ju*2a2*wb(+f|Mu=++f9^a6;9}w!SL7WTt@zO& zf8hSZS}$IR0CV}0z{2v!uN6xW)s)T?#Ya_^AqoVWbfHbwIMXxH!L|fd&{mTON16A&)wzz<7XIWL7^T4{P~dio?^u z^{M(Ym!}9y^uWMpV3{<3X>HXjLbJsOalHM1h|rWAWM+#i6t+`;7Hug!TBD(y&xOj+ z4T5%G;U>(;Fh+NrGJx@T|Kn{259a+H5;!(xg}9Tbwp}S<|6QmJ;>lCZQDo4$1MoP}3{V;h zGS0SsCYbBWQYdxt+6wW4)Jg*}r=jJ2!vI=J?V=u4EbkV~zY`icDqA2`BdYFAP00jy zO$K%yA>_zrZOB|wE|=OIL6tjasH=NDO)%JS`WA*<%?C}(73o5k8SNC&f2q??Bcsh{ z$fM8R6s{~fPt|dn3(^4tQp4h8NcjkokdS->M}HEr^+S|73k5t+?(j+!kZrVRryP^O zTosc@WB>f=Z#JT&wRp2HN|L9eieIXvmvn+R zeJbMtqEOV(kP>^JR+~j$u2%FPNZ&H@GmRNxGRiu^w%ws2%n3JQ=!6hIW2-`S-Cs{j zgt7Y^YrC_j7^ef+JLuUC?I^O~!(+1$X6|Uhh2^wEa~^g7-$O#3_!KVZ@ROy#RGd2D zio-uouKoXFJ=gb?YkycP&kq4tw>h| zyH0VODb;-2i|DmW{EwDYR8}V6=Qx*F(=SMT+;?pv%Dx=#iXA}Pcu6=7y%~=_9rdu+ zdI-6#uB~xjLwVfX*IVY|tfUH()A2TQISFCi5s~x2QTT5_$VjM+0te}w#xWe%dnYS) zA8;cH$EvcwsS^#9PduB8VCU8g^k!UA5!8DN_)&X!7d(PmU@H$*&R)=Dc?Oy;N(Jdq zjwKD#feeEPhWhc3CJghLeHOEruU|C*r{AFPV$SByqEh#@rd)$o>OS(a(np!gy8}dX z;Op1E*%oB7Fo!c$t{>bV!61tlh0Q8x-IS{Eb|xiJ)r@7 zX>8`$eFc(DA4ZZZ384dOZQ(>=l4}L!+B-zqKs`7G^wpV&VM$TGR+K?OLcF%zQR?>| z#n#PSz_-ejaJp1aLKa6$G?E`u#^@RuT?4vP!5la8Sz1_c<~>k5Ng9%5m!XT!e!QO< zJiaSV13Q0PH^aVUwl6HB(*7_MWFYzAmOY==N!}iN^-&IFQeqAh3(!aUlsnb8O7E-I zR)n5$oF?&`Slz1W?(T+b_19r?r076L5p+B}7m?#EY7By<0>iM0`DrXBIVd z5L@np*}#LZ*EvB|mCo&`JO_m=2bl$>M{b>oxq1;BE#Pz@c#mBDwowGDQE4SXb zBqtTjo`+M1_t6gHAsD}jsRd=4jaFCPz)^gmY)Dd={SWP6DnDc7At?C(5@a^^msvKD z{_k8)Tw0kod?qbtfA7(9ZScbGt6(9M69!o`m#5)#pM0K!BLJ3zDZG&KaYWSKyfvU! zt$~WC<%V!1D>ysL_HuB1Psxv9xZ^_ozViYl!^7jQvg~;fdFYRNeT&L6wZW+9^|4N! zAk~+UqDSe)K*5u_FT5N_kx6h;Rxr^T*12V9VBk1`)aW#SO*+f8B-z6Ielv(cU5>Pa zV)x*5@0&w_Q6%pMKnY=;#GE>m%GcWiT?lYMcc@$a;pya6q-wXAOSzny=k*C#vbz!# zpeED3l&PQ34z<-VvK&RW3lkiampTAsweI}rX2if zcta+m5R(l<;<9|2a|69_t;XSGD6x;+A%$T39&X#|Pkr;$q*tGq1BnvkWGGS4%m=^1 zP)SLzKyDLRA63`%8g53qId?mZulZ2HUr=(pZ58XmPUAgU{qCItI7;?lt7Yl$Y`8|N zdBo(rFQd`nN0Ps{7^AOZ1IG9L1*IJn2F^7>20*lNaq=O&NFN2A>e)5geSUJHcW&pZ z6k5nOsBIS}d1AzQt<3@$$D)!jcJ0hh}XMPevFTg=eM@r`TqTTh1dM=r@?)ocfY^6vi9w7 z#Mb_bb;9BdR<1AlyR-XbD0!F9N+h}-L3RF9`yD3|Ct2{2yCyz{d<$~&Pe*y`#t}7 z7t9ZBs#NLXgXNw-@uO&^nx$UvwWS}oncN>u%>8J4;A>p9aDi8f2k{v z6j3+xT6@DP(82FTean_UICd?xg7mq?7}mX!yk8^ryX#?P#{++V;u0{emj1-sB;OS; zby|u0VuUdItTL4Ou?{$W{9V!&aUu2D)Mw9f5h;-Mu>U8l@5iTLmWbFvanE=(@N&2S zCe6}#pcF2Hs|eiHhf&RcT{P?{ca_^RWTm%2R$EvdZYndm-Aj!Fxgo){;WUCvsxI5# z(Hj()zzTT|E{ORwZ+!r7OJcW;{nU1U+RW{BvtFqU-h>NmzN?W2Tfj zWrq^y$@gpw=#;tJY9Fm58Z+5aKv%x?XqI#=n&xn}*4KXc{KRU=j-xc=zNFVC^!&Bd zkwF@FppZ5dtrbn$Fpukq^v!_d@Z+19bq~rkq3jr5q4xOh$$9nR-pJxw=Sjgqw-_Ac z#J5o1&GL8eMpoKPK3a;*G70rP2~}B4CWv{l{;eRg=0&4Je6m*4ZeNbl>A{~rfc2ce z3bZNM#g`H&wdIAyUE&(5zRzEt?;kb)OJng!_<$o1ItwH3UY?(DXTXhH<{~LMAc?tS zB(}{2I{u_!7LbP~j1^-EAazK?MhiHA{_OiCKMs5nY426{m!k>Xj7Kq!q_K=2e*ffC zxmPsq;i_h!@wATrscrh==U1U8{$HmPv1QH9p*6C8bZ?v79^u_r9o@!+-$7IFE0UKE zQ2&Fxn%Rk%*)g1h{Cj8bvG;Yl>6 zP#|jQrR|q;{Xq-H|D9|DpIcC~8F0LF#T2R>`}$M=ci*!<#~-WTVoQf}q>Ae5s6agf z0m*om)H#m?8+khc1q(>mry3mf1{Tz?ygi56)45~k$2&c9j|hMMJQxP2Npic7^Ri9Y zDBrKG)M-R%gUx}X=|6kw;zu>*E+Q*(J}sJb&_5BB7W%nh)-1`i@bZ*+p2t_5xSpd5 zB4Ytxe-#{(Us1vLEhbs1`Mdk{hCrf>oy4Hg%lL%b9Wh**x*{$EMCR+i6I|u~ z*?bwduCqNbOi2~IY13l3`;Yd@??O!)wq$bArgw?G5tdf>ZD@3a80%C-cGs`lj2bXN z6b!X0dU-tn9|};jxrKEZyCbK6uRn#j@!x-!1*wU}YbjR#2-gzJPu}*==1N)iF$a1&EtlMf>p{HlhuXj=I{4BC z9ADV|aiJ#Vd`t=dQ(IN!d0EQhKA$>Sbbi!qefGBR2la9HeaL;+QG8dkX7%oE%&W5* zH1+&)yuue19`%uz(PwWp?0vXbwC<8)(`xoF#>;AvYl7x4Pvh37ipcHS{@ng|a+wf@ zv7QfLDNt$NdU5q(WZln}Mc*i31VpzzU-4%u-?8g2fq0MpFRs2aDyr{|nxE2&NGJ^= z2-2c-DhMb@cMFJgcOxm?J+yR7w@68MH$(SOGt|s`_`mD@@_ukFU954q_nz~d{p`J; zebv9Eq45Jf&HZ985Xgds!!@coIky(2*Y2{b#};Z8-R-?XKmL;FcXassbaU6KZgu^h zKTrIRhR^n?ah{Ag<-ytV4Ym=D=Y!*Rcy>7_G_PqsY(zxYFO?j%2_4NAceU#uaJ`Me zLAY<4FF|{hsg1wA`15)&Vg4;YGLtQ75H^0p{Q?0CP>0$Lr-*(>4Xqn*k ziU*B|P7SF~UkxrNQ7#p|NG3jjf|0gJv%b{Vsr*F8YzV#+_yHr*fBlMPH9k)6Z_to- zv>j9yVeDe~PIW-t%fB}xgA{R-cH9=$o8d_wLBZRTSzFs+cJkD-80s0a{ez#Sd_ow7 zjn~oC?>W}s8GdYNM2hRO6e%JFg%1=^J z>vJK>uz41ny^J_&@5O5(_U0Y)aPL(D$HrA=OO1A%IXdc&=I*nTnU3~1tC!7dn)Qk^ zv+e`A;g8Wt17jR;MSU>w$kEXnF6S+rhRQyhGh;5hvxrJla+;5kl|i@#DDkOgLl}HsKpits6pfKl}-nKD5uZXKIvoy z$M;rL+Y#)d(gJP`={x)(-;N-h$n?U*kQWY_$;b?^$IZ`Pz2N1FqM-JjSudS^2S`yshK3%z8@~*u>o_aD-yY~;O%|Lvt--&QOeeExuk(3b%nMKt0ZLJsK z2zxmNCF=mk(P+tbf~j3UjPDq7>Dp+j_0OA~+4VnB>$?wA8q&h%wadzoHaVfmeKo;E zr}ziR@Ud*oJB8~GpDL@Nq@DRqu?>0l_hE9nw#Ui6Rf8Xd|HHW$4NI%aCgC;eyc`2& zD!k+FlvH<0>vpKx;LT2Z!!|NID6*{U_{JxA!HY*pN$HK}#v50kvW`~x3K;@^Nj0u& zLc+u!(d@XJ<1T{rgtF__jm9X#gp9}f4pa1aF;MV&DWn(m?s-L5}` zn|QdAbF$g@uj!DzRPTaK1a(UHh0PNazQ~JC(<3=of4y~Wv4xwWQ2q>rhBBG&J^?%Bfd-)-m$!c2d%EJ>AG%ANdPQH-l zLYGhSz19`#V6mHd^pI(s-8K2jdTjhttg+?BzxC)nf2Vk7aqFPeq{BSa=e|FQyHa{# z0;lA+M`x20euhVmSYbAuEF?hAm9shT|EpOWJN{#{>Aan3Z1A&^a)_2lJvbEb{bl)&%CZJe~;*$ zP@Vc=xbRQeH+$VfGv8bM0$*j4zD-mVdb8(!Fn>{fbc_Nf+{X|++mqD~=OcS2JIS!q zp*>aC)7_R?{lY&z5j`|VaypDbiD9`3yN+^F#IhdGKxvh_e25SAdo4Q4vD^bR}C$N`NtZbb|SnSjap76mvQKVXwi;^9X zBQ)E)h?#W+G;KZdzdPGooZg%5Nf9a!cwr{d3Q2PIl$-hgJ%x!p{&jp3$aH$1;eE?l zdSzL)W;9?>;~$Vf-2?Tc0cCCZ#`Hgi_Vc$b?RP=!BznHjO4Ol$I{Y=N+_^))4|nlX z3G7ho9$6ID~?%V%vhUu8Y_amEDdP5%z;Q~Se>`}jzo3y3v!BK~8M`ya@qR)jI z7wO=Ns?4C6I^Giaw>M*UJ099TEpMT+EvPjyA=qqZGHlOr2nu_3skJP>I@e$zd_*Pk zK>VnM0!405^4z-#9be=e+q!M7Dd78j(1_W3wel#u4oR9KjJa9TCZ0BJWoJ~8fw)k= zv(fW%o& zo`wokFK7?3PSOv8i$VeyVMKNY+ee@H888?#W*;XR>*Tn%Kp>RiRD#a|Lr4(CSD5W~ z#&wIlp-C2X`EMLG_r#5VWEC=;{${stJ4Vz_$b0TW^!E0QgYPQ7t2X@8BqWu`s`%PM zFn#I2MtPyYsTI%QB~(ezEnHL*c+aaEHUQ;@BxlvH6N~d-z!pefB0!~Iun*h0{B3EZ z`4CG#n07;OU;k^&Jc4}W3c7h2`M1p``R}N(Nd+vQ_6Wz4V57I7#(eAsIhpRetHt@_ z{D!Sx&#Jd-47+h_Ea&cRm|YEaP)n-8H7fe3aMu^BFLoEJ=)8;Pe}rIQq*Bs@h6?0) z**5Al-B>k(f*H0=3|+frgl$ZcjDfq$s&|SJNi7@-jIsuQ*m#Xj4(oTxwK?#}x&GXy zR6wf=G9>Foylg=^ZWqbe;+SbU$O(I66naglF7hX@{_$++zN0QM7+ii6In_@NZSD=1 zxNlVV{K9O{cN8gCe&O^)P)AhHqm-vK);_!!Zsom)%mxoJSErkgdVbkKNAJej|G8Pe z{e9d<(d=`vo_=*^hp-iv6W$~qGTMKo=rEqM9lpFG8U6FFOmzg0MgScydP@3)N+cZM zZUSud$s13^@0JIzjEzYhj$7^ST?9vYfTvw;IUDW-9%Rdk?bK!+f)8WtNqRx@B5dL- zBCU3p{CobmzMSsmjRS#R1`bVUM;^BGW(7tkz6)c!2M)HHlDxV``=Y)uI6Mwk)@Y)L@Bw&_`GNnHeb9D))9Eavsa%QMD)9-m~Gm6>Z^Z)-C)B z(+?2UqTrqc2zy+v20)=4ZsX%|Ujm%gsSbbxQUU;45FBN>(vvIR>jS#FXS4M-qH-d0 z$2%U`UkR<-E--H|7xcbewun_b2y%0)!ad2kOnpDcF@D{+LrHph2_N~avI|{zi8sKS z7HnZ|>R(4PyhyoziAHXE7koDYy+fi@`c%=w>qYyA?(l=K$w}ymSjW2^M`x_X$r90w zVIS&*1((%4^@1I+v^4##JF(70BmqLsnj$O6MYQr(8r(7H%$4zih`q?AW}oh)fho~1 zU(qG89+Zj{R2lW&V^~1Tk-qur+wo4G@;l!r4F(FIACvP&*9T9iDhm-*x5({GL{Twr z@DnPr2?p8GCSw`UfPS3NkhELJVO*W+8_8ZRDyS?gemja)X&megj)>Zx#o1I1>AbY@BD^B%_rEhK~?~smelZ==YGqpa;2JXO)(JgA*0=116rW?0xy*OyXoauYx69AQ$SrA_iYS!vIIxDJD&W>c6rh{IHTXmJrh``<+?6PbQ0AQ0UPXM z97DT?1IGrYa5kYq4n$FZw z9g#U_#!RSm6Gfr0@I`r^gF5hj7$F3?ttY5)UeXe}{71Con0QTM9sv}9XIDfSe`PpG zaK}fJEVU+)0jHxL%1JeWU~miQRfgwj6Yz;@qU)yQz?v zM8}a@PFOXaKoLx$!z@Ky~SSz{<#F75YfPrRS1Luy$&N_hV1r!Icb=a7px>yp>^9f*XrBTQJ(`>#JQ}$rW;dqs8hv6dsx%IcZ5>aX@xa~LvQqN13L5)>A5VWLgr_{Qf z&*7bORJ!y;<7#$O!IJk6Z*5#_NUq!CRI1k=r{)IRk-7~>d)li4 zOjO&>d!b2>OalJttc6vq_tLyvFnA3j4>`>z3!|}=YtHG7C_N6UK3NgApmAG!vffuo z9fw2J*T`d?At>1oGKbK5(eD$`v>+Y7R9<;;RB0Pu>y#P7QPE7tXg`quGnt9go-ZKo zfvo0TdgJZC1p|WfdecW{j0e_-E_7-trG7JM2om9;)HwLD)W>kwPl1YuWgWjO+9jj3 zZ`L>Kmw7C8YTsae4nB8OIlLuXDbtVAiZBiY<6z)~kgCvYbsPbum*2J3)p_+elT9}? ztYSZ~H^ZBJ2A@2<%>`d(XJ8!d5@VsPgd;8&@(*OBy^UJox{`kaFXAmzlaLfOR<=(q#a+V=?Jvu zy}UyTPM5Fv?xBl18&C1S0tmKy@Xo3$xB6aEd9|Gx4B&*}VNe93NZQA(ih#5>31QBC zX*ZG~jF+}uF*Q}FfqYipx@X_QBW%}46+zCeE;qfui=Vald)Nx)f}4L4`5$tfr# zpr8Pr%u2!L)?aB{UEu1Z%u%&Z?KE?pVtNY+^XU%hx?XIOCG*r`%ZsE38^D+HJXmx2 zP%V#6%sw++FOTEbFFU`}OV4hF@jkt-3}4Qle#}@wBrhq62|`++{i%-&6mun$;bT6q z3m5&blgT%*L-LCrMWKyIAM!RjsW*4EMGf0+w5~=ytc&i@_qS~*d|hat#C7dC{X^e8 zeb(NqZAbAlqLGhL)~&EB6Mb~#(DvC{_Cc@H5F2$VUqOypMUE~DuNLH1{+@f%_QC!x zV6%*Pm`}3n@l1y!7@wxc%f%#jvxsV}&e%lgcGUG?1@5uBBJWhVn^MB;77xoHBU?Ys+zA)bNlNxqD zj4z*NVZ6H}T&bV>pL9<;FIBa2=<;=~Kt`c$PkVCG6^Jafojub7k;Tj{$kc1WM-|)W zB0VHwdHU=fvA;)T$+S6ahCQhk>Wbt8*5I*Z_+$@mARg~x){RG$;1ORqO_IM49%VSmBfUSOsJZ1oDZ9CwyWr%%s8_7Yp|oig zCSpvFZ|K#I-?8t@(>T3S8uW%!LA>X8`!b%~!z#gR{67~nD?k6{nDN27h~k7_p$+RX z=Br#>+7y*v8ZN>2?K%RtU$Pw%Qwlg@PlPT1sc3f}+fLlK+chSE&hHb#edl}d(qQ8y z9INXx>}Y6@n{8fGyO|1EHyrT{YM(@I!GJqj$5=6zehq1WzaCoBM9X-r2ujeyqgEEs z7cSCV5%um<^HLLXGqOpd@*}iQHUhR!j-{%{%5^C`kyj)@x1&%vIsLXc4wvlQ`W2{Y zGu-hzkLAs7qYjtp?9=0+jHr7p9lq5bSS|4C(%2A_279)(ncQYDIdJ4TM@Q*g#ah7k zUO_`SFqrE6;%RbX;&&|~q_R9e1`$$tI=-q?(LTCGS>-1nG{2tv*uN>tLgNsA$3%M; zW3+#H*l=_F_2BbR>e{g2HB>taOS66v(!zgtPINTbk6Sa`NA1ju94jp|3%ndSXY@U&YrfcD6SPMMbNGnc zl8VZGA5Ha=r$;dTgGZ%17&*Z?4LL%Na^D_?23OA?A| zGib$1(sxT(HrvesM5Xgxi!yA*XSU@teAYd#@S|1%=vQWuYwI74_QS_%>Q&e8qMmmw zwelvimVCN&jP0TELH;N%{;Gw@to2#<$KM9QkIx4ZIl9aBonLv%HG9tmw(5u`QVAAU zA|@nEM=NQ!hBDJmdh^h}o+Swt5(gY zGdQy0f>FnLY>M>m58aM^hw42y{##1O&n0Yot-{~O;Lo8;XZ0{-C!cUA&Ap*(`2TqU zGDBN^C}w@zAuX$$eGTO<4ALP8fl(ah_eOUD#r{ho0QIDj;pZDklZK9AcorW%cxa}H+TW0V! znf$@oaMS)l?Z~`G`#=juyBxWHdM=*DG@H=~vg}sG4l~2YDn1}eVX?(7ExS{9_jn%5 zgoM%a7XHTiFScdV`TF9V!siTHN3oNwh=suvQ7Sb+!2n zey>nvTE=%9@d(umulH@~r!i#63iWvQWKIm<{raPI3eqn()1u!KJ*W1b6_%8oEpV*V z)kjc>rk2c; z#cD;VIZ^go2WHMk^B>k{Dr&fGf~{Nx6P`1El9Suo8lnJ+&BRbtRyG8zZkt@vfms{vO%a)fqKYkD z^;1sn*G-fsOCb)&w2u!sMEcmCD>)P^e9(BNEHOGYK`S7Qq{}s{mZUsgh$wTS`C>k! zbWLW+Cy}?t^;JQ?9|*kq6&<8AW)51uawm^ZP@GbAM=U3J=dy3MZp;7^vPTbuV?YEG}m-YrHdkLinItEy2Z z?L-b7eNv&d1!;ZYFW?_qpV;R3s-(PVZe6u-e3p}Lu3FJE&!(->Z2SlwYueG`7L>IkH_Unee z+^RawdvNHrW!Y~sqb;^Mgb}`ywzbXV02RXX?)upP`*Vn}OVIQ0Y#6m^P121|Tf2B| zRut;KXyQI&Mt`qh`+|MAd@w~A-#4WFOTJz8^)0M9EsGh}zuFzPt#UOZiRO)z(%7v^ zE!S-udJnJM?Kn-K&LPbEO;$O1%{JE&m8g*D^}eSIo5lN*eM?t5r_h2|1_^0=nntaw z9BVUGqQ1F-Gi8pxz(4QEx;|TI&67p+@CAHr4Z-KmBfL_Cw+@1^NNcD2Vu8vN@ zs@fy*#?xzQQ7LS9fjNVTS`wmy@Z3)^$1Iktg4&f^$HwQ!?^G0WRB%5D6GYGOV_0%bqHr-LLABfV!;cSW3m6`B zy=3$|voEUf+pzi3s& z;|WwM>ID(wbQ_NjLx7kJV&Re^EIjrTik9ig>}t}cZ@OUa-~Z(S|J-7-@pm^>H1nVQaNIe zTjHkc2ELAqxHZKwu3~u=E^7{)J))C5+}}saz33Skt4(G^C_Uy3Rf=9R%0ndEA?CNQ zx!;z=YSd~aJRV{4v#c$%e8GYlCcO1p$1E!^uX{RuzrjPQfwU1+3OO)gN9>fDpU=QJ za-Bz^@sL!d^!>?anvUN%{W(g;;_P~Y*`t~Bbv8p+1HG>m-Wcf*JT}CD=Vf3=Kj81) z1?H0+#LoWS3G++8fAuzF?8-slWf|uej>^LpNlfA(YtD`6SztzFWT6SRgdF`RNP2om zcz73xDOXcX=C+2=9WwiCO_gl&1Umk+a2_9L{xpy;t8)DX)Jm}@2O}q*V=n{wE8TMU zuw$wrT|JGZC;DeLRd(zZvgjMXI6{`jDUo~6GDW(78`d(Wrlva9*P859#+>gT{u%wi z?pmrtSFCHSSgc~kW2xBUkZ&j!pEqtD{Qh5+AE-qUqvH)=oZMpO( z*{TC-=+t;%ON5Yc=vRIn6C!M*&&n-Jjgs;OU!nA=9^M=uuYklGv&()oVkN>M>Z>x1eY2*Frq5In`r(5 zsi=&nRCjWY3x+Yukj15?s>;fz^v7A**&SKStyNA`pZ+zT)tFDm`$8Gpx*OHk2DPhV z0|Gd9;#KdY1HeWJye>4BPFg>WIADAREd8@pMp!?7{8((rUi65GXp__ITrCn%Srz zCktq!BYRxWEo6bqfy%wf9dRH!SOx8vELO%7MbT-%ccd}sgiAdf^9=lZ&JUpwCvn0Y zqhL8!y~=QmN83t8S`rx|USfI0m?}jET?ibbWG*}0T65f)Wo3r14R>pDGwf>TE{9>p zB#*@8(mxjHnC(rLbk|X7!)`5F|ElWpV}L#CjDiM!|M4KX-XM!Ku_CvBy0=p7`xXM`awOls_g!u4yQ|l)+#CG?_%4IB(YQF15yhr_ z&RVV7@B7po(;T{`<9t|^lM`{c7ZeKM2bT}A9C#A~hKHJ6G^@N@3!MYKJ^Q1hqkZ>h zVWw%5*`BS};b~ivj>XAtqoQalxyADHpUfB~Vwrv?e4dlgtC@(~9x<~yeqTghTR2tB zO}&pyWa+ALEMs(`5mMPBn@eblrhUCZ%uqJOq}j^A)--2JpAfDFU|6nqW-&1h=f5zB zeKF0`FvzJ*RmtZM+(V?A^MD$ogg&Nsak(a#e2dJJa`~^R?zZVcYAtEMZHu4Q8DymWYLSn=4>Bn$Fey z=kq1y6aM}%AOCrD=}%o}PUlJ6avfwFslo68nd8yd$c4$i8ndy0SC6)f;_){Ym}pYy zF>Cb<#A$k(BsL)LU*wtBPwUQfRGVY8qF4ldIy!yg_-Mnq4J&NlCE zT!cK&qY)!8VivXV(4Zh<7G^mk1x*c?>W-!~yo$g2u-mJ5Ao}*TYB85&kfc4iu~=64 zi#8xew96&`3$SZHZwh3&c`1F*Mvh^b6c z(>V*If_BBwA)F9zsD-`y)4&NkI{LoAQj`_9 zY<18!vle?wMK!e4ypq{?S&;yky6B6vy8BFE4yfcipCik}GL7`I%Wrm1RxkEva`-@> z0I4XlJ3ZFL- zt-ojH1X4QUe86wy2#cYzXWMKHKNU4!omAOQ2n~}xT%*?>Dbl&QcY)wk~ zwad|B%AY^)fy~Qh`g{#2Y^}hWN|%~7xTtsDM*Cgt2(2g=P`XoJ3p?xy z$!7@V>Uk*#ZW9p&4*dii|JmLY%b4o%)a2xB^9@?9Yy^|K9PFlIkByDLZ+EWRBYD&q8%P19|ZE5l<37h#rz7L6Rv#Y=i9+s{_LdX zN^8B?7}luizz{)> z)k%UPp0A%0Tfo2FeRp~+}E(BdjIsahH_|)q*pYQcG zSuO02H*=s$`<8=CC!^=(lwR0?00xWatXXFMHi5_9&d%R&xp-MU1d4PX5wA||&v;%F z_oiZ;jZIE=4HvU?Vx1Svj2bjVQjP3g6?3r1k??QcxLlslUAfrXzXgfm->=ViYk(K* zp(p|sWP40{3ah1^_{McGG8PqH|7j-uA)Hc*Qc0x*f_`tq+dH)47>~8fdv8obxSgFJ7l9sE6B(Xu9L}F0gRnYTFPUB_w|hp5C8bHBnTb~J%FXw!|XZ@ z_JM{Hp-(fT|4b*an65}8%)eHRPK+@yGe{n3R0rX~R<7`uuKAS<5^a~h-0vcW_=}ne z2lB}R-p%v#9d1Wb25yT{vF^Z7`@eG14*mYl<5SZyP?b+IVX9|a>usi->FL*no-gZF z`eM<#db$+*b&0c&$vPjK2d;=us=Ss3VohH!wXDVF|U2&G?or)5ETobH7%E0G>u0H{Q?5e zJ-xhOaQHSL47$3zvvYIBL3-rQR0+vue}eKgnVVMbeGgp1Ydvu1aZD@vH$!B54ax{< z%(~8@00|4mfVz52B@hot93n!(zrZK-hL?AHvPhYE`z-fGZTUA5V)37(?jrG>LlpI7 z0*eXAaxYtFyT83Y_)v!MKlw5o!|8ZK&*VTqY_PGDjgG)#5z?>t!DQT@IP47Iam>#C zKA2Rc9)p0zASJJ#1T;Gqp_MlO#+|zEmmKz~oF2^CB|?{gKp2xFEEqP#K@bfFe{dJCf=BkK!&#`4i&&&nb! zDGI;JOfB2dY$dWiiIw5JUp0Y|9;}MD=vXY5Bc;(Khg_BQL>bx>G6@Z`r1BNiJc~ZJ z8pMoM<4mH@m;-VnxcBP^)SKCFC*%*bnt9aE3C~^@K+bKd6asx7mHkOqMzTHUUz5p` z8R-3(-K_zILQ`%RTp8{J*gM&APkLcM15~=7J7!0kfhQJin z�*0t}gU<@7~qa)&kbJV|F%KCMkY|XlwUbUax$n(U#vP#WYez@J;5Pxiy?@q?7A2?aGiR;BRXL<3$_vFO3 zrL{F-z2=)+k9PI6jb5G#=<8g#dikx(&<2AIhsXQvK+LmOpFKI~ z^&w}%zZ7Pg46jZDC}&3&c1$r`zCTu0R{q=B2~v(CUdw?~++LXP=L3v!8QmJ2saO`N zhp!7)b>v<$9?<)behhf*HYOK2y|gpd828tqJ%aQDd^nwxmBVu!acKoh4H_^R>3`2r z^+Iq4*`2N;5vCH@(!<1fr_Jh3k5U5?gNz{*0%HF>;0O86RLcDz?MAJ(G_LBi)v)fM zhE|~>G{2_4a`1oqOr=-_=e;9jf2m%y_2v?=8a_!sCd(?cirOS(l1yCLIXPpVl?WBl z=8RUqMZ_F90%6!4t|lk;XJv)P#Kfd0oXj7fkg>5b@K%XPFhaSu%T%uSlQbYG==5Oj z-O*BWLFH&=K>_1ClVO!>3LbeAwTxC*iCSh!Ce$Si-|+7A%JKO0kZ!0WpCwGqy_idJ zz8xf14h`A4xFp>efYgm15cj@2mK(ey$Ho{9feeOgT2B`05lIE>F;_U3U;{^l@shi| zfOF-qz!U_VuNX_*_aGw1D2KNj=&c?X*-Cl+u>e=_STFy%fgjuM9!tXv*FP@i%_qL- z1l=q+;fw$Q=NC69oPJQbJ0BLJ+@tvG(^@<r*AfuN9&hM>3UphUjy_V^@+O=zcFQPS@$s9r`>^W9t(IdM5e{qKJ` z`h*nQxX)RC-jwnmtkfrMmP|9ZY^{24#?mR}erGfKFq0(B9h0KG(3X~hGZQ%U`5wki z|5ml0_!R6Z*k=Ut7g=>0qCtT!pxmFSpa}{JD%GlGo&AU!VXJBi{hAbpv^K z6Hdx0X4}kvv3B35Oj)RF)_kK?<4JctrDv7OphE{_(T3QL8`y>>gAFlVJw01Iuk_lV zFm6oZfUab-qPDTRpN$QS(f?_?TduKO3WqXAhM0?oTHzGI^sALY@hVJcNMNS0ht1%=~KDP{4z6XXlZG8 zhr!#J*4EZ&`wXjuT61dLpqRwt<2lD8P=wblHtT%NhV3fnUh3oqGWX5mHb>{AhSP&p z@VUui)v&k5{oh<8G}dOfM>50m68t#y+dvZ%5g94h&xwbJcX_mo@0*D-5aS3eE|n&K z@90RZr4_g#;11R5K~SGV&$dS_7uo``@Q;;exV$=|A%9Cw)OYrF`pe3lDvv|_z2slM ze2Exvcm^u7Y2J8JpIM9RmEY;+Mt$_4Vw9aA^m#?s6@?GN@483itJI7|+Qbhor#&~s3Din8K7gHw zQI@EptW3A@2l;q}giVQ0otaT4B0Bo1^WnS%c%_ZCa-WpQX$=1A&4#_m?ckqC(!2W*FS(G+?gyQ0u$TaqoYp&Y6G%qgVzm@aeq8P*+>Sto4Z62D2Hu= zybAA?$Q}tHiagoAXgh5=ZBRUKD3NO(8W;!zD$QuChf7OKiwe6=+B2|X zdw*Hu9Z)u(jSL@pA`l;rT8w*#XD=$%nHW)MqUOmeYug0keB{Kh8KZRy6=*S=o~W6{ z60eT%R~IT*JfFyy-@JBmlO>~~qRPJ$(aq}E2yqn2 z?ZT|a?ByN}65XH>Z@=gy1XC%2tff4o|noFbuEE{3KrN^`Q_YW)6&13z9Va68*-Xl%?bDCmu* z73Xt1{na0s`wYN{hwS7E?yVz&$0s?kGv~zE2`hu{c z?8%=>;o9V7*XvL3UquTeVK?55-E4_)534PEHl)q-9X1{) z9g#Yns|{zjTy6?+IX1M9P;N_q8+1(T!+?Ct)+q|;6XwmhXCmI=o9lrCkDbZ78x-Sy zM%=|;$of`PR4i@;#q+t{ayfiwTZiQ?o)y$Q?fg9FC#Y#~29_tFaPW^szj;;R-XD06 z>)j3(*Afo#{|PwR*BKVhhWJ7Ph#_62N>6b413z0hNUK$R4zuQ={LG!3k(~UmaHSx0 zD~{-C+KWD>z6{VDlrOjR{Z%d5-IxrnG#Rnq;1`3f+L11c1e;CgvGmGi4qFMhjmyy( z8S(pU;@(L`8EnL_OsKva!J`y)2ucY{I^F4;Sj><0Yx&2t(q1j82fMHvj`=gtlfEhfN!cmWaQ+& zZ=H+IHX3PXr0lp~o--XycyBxY>%0E~Pr*E?9}h72Y**2M^z-d#vC(p=DFG1D6QE2b zIDG!}>BXBj(SV%r^Y`bsTSo^S{O0w={>P6WKb?jPWxh`MAR`kd(8FyyS4x1lKm9?f z*|PkkP$ByPnDN*EFPlck!cs2P;H0FYD$;3u3(C(Xz$cA=_XR~CN=A@&Dx!=a{B9ZK z+~(^7vw@9gs6lSIi@j-+>zWiDoYvvUvSwG*nlP0>EgeEbq5OnNAq$Oa-sM|fuldoE z`_G$mO#~J~vAv2ZQ`BepncO|`qCT>GTkXZ`V!c?9luL9*GMH^*6RflLP&6q0n>JT~ z`Fwz|w;w#izsvjf*9nIR?FZsah!`7`oKom_m<+F2p^^Dt|C^}aExj`{Nq~^~4bDKe zFCeW>bCLFOMJF9LzgV*HdqJtu~ahM4>@XXwUal`!Z=Us~P3j5pAspdi99| zGd3GM=|X0V(7h?xjfo(yJY{Zq6(^iVc-TrhKEnZ{5MwOtZH|jQ+|@;3IThVoxM$Vus7H+MtA!0F4j|!sRv*cGEr|K z<@_%lOH1kPD5Umgb14xKQB_^t_pYA=UA?_VhK7D1W(WLk2n6D*rR5-SqsM#8WlX;w z+AmbEpuX6fG6E5&=$M$ljR&5C0g|6pRh;1cX`OR(DWKghgs6*&J?Q9-T;DwGj-hMY z+1ndyP&7(7`xKF!Z2IJiy31olPYxm^mm3tpsg$i&{8Gq`FbEEA+R|}1hzZ)6?+yix z)fRI>Sd!S>{$Y39oyQe1NwCDtlg555Ieva^;~ulE_e5*t z2dV9wn`|I`Wq4_$oe0{;hh?k3;d-k;#wZaji|&b}9Jyp`cC|$jIPFg%+c#ByeIkHB zAm}7Po)_2LKm@J&-r))O!m8@M{*(Xib^(t9mRYqsQil`861&!2V%z8kIbr+oz!uQP zw^3BRi-W8K&WnqSXq!$y+C8tt&cR)ZR~3RSH>M**;V7U|2z#{d9kH(N+mw5nSg@rnp*`biarKQcvbqDo! z(iO{IDVrh@g@yI;?CEy0F_6ClBpk2R^}Op#09Z#`Y;yDegC?p~-#1_IE7T$MUNN*j z_D4g|z&4e3FcPLY6a%z+7%0#2R`224N>d70*#=tm-gQR_IX_41Vb;U~0xM2D4hwRj zdo8bx7@1a&kE5!q-+>g#j_&TjogGs!i_zQa0Y5oES0RfU9aR9s7CqqK#O%(e=jY!5 zrRnP7!Eyn){aA!PIy(Aie4J25M#j*{Xs+3XL%YuNCYllihV{F8-Xdc9+T}O0M*hPk z9{trE!RF!YHu1~uNHw4pNVCAIg)QPtOeaova7d}i<%1(BneefeF)+Y4>XRl5s7 z7}Mz*{&IHz9qXlZ09}}t>NHsOnxbX3c?bz$sd9^#OE^VgPq&anSVc;0jkFHHd(Mb`#^tOfyhon4afN+Rr;EWgcMQLFTouOrcaZYj#&zR~~p-+z8?@z?dqpDcAK zUm?A0E}WeBTZ|~=MDcS`g=2mT@r3Cf@NA8-96l|V&gFh-cFkA{oY<3ppS~>A708}_ z=hM=jC^Nzeea4o05y2lmc<}3S*X1VY;k`S0NsoEbt*Hc8O|4`Xo_~+sF-uGSDK9jn z^*jDg94((?_2023iu@uj7N`D1<7*D0_$|2pYWzL-gR()E4Sw`}8$F){c!Rk%uVzz` zB#t1Ztgjz3L~wGyq;P$<=C0L=gH-R%#~5~p8g0+UQP(}O|Ez2jH&2>Y=uD`t_}~q< zfb(9Cl1LWcf3L-}#R6@qxIQX)6v#2PFYGzF@*KS=~X#oL|Qlz^(l$7q0P`W|7K?PJA=|);wx|vEh(%s!5oqO=@z0bMM zkMnD-g-d39ycCEZArvb?-Z zr%^1jwsJ9JQFrb2`a7xUDzu+hS64JLVRxW{{^Y}mly_-PR8cr%{AW_MDvs>F^U(#h z3XR&IUd~XvEXMr}AHUS_^jp1Tf00~wcW(Fv6t8v8g!OKx<8XAA-b_1#_BnG}*Fngpn*d^9DHl-M2^wmau(r45> zI=}EPNJ2*hCrc(i>yFuv=ZzLBd}Q9*hw0?xbatTN`KtcInne^{vee)Nm8-p7s%SVm zoknF?mRu6;)RC8;(qBK}3qHN)S+YqP5*~II)kk`rnO@F#FQrE$X_T3$0MxTfdGL@E9w#!(+bVFd-x)^y}BJAMn&A_n4{F zg3bSkn@*(OH?OeBFk@xaY6)yUHjytl<$PmInGHbX;$RwY{X|7-ZhkjloXVW$?bfVD zOY6968LY;?E_yX;gZx`^3R#1A9gOC3hWK2P+?dH3Z9yKDx0iNO5yO?0lJa_s#{r*p z-x%ORaw?`*+Y^g`$&h(m`WIMjlg)+@3wHmVd&!Ms8RO3_H@_RoXKjuh-VP9S1{5b0-lkB>ju} zKlyH8Xzkbs1}BIteuRW1;l#kefR2HIVK%JnY14k~kZQlROhl(%6m{$}o6(E%cVxi0 zn?{c3t$J#9EGI6CQ|T{*qb}~ja1)J_Ac78aydZq`sG_u1g%tPuNKYlampWDZC$brv z18}0#>)P7hWK5i3ZUW>@2}A*Tk(!Rs)S1JFcxJzV5!qtP6`pCt^+&^VVnURT`jZL} zF#*&RZV)L81@5oa_dWYVC{>rwBi2eXAJ5{6q*dpiUTBn6bHIVLht<5cX3%;xwNd4= za|d84btWf#S@gTMz8LOOQNd67eLl`!`Xr$Ia1F{qwZ(70;FhxU4N-=}EKvyxwOD5T zFSF-Sy-CeKKNYM6o15Yotc)YLHr(E@Q5q_wsx!Mz9KAoTE}Il|dzMAaA5-Gajqd%x z*u#zn_^8hxKi-0gX_;)4-nL6mS)CuZ*4A-(HATm%-s9-Fv-(bnk~Xjd-I9jBzC{^=IcJ!nrD6+S1)dW_Z& z1Q0lp%&iW_-~V@&UXhmn!_mM-c1&{q6zTV7+UHNVUy21a3$Bt;_UfdI1;wE{Zna)i zmDmL-O}QS%E(-+w&8-+c>m?Sb^^&6u;2=a1h@*7}gfW)WnpiyWBa>wKQA@>+knWC5Ge-e~BHciH#OQDp`)yG^F)%(n^?UY%@wxVU>! zU#FanEIB$huK)hWq;#yh7Q!>gZl!mBZ{b+7#%z5(kWfG}tSM9;6m;0`bl+-@w;w0d zNGR32yAW==;lCh!1`9^ZW{Y?9mo~Q~N@e>F7`5FJcYToU!Wl z%Fb9vfgWxcMb6}A;XQ?w=-??SMXzAc#I_P zKuP>jA%6*%!YFM$}Ke|aM704 zQ`rFYi8xArO!t4q`w51r2XMlantZow9|YiwLM|x~S`R=>BC%^#eVUp?B-A`TPxtS4 z7T}7Ai|XoW5p>^~nP5m3Q-7C>n3MX8wCGcN*;h}vXpqj@wI>bw}e zzgG9B+h9vZ(j?ky2@88eoQMVat&H-4LhRNO^JCd(oK`|mF(?Kju7AAkE*}hq8bDZs zS7J*_@s-)TYP)k{)~RJoLVGOXmv=V_E!2NGB<=S37km4g zb1QAvo^{7@8vXuVukN%X*{+zw=olT%O%L}feZ1r2Jszyi9^5WXuDb!j%T<{w7km12 z2s!(ezkgmn`AhdP$WqPG%{tR2{6SR%C3||zqZ3T7C2~5gvbZ2#r#&8)u%4}nqBhHC zMBNjQ_IKbr0kCPT$}X$lU7)3f#b%if{p2)F;}!MHb<4{K)*ahzsNKLlj$cP3*M ztKqdbj__QKwzK& zOa*{(YD!o-aAhlhn#+OJ_vPft6$x)!_qGon%H7>xxg(iFU`xvKdcj-;%t zlhq#Kt3Rn266(6-kZC>{J%rDy4>a-x3?dEV+S3($*VR2yYKlDs-4_}N7}$wIqsBa6(XOAZ`A#cx z0iYht$B$n*J6HZpWij2`{qr)fTBBI^A5DkaW4y|8>zUx#*jNKZV@MdGs>y*cXfxY+#;0?&&wD}2j|GOR-zu*!DYAsz0*ntX(UBCM&Y zS?no+EL&e+Z;SOD7ZYD{ksoPL%U={k_8O=SHG(}m8Ls0+cYbJ=9t_4 zgo&BC;b8j7Tw`kpnfqx&HF z_V23%2FCCiu^pNR&<5MC4^m4QIuZN$>ROI{r>BiFKB)`CNe{MD{9p!8N|c<=Dm~9j zir*-#0Rj7S4B>_7*D?rgK!D7w2Y4~^jp+2<3=+~Fe$Ot(@XYsyhQdYj^9BvFi9Eh_ zb#-Jl6zOknwY0QAx+Jv*f=u)d6CGXPK$e_T!^7EyuNdy9VZYxcZ7^FKzsMokJv_`1 z@xuzMv+GUf&j6Ri1;?7x`Y<-94U9fkXb;c01tOEo^0sQvNra41$t1 z!0}Rgn1 zP+pOuhC!>4cmTU&b-aug?(_&BrMD&~FqLKp<9CYiS1zY*txUguC@vvXrFBE9btISzDR| z=gtjn%E`$Is^CajY2|E16;oLuBfH|ehFdq#hinob^?#P>P`1)nAVu4W2)J$26%+bN zK~oVsu%eV^q(bO=)Mjf~wV9@n|w}nL6&dC5IU$n%BVSbK_Weg~fbkNE^Uv!vTND{52&$2o1&PL3aT2I$1RP!5N!tNpf z7NvcfoB9I&J$|etV}QAojkC3XQY)K-My)`)FIDuv7jiA(idYD7H>`vR&lOPZ<+EjJ z*EmX0(7zPD^9%U9nAlidkhV(PtmI!pzQ}o6Rf^Qa*(q6ty*cb&v_oG$eY%~QnF&i6 zmxx!luP9v6l8cvj0p>coyUl=bW^J@6O>t)mLY2l~L?)Db8TM=aH!2B;S}}5?n}QMR z@PQ-N8-<01U0}ch3{g@#(UOysGwMn3tEi~>;W$9r>Y5cygfO?cIS$u8Is(UWj`8r9 z8-j6QnJ!bK@eCI9pXq8=aw!Ar77z_{gxPkW!onM?hQ0|C)HmKRl{B3Yn-)_(RYZbt zlMo;Bjv76QUpN&2@o{iiEXx2Rd{`_-nc$t=$ctdA!SD8ViGz+=Rr-lvwui`344Tpq z^}W<(-~jDv{x%1ua`dUbp&?sfQe^y zZ7pMUgDM_10fgD!U(w(Hscp7RRP)0k&(@)Li?fBp?hSrd$B!;EBFiH#_^>g(MVcj&PRy;+a7%UT<%-!h6y0WToEM?f3r&iPPV6<4!aHa}MxX(heHY20zPqOR00m^ZFLiqpFd}0k$G{b74O}Aw^y2D0vEcY*x-H*eqFWy6ki#{ zSV~ZQzaa4I2VtB%P?Q2*S9BT)HI5s&#*8}i`WEXksXfpuR^hHhEDeI_DxxTZ?)LR! zJ9eMuY{u>mWH(_xeM;5NOQ|CGgQ|y`_0uzA%uld~Q}y&jWbQoyDJ6u7Edc#Jc3e3=9l5V@T z>WrBQa|DOq0iOb$Rxu%>Q6NvFPRJ?{`U<k)r7zc;E zLpIxvikX=iZW0`r2XIqXm`#@2EQo=grE&I;cTsUMDGyH^B)iz09hkbiyB80MfyzM9 zmP*g^aK0I39mXciRZhV))UcgkLa7MQ!Dn&>pmuP{`pq|g*ftFSU8UZ1UF$?EMn#p> zSfxJ3i~5?9p)aKR$a4{)p}&_pqn8L(Fk!#NSZYHY;Q*rto_QJ`W75ClFAkvz((-X; zCa{_RG`*uV&Lz^weD`4NqYNq~$&9yFovSanCw~p<7fn{l5R~_4mbsLVn@*I|LzHV6 zFNNdqlzy|~bgiGkV9cCt>(Jm3m~@jSf78>-W~-G`{p;h`&m@2jq%}JvZF2AIkYKiM ztqrlU6-Tq-*tCV_3URR1iIPnsaylrz;pYQ=L2d` zJlhZDHAU)HcDBKie5c&(?AZMjw2nh5MVlNY%FFdXz=jOK+ysT4No(w@_s2aRY*ziR zbi9u*&n+rmEb$)0+o-nx^^%6>8FqM_NhZyxe0{AgNhl!Wx?{zLpDoFnMQ*vz9Ny_T zmQwuCKRB2UtrE5ORYFV`TFAG>rm>Q|iSi)7G%=RR46n?QPOOe%n}p(a0%|NW|8h$Z zjbkw~GXA-H9q+V*iG$s}^!t`)htZ^(PpPB)QN@JA?5$5VPBbdcxk_0Fx$;f2sFH@1 zw6wHU%;79oi*5&0mYSvSH#%@qPj9hVPbbXI&PI6AVy_&Xoy_xC@yV=@WZ7qj!Dk;V zDcnd>NWebtk@zE_smV*8Le~hh_LOqaCq_pft+T?WE5)WTovDIjC8w6;S81s<-bx&& zbq`ef_bJJ4uJTi#_~Og3C-wK97trheuNGj@Il+yHxFr5R_C=$ZfoolP zd3m~x)jXsASltE*v~`jx$@S+056N3>ZiQ3IwE%zcE2thw7PU@C5z)Hl(RB3ti|f$_ z{C>3FU_S5gqBRHM53!!^^d0axD6_Fekg#glH+|e}$7P4o_MJ zpp|pXkx%(NsaFD;JCHdy`XFK7n}C4R09f@4o0|!?7I1yR6@p1bB$KU}!BTb3+rKRD zGoB+6PJxQg;sdUh2%=CHkfq*eYAQ4}>1^%mYW)2Cge)Zt30E#MayJhI+6p}C-Ted7 zl+HOcW+IS_QOlpoVi5BI)xpwf97w<^%dqwxpT$<1nIi{0?7trN79UP_$>+uBS@JO_ z0G&}(Vb`@^ofq2Ip~Rec*l;SP&h_q8;{nJReKl`2yW4*y6wGBy4t&n>LqeAlj(*=A zEi(e7v3_dbM3ykB#|tySznUmlpyiLp=mJ-vMl0o?**{sl8Bx~}q*!kUx>kyViwp~X zPF5<(JN{dc?K;`ISvByKjqP8Pw5t3;&k_fv=oS4@;zWtL;McpgKO@n)w*o^Iq%j8= zr>b3|fBrP-(MDd*N^bIcMdP}HPRMoB`Q4j%ljCy@R$9Ep>@Z!LPg z1B%{MEG$KtdsI1I-zTo<4HHnj4v~qpwX3*{cScd*0uT|YZTVNI0&HwrMnhK!!5K6ANkiO0(?W$Ay#2M^_*s%-dMQMui)Js|4YrhpbPZ#_g2%vhw&8w z%Xeqe3HybH84uS6#N`oWk%=^FvIu_-1w=%m=PMfCp~83XQj&6Ge6qiP$Gp+V^B#fh z6&w-Np=Qj!>gii3ET8FKOarXj5k()6lJWwCeN9bGAHXUALcwr`@_G*Uc<#13W`_^ z9mR7vs*fckB|CPE2r0}aAa*6ddBMfo9Y7nA$Sm??MDzU|5Q`Fq)vOv z%q+$1?NK{%3n>m7466`>nq7tvdSM9TjMqFlm6Qf7_S%ErI1iac-Z$;^cUiHG8-Ndb z|J-TaiNTUj!G}hL7HQu8>cZvE<;PG@Shlx7H^;^vDMw~_FNFi^tj5r%>p>3-!P1i~ zz=oiqqNnOXI^5Baic-u~A%L+7t!0`Oi#=-*^qmLqDB8#+^!4>|&J>Lnxc(p#f8T50 zTWGy+7lw9$hKhPKOfvJ*seQiLrnJcDug^QK8;$r3?S1`-u9m1+oP;MlMsX~TYE=BjzvPaguTH7YBSm26*x}*&kvk(O-v4UxMWYuY-D9+kwZ|3Q6A-e`ra2qonI^c z_R(6j&p373DD6ac`Xiz9+bND=%}-LeBT8#o8llrtuePU#xe^Ny(V4*ShU@0$mY1Jj z1xVG6N(Wp9)FZty%);4(x<(&tY+ms3B>-ipZ)_|Me+M6?+5-r&0^hW9{#*8e^Ahh# z75Og_o33U-vZBsUj(kiJ!7albVe|NT^^$0Y{;X}qqhcCefg)mJH=}}~-EN0k5{eZL zxX&^@J!~49V&|ZVxRDDYOOI_4^#$Pmqtat}4Q zpso0;^@f`LZS*NZK|=+Yl?72A5;E8KCAwsJ&<%n1U93HfoVAvM>V&FM3{`hERQF(e z=xa>OQx5BiCdflqFBhpA(-hs^-*4#ZLeExuBYxG#!=@LYxqW``-$O>L3xG)o>ICd0pNEju+Xx&%M(rjuz;}ZC77rbdIOe{bv z_I~RVe#-3nNG_Srcm=53g+EYkMY7VTmNt0W}$A1eV{hu?Wt8~>z%7+^~=KV z0=XhcQ*~fm%M+Ie?rin@BvE6Z=t5)T<2y}XWi|i))5B%I^A)&I*Rz?KyAJH^|1s6L z8oEogWP@OHbZktbMPkg!sx_EsbbOpfE1R~liF)DbJWrfUfKgj_R}_^(g4s}Rn>GQ# zxgUH10n23Ze+gKPq`!hU&D3$(n-}C}U4~!I$Jbl%Hl5n(h z_=1#F=rJC?!Id_kG*$U>rbYJ4sGp&Snpj~{^+@a+>dVY3V@DsJVp4uw5<W|@G zp#*@WX+N3%)LV_u21PXlad9)3H3oZn%7u#Ljpt3zVKD+oqflkLgxc!e`>sxJYSDU;4cq#N9v*JY%D|vSk(l zr+)Pjb4T_(0YIjlm<#K{`Yo9WNRS!qpDeN6H(DVW2RCtJ_I z`dQHWu#8h3O^dV;H+4xEaxv#L&iafm3Lb7ZrGsE7rq9{&SOA{O#YvF~*!&J&i;I7S zQozVrJAS!aWAFF@yuz0#({f$#<%spMd5qt1;YT}p@asGzVwsg37bY9Xi4(YRn>=^w zMjbak7bFoMq4O6xtV%TdueEOHe6z!*lrvm?j<-y&PD-h!oGOBpqaugUTs_%aAmnwF z-aQd9dI`u2fMP5c+w=;lWRB={PdS<*lfQPJ+xj9uSk360izL5ABIuc*ub&x}->p$+ z%iS48moC~lY`bDMEcp&$fT)OGWyW?V*ue#7-#}B2Jg+ut-4A;~d3cV{R>#jd2yLa) z0n0`~S@h!(;1Z;Ke1v#-(e_aKoKSo^hH;8a4(rMpr&Mn}l5pXsQc-8(0J0y7Z0YmT z%~!0nbuxy3q0B;MZ841|fs2iQpqwwdhkRE3(MHAAvfah8#%=HYvxB1OYX!qQ2uDZ9 zYyF+P#?%!fG1t|7NHsb&HAOV)J2mBCS#-BqOtgViRoXq%c^a$`j<5>B{`XOE z$w0LDw#>}t^2~wGbM&ohv4MmiYE5Yzu(VMyU*c;27_bRv?9(q3oZJ4!BDHnnKeDsi zr#;*}a};0#84dcY*sUkT#7PUtoTluFd>(f~-V)R4oOp1gS+4FT z`KDxdYD$^dOHedVm$^MWKPC=)W5mm&tXDrXNr(NB{%z^WR(vSbcHs#LfpO!76GkG&CMa#~Mc2jaF8muJQ`$X^Ac| z67yAk`toJbM?%M)8o^cuEHwnGTt!isUYf2qjRDi~r98hzB9NDByySQm*N>T=UIuak zcPH8vO$(|<3a5WrbsN=tc$XO8A)DS9%0hW5hS9OyHq+SJ`VfxkcV-=1A|L74AP=HV zS!n`L^Y%ulqJeA3I(GllTFj^@R&#a^k6XKSgEIKr40Bn{!J_)sQTWIfYw zoW59B?(dH*SEzHf78l;iuVlqOHa4bfYYw8tN&A+_t1`18&k00E5OvidISB~~z#tLk{8fEq zSbjgXvxv(!24B+C2Z4KRmeUKJHB0Wryv(Fr-IGPkl}y>B-??gxrW*s2dXs-ru-wq! z?40-iC@ho%1w!9&PklDj)P?E@Blek-ma394<{Y&hPgD|i)y%lft*vb3?Eb=?*kHo> z?J3^LI=8RQC@WI66`lheR|O1Japk7}qNE8q*DJPT)9aRP%_;FlXux2&ToIPhf97Ph z74g0BR{JO~sQWFXgw{7USRFUjd7QTChDaO10Z-R7rmdSq$~OgG;ZQ#G)0;p->gT-O7Ce(3 z36_$Zq8eCS%xg$2F#ig&wTTMr=xVXG!ZypqQlF-Kfv9L+#kqbGrk_9W>y+$Pu#uC= zSC_8IEr^Lxh=^WSqkd+)kXBaB;y><;-R&ae4s-Z@PULmQNsXlc zvR&misMf}!sM@xTj?~`q#R}FWSQ)%HhK3;JA~$|)(ySvtu^3!OYKm*$zkmda*>TYz zm{8!;8x;{)wqtc(*s?vriW|4zbY;d$=>Yp*Y2XcEzMM zmbv?ZcA+)q44hYsoQ5o(O6l)D9rD^RR2)lJ4Mh-zcv8)L|0F*$S%~#{e|IMjcj1C2 zbJ5X8-iq=Lj9IlMTJdyOZKuv$9FF$KrH|VXr2tQhbQ~M?hz$cNX~Ny}qYocubdva7 z0*xD6G$__RDSObKGJS*{EVZ?O$1oGRe#~-`i1cTYEG#fE2+7a+Wm(cYnMbMsoKCQ? zR>jhpt_{US>Gbd1>Do@B=HS4EGlVXreTzL>llL}!6M(gkSs{A=^WTQzsx{?Hm`+}z z;Al)@<99y^#i1?UK?xl?_4?{w(iOr^vp?QvwUOklB~VYGnLA@`ySE_oR)-C^ncMpM z3&{d+0AYqTdN>g`d+c2snZcf-n?lI#8Y6}_aMwahi!h$U`Zq7$M3|TKEh8=~D_+ez zl`0NdmggL$W@|F1*X4xJoQ6Qe4)f3J_u0Mw7V^$_?901;Pjx4XN?rV_D9KVUns+}x z3ev7|3Jr@3+rqO_aiQYzJRmc_*~+UE9lYITihyT)z1|Ky)q!TizXxpKBv ztd*sQ$?%Wc&BZ33yR@FL3^}iLifpjIUY&le*qPSXGkAkXLJ~LJTP0!i0I-9zY=#dy z0wt9dJ252|+-g=+WZdL9<|uYwj@Cu*$0x^oTuKgvERt)yMB!~`>G@=_X%963d=o)- z7@xgkYuxW+B=d<1YX{Lp(z50`F&-3~9=r^qXp0vl;&+G}(k$PdA2OGG!YGzj?XWtP zq8}_Xz!I*K(AjAmttNBx^3>d6cm(YY2=C9IJ)dEZBTD?KUG{7=PLAQw@_N?US>jK3 zp&4bfJ=)hu_m(O82XBQ{Yg-HP8&TNG$l2}w$_sHzU560)H3o+o$O z7>b*itjg)T6!kSeJl=~J{Ms5qoLW%u$vlz<{vSgAx`c`h;j>F8qjy;2U!U`58hARM z5y^ldo9BdN!O1tjL=P;;ECUAS=8#752>Qeu zzt1bzu#TCT>*zy@;(>cE$@g*mMCf!X19d!HnVd&&A>$1%59LN*Xy@}J@;H7!;{)~S zM+=5bWNnc3J# zU(DS#%{I+@JI7cS(%jPGfAHVh>?BCs+I{JUKa8y?2Mgg7q(BMk}%xVupuLLE!MR#6pjp&aU>6OLBz8$MyNNUnyqWYYc z|Ha%KTeezsw^a0d19_U2yT#BnY0dwkDy(PI-@`g0;T5YWw}kEsr2J~Av0Q$O5l`N7 zT9OWNvrxV<_&#{FHbvmT?ofStmI_kRzupho%tn$*&X3+F2_vPVvdArV=&{Gc`GL7& zkU?GOcm|pk7(f2N;K|DTyvb-eKXgdCCWT4vSNp#D#yx-2g(>f#Z$|Ujl)y03o$FS< zvjOlatuniF)$ux}TXse@d7b=j(XK&4LNQ(oTvJS3XyuB&`Al&)FEt+*?(1cIHTmQZ z;x$X=;!vyM(oAec+w!4?C~iI32G=p)B0d@cr{PqK<HUzaO>bF0I)2!E0P_M@;7Egf8W!@otA=7U4* ztCM8}&z{|{BC!9u9K?UR(sjQhR$^p@e8C01|I+PXwGXi=vrDU|mufm)c{?d6j_JcL zlYrN0mmpY5hH9C!dbGpVT^JU)wJ@>L@eP_HYE5#WZUzZN)A)GYT%*_aLtB`Zvqy7Y z8)_X@?Yu`C&7d7NhT53^{qEit^S6u=%9mIk(b}coIHH#O*>8ttP<(&W1oaGr9`ZwO z@J;d`7_Q`VRq0)iHe>%Gy}@`2d|SjC$M8nx8mbE|=LMCX7qPv8U)t*@(qTz+eeB&H&`$7@jR9 zsPV$y+n@b&H}>opaZO<}KWa)kBeH+`4{xus#GE`wxx0SW?dCiVTVr=xPqrJ}|Jl=! zF@v30zg26Z+#3L)A+yWdX8~yg?UgnWL+jO3yckR_<4<|)&!(9NYGmwa#;ci){|pkE zuiYl(bAH@*={R#S2=>Net&!tXoEpbX==+^7|@@vk6y(XaN>kak0W^0A8)1 z|MK?OfZny$Kpr)K(wp4wBI^{Qz}H8wd1&cu!OEpX;Z5XoQOrD+rUY1XVaJRvo?Do2 zxL!qSz5Hm-NdECQ19$5*9HE^DaT6}P&j-YVQkCL&cq_-*%)fNc4DH49N#w+Y?cJiL z^$PRN1X{P#KEp%j@*G}-PN!Dgh$C$1_%|eA7&szmQLcO5RClgdhx;7`{G8z`0W_Wz|l4o2s+f z2=uJ@GF7^$N1| zv3Xs&S3B+WfO5bqM=&=n%{x4Nz&e@N+g&O`Qd3Rjt(aV5XMmcuNq>1wQ)Rd}5#_NJ zu1Gip7yw>BS!v@9ep96aEp9?0JGJ;-P;s*4ryT7M>z1>8PVw(z$3SA2eDrO@KJ+i}<2cSzqiXEeV@d8u0QBm;n zI#4F?QFXXO-5-+EgEee&si=rp!FD~;S=bvaG8XMZN+KdY(uGwX;vs#8yN?ry2&r^7 z-8d)j(A+;cJIqza2z@@`7LlHAAdO0PInng@+v?M`OE-8V5nav01Mj|vo?ybuoI9Bc z3tP=VW>702!qB*VH=XRxO@tHNKo`U(l-tvFwAlP>aahdkSKK|ZPoF);q4j9Qh;6BA z5|Ne(ByTB2!IKQ3-rG~Oj*T)+2>+A`OTTk7&b#)!qPn^|&@#g5IyfjOa?Olh^@M5#THiHnrErmc zL)l#7w4)Py8cv7x5&F2OY%fX*_uqg2QUwSwQrw&RUeMbKVi3cN&4^c~1IcQo1o-i9 zw&cLW7w#8@dgI3|(rZ51C`5d)wM_+n8w~pR(6fOD>`Q(=J%saIF5StTvD`m;2@tz6 z)aDxX#vp)j5MF-w-Q%3`{({wS=IO5wE)QN>hOr?a>a_)=F^r6bT9gthDk_Gqc0}0N zFc&Y4N@@ArEFFxAVKFhkzXWZh^FaR_B^~~@HJF5acK*JfEAtY4M~VK5>h_zl_mWYZ zCbv*4&}A@&j6XoWnMjju(ecj z6!Ml}LVh|~niU^tS3x?-atJtTq1|lgV$@i(6yE--&2Z3z;(jtI{t#k;xv83CErdt# zmfLWN%emQJNGa{Dn>U@4ofD5TQ33HI;X4jLwrAX$VwF~kO2e#{M|*l?GufX_kDXwT~kbwP{(6mxZ8tK_r7CRlUd}XfT-| z-6Fi!)BgT`J$N#warR#)W$u9uy?s!&`0wJz z2JL{k72rZ$#GFy#ycH$-OUQe@!%I>bZ%^+QACli1kqququjLB&$||;>;-Tx#IJVYk z(ShDU=p`vvLbizXr9cy;ai;Z)xwwnK0#TqlLRlK|<4$#CJotas;Qi)-8;)E< z7s2N!*N%2};igk>G)}_u7ACi~Ct^A57`}!i8x0I=&nE+`ih{e6psgLtYhK;tG1*}l zP*hqPc1C!!B4Y(FX>L!q{(Sfyu}Of#&v?`>8E- zzrJtCNST>2LG%aq3(6P{jh7bRKMN*6wG9G^7FgsGva&71!%;UfB#@SUOWOU$)YVP* zmm!ayd3#koRRkFJ%KknWe(9MRMg233y=7U~f~F94MVhbaXt1>| z1EL8mA|hc4Z6e1VJR>1_GOVHxV}xf1PrLqp(x=MP{-(w_BcJc80zJ=^|JkJcP`B@q zz!U%$PXhMWFpBW8L5+E+Xm*D2uh{VZzlF^heosRBYJ2^|W%|`GyAjB}RYsS3f)mBnWX#5vp~^mN=v-u;2S`6=2}`qg1I!xwI@LK#m}X!^%G? z7=7kM%)lPC@%*4A^J0h7qZ@^PqGDmb%sfWTrtxQl011|0SX7k%^~LFD?EwFu5^FQu zX$RJ8OspmHm0X-2!+hhVW-V{8BUjhgu(1=TrF2I;*KlLo;<}LF@adP*G$6aB>2kjK z!Tt(9SK?7UgvKldiJl&;gazJvfBi}L-VJUEwE?$>tE2wtkEFl(|C*OV;P7vF$9yhv$OMGuw%4@kc8CN3joS2 zCL@Ce1~SMSuoLJbX&?!wl97_qFS-^xA`*B#S#uoojG#X)jgg*U1W#J2#Hbt0wm*Px zzmYFPOaZt%n&GH}+~ClfqxXzT;~!+U)O)@q+J zI&lXOGq03YR3zY?ZJn`4(7)6!iMV(bE8i1KDq3c`G!-#D^>84!(BL^c3(G4+1k)9p zy@;3lc=&#ZA^beV_Q`(d4F-8_zB?<&a7V&~)hJKiZ5$iIFplMxhHX>&ov>Ak(r!-7>8MsDNylj^6} zNUnnS`ARRQ^A5uv2^N*Uo{*^K+B2DDJV{U+f2;QZpCkEe43dTl>rwTn)4We=OlklGDN|3JuH{^_-9IU+riq7EsjAHi2SX50^ffQ+~m97mnYxN2v)|vW0W30Eab`IAEMAwZtix;6bp*zx)fYtkR zN8{ng){vxM26K{UD5cf(JUmg_6UY5t@{D4-j20><>QQ zb|2MyoPUX{<_RI@i>kpD9WMP}PGr%<&jtqvCrPI+@XM2KEQ4+s%HoWTBWlS{1whsgXkMf7b)Vm^^m+ohkUGr0BXiv}&-aoug69@JWIuCCBvZQa!8yP9Qj1(qJB zs|o}k#pRNV;WfNn?R)1|FJAC)M8PG>^i$kvZzZBAvBpMQ7nhbQl_JAyC9ofnp$`#y zAXsDhmAqJ&-|>!S62mhX61OJVr)q5y+c*nN`}2IAE!Ok|&D;i?JKn}DxR87zH4FmFUt8^-z>sv z+Tr8NiD8yXCp>pe4&AO<0SleE*70uM`+fiB8Xtm&$!pxx!puz4z##p3+^x4|yQEaR z0<_VmtX5t3f{Cua>VLg{4LCNF%s^HT*{4sG8A@^7YWrgu2JG+ct9-Ka3&a_x&<-042!Y;`J&JF*-v6lz6Wg>YChL_%W^T% zG5+~1$pI!xF|eCeqpZ*P|7^GJFwnU_b+xwAyrub>Oyc%~V1khP0t0S5VGj?Ao>CA zu7bx2F+47xpSuF?gfD1BR$hLjT&NI0(fxLIb6yhc5d@rhI3fdk`Y?{+!)+;Af^|2J z^w*7I%7q&7U{aHu;*uCP7|oWBwVf|I5MXSWpteiK3)qkPJf02qA2`imPPr#o$wte} z@jN{}Av}c?%kL?h$zz8lKAZj$V>!vlFpD1+1_n((71H+Iw*@H_&a4%&GJ?n}&f=aC zVBynyI7w;fnVZu(Mxg5H>qA;;Ym3X&%wcmf+ML!#URM$z|O(+ zN?Rr5Ak+ zN&MI%N^K=sTve5lff+NbDr6$2l+6AnSs<~}H#BSp=L!-AMr%ihKUC0q5TOR1W_%b9 zJjw3s<1;%?I)>2-(KeKFNsFhGUec+9-Bnm{hefTDu2kp|aYQv(3_SJ|$6JIXOWY6Uc+kNqx&vErPGZwaBYA)qOaJ5%41+N=H z6#WriVb2>VbS~q%VQfm*ijl6a*oR%Ep5!_zVz+CCq$%DbluQYT*6m}vO$a1PCK2zP zd<{CW&NSV@F(o-U`^w#ae#jidbUG!f4TuqoDVm}%siX)_TJhZy49Wqy=~vvG}%6&<%JH0Zb^mOm%^emLrfh*}Oz>46*>&6Cg=Dq`Lb7x(-~1XC#& zdiLO5{?C1|a?7-V7HIi_ zj~EhxAVCm?fPmlz699ALbJtshgoH7i)=5q570^0$b#>kBt4y)A27K&Yi>cTQb4~?G zx#+glrw5YjyS>{%pG_ezh77!Xpj_I$x^#myg|BI8dU>-T0+P7GCO-Py)@EY$AQ3Nm zZr5yzP=;RSXiI>s?dbejS&l-5C%qQ!P-?{Mv!moTP6hjozE3b5fm%}F!yA(E@@@af zSnMxi87BvO*id#fShrjJ>ENPD&8+eqSe>2l7WJh4OP?)lF{z1+$Iw*Z(a=-{p7vf zwZVZmxRrGO!!1Z4$@KJBi~NsJxSG&4+ksS-g37&4UcN7X2|qslN^N- z4u=i)ACgPR5iBQ#UhVOm_FK~%SwofkLZ*~!um{;p{(giZkfBjgEntU@5%AyvOmYP< ztIrX&H@4I6IClNvJdGQ*JvO#?c{vBAY(m?=s_PgLQ|Q&O#Zj9^e?4J*C!SiU8Ae-S z_0L){?0uY0ooh232%v{Uh5%`Z2xT>Bd#t6cZ70B$d{P2F}s zc`Wz4`4%|de=br`&nU|kmJ_$ z_t&6YnSam?B=}OAi27qTYwJLrnlUlId)G+e%&%ew#!=)~ABB8Nxt#4E9`Epz(y@!f8a2<3KNF`r)p4?? zq^8xqcYU>Yp^3@9#pfKlmL}GhEn~i?9&gnB>$HZ)Gn^8dp2dRp;r=kq>x9{(OEfSOes<8b7L_`q~6#Z%>5c)0PU-FvP?Rp|?jE{x zKtQ^?ySuyg;eG#m?e2$-FMI8^d>R4I9OgXdIrsg$e~}nmNEl-^yVSq;Ih}MtP5~Oz zEyLh7-%)A2CLOF+S?k2%2g=1rc6vc!WL+Fb=_ICvefag^X7kfVkDGv~%HYMUE3lfA z0ch*EKidWNd6&~o46q6?3ub_jmk+>=AVe>r!Q&1O=$>F8mnp(*KU6&O9FIH1z%E;E z?8=R>ghPHPD49E^b!NO%bKsF!E1&TksQ!SbR0f#d$;rI|yrJdOtr0-hRkBnA2^sG> zYlw~dlbXvKC}^XL^m;Gl33xoP5O~zxLWsGjCwyem(gwCTN?yw*^QT!Rxk@E}imFSl zbU7kL{1LLpv&7+9I(v$c$b0u%zaw~kr91bEkZ0{|N|7|hcZ=TZ6D zARlI_$q*a3z38r=a`C$0^~Tz4wfTZ+VSh7Rw4}64y@Op9JbR3Sqbi^2rY#Zh-GZR+u!O>d!wZRZeIPRb90phEI(g9t4vQS(ohcAs+iW+qtFW? zW+i22RD@w<1!Jwm_xzoo#&a`k^QTUAj(;q~Bp&YBP*8|JTBwQW6_ix5gLx6~uz3e3 zj;HAgJiXz(T6>b2=6v*aG*?yK824>#Y-IaCp-J(5V)^N<2?9>*AAs8VIOzkj<1N4~ ze9V5JRi@kcWzY#W?xV9aVKB%8cN(zMezZ@%TDSt$yU%a$6$SCKO8`MWOMan-7t+;HT})4$hDr@9&`kWR;KO}f9Wq5BDpT?0_E&nA&*uM)&H2k{&a5me#}V?ZE$q2A zx43|xu52sE0V|a<+cR6i|=+4 z5&;@eOGG4O0mH!`B=*~bxIaXs@dpb`(1L=7p%E2l76VBaRoNQdDWo3CsWnlw0-{I;M=I-ulxix8S6CF##5Lq6p>+^kCU`%8@ z)qssj8A3tH{@k6b@AGqHf$T6N{pY8W#rkoH;k{rAtXLS%pD~y3W~FxH+9fRc8~~o+ zt#tJDJBHT+r^=l;z$MOthVm2eyZSAW`7ZB`iL@M?LC5g}NRX{?D+)+p`JnuRW0T z|6H77p^1HXjr|c~)mo39v9S>Fn#nWCD^RJF!QF`b*oFLPdQpLdKu1pxh_Tezw92c1 zw+^(lzrc_~;#LN@(`^B6Uh;iE0QxlfooM=aPQRU}M{RCxzrnnDx7Xs$*(ljaOThvr zj2%GF#-Ld@2<{++NB2Fz_*AX7B%CPH%m9rwC)e7;I|)rqKG3)PEAH#-rOtZbn~F({ z{0&RosQ|}&i;o{z8}|%o5+a8=K5I9PI!Skl`zfyF{OlWq%= z^itx3HZOOEW?3z;mMW^CN_4|L7T-)#d-5g4)!nP zSHk3PhiV~EiO9>wO3R04xc$L6tv1`On6G1!O1WbtXB?Z`x`xDd=7iAAAxZL&A85Vt zOi)W#Ff%n7%|)51vPzTOu-uFs)a~zeS-xOIN(6jnl-lt+`~2gM?U?N5IwlD z^m3QSi>i6x(J&e_CnWu+D4Lc~17fNm74bS_JP8Ni6b8n9xSJEPj=mY_AG5#qJi&sD zB>k-ioPw2IHPylA5M1DK9>tQw_(4G_DN>^e^8q!ru8CzothOAN&HcHkY|?Y^;0lP~aZ0^v-Tr-R zIDd>?Fx}uyIz8QsD-g2y=Z%PT!mH0mdTpF#E@V~F(Y7NQevYn0L|;w=-SoX{&NsBAvLZ7vPj56DQ!Qe+$@8^v;)^%a zG0c7;A$k)b7N^9VNVI172w-r8^tn|;8fhfzi>qLc7??m&B=>kP19BTkr+cdu=0~G6 zhrPnTFUX7YltD*F$4{T4Emysu0&?CP&lZ@#VKrQ+&e0x1*ptX*$7#3z((~>tW)`46 zpq7zJ=2g9Q1(IRln%{MMaLdFdK?3J2t2Z-H_DigSIPiuaQVVp?4!{ejQh8CfwoxV40KHUa(Rd( z1FPx+E-jN=xdDoCpA4{=m`X1zwu6%3=u1{az(ZevfZI6;F#EfdM)D#ytQ`ux3%yx- zVlFYAcV1cc6WMPK`od(0b|X*Na&qHu*XdiwTjIbs5(V7ClxWB0tCd-}FV8bg4PF!R zJJUh=#KpT#ciG>dL6GBFjr#)qp!TK{XxhaL&TI#tpN77>y|D_{VDsjGonzx}MJGkL zIrAvDFCD$ECrO&Q$ky6he@VzGQsj!I1bKdkH^ZsKU-It z&DAJ=V#KIvc;yp3YCeRTGVh+NSo{QxW7c3sdsTa25bW#U>Z1dh_d373#=Jenef_i_ z)A58GZ+p97p%hXSzt8{uUqP1S)=U;=V_yQ3{W5uUq58m)g}R^n1x|>(1YA(bYZT3@6Hf&CF16{B=-W99% z^re1C+-6I4Z@O13f~Hv9ocAb&K4LW0_Pnn{Q?>B5rD%CZ>@HvEEidPeXX5T%pXVq` zGJ;teBa|=IxiK@j&(+ABc2Ey-o2l7d2zpi_fUVq$+R0pOUaXd~8fQys;tt%XGOUfMg z)Bre4t{mGP0puO4lHpkQB|>@OyBK$RX7GA-w%W0XUMa_TFqEJPdlN}D)#n%+9}N<4 zAXfpvK=$Jw3qnHQfDmIdoUn3IgRfj1AjAQK;1)#EFa~sh$-B`-$Q?j!7F5rvnq}ka zb!hguD-2tsqki+E8T?Jv0=J@`i2*R0WOKeI7qWDHl%%H+{mN6$plKCF|JGVp81$Yw zSzh1wkoz2^2YSO~d8$~;E(Z|;H6;JH`Q5hD?U|@?etKLkdqmop!j;8R!iE5pY?u7@ z-uQhg4n73n6}q;5_PJe}AS6oKrOtk{FQQ|h=4A1$Y>QjX^s@PKRnmlIX2)$ zL)W(+*ayebGtiYu+V<>G8UfRYO(uKJv3zCS(;prMGmS|km{d%Tho6^;`2Kp{Ylz6E zkX&%)82_iQ2w=xZ^#d#FkI{g&txeQ>K-@=0(E0bjasfo7HG?N(W6eXt`7REgF_Y9mb5<9 zw_HG@yu3nVWgP|Fha?R)X#x(^Fqj`oM9y1G!r)LS+U_pxn{yf;AbjKcZY=<|&ZvCK ztR!3CkdRj(9|i%K?%3>2vjLu~6abe&^^79~@kp17ycZw^EL;e_T^bjcEt-;IL8>KxSyIhF9ORQBMl}NH^^U zD$Nk3gsMXlCV5`R#Y>d80v#+yzv z;uVusljlKf4E?Xhc~DwXcjb21{tF_V7Ki4Lmp)KjSF*A(4US|eX77)ScOBECV_{v%;tD+?}ao$K+AEAj0m6X388TK&~|{)$LMvUpr2vN}CL{km!oKo!TQU6{37 zU4yJTho89Zw_6HoJ&du3(=~l%-s9p!8k|wS&p7<4&!!3`W&wc6bk)JX>%JKmqT|T> zUq0!emC1@?1G=QOxM3Molbn|z(rK#BfffPode$;Bf(h)FK=kck#0nb~W2FD^gDBPz zL(4DU*Ve^a-jXql$8@XI!3i$RF4IB&B$hBWjP;Q5l0#gwy+o?&bGIG+q}KZPVt_AO!74~|A!Y383NO_%h0mS3Lr)f>X2zX6bWF%sIxT>EskS;8sBV%ym*0IXV`W>y!|lNIJ1vNNU=hxcK~| zk+L##a}wPHvX~~HxU}KAfu}@Wk7k6|qqjo#OCUWE|K5TOfJ%kZDrCbVr7bo+^1y6q z?3;RCuzmT0io{tQm(H}`1T%%baK^H8`=KOf(YyY|FxqLBLqb|n>2NG z?JsQ9=}Fv`M}}w7h07CmR5Gcno@|LLm~U&W*HHUk9p|HK6c}TKM?{Frh=)?I8}y{+ zL%uR+XJ&S?EoJ-tA2z3-zkD%($!euHHA9HwWHe(BAhpLHR0|c^$UtRf^`7O&#npa$ zx{{fxy?@&)AUzbvsw!qI@pd_xIwGl}qGFKI;4mU-b?&>GNzUw0g$bm}V&?g0V9HbT z{fZgD*Q>xM(`&QK3X5AF@93BTodta!UC~0dZpV&wyIVLxQMi$SNeR;brK}ZDNJPV^U zn<&&B@hJq(MEo-rhgW@|rR6NSc(cP^&^$bzc<5)%kklk`knH~KaTToj08?!F3}v?X zN@F2mQMWIw6-O3rs1FC~6=vi2>gf!J_k!xw2C0l3eDU$mOh#*nfSud(&!Rb;U~|G~ zBDTI~rmzp_sgw^RHHB^Of3;V9*&LdJxTxG0)vr0@zaUU@@S;d5X*C=9?@Z1!z){8& z`0Thl{Ep+|U}okOXei9EuS^vxKoc+)`2{p~Ar^BjQ+)Mttmf}&4F{H&yzRh^Emp*h z#q>o_EBj^jJr{|Gb)k-aux{SLLNKP!%j{aCr?sYl#XZaEfhBoz>JtL?7|zM*fCVeX zj$d75K0Qj{F_vc$_^u%C0dDEKXS)B^X8$l+`u%1PQ$IGHScI#?R2dbVJWS?jxi^7R z{`UTg7Wz@Xp+*Bgn)-2aF6o;N7HvACK{n_R2{>)NR&oYd9G9`)(W{Fu!aG>4wkV*4 zN^>w^6eE1Na$5Gna(@g^>FY1=o`TeQHQ`1$mRj|Z0caVPZ)#*T>z1RbajdN$h%_F| zYUmiJ9X5NX+4BDt8}-M9%5?PxCl9Qwu7=MoU3m@5)Kb~?R+g4FgG~dtMKqtTQlZYB z-K!dN_DoplmOeb+E$C)RH8N_5XZ>?i(3=8M?hk6Lmk5A?TI5G9ugS^xfaL7wsB6*8 z>h0}obEJR(07()Gim2Gh_h8WT@uLn^7tfcUvv4Pzr%wg>JtW8}N6f?DJVq%6#vnRl zVEjx=!vM_8mAMA2G0wk;_(Iin!LPxo6SY0dufSu2_>W2 zE!BqaMK!67KoMNIqlnW4ogV#7=*HeD9hm-jl{D%+6f{KDw6$^E?+$49dGW`y%()=7 zrpzp~Jy8icO&l)@KGc%w_Fn2L+C-!ff4LU=ELohrJOO$Ynfop`($Dg2cYg3nw)63E zue-Y-B>%}K2M3C(YIfMl7cL0oi@mUj=t`3VKH2s87qSrse;g~V6CJxxKyVS6pB;oP zw_@0rZM7j2*l&V&D|dzwO}SyHnUSP)*bc_Ws#+0O-6b(%f zi-PT|62@DBn@|)yk{gGD9@+|KHu@?jYX5AUzVAD@*lScwP?Qs9jjww0ia zFgfJ5S6oT@_bEa}#JR!5jZ?{nd|4O?XFzl5I_fiUCC}a72ifML&xY*xZ&gi49Xp1H z1Ms0%cK7xO)reLKS@A4sX~%_<(ai;1ESvM?wC-+aWPk&4PdmY6wl4)B?nge2m$B)1 z857t@48Z<^r1d&ous)>X*s{L@7h(&BE^^ab1DWA=U{mSm(vn4 zc*f}sdD_bW6DkN9*&{`vTqX&{^C}#IgJ@lJ&{f+LLv2AWm8jmROIE!v!9FR6na50R%< zCA;Hi2*(|vd>B=Kj2bV{ge$y}Hj=q(-A@Wf{{oVTAB)n7A`QUi2iLmn>k?)b0yjkf zi-(G5%YnwX>DaVge&?4FsQdO?0$#|W-qeQqepnw;-heUs$J9W^C_FKg`vi0hq?ybl=nN zs)a2vNdrj|q3Zm6>Db#0cGl09gg<8;~o@Z2ZMmj4Ssh^YA;3dLy;ij`{dMN($a7FF8d&dt5`uB%h)r@AB_ zQY=Y*J_Z}rZ=Eh|@WdGy{Gx9%G#OL2*8L(~wBC;$q)TPHMqO((ItPQ6!DPAw9YWRL zK0OUSvBy>-Hy#T^Sn`kYJGxGWhcT)5+`mD44XKpZFQBKZao;BQgxd67Azl5eY5v7o zVM1nBW!c&gfWO43ZGEaRtl;@W-x2}Kt!{D9m&&%Mp^s*C^hzfxB~p^1Ps5`%>i?Dg!b9)^iO zUbqB8+h5|(rbJ8gQLFb$z2Tb{4mdn)c8Aq-*t>AxbynaTlE{)HtI${Zc4Hu^Ewdu;Lwuy8LO3=m{On#7c+hX|?g$%cGs+}2{qtHg z+vNI27ZZAbp%(vDu0X{GP?4Vf1(Fdi5N1rOgrSsQv$RYnRZ_fq2|u6oeSL(a@$&EA zzdx!P_rRlnutpy9sELfUrPl3$p^CjKh?w?as`2G?_1=g3i#?v7U^Of)?{=sDY_W$U zgZ`-J@xXT1h@?tNuo^D3@k7)Pyt~h07__p)Ff0@lApXI@WZ=o-^~^huWMwLsL53j& z^ua_uwoy#%?B7 z{rG=$fz=0nIkFGKjS&1Q^NXAkM_n)wlR~0XD?tQHZFF=Dm&NjcUR zQ~1+0RcgAbf!G1ldJhkySW8z?BE{+Gs3Fi(mMhY+TM9^;kTmK=Ff1$-AP|3lH%SRo znrF{oQRBImgc>wl%+4)B-Q4whdOCjrZ9Z>{a^c!Bpy-h`9KnQ9qBCX+z?VmE%#q;p z5xAy$Ga$$S(clrb9EIR^4qU^IFLp%!3=Ml z(2dhxhgg%lVr?WRwBlegu5ZRsUPV2&?ECt=H7=(kyuiElrTt|;KswCmkja#+Ci1$f ze%v~iLo02Q@b(E7Du0sAOrX*WTZ0kk=1@NET6e;5iMYE~gI}uPMpebpS$dWe%Qky% z9}ptZLZ!hF^vGNz)OJmJYp$3IxKAn;YX*mCPRr+b&_91o_yNj?KqdR|D$yXA_76w(BhzmU9ii>Lm%kruYI<#A5%R+bl?Le=6t> ziXAa2sRA7}ETs`J53aR8qQSsmWMZXhyKy>jdANtC#sheVYVpF-OKY(Tb< zxSVv{qbUFWtt`?a&cc_Iv*psQb;aqEJS4F$e?BC+xUhQ%vA*!_QbrkUuPwR!%gP% z&>-(F*8p!d)z6XJZHswdI$qbnvVRXkg~C~r^7u{@7ppGLzX3ZD@nCLczg6`8_D;m* z7Uoc?jhBhMqO`}J_D3L*$I|9@KSnBwqSY}|4Ox@K!EoN8+-C@}-Hp`quea@%-eYYD zY)r8A9(J@z$t8HGuQ0r2BDr~{%fFpxYTwJ0rVFo=5vN{{za@ zF6n_s>}V_pdF-L6-)|`c9GCFXvFfz5R0tlRzh>*%9z@&+Hl4NXt@*q9-Z+lHdHD5k z`%DZN*p+=>V-6wUm09gk0R+3Yps5kiU;sivH2O}J?TPD$70Oo~-PydF+^6dR37d7X z_NRK7m{0OiQrdqYejqnjlvDitSxOLT!{zgv(L{(1l01g|sDf>`iv&}Tn7pK2F2OK? zodi#wL4=^mdI4@MdVG@JHZ<;TN<;XL_zynky0uK%dD)!@pPpt<<*f!sApHD(-p&1> zSO(^NwCrlompzk``=X{kX1wX#a%lFdTxl9!L3CK0xmQ1KcAGhLeYHK{*u~1Y#f6T~ zEP_Jjv%LbjIa`Lc#mAf`f(NNtHTx^WUaTp4Wi#c%iRm-OP4IJU{0S)B?bYarY=6^T zv+xJn9XD@Q%Z#3wV&ey2H;2{B`r~uz;u1r`3a1PH`ftoDLO)cQ*Vfm!!;Ub=U@p1Y zAw+p&3G5~s%XHE}39Xvqk&cZP&gRfR;?wAX^Q{U|oGC{yK7~`Te!NIt=>b`>yHC1{ z#mIOD7FB0>xN7_5&h>Oq)Xg#9K_zy-{(v8Sk2oX4?IJfaKVS1W)+TXQGG;g-fy1=9 zK&Uo`f#N|T>hzk{jMZfIg(loE#YHv3a68sHh5S#jN$>C^WuDU7sGd+ z=cQZ3ET12=EC?gSXpf9n3-8tcl4z^^G8RqgzfiXLuAAe z>ckk0(KEX1OB-skYxk*u)<<0homT)r1q04B9#a3h>K?Ywky zYQxVJGAXQ^EGr(4Jng0mZpPc=LWmQy`?|GQX+?a|yK%$xbLJB!Mf=tE$=o6Qd!IM(OHGGR_! z>}jUFFxDtewzxTijvLQa?Kvj=XT>H*Q{v#@^r@GKg=4+P%A9PJmw3;l2BzNIxKrx> zEZHK4eVbE{pV$0-hzz|e5A>KEcK#b%BsKZCyh=<+r_V@hHx zEARuFk0tTIfL*b9LbmalrHZmy6+wOw)*pP_oOvh<#tL%D`zG%M@GtwGP(a@`rt%6^dx3lVgCBgL#6Vn;4c zwAQ^9>|myp<6{$;8)uW)SYxjmDia4oOYtlUDI^|^h@i@|P^@6^jBrZ9AFU33CvcXj z>w>yHUYfDD;pP4lvty>%w=Ry^#(jZ{MFuH$O^rsqD6yb|$TK|gb7y-a zvI*7Z!^KVaG~xlotU|iF^yW9(GnJZYBz@?8SU5alv{3lBndF4Xf@7^Uio4p}k>;nS z)2x#vyhTMt0e+j=!3pD%;SIcSRz~UvoAIZ}7d<^AkmTfK9|Ke~qN3AN)~w8IvGA5w zHDl{rxtV)Hp5O;KlZ+E(oi?MzR72}I2Zyz_r?>aUf|%33vmi;DG+~93RwDGbH=;ps82r8Oo zPP0uY%w@#U)nUX@@FbRPr2HfXCR3@yW;HEyv%r&y6H~10%g%>|!y?s}P%&~PtMIZ< zzn!Q-+rvg&lQ=+`?ZF3+$s8Z$jE z^YXF^FnJ!q?|fhPjI;_S6A}5W$2XbRdVOsj&D5uYUo`uwRT&nlT?8mJ{T3ao(Wi0` z2lna7O86XGn_Uoz#7{Dn`OuLcVHuIvQ^H9CHQL&QJg~QIfjet`#dz^sy;rhlz2Ovi zAc;oL^?dO1pQ>8jwZYz8jaJ--fV`p*4&T`xqAJ1V_ta*o?8lwzP3)e!SZz@i?&8xL5REl>H@h+E2WHrh;p=={Z85> zM#d;*S+$4&f9oJ`_*GF>!vOVMrAaHdcz6!fg@S^yVo$(%(cQ(>rE6rQXHa8+J~oG& z4MtO-O19_upb4+|p2uBfk@vII9qZk!*oFX?k#X|wt~t6Vr`Fh0nmqNGSJ&4&Jpsgn zvP|xz*mL;_+?7@qF=vu>j+VvSPoh|vmvjxjW#(J-tm6^jWcW^34qtYN;KqyUC0d(Z zNTr=tFL;dH5P#1sX7J3Az^2{2A@&%(5V$oyP|1Fy!X_pvz{}8+Qf>rPXHem$fT}wn z>QM}}Cny+GBanXC=w7L#oIb0e$yOp;L34H0Rj$E>?iVoZ z%^0-z5M_ImURQOH+Ck)@vf}d^a$u>cMD|Hex4D@{YgQQLDe`vtK=8n~b{jQLx9H_` zH?!8Vth&oJC?3zQZf$KH%&_u9rPbK*pp@Y*nt8jF#)4D3Ip!0?hG=q=p3nj1;j}f~=vX^l zWnP3cZayjqM>YX2RIawu&Tbv$JU#S8OfMJ@_Y}zH=pb>-258uIL95>*L|@(A<-boP zA1DM;D07`AB9owzJyp7QS?)1KW3&?{v;X9)8pFfw*Sa~l9~1(JaEYu`h^!7891(tg zQ35qP3>Evkl`*o;w?MDcikG!2bP`&z)q~19a!O|hEJ7$`zTKcIgs0ch9363WcXpPY zp*Z}L!ch=_#1s*-+Dgr@bZ~KTal71B#QU;Ekn=I~YB9ls-ECWf_?#KRa+Fqw(tgT? zf#OW5@Gqr=*5xQV<`a;KY`ZC?Fu!wA#%6{+Tk<7Mlv9(AAwD`X6DMM0>iYM)O0Q>c z#mm-LH~+X~_8l^VL0>>^}d5_e&v z+71OZH{CNQYpSY{tG(KeX@%3pEedL=91VMh)Y&(tS{yR7QnHmkbg|yIIwa-6D$?9@V%jNiZZv62n5x2*f*OT?y&9=C~ z>UrFD;*mILPyNaQ+k{z&Q_?AVpp%cMJ{pPT5VDyameC<`ed0drzk-U67DLX*`~A0G zx*KkImQMDNKGjD{x%r!peGEcSDl^V$Q(N7I$4+u4f#CT;@aZa4*z~-5_FM@9YBQz! z_@;0ihVaKaezYK~YL91g+554Mzu%K}jQJ!}6Xmv!pH&KX+um)4n@-SJMg9AIdCz^( z{8&X#@!%mKuW7YwZVY7QDs2j09}bFM-!9{9&u0}UOC{#3RR--;QiuZ;{Ma`3j`@su zSNW7^Hbk3*2$W5+bLUvD2u+Zv3N3Z7#>#Y@w^ttX&7^vvst^;1lsI` z68deZN44^bz~}fo524v+0iH9<$WVdosJjaJ)CUUm~lN5Iw^=Pyf zw?fj-q0ioGr`*0CJ^%RUbZ1I1LCdXgoZCRG$-{K0AkO09e9mpOK|CUXP>a0f*RQDP zu)N3t28nPrR=glj!J-ekrQ@Y0 zw1lyQ9CG@MU7xb(fXB|A^m8~hC1S5LJ+{5)T6ci|ewGP@a&uc&V5@CS66@WtSX%%# z#O4>}Q;M#c4$(MV?+JyE6%3+|=k!g3iuQ5CXy0JUA0btI^DNl!sX*Y>mGWV|Zeq|r zeGli7vXtgW`1iGicy71kkYvt6lF}jX#!?FLiyNiENT$}k$X7oy>>TLx(AAYqrh8EW zi2tN2_wnQ#7H(f}{&PdM!ZkIHZe)^IYb1TZ*c-P{e`o4+G`)kb*gSAi{EGfOINwY&FlRKxnwP(<5Sim?Q~ogw%1nK;5N?6{!S^5YKD=1Nm5#M z$K%wH_Gi8Qyq-<}wN|+_5~xlbFbJo2CKKFFEnMRfy#y<4@19!#!)``KSLKU2rxaZ- zuvw$P6ofk#Tu08ED?RqqU@9aJl{V`&rQ1`r5ovLB?*jSf0RzelkwUz2e%@3iC&a>2 z=*H1iFT51357Y+N7u#7;Xva6%)fO09oBS8WXT_lP`FoRya)X%g*x)2F%?SO#Eza`d zcG`jo5)(qFs~2E~gHP4q#}tLC)#8kWYG#}6MJ_66Svfh>Y!t=xUsasZ+Fo~gD(G#P z&0xPZ-Bm+%ziv0~Sr4wdu=(};wY-Y62W_%uu?0lTI5sU#4|pw@t_4=@WxAlPDm5-% zQ{0SIn3O**C$Q@V*nESeDs@hrG$fu#Zu#Nqu11K5U_+sM#d5ttb3!#;QsDx;#|zM!CxU^(AzC z-NKB3KcY=<2wC(ZPo=cM1+*OpUqkPl_J_YbQMv;~B$Uq?EuLK;)NDcOL9*QmFZ_1r z=BnoEEPB4)1Sh}vWR~qElgO9PvLT=(tgU@_+rua^&|7!+#cApc(H~If&KXYq48i9O z+di<0(cl;%{l`!I*>X%TTV8WTyNSXsWTcNd%E5_I@jFX*S?vH;UCv}ZV~HvYXaKYx zwBT5CmH8I+7J-NVdAC2kF5rH+UPVdbvs3f%z&`7#H0u_VZ31r>2mXjOvJQ(2F5(5$ zW9mcnzx|qZG#^r7X>qXU&$n7bWv7ac>dsJcCUf|ca|hR#JROX~w(v3YJLlcaX9{O3 zXe&HBiuhoQM!VM(L70|pqYEFSGS$YOI$WJ1Zx5#hQ}!m3J^0X{j(Sma(+xtOBkYp= zU&2jp9W34n=k1lc!9LLBZ3Z(upK}MW1JSggu4^(fcRzniV zuZSTdh9t8a2)7m<RVm07Yo)I317s<#u}QgMH1wC)nC9UF}4N@CueFs(KdC?IyK- zvEVr|b2C42fAK2M;}>_p_DF0076K;>B?)9ZaQ96)NF%N z_s3Q~hyUs`P9t|7;G^tBu_f#hV*dE$V)o#{W;*fZOPa1)gKbnu5`Q6(%9{M`ls6qd zBC(h~iieXSA{+|187(BBnkZ<4OE6YO5oo`B$>hypmPzvThL)}-O>3^Ac^>1*?Nb1h zY-`n3#Ixoa9lS@7>-3HsU^O)NT3*&?b-FhP4`ymd9pXoXjF-3j5hG*Jx}2S7dcyhV zu{3A)NLOQfJvKT-R_QuI87!HYwWZ(jac4xfLhnmicE5|-V>b@Z0H>qf)7Lka(dq*; z$VXlirFbR_<_j(a&xAa*ECd~qdH%JiurPy}SC3%H zGvb*lwiz0u9=@3=q`!P0>B%7P0)+?qJ-+_BIU6~#Ti-k>W-u9DYzEB>X#9SIsKm6O zf`XZpmk0zz}2rAAT+4+vNi zPZpc7-oH<6?U)Z+8{p78+n$KlZo7@*$mxqs-RG;Hq$NT?UR5j0taI2+J)5a|gc2UR z>Y*ynho#oz)5AYGzP@nM#|v)f;GiTV{)`2W8|m=X-Q5DfgPlIVg2FQQ@|7oP@emL^ zXVSA6vFZl?cRfgyFxrz_cW~<9P$Y>~$Hwka-BIW=hzNh@oXT$!n>?|9MIc<}EDyOM z{P*is=vV6hdFd;fhV|c7Q2+b#?~?q-Xa9Ya=$=>>&%=lA%`tDUcYJpR;FJ)QSA1oC2gka~IbeElN6)q;@^a z>n2+BB+hcc+=ZNZ&J4I!froa{)ZPO}U&aN9T)OzjwU-C11+#gIGrnEdZ?LLUvfR%H zY#*GZu*(?MNAI^EftXHa?7h-+&VvPcm?AYeUVg75{aowml6M)9Ht;9!qmf3^O +
Tensor A
Tensor A
+ Long: *size
+ Long: *size
+ Long: *stride
+ Long: *stride
+ int:  nDimention
+ int: &nbsp;nDimention
+ ptr: storageOffset
+ ptr: storageOffset
+ char: flag
+ char: flag
+ Storage: *storage
+ Storage: *storage
Storage
Storage
+ Long: *size
+ Long: *size
+ char: flag
+ char: flag


+      real: *data
[Not supported by viewer]
Tensor B
Tensor B
+ Long: *size
+ Long: *size
+ Long: *stride
+ Long: *stride
+ int:  nDimention
+ int: &nbsp;nDimention
+ ptr: storageOffset
+ ptr: storageOffset
+ char: flag
+ char: flag
+ Storage: *storage
+ Storage: *storage
\ No newline at end of file diff --git a/7_deep_learning/imgs/trans.bkp.PNG b/7_deep_learning/imgs/trans.bkp.PNG new file mode 100644 index 0000000000000000000000000000000000000000..2c5fc0cf42ba57b74695bd575d2c0a3dd3f8ff66 GIT binary patch literal 7835 zcmc&(c|4R|*d`*fjN_bxzc6eJw_MFg*nY1*49(#vKX@%46Vv z?Kv9YyIu2UV~7EX`=R0RH?RdO8;8;^EIhk}ncvl>%^52r4hpKO-~AK?)t z7G6ioDhIbq{cn30uJ;G^!h^tR`v(&zX6VCH>4~Ah{f(JLq{`9Oc8Yn>{v)^?VTtVe zzA?Z$#>~uVE^p<|RN-;8<6+}5d2y)mXxTM5fJ_KJIhbe^JI@jx(J4nPITU+MdMxSo2KfqZkSwY?iWvUuXvDWi+%pCAB>3IQfXSMQ z{f%WK8oJuuVUA?fiJ~!ie=e)BNKviL&&(*x;e9ZD`C{XnV^eK|jVe>q{hIxBq%E?( zVX#~M`x`=L5M}vxZ0oDzwPxmt`&Y6jD@VD+rbaPNA2MHO=J4@QMsC@w36#a#rv3poW5xN4-$jOP*&2 z@yv6zuZpY~{kOo7L0H}jNqF(=c1#mZv57UZF@)=YFo|g_782E{510(0?_C37@5)6U z!6GC1KKmi8Y?}psRSlX`&LKEPjH_%Vs2jXG&;1@fbc)6vz~Be1 z(rQzuhuMIMG|5>`=+pX=)9k}`VjBl{n6>Xgja9F>Nc8J}k%6Df@j+Ue{}sh)WD{-? zSdVS9mQ!21`JscN^3+)VqogsMUp9{}P@jWjDtQ9b;ruF9+)EYn_WSq-z1K28O;jIaP_-daruW2D`r6|k-!Hb@ z@ww}r=qz-D9-pTqSp5s_>oO>7yHgR$eFwJ8j$Gj=B1m+$L^9>&Hn#`$Ko;8yUiCV^ zwW|n{A^7otguu!8FizR_BSn6F|4|k>#HY4vWo(ESPo(I149FI*yETc61%gi24Gd60 zym(iEfI(*iAgYAss~%hD$?5IgW4@73uWnIsmDFl@lAL;L0A)@&S}^om=!ZT(Rp_Cx z{C)%>n8ii&IsdoX%vk&}@79lfhx4Gau{O3z8*_z}wo59c*yptji1rKV|YJf}GZilj|BUNzr?^(mA>nCO;@%ac*WS1gi*;?yW@F=^Ah#-fFd@ z({gMa7fIsY?q0?G)#!*b>kZEzmXHm}R-B z>kI}&^ffmaZK+CvJ=yn|Fx%I)x&N(E}N1AA#;Y zWQc2=e7P?zfsEul6zhWP^!dtFI~i4N`Mj<)BM-CXhbVuNscDcmQ$oM6g&&8l-DTBE zTm5W!a*-iqnl!}>l6)g0Ir)%9XztC#y|z*zPD5M^$<8UAuPU!pg6n{1edKQ%PV|}- zD4$EEDc+*Ta(vB0RGz4vfvVtCEJR}1olEVl*Fw_Md;i! zhgN6YZj;`6uFD^FPL+)C7edquzc!~11^O3#zv=Xqbn7f!Pn%PldIF^ek zmQgLzXZ8!3H7l@KRWyoRO~0JmQ1LP*{74c6&siHCfH}1C4GCwf2RZhSze9fZ!lRv= z59$tDzv3gXpK6txM5m5q`h)c&&j&cJ^(}Bns!i-EpZ5-VEK~~uvv#UG-$>F9A4938 z>P1R{`{h9UTr)(bp=e65R{Lm#yIOkaa#h zG6$^P&+3L)b3S{aptTJWZPK>76E6G`h#4vC=Ob^5HY)> zvg*OUy#5>G=K`nJ01TEC`3`?B6QUf8Mwr8aO&?A!_kbd^YUrtWCMbeZ?;vlIk4z(vz|$0h@DKHsTak=K<^UH z;x3M)O7Fqnb5a}m%iG8p#wDm+w$u&G?2{;olg6;GR=Y(UZzuw78;B%*!y*~cN0GS4 z`h~$p#oy}lxeD$K!q=p!^d_UgGfN!7wiP~&v3cZ9*l^nJ%EBe}z`SVIzqt_n6KokV z4=sd@<0PRE+S4fjyLoXzb>hB1{38`ja?)(PvWo0^1Cjoy-hwDtr}V@ z9D;3N6lVA3?O-FT@K4b2^-bYCQB%JDtb}y)SMtvj4xZuJ6O6bP9-OeP>E2y!GK~3( zu|E`@N_jgT2E5_w-9r*2ZZ*(aLj+*C|65zX{mX|bO2-4@!Twn%m03Tt*4CJPgO2y- zew}z$L`D)$RN*g4&B1L4>ur~Vhf+6YI#W)9NgH=|!7Wcu4lef}w<+UC+{IWE0Mu6r zN4YaHlt>2O(1kNr9hU~|#9LF~JKQY4Gpih~wTZGO)b{QveCCu)HQnQQkE`nnCntFp zGb)#$V!Zsno}AAz3Q~SxR*hijn`C12?7&;ed7~UZe3xiE+&GZgA8SdmcCY887{oT2 zSZN;kuXbbJC7dRR=fxB49ig==Z`#MuBIzm%?284>-<^BK*--jNc|Eh=t~Yx*H_}!R zo}7t`;=%#up>qdxEJt zbe^28dd51u+FSFtN7i<6n!g^W$c#rO=DhnjR%%8N6 z%x!{T4AJszZ1nioH~PZ@ePTH`JF3K(H;W)9R#?NcTS{aHw8;~>#T7lo6vr>EsnzUc z7U`F^#v{*UAnqo;6jM!m4s&L*4@f~-fIOvV!@`Ol>O!mrN@Hr(LRYO{Z=s^X+Usk` zTo(~kB)K*yW2-oPJb!&dIw&Cse#~S{=ca*@WJASro+OXBe^StmHNu?4)xkmu5`FQ6 z3Ds--gP_CYHv}=1+EJ}iJ+(+5OfvgOkqH-yv+^AJ&J}C^`f_Yz*aJ201S4YjHjzGM z9_kv`=6xj&tg?;JimTqzJ77RX4)A!}Nr4-+RlvctkWELo^hW6hob1i0}y_qHP$`%Bq+b2N})* zHbk(rJT1$2!>Wv|TK%3p%GGj>tDafG{Pw;uC^3G`MWA=r9zfC%o30ZD40!`t$O zghINu;sY-KC`6sHe*jjRqobM)u-Ez}cYXaUs(UU#c@mrz&(QrepAhYp;pzSFv}a%E zFX7To<)D*5#rvA{>{T~^54qE5Cd&l7AEy)0LEgm8Bnd+4GdYXOfz|l0+afK}R8cl< zPKpu`wp>DEMmY%&e_`R9UW9RwK*kLidD|g+wQUeU&BO_{2vZF|C8+T3i!;tJjI$SI zIsty47UvJ9&B*|*?xOWl^^BeZul#35e{G9j9teo8Zhbe${igs-*m6-D54&a9P%!~H z;;6C1n*sov=x?CGehsHm`5i?(tL#(g!m`l@ z_ORs~n{RQ;yCH-7)w|r~OU*4-I-~Uxqb>Wsv4Ob_mA2BD`)Ove_Q=|aJNiZ2XNL*A z8LIC~-xNMUPgh>x1KH?@BcFBGVSg|6vkd7yIaQF60Wx13;y@|f;B0y+_X~q~ML|ZG zy8i;m24;OJuK7`hy*k>6(RyGu5@F&oVzM!u-=jcy!~2Z7Y3k|Q$Dy0J9|PjXXHwXH z-gWrzpau=^wdn~B+ZB>gALfZTD8F77zimMAU{iHhWtpF$0E>TB%KPHCQ(XvXEQ-A8sESqJ*T6K6`)*H znVzl!{6-o8J|@GNb7B6fDaC=x641PpyLMJ;{MZYTejk`iS*^{6u`}E+mmNE?K+gT7 zC&zw=A)3wO*H$A2KIwb*jCBB8est$HRk+=W^HZT-ZVGu_{p-AR+nqWgs!bOaIIv`+ym^T`)-QDJ`}Vv0gm) zg~WmhP^_}#%E&)O#Z*dmMD1n#T9b7x??DD)Z$bmgBMmK}G z1i#N4oYJ;6=Ww3ba7ut#qj08HLWsGXq|s`CFY?qRv#g3qM>d^9mA!qmRVR%mz3pFF zxYKM{Ib3AWUyYS8>?RY_HimIa1E+=c4o3@ReH+gD5N*RA`cqC{hdPM@+h%jXP0^he z)-*2`zhS&sn!EHECK-*Zs4!X3qFkRSQVI-L3&!!g5Z>_=HGtiU-^<1NHD1j^hx$pe zVD_?+^>)6T-Xv0TLG_^kQ_Qt0k zu( zMZB?9)9^u$u~XaA9}R}M^UKEl+V;f2Dtt@={HcdP041SspN#!@Nt4JQ;mV*t zJCF$Z_^x;Bx)~5Ux2S83LVu@SA2weXrg;45#HP5KVc>lNl0qNjOo2#iZMV z+Ik>v;0m~l>F5=g7o@x8o!2F0@+V>pVWKG^yv7Cq^$&_Dq$OV}T~>M1(o7*rt&USM z=lqCx=&Tc>jAor*j)q$lB(NHV9IK7m;{h<@EM0Ri4^z$kdFH zQr6U%^QF0k*53n{gJ?dnn^#?>#XDaPGsSTL&3ruk8_)oI-+%vWMH(ymN+$$0tQfM{ zgBpa^2(%kGR*Rb?RcGv{leF|EJ>=9E{&-lfmi0aN^6X_v!@OYY!+pOO`#$ySFJD(D zDN;G~rm@J85<@lAh%oZT{5=X0V;5?tgy zx`y^Amts$372i&d9<65xL=Vj>>_x7_j4^R75JB-iQD~m8gUF^u z@rY?*@86rl+6CLv0WEu-bLtI^N|%$lx^!VUS^({D#%5-c5NhvBe?FNKHAn&$T@pgu z#t!PPW~%mE;;-287bFDGU#6_9$-0?af78k55+>R({{-Oi27x5m3FZtAtwE`fLuB_q5|2Nwvq@%lQd7rEI8GawP-B;^j`T?GCFB^Com4cASnz!S z0Lh0A7kvLR?66z6t)OUDQyGpkHg78=G(LfXk_-hD*1kS6i2 zF4dr}2>JkB(qpfyoW~2ClcwICmT|}%9CClRzDdhphNq>D7do?#W$dKebME=&xXg_! zLTN)#{VR?@hOfa#UXu2>JF~Y_HmCjj$;SGypr>CTTrPD#0 zG244$(9KTrWnBf=a!om>%C>pY+z46l;7h(VU^mis9Ba~B8TbZ>l2iygmZHG?sFAf6 z(t0t;&RA`?0sB}<4FgvcUgzi4@zIJ?2*ZuN>9TLjXx&?#{u_*Lx1;ohAg#W-2?l6c zvjgz2-!P=lGC7K+KIb7?K*@1U^*2p^L2YL>9bOZTl42&j>$(W8+%OWElRDT7It@4Y ztA5Y9a~!jGarp8-74xQdJb=J3U_uHk*!CpuFMmwK_142*`T~s=(R+m`>Y@X?TNxZo zQ>n}htoVOx3D`k~nDo!LT-#10u)FDpxCR|ovwLD6z=|FN7Rl$&qxLDR%z;3tOA(wRvs|8Fu&DJXfq{7K^Ul}-0s6z?WH(6{X1SU|N;eH)x?W8idaucmUmh`r~+2NG)+yD;3 zvHnAAgbEWFs1ontC^jz_Uui!myG4xii4B}Q1a@#J__3tN2*+8rw~!=ag3;@+3iCM&Ta$b;7lvEmRIKHJAK3*P(9tNG3 zq()j1DuJmFYZP-4{r!&C2zNH4vDM)|dEWA0Dj4HyD@Yo(vQL2PgkK=?5hDV>r3Csg zQcWkLjk=-3B~{K*T*Pp4wH|b<{X^iY80dRB-Fhwelcca{Zj&wMak%zW$yeh`%CUc_ zm9ZLwWQ6k-Zx~R}&={L6=jmD(roIJyE`&1}{r&#Gv_ed{B>~s8xB5!c>WflX1QM!S zyfGCIf*(yw|2xB2meAKec7@Q7xH0J%vC6uS{i#iRMr}M8;YmCpAGi!VWr2pek$IB< zprRr#x=q$GS8A~{oEzk|P5;AFn~c@CFWMz+N~#x!)WHL2pSHnTAfK8apZ!BQ-iO!F z93)g|Ckk~Jr8eoUWNNznjNa?AI`sc(sO$a2u={h|7q6ts(9A!y*HsNO&7QvgT(3$h z2Dg-8-~ihT#8-Attyhx9(- zQ6i9%=m|D!&9t5vSqNjlRS1oOke`ttVTU>-{#(?weg`@-lj;KVJK%HWj zCRDN~$FV3tiI7qd{E33Util!JFQ}NwDbGF{WErE=^&q#Ai$uIT~ zSA6k!lKF#1JI!6HmtX1PNR~G&%{X;AwVgZNv8@~K79XfblRddx^*a12D@Juo0e9F{ zh|1%;0ndMQ;YZ{@aNhrYw8Gau)B#SVf$8gARq>|LQ_^dcxz=hp>E$VtF8xh;2-5Mr ze?dd;C6ah&XtK>8Yv6}j2lP7%z){3VLNLEjX(sLpfq5yI@ZRQE9=i&*l`or{B{C8d yNsw@-KxMd9i}1DqkHBHT|Jg+<_*2l4O3dS3;x3fjHFw literal 0 HcmV?d00001 diff --git a/README.md b/README.md index 2f76272..096f4ba 100644 --- a/README.md +++ b/README.md @@ -39,17 +39,15 @@ - [Multi-layer Perceptron & BP](5_nn/2-mlp_bp.ipynb) - [Softmax & cross-entroy](5_nn/3-softmax_ce.ipynb) 8. [PyTorch](6_pytorch/README.md) - - Basic - - [Tensor and Variable](6_pytorch/0_basic/1-Tensor-and-Variable.ipynb) - - [autograd](6_pytorch/0_basic/2-autograd.ipynb) - - NN & Optimization - - [nn/linear-regression-gradient-descend](6_pytorch/1_NN/1-linear-regression-gradient-descend.ipynb) - - [nn/logistic-regression](6_pytorch/1_NN/2-logistic-regression.ipynb) - - [nn/nn-sequential-module](6_pytorch/1_NN/3-nn-sequential-module.ipynb) - - [nn/deep-nn](6_pytorch/1_NN/4-deep-nn.ipynb) - - [nn/param_initialize](6_pytorch/1_NN/5-param_initialize.ipynb) - - [optim/sgd](6_pytorch/1_NN/optimizer/6_1-sgd.ipynb) - - [optim/adam](6_pytorch/1_NN/optimizer/6_6-adam.ipynb) + - [Tensor](6_pytorch/1-tensor.ipynb) + - [autograd](6_pytorch/2-autograd.ipynb) + - [linear-regression](6_pytorch/3-linear-regression.ipynb) + - [logistic-regression](6_pytorch/4-logistic-regression.ipynb) + - [nn-sequential-module](6_pytorch/5-nn-sequential-module.ipynb) + - [deep-nn](6_pytorch/6-deep-nn.ipynb) + - [param_initialize](6_pytorch/7-param_initialize.ipynb) + - [optim/sgd](6_pytorch/optimizer/6_1-sgd.ipynb) + - [optim/adam](6_pytorch/optimizer/6_6-adam.ipynb) 9. [Deep Learning](7_deep_learning/README.md) - CNN - [CNN Introduction](7_deep_learning/1_CNN/CNN_Introduction.pptx) diff --git a/README_ENG.md b/README_ENG.md index 5694f8e..096f4ba 100644 --- a/README_ENG.md +++ b/README_ENG.md @@ -1,16 +1,21 @@ -# 机器学习 +# 机器学习与人工智能 -本教程主要讲解机器学习的基本原理与实现,通过本教程的引导来快速学习Python、Python常用库、机器学习的理论知识与实际编程,并学习如何解决实际问题。 +机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的[《综合能力》](Targets.md)。 -由于**本课程需要大量的编程练习才能取得比较好的学习效果**,因此需要认真去完成[作业和报告](https://gitee.com/pi-lab/machinelearning_homework),写作业的过程可以查阅网上的资料,但是不能直接照抄,需要自己独立思考并独立写出代码。 +由于**本课程需要大量的编程练习才能取得比较好的学习效果**,因此需要认真去完成[《机器学习与人工智能-作业和报告》](https://gitee.com/pi-lab/machinelearning_homework),写作业的过程可以查阅网上的资料,但是不能直接照抄,需要自己独立思考并独立写出代码。本教程的Python等运行环境的安装说明请参考[《Python环境安装》](references_tips/InstallPython.md)。 -![Machine Learning Cover](images/machine_learning.png) +为了让大家更好的自学本课程,课程讲座的视频在[《B站 - 机器学习与人工智能》](https://www.bilibili.com/video/BV1oZ4y1N7ei/),欢迎大家观看学习。 + + + +![Machine Learning Cover](images/machine_learning_1.jpg) ## 1. 内容 1. [课程简介](CourseIntroduction.pdf) -2. [Python](0_python/) - - [Install Python](tips/InstallPython.md) +2. [Python](0_python/README.md) + - [Install Python](references_tips/InstallPython.md) + - [ipython & notebook](0_python/0-ipython_notebook.ipynb) - [Python Basics](0_python/1_Basics.ipynb) - [Print Statement](0_python/2_Print_Statement.ipynb) - [Data Structure 1](0_python/3_Data_Structure_1.ipynb) @@ -18,93 +23,91 @@ - [Control Flow](0_python/5_Control_Flow.ipynb) - [Function](0_python/6_Function.ipynb) - [Class](0_python/7_Class.ipynb) -3. [numpy & matplotlib](1_numpy_matplotlib_scipy_sympy/) - - [numpy](1_numpy_matplotlib_scipy_sympy/numpy_tutorial.ipynb) - - [matplotlib](1_numpy_matplotlib_scipy_sympy/matplotlib_simple_tutorial.ipynb) - - [ipython & notebook](1_numpy_matplotlib_scipy_sympy/ipython_notebook.ipynb) -4. [knn](2_knn/knn_classification.ipynb) -5. [kMenas](3_kmeans/k-means.ipynb) +3. [numpy & matplotlib](1_numpy_matplotlib_scipy_sympy/README.md) + - [numpy](1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb) + - [matplotlib](1_numpy_matplotlib_scipy_sympy/2-matplotlib_tutorial.ipynb) +4. [kNN](2_knn/knn_classification.ipynb) +5. [kMeans](3_kmeans/1-k-means.ipynb) + - [kMeans - Image Compression](3_kmeans/2-kmeans-color-vq.ipynb) + - [Cluster Algorithms](3_kmeans/3-ClusteringAlgorithms.ipynb) 6. [Logistic Regression](4_logistic_regression/) - - [Least squares](4_logistic_regression/Least_squares.ipynb) - - [Logistic regression](4_logistic_regression/Logistic_regression.ipynb) + - [Least squares](4_logistic_regression/1-Least_squares.ipynb) + - [Logistic regression](4_logistic_regression/2-Logistic_regression.ipynb) + - [PCA and Logistic regression](4_logistic_regression/3-PCA_and_Logistic_Regression.ipynb) 7. [Neural Network](5_nn/) - - [Perceptron](5_nn/Perceptron.ipynb) - - [Multi-layer Perceptron & BP](5_nn/mlp_bp.ipynb) - - [Softmax & cross-entroy](5_nn/softmax_ce.ipynb) -8. [PyTorch](6_pytorch/) - - Basic - - [short tutorial](6_pytorch/PyTorch_quick_intro.ipynb) - - [basic/Tensor-and-Variable](6_pytorch/0_basic/Tensor-and-Variable.ipynb) - - [basic/autograd](6_pytorch/0_basic/autograd.ipynb) - - [basic/dynamic-graph](6_pytorch/0_basic/dynamic-graph.ipynb) - - NN & Optimization - - [nn/linear-regression-gradient-descend](6_pytorch/1_NN/linear-regression-gradient-descend.ipynb) - - [nn/logistic-regression](6_pytorch/1_NN/logistic-regression.ipynb) - - [nn/nn-sequential-module](6_pytorch/1_NN/nn-sequential-module.ipynb) - - [nn/bp](6_pytorch/1_NN/bp.ipynb) - - [nn/deep-nn](6_pytorch/1_NN/deep-nn.ipynb) - - [nn/param_initialize](6_pytorch/1_NN/param_initialize.ipynb) - - [optim/sgd](6_pytorch/1_NN/optimizer/sgd.ipynb) - - [optim/adam](6_pytorch/1_NN/optimizer/adam.ipynb) + - [Perceptron](5_nn/1-Perceptron.ipynb) + - [Multi-layer Perceptron & BP](5_nn/2-mlp_bp.ipynb) + - [Softmax & cross-entroy](5_nn/3-softmax_ce.ipynb) +8. [PyTorch](6_pytorch/README.md) + - [Tensor](6_pytorch/1-tensor.ipynb) + - [autograd](6_pytorch/2-autograd.ipynb) + - [linear-regression](6_pytorch/3-linear-regression.ipynb) + - [logistic-regression](6_pytorch/4-logistic-regression.ipynb) + - [nn-sequential-module](6_pytorch/5-nn-sequential-module.ipynb) + - [deep-nn](6_pytorch/6-deep-nn.ipynb) + - [param_initialize](6_pytorch/7-param_initialize.ipynb) + - [optim/sgd](6_pytorch/optimizer/6_1-sgd.ipynb) + - [optim/adam](6_pytorch/optimizer/6_6-adam.ipynb) +9. [Deep Learning](7_deep_learning/README.md) - CNN + - [CNN Introduction](7_deep_learning/1_CNN/CNN_Introduction.pptx) - [CNN simple demo](demo_code/3_CNN_MNIST.py) - - [cnn/basic_conv](6_pytorch/2_CNN/basic_conv.ipynb) - - [cnn/minist (demo code)](./demo_code/3_CNN_MNIST.py) - - [cnn/batch-normalization](6_pytorch/2_CNN/batch-normalization.ipynb) - - [cnn/regularization](6_pytorch/2_CNN/regularization.ipynb) - - [cnn/lr-decay](6_pytorch/2_CNN/lr-decay.ipynb) - - [cnn/vgg](6_pytorch/2_CNN/vgg.ipynb) - - [cnn/googlenet](6_pytorch/2_CNN/googlenet.ipynb) - - [cnn/resnet](6_pytorch/2_CNN/resnet.ipynb) - - [cnn/densenet](6_pytorch/2_CNN/densenet.ipynb) + - [cnn/basic_conv](7_deep_learning/1_CNN/1-basic_conv.ipynb) + - [cnn/batch-normalization](7_deep_learning/1_CNN/2-batch-normalization.ipynb) + - [cnn/lr-decay](7_deep_learning/2_CNN/1-lr-decay.ipynb) + - [cnn/regularization](7_deep_learning/1_CNN/4-regularization.ipynb) + - [cnn/vgg](7_deep_learning/1_CNN/6-vgg.ipynb) + - [cnn/googlenet](7_deep_learning/1_CNN/7-googlenet.ipynb) + - [cnn/resnet](7_deep_learning/1_CNN/8-resnet.ipynb) + - [cnn/densenet](7_deep_learning/1_CNN/9-densenet.ipynb) - RNN - - [rnn/pytorch-rnn](6_pytorch/3_RNN/pytorch-rnn.ipynb) - - [rnn/rnn-for-image](6_pytorch/3_RNN/rnn-for-image.ipynb) - - [rnn/lstm-time-series](6_pytorch/3_RNN/time-series/lstm-time-series.ipynb) + - [rnn/pytorch-rnn](7_deep_learning/2_RNN/pytorch-rnn.ipynb) + - [rnn/rnn-for-image](7_deep_learning/2_RNN/rnn-for-image.ipynb) + - [rnn/lstm-time-series](7_deep_learning/2_RNN/time-series/lstm-time-series.ipynb) - GAN - - [gan/autoencoder](6_pytorch/4_GAN/autoencoder.ipynb) - - [gan/vae](6_pytorch/4_GAN/vae.ipynb) - - [gan/gan](6_pytorch/4_GAN/gan.ipynb) + - [gan/autoencoder](7_deep_learning/3_GAN/autoencoder.ipynb) + - [gan/vae](7_deep_learning/3_GAN/vae.ipynb) + - [gan/gan](7_deep_learning/3_GAN/gan.ipynb) ## 2. 学习的建议 -1. 为了更好的学习本课程,需要大家把Python编程的基础能力培养好,这样后续的机器学习方法学习才比较扎实。 -2. 每个课程前部分是理论基础,然后是代码实现。个人如果想学的更扎实,可以自己把各个方法的代码亲自实现一下。做的过程尽可能自己想解决办法,因为重要的学习目标不是代码本身,而是学会分析问题、解决问题的能力。 +1. 为了更好的学习本课程,需要大家把Python编程能力培养好,通过一定数量的练习题、小项目培养Python编程思维,为后续的机器学习理论与实践打好坚实的基础。 +2. 每个课程前半部分是理论基础,后半部分是代码实现。如果想学的更扎实,可以自己把各个方法的代码亲自实现一下。做的过程如果遇到问题尽可能自己想解决办法,因为最重要的目标不是代码本身,而是学会分析问题、解决问题的能力。 +3. **不能直接抄已有的程序,或者抄别人的程序**,如果自己不会要自己去想,去找解决方法,或者去问。如果直接抄别人的代码,这样的练习一点意义都没有。**如果感觉太难,可以做的慢一些,但是坚持自己思考、自己编写练习代码**。。 +4. **请先遍历一遍所有的文件夹,了解有什么内容,资料**。各个目录里有很多说明文档,如果不会先找找有没有文档,如果找不到合适的文档就去网上找找。通过这个过程锻炼自己搜索文献、资料的能力。 +5. 本课程的练习题最好使用[《Linux》](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/linux)以及Linux下的工具来做。逼迫自己使用[《Linux》](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/linux),只有多练、多用才能快速进步。如果实在太难,先在虚拟机(建议VirtualBox)里装一个Linux(例如Ubuntu,或者LinuxMint等),先熟悉一下。但是最终需要学会使用Linux。 -## 3. 其他参考资料 + +## 3. 参考资料 * 资料速查 * [相关学习参考资料汇总](References.md) - * [一些速查手册](tips/cheatsheet) + * [一些速查手册](references_tips/cheatsheet) * 机器学习方面技巧等 - * [Confusion Matrix](tips/confusion_matrix.ipynb) - * [Datasets](tips/datasets.ipynb) - * [构建深度神经网络的一些实战建议](tips/构建深度神经网络的一些实战建议.md) - * [Intro to Deep Learning](tips/Intro_to_Deep_Learning.pdf) + * [Confusion Matrix](references_tips/confusion_matrix.ipynb) + * [Datasets](references_tips/datasets.ipynb) + * [构建深度神经网络的一些实战建议](references_tips/构建深度神经网络的一些实战建议.md) + * [Intro to Deep Learning](references_tips/Intro_to_Deep_Learning.pdf) * Python技巧等 - * [安装Python环境](tips/InstallPython.md) - * [Python tips](tips/python) + * [安装Python环境](references_tips/InstallPython.md) + * [Python tips](references_tips/python) + +* [Git教程](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/git/README.md) +* [Markdown教程](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/markdown/README.md) -* Git - * [Git Tips - 常用方法速查,快速入门](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/git/git-tips.md) - * [Git快速入门 - Git初体验](https://my.oschina.net/dxqr/blog/134811) - * [在win7系统下使用TortoiseGit(乌龟git)简单操作Git](https://my.oschina.net/longxuu/blog/141699) - * [Git系统学习 - 廖雪峰的Git教程](https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000) -* Markdown - * [Markdown——入门指南](https://www.jianshu.com/p/1e402922ee32) -## 4. 相关学习资料参考 +## 4. 更进一步学习 在上述内容学习完成之后,可以进行更进一步机器学习、计算机视觉方面的学习与研究,具体的资料可以参考: -1. [《一步一步学编程》](https://gitee.com/pi-lab/learn_programming) -2. 智能系统实验室-培训教程与作业 - - [《智能系统实验室-暑期培训教程》](https://gitee.com/pi-lab/SummerCamp) - - [《智能系统实验室-暑期培训作业》](https://gitee.com/pi-lab/SummerCampHomework) -3. [《智能系统实验室研究课题》](https://gitee.com/pi-lab/pilab_research_fields) -4. [《编程代码参考、技巧集合》](https://gitee.com/pi-lab/code_cook) - - 可以在这个代码、技巧集合中找到某项功能的示例,从而加快自己代码的编写 +1. 编程是机器学习研究、实现过程非常重要的能力,编程能力弱则无法快速试错,导致学习、研究进度缓慢;如果编程能力强,则可以快速试错,快速编写实验代码等。强烈建议大家在学习本课程之后或之中,好好把数据结构、算法等基本功锻炼一下。具体的教程可以参考[《一步一步学编程》](https://gitee.com/pi-lab/learn_programming) +2. 飞行器智能感知与控制实验室-培训教程与作业:这个教程是实验室积累的机器学习与计算机视觉方面的教程集合,每个课程介绍基本的原理、编程实现、应用方法等资料,可以作为快速入门的学习材料。 + - [《飞行器智能感知与控制实验室-暑期培训教程》](https://gitee.com/pi-lab/SummerCamp) + - [《飞行器智能感知与控制实验室-暑期培训作业》](https://gitee.com/pi-lab/SummerCampHomework) +3. 视觉SLAM是一类算法、技巧、编程高度集成的系统,通过学习、练习SLAM能够极大的提高自己的编程、解决问题能力。具体的教程可以参考[《一步一步学SLAM》](https://gitee.com/pi-lab/learn_slam) +3. [《编程代码参考、技巧集合》](https://gitee.com/pi-lab/code_cook):可以在这个代码、技巧集合中找到某项功能的示例,从而加快自己代码的编写 +5. [《学习方法论与技巧》](https://gitee.com/pi-lab/pilab_research_fields)

)!wzcl2(gkNbGW{W20X zjK&lx$=*Lc_g@bDuaX}Ba>@V2 zwfylP&D8godHnZD)9!!CYo3zQiFft!rg4;tJQB0b*zg&u1zh*}4Hptr(e6ZSYV3t% z63ibD4^K7AUj(`MhYvXv7a<<#)pNA<;v!o}VqW~4OyI0nRjyW3Z64;VyP(oi+ACmb zeT?6O?9gdOze=~}bCTu0bEQdj5bW`pk;l1*v6E{~Yd4@eMTiBPOwInUhJC#J{BePJ z4fX}#J8T`zWs4`~N_WV$<3c+(P*&#UsRn^!!#~lY+2_q4UoE=PeY?NM z4gxfel*<;!M)*wuEz>UF0mwi7{*C^!{THhGWr6oMH6y7(-86=RiSD)4H&{qI;l{(c zEx}2yYZnrNCn(nGxa3@9Vi)s^i5Uc5I*9Cxz*ko=y>cp5B@vuFq~4W`edaK?kQSg! zMEEoKx{RNmnEJ~z{VwwF239fo+4+~S-FVmT-JQ<;4KPtHNpD=_tfL5q%fYbAdOQfC z3x`Xt*<4(=(HZpY6OwK-*saQ#I~UETkN0B=huTrBI38C}Aa!R@zo&U>Vuio*Vo30N zT*$gWu|6NmkflI*kyBY~ZI9U~mlu_Rvn6`8nCLz8)v%H@C{&tCv}79s8lIvWjF)Lmq}awFx+g)kExFw44_ z{$u;dDw=jb1_@W;X%KkM>+fIlAHUDl{=~g^{UoUfj{CHf{^@A^mn*2A{)t^U_1{Jw z`D7HVcm=-u+9xdXhaRTR>nPS#m-u~++wS`sx3Gp<<$ERGh^2Sne<@-*mmH4*w01Ga zwSCF^;(&8^zEWJi{^uK&>`=)W5*H2|&dYBV25TSX8g$p4UkNJ)6`M*1{egS%FMHoRarPYZ5? zwjQHpd;1G^m41P-oFCnk9xb?SyiB}tOcWf6e9_>O)H~sd&N$A@IE5l4U_(4KwJQR` zazt%bpm6Gdm$~5%nkA9A@)m_|D2%aNruI_YVi{bwJRybmsdN1B<2|g~AFUvrmqFPw zpYC5K7_fh-j~Zo)6e_<4{<80+`3=yhbCA(xRB)n8@rP=L0!8*&Jso)4X~5++$KK}X z`Qu+H^b3OA#G^PPX>&;RaBVDkAg_@nD69R%SIvJHFx%(-Ng)$+YA#V585ZVDGQ#u79;Z;UD& z?Cf4)5C&EFk_Er4dAWGW$r*oLpQgdK4NAsT)jW_|G_gMApD~_5g3$|KRGC#7t`@ma zitRq_gie*SB-p|_RD8ivG7u$14}xIVvCT(ij&E~GPP({rRu)}^Nx%Y;p*0I$$b9O8 zNBgAcNS3*z-tUgvM4&w4l~Kl7#qCf#g2##>DtMx=FJL%%TBTh^k|W*q*3GVMqokm@ zcObnr^7&bg4NjB7C;X|L+V3Ks5ULiGWZw+u@l!C$-BrIZ$6L}@;%q~=ZNZcO_2+a00$YM|np z7o-3C!h6YKjzvdSc80ybqvD5y{Rf@*2$7Td9TzJKS19V4fl{Hy8y)R0egj@w#!Yu5 z(ww^sEgOV4AGCwSD>-ZJCJ`1KZp*yKd5)!GtvL4eXG@`St|-q<58RxLnhVnGV_V-{ zUe0dwJJ%Xm_`MtCjEtivS><6B^SZN+uX~?2?afZ!%J(S;J+2) z@IxbS@z~Dg+{cCEwN+6H4aE{3L!hu^+6|977jiUyYUCl7%{IGnucy|JVkG>SYs{jn z=4%QlhEJg%PW+~5|35FsOp7C}S$fEYZf-xw?N0Au5^eVvNiH?^CVYu*T~dmq-51bS z?7BxgCGZQ&1hYb9P&RFN8G-na#PTAi$wfO^DLDhW+#2BkF;I|&dcnvgNVtL%6PDs@QyeD|$H?h9TVhy!Evu3a zTd>|6Q7_ujDB~z9=SSycqph2lgUL%zqe^$3UR86p9MlNIuYKNr($f;w3me3n4D7|q zpN`3Q59G+|#VYdN&8t4gn^}O|@gE@6fsMcNxrb1L!rmF{Fse)|?MN3mF`O&6ZdGqao58* zK1rx2JHSO=wPZ5bhN_Ab<4Bs;@l{@zJn?BoyfoIYJjihYqBLym>*>{BTGWNQ$VR=Y z&6i-U%qe-{Dr4i~Yp}rw2ktT5Rc1nB>74PtgFd7mzSb3QF_)fRRTtdzMK#TvXwDnY>(J<_aZDkbqi&V{ zA_Pat)m;+eLSe@o8+o*xJg7F^tc2=m2E6<~GqXw~tK@q9omjrU{wt$W_W>#AzoPW} zUU*NNvH5*uZ(-gsesI28e)qXjjMP#&F8r{{6kPrB8-UaL^HpZ2>i7OfX||UVFh9Fw z3zI@p>>;a^mOnn9Z~H00aro+=Re>^``?1OXLjm^_p!JjT@B^T=2S_jfQt5X-fVjLqvZq{FT_((Cq!|wyFNfUIHdYKV^k-&Go%@M9V>eH=` zQ{cpPn&HLmz;jBzGiROG-Q+bp;3AjZR%`~sor45a(kpeGFQn<0+)m`!lwpv}52>)M zU1onIo5TIg)(FC%F51k|Hj}3>$?G8;Bfu*>w z-FD2s;>|`8`Nz=)ly2Gad$%0DWchf0lotCANgJe^F+Q=FR6_fyM4sC%ov(tKX886D zC|vFCGHaomT_l~@^q~2)xE2q(1pKlF-2U3L%`LlIIt`bvDR8{0ll=`4oMwAp@%3AG zZ!0X^&j68v8&)lm{~8GvkU^}cC`gCa<@% zAq6qgMd3_7{AOAO&4h3}oq;82D+gzfc~bGU!xrBMyND{ffQ#mj%0C(m#110shOy}P z!Q=A+9H?saB#70Lt3B=lt)v1e_TuyPP?t&u*|~S&HeVih*gHC~`2bmRl3)x9$(Cuh zZ!>FqFCrMoz*{f!#x0>%h*|z!N$iT$dAy$+2n14qgJ9h>y)FJt&izT!MkTO;`W7qK z&@JS~%qA^=dOm3jypoPptr}>V>!e$mS&XGoIw&Yu`;=><41KSJ+Jfu}9rsxoeJv7w zU!&m^H0^{=DJ&)EDZN%*)x#KKYX&vH62lxLOgQRI>tSCa+n_7U9c?d-6p1ClNsvY* z_9Xu@n{3vi+y+RBsP=I+%f|6R^g~KN`nzGtjcpHwD@>daLpVXxi9cl_rxzFNs-j8O zvM@X<1OvS8Byb)Mb(-Htc&VA23P}_&x>?hZROvF6K);YfeG*husalh<^B=|+T z4p09QK3(xW8W0ON`E*;(tD**C$(T<6Lk@T9fcr%kUkx--jIUO#(+mgX?j?J&39BhW zW+vAYYzsYY*VX`Mn_>SK*bw}q2%o(Jc*wzY#~fc2rNz^hI|Gm-VE*#~qFB zv4aO35o7U_4v^PKba|cYdi(o&dwE!UmMECE2VJ~q`H3(2>&BOlorj1r!(8vA%h)~R z)aSLF39{YXrM>gk=0(1-Y639Hl3XIgqS=K`w}wkj)%cUToRb#lzABR_3U9bjp7Rn+ z+Fn5+o9Y`N+Rl(zA{pCM+h~MiYP{XTJ2M%PfV0l_b+n%g8At3>W9TBeK1n=C2J7u5 z=Xg$Bavc#Yx!$H-JB?>=0N0qVUbtG@A1)y8I<#_ouRj82R|12DG@z39B7lALE-Aj{ zAf32?tvJEH@cyb-37<(G)-i4gyK40hiA@bS3JaYFk>&S{smKh0X*It?+=VsIK`a6r zBy^3kFlFlVmWkN<0Bi|UNKL?STN{H-)QE$>%90*fH>U!dq?1chV#*JOn@FuofM}B; z$!*223*D@jNZrBVc(_tQZL{79&s2!!HChJ@hM}2~6wzXLvt=ZWQ z$myXb&^EXc(bnU}^Qz05Mv`)K>c+ThO@;ifB@l@YVsV}R)TxV|&=IE%Q!I0ggIjV) zT%&^LCM(?%x!v@e3=&#el9@uAe3- zbUHs*G~JRohdSanuVA)14n5c_6u3zMR?g`Uf0pVK42`L4Y8ydE@zc-;_Ro13YeN zvw|-RkS%hxLQS6?dmV7T4NN(1j!kIuj9u{H>kRqhEcYv$H3MSBjNx5XT3NE9zURJ< zErowSok!0?bP%4~ldUT9w^ZdGY|F;X^(x?4I>JoQQiAcEE=)Kb&WO8pa6xJuJvNWpzdO(Z5z#E?+8p6FRb{Kv*=5KP#J#B6+Fk-p|>d7%GH( zihG=9p611d!0?A+t{IYCduAQ2xEYJT;9#kR+wJ$Uiz$Th8kgsYcpTNGw;!eKPn zwe{BZdeNA>p4(oCMdQT8-Rh@T)PLm9pV{>L?qq)B;$nz;g4+2q!n0_h-jYhg$l08b zHf)6UMfzuOn{@>ji$k-Jk-mG;Sp?*;F^i8Kznie8*~MozPXX+7Iy976x9nPp@4_(` zZYJjJWg-ffO+JG(W2t*hm+M6rY)qid(+^$PZ4{BE2F?2|C%V+4`~_dH5M21B@mmie_bIzsp3$ zMV9uq5AZok^Z?8Lu+)A ze72E1_#|E!*|JoP_nIqEaw=`+t>zz(rn(-BdIAcXE$gldP5f*(nBTz-HQq2rMQ7^o zw~fBewrq~%se9lDoKMGi7mW*9_G%;;rKf_(}Vc9N0!_6)i3~if@X$R3(|1ZG(M?c%Kx9RX@x+1=D0u!`z>9gq&U{F42Ck;*gz z)9ZRe-%S(v3j#9sWiEKvUGseK)?WK?HB}`S#5Vzl<1=rEXd5!z2KFXR6Am;w=?D9< zj9=Bsi%IKf5~SAtzPZ~J%7TZk{U_0r?);2#f#u|@Is^7Olm3%XXhXk;LSy|OhC++`dnmNGKh-Lf0D>>RYzKOK zC7`|mif}D@JApHJ3h)HV{ZpyJS2XqBuT^=&`?!TkA#5zad30;6-*7XHV(vL-CPgW# zC!PWr|5ceN(RWcfs9-EIwQg4N4Xbb~m$c#q3%`uWl0uv@xmm}uaj{>$JnA}7Ffk;_g`^+T@6(8Le6Cfhdc4Z+A+B7{ zV4ELJ_QYl}mqf4}dk+egPk{uQu~bcB^stW7^5%Bn6(R*iqj@j-4BC06v4nY1fI z`J1MCK7|S(hoUphCciC(@%lQcj3q(By!*^qr4IefHQvYh5H1Iyg<^H@HOf3Tl^(={ zDcs91T0rm&OWn@lU5SE$N!Q=HRD1J6mq zOAB?6*yfkf8|$iWDaeaiUWzq|w)pZ5AfO2AaFVRG)GESDXvhM2dbDVmNk&3M@B4ho zn`)xb1pv#SqM9p%E4qTQ5@7}meuG%D>59=I??pkN&D&V+pfDVVu+1!%2q7kxo;GitZsC}ef(%!VN z>J!Bv%FW9K9L|?YpjCP?vHN=U zfj-scEweMY`TmNOuW_A-UQ<>WCHXM z^pJ?9f!^h?6Vp!(w~LOYljPH#-Ca#SN~ksx&`Ni?Zo8GBj<#nUYY?XmNn zXPKrrn#~qRUTyjynXI7|-8WW9?NG~Cs(V+S`jufvhaUu}CUVWXP-@vYlI8xFl<$d# zPA=}^^QgTlfcwRulSOpLE+ck|C7?A{S;+$5q0Xc9XG`RiNB6TqW3@^IsOgN4_xaIi zrBOkHmjxC&tgK)&wcfI?36Y*6V%zg0DnfuW)LE68QZUy+dr+b zSb4h}?Il+^*!MyGfK0AZ+Zk!{a`mq*IY~DfAT!m{or*==8kr{CgQ8WXok(HYI}v%W zia!c*QTK(J1`}l%OX$Qk2dinjUs+&U1%cj*aucGm!tD@NWj17=0Nq@l6tRT$;H|+2 zr#qBy-fb!h4!P2L-OCRzL^};~cSu!15NUni5jnh3PxQ|Er(bhEfgO05d0pql1gp$4$t z=JrD(jDsuX+$D=}dKcBUNO6@(*Jan`DV1n!ItO+|Sv*Gc@||7-k+>x_d&>s$ud&x7 z+!6+WEW>16)RHU5s!~ExWJ{Ozr^AC@g+yn0F=3B2n5#aU1gD;2 zXSUFAyiia*X;`r#Ckg2;adq#Q(o&f=6<$$)PhjtMC>?>rJc)z+xO@-Wm=Zn#!~RK7 zd!Y)s1BRT04OV{i8qbqF(3mYB&VDd7?Wh5V$EgP=rH3i;NUrm;Z4auquw`huO{8A_ z_e(58( z(T7G7`&hpp*r)bz=)tH*g~e}qvP-d#D9~hvF^a3Z4w)X{a%3+Qaad~C+AS_nteVAI z;fptGKBlt`X6~O1>^WJuK#Cwe&iPtS0k!>*=B)$I2KynR=O_*hzy3wM*oa+GTn^8e znWWG`e@Iy=hfKGYvD$BWkM91I?g$9u%6Cg;Ba$f8x4HG>+sH0KFCTPK)#E_@c7n-b zc^SN?`(oh1@0Z;Z(s-A%@EGT$Z94io=LtJ%7LO$z5xL6=ei3wJ6|XldISFOO5Fe_o z%RdC#)O4C1|8D>l?P}RzwSnCu8pW?7)?Np<4>ZjB_25tLder0zxaavls6|EMB5C3B z#ly)>h~^;ak3t_i-q|@`(u-B!9=ePn5b|Ybm#fp+Vw7wlv0#5eInw!=9U*5gm#*rjr8bc23qC8tOF1mqy%a3FAI`{KbnOD1 zz!?DmFvGhfsF{lb{iS!Y2DDSwAQ@@0=Tv38lgY>m?Zsr!Yv+<`rW*)Ozjx+p)T~nD z+@8jUxeb-LNLVN6J_O^N;}lt>o`p|ANAntDE1H=^q)J*pnDltI`V)ydzjk+HRzIrr z`n;Ln36pf*!5d(C%sCZVIIMg=Kk-)-@<3Aj1jsC#&8JEqkqCVCF6K{^&)tLE#lDXb zHXaQow^s}&c@q3!-jSCWJ%z299o?fwOdP{OQMsXgk$E5}Qo1DGm4BUM86xF7WxHM; z5|7Q!XH-!;zZQJFhc`?|bGRmN1J0bDWr{r;Eh;qe5oth2sD5CjamsY31aI62)RGW7 z1_~U)o+gE^M&x=l+g?ivL(<&p>m990ey!Y@)4@)|vJqEfqX|MLPJe`LtJGJalbWpG zdi)TQx35MNukLgBulL+j?5LST?sjB&dIc8Ek|_7||2qSwQiD46p?eKZ~ zH;;5govbh$jB~6%1YQLd&ZUFn;It+DEY{?g5nAE*5X=kvU@0D0s&*^5ly@LcCI@9XvzMEO z<QLIsm(Q#6=!UYh*=3Xw~e8J>^i zI30y5DsuI#>ObZ&C3V8(x8vWe!x%WEs~{%C)Qg8pD1)1^MRmJksssl&I5%h-BwOCh z#{N;NQhm#iAN2pV_tkN2ZE3ryoEnuwDaD~hOR(aFA{870g^&cNMN5K|;9iB|#UWU6 zl0Yc#&=&V1!J)++iaWiV+L<{sbG|ck=icwT_c!~Got?ecUbfeI*IMs--{(nI5P$FUVUyK7%`@H$zULre${G3)uK=nq|McA$pd{BFGo4qIoZU z)?1ZNy2%C_#jm&Me!SXL5J3Itnz+=ajZp@%-0?A(GY;7I!p){(*hIsHIbpnti)yS+ zmO8m@CNg6eSPULCS;^u{_!FY4P`ei91ygN}uD<6r+2=&LIbdX9!Tc?m_k-)jP?MS| zAuo(slL&DZ+sX)nQ=7R&85banRpAK(5!)=+!^l!+l2wM)I3jk!jDr<8*Js*Ul*o-*)+DVs}Wm#Cy5|}1o zJd(#F<9}tHn`n_-MSqPVZ+8889B(c|N$WJ+a+aO8)fG(`H7 ziM84rVUkO85gqz7BB=t^0PeMij)Ys4Q`%jJSiRV9I|*XVksmLy?eFTY;?O#FK78uh z69$PZWi=W;CL-dh24?t73|uSnyMrsem10ZPdIUB%wT?14Aoh*gkckhg3tW&U*ra%c zx|uwxY7jFUvt=|VwAh=U_b9KgP^r4QdU>T`=CM<@fVVH%!A?9dN{(aXYOr5Gt_`cI z`<Rp<0t2@uyyi;P}@f(p8UqIZQ!Dd$EY$Jax1&c}Vn+8mj-@47enqzIJy zkgd#69LOF_ay7{d&y|CruoS-9K-tt}P40(2F=gYF(LrdUI<)n{n?4&#b7KnpVy8%> zw8dt3U}f&YRU3MvXO|J3ZM4ls3e$rDmKHj>(tzeaGMnd;(8L!|@KS|(Uso$VCb9DJ z$K;}2ZG{qWcKnEUn*>SkB?Yr+(zN~X{>qj3%~ttTKj}JYl>WAw+p1~VJz$R3lc3Z+ z177yBj_nASwlF>hj_dN2ZfFJ!NLdDTYg*0B#xt;j|Jffq_9C(QUWniIqNUQP3E&a=yS<2Y*QI;Y#PHuxcx%GQ7xF~LArJ{)1J9ovKMd*JtXQ(=Gb?+1rm@bker_BtHMVTE2+ze>cq~ za9@na^NpC@hKrPX7>713iiv(*7lvAe;IP#%NN-zZl)&obZz~GIqeyW=tTCdh*+{Va)FB~V*UY? z{aG%9#Y|e>7+luX6QzR!UefpRWyu=O@d*ibchl+njP3ENI_Wt{7)&1<8M@7{xxH3c z$;ngK+D`bc`dz+vVir0B883aK5kacZ;`JvNA{2|bXB=${Z-!>RPKwwM4`UxkE3N4U zS28!KQuG)4IxjTP+WTRcU0gULC8YI+AhMSa)!j)BR3v2VH7KpLL-@6QrY< zV+8LL{W_kngeoa$nrNt5jnA!Ve3=qeZy>@ec5wa{^;ttVOX_z$+V62pGuXlGsXE5> z3>A{FRL#4O;EoXrMY)%53PbPVEd-Q@V=ep0#jg48P9)x0Lm1e3$->iFlyFGRb{pIh zqM^rPN(!F#7z1o^kk<9GdeJ@T8JHC`#0Ls@s81BI?Gp#F2M@i1^_p7G)F==~u32`^ z6oB0oLjq%QalZhjO@l8UqzuvUQ})BhEd4KT%G7*XQ7XCWUHDATqeV|Q#_6?Ho=ZUb z@-V%Hxm+*apdrk*zGCt~{Xk(!dNFlP&A>6_^k{VW$?EJuGt&C4!R#(*rBHH48^JKd z*Wt;%4OZIfOO&Y%D)t3USt@*{!Mi3m{Rzq}(#I@;W(GP{!BM-BarHR6=KC&07a@h^ z9KYRUY~MsM+eOpbO0D_pqD*r6YutFx@ETN*b|xJ;;`F`saoPGF!A!l;Yh;#;S=d~& z+gm=Vb1JGYf^=hSo1<3C%|`dS*Iz~vYG6%*i;Rq>4-4fw%#IFex2r3qWF^>K)H@9` zbe0r{DQ%?X1A5fOk9lwE0!%&SD#!{)wQMtSHG-kgp4Q2Hzr^lOhW^-WQrefrIDDAv zNlSrp6|YBbjY}%boS1MHTQdRVM)3e`3!$N_B6}9MbmeyL_SD=>Cim zJ3IEy zJ7z`h+xGT<<=BHe9r)S8o;xdFC|o1q>4~N)MaC&SrjQd84YTKAvu&-yh-N?NGQwW? zopvYuS)HkhcIN1MKP&?A7DPWx$$xNSN`+^<{IcL`LR_?x*7Rj(1e05-^Q6PQ`IJ~N zdmq?Jy+6jc*0m=^LnPmK!7xm9HNY~-XxL|dUF^XiNCe&sI&!>LODMH^J(e#8H!Zp@ zC5y||3^p!CaHSWUw?zq&m|UoyAv0UlsK6&g=c>gU1t@QoLg(0AYR61zpk$XvyPB0` zIY-%eIEhmitTF|SYc=efbm;&wl6Sq}T9A#Nu*je#8i4zlfbxO{?-5GyQ8;X?v4E5m zU~J|;vkW6WG-PB&KF}uBRo)I0YGJH=>sC}gNMbgo|6ZvC+Z=;5mZdT9&MxfF=et`l z9dO=cLc@E4mZ>FafFkjluj*J$J;!O?Tv44l|1iO&E^kaL7@Q73064(@b>E3nL`j;Fb+9(1=LgzI?9pkI28iY)jk6* zrmVZk(;}O%yUrM7aY2X(HNklTWR-&t(h>N08rY7HcW@$MFjx8uXg2(LwyYSB4_t7$ z9M>b*fDxf^X4md|=tD`+r7$V)8gT4?S>v1=MUWLlFHYVCwxLGT{W{y#?M$LRWg};2 z(#`at2(d@EsZC~>(SoGs@fI$YwidVmszmSEGKRA)2=OxICTGTF(_moLq<1PM86z5< z;$}RGW9jx^@4)v_ujKm_Gj7_jFlWcCN{h%|0U3{jj-*vS!0WL*rL=riA#-QKhBSu* z4O1$5xicMqI%_{TL2~sx8)#JkDrQ1IT9Wi!;Y%5C%L4#Y z2l%4tVyWp;oL?&@(sGu;yuW}Xzkm#%PP?4tndnK|8{bWNe9~CPZzF6r3voBn*keow zdSK%|Q)A2T8FA2Qqq5z+`{E@K!V9H`o3Q2aqB!WYRoTwouNs}!zhI5fsX$8>X?&{t z7NF0T>%nMN(YDfV8u^F(5TCI}%ejl;8g%~DbeYb0@((FVK2y4*rmsg!F6A%lqQpFR zNN%04^`}}u5#faA3xf!stZ1|MkTdu41JHU%Ay$_MR>}FwUrDP~1T~ZJ4U0qlvp6Q< z7&oLW&b!@eg{(u7bBFQi9P(+t)dg?k?m1^V3eFg8rFLZXPeyBh?$%P>fn119jPYJ+ zT!{I+(1nwbrb`p*&9aiVvyZu-Gmcgs>NZX+#}w!iey zo;aI|xMNp_z<5MCB#)Mm6)o$|xLeeGID7bTeKrMg$3cQ4lkL@*&$QY?jcvlREYj4V}WBWv# zLqe1Ndb;$74OW$=*ZSK{n{tr%0VuoLRL>;t%W(*)eOL=Wa=h3vP$Se>CXgpGkWzQb zh+R=;b|wrA7Ges~wa+gdnw+{?YQn^g({@O;nd7h>R`|RTxD@HH$tke+3sdC+*e2^_!ff4Ts1i6wQ9a4n}CqZN?k9d7u+-bYv94-jY_?R%#&%*?znu{m-Z#*q=;H)+M z^+fJPJ?Mpz#yMQg`%D4n78Ae#jUeaSf=ST%q2)-5ZC?b<1unPO%QIr zkYEMS>lim;h`>6xgBApLiVOEOcX zrIj(KWeoXW9t%G_k$(aC$$we}E!8rAc6ySXJNSa6eA||Iz$WS95E=R@>q&R(T7?}W z@jD`x2FEA6+;W~+l|xsGrSAY(GS+eDlWR9#TG*|&oZ|;m-3+JAkHrN*bb7?f3-sxlW_XejdgA zj_@WVwz#`7NUc*QM{Z(NYJ37V=v|9bb-uH4lSt=@gqoh86@*P{>Qe8^X$E`&x${yp z+V!G4C6JXNx^Uu98!hS+VrBM8$m2}dr7rRw+>Y(jF&C^>UqTbh3!f-i>eVDw{wWyC zf`!db_O+_)BQs{p#boeXz(ZH?its#{ZWywI$Dp>*rsV< zl*5Vs7W@`Q^ExYKRT$s^ns-}XJwszlh9k@l!P$viy~=zgQt^a=_Ae7C?%w{Kb){^P zSP}tncTyOX%_K{=kB5Tl=277QYcUPUQwTjHq=Z}){y1tIU1|s|jw4P=bGZEqg{t*) zWN%z6df&gBk%a=|Qc!{h$np6wbdxY+s(f`<{rtMDXu@^3OsdQeO}bkEay{}ULUMt| zjeI17#rmziZzvq)y6$^Ec~$Y4k+T9(-M$C#o7h))eBYoMhVCF|-ZDL^rU->Vx4;9{ z{u(pAZHF7^Owg&o*-s4n_NpCxKdn3bt;UlFtpdgM#Fn^Bb%jvAbL8XaiCkjvG zUr*k4Hz{NQ_P0nOWQ9HCvrEaYP#B3`aHb$rnzP`m`Ii2Y0a8+eOq$)GQS>FlotWF_ zq@RJHO}2zsJTS(xs&}QAk~>QG5}NF_Z{pu{O{<(AQLO#tDIu}*HUjPG#1y;!Yk{nw zU9M%FX@piLSA%h4p7ux1EYAR+6L^4+-p?Pq&UoZfJK<>Hk&!7iQFxoK+ITR*Bo%^S zH1fBi$60)=6x59xhcuHI*V1H`fM@l{9!HV4X9VHNTiTd)B3K$6()beMPU-{|z(oQ9 z*E~25oru9J)8=agmGh*+MY0Pnm#>J*3JDBWBfvP}sGF&O1K@D@(Y_r=KL4at$nz=a zTin#|Cv$4Lp@+`&o;ddyRFr-gjCx%!qMIXP*{sKE1@QGOese>fhSk5loF5g!a#uHB z$c}Q3%#z?vmYn&3S5Tw4J3x=yrE4d(ggxHM`Sv~BG=&j*#fJTjaxp)ot|41Pu}C}D za@_d(+=6cE0P`8x2eb{s5CmcPcWi!N|y56PW*D%hlha^wB}|YjCxE z8x+E&C(Oy;v#oCvP&o`0t;UisQ~GeKcH?xWduP34wZUK%YX(G*b!AIwq=-TD?WcuL z^H5}f>T0Zx+b&VBSdcghB6+CsKN7kuPDOn)L4kN6BI)V?Y&jjd(=R$;=9v+*y>H57x8Os;=TnK?4AGX(^&^j{^l9W$T<-k64bqu~bDr}g%L-z}azTf#`r|Gn!Z?X+*kqB;9OJl=mtqnCk5X>LO zulv|wY@Tw@Ed^yRV5fLVXjUfky<-I1?H+t&mwuZL5gH`4Vrnt4uvQT5dg;==0&1i^ z6Qh4Ari+);UP1ep{5p#PYsThK2p4u*Jc}NuPI1Mu3BG)EvE=wRiB`mZsCl%F<^6jqBz_eFnfK)o416V z3@~7oOYMF7@aacQ^Y*aRGn2)^#S9!8`wNC~1goy%E&0Ah0vXSx70?O#$3P8Io6CDW z62L(6T<}K?*gv>h^9FQ>YVUkS-ZaK#nMt>_>!^pRem2*(mrQ>hiqkYHw`d(|~AJzdv`*<~+7T?f$BF&J z_KC~x&>TnuW&loe?gVuXRLkN`vU=A7Q5nHQ6H|u7=ih2gOY;ej6Ln-VzgOL5$b>Wk zQe&1Tc`xIyWJ9wYum|FY~&HPMH$)#Khm93f#g zi&sUzca(qhhKunhhD|F)4Bo)$?tKt9_}hCo%KZV}@O)b0u+IZ7aR@c8Ba7t1 zbX+O4DAn2yjk;WQYdiWO<} zVx|oNDsT%=&4fwA4O)ASL<(%oJdBL~;NnpKz~xEF6&a<4vS(ITpM3~3TR?q`xJfE| zyQ_4dr@oRry;GNtqMvGl7`S`-psUKbZM@m0zk5!kzH0(jU+q>CfUZ-jQ(;>HmN)8K z1I7{sdA`i86G44Z=7vm`c);p}kyWPWbUXE=O*Jgk>`X*K3on&+;7*k>ZAdvwrn5K{ zWoVUemD~!Nf8@wPDJmL{Z4`Iy*X~)=!)NMD0z=UMRQ$~Uv4hb66)>FhUjZ~@7dEhi zqVzu5#boXZX!#&&?{t728cIgSPsKGd$;dKzK8{Y3_uy((+N5MPe74n>?jiB}Jtjh8 z30TVv%pxmvqo07DsD5f-z#sl_&rVukHC#c297d`N6JBLdSUP8*$>0qZWp8@dbJM^b z71E#RDCFq9c|IP1lOrXM4zlM@ad~*3JRIwP$uX9=^k8G7SYMa%-A+@joyvK11QM@+UAp<9Nl} ze3T@ewLc$`e)P4s9$8i;Cnx8Z9=%aV!)U-KBEbI0EeQD zaYlqXl79TU2sWAD;}riWwyC^v{SYTv`ZMX8S&Q%4(Mj$iDbOo8qRI>im)ZaY=EW;iH}*%3BKy@SKt`pUTjF z8Iw4%4_+Ua?Y@96$px0{A~{I$(HfgZwOL?ZJ|vIz1@)gPjQou4aa()lQEgibFYHPK z+&dVD=Ga-^8B}PEyyAnwfE_jbd{~(%y9T=xjl4&10u}Pd$DhHd|9uSq!1-zStMili zA38tT|K9m2^6xl50g4d7`3WKPPdPs^2!W0|i9?590REff`^&?2oaPrk+udBPtS12a zH`@4$o2@DSPY%wfxjSsrb~o*HZ7a^wfxm#rRAQW&A0JC`&HH^Zzy9wTTq?lx@mdOg zhN5=WgSI(Jy~~uUZA=(VL++n-7M<1h=SN<{8N^Xo2D34R%mPr5e+9F97{`%sP{Yk5 zJVg!5>NUDu;rl6Ix%@|7?~ptncP+t*#P-o+*Uu;5dZU&led|iA zQ9>q6IpxGS*dx1g_P*%h^OmX%0Rg-dqdB)u-rK$gWc66;zY73Wb0#2Bt4R=lMokh9 z_*UuDiB8mz>3jt$ju$eHgmuL)NyH&%%k$}}66GjM0i44&!Npm8$mTr~Fa|@dAZK>p zfR9q6cMR#S2#}&I(|tOu$s?aT)kb~AEgA7|pa`bLP;+^X0bhf%*L^-T_asz zTc4?qL=}e*!!~MxA;6NcgS8;{L($=OESp zI)bwtzj69e(0v?M0DuM>Hq_J3dzf!dueh-#(7#`baps!;2_GQzEv%B3*(H}Ki4U~EXvds#A{MTjt`tL+k zuR*&w1Ol_86(o|A0KjV0;#$M3g#vS`WFaM%5Vzs>UuIvdh4FRO(FCc&<4k4nLru;$ z+z*{_H_$D!QDZF^+glPgX6N?u`dji8VR#uLKqN#|N3aQvw*@jf!;6H%3rP%d^W6D- zDwcM_QdL>y-WbP19Jlt0G-uM~(xCnEb(=~)(1nL@f0w;~3nuzuoWIGXe-k{?vAaGG z2?+2B)eka6!=V^lmdre)VQk>jm58%~HU(;25G5tKAb@>ny4XaU*@fDbDtaup6}h~1 z)2>|u1(}tjd1mE@7RiI9p^Wi#30JQmmYX{GYmJfdNN(s&Ds7MLa1d>hWBX}Y!4B@V94^f`1QQxYg5v7_dz2gY^;Hb#|FM#IqJueWJIM2E>`7 z@%*plC)(UgcP843bF~0XGGL?( zY&|oDwpPAF-0;7VK;G*^px${okTj42)n>wkWWO@zR$K@XHVt0tw{@P%`~s@FSs0|U z>3jSXwZfUS?vX+jmK>B}EN%RJ2$O1alfVED7wxbmC-nFW$k${q$7+T1W(t6!$dh7h z2cZ@xr(@xh%?eITOw;ROV_-E2Ir+&)hfFTdejv6MDJ*U@?HnOBnH0fEB+pJNDl`px zIilX00c#ZR2nU_b`T7n1;PjvA(_c=Xj%?gWiE5Ku=d;x7LwvBerITINQ`*P1s2pcAVBfWJKiDXJjRr(+77+RbZr|C|r?)8LLJbMt?ygV>SoXbvh|hXW`02`9lxzK|51yqTpc?gWO^XIj zmZhxGoUJu1EXMY>C;dp~hT`!Lxw?Dw0IE$$gg8FpYHo9F<{r$Q-*wuA2N5sC+Cqf} zz&B@aF>0jItB#0nVNut>6Y_>5RGe}{u>N!`24?|@6A+-&GA|D(@-SSYXI&r_Q7W$~ zN#%d3`CK!24C#`hsIQ33NVFl|cQ`w(Q#+L_k#E!2GQt!KyyJiP&iPCsz1l&^?9D)a zw0F!-o2q5eXC?Cu5i?6cgo|Hxn+*=h+e8DSx?~2>0a@xG@#RkE`ZU+gayCRq_5;gA z^E6#(9v##TliCl;sB%I|CT$`$A7^wzgkWDlr38lF-I}1|E$OK~_NI6y(wTV1RMQev zDnV@(MhyKm1q2}_D&6_>1*Rpm~73jhAqcOWHoAw`)}_`0`wrE z?z3%vF9y|kzX@$zZyA2egS#|MXMWG)F~~|^0*L8I#D5L$@{DY7EA6k9!awrx7r)e) z-CuI1>u#r@- zAi7X2LZIIlV<81Ka68GG+T*oQ;LyNDCjqVR&R=a}N(pMQoWu_TAbQnN<1yc(`HOV_ z!R3D=p8P)`>-tx%qA35Y@=5r&9grI6;SR{j8g->yb)_EW<{5n+w?oKzx;4GwLpjsj z43@MKwmVzaV$r%+aC!IDH-G=n8$bR2>j`wVZ-6aKhrAkDW}brjNl{sGa)uCMDVeYJ zwPpYq;H!6kRG{`&&YsEkhsEZ)j6MC$=&8E`tDfKq&ihC5P+H~?uWQTF7zOHNqC7eAVBLYSPM8Aka0F0Qh{hS&lIP_xVJ25CWEqzem&BFsW^bGgBp@E}6X>?IGi4uNc)NuQxvWLn7Qm`=Man`+&b!jPp}7)13VmC% zBjj|=$+^wG=z;be@^!aQ>PbAa_cS&m3Sb8pJDGfaeo>YKRB>Ya+my<^bX8sn4d4a&Y2 z$A$35g1_91n>HJh>&?;`3bt%szGMu4v@U3>tkwjgZ+{FDh%H-QhCC`oGA(PmGfwPu&ECQk(;)Za+XjSSi>0x}n z>v8oKL0F7}rcYwr_0VH}fpSSUg8}MDlafpXkGBvurOKwGr$*Bzk&uZ?!^grh(_3ih z2{keRwIxjyt1DVI;_SfNBjMjV8I|=sgl7Mm`EB>&E{{j)gKM+;_UXleaYfcg&A3Pp7w2EKe__1u1zI*OqPKD&EPYGP6nut=h zXQYcOwh|ADu6;h*b?LDxpY>^M|2xgD@fg)xF|J<`b=5!XkCd& zH95U=J9}|~!&cQYJs@MMPO#)mNDtRk4!`4v-MR49KB}^Z<_Ep`JEr3k72~4-Wt603 zV*f9S-yeyihh3P2{f~dmyHed9Yip79neBb*o!@OZOCzT^1_|g%fJ;fKQL&}glm0|F zK`yCH98PF%fnOklM0cVMpAiPMxhHR)q(p*WMm9R`Mv&6i`d~dL)OEs`O%zA241cRt zFKO81nD)^ss3vDNE)lO&dd`0zZ#hwt{xa_RXBsuJwj1rs)5HC3Rx>m;+|ng z(*B5ztcRdHRxT3aqQ_XM8$@%wKg8V!67U(lb>`KMPkMTKG1xjm@mwCEZ$#2Zd||R< zx|W10R$UfeZWvKZ;mE-O=PS})H%!;_eR3nN9PL0i(;VMVc%wTb$`}g(y@W9vqz*4m ze5M%`5*lWDA;u=#W}o`L#(buA+*CQcY3^JsTVX_rC)|XE=j*SL@XeJ>t8X-oF?wr; zw3{yQRHUPeO|!{uXTtr(ddQlY_%Yn%`T6G`WkNojcqZdfE5W}l6+d>Pz~-7Oxj(19 zjB|fwSbfP^IbmWC$^4_^l zN`3c&ngb%44b~gGn5ojJGQsHBSzJ)^&aoir^w0p0F3Y82p~OqNGusV&06|XgT9oXJ z@G;v|2fc+LCz!E<`RxVqc#R!+eXJh+LXL~0UGKg^YhW{gP+XnUT4^p|@$Z8i`cW^dYx zFK^YS4%-O4Hk(D+I_I-Rar-WRviUV^cu8@?SOXbyCC&twnEpHn!cWGb0h04htwBhH zjG+8c2zIJ71(E@a`ITA;eV&=#rd9BrvpKfc^BGzv`X`ogk#^zH{<9AslyGreyN@4f zehG)HVb%*P zij9ehgRBis&9DNlW(U*pb=f=CwnTEfneF@+*yj=?s_tJv1J*EW8fw%;E8y)3?QWt~ zYC9|oW)gM%2JX=&Ye|v>m1uc+&Y}e^myiXKl$Te`HRk}n1=jzb$M5pT;#+CP{|%+t zx7|DNeMrvpO&q^oZ*rRV8x~+N*V^Y_kvJ5}e=Yf3e-{7{jbEj9{ZABc&+j!(NA7@n z;mS@9(+RE(=$0wAH~j)4UahuJbg&>wLB$aER#MA1lwcHdI9B$UEt9!|-I;G>8$R-Z zwrWB$;QR%3I6z)WBdHT{IAYu>I7TN!4faVi73xX8d1j-N;FC!tC3;WA2L|{5BLBT+ z+`i|JXaDeXHMH*6*Bq3%dr0T~zCm0l;Bt@JWM&Hq1G;a*92nEMK8Z4UR~bAkhgtI~Rc~!wH{67~8gY*X1rBL0zbf_n zI@1VA6Z=21Li=qx@aL}n6;<{5i`5Myu6)8;!ueX`6VkoO=*r^*$Y6og)*$V;oP6^B zVL|4%J`27Mh8&@j#n1aGV_0-i^{9x5WWn(XC+S5+_SFxI%OZ*EN#xyOG2DGEx3^^DW^IIS=6V1tDbT}`tt1+`!;MD=etI3MvqkEX8 zr2FrBnD+VF*|CpBoJTpH4<1V+lhQBU;`iH<aAp6bN}Ez-d}-YX^UIgrNm?&oMw9-U=G8~8GFmF)l2F#K%a`ak{jM`+ zPOO4-)W83YZiN?IA#0;JWVMr(ZE<-^o{>>7y*rVSwOUHznH{pGl$V&u_o%4ZorwaW zw{N4q<0Q)_YGuXqxS_c=bz^1gtY0JI=1TZSG=q(V2x$wvm>)n?Jz>aSHE?^5;mpR- zkE^G|4M+6eY9Bl}cVKv(-S61_JRRO{_T-F0sEP{Y=D=CBj8AVn3))*b4}AMf1G zv)D5<!TMt?TreD`7&MWC;x<;nNF4^V2KOLBB@e0E9=g;tY^D{S4Ra=5s>b*9nq z$k{qA_j3gd*=i4(q=a^a*8P-**Og0Tmy4YM&~HPNBb+j-p-fS2evd&_x*l0}_zOCy z-l&SW*cIV1Ms9sg=)=^Hws?zNQFTb;bL z-3Fh0kh9_H`uN$!6eedpl`@iq+0pI0^JpZxzLE-7`wyxcle93{8z(lGaJ(%u$mku^L*;i!M zz8a6+j7EACPB2LE|LDO#x-@h1-v|xUA2R2M5R#8%Fd3P3P(@WE(NWz|Jz`PaWM5+N;nLmqHfiVKPOQU0iBhk;ZM%k75$N98vCf8is9 zj81RR7U<~5JFCbG{7ti=4;(f3w;}MTOSdt5lkGJ`9^ZJ>onhKntC?Hu8Uy(4|NC~e{@fV-Tc|%}wEkQ0Ke#%^t$r}W^LUB()26)ZNq3WiDR*rW zw|cje&9$apg&$m-O-_WjzsL;N&Ub6{&Pjo|gstM^F<^Yy0GTfmTPk6~e{A~jG}EcN zs9*L`l&&~dkbXR#>W9p|a_nKZ=Q9ceA02iRH=SaMgzbVj+Ku`zpgUHuwS?S~A$HD! zhDGv@WZTb$noYH3fORK6`;0^cg*MNPn$1C#s**FVCFcWJQTe6zrkK=)y}9Nn(!pZl z2mrQ2XDM-dPYEY}Lo`Cn&}V+o8KvKQ3z7 z2}8W0@-T9uNHg1~$9DJM?}dHji+ALXd{m*=UG6cSHY{$Rhg|LJNpydhDLge~Ejam+ zhDl4?>Ub+Df46ObbT?$%yos^0!Yqs>HJFCwY>>iu0~ieBHx(7+Z*jqYf?6j`>&*-6 z>+;9UAn~*Wmk2?72n1J7w4UUyfk_LL+uK0+1v&2>0bc=8{=t{|`;Y#8I{d#M|3AL_ zugnnter$Yq7lR$ok5L8l1~+7E6p9sM`>JYo;7)QVONWU!g@axXMT;CO724QOUZ9xK zoVYr&(0`sl&(o3Hc>7zplYbrH3f=43k`bnS-T7L`vC|qN( zTBaOV($eeO>VE89UPqxrMeS5%i%B|d%^qQNf&&nPn3ad|Ca%bX}HVnDTjo( z;e3`KcaNoKe$26zVA~2kK>buq4fxCe{_eK*3&Gw(WQpzvn35;|-s4bQ3p$ z^muc`UzQJV&8J}Qm4#@kl4UXMY{Eo(coU86)S)$qW1nI%%aVo|d^R-5$>$5`>09wP zP5Y)i!z`2!3S>H3!xg4rHG~+Z*n2Z}y5aMK`0y%Tam$O~_fF%S)RT-XPx2 znL6u>{xOr*Z3?JV9uEH8$^Y1!%(-~qvh65t>-5>> z3N0tY0GRipL4J-PKO6@bwjH5MeZS7nQqB`0SXA(2kQwqRUvPZXg$T0?yAfjGph8|v zBvY>Jb4fIanp1fuNusr*=*hKqW-$H|`+K&P9#lm>^Z^SUXB(mkLNZu7ILU||KF#J^ zYi=2F?;uTO6|zPfPVf0-{}+{`a;2(1Wi&7+BB^Vm!!s&=48@B_3oCVQrEsFq@Rp^` zXM!A#p5Tj$V3zh5EH4CGvOcCv70o6+OGIedygGE#|L2br|Jc_@`OFrb`I6$4+F2Ew z(fA9)p^rhTKPgoI`ILVDhO2rnJTu!sOQB@(=)l=*2#mSKCJo80P%31id4E&7At_jN zp~jV1sc4NbU_S`{C^usXo|l&F(4OIZq*&IIEM~ce4+tM6R73Y!DuOx&VZA;c$%P#n zpR5FDPAn2LB$!(fvz$=x{k&u#$l5XklPH9lOMMCKg>6S(s=?3YLkXE|)T&Tvf z{~?(Q%LqeIc@)N#{#|hV$WTI227=saAjsDrf-b-*-%SW|W`UqBJqY6c1VKc0$@K~^ zzy)LjDRCHd3;!>@DK7?`L2;6l5k*->CcuW+Wx5G7z{8LvOjy}=VezbaJS=sP(x6cd=w%(_>0|kRW ziHCR`l;97q9Vr4F_H?iaQ-MP^R_S5*WogX+pD(kqDt_kBZDPj3F*kT8W@M0=m9@OL z7kO}C*JD&c=Ea;K9SHti+t5J8%d4>?PD`123wq4P`c$I|f?VC*GZk}Qy{@rJ7%9|L z{EXih|5POBRov3gpPx^fVK8a|jDVLJ_xVsM6^TelLT%>jKkqs^Idzojw+}aac_`=0 zBgo3iwy|PhU_^N2-;70ugtV@9N7Q2!JC4> zxYEk<^7oN3AG}}PZ{H%uiT(?mX3{!BUm3wOUv44^||q+ z0q1Fg2{fJz?__%6l>5`RK&Hiw(j(1qNE&s3z}rtGd2$R`c)`vj**4s{Ws8| z5W~9>J<`;)wC#g~&t^~ckHdp|j>TT? zA4iIRj~e0E0x^sK_Du)gH<3W)5wQr8&L5!Je)#2F0|SGlot@;LZm0W;K`}8g)62Lx z(FpK+mB26^93KxHkm>5`!p&j=Hw$~bIzhw)J0;~|2RcbKabJFD7u>Sv2H-{de-`}x zt!DW1jxz;+E%qE(?6>dHUu*U!#Z4o8D!`@?&^z6me=k985cD$pqxXyYkNcU`)kK7}|KD8n$s?JOLj*r5_9i3x0?g{SC~3*r21mc};Lr za1ZLIbR6)P@Bj;!^Y=Bx zcisonMd{(u;wTVO)3$U9Hk=|rTayK?V1U9y2{=X{#e6GUFCB2by=fAj;^Cdn@+p-& zl*Tk78`5oroz;cCht0QDlYV)BMuWEY@Zpk19-+J2o0pxx*D&iBI}35icnKprI-b+% zG}5^{{q)tCC|tX64DcuKnEi5#2q9m1<{p#PX+@50Jk!^mR+#fSLoLNyOm|nI9sjKI z&|1^;-PT01BfkwL8@BYYMEf#c9;-py5tH_8qdApw$!h_*4x#Udd-EPlug_7|pXmf- z|1c`v2v6d|FvYSGS-r4vpFh0udtJ4&?svK`hL(0UFR5h^Py^VQwo zBkBIKhuL|=gK^*Mw0Y*{Iw%Tb>e{x9f^aYq+0t@bD=IBmniP*?R6f^9vRs5E@j4{GW;hVAWw8q&;HWqES>-ynlK2c>!%^`m^BYC#F!kJe|Y! zd1}{_rGt<$$hRhSfTO@yO0~566TM);ZlQ9<3!P^7r__b$0f>xK*6*sTIl*toZx0E< zawE`4%*}r6h0;z@9qc!}Nl5je|4nj%MT`aIYn3;SFsS9;zhfLBO(W7$Du(_|U319f zHRmmDt+KNs-~R5bkNuAy#8nmxu+mF%ZU@AMlOP1>!fF4VkIOFJF0o(D{yVK_DCtdZ zhg;R8kgt2SrNPl{V7mB6EIO46|KT6!E%r)wR2NvjRYoNr-BByyUGs;mw&RTc*>-hNigR5*- zESp(hjWpNCJm*g#z01^V;8rE>;c@gT!9ZYc*R*0Uqw&ZD4i%wM9Voa7W>bsx!ESFwMoHR8>;J z8B8^%b8CKd!m8HrkQ+MHDmvW7#?~1b&GL<}I4>gPguJGB56qM)?p%839v{}Z?;?9^ zQXoN_m+ER&$5!#nj;Svk$y;Y#T1Q6_W4b(p(AUT+kL&1nG58{3vDiL z4}UE#nc+|E=)_3tOu+bPcRsymfPtK38 zFuGoxJ=k)l^sSOzI<}Y^=QjO5Cxj2?H&pg)lOkE*jlyp2%Z#sI3~8yJJh=;%S=`9c zy)H{vFdUxhAQm+2m1{x&mH@oT*W=WWE!}&0I0ZcLa79woFh_1**HgaXPE%Cyw(YIW92ch-_{E9O10o{s zL63wl$h-nQgT}{|tG9Wpe&H7cMNiolM5IdZ?_Hz3beQa!C*agBFgbUW+FzNlY;$SS z;H>a!Vc%dz8}N-0^P#Tm%50=(4LRyTRG7HSwiUy*^Y^W)jdK$g6S-^h01P6;_mlqLt8edjbV}hI z9^i28PZx5X#)G8G)7`1F*V#O-cHprG%k`y##-hk~Q*7w!!YPPVyDmQ7DVA~Dmr@jc zb$z#C+VKFjZAeFGCnk^1!ZfU&voK4xnB=U;5+(KxQ{kbGLmgQb&0R!^%LWebvnjC% zPR8(wM&iq}5Dj+gmed6UK@t$;Rfl`@Jg~@H!77KK4TiX-d4*Gn#(i;2(Uimqgly*$ zo%(e-NXWB|T^jR>7}C?t1=4 zn^!hjASiB|OaDg)q-;B?YBn>mej1Tv|Fb1@t}QK>SXp}j&35r7Y}W%Dk|33w8E(>v z-#_mAu;{-_b8oIz8Xw18@0}R3X6*{LzDLKDpOcF>3S?<%S(JDibHKZ_A?k`t6ve9K zgP%xCbj2}|{uUvy>wWZ8h^@c3gJ>vzm)adKr_^mdU1XIMhC9$gi%--5-w7lk<-}I7 zM8K?yPZi|-qM7|Deb6xoYbz=(H+;&yDCkvMN!~9slI|okWSlGv8-vrMPx?&(iu{CE&Tg(A0gf zpGURhTHDnGqIJaQ%29?=ZN91r58lXRd|Y?=PlSf)azjju8z7dxK3??2Vq|1gP!)be zIo6F7f$1QM8?c&31wl16q6cff%?UbVZCT~-�f!W@+9sm-A3Rt@}A%5;tk=5dP5b zS>BK~zDcI-WGzA{5o5uW^TspLmHCD$=a>8>6GK(D%9S+tluMcl4jaQKW0~?kNOwx5 zne&SuSI$+4IHrF!iSzRIayL469HUXsaW}EHj$mzX?r4&twOjw{!j#DWaIA$QAblbX z$9esc!0xyX_i0dqBd6*e)HAoosV%N(AmwFZi&j5TNqUZARBnE@=(DK5xhdI3{RL0l ztI&A~6$b~8gRQ46j)GCm@A6cvJoDlShvOY@U$2Bw=#f(_vtl-j>eWS-&J-yXvNie5 z^Cw7-ZykDbCofg*CPhV^U7eC=1X)&5pbntnmfXy_y z22HgxOJcdL%_RqYjm35yzqpVWpHTz9<>{xVn2+kn+_ZNOV`1~S7o!mrH=G4LYOEH? z>NrHq1PorqNghV#W$%EiP2cZYSy4fQ(v2%=KJnW4Pe+NtXhP9Qe(suUz0uhN=&4(2MbjE4)lKIfRw%9gueL{_`0D60r{m2|AGbP68cry>s%4uXDD8ARV85Bn z?8tPsmb2KcQcsxl=;y-srR|Ny;O; z7r|!dFjlVQ({^}UAX^|~xfq#J#L8+V+nFx&8TX0*ZY|Pv5_w;K(d+l#?=-BHX;Yr2 z*<@-OZZ94x=@0u`R4aUMR4*_>bF!K0-Q2e{H%Bv#TVHVfd5AgWlX50D{p>YM@dy00 zgK}GK;6sxeoK&_cCUT-v`F$Sms71wwH1#qW^{5(sI~ zo*K6xwE-X4=aUd3wkseCW{3&1)?4p1H`8gYgp>ztqhG7BUd7Wzek|2lJ(+(%_QD-E z#Yy?2fajSnN_mt*QzHA^*5pg|AhuvR*T4;C9fP4(s?E<-Jn#F~&aO)b+O|`9-ovst zrt(lg!gUv##;qU%&Rvx+J^_^EMxT9@3kk{L!4_Id)6U?C ze!XsG9j3Qxi^1-dR!Q_MOZ1}v#tGyFN_MvBiG>$_h@ z7A*p_V`Ys~@Ai~r>P?>_87%g;EF^}Fzq z;V+{AmfLim4`7UbeKqS22?4*#nT!94)t;kf2emV%)|CuHFzmSXRbXwz;g@@i{pwY?Aji_a^a?3OIT4wSAJ8*a zf!^#1e$9-t3R^)>khx5Zz@t&+GTudpP5|rIi{M z{F{QtEHuOqnUhOFmjl;?(cP`z8SH3vYS+}aJIIoD@`PRhtl&?9)k1>v&Hrb z0a`@qfBUA}g-)qHR>5Fc?Hg`qIqey?>oG|%d?83`HI`Aw6&Q$y8T=TI8gs{griF@f zbB>pC;rUkc%^tjVjW5zEJ?8I?eHLK7t+u|Eo$cM^ksmRKbY!^@%lM3b*;CK<)-d+<;Bp0U3 zU|^?Qms}hlbw$VI*&mIogZ%mt2$)XW)01?p4>FrAA8KI>2B#5~c0>;QwfU5Rk{n*V zgPIiO);8#?uyLFEqhdDKpPS@GuN!b~chEZn7;!Tk49v|#E=rt-n<|N}S{@cT9_ey! z^yVuJ5Tnz{H(7Lz1y)&1A}Nf#kbtw!a|mdOfrJb;77ZgYpm1Va!hSJ2W(OkP<{O;>$R%O=0U2)^;D`nxatH?>tU zZynQcaEJj?LkS?BZe}T;JCHP~Anvh6(!Nnamuq~wwYg&&0h5^@06#*nC1A1G3Hzlz zFe8prijK@8FXAeIywF5msP5RoeBzlePP=F$wz8bV@s+dCDh=E+dGx+j!zy14n;y6Y%LOwD| z%3frEaJqf{wc2gJGtCNpEjR2Q&XpmpvYFS|DGLs!3!Cncj73Qn^bu&E0=THor}UqC zrlzzms4#aaS=qq@&S?78)2Goi0G6$?n0N(8Tz}v7Uc?2gL$1hbSHwt-wPtzyBg)>f znHuY`t_aewhse?2%Hc#xx!bJk2Elq-y_pycLtCMqwW!p57U8Dnyaiz=v!K1czAfE zpd~6Zh&nj1$)*WJ@V(hv`tdCW6$4|8`^{Lc%)#Ly-ha~+?=1+P=KWz1+^10@dXUsX zsJpp3ulucYxG`kv0GI^>IHImlr|=iq=YUfLnGRWhv3GMg_U^xC^cR;O>jbzwTHiMY zl0Os&+;Dgw@%~X6q;M+Z8SOt{o(ll;{l2XKhz)`N>yba}zdKRj*Z%WJ!sXvJZ1}bR zJd#%ZcZ~>s?LUv+KmJDqV1vGx^t}Ju&-EZUw~!OhbQi&A%oi2skod2vz?hC;-z!hb{k)47ma3?4>edBPQXr@DC$mW&?yAnwf`Xy_vW0df}?7Xu$^K*0ns zGT^NVcSk;K4<%rPAWqB4{t2X~Y;3sE(b14En7$^7$xU9DgkYk&USDt)sFg;3cp?>g z+6qVxR4#kmXoc(JDc!b{uW#>Er&4|F!@XVxLBwwQPq6om3Bjv?UpTHos7 zkYM+G!<$ZTd`ij@IANKkK%)aPpUq&bhrDLVj@y$@$4hl7?jU1+U2YG09P@2FQqb!H zpY*v6tUd6a{mG7cIYmgY1isY@HDwl$=NU`t3pYdv5K5wN5$|#gs#lreP~)OOUxB|_ zSXeL{PDe-;^oaze(CWc*JLKEZ0mCHYmf!3XgT{ zXW^NmVd$5jny}lOQIVegH3=hp3U31X3Ibe*HwR^=7Jw&y7cVX8ot>Yzf`B@d zCK!~G@{sVER(`E+8PF%xkTe;Oy)SZe|iH zBF8PAy0xEUc`r9^CW|$*3_3%<*XvqY6_sh%Sb;&03Z|Q46{bQQ{;Whx#^Znl#;2o5 zz4AVo&A^*cv9R2~i$RD4!Tl;8jr4G>Dk#i7PWQMS*D;~5ot<}mZq8}p;|l7LM__ye zuMYg)>lN#^kXM=vjFJSg?#Cs)d-v{rVj}vZ)pZ#!kf@QpaFutRueMbC^W&%V!M{I) zg+T|Q`dEzTXViLK)^xdn<@W_lkCzBS`o_jNt`|q2XMRl-s$rZ0&M|dmt?#48qV4s? zF*?Xc??M2tji3||&{-ujoR>QO4#wisYFbW1Lj$63rrmN|D3}0N^NiHgu;BRzr@(WF z0~Qz|U!$5Kl8gtDh=?e{5H!_Jo92o5sJOoJ&Av|cs#H7^PL1hcatQ8|S7u&O%*|(r zV6LM;o@WQb)~`a7Yt?L`C8*opZSuPx$&=dY=ffG&m5z|MZOIrK<85ysCjh_+j&C%T zc;?Fhbl#}b%@L95X7B6zvg@VRJ6a7c_aOOl15u~_1^)I^h23$Vl@7FO!>&d(n^Ds} zcCV+e%b<~w5eRzz{Q1>EJ9Z{N5l-|c;J|)nfce^X;)jCmzZ)Eksy{nFuf5%WUQnP? zNMp5FYcI0<37A|{`J;=2ot+TyJe8iMB0*UCGgamw2O=dc(r!?-<^TkycN+hNU+}zx#v&_29%6#y784ujs638Z?(Ri1Nir$%i{;3jeku(7>z;fz= zEKKnB3NM0$6L&2EuUrAa@PAHQ z<7jZVK6+7F42)crt3gSr1SBM=Uz@!yhrihB7E8|5Id1p|G!z#V4L7{8U4H#@G$$ZB z4DgsB4H-KppDNYu2C)VK0xQlxEiG-v-f%%mmsT#dWBjvHxz%^JMxR@q{q2>NmHUK* z$dK7YL7c`hGyAu1-!>wW`EB z8kt0YHsfBi4!wSlpY7e<;+wi^pB0}}pD(a|NXbco=VD5EvIr7M3_tpqTRKLv#Mv8j zfl2`R$y*Qw<#uu~gF7HlJb(-Aifj@WZG7k6n*)SecTwH9ous7due6zDPRay$A z(<$e_9~^>_CP?Rkd{EH?+3UvD)%8c)A}S^2SS#0E%Iv4{-dAV#z)ju(7MDwX(F#lv zunGc9dxl8RxR^#kB8xsE&@)6;822GU@ZbT0CQM9h<$I+m)D#J>gox`_??BqH~S0V-$1i7%+qk2BlYopaxx}l_Pyc>NFGYmtiC5)_JgoQ#H{15 z%)q%>5Ap+ICjp%3y2^ifI&S-Z%WWihV?+oZw7^h>Jya~&0`sQEdKMXY2(3m}oa3#D zz9SMaDd6c3xCM*>W~zW!;@ZR=Fsq(}%w$dEx$OcBL`z8T;^?P4pzZCBHWgmDAE83S zEj~VQ0Sb>l8i|6y5y(tLK+I6c68pq$pSdtaY-mmkiWM?Ej!e&W&^9VM`pedLcgwx6 z-TeymOovkMLL4@84`hYs zB)|xSm#pAU4lLYs&u!4;8Td_LzF#2!X#e(25~wzUgQ0&aE}k8~|65rI$OdD@LBs&^ z6HpSO0k_6Z8!fT4w})kFY8uO^hPAxBY!C#5CEq*Dxq|z(g0LQf)kxFm;^^28B2*_< zSa5K~TTpK#jMbnc-m2r_B*5(js=R~;|0e~?|041Hf6%Ycz$l}CTx4#5C69XV9>L`Z zNZIa!F5)RxTc~jJ@wLy-^LG>RM*)!*5Z~yVng*?OhJ{^k!eH6&EbVa^bCMkb$!LnW_6u?eHbSvC+=yBjc$&y3@Qxmj;~_r-tszcZN9Jp zq}i|sE=~d>{70F-Tx71P^+uP^xO#Y4?u^A@^78P6T+_i~yWyfad$;1yc-^y$i-M*S zl|n)-EiM14nGgIl?y&3*q==r5^3Zs}oYK7(nj79o$d2mB@81OotgNiOQ9x~ij2i;mE(a@mQ~HIUpC1sY#bl8MSlZfR zgFlD@k4LuqrI8j0rTs9MLNhJSN0*>dBIkF{E*JFrkoWXgAM=C|NF&CJHPtL}yG>Lm zuR*@YMx|byxwf{IQ1>crC#Uo%NA7ndIe%zvEq8f47y25in(-|+jU6lz-l6CsRUn`1 z^H5H5&dSU@*qUI3zNYZKu{&IsfqX&H{QC8$=?oIscUoEXw}oJ4FevALrBUvE1AmrS zRb;Qd^ANa;2ozbe?m(u!Vrf(P|(|oZEzZ;q&nBw)U>>{6$-K@2To)*dbshF zP2iPo4_UU{QmofXhlSWND1Ja-hL;~8X!yk(eK3Q+(dT}6wXC3X9}ka8T9{JxcWz?U zM5%6C99J&^yq!-a@PamWivF^Np3&ChWanG8iIQ;(m#wWWhwVbL9}b;3yl;l}f12^8 ziF<`ZMD%a*z(hsYTvyiD)&juzmGz2=f&8JTKc^I~)63SDmJZkGd`g@2YJP4Go@gE=cu^DcU=$lwSd^mvdcOf!~=c4Ghi3I`xr!xqf!fw5v7{EW|l9H03o{jws z%8AwKazi^iyRSg**?|=#!3^T?=3HInwE`wzg#Hoj zu>>ETEVrWoH-jP)h$+0*8`lXMu!T1;-|%Hx-{=)h%rZ#MfM$?q^u^ZpcG%lHD48HT zPM+}tzIe={E1cLMNXV#c_KR&6NEHl%gpF7nuLt8^-I8=7WTPoDl)OvtZKluHdZIc{mZc$ND zeUp+%=K$(}kM9pKkaCKM3g17Eg_M8!A`TLD`_19U8T8}BMsTNS-O1-+iR##zX z2eTAp?4K&=IrzTK0KCD!K*P+8?y?{O;ZJ}vp=|i3VPr&I@4QWOq+)oO_YK)OW2;oJ=x1u|7kK|w(p3mT9H z;NU2buYmOiGJGm}dbA`i>(Pb+LNc;`*nt0^xZLXpy#MmX2Cedhrg+5 z()=(Y&14968EGw_C94u!XoMZL93&DJmsG!c*y?>|da3%L;=}yDPmx%fH~&bvl*iHTB1XpLN$9mJOl%c&DLwrW^^+%$ zSy<#tEkEUlgjw2Kv{rLFs;(r#q>}`QN&Rkm4+Q0(tG%(ByAL#;4C~*3qA}A3roVM0 z$?bAw7Pw)3?ZG$mrO(rU_VYo^=0auCOfz5r4ZmdqK*J(6CT(hk;|Y*EYSvh_*4nRv zawl(!^X=QW51!kQ5t$D?(bA4{m~T99St^wwg&@)0P>}Aq*f~0jD~^&TqYHv`dFT#A z`9zJ?>g@S+ofkIK(+JHS&VUDWmL<9^fwJ?B2PeClkWgnR5Xc-W)z&JD7f1(Aitr0VvLx7FwrGO4>Fh@+SVC=mJh_^Ma?)Sh)#`O-ta2V;45 zOG^SyKj)q@+8U3tzF!8I1Xhdib-)j+wlfMA{VQyZn2nB(DLRd+*SV)xhPx!N`CvpS z{LBWQkSUSMCl1Vr^Jvk^p41c-t~oExH{r9}oH5noU;836DZECzy0oZn3GNOV&X zq=)<^TCsX(Wzi%dI1nZU7jDV1KqT)6E%uw=)Ij1%Y%|DQd7t$1KE&d^gLK8BUoqHg zQf|-*xP$2BYdB!S)6$O&IUQ~J%Rb}_yAFnBD$rN}R3jiO%P??5OiZk8VBp@(%}w$S zR}hPEmX=zb0|9vzEw@n~lsp_pyEH^<`i-+Cn><1UejMLN8dV@uE27;8)l5nqJU}#uwK9(zuR}GLC zIG~b|kzo*&vH_Mw%+Xb+qyB7btMKZXX_KI6d+y%mbPm7GLjC7M0fe_>!_!#^8a39D zdG>Mm+3(^{xwyE-6w-iGgBP(^S68oP*ePku zj2z$`IR?=nM(MoPJm=tNl}auHgT2+Z&cg?M-m#O>pHSMd^nU*CtbKF)Y^QHJE7_0- zPQ!v(cJOOAqO^th-5r!uG&EdjuEB?>PnAhHOf_w3?i@A3a?OD!cj!|nm(J62`ZMMZ z+K$49EuazAVx6}%X&gfG2VyC#;34dhFIo1xiAc;kjbG<+s>^bu+@@`ZJ-l1pzwwbO;wuclET|lB49-d*wBgW;qh* z8W@m+!-v707$5b!Yvx~b`=Gr@bcg;($Z&2J^{4hy61tAsf9$iKPQi5wo8#peg#DV~ zXsbR#)dkPmc)+W{hoNm7`IxjVN5dKVI#!z(9L!yKc(cKrjK|=fSK;MYms$Nn_Y}~(uTgCk0X$?l zKi{cg`r<|#=PFHj7r?jK!hb5CNxs(9G;FVzL0zaN_CvYXij7CJdXQn5zYo^P0nN{Q zlO>lTyY&K1m*}&zZ*0cgZXfcA2;ivG~TJn#N7XwBq``yn(uT1g;-K zAtNEBOMQH1GS)qT52}F?juSIqMXXNwu5zR~(h0vPTU-A$fdHV&`qg6F+@9ejE?;fI znKI?GHUBV$*9GA{7s-CNy7@IVh)d-b$LNqylY7Yn0V`N!=lf`5#*gT;?50=L${ETk zgK2)?hLdxux~4QUC(5OHx1E&C^Hr6Ufv*F~EKji@bE$qO&Xp?akdV@704_tW zG;x_a*E0_U^)aym9}0o+4Vm8|w-H@z8`S1wG3$XmIi1QT7ngieo)ZBK5kC3X2bW_> zV1X4C6>XqQw!gi(#w;`kF~ZK#(J;o85N;QV95jv7ZrYC3@t-kgho#O5s{Y>BZmGjB zs=eEJlldqRZds||Kn>8af2)f+D}K`;`|+0{ZMq@Ku976jWp-Uz%KJS>dj|)xRWb7{4Ln@j z``#C^UB@^Zln0<$NNDQWf|xaz=k7;dAYRVJ;%YU}w4S{8DKl?hvG`?Pr1tnakL5zq-9XP@PrPr8xx5oj*&)3>=E{-9ZlVBm0z^nUkqrj~Vk|7I zPu%(+6bz|*qhcpGKy7gJb4+}rLIF;Jf$Eh7B=Y4VT%<+m(PkuEW*`x0NLT89cINr@ zk#rKS@0|?&=_V@WO)c-kNg2=Mf%lkvNm!RI+*=b;Ndp=Q$tp$iI7&1!ebo;}rR0h2 z)ti%VvcwUVmiLeXbMcXx*Cl+;pUh9iGb&|dAV;H}^QmJon6b<{TCN*nCa3-uhhw&y zpsTFID`54nm2OhiUTb}7J*s#~8LZiPJ4AP(C$Hi;Hk)({!_z@+;*`5V^z?$&?fgLa zHaa|zLA#z~rrI3)QE|)cHzitsLsP0jRHfjfi=wEJsZGX$59$0KH%#r07=%o89Nmat z+k>z(%fBk6(aDW^)`H@I6aeV>T#4=A`!pwm`2UuP+=7tRTv{2;Z zGwn~=KjCpMnMd_bXOc%?9sJtjkbEE+|)2R^kba0p!$}m)ImH zG%jG*bSQ0k;ku#LV;>7z`W+_)cc8s$F2iT5^I2hb+90I*U#~V(q-3QrD(GY+KeqOV%Ya=hZA=wFj-Z4h z&50X=?BlT8jd~pMNt}|+k66HJr)y5hl^bs_0+yN} zl3ef|Wk48eNLe`wN`8TQ6AdUtkfG@oLHugViAi@Ipn?QoI8$SZQo}P~s*r%gk4x=9 zG~3+WJ{|P>X7PwlhUB?unvVHli`U8slenN-W@8V)Xp6f$8NEv43v zZ&BILH(;3c%5OfuEf_Q>NCR%kuum|_In@KmzjkJC%X!jY5rD7ev{8g+7!X>MoU!G6 zz?)58{YpCErA;InQ<71)vRkc?-;^F6mzXHnWgl|Er*XY1 zM9kVkt8yfIU(;{6-M0KE2d8M|QogD!V&c$<6e~0#^SW$i+b>N2$_i+fcsu5UUmy)I z?yf3&gf_QT+Q`n9+nXdRR-+$Dr7Z+CcM$W?q%i1na&rxKF9e6{Q)nlP)k=Tgqu^4U z#=2sK_^PCZE_c4OW0J7R=j(V)Hswuzvx_K}*{*4$`_|;~#&F7KAnD%Lb7f67hNfo= z4@U}Zv0ZC!kn-B(NUoaa1+Ou4UgZ?m+JQ{CWiYMqS0$hK%7f-x{l)|Lqx^DSaSvRD zJ$Wqh9y&>&B}ksuPb8bfr&j|s_8sVC7rV3hIwSve2Bnr(L6()eI5kak7x>MIM1ozb z-7uu0y@2>UFLu7$ZCJVI{iPxA9MXOAEeF=@VV zpnK_JBhpca3ZJAY4bDQlGtTl2Cf1DrB%Lae@(UIY&XdPV@9s) zeSMd3JSnK_9%*}5?xWNfUg25Yk*H`EAY1)(+V@WDoR|=NB+?|X?YB5t)RC0^+%@J1 zS!jKN&sYURKFw8C7w~Z%SGt7yJySs8`gDT;9;m9!&`sKg+C0 z!B)yaIss?=a-@j-0|Ly+bSsR|;KB|ZDlwzwJvSgy=~X$NC)N95=W|tK@&sPyh(}SN zg<0mQ&FAn=UeyrVlb7_X0B?&Zp~>yBFc(0gf(!g)|E=@m8E3P5pmH!~jBm>; zWww|qu#SCj1Q+um+0G#@z7+`OCPDz$^Ygdc(C@s0uQaeSI7@B~kKMzG_nDcHN|U*t zH`Q3r=&w~w(5WyS(({Dp*iuk{&g2}-fDc=MA!3#}3noecVQBi(%fsmwv(o2+Sa2XU z`Ws7KE2p$R4kG#1o<9Gx@Z`o zL68M56MpiNczZZ8d)3}4#UO4``3s*LGLM&Us8;6GU%1})`^c>O75s8%D1kW8(=1O6 zVm#z?nyi;N_d{WQU1fv-yraM`v-o92iKH(`t49fTaBmwXEHbW2*dvP>2&gU8`7cBs zr@O7Yvm+9(-2Fy#`qE`n>Nn@gF=nc*)0U6bN_4tF0%`a2_mdYMH<;*kWME0XZP4^` z+8vd#4xzEmv=uj;utN!2Mq76C43kbhD)5eCDjOCLb_KcGFH1C<5P@E%6|kgf zt{ft_-rl@JUL>dZCC8R!9W$&y!6Vb!TE?!YouR#^r;JfIJ}+NQsVLHG=#CFesn+ zHq^@7A5-FuWQt;>^u3HA$uJ>Z*LTfqPE z<}GfHWCgu_)29g_a)n4h8FfwRVs-W!w`6Fl+5Tw}A0I#4Su!8I5YpYd#>rrrI5huh3NO?3)0dgh85EuGT=Z}I22FnD9>f z9TsI8TK{bDApH)I$%6u>q+C|_`5Lu4|DFttii(Y6D zH2`qcsIxAc4jd^^Vf>>(1L~!Cxa=LIw-0z6vb)NGN+Z*9s>C4Z6XTyx?BV1t zP-TLz*#=YEZ>}#pu|k6BGy^e-Go5dcm;N-glc{bwM-)Ht=Bt5w(;b^x?4 z5PtS@f=T1fJZl6X4M6;w?_gtLac%PFDAKpJw|9Cw`TYTXGqnr>i3MoYTCjHo9UUrQ zHHlM8Er(N;83qn`|88pmmpy@0-axRXm0QBM2cGNTBqSZB-2OKQLe6P1E>8*pKIRT+ zE5ZX{&;>GMAAo`k7R&b`CI*nEAD4M_bacu9jtBQ&rVkH6a+FY(eD|ucW)7Y z1(ePY_-nx{O|a8OEWOfjscsAA#w9CStxLFhJ2UB(i=o zJjPslgg_a?ZrFth2?2N%I9W6l6ck`R!|xTwfM`i@$(NC%iFr&zgA7o_&EbqYJ3Bk@ zofoK00pKh>2&7)$XJ#l_SXjgt+Xn^)m}1y{fsixi2iQ)er>6&VNZ}cEQSp9fzCspw zQ+uF_lK!(3N63@BLbG)Z{yT8~D;sP!0(KQyKf6RiMy}W=#tC7_yU0wiTx5R&Cs;vW zHC)z$j(384s@9YV29gU+p-b>s5dov>kIic@FRz4Toajx5Oy)$MQ+}oY62tC-?L2oV- zpGsAuGXEX;a>eNSt6I%{R`@?p=4ZOOxv}z4QO10XW6;nkOhtfiDiQ%FZD(vh!eZYL z1DZQ*(H4F-WJh`A_sZY1ilTjmf6v1C)W2uH{M7s(XTiN&@O!`fR1)p$`+F~(KXp6) zB1PGI$yNvm+kN=<9R1;-*FYGOJ5}d){`XozW*nUYrJPR-oHGyn?XidnK3;P2T8toO zM+Su%aBO7l@Et&U_r2JI>2Bc~t;y>M(&vPHRb+4pazgLWp9^3X0r+EVI&Df#41A>A zBMpSSU_TgtAcdNKjEiHO1fv|OUtCzw0c#x}taWxSz{?k3f&?2I&daw`QTEpGdz_f< zz#jsBbvk2>4onLZX-$Fwu;q(@fPg^|5J=;TN0CoVPyJDp_u9j0Q>}|XV;8FiwpX!C zIUJdt)r7l~md<15JRAQagO0+;nCni+jtuUHtB)@RO1&cy@u*ZrnDCrFlYsJT3naZpSQ%36no_j{zRzE_BD-(0bwJ^%ZFB4F|3nbb4O7yJ4c7p18HK@O+wUcq4glh=k_ z;W)t6|Ba2(y`baOd$#lS)u43}U~a(Hu>oHO-*xBDN70+0Iac0`g35`c=yB@CJ>*WDb+!XhG%`d6Kr{J@lrzPUrA_fMOp+wABQ|>nK zPyeT*#ABI_#!szAvjKrki%w%k4KEE12IthL@#;zU7h9&d_kR2cr!eh*`K4sRjTgDM zKG@Ne)vHSx;K{Pv_8%=K%B`hPfv73@XA?+egu~*=0qqf8w%^yPtG~dE(djLn>8U?a zprUb^3RZb5eEJ-~T4`i^ol&s%M8YQ1^fY?}Um7R_)gVYgQ30tn*S+C)UA8w=?Z$=N z3ztmoi``&rH}VxcF$Jj%oq9#=!NuVGY^~@2!Pr|zRkcQK-wQDarIi*zKtxbNT0ufW zN~DpHl2$@MkdhFPl2RI^C8Zk#5d`TDX({P$_~yd%JmVYRH^w{O^Vc~Z*zUFWTK7Hg zd0oG2PUmay9NLa*76Ek*MgO(!B%*0t*e20Zp-L{`2VFB)U?*Pw==r^f570x#(GF5UBq_oe5_+ZUv{W5H_;50D4|54{4 z?q;5EsC8^~rU2u~<8xz2FV8|23Ed*l$yh@r8zMi8M~sKEXh*A^{lJ_{>K$~o;gd&A zvkj)+jOc=*u3Ovu&4BWE25>L(DfMg2RM) zAAgnbfZcaJ0IV=()MQZSM&!aa0X_WMejVq~iM93V<|GeQiN)VVn26;@UjSSv`HRkw zbBG%>u%30ltKkaa6!lsj_PZ{DkBOwp#pU#gJrd))b@wg_1_p*k(9v2W&7P_H4U33` zU@7Qd`F~}Vm+j?sS?|HV=e&OwN`K*D?xklYU#f}(8D|7!(A>gu zUNkv1b#llSJ4dtXOjD8Mz~E4#ww7w4+3;0R>f1K=;lM__xJnDgb!bvmdwO_a!Z|De z&QwXS=KXW!Wt;-OOW-FZ$O^w&?2w9BTpQxT-loQS=;TE8x7S8AR9v<&(8=lekS{R) z9{4!7rEJ1%SUyc0{Ag^ve%NwTO+zCwN%ck%j-j1qK&3nAtdK*qx0|TasxeqT2GkF` zq2tgT8$1cD7*}AkBexqwj)7na z5dx+qt+zR#!28;`rlHJ2qvQuoX8#xE5VU{v@^~lQ(&<2DY2nY!fXx#;T?sr41aC>m zUHlTI(O!XK(VO<$x)nx2+Jn_&&k+v9eM>#J^sZGRv^&Ekzlf^bu$Ap6{PgIT-H zxoK8e3BGJ`2#wayDNaq5Nx z5C(6P8iNpoStZ@)-6aacd7JK;=H8&|9F#pT!S{dP@em7?{tF*e0yd2IeL?b~8wqQQ zEWXJF4|c5w6r-d9GNDjA$~1$^VAp!?S@LmzGVhC)9gR#?*85Lu(_XqFCdB@7Q5?cc zyCBc5^`~A!+(55lt9QdY-f#F2c>!OK&2$q&<2VqLqtWHj_qFq(vjo((_@r&x;&7Nn z+`RMfdvj#r?iKd9Fb-Y~#I3!2N9<3^LaE&rqli7tgD`rErzfL}s0ZS=CwpYW zT`(s2$ooiyHpp7tT|E0jvm)SvJ&isrr(QUt(893XUL>E0g5OC}Y-~fiQcDMlB<#;w z?2L}o&Gx0)>lB$t=P#K4xr{tmn`C&Lp=9!N+FG;P8vB;((?D40re<}X>o?{Q{I0ZB zWWCw@-0>U9;lWA`dcQ(%?5>8tSn|{7O@lyMY%IkX4FRew1|4p;<;LI8TyF&3n~>UB zdJfY-U*DriNaja6VUn%3kl73s)xB2;-2U~W9rt-(?Ox+AT=79o{4J#l2m+-HOH7TJ zQR0UYGLC%9H76)aFp=tACpMQzPWh$Ry&1h<_2!v3=X+JBhEjfg8gJ^pfw+N$FdoFU zz!mq|S>Vp%NEv=?mB2MVK5$eneG7=@c?{0`SaxXCB`W{w!`e41=-|nER_nfNy{h_p zbB^{3t5l{;&hXbO@lIVbr8zHGTn35+SlMw0^JHgz`ltm;aEF~8cYbxvrnW)@&~LWA zo7odqBN15t%?I~+KqDxM)5(py_3^d_o_)zaMWdWoe0`u6G}e5H8EfGmkN|`2A{o%5 z02#ZUC$#EFUfUq4H`qG6}=LB*3(``R%=#d0;4pxBc^)4`f4~U8z0oPcP@s`AYD;V z#!@nDvRZ#pp`L1#`?>0U_;bzagIlo5ju$M)gJ#`b3<77sg8j+}1AT?Mthuej2BX4K z5xl1?jcSUWmyMG>d7J~6^GSJfM{0vb8z&YuA&j7RDQ%FmH|GG{HNQ(Exec3t^KBI3 zwOpf{0`jr>t2OE>gf4(Db*dEjxf1vETOFw`3A|0xy0aO3Q^C1E2PICvQSY*1f^`KEh_!CIby`@rgRGHT`jO0);l%W{rE&3DK&4BL?~+?0mn@3XyY2ZMdlWbR4}| zJKVEDnPxa8@ZVsRm69T4e4@ZuO7y*o zTbX>KWxN~^;C!kKDXxkmCbDI&Sz6g!MmaFSZXCnh=Azs2;DM1$GEvTpvw0X&7=SD}zC&A$Mc; zjHGm1-8Kzj)C3;2Ad^hmhfsE7#q20Qz_lhYJw^*qIcK}bEb@jIJeHS>i)3%<%D`df z%14iK%e8y(1<}#cVx+ZuV(#(|ao$MZZd8<`%lef)_q47!NuMu_bpfj}KM+m>O7C2i zRQ17zN4O2*C>v;BbT$l-8VPg{^dt=;V)*#^C!rT2({>Tv?7N`av)cR1Fk#zD5haVF zLLgn#!5?BEHby7!p~BK_leh7*afvv*4_+Rl<9F)*!k?gs!o>v2kY;^X+fQCV4O z35YB&*y^eC)q!y+`)l%B(dl61u_S#kc^uD18hKra2;}Jyq`rQ<1yzd3bVJ2(+N$Xo z2GWt8$;0nxdj$O#hEr(iva*x}9)2=S>e_3^G`yF3sSLwR5Ox++)<)`~y2+x{H zvy{zoYw>#Jv6V_fTeUH|*TRmDxB;$|US%XV-#si5@rl)-(T-M~S*4H+mDV=OK|D$D zv%lc9HvOQ!k+N?Q7r{IfBrV=q!GD2o4Qzkk-i`HRTbV|b9;S}^21IW>hIOc9fA(H502Q5fHT^VQ%enr9u@WDgxaYj{t~Nn9OI zpJh`9r$MI+yU)PZQ);ureOsr@6MRQr5`GP870dROPFqiwhG^g?@0P@Zbq_CgSQlik z`o_ko-po%v@5=+pInyShb!m(?<9Y0LQ@h`jiK3etVZQ41Tr4T;9r-r~yT==(ZK$fY zI9hP4dvB=l%kmRUEq?oR2$(x2y5mL&z)OOfCP6};0Ihs(xaQN>Nn!9)vOE9vr#iXk zv+frWL52dcKnDj0lb^URz+MAZVQ!P>m=~}g=VZVOqS}t$q*)B#8w#VgxVF_p!7670 zHrB`bC-qHJUa7y<^cfTMyxyBOW-3|Lk)2r8(f!eH2&l{Zo(73P7KLOSiUs1bEZSd5 z#sUs$z}W^SpKrBaF*VvPhErpQ!0vTR_h_hwZ53Asl`=xif_I(1F5fASf8Hj(Lp2wZ z>nA_vQddavC^BGFMru#(T+82=-M2pGxT~hwp)LU63Egtv;emP$*R{6Oz&c3rLt4xP znCF?6NDttBtJ-ECAXCrI1z3l}aZfJZ|J$nW^$E2;g;@vC>rj7KmiAsn!z-NNkW7*A zWbrKuvg6q8WBlXmjR_5|)W2T-uB2sIx9}(1>}_u(ed=CV4*c<|8bZgK|r zKj;>}vA_B|@NnVaDVzXPjBYIs+dN*_dh`&7^hz-<>Fp5R%4T03=;nn@IE+-iNq9Bi zRk!f>b}wg)z1-)=SlyQB!BKl8i`54hF6_mzH(1BlCCp^kajvlV2v+S+{^_(VDiYgL zmYgoby~1p;x+Ufy1!i?{k)xcQsx`N14-$lgyQy^^)=mX!YmShxFi*37`q$fs4PzMyj3zkl!RaR5b+ z!^9yYi7^hS_G?%HA=xd5UE0+Vo=xnov+(NQYDa0m)7!z_{`t(@uq*QMj(X%$J11mC zvg0pL0f+aY>4`$Ql1XV<8Lrvl0ijHjV4%w{o3+NDpkGwM<44R_lFw@QuStA7}{4TqLB-U7SNA-2CPJ6+kSjp zzTV8lL~T6_=_)Z}B9+bTvIRKAvBA9961$N(FhMXa-JEO==<0bcU1sQC>B8@sH@6r< ztB$F$R4Eg0zWdXnxqR3!xMC~l$g$iod@z*W!mi)&b)!b|RJqf$77r6hesZ%dUML8x z=M=x4zWkY)dFM-fBN1A*F-JNEr+vSc55TlT`IMg!nvI^TRr z@n;In2THvFySx6h>Bxc6%=ioCRKUC?F7*>(G(6?134^iVbqOw`FzIcB3Ve0PB=G?E zpdfr;LEDpCWY~o{-HI6=`N-5}s^+2qMNft@?rF9(72P8V=5RDg05oTAQ(KuPaC!qE z{SfGo!A_wdfDR01;Hf`Fj(P1C$pD;&9@bMo>MIJ>DH`Mz4jZYRq3qWz${4^>2F$Oo z>?eoQMmV&TZx;1KBislGLR|O=!6vmyz_=unZ;Qd`8(Q2qVy5Y)qp< zHC-^$!xQHVK`PorL_|H>&_VU1CJG(}-KHLoRuO7Zv^NUx2l}sYx#3GUZ*zS2^al{9 z6L@{|;bPfSiLVk~7Jx;!LLGDXixU$QErBbK5p?F4xTQA_H^OK5?$FEzfo)=h(O9E5 z`za}6IsOeprOU_1S`xIxPGDX&-w1tCdJozr{2~Q{zHiBtE~?yjDYLMeL)<{3)l@^e zVj5n5Iej(@367V@;x!+p1rU?(Zm-32O-nSNWnpH5$4 zZ44AwD0>&0X(DE@9wz&tx%$}yjdK?t1p0^E4TEM5nkoa`{3KzI^XZR2p9y7ezJhk6 z=_#N|3GW}n?eU)D+N4*;li1f&mb-FLNpLB@N<*rC`+z@@aomTmFfdLF#GZTkN!9n&DzWO zKslrJZH7|xdF5&E!>GW^i@#lEL46Hc2eu`=1me%#^_fT6C2Cb_7tK*kn!!M;ZmDfysJVk{-A)HIM=wj zAwbcITEyqz1hG$tyU6WDn%12|04A*~=9t&BxvtQMYTv^1nZ{y#vV-xsZXI8=n?TV4 z3(4icyyk~t8|c*}!2LNeI0#QnB%xtED?=}%7$WjR+1JLAFp?W?7e-UquK|xD5V+Wk z0T%^&LQcc+rqtyG?W!kw)(^vWU|r!*044FN7ItWeHT~z?&BrS9d3+yy@*%MSc+ys8 zjVi~j$60FZ9=W%GJ+JKtpcH3op&zo@&Rue8-;}kDoCv!J5E}Y^*i<@uQdW$@wfEbW z<_*Js=M8@FkwJ+(;>K#@$*$hRFZ?N2#t3AA)vU&M_?;p7$>`%Vb!49x|qJNqM8JR<0w!0Oz#zL;k`O4s;n%l(6N^bGH z)X%Vm5K>Y`UqAZ%iuFnkzH?u*5 zjlTcuFy}%2(M9WgM{ybmC4shB=8}N(e&Nufz3Rd^k}4)!zV3 z^@-e*)R}&Bx|;c}@;h_pmZ`3X9ZhxJuv{dT*hBppoS`770vLZ%@auxot=Ac{#Tm*K z5SMbDgX78KtS>Fffp_F7$p720gBXFd9ZdN zsqrm0LwSI@)Fr??s8-Mhv&YYimsde|vN%#h;_d z^Z(GLjJ?M;&9#Khf;O=JJk->TNnbOO{>^KM6^ZI(&q3-2($l~+ES%RcG~*_{CERbu z-Km%E-MiNTFN*j08rrb^DI-Ns1VzaFy|%yPk=G5+*u!>+rck8G$6qmICNeB)9Ui6x z#1Ty-3FU59M%B;=NH1xt7D74GB&wc-sLJW*Cp^8$*>LfT{o;J+ol1_2kMEt9me$~+ z(#})^9t6VkY)~s)V`gSn&473E0ys>bp^}$D5SnDUkI#YXg3sliqLEFBcR?!v;->6l zX-aOs6~P(9%jm}s3@KUyvS?STL137ShK$Tb^!feu=?=R6^6^X7_V<6nrX=?VuK#L+ z#={EN6TuVWYt8QPOo9}GPvmlM*U}r02!SGF9$EU z4qDDI)!(9ye<2@>35Ay_$?-M!#gcN$ctMb5=d|0t1g-`0^cKViiF^I*r#nyP?+?F z!S2y9)xmewgqMGybzSh&ty0CIWhe}WAsv!gxL%~6; z2l*3VTO5a@uH>Ufb-)^2lIug`M+gWIP$y9n3rOl8nhYSYoBTigG{30mA>gM4;aLzx z^!aJY3m61Llxg}LoH9`Ak^g*=pQ@p}v9Y1A!$l0s5txcvjHUa2|NgyMEy&AD2A5!I zZ*R1b=KBviZ3t@`f>?#%4g21QHJoD7tl;^w{r1~+#= z%eDJ|{P>~!%?$&Zir;}zj!ch)!iT<`N9v{Jt$hf-xEJK<>FGp?X{ZIt4tW2jfZTe0 z_{XYvdF%M-O&*Om({PxgJvh~9Z{BQ5$UuEy#9YMiIE#T`{uSVlS8K~in(5`vmI7>k zJCh)dEzNPIY`SBfL&|#&`}FON57a+J>{4(VwLVy|i%XyT=Yx!MXV0Q&AZYE2 zNsRENhAjXDh}{ly^x|t*u^7Jx`@IcBWAtc$y0cJSGzQ4T_J#-Qq$HJu0r&pucTS%B zpy}6>?g$$jk?V2M)f;kD{R=Lx7DH}Y74|qg4$x6q9<5>p5R*JSKf?|RW-w9xh0V)+ zUujz*={NWctVg28RB89^?jqj`9!ei_7+u|7;`7ONec1@j|Hq(*Bj2Fgx3;wUS<)#q z;)Z@g)?l?hrTDI^HM4;BZLSFejaQuJrtrj;xCUZ2IXb>60UKATmyHm{z)Mf*fy+V zQw(QZmok)X2#cWs`q}Cph)O~6_Zr{>=d26@l?wp7*IR#6I`!GYAjf;;jr~`BRV-*^ z`T!bwsr(rH2Oz=?@tSd5P>b(@dbO#WH?NTJNsfr__Oe&IgIGM!&CN&lAjdP=hz zc@QVI=ymiL7`3x4A9PyUeenbuv;LEg>syy<=g0loj9`4u=5)Dckv#vGE3@P47l9~l zGtXm8CpPo?lDVY~a(Epvz*gbXCEu-_v~OpptCvv3WU8W$b9lRX=0AvfY;%2Ij0j9+ ze)fRp-y}+ z(c-12UIXWM@mjWzz=bV#+%KxA(IlxaRY%@Pv+-)Q0nR$blT+Ux{CCe=eDF%d2v+@-NvfBGeRG}>|28LWn z^aL;!ZkhT*v#*!GW4yWd*DCb@ey!`vF5d0QA2w*4QAj4z4QMTm6<09lqb~P%K@_PQ zehOO!!GfWQs$*9p1obn-y%wMo7{N6wArqOZEoC~I<@L2nzu)e&uR=6DVEV(`t_bqu z{gv)P&zQ^5s~{`n<(533UWtHd_2lvO2@>+5d6nr^3Og0^D`LzvPt!M zhyaRtg4&HwzW7INE^pryT-z0!s;t#<@@)u+LJ$ZR`B8b!rZ=#$L9jlitN=l#e}y;p zG<636r3$Dt+O^Z2>;YL^cPhTN)Okvz-w!N7#5X@B#y^{(?M4Pa@Q z2;jp%-lt?*vQOd=#Z`XWEBM6b*h4mPI9|h}dt9f(8DR2L)x&b~j}=Ld_ot z#7Yq~f4T+m(=TvV-`Lq3=2Phl^+OP2E z$IogL9Z->$T<$U8<^Y@R#II38@z zdlwLzY}9%!4!o1EsxYf^{n^R6$-fnU)WsCHOj+&|b-7I zz)k@*F%v8}e2veppza67@>k^92UC+%<3e`yj@$Eb6LTWSu5O*dXUr4SI|2f+OdLNU z0!Lh{me~7u8udG78d@pA!f^rV$x9jM<5%dBD{41N@!i)6*#%F_2UQ|6IFwPjk_-6%VXqt!3S$Yv6dhSGjYR z^m@*-;g8gSZCrt+%>#Bw-_XWRV59J8I<>@6OWREA(Qf?ej*vfbss~oY6(8t-&Ah%i zq*-z0ra7Rx-xJL49P)gH>2AHY4?!>GxHmS~q&^TBSRFncFM&Qrmq`j`Z*`T(3+cXT zY+IseRNf&kaNw*0q0(}%@~rd~R&UhI zM1_2;tSBqjUrnIpyK-H@1%inE(5Oa03drMTp(cm0uJ_bAsDzey6QphE2|`{oO8XiQ zr&6cNN51{}tG_c{S06Fyjam_Rf$}A8p;EpPFP3XxjLTy3bHD31(2=T)+J)>??&##W z3&%^xG{3qQo~hKddB|ZX$W2}8c*Fr>_u)PBE}}vuhm3~2HtGs2MFlEY5&L$ei!xM_ z94{s9EP!%W`jz$5uZi*TgpJ=Xw5k*URdOp-NNHxMQaLWxOn-O0zHu)}W!Gn203tgyIioMCl?Xp;^ZT7H04IljAEEz&H~rr)RcErgQ{- z^g6qVx_1EvN>#;=Yg=-QijN1v@7|EO4pYytMo$>(z~M={AB|yx{S-X5$kwCiJQCJ@ zs}GGf_lXR_4Oh1fd?C!=WKrNLNTAgcD#VF{mCFQw5)=S5^-Yj)r%HGrUi)p24iVUus(G zOikRA;ke1GGLWNu%cwtO)4cOZ#Olt^PBxU_gR;|WMm8w*D*pvqgHQQ`M97QL=F(h{ zr0l(xx>6n`S#r3tt=+LdV9&@%7i zC!cvuc3&3u?d?Zp}J~rC$a#SfpYhjA18!Qli@7-CGrMs=U zJD@a}AS{Yj4^T2#{@oqCcmkrGl_|-}i+G%a0)En~3NC#R^my?ggoj_WQ(AA7bd|>GBw{JdnFvO~FqF1*um@yR6CKfUk)6NzuZ| zw_RWT-jD1dzot>YozwnK9Vm(jqJP-<`PF<(eE+ZB-b+QMsaz>n@4JYp?SIjFntO5f zGUfW#H5RqI_{29{U#=E1pn(?Qj~~7P>`t_r!V|12jj+{594t^B9{w_i$Op!Y>XUvx z*6*sSoKvMJB}=FTE*|- zy8c)aFi~WLQlcjUs}Ih(oAXN^uEiF@u--5pvf;tu(V~Zpqq{Sc7^P8<)hf<|C4=+1 zT%&(vw?f}%7MO$QsSt!bPRZYYMG^nn$$efClW-qlw2A84=`@sg1AjdR*bl#?sik$D&pYRVNy}i(b0Y37tWkHGY;V~uoUNsa*@MW zlbj5d-gDr%I|I(Zx@x#5$2+GaOnrkPapU}@!!s9lXgbqz&|)l+0Zt{8Kct^E++C`1 zIO5g+$VO*9cKldZERG#cXLoF7bQkB=>K3;Vf_Q>E^hO}SH5i}dMI3c&2ACa51U9TQ z-11^T*@flbRRI8@ida84GV?YG#r(Q#Ke90LMXoA%@GjMrlh#Wg2OXRpGjmBE_vA2@ zlXaY3OzfH%BY=RL+K)9QxHdg7o)SEt#Naw04k-YIK_AWryLNMI9xE?@8a)(y*OV2) z{p=f(!<+CQ#a7n??K05?my?MpKWbJPpQmO=n(XQA(fDCaJ!zCLwI+dX(Z7lppU_gN`1B`!O@sL3^K6;l4= z*DOR^ZpBJFgeo!js!IWj^Jggb1XA(Pu+XXf$zN{=s*Fgpva`XkYw%8rYuZAl0}Fv; zJEXQ{ZAHM$=2=NhNUde^emEA`5LZaM}I7_1lW<)$hdwAA8 zi43@KiQ~&EG~jnIIC&=)b^}fG0;{P;(Epbq1sk0|JX3Gs-urk*D|{uI#Yb`krY%fB zUALtMAYDD4ywa&;4O2mJP``2a4Z49sDKUyLGka6YL2`&D2TdzalmrHw0znG5pg8m< z(1aQoJxoVz2;D%T<6Y5(JTM5Rw~|N3gK`1wOaWlO$- z!l|!Z=-RbwI(THD|3b&~KX%jxAU-|sPYWRQK<`ot65C?>FfgIw-phFp!Ul@t{QuZd zrl6m>*JEMC(>#FST9{*iL@7PzySdLF*O>_S zr#)6c6;LDe^Wd}xZnUT$j`pN5$T-nFuc!#+`R;B@{Ga(zAc{K6g&-syMV6pzAH`+% z4ibUu+S=rxYY#EJs;a85mVc`+vi%g}gu-7aSvvnW37Tx;|NAFQ z{lJ`Ehw^@9qbOho5;TAxg~UN9c<8s2Q0@|5X*vpQmuT|h^71m|;kLfAb%Q`INjXD_@SyY3X&j@EbwGAD>lsW;bY25wsn^1I0!Vtp!pHBA%If{1D6!xS zB0|yfCrSDUJ{v~J?Y|%|FMk#i9>FMZnr90yq!1(aJTQsZ_vdd=z!qYfn*q6CeOm14 z=Z6cquz@f$w6wI;IHm-q8*I*XVk#&oltO411aoE=%x}O7gx=i?@VFt#ttUyji;Tw5 z&qjaZ#zlri%@mXrwfQej*hSL=u$-Ts1CTTe?ke;`Aurk5+B&c@2=1%>=OBhoN2e(I z{CtJ_S5!xhpwx!k!H?*;aJ{Y*m3eS)K;u3MtiS0xHG%-M^|tk=xif|~t_@;U0s4|sy=$nf%-bkt@M~yM4-VU+|8?3tlQy?JL{g(p^k)Wuc z#J^Hx(hb`usNDlFBxioZ`4jcbz>W+gS_We`XIGP>{N(_|Q05sl5hacFqi`tPv!P+# zHOkB=fT@QX?FtGCI#13xi#+m~sj2^i8l z&Zo5Hq`&&ZU(z*NL<*y!u|R|#xSVRY{zcD6Kq%t7$x0Ymh)xBVFR$D_`j-a`FWK)> zL7!NO3fv&oo!1H_trhKpQzj)g(=akZ z4b3IT*yymZvw(*~kP$P=g-WWNrtJoob(Xxp0`T5!$SD|Gpl^ISsf9yzA1+I8>ms_I zEdC4I^=VOl4xa$Pz34|I{Vy?>&gPQ>FtYIFqpuoL{qM8<4Flu1mPZ8I;ph+FT0wGq zrLlvRHcSLMo!nsSs;%B7MT*Ld%mx2oPEw$5O-9DP>Wad1tpIm@i<0>1Ycb`5Jpx$E zEHxAwKlRU~W}c3InZArFaRal!gw57Wp&tpm#lK&F}mY3btv#tqcf<9gx(vyh1Gc2{+?4>tA@3^(j3m7$>uUzteQ*C5Z<3%sK5sd0jZ zUj=krKjQ`_DU-#G_4Q`b5#IGUDdQaC~14Xt`STy;`m%bTU9i1_!?*Ao2 z^R1^JWgkF|ej9=U&}kO1bf1NIeJ)|BCt6ftFecmtbaWhqU?S-(=iP@4;dSK=M$pL6 zjS+Ue@1<5lvy{C>LU&HRU}A~g%J(U`Oi5r3`hj<+e>&HZHj)IIbcz!!CRe z;VbEyUpPSO5QaX+_>*kMYM;0H%Ya<@@Y-Kd;7KI7Y)k!ewDK+Zg&Yq4mT$}CDSG?OyQ$7R{p0I?2U!5?_?BrsO4KN|u&6w_P} z8`Z#6R9aS!M&LqR%_=-f0ArycFa}>Z4)+Vz`j+j`W&D1RW#%7=+~iO`%a5bI8L0J{AQ3Ff^$ay>%De zgTG6Bb||<~mj~S~y~W+m0XU8#s~|wl^_K`y@R)|o>RtN|cEgK%`?$1xW&r4*ooE1^ zdfH&*IxEmOfzO$RRJHJEu)jm7&nb}c9isK>QDjyW*iQY%K#d@n(lav*h`#U{dUvp# zqBJOk9jddkpK*hRhu&V7vZ=E-gjP0%0yhdh+V{jay8Gr9=6bP*OO|^i+mHmwU^+BW z^8IDjj}u2Qgn`YZS?nLUv(*0`&8>BUHur6f3+F+o|7*V8awh^#H)h@CtWXqd&aS~s z$0WmFeRT`NB}p3w7Y)dO$SqpvLlEGI-zwiyNqX@1%wYL!M(-`l*%umIFP38*n4X1K z9S{Z|gT*b?R_X@A`+D_Rb@UEP)#1^mK|YR}%VAJgTTXhz8XS)&=DTm8!w|#+$O7Pk zOsm?VI3~2)y#|?N?$}c|5)GQ3i2KzN&Tjv{HESF3-| z0;mz&4-r9EDs~pdK->WT@ogBA>mijH~nA@>87UcCzlauE!Y2ZkEKI!cFt=iGnyV zT%VW^pTU)u_NTso6@-`eKBF`eyWIq~gekzD=MN(nZh_mjrY#y5nL9SYFEkyb0F{OF zQI=R(9@J3a>VLA32PTJ88v3;0m+6|${N%Z0+N*gtP^a99&^svkXoewN@O#&fUtDcy zW^-;exj*zcm27j~k#`$WaGiH%)u=>-PWUN-AMJPz*##$JfF$J2=hmPe>Zu_Zsg9B& zpq-0ZoIvUiuf54o512G8)M*p zJWAyWr&`1fc*7(}O$xAqJjiOctskl5H3U}6SwmKky#$H@9Vj5kSIc8P5*D?NbYM=e zSyDW2i=w4B+WK2InR&;1vS9hXLY~M&CHY4unS_0!Odo!&{J# zF6WpGms39qf0UV_RpWB0WM%Hfa+T{z+=rN6`qw}4gw zce&k`IA5c+#tO_~1DbFL={mj|u=^rRVTzt^32ONc7!(xSC?Croo-1LI3MGmdr{kjJ z@3J=+z#5OL^{{AP`;^AO3^#z@@}dss;!h##QlaC);&VJNN5mlKFzeX)@;he%DmXA< zVa1$B(1peYCng*w+8cmGSGNrbaHdV<2nnQ>xm06z)@Blibjub4fOJMzJ7?vXN8~!} z25>_xj^>fZSwu~BCaIzMoomD}2-0@=;uOV{5MFoc+4QAM)%MHKcbo9ONsJ%@_A3NL zcM)_2k?gQr?1@eAS{wqOLSdm;Zu`Cg3Mzw91*i&@*CU{#0h%i{RoQJ+*Dbh0uDIIW z!iN&96tm_7yEmYnfq}H_%^P_zXNrY!k#m`yF;O%vG!EV?{yDFnaymhM?RF-q~68*U;e$O_Qq!{~v-BxE}I-e~U2~ zAp8lEg?XLsW(R44HLLqDp$q-WA7~_QEb)}5xiG0@m1+p(Rvl~` zkoA+sa&JsnOSYTYuEy)tG4JQLo-{WSR9Dcg3Upbjr}b% zT>&5)pta-f<#i5iP@`52mk2g;h)84IoPz8L0FlT%^c#aRMrNUzziVQ5&8^UcANE_l zLNZ^;ijIyBna~2zeEq0Xn;=d_Y(sI}{GPuv79#n95wLDD&5GN?P9pcv>}lmp)n||x z9KpFj8jCyaGP#B=NW+GOdUODp*xlW}vaeV4ayCWfT=N&QLSJ4Q+7_`f=#G=zQqf#7 zyQ5X@0~HGfg6`xdC+QHP=~B7f^#hnhg{0IreM9B*H|Zsb?*{J7_mXa0IXr`)pHz|S zV;!11@IaiVt#ZH2P-%yr5c_84ONjk__ZeIprn3yyQuQa*2j>s)lV$G-K%oTCDDB;Y zwm1P?NXACjoSBv=vmUtGSg80G2MY)Z2og4^7>&xoXxn-5X#Z(|Gh`%u`#a|P{m`oh zQXq8oJ9J*}9N$;TJ=B_Y1`AJpHRk8n+l!GOVlIP0XTw!J!i+r`2BtM`-Ty`T^%>6x z?!+fw9$ik8X}AAsPf$EHHN|mXhZM%T=;8#zr1VUyN?3@)&sqpDrb)vMEF;|ka>m)0 zE6eJEqS16GTj7{)@CTESL0lB43bDd0Q8j0`f@o?Xm6YIS+55TS&UE!8#>B)N+}6VD z)s*KzVG|Ds_7MzulmceEZoYQ%Z+}=gVKQRqlYE1lGKVfiE(+=g>p(N#jml7h+#Mp1 z^LQ%5{apoI%&Ivd=$rpLEv-A;ky=gK9*;YGx!Fk2TkQ)B`&vr=^M~brfnY{O&jaV3 z^FR=DGK5G@3@izB)~%~+@!Pg`CA{}1xwUQe&~3Io&hT{(415{-OMtHrjdEBe(K%gc zWH_{7`L_88r|qHSgX5!28#*&0GP%~{UHaB9eyhKwZ8q@$Y=JIF1CmEuq}8^aC$;P1Vc>xDF{FozNOmc}e=254hX z1QmCho}|3(GXS|ONBc1z%s-*Ir6(UJ*t+S|i)}=0E5oYG0*~MIERBSyu$$35Q1No!s0s@BiU^y*)J@4Kp1j{T*8_4WsUxgq6f*|+> ze0t!tuLBF@tGKCuVSBHZhLk~2K63y(@q5L2`4qFx1qd0@Ul5AMNDiRVJZaRK>#HJ$ z^$VnelDyaRB2Gdt^a2|aWJmaIy_V9`nREp?ozZ-i;&vUM2axOvPn2z(tE{2>5E}ci zr@o~Ca~BI=^q!XpqOOHX2a;ikpn9aE=Z?2MVfn6B0Mk$?O6`SMr39@Pv7kFIGFzs= zlY=`9GkVjZi|_2X_2U4aTy+$V3BGW2!a(2}#GQBc5o9GNeg-~!gB)Kyt5LEe z2FA#lJBOF=3oV?3;2azJ^IE?(QH!orCAbLD1rrp>&g$4teKtbi@EwrASI9OUvVH>7 z@!+P#MCBIvX2I!2Gdfau0}IUsIM%pRdEE0ecB5#1c=&=uPzq}WNxpss+n~izp38~R zO52oP+X=5*%_Hlu%rGleYZ6%&Zsvt%WnI=GRv581*+?hdCu^$Om(v$wHuyuMm!CL1 z>G$Qb%VlN+8CJ;@vpt8$Kb@jYmZSFDWL9RUCh|DP%tpuV2vogsy`3^!{bnanz374B zi<}p{PJgZ;*Bo8L>dr2iH>*Ft?6bc`nIJtI^vu-seE{XL${snIe|@bzq$X{&%29ud z#!NX*RMIxN4NEo;de4An#H(O+5O7(AFxx^vG_Pw9;lhcgpS#GOa{=TK2TF~}KTB0H z9{5W5u374_h|3;1{?)KoNIZuFb3xXJBz*}PDjg0Um>{#lX48ise#L{1k&$urK=0y) zAlqv~PM+vwN}iYB^euH*w4d9}$QItaN=Q2nlH59L#(C!(E8d+^+ZAx%!R zw2V2=K=D&~FUDNPDP1VE;8(ASjBtIzC7@qyqL; zHs@yg`%NzHG_!36qpk<7CDU?P*tGecB0z=Eb-<9j@TSO8DH}LRhQ)+q-e-T3vcA6l zVT%bDt+Kleg=&Y*$bhx?X6%#wpz|T<4f)Pjh-~>Y`^hfw#BkpFuK9rEUw%{+c^9yN zAgoa(-?AdRS|e;`TNCA^2+cp2vyIqTi?=6fV~m6t4U}*sTBLqTiYQ z)V_x!+Y3?Zxiw6b*Xw;l z6u!a`*Tz_Zl8KI5;iUGW!ovEnrtYuS%1rP5{Mh&X+S#^$<#zt6;*pV&`4H@Yzrd4a z7?mPWxN>b{#hu`ZpvY$en3*Q_;DK8g2BL@dk}q9Ksn0qy*A&b=-P44vCG_{5->2K- zU}J7^?_Ebxv>MOD^YNWJk`|;mUJ-&e6r2mLKihwScS-Au{@=*{@A9=UAU7|WsK~fU z!VptIYo_&e?QyAXV)H|3Zr==@TtUW1S?7^3dd)X>5B2}d zO#mv4clHd%@$bT`t}it1*i^%S+2awSw}I3G%G)|L`kPENi$`CFgy*@ZTcdv@c5R76 z+@@wuyB6C^LR7em7{DZemVV{dOY>3Y;a7u$Ww^(fJX7HsmXV# zW9uq|aq^?c$jAvx%`=n4c=~`U^S)VT$u(`s6Ox46*_6|7K`*wY~wc!k0K(E@|c)X-ssm?Z>f6GZ9luX z!Pn5xU_6#{|NJEi_a@@BpG&;Mi4M3i_da^ol$eWb9y_B;>HGKZBQ|3BttR;DaZjRo z)#s7(Pbr@cl$hWKOL}tKS%ftV7o<_X7^(J!U4!Xz;Y*Hyt^p%7y)&L`=+P79 zN{Eud78YFLydQ=Xi*ianeE9I^uU{Sz5YW=PpghF%K+9*MHJXQsg+&aSdUxfniO~^i zSGR~-S+P@aM|_7x^;74e_=?HwFk2gN68dez4?Y=)?>7iMFABr2Gow7ytm)-S#^ zRP@U>2l~tnN8_(*A#@`vgi#ON%Ngg^BlaxDgd( zh>V57&naqZ`YUHjU&)TYZ+4rCnraZw_k(Fb`z-X9s42EsiIeKHOcmV4vA*2hS=j(C z+$-+BCcE>{#p3U@$r?mA3_+3TO2<}Y0rPn14f#}MB!leq@7Fgo^Df1d7{K%RVCvmC z1p%3Ef=xl|Nsu@TDC|XX%}BHB=;)xD9MoCn zV^4}C{{5Wyu9F}j{CS|!K~_Q70Y3!!+sw3lHjNDYd^UhU1gjI%NstDt?~P#L1G>1) zTD8e7gs}xCKkF|Jp6GLg3;iC$rEmHJZij`!hihlPm!xZ-TQ;|;7R&8Ve%Qo}--d^yqwZ|M1yg(|c}GQS z{$_O?1DfFY@V~h&hQ199L@a&4q9vja&4U*Pf4}JwClm?n5a+kKJQB^nPl@%Y1FKWt z#KZ)hY=(>v6`Acq6fe8MPlDp_bjd@LYp*5cl{4w zX~E&ibxgw7JqhY?tR}ZWumfuy%>$EZzknGDWqM+E;D@0P`b61ZiDF;%Ar`IJE&6DR zA4gRP+vPh5ughVn%15>gnX6Z?!c1Iu;9oULUIc(&Op#7JgX+i(UYAakWAMzQXi|)M zPifUCaxR8QPcHKT6e)t=NL1hTZA(CJ=Zj$vuE7^-G%Br9gv^WKb_D(XSYE1m8$LF4 zz&s$$am>16D;+gYL|%D5W-^$*aN%jZGzsxeYY6?-SSH3eW|0tD2DN6N19uEJcpnIC z9oRsCC7tyryST3^;}eL^c`mnGdJp9zXv^7MLh}DsO&A6!?&NfDxFnaSJ~XQN`rt(- zDQ%8(bI&DS7yI7Qf!2nC>+#Hygn3mr=w%ZaZH7d;BU9?T z2^bZcP+#BQ2u^xLG)kB&ei<#WZ!#EGH*`OTJFk=9jcJOo1smIfnQI|pH*Vg%!@_dy z>E`rjc#o;RutUH5GryknRb4az>z49lA0`TLo<2L-5134%$nxR@;9uTdj?$SZ4u%2b zXl)+#60yk&@99eP0^F(|_eTY*v;OC^z{Wd8 zAcjK#VRV(TIJbzQoa!ZAcfY1EWk+t!c@lhV zpN^t*nLcqymvPXPeV1WyQ!k*Es6(EN@~b2`fCb3C0^R@NydqAdwD+t*Jza zje$XOPDCUdgk6`vZ|WFDu(<8qy!S?>I#~TWa&2_t(p*^kP?AsHnEJ}pLn!HWt(ZmE zT9}I~VMEU(hA*DzLA9*r;#;rexJV?13#-I4lTM9RuZMOm$b4kiyMFK0@7pc~O4IL| zvryXl5qUDcSSm=U+mrAru~ruz7PTnxu^Q2^qKlk}%&F>+iW%)Hxc9gU278O>?ye5P*}u*u|x zjTGgo>_@MXI#cmGU+_7jby=zv{};xfBbnIf{aiKV#o`qe|N9uNb2gu|e?3(D^WVJD z^4gE-UCLF;7D;+fpb0x%c$TUr@*JEz7KwGKsj1ARP00$AZ@rS#?<2RP7Fi4~4` z|2B)__v_$s5eQpJ9?VE+M#^1kA^ZN{{*v0nOsX-6$)s}MSjsNq-R!n&d>$s?f7J5Q5hNJwc<1q1qdDpl|j%~b^=#v0yhl5hR0^; za<=cm?Q|ZSRu4vOtjlQn4K4*k%uoJ{77sz)3WVv0w2vch$bMbaZt)YQw~{DFjEF(l z2i@C=r(Wad-iHt#O(FPlgM+7aW!D)QoqJ4|?89KM@qRKoshsv?l;%+)odaP^WMr`u)qUCTIArd+kV%OZ zhet$U!DTBvw@qQu5jQk60D>6;;>^ymo`C^L2*a>}fMr0XWk2bkqi3~_@zz)n93Xd+ z17~z}$TU zaxB0;y?&YGm<;f&fYE0A{aplz;{SLG)jGx`q5u1)a9qebT7i(0R`_*?&JO5m zNN@G(YHp3uJ)HkO@uIq_s#v+|CG;2rJ??w^2||eA_?VaNX9-mTVe!LA#Y!{Sfi)@- z-aU>755lsusd)X@IbbfrCr~#sp?1)=9 z*3_lA^^%GT{BEnnxcxsgJJ+zkB25YED#OGvq(|qzZpdWIaes~=7i; zp&Bj*1%)8Mwu+=iAQ985&+@x|baaH+gk%UftCVQ6!W)Uhc6N0Qf;)o@GWhFPWypys zCnhFj2MO-l!Yl`&GV;TzIu%w}>&5z#ox=C@ns0DAV<1gQ)6VYSul;M&t?KFJP3DG^ zf2ul=*)dOl&H22Qzu{zK>U~F6rV6yKPu3k{VZ0Zh$9~IPxW}~C_oV-+_VzE?TE}Gk zQVwqJHgH@;oN_?aO$3qx+q<@q17c!fAp}DB=2B&%yG5#DvE;#eTa@EOHLql%VN<(8 zOG~>`CmC}u^$;m#0R}hPyy?jD zQjXpVg#h!ljw$%1$XkKeIec0)piVLW8EkHq-mLK#<0I$Yj?NCmnh1#p(-XV#Zp>G7 zn(T%8o;^3X*m$gWQrlMvcCKw_CqhBdfk{fnU+#}XR2mP>dKPV*mIX@O`vspmnzePhqfl=Y(-qKU!$tmw3O1@ZqFHWu9sUK3jjzFV z8j!ZC7St;aq>4VJVat^3_^sm#6^u*J4dEdqx8GW_F>(*ck-uI-fxNa82*204uI4tN zbDmUs_`*5v`*+;CFBs-aIL%bxl(A*m)~QP{uXhR2PIAc{|NJKWFTTL9PU{5XY|uOwBWUy#6cIj%C!ZSd?s<6`2A;< z$4^lYV@P@Nn>R$A(yeP#-wQcom^uFzM{5Rbw8&Cbte8xJ5Shn?6N$w($w61K@H5S9 zCQ`i&^wsIAFWlytguHf0UcQX^22vXmvfc~fpswC_kaMWKQ8d6I=a9}*Nh>z}Dxso6 zP-dXimRzD0=fO(6Y-zbV@(t_k_#iAKq@ZWFn$m)1&RU3zYjX~4Z4r$;RF?KOhCx2i zGdMWtACcD;oBPs+6)uR$z(9Y|Yt;BMG$?E#E-^7iF|&SkrlxT^J{C?GZJ<{{p@e04Gs2ocRw0RlOQ1@Gt23s4w0!SEGslbCKCz;6@gsw6I|lvWspl$8gC1s=oMbg zMpJ}ADae}MP;4)aPbDfmT$w-B81i7GMa2tpel(!7)rvo0gl#x8G0QL0>qoJMUD{c- z<>05x#-}J$VAOLs?&5KEEiQfhM9q!|VRMALJWOsyO@o0uy*;Ol+bWUZ&jMb(*RR4p z5kObv|8DwY>fdOmQ%s-~s*eo`+$A9LdAM0)H}W>Hyz52Ve2AQKi=l5rmjqRK=iY6# zODLH)s$bu#(4KM(Q%TL^b(2qlL+|NF=O}gJHIO@|@~sJ4Ud$MLlihkcxwjSXbdM5+ z@4rg&!EdB=dQfpFF!ikO7eSloa1U?W_cGJtTj$5U*dY-jG^5F|kYM{o45L1MdKl7W zVPzH6yVN>6O9d7JE-i!M%d2D&t4VSx>|A-fNUT;0i;3fxbXgCY74wh3?TeA*#;~$` zL|=aEicL~R5mAspZtkJ!U#l5;7fW;VVB8JC9Os3Eb?~9ss(|V3cf>2;2mop^l(Moc?iTq4`Mh7w21- z3lY3?QF)VN%V=1An?L4hj`sMc6$d|sRHtlrtbmm>1|F4k=Bw-rLbI0JK~RQ3M~P6} zM=MGxTbLYu6)xyRvSw3P`K#rl{L0@wvNg<9VQ~xj#5eL1iVnCRo}Q3&5h>1f)(F=7 zZxLvoen>cqIfRu6wgRF2Z~V@#lJGcj1SBxA9dt34QUkb_ zl*bxWn{r6F1;0S;ixu5_`a)DKr=-t)Px8ReU7;vnJ-#FG8uUZ9L*{Qzho}v!q8Lsx zw6%aO5Yny^H>{%HzwMz$2>*V*5w}k{N`uAX@jF_Aft?8Iz~I_X;DAV!FF1L5J5C#} z&57<~gsiY%Hw>lS4vSAYM5}b>3>WpjjDC!VbRXoP{Y3S!+tH6jT#H5i1~X|87rZ8} z-7CIlqYwVNPhc0Fd3ZdjV6#V;gtGARbVW_cHq3U^r<_3XKZk{-T!)~6#xTvpGp#s8 zVO~a)*qRMPDu%Cvf?89d;`m3Vd?x(wQ;gvU?=(ww{~o;Bic8){`M+Z;l6RP>y$#$x z^8qs99oOHY$_c5DH>QFdiRqe7au2!6rD9H-^amBPfY-4wQJsMO8jxnRpqnNuWfyUY zuV@edDrRQjA9U&RxeE6F$WC=5JvorNgj(*)!T|iUv_m%h_3qwYJE%kfb`5}CoJGh1 zL=cdAeFkp!+wSU&)gl5-`OI@+wI}iIHm#q3Q>~cnNmCW9fW_b)#y@up{YQT{R68y2 z@xQ~?i-4}PV5hJ2>NSr^ku^>v;#bgk@cXjz&^x5&9@2I2YszTd7fO${PiA|XE;x;A zTQ65b1_4jJjj7j&jRFur@t$r@eYQ0Fq0%3tzicCA26~pWt13nuSh||u#fyAlf5?3l z6zX}zh1YGB00A}#yvw91cA-UGhN4hM`_k%9?J}#ogT1FIeZTtpaF+d$Saq-=_$fF3 z3K$56Oi$~h=+UW#!f;!=%_1rshc(xAp=g@Q?RXQFNBtb^L%@oS0wJVVRhbIfe-u~92qtc83TuO!=D_rT_4oI;tAzoA;I>kb zl5+6*J-wejWcO_Ckl6dc>5B4D{$KF`(c$th%?f&b>HKQW zG<`(aQ1#BVnQMY8047+7vUOkHnm)Qw(1lCMBjMn36;(=~?%a{hZV5P(QkXAxPQKFA zIr@qDfGB=rwv0#bt8r#kA9uj8V=uz%^wXCkWf?x(^oH-T_EtM$&baB#fgm#C#zR`Tl- zbvC!s7?Q;X*TehZo*MO%H1k!uN3z$C+9!g^T@UOu)3sl2^cF?{=e4!3?{}MTOVWg> zx4KQDh58<4+F3&XE7~QVDa~M;{-Hn|ND7hL5Xox^fHT2}b7p4a&so;FzLPVI+=8od zh(ircFLaX##XGr?y|-RE%7+EGbYCAB-~<96Eu<@4%8P-XzLKKM5RU1q!MZiJuZ?EU z`6}3PjbfN6Wa`}}lw97t#kT{fpwnMa#dZo-aVlL2vniw8bORL%lnrGnI1PlOkm73K zDOT9(Puj<2XP57ITG*0|p->H(zkLpz9!KGIFHa;@Bax;$c5sE3a}BId`bR1Hd7G>> z)<;Xan*5G-3Wm%eiJo8BWa~RYChPu?#pf@OPXJl?=bIdSe6jakgM)a0jmTo)Ly>a$ z=cVh)zS*l8#4TkK)33FKd=79BQR(NPO6vJ+-JAs*tU_$$J-q_(U=Dc+PT~ zlkXq9FuegqaNgUum`H;x&!&&QdW8*#b795vy(wOpvD3IY`TU1l{bWm7Cla~r{RJ#3 z_H)DS~55mqvb{dHuh!D<3l5P ztjFWLGBbB2mbMeRwC_8-+xZ(AM=o8#{(lZr;@NIh^8|Gp9A1 zG81@~-bN&@=HH3vQB#QMR;T~*@hL`22pfiSLIyp#KqpUI2bFNEe1UQr=a=Ea7~$RH z^Pm$_U&|AZjkK|`vLZ$7EsJS0LzZ++F+FktK91f;2KAnlpuBqM;J}tJn6$@25PR?r zC*f?nJrR?|<<|l0GVe;;kh(&;(o0>eD;OvKE_M#tB)ZAi@6PblIFegXQj2gn-PpWr3$TYs@FvB!G=Xb!SVjO+0TGS*n@i24!ohBc%Q~*{US2R`_p|d8As1*_5BhL zn@?@FNC3R&CI+iH;S7>*uD1ZTgc!NXCcd{BF8sEtcm;VR2HFKmkBynYnX?~ry!ITm zQug9K4b}Dj*9ZuRCzvF)5o89@!$%?H`Or!96rNQ_fnEP9>Ew$tNk;&-nrg}`=8|$36BsCXasu@NSBb0)YrSWEwlR1J)XH% zxNUI)54bO--&MdRrF&Q`4;KI-(WRYTqxrrG^9=r1 z@Am$}z~k35N?V>}995?l_Udq3<~`oMsd}PUSNl17?NZ;JMQ*fH=XvWpkk}X1kf_^0 zXx2QV4BdL8@EoRhd~h3If|K@UC3r+7de7!Qmb3qH%HDiBc?)q9ovcxRwjYz-I(W>_ zce#!EwQKVokvvhW!clxRUhmzrlOg6D&t_hQ(rZ%?xz3!}7ub-a&KAQn+QWLFb^L7E z5M<$rOu^4Jn5XOiVQ_v!8XW@{VYig>Q3oCqm!VHe70T~#FNa9wiB%&2re zGa9cyXHQ$Zp*mc~rIFzAWXh!HaCp(s?D+j{>%-S(N6^tD^>K3zLC^=0!|jfNFT(O& z$5lw~-1s!GK5l&`}ZY-u3rDS`jsF?L;hBLW@60zys5UH4vRtY8`wDb8~8c6xWtHl zF>u^}dFGqn#A&^L?n?;_fgrI*G^Bd>;T$bhL?@L7%_H^U$oyt7E4RL$1dM?trMh0& z#-{dlcL!qLDZpYv0ci-EeaA58(b-k5>b(?tK+AduL*nBJ-j%*fW~hX8UH;0~!zfPe zMsMGc>=h{Ke{RfrHb$Br_#F~MRROVhdBd&! zrVnKWJ5vxb#y1YanG)KYnhHu}KEz5VM@rhlltIVy&_@W;zSgwi6=RdvhNiMOc(8lj zgSa~Tu|b>3ejDf{Gkj!FY4H~%x1<3$7GDa?p;MO;w*!0MB z$OaVXrbkt?<4{JPtL80%E@FDfb?@)5577)fq%Q=p_p1^0U+JE~qGnPp+Q4OzK$KHF@%c zwK}tRX&$mH`!Fqww+Qw#)%di0@`hRNv(E{gVH58aYLEI%DGa`=0q&BIzF zl#quXI%>)okq6_eMnK`319Tv@ZPWtxP$K7=DpupZd!3M4A{OMw{}5j+now$1R)tN{ z%>SJ{O|r;@@Q#L|2&YLrq*wtQ{Bz_L{?0^Jp zaI*;d+W6EFio)IGTdS*#hXQMBYrwpSZ;buNa<~eF2r-CsC~9~S8+v0T`^YG%P{9p0 z&ux1`u{(KUV9Dj%8zm|btmXjrinufbupS6Wat}EfxQl><7phDE?La{l9dQ4!AH8>)|yJI7g!5S?Pg_sLNZGEEIS4^6Ber4tEgS28C z$c3>>o_vTthGj{MI6XPe2q9H+=o0yTR(*z$Vey;fLw! zotAM)9lq}kcxHe8@gvgx16e)T;M1$TLa-j(BpU9ddejfB-L7trc#(Rld8lT zJiet_myj^v3TQ(CAtNUq9v-0Pt>CB#;4F%|j!MeJga!y5l>cFgw9r2lSY*InfGRF{ zE^0S*KIU{0twGd!kYxA( zh+*R!r7LQ$T)Cp+B8h3DVFACo(rjgl+&{)+2?=9JrIU|u15_2f`n>0D?wZd&P7XF8 zsoh;&Z&d$bSi!50pG zC{^R}5n2;h`N{z&AO$MxAWQG{_0wRb($GL&ahFX=q@^{8T*Yvdyb|w;pZetiL`q== zkq+P%t-k`H2UGMk?SGQ$A}zyb9eJb!@P(=IF^wG@3^#Z8eH8@6r1xL1k!FS-pGgu! zs0c_)yA9oBdVHH{&OKx>Ipxzezv1kk#4rOo9I=D^y-rRnd`=ZE_hr@*88jv2(r^FW zLCObs)N{W)7%p##Vdiw23*-{^#l_a4=l@+kyb$@sMgqR+xVi?g(Eq#eZTAvuKrMjS zVIin5hRO8cvBrDwb`R=WsH89~$VDzE`Ga{9PO;;-$@pT-?GPn_2=#Je^Y`yQ59{QA zU~gP;gk6I^8#q9Y<0is~0EwOlss`7TC;)EAT1RGD7|iUXgZ>;C?RI?Vg53RM2DF_2 z`_nf!+~W$6A1TAS>iscOW+3?geiY-B`|n2p13udH07HQP{ZUuXKj;>dlMbANUruOd zb&Tx)!{sZh{+k#$AnA0}6~_ zmbKB*IKO9GvNt%waRt40@~1aI25u?%p7{|m4?iP6?Xl&bpPvz_ID$_S9GB7efV#HV z9!LiO=a?a%gE)CL=fg7-0S5O^~Z5bdyvHeza=29vReo@C@){EWDxP+KDUbVxc?Qm zWuGy8=VSOz02kdlo4j@x9kzgg1ea&}Z-dJv@)SbYYZkR9$H$tD-`0^W7;faB!#?;K zsufmH=q4jG9{%?o5$0t~9Gs+yfjOt2%gdb}o*Kx+K(x384wNyd z20T39{iD&qFQ;>uJfGfxs50u{6rjDIwjHyY1Z6ifDEK*@wsQ*gc?Udyjs_w;>?f1& zLssyW{`zjyN5`-n9%2}T2PVxzhe78(ZL}dreX0L|JXF~54X8nw{;eP&;Wxbz4b51a zXN>$E+h5aS#Aj#6Lh5KdJvRH38olN-Wg>6qHhBvZP=Ny;Ki(`?(De%e>=v+l= zrA~n)NmsKq@Iw$Gkm6FjXoCy29z2P+{?-)os1q>6Gf9D)Y*}GYA@BXYu+8;(!Qu{_ zNMcCui(U9p+8S^}mBe!J6@5)9(;Ft(-_*HYE5EJ4;=Xt9-6W{VWxq-j>k%BYoL^_Z zEom^=L}%KJQj@{~F+)c|zHPdb6cIi{mbcIRk_~{%6(|#vEG`AYy1j&g z%?ZnK@O4F;&p?(k=10sMO<+qJ9@nTI%)Bv>YsO6zZxsPHRqJ&_uI>Sn(Agynr^d z`^U_?-!m7(b0Kj;(6rk)_)P`flV0v$1c$1P{4-~`0w zXCg*+hni_H{*`uPxTpX~I#Y%1$~4PPhKJ~p8ZF=<+O=-{Fmt4901QO>X~FR#&6gY( z19FT1a%|FX{DWDdW`r;ihzB(xvo7o^flO~JBiRV zQwD2|))`-)pC?NzPHwhg9xptsP1+tkNMX}%GN%Far~JKBI9JQR61jq#Ihh-B9b=m9 z#n1QF(GJj!-G5FWKw?#IKS-kYoPLEW9XHSjzFF-31J+<9+y~d*SIp)3cHKv=Ti(3g zmR8-(wQ`p{CM?QMtG?c&qf>!QeP(O9)W5BxhQ<5CQ>*mrH8kG-H?XncrO&=NQDjk| z0^2pq<2#CJLf30+J#?c|@b6?RGq%Ukh{wgnQ9r%d{Lxsl{|O}nAtG}JrWnNOEU!U# zmzVs7;yxIEJk#o-A(-XBPRi{FER+->F0K6rv$^?9kcJrx&l1n5EzUX=2(hSU<4HuF z$#JRpztBme5L&t2_tMa*yTVSJ&m#L80OCLfnunX*8+o}tRbuKp?KeP!Sp8-E6%3~XxtI{H+Pl0 z#<*<5psqX};asf7Yh;CQ&NN;t>C{~EcG$^~;csiwd}?0EbtfLvb@>bv=+evm>9jCi zb)%B;b5pApfmRz1?o@EJaFa#qI>iZjLA0S>y|^ug9R37}PMHe)QC}`v3l6SbMnh_T z|NJ5007a!6`-m7W=h#dZmDeTP91g_gPx%qEX1zvJ6{bg9B)mfy2x{$jE_Yg^Q=4(I zkddYhRU2SB!!n**Iic4q)erLZ!8Nv6wXJ{l8x4h!1q&4~C{OStN}_F`4u(8EBO6;M zg4dixYQP+3n;f6u?&?cBq=iZa*H)w3Ip)EWNi+@d&ra0sdqoQsToo#q3UucAi>Xcsy4WHqh=3 z^eAeOc?gAhzBXx-L z-9o3?K&&gL#iY45PgR`2;bIXHQY%6|gcE$FFQ)?as_ry~s<! zAeNM$wB^~Vbjt&8Jny|#ro-ct+&tOA+e>O?{&PV#c1i;9@ee~_{zHjR{PQHlOdVKBEi z$%Xo8hSx{1zrJy+cYvLNFrosn!bXx;p&C9`8JMv*h>0(uvUZMEM*qH3up)Ci#4v)x0MKFsMh8|#xyw{Lw2X=g#$t>O)^}lGt%TxP}8e>^0{G`32dE7L7HM>Zy&AE62`P4 zUk1>O*XbhX&~Q1JBP;OzIUq0I^Xw+s1(67t?xAFvLz<1ERlGOH*;_0PsZN}-?o?Y2 zbbh+D^Co_EqAl4gQ*XHeN)owxV+ksy0LsXRsHpZd+z|5HAwm7*Z`UhP2xT{VdB5Q% zHum;%KN-NXCdcooDxS#kndai%*{c)H-(+R>W>+&va)X{!41w8veuU6aH>ZXVi)IK8 zRsdxbaq$mZKE)IlLm)R5p95|zRkmzAAn1S&2q6R^A|ymhE@0wlJcHO<|r#;<}8LerVLPNc;oEAiSvb5|B}ad>-M>ZYXvJFYdi7NUXyh0 zzsDoIGGBUVtX1~-i9eaH=R`&upnoA>X2Jc?!MB5H#5bWx{0Jb*{DZBincgN!VO1aS zGx@XWyY~LhbyA-8V_q^2>!0{VUIY3*A50*9noltj|MM%-2!-nPzyA4_NV95x^X|<) zc&WkQi3oV?8-S^33ZOZ{&!vL;1jX(&Ti75pfg?~dy#d+8Uys%?s8j$kgQ58qAFdQG zrAF$a{Q2yS-_sw_$I1#gyLFYdH@ z)_&AYJAW~AFpTvw7@Q^#!ti1i^61<{*&nSq!pVJcaT%;e^!ga5>w_x!JWd%=#@)Hb z$*yw*Vmx6)ymN1#j_^HH6Pbl;0Z^BBy@wL=ROafgkfsweR+br>DcF@F5wX8K z)8s|FE9Jstt>VmCZ7{KSCpZqNrT{%jBRvD820vl52C@k7^m1L1(kumq+^bFS+IahC z9IEGk?RF)Lo~#VK;UJ3Bd<@`Jky@D7+35s#%^-UID;n3))Fq=TDgy|w%x;6l(Ub-P z+SInQSwmxhXX=uFWU_Q{7!VqM;5hS;8lO?P*&<4_&(2va1@`Gfu1z!)(y9>z<~cen zc4?wBZDAZMlIOPu?D76?hauq4DmUyR|IKouZLVX=mnF#8VcWWHSvb-`A z6Il;ap(OivFclkG{6P)ov}#Yw(g<=Ygivyt5!p!{yLh>jpS08X$&X;KGwBZIOQ`&p zvXwSZ)Lx%xbhuXB+U@YBK0tw-DHbk79?p~&)DP4zP^D=yWwY|9YmN@-#Zsn-Ja7(y zPQCpYKGHp3`ram;+>w|C56aijy$So4@GbBx5eME`jSR=CWlgvHPT5Q}~6chqzDA1Hta=G!&eDp2ZbEOn|7EnV~ zD7`kbVTRPpQ8{69O88>3+nz#5Z!Hiu$;QH=fX`(S6Uu$#xHsS`#ZRp4;Sr?X*sQz=B`rJ)eGr zj$yVHW;y!y%!hL!4AsyD+F%mC z?;U(hd{WZl_t|Nw;8p}=5lM||ms|!#RSP!54*?FsAB_9P*_{Nolcrycy&+PXYm8V( z?N*)w$!8$?)o$_!uHW(Gjq-uH!>Pd_CntALSNXVu({4Z>tj#~Dnkrl7w&NXq%6Z&Z zC1wij3`9w|x4H6yRj;7rnHodNed5b!H^O~g7;=2!Skn38B%#RASHM1ay4$IyRB5YO zer0BS9DV!(EQ>&uoBuMJ*)II>;j{bReA7OM4<{QR|7T%Zr|*R7)Jj&N;}M81oJF~T*qGdnsJ-m%@A2Ab;tTVuS^yA*1x`PVxEOdH zuK}w<&XWuZdG5aXm`BN5&6xpjSA~(oC`@aPaXVx>&V8M^1VzAl58;@!@tU%PWz z_DNpJEUba10<`3!&e1Z;Q{xk69px=r-LodZp!_rO zChyNm;XWhdy@!xep+-jqoi(n-WqE2EKo2>w)pCF1>A#gI*_XSKlXVyl4j+wG+b%<% zBF%SmkZzPV)W5L8Rt8fg8%p$GbX4KCrdlLY9tqxgrruD$DEdh@+}0?1>dYA)8jt12RYU5CAwKLXWVxxNjYK^j9BKn#yu+=A&RmwZ@F-Rvw!H!Oku_P>m=+kGDEEMD+dpckEdIgtK5Bt`du0 z%_UjS4hDr&$~-B*7f&u6I`;SM>QkKYTJO-@W4*WS{Pb4zsr~zrRXv4?iQ3OkXB9s+ z);Z2C@xGrPqmeKwC@4U*4$OiVQO74t6ft=<7vUC zxePU%t`FDkP$)-c2So0P4djF|S7ky_FiUH?y25hVE)dQt9AxjHb2{hEy0qNW< zSOtwB_}m3TrTq_0E=<$KaFwJCf?RPREJ35o0uSy&5_(GwNQnXEny7FVHUujzD2CoM zIv|^x!&lwdK6(Z^N^~ef487I8s%)w`3KKY3J@R=gn*C{sc~#*})oj8;kS5c5TynA=Al))TDZ*d%XUWi~zH-VQ3`jacr*R;$j zv4F07Sq=jOL$+t{##t$WDK!j&`yYA(E>j6oQ@&g8RJ-|0!^6aPA;$co;D+}#TvA|?U3hHSSxKVMoa$L9Nz>N-?!}bVo zgxrCekcfx~-0q{5fy}iOZgdF*4%-9>sNQ3P^q-&NK#msa**dCIBRhZ>aJ|Ay(SM5fi2QasNs<`fJX~_WfYEvf|KWuDl<{D-OnT)uG z`g$-=@2sj4~&z=vmJxXZwE=(*#aclYbTHZ&(1M0j%}VW{2M4`Mcs~ z<8^$k4t)cIZv}F+g#7Jv?XwTfZw3aWI!fefp0cYn1#585WDuj}Ih+tapc!8P^HoHYJ}mVXEX*d)a}s}lVvB8Bl#w?iq%SO?n01eU z#0SNZ%#Lz$cfW#Kk5(!c1~}jwC!8QarK394-mQCaer6H6S0eir-ey&GHDU^CKlxs! zaKS@aIZl3GUSmjAWuEtXuXvSF5_1xr25Yx%3Xquf_4QE!HZGSLx9><8z?;ksYS-Yg z0OQ=Ra2`8_7Af{&ayUs)JgR2MH&2!mS_&p{ue~dAf=qV|h`xcnOH~wCIZ^Ytd!`8y zH)xu=7zw=tBh7wRv%NPBGq41MG#ZJ(!W&TTigB?D;~cM(HIIagTo|P z1%n$2+}-(!)1pa9%x|Ow01(kLFhruP zH)26eHnJ})B&43zHs>S(RXeWABGHg!(6+g77gyKbGkap+ zGHrN(K5oP<7`CGb#I)f2q`$8(>Esy}&FC#;crUS~l+;{i<>ppfpIoO40JO$sLG^)` zdeSOTFpAtoQhJm5>nbXgHx`vC-3PU9_}JPO_gq%fczz4)sa;=y==;mqnAXPSSbWn| zp z`%U>}evvHhY>R(6&m;Bk63`N$L^FYb{j-M0;5yw1(nAG&A5u!znV7&`yM4(8`IcND z))qD-fe1tMNP(%XCf7WWRyU>G4}Tq&K2S&|CALTsP{f6uv6fzo)`t2QR5|Sy_4cBpLiG zXqUiORpVSxH90>y#z06a6GYTkaY!D@NfM|&LZ+HjkKW_qrS;oPfO8=R*N9#ov3G$@ zNF$2~7!@EsX*gMgw~%pHMkRsd)-4Q>^@Xg!oTU~KF6ZBZ)-Cg|PWGHVUMj{}`1WJx{hUtx0scUz6lo0OEe(0!rd z;MJ-xk| zg_JUvMACgMU+D zMZ!x!p0-;42`6Ee2Y^>D1f-vfi{N68p-UP~av6Cd@&A;-%!!^ith~Ji)FMEntT7?M z4^2Yf8Gh7V2XF7h$0wS>* zJFR59;bPe#7y;Px(k@|xS9(tHi&b*uyVL-h2d2aE^R9*0IXNh}TV@PC*iM0YSJG72 z^avXgC$jtYpMZ3^n6&_;4&We>s>r&bA&ZeI@F5D0a3Lo}-jX=U#Wo^0uDd9^Q!4L7 z^@EtJC|6S3s?P%z9Jd2(BXJ1J)4uv_DGA)B6+*(o@o8xhFtsmVxdOdwZ$0d8IRW`V z2(2;(E;%M{Sl-?w5Qw1LYf$SM+yOKjbMo-$1nP^q<|k?iy??wTHT8d-iJhW#(ob_v zPRo6_8~QU~hY&p#B7) zptQ7f`qB0OQLlEspy)l=AV3#Gm=O9C%;{CPr=fWGZ-t4#=z-);ydZHGZJjl~z&621 zY~*o`Ha}E+o#$GwWC*xpL!7e@6Azb#von%>8CzP0LYdgKJAvLlOd?zsvJw&@&k9|l z1R+!o&*&nZn&U7465XGXQe-WY}DckR>k11QsKIysI9BZEMEbS3=7)E)Fzhz@;B%& zat)kQq(Bw&0kp9J_`njY!h1a|d9X0RUvV+A(^pvs}2kO_cV z7*gO`#|U*UQo5YLBJLIwgzojt&dzVP#{=_Snt(eq_#xmE5z$uT7FAgk!ZLzJDXAik zPzgezU=2r8iDn&Vk}?8W2H<=R3H?hxJBwHVjv~_tCJq$97|9jV6B6!lQ(r`hxG zd3lLv&zh!PK}rm5J8*!bEC1^Lb+AnV(?W4oRl=z{arOT>m=J+^L@GRfmXO!;zCL-7 zV{6PU)tdNR`0VmB~pb#14@b z@V(g;n<@FdO$t#g_iD0!?VQ0yzq%jt@uNXac%Zuc@4z-`MfpG*RyFxd5rUU5Z`x*R zfrpSQ)2(=?MLx=D|M1h4D;0KTQMkBI<_=_(-rJa!e0Se5T3)bjm6>kv#e3>7+xBbB z(b#MlWDEC6ey;^Cv!+)b*w35dLR|sWAldAa>aZ>(h#{QAs{Z+()lrsuHjl=yAi{&M zrfV*Yy7gnqFTE!}no;@To?nlxqU`i7RT#h6o3+}# z*&mm3Ncg-p!H)yV7Rb~|XW*>_%io4E9gYVidKYX@YS&H)ZsFo?fG)&NU#>CG=P5T7 z!32ZPDlfGjZV`}IRmf(md3dlXW-_LAemYCc0u-+{>k`e9g@r|d%l>oNEYoaXK?e`S z-;j_nm#dPNSjzWnaT?i}BO2-|?q=+2{e=_DE}_TP$*r&#k~ABZ*rBn1OkezHS~Jpb za+;tvqfVD=@goX4j{P)$B#OLbKq6pn_49t{tQm1b1q7M-ywg2laj-J%gaQ5HnHq^6 z=8sk4RZ7s3;2nU?WY>9+ zAb#@#d;Nz7=?%N_x0hPKm&YAH5nbxL0y1*z%_x-xr+pVv;P`MjoTk8+kqCGUy<70P zxa9liWZi-<{su-1yHsBMV{udf)Xcp1e!md@Hf3U|nZhr^a2(gii`zlZQ6BViK&o!j z!2HG09=GG)7q>f_L|;8?mdzd=xX4AJfbjPG@atz?|Et03_brAU&8@7=zzNJg%=!=G zqY_J)v{FiAvBaC@YH#j)`_A_?wYZ*S0XK-JYtT2+;YTC&+~TEE(qkgh`?fjTyfF5y zT1Nht%*>9Agfj{iey$0Jd-?zRPLXCdRQ|)*@Nl*0@2tw0LuT3-9;La)gsUvPn=#S$ z)iq)K<^8^zb7Z`rCLx>hGBP?E2--pLw!@=Id1d{bQeX8RaBEXm5h_tywN+JKDOAYL z|AXNUF@cZNAI*Jz?vJTeoD)3z_6eUuwTa@Jv$yaS_x4IFnguuTEN-}D*qcr1+WtNK9-d|Qj{4QKh( zm$dcyp$-ujCEw4PUHdYp4mnJwc@S3(@aEDc7m_OBv^E{x`nCP5N)+)u zDB4J2H|%J+I1L-1a^7}aWN_m9&b2}*k{Uo|#nzhGHK97SwM#jF+93D$F#F=?&vD9M z4@xDv6mhv$vSmaD_fkl?4_yDaW}Eipqs&FSG0HV);JTBCPk>ee=t2V1svv zzM@5;ZVec8M&$Dq9DZ?wp~>FH?j#*RhZ^6Im@7A47bBD%gFJ$x6+ zC?@`=5tPD>z2socOePV!g$C_Pb%@R|_KFh5qoSfJt+YU)*Hg@SeDF(yX)qwJ*cdDx zfPf7yA#;se&Eg)ldxwZ;1Jk1t2_R(W{|=uH+QZBI3&yb=Jy!L7oV{A7?ee|^mA!hW#o383AG%5I@(g8OdfA&mmLHcK5`u` zwu1SwxMZ%C(2GVQqa#K0glf%FJ>#UoHz2USo*hHk$z$+Cy5&mwqr5ar*2f;_x2|Ll zHcK8Pl56Ymc3S0ywvP6Pq@g_@^pA8lQV;_m%2hGDd9x31_1Bog&rOPs{*P(557QR= z8ls4PPt`IVx|*p?hWVfZ4sbWj50tV5DEG-m&{5?4Za26K`#T`aq@5v+ob$JbxBq;m zMSaR=nq_)dWiz#w*e$ z!0ANGG5@|>Q}W=>@7U`o6xa&9({0o*yud+?kJq;LQN5vAd_#|(Y@)307vLVaqNS*UR8 zwuhq~*+UubqHKCniY2ggd3j;Vz-BH1_&e~)qos6| zQf)2?@bgnIj?v2s?kGW?0#RV$d%vJGgt}Mfrx=ON7dIOko?T`&yb4mbal+4Xw={Ke zicc$Z-IBgN|3p=gz>R_zb@f?S^z*JyBKS9C+08#PyHU(Evle|&NZ-knce$FxW3mwy zA>sHy$z1qZu$|2Vr*(;hp>AD&%)gY^ZeB3flqM$977m_L?ye-=vuzR;06Y+7ythJ| zdYM&#SySfuP4pado}A`$Wur41evAM%gG}Q4B?r5!F_|hC#+~mQzVy|{3f66XcHFD$ zI}eQ^{rM&?9tP*k)1j6=e^I!1$Bp%${c7d9={(nb9JYU_PGkW8XFEjo!3*iV2D9GfYyj90u83kPbQd` z=_8tz_)DzP|2?g_dHx6$X!0T0Xq>i=f=A4#`k$dIsY32T3`!KSDk9mrCtXyp;l{so z&n*n@>v6bM;Q6HrgdGLa#>&My{B`-gf|8X?_vN%D&pk+@yMHDm5?_p_p@|cjA@~&Q z|0C?Zie5y{9NAtPI4MOI{02wB;CkL*npWs|)VvbRw7cCK5$ z=Q+>oIp;j*zh1e&>mHxabzSc@qu%-1{rLI{Uv|-Mbu_D9b37ltd)#NI)qFdV*7cj7 zbdH6$tmzr3@8W9=W(RY%6?m_=|J6v)M9pNiNn>qcTxQHlD9z>!os%nV28z3x^2( zwVln)hVA768bX|(xGF`;1ZF%ur=I#9R<3`Auf?B^zmH@Y7Kd5S@noX&*6v+itHTG= zju*TZrvNV@0V;t*D(^9k4E$lW}$nYt(4Hzejq7k7e%xZOm>FmJ9i^>niGYQh(OwA<$0@^W`|KQFB(x>kjHTt=~v*o#$Tsu$DS8e$pk zMsNSJm`uHU8Z@5a@M4Ro<1yFw*u415_=;2phbLN^+zo8sF44FxPG&#;mJ#Q4o0aO@ zNolU?hGEEHzar$&SsY%$>QirL_@vIAd?PdjpZk_EEM7VHv_2})vk340EL-dp)-{sG zr7ZY!_$IE2I>cXQc^l)>C7&CKI%THjh6nQ&`+e!1+j+8ig9j ze_|Kt!D9oi)YN7#N*3-`adE4ZC}WUr zv`A!-3Z!Vy*QEY=O<}y|XST|N?X4wU^W-9Hq${cOp+{G^!JQvM=~|gV_1C46a;ugYuNDeuR&5M3Fq7T?R44`x?TwiOFE@=|Av7ydd;F&-`PHo#x+HRJrn{_Zumfr+#MV@&%=##Q)Eb~SgSl*d>$do{@ z_U$xT?GRdWeVA<3x3oyDTvNFT%WYdh{L9|Va3S9Ou|V-lC#8DAJ&nlnfVAsWYRy_SOejQKUEqc%emG;N7!(K~Xb)=BjnB+tQjxU7 zpUM`&{9w2Hw!xUTa>FRp$Mf*ycYmB)gMYO**uPHM@4Jz0{zq%fpMICe2oT5*Cf{b>u05vV%DGmek@qB;eRdN z0MaYoK(&$jKw$XgIFxTWxeUsjCAlMqJf1WbJ!lK=(IHj)hhrS7tvzuiueCJt^hE5B zYvvwDCXap8XEWXLhAr{pp3#!C`N1WP?EL%IGBdTmpexSglu|qOyi#1(;0(D;f!G!_~oB$ zCU40Zd3+uphv!ILq!f%W-E!tk2BO#lcM|=!7FoeL(dej>a^$PE@3=i;vQvH8l=*~D zZNh8|7J;VUqFAVB#x}lC392Wh7r-J-1B1ozS2oa8!SuL-xo-$f#K)qkGoKZg;rIRH z(AkkMuA<$EwYPT~5oZ$QKJ*Nk0OG4=jyY@7^U2QvKZ+*mh6{Pd$6f0zvybmRrj^2N zhF0XEusenndqeZ($LzMsqHvzD84GE{x|@yFmtHkBQyJdtfR=e}bj-N-!|DFy-lVJo zFUv68zZ6P=jSJsSn@_VfpHwHbsND+;3YuCbF@;5+*L@7?yW94 zd1lG3!wKmpn_u_8>{>@s{g_PWgJr$0i~N(}McS&Jl{dSTgvrQHukqC9^!gNAO_m@e z6uGK}OL_0&%MFukcQ;qeH-A|fIhwhfSg1sdx01V*a7RwrwOX}=2iL;}5v z(~E479^d~DC)>^DG$U?{!D4YsAB{}WA2uzpaiXD!F}ho}W5KU9M-_aqFDxvW-cb0X z9cs39&{p)~PO8bD@6Ce)^GONSpS8A*G-9paf3^2Fe6&q@gNlmvk#1ga_FIjvb6fbR zdCSfIR#MOr_<$|^r@4^OP?hS#hLU9{X||=USZ)Lt#<^@)vM}NHVqdWPoAnGh`Lb<;33y{4NIrA?2o6XMv~S( zI7mq*cO_l3Pac9LXFB;+sk@N(5yeh?fX%@~=f17e^!gXr7qZv1;unmr&UFqxYE z{W}m?6P1lQcH9re&^L!a&`OX9JO4pJ*AA*~$vh1r9fKrLJHBzwe1pUhfB6Drkbi=D z^>eK}!m0uCBh^Jz0$BV4l5`(-L16XZiMK0I<59D-D_iJ*ECJ|P030@f#_??&KX#w} zN5#ajS4ea-%BPHpbyDMQSWd6V{9J>$Sy$ARprsO9!3RoN$0nbB}j-!B# zV*w6^=x9Mme11})I!;pKGE-Jou7J=#>bXdhM| zX#Z0JkUF?5YOySj3!l{pz6R6NLI6n%F9x*E*7x*;#O`b8BRW(OX*kgD>kB6*DL8rH zzr`RQ^SVd$i~@YhwZD7?Dix@uIY9Cb%!doT-@aNRnDruZsh8s6dctLrvnF7)1jFBV ziHV6)-y=ZLtD!**U*x}}fro3?aBv#VSu)l^aIg3!AplZZ2*NJ`v=I%l8wa|}hfxv& z0?>kZ9P`8ZjMS5!%r!&7UAYwTAJ^tlmOMf#gL;B3S|{{kQ0uHAl;Eh8mx#c6JHCcl z`)P0M3fVa!MEY2V-nX$HY>)fCd3qut;L|pqaSYD@O8{omNVz$|)|e&Gvmg-=NL!%w zPgex5?d=lKts@F`m2I6&pt?XN?j^{k;};Nk(>Pt%-Y#qSmH`i|ZgDF#DJd8P#gL@k zA-|6m!A%2;VX^y|_XmsY(!6JfkW38cM}kqk*(TBmk;@n7fU1)D=tE@mSCEt|(PK12LATdu4o>O+1oO|nyf?-Ar$hHu*ZA)RXC9hyi9!O_K)g!yZ;33-n<}g-$o?%?7-jydjw0jq*V9w&lXYXgYR*2uA&E= z53G{=mngvE!0YJWr)AuNPdh?Bt%|!K4VW_xU0p$I#TD-n%sO=QpQyZ#F;1-y?2_xj z{}%b_Li6V);CN{^g9T}15E+el6TFf>Cm>+a96n5hkA$<2{K#nT{|+rer1lm6+zM(l zp8q>bz}qu@2bL*{>-WIH#7m(YM8H^masYQCgoTjH*w}_bYCyWflav_&E0LeL1*-pS z!`07EeG^_&Yioy<jTY{I$VcqX@x-^2!ESje4d~I+OMU5(#%m}cH~}1ZAj*ZmV$o=WJm-88lirTF%fPmg z2q_fcr11tQ-WnbLpUgkJ#>nbEeg{i3jYLtwfjbMLo`+|ye%>xLG4U!2bnFmZgmBCL zS0%k9H6A;N=O7$q%yXS$=QSWB<41QL0v|E`W-84VJ1duk)Wn z38@DN*o;sWzy$=!lo6uSfa96f4e!%XiFQkYg+8=dXqJ|F7G&s5-=bX(*mKM;aFu<& zk$eQDoUq3>=>gkigC8x#SIK#9zoY<~2aM4F0)Q|wS}9(8xHICx?M<2wM3OSf3&`e< zoYU)nHxvOJ2tbNtFk*r?D)Oy=AYAGkk?f2+Wl-D zv&cml9MD?qp?TX(`p-2Hf;f=lD2}^CylCQijK~J&$Y_Oz%iT9qM7;SYJ87@TROs++7>qv-f3dhLlG!>` zpo1y2d+G&v2!hET<6Or1YyZb)1W?YLrdNAkJ^Q{Ced)K~n5g!(X;rKb+SZW`;VLo< z)>RqnEpR3AX-yD)iEZr8II}!p##~fkHu=qhK1AYFRS60}?3`|RBFZfWl67L6+6o?D zyF$r(QL&p+MN`=?qp57){+B7Ff#QNUR}0c#oAlo=;3HZV2V@wxx!KsM&PdoLLAP*= zFMq6)&a6QDQ(ayC$#m12A4!k?6u|BY_hPT4&|xPCPh%#?-}44hZQGN@<}KmCGgId9 zgq^MZi?e5YS1Bk)r=fFyD5ubR$P;h7!x>|;fkM4T$w=H+Yv%!c+Nj_ArtNQsJDpv5 zKW=l0Kb!|M$Y<(z2eg-l#)#h3Z%vI?hYx=BpsM9~=7(8>5qtq9?Dhu>b9QEWtJw^L z1if!Ogp0&zb#fZ@8j^0NeP1*2N86#b;w$F32SFX0_B3w+>q?SuYNK!6NR>m%A>o<- zzWs^morEI-)a&R2R6L(`oM-E?DX4zJ=0j{0DGTM+1~@IMP7JmvG71bwL#0yjt8Wq z^Hq#45ulzl^-Yi4Q9~^g#Eij-7^oWOQ*qO8Vt;Vhw)D~r)8E;}CpSUi9U9*#4VZAI z)S@}2~@ErR?fp`JDA8WPNFGkcu{0qFUT`1P-q)>8@L5bIA@g zXR@&B*WjS4k`KhzIh3eG4fTMtpz2(JG($xS@=L1`cnTRHV1SXO>X>2zf4!5Ypx0NG zhmo^S$IbNkZ2II)JwpmlKAg~D!e@*SS6}zS*ozj(0;X#cy3{marl10E8QM0f2&Zv0 z>TMeM*z>2Of3oD|9va~s$-_1K^%?J*i;B^%*I+F{rinlbc+JSD0x0h5n-{VS_OaNi zlfRh#@Q}YDN{RYlx6E&4rDNDQ`tAB|YqBaOFzhW}e}B|6>-&1+Y1ofnLVMFk{#CWz`Bshu44l6v{)v?O9xKR^y()Ehcl*rb z_UTUwn(zd)x}gs9{mrev`)o#^26q>G^bM8_ZgwUU(D6Z1G@wrGr}2=_;1V^sjcWw! zgOQ%7`{9-JdnY(=EXDI*xs~^f$e=)6#Oa#V+K)YLIFi~JLPq^Lle&3_0enR{2{M*+n6*GJP`E+ zM6BOd2VQT07nwIrbQL6&8SORBNxmD5-3It%MX6p>{psT~j z)0}#CEVEDpVoJAz1Lr6Fo@6Kk%O5u^dGqV4I~f1W{iIB&b+`h3B}eNSz+KbY4kRT1`D5{EA?udf1G>nWiCTFR(eC^Ip_F5v z)(yvov1&RyFi}@XM@UxrPH6U?fNP<5Amp)b(3%o_)$+^~pXxCmiNyLu!**;L%xS;u?(UE8aUJh=Fmsz5btQaqAHz*J zQ?6eH<`;*rlgti{P(vlA;niCf3lKjY4}cw)1#91tbL(g6Ey{nwa> zSpwY?6S&W7U!_!OdM{;bf)>ko;9Y^{=O?e;t*hK?MBrsq-Pc-t-;}jO1S& zcz;S@*bH;%KQoe4ufsyq9tdLs9taaKH!f3r{23)N<=b_GGG)as15SfB$|1|&o=pzp z!lUK|6d(u*!K+=Ip1x1Zk2qd1ONzc^t5yhC;2)0p_KX;TVu3Z-uqEVVS9b>Z?P>!r zGEZ}=yY(Aj*uf<9hkh`9Ar*9k1lPaW<)jhU{Ut^Y_na0^0MMPseZ~&9-qSRjjZ3|)g^z;-w4zUyA}{AqJTbv^3!;nfwx zpEma+sl0CS*^Em8FfaB!L370^%5$IkGI$!$$tc9XU>_NHu>7}C^e!d!hXe=3=@(~5 zr#jUTan8>lq49FRTIuO7pVc4=C?04i5SC&9Ruw6*u;j~(uiP&xml#_5+4Lmt+lvi7 z22@>%F{XU7fY!VKgk999=eIhaX!G_d`H8-fnf0t|#MH8yga)R0Xov_{<(10@tHOs1h^ACws=w0re`$UM@{5RW^Bdo0p3ej z!K`ur;DEyu>Bn(p7@=TimIRYg@M6QTx95TyR4Un{wwT?PxA2KvleDf7`t2M=`9y9x z!+sPB9djpqnPBK-HiX?NVZ{Sy^!@!Lup8qlis!M+-F1N=(9Ts29A>?+8#J=QR4FoGHyF+&UhUP;NkY&+Gf=&&|?2^fwNn+F%OEaLWN=%sMU z8#@c6u-=S^E=q7kq=Yi7f4lE)6)@hWM!kRhaiok(ds(2lxnHI^oKe8;C`#S*%G27Y z{o~P_h3U&KE8Duc=BnEBOg5eZj^IdtdEx;k8Va_G)@?p?S$y6%DJHVl-1Cw|ToSHM z_DynPoAvf={RMiAY!9GLE!#QvANJDdXim2_)b~ABoO2c@;dzv3J!uWxc01ao%yK`Y zJyE_jL>1EN1!+AD_omE@hPFbzP=lFKpQ7}NM z^3gkgu1A4kTq)^X4r5=nFrV}ZTk;`(K&hG8Vz#i}X3RVMvf;Rq7o=J2ZQ zsiMs}lDL7)SBk|UVefEz8JQQtunI*@LxTod;6@1MNzikFHBZx!p5y)!q$kW#g`aWW zv^R~E$A%d+#nG%2J1za$lTTU}wN35s?_d8uggGcv-lSb_(Ot9fR9M-?O+#ZjBbSn5 zRAb3Q{l)5#SL~m?{k}(Sp0Odo72)#2xaYK-YfJsM&;@7%>F+#!TyJ8$aa$L{7rm>K zF1Y7Cy2s?U+Z&$@t6d^C)mV+U%u-Q8Wz4qksCDh99N?H~!GL}5fM ze;;<0zP%7lyZ9iv0FaES^yi7!*ZQsmP!y7Klx7@kz+l@iK;$j0Z}7~{Dj#b5qe~g}H&nVP zdBFB69~vq-=*Ih@RS)$q{`-KeEK~@(6HL~!B<|Gw-lp?b!vy$6ga7Xxl%`hBr*5`T zFpTVrYj`UTmYEOcIVsO1e@kUGX~%fY%M-tXy~}D$wR8c36mUsJ|5~Ez=5l6Zu`P@A z6dR$p$bsFXq_Wb;bjovYosze3GVRX@Y=QYtN{Ge2H;lO-c{cpkA+J=Kc7cVqrSfhl zN_OE<-unf~@21`Eu0}BnNJ#CKvrf6?YO}B&gsZi`+T*FIlPgK>dgsPpI?Mh;E`UdKMqHlwNj z!#_BtIrLzcfa~e+QVtOLYo5GQ6AdQRYiNuO8>-An&$`qSWLOg$?-=ZIXT_E6Y}j_< zYSLABm_pG4yZ6*q=p?&B(SVuayUa|V+z-s1{;Phwl(KQEN)$>aQ64Kl&ImN2HF&kY zU-Z!c;OiJZSDET8R;D|IQ-9MLRXyp#)6IJH9HqfUtf`qrSU}`V&8o;gf zzzD%Pi%4wkbX_tqy)YKf_uP2q)2ZE}pd7TMkM-pxPCLTpi{81f__qYzz5md$%&dp1 zdJHrRkX%0kXQ(gVR>CsQRyK;Oz03VQtlh@Vn?tbe`$Re#&n=R)-C>xh)Fsb9;8I%< zWOk&~pcFlLd}0`NYJ~y|g2eu26i`*L z1c=&jA>>is?~ND0P1L+`Opc@`=P*g-_SI*j?hDw=I9FBJl+uU%-Ks6 zow;@Dyu369CNsZ()h4_2bhx1=Rc6&Z)?o{o{Zn##!M#!HDqg8D-sxm?KI%G&{YBWW zy#RRA)Z&wRp~7Kjzu%eh3DsMwZeMX!b=~M83}m@(i-rAXKM~%e0h33+VW8*-{7Lj| z)Jlt81opdg#EvF22Pc$EKqG$BD4lMSD_+xyskw6m3=_&?63m{+Bdz+<1ZrRAVl-Z6>tEGZJTk;@7(Q#sFJJ9bq+@^hHL7^=O(z(wUnXeaL^M><}$>*cbMT2P9u>AVbeIK0zMmuwuy1?BXW zo6|m3`?XWH`8)@j;tok-)M6467oCNZ8jOK%2J}aeLLh>r|2UX1%8N)){{W_p_$8Fy zg<7DzA76W9<^g`iuV$fwPY`mwer;W}X={-U**!6?t~Az{h>VLa=dd%i!(zKn%Sg@4 zDkaT`nHiuw`PGpm=W$^@V6)GYw<8YFv?fT~Y5Af<(*H6dLnT6D;xqs=`S~lQi6_eR&Q~91=*24 z9-CR*oE&KnGY=;E0+fp+8TniJ!KPjD4a0>M4JYO~%T?~Htff@<8p0WWg8Mub3~1hG zb;YGv?y(N$=cMv{vx)qfwImc>`~a{kZf-(I^6TUUIKbQ6yEp$#-4Bo?1VrGP{Tde- zbK#%e+v^Zr)0BTlmMj-{=q5G|ksX|jCMy0bs2HBsQSPj`Wr3+9j+XcyEGm+6PqU|B?-y!`@s$`HqGH)_RpkV7JJ zIcFCaWCQ}6yH9d*^0-7-dpi!iRKnSrpPwRF&1hk9QF`bFaW4TQ0Ag3X!N;n$wzgrR z9q=;{ix>iDlk*5}Nf1_H0))CCVt7r&9Y(iJVi3dk$XuTj1^Uo;{U;GI%NSq^1@GbT zL|gj?_+L>I;t)|GV`x0Qlx;!KmJUYCDhQTT2<=h}bOa}l5rvHC7H^m_r9d2?O zK9!DkaCH;`*rHk?UV`u6ka-F3jaVJsQ@EI_3Q?e$BIPm-9G8s^3JOw__DrE;3J404 z1m|XeSP_vJDC&4r9&piMOx2&Ub1o?n+{_}O;`6mVuR zbzqh4<)%g~4o2wku#iY}a8!cynk(R8a30PH=CmkN!2ob$m5`J)JUQG!y@vIu5tLo) z0x~i(Fzi-)rR#VY8XFU%Z00E<4aR0mB@cXYY54d^#AHf|$;msM9(v=UfUflh1S_Bm z&5UCPSAyyF_28)~gX)tuP-Wr~5@!7Q49*EK-nN>g$^j+F^|aPP-7gF~dI|X;$%e`Q zJ2+iTA`Ae@K2Ljk&NU{X<=_ZimTsB0h1Yunz6&9F-cp7d1Zrmy>A?6#aKCdGgnCfR z83|p?gr&B$wDiOOMA{nRZh%j;J9-Id5|WNI?+7Ytb{OgV9Q_&}{}31V9&A1nJ*6`2 zl;1K)gZC&J3R1+R;cNr60qzP&ZYF5F^R~Hs#8XET7sEk>w!Y5#auT$$^Skt}J1Ypj z5$UwK_vcSty%(nX?sbrlr>R5_#r#{%F4APU!Kz?V*>~3O9RW?2F|+v-_y0x!(%7Xsy&{Fj#KW*f(4uRXn&j{`#uZC4kcbqNOhT1&v`igM#XaeD?FO%xs)2 z=ITcdR5YXKQL*Po!gKW+(XAf=std{MPo;Qp{?jm<6v6caJV;&h5}4~Q{VZd&r-XSF zu*(pS2*mzF#y}=B&72n=frx-opD)cIl0|;|DYx~g+H_o)5!@mwF$rj5P=Mo6i(&o>5&aUTJ3HO(H-hHqH}u||2oHrdVU>`Js{c>ShknIO~Ga4?1rLs{qBTz;mSU(sqKifXTp*aL|esKpsXs%EOASi{z zZxw;ir!EBC|CFroCHtRoUj+jK5G&DwwF#K8pb&{`rsw1L_;>!3l$#ShRDYZKdqZic z+6WTS{X#;bM*)F0u(2sBO|LD*K_Zc1sch(p-mBhRp9Z0yt%HLExDY-=vsJZ5&Ju2D z0>vZYlBeJbK?ISnbco44qf%1Sdm@&MD9$h7d?m#d1?H!*5{)olDA<}$%v(MHXb-Lo z;yz-3bJNs;Eud!+s2J^Z6f3-uOoBI+lQOag)IQ$!a3r`RDHHcuMg!34@gou(A23SE zZ!nd0G;4w@X7}k)gQOq+Eg*zU+g0B}ae6`_4vU{*T2qsRim7Q9lnCENAU4Dw21jh| zot=a}zP_+_y_JBUY8MiD93B&s%~=T|*6Y5FOg|3VyN6m1z}FxRoD!l}pWyn^ws&>i z-7`bS10{T0!rtkLYeiBm|LJBD+eX7s*U24AusYr7%SlA(n5PVOHs|=PljG3~rq3@O zbDzCuHVEsnfi{$LY-qU=oboXdngTWWTL7F|y7}|H$4DM|c+I>GcXjgngreKuRT!7m zqY`puOW`?W)vL)au2vj6Xun6UJnnlH_4RmDE|!TI5Ne=1i#ywZKG;kuni3tjPz-QBpv#Kd-@Kib>hN6o>uNRPnUhE}_hTn;ln zMIEXU6qV0^-2hYh=%0E{sn0>fjB$R%J2lBX)}|qGng3+lTVD+u-@#29A@~koMBEPn zhx=Z@F&^y}~V9u%!AL_yhkRz{0!Yh5)_@+;Ze(thjb(0NJ_v-VGw zxD^nN54Veq*SeB`r=i->KBSoEB}93t1)7L6YGoq2>)Ka4&%Bvw?jXNf1YQ!Il$gC>)h!^dy zN=TYXu~ir&+uuCaA+Z;dihB6cUAf-Rkf(iHLJ}Acnj!;cPs3|VBfpl)B+<}2&&VeH zOSO+#P?Md)LfUGYR~hGt>SR>kiLOFQdMteg-O&N81(}!gSDB#(%(}psYo7DMVJj$(7qR{Ee zhC&K#Y9ymsb$cN$Kz0->583&YnDP)-0_g>qJ*iEO$WGigr?mng6i*~GA9)X>CD>{n zxxkmY|LWDNNbdOeM-~3@(v%bw*-GR&gy+S^ocehpJQqMlu;&AGrmi)EM6d(VD%JDs z6p3Izv6CnVHkSDIe-Z4VkkazvXxAEX*8mDoN#I}W?Khua&IH{nqm^bKm0 zgw!7(Go{Z3E=9t1Xzc5|4g+vggr>1DH|GsoYANMA*|5mU_GeT(P@X_^Iy;1kTj0`z z)yEvzn_&Y>A}tgmYJgAamun`mv9!8Z0NgEb5VM6LNWwjLZA*o8*!#j6mHq{@Q@Nis zKtO@J@$Jb^01HBh0z&kHw+MuKy5Px=$;sryLiI=BG-Y^OpA_hQt5*(=q9CIMTt6Tt zrBBwUtFaLsk_u8x3gS{OD&V^4lb-i^nsDro;p4CBrtvh4&%)?ftor);h!i1@oy)Do z3KK{ma96{82W}xG7aTSV6ayu6Q^;R+9{U zx8PZTj2>p-=U{+yOTKmmj#85Fec*9{;mp+Zbn4#<`F=DzEvjZDK+<{_9s?x%nd~d6d-^{zn&q z=JGv`p)2KILvRJG79c6-3OoS2cdyeUofL3%0{OKF_OvcvyM_rx&(SfMzJOk29^1}glN3!W*D+Ah;>d`n{E$}en7ZQ3T%0mg+2tcVZqJ}v-lHiMoW+Cdw z;_(o;Qa}-}=pTohs;=ojjO`dEl>NINu(rS^KJ@ zeXGeIahU;n1rk!RTcD;>J{V3>KKSThZKC9wDCXHa&_2$u^Fd1Lr`c}}X(7h zsE;J=_WEjY;V(fh{|_)u0XjThm2D1u$@U@yk^FIb^-~DuLvZsMsWQCW;>o4XEMPg2 zM%LLW_k)QL5I2wx+|jC%U#=kTyeic@qaQPuza{+yH19q@mgrr0u(Pu^_7dyJ7~Ml} zlVvO<2(QBLC|AU7UwLhz2a0`Dc38{Jj)-%KAgp`Oyh-eTFDRVN%=mNwQ-diPX2cxXXIOWV&bVM9y$Tn++-m5_+E!6!7ASNn z#*BwX^+|vAOE9MWUaN>O>JMM?zYe>2X3(J5bTg!7 z#qry8QGuoH?u?4nC_V;w&7tVO5k8TVGducwJ&pIp)*^Tcg+dLckwy%L9-u~qW_utm zSshG7(s=$q`~}3y78GKwnao&85pRdDq&&Ef**+peB7kB2%Sb{}jTxmYdNxE;u6gL! zUSSNIncACw#$Eah3vtVr3Q77^!uU$4vvY;B6+*!0ud4$=vD#no+Fry^~Jz zuf|dw8$Ark$hTBw1?JxkdJE|3ksNH87mVQknnI?@SugcpZabW4PM-=oTBQGAEbKgj zTb>O0QUC-Z??#s({96Bkr#OrmxdlCeXW_Q9Lju8cXB92xqZgAVykhn~J^vNz`UFT> zovTzLL}xlHqXk@BhxJ}}DsSGTAxe`;ivj>244*7^^G$$xu9kxs2{^~eZC}OL`QMBL zd>#HbBY_Hu|6e14tm0BcCGvkX5?~+)O<1?caka-~i`Y1$?qf0pWyIOMjQ7=@1ox)A zn4%MFLRIk6XzgXGqreX?Qa}3pOC0TG9!-3tt(iWRQOewNVK|`J{r&zOSUi|sl)pb< znt&rJBqJRxoepuz4U3sq!xXaKiXU|R8qCr0g^blibn-C`yO56WOegh&pB+1717bhq z(kTwY+5hwF#RUR|tZwxaL1Ra9fk(QCbO)$Wh|_(t z;gI%E+!4e$#rws;A7~Un6>IR~4@E&siog1|qEJ(Aya$toI*DM|K9J|cX?aEbazCU_8hG>%ZG znkBerYd>)c?WIli!6yWGDQKuF+jUMwIwqS^O@2PooX22-&!BjiCElYz#aMXQ6+6EJ z`2W^uLt5y#@xA|lGlA_9>>Syoq$J4TrEyvx_vbKfxh>)Zaa|*&PcMTR8n_BHJ1t>& z#qrBT{=8m|xqMUbFQjRM%-=TFII3vhpUj%<|6w6;=IQ#9ip2i3742AEQ29BNwAy<5 z3kK$w-s94hrA~ z;AH+pt}kW%)PXnThU%n3qC3FoUFcr=^~jKj)!qwaDTZuXE0 zj)%tHT&=HtmakJG^IP!DOZrdQ79r%_gTaWDz}3ct11=7uZ9Gy9j*BQ^e|HRN-#+I% z{c{Xmp`LH2xo1c+YGr&wRjdO^c}RIHhdZ~gJz3WYJab|G>Uq}vWS}gXGCTu#mKR^J zW$^7WFw}tSLFL-rz6|qOBhTkn?+^Z70kzpvF8@XOcn)m!Jasfwf~f2DbuN-yjEuel zNpQ>NgqzYFs57GsRyGJSHGX2Lm_U99L4sEC3pJt4k zR?jr0_#rUP(eN3^-e{R8Ijioq#?h-2Bk<34DgEYQ%2kzuSL!AEvorX`2HmQ2^Yiy% z-L@QdoqoQ}v%fas?Gs>T{3GdZmE#%yBZZl#TkOUw6m9W^wqsGc`==*DS@M)2UpRgg zuND z!6iuO)0Xra1j1;}xPYT`(|YY!c{|soI>YT!`zD{QXj_&QR*YRr|Ki>))aw_sy2XR` z_r^k`9_Dbevm=(yA7Wx|fAWlj_6Wv`&oVyZL!B1!ymIW;70P`AjJ=oQm~ujz+{F-W zpz~*54tG?uvZ>^Qmo2FQ+s+|bSyqZmKo;uaBevfYJA5c=TCdARPv0Kof!ycPMx>nV zT?`jqn~`oSw%r&;UUy8CTDCG;cVW8iY`0`pPh$P=$(b^A0fD#g#|9@Ejb@qxaRR_3E#vbP_zNz2mtYDY_uv+FsG2oTDmfs!!gb5yRsuxOHga=ghUR#L*aQ z-A9+7^1{Idu;vf`O+l z_gnp@cK-aVDOEe_yq+ctTxKMp8W5CrVK$&Q0$KW@tgMlcNd+{EDxWJT$JKW9fhRv@R;s0>Dq+eiR`^|v ze1ZEHH>EVfsE+7%oi{?BxB*l7hT9(vi&w_cpnnm6B}nq+c-PR@lku3t7|ppx3H0K> zG6`CO$0Qu{l~NW%{@g!)f$kVYt9mKHT_YH>Glgwz^N@mzR4qU)`>6 zKV2EgNgQ{iC=h&!_eCQr>sEL%vB@1yu{Ry=I!pU)eFw>z>~9F^NAGBd-E*}%I6k<1 z8dLp2rvKOYM_Ec|8pu(2P`uh7vdl6v_El(rZ*Afi=F%@~yr{c+-^ZgrY&JmwV%D7y zs-s}<;NT4|k7Luh^f#JiBA)l#d?Os)JJn@y+87N{Ag}c5S!_I;y6y&n%iX`?GbdUb zU9We)^O;>6JBtb4grD4S7_=GvOjYAbSO&vK&as{M>_gs536?>fb1#|sICHzKNb=o? zeBjb^U20ua(#N5^InPaaZ}p;nDdSu565GF4C9@4#J@1KjIG)*_8MW5GtEmx|Po4?( z6_r|ds#p#b*fMLcVSu6kgSB(dTd6xP*aG}v{{X7)^_s1D7HT>OUY?qp2 zntu29-rar!B603F#c{mgJM6GFs=g9I0fjJPliZykfKEv%D?}(s#I4F;F_<5G5O7*I zdR4FUYYHt*mEH2^LCf49+3%7)Ph_l;bzhQmTMedk8hx0nZJYVoaw)6l!~8GLjo7tU zJM)ZA6&CYK=-`Aom!$thA&ysSY&QyZu`8CN@1TRYxz?{We8dd(`V{?$*j4$Gj&M}I z_>xThd$cYc?&kWsUv?zClf_P8a`SUUoA$V!$ux8qIzfZ3S8V$?4=$_c;^dl}HL@C< z#ND+LWv0nT+!yWaI1?aZGl_tTDi|m*y;E;)ArJCwsxMALW*g ze+H=jP`(pHO4rwyQ)lIQ98>Ve@$=^cPXUkp5A=J-ot?)L#j=si^sh`^B&1DoFfXEJ zXoZFfT&?_9saoug69jElJzJ+^oaRrn;>KULDChrB*Am=$(84qR(x@OFeTMwQ2jpu9ZYCwv&kfLuyBEDOobizQf7Qm@FJYwrcl z%8TD^*r>OmUar@EzjlmPM7^#e!5;Z+{&9Sd$^1$`D5Bo}^w`{w9T#Z#9@Sh>TD4sq z7BMZ=HK%HwQ&JvFHU5GxQX~vZ-_pbY@oNJfFU-BPzsP#z%B)#r*Y@X4@6gcQA<_u? z-ZRpL9xWVHwrT}V@THp)ETPG<5A|fLa z+)pIT31!s!`#JyoxqqrEmnb2{i~}M=GW%bb2-;UxR*Vuu_{z)6i=WThsby0?(;F{0 z6q=dAhmA(-&RC`CFji2AQd8#5N6#N_?yNp;YGu5D(*9)rM$qvh<=JGdYsi+_S>!8S zNK(Q*rEIHlqL_Kz&oJsu<|eF`AC}cNS59AG!Ti9sm+6?}LGgC~@^l_sr6t{S!S$VJoT`>!UyQ1( z$D(DYT|ZnXw|qP$!H>J%166=H-F+@=&EyxNE&xhFkf8f0jtim9b_GZZh`FD0F(?eN3o zm2!&$%t!wCuWZ?Fz&3)00z(>Kfvx5ro;rU%3MpPpmKu$Bka+UNU+m1-)`>E6kd%*6hony)pN1*zg?9KF53%~S@^{8XSo@*YqG}Wb$oZ@DqSaq46Gv8J{w2b#&+eGG z9vwD-uPMelCM*TKfuL$s2ctE=a`jWE_JJ%w34Z>s2I ztT#{TrKvugz`z^3Tr+xfZ8e?++B_wbo{XOzD#DzPrzXz~pfE($Z4SwCI38Zi*(+tA zpE4enCM6q^vKqI}Sxf|CiE*nu{@6>A72&e&DDI$@N~7E`8pE@?mf_EB$!1(-yUu6# z9!+nN#|*cgNWX1jXJo{@x^jECM_z4*O#v_A{f+3{UPw{~vzch!)+dgmZKTW{C)_@eg$0IW1 zpIu0pZV`O8FgH&%FKbyco@cvTDD=MI`-5eg z*k$c1*G05Lfo%=hE0Tua&3*iINQ#?VuNi*q;o8V7CLX+%)JLkvGlP zwHBN`C?k0`{KP43sP!u*6nV`9j6JEB?v6OE-r^HD+Fs`R>Q2C|LP~lg#agJt$UVu+ z7xzPa`Fo2APEl5OclSWM8w?r;kGvg!G$?!mTBG<yHNV#$!3A|pn`J&&{_oLr(}I&$Ri z)URlgUDAx=a61U|f(id%wn`#dXNn(`F>Y<0;?MPvG`d2k0Go}?u>ktZ(deis=g!vr zp93SfIci{oM)mF;h8^Q)`hF0)w&i6=N=rBPmpXgSncv7w2~~ZRDt>7YKlVs&z&Kk| z40!>FFu714GE+hH z=?gR$Qc}`lO6Jw<$1F4%Be1sHm<@(K6 zl1Pkjh9=bT(?`Y)Q`MKp5pEeGOwYy!y*DzZpDBUSFVNUaC~qO+K5xQ~jtmphp`5GH zCF#=(_afJ9vB1!Fs_u=gy?wZ|)l8E=;0sp1ZOq7wxY_7=A6DvOuu;dZ<6yZA785Zr zVQl$*9v{IdyfNAH^gHDG{u^@Bm8-N(WP~30`TO`4(qrfM6m53$E!p03n3bz&Q^!po7EBj;}wtv z7T$!04x5UfzrUeS4X5<^cv@WZBh)qEEA&v9*LBybvXRA}n^*6C7&roWTSJte^YK0h z#9jmg8zBvH(aJUGKyLbTbo6cGG_|0hwv{Ikf&fVcI>HEUNhhLV=W$x>rlb({pg=^a z_6t`4WNkx;EULHqbDtr2zOP0Wf;|NR9Yg*14rpXYaQz`xt7&vpd&W-@C_Laf3*Q51 z+A_dO>jd5E?Ti{WAMwF>AD>GAtq^6vHwML}oG>vFQL~ftQ#etOXGO^*11`dgc{9`IQb*LvFnHS}PIL`44YrRC)EdhZ?T$Kj=6BQyaJwum2nb3f8x z9X`thoidzZwcsybzBHWxqG2dh&WYS8$bTvVqDQxW4Hp-}syXiiVJDjdAul~Eh5Rex zID#&aUE565z$;V{9Y0))2yE79os6gPkQejhnZCBRcBoYGma}lh6Whdp7dOKH29HGw z?D-%IV1;+VV2x(kax?Erz{bY5n`F6l>q41n*W1)o8ojS>-*?kV$ROf6ttHz(953xT z%)qBsR@!S8Z21vGZGc$3OuORz?=CjY{xx{^Omm3};Bpv)80u{uxWOU-ZXx)osi~mZ z1?^T$3^>MXtx0*P0{Z?Qh~|=~7gVI)w!ljb4C;1g3B=p6K^FxCNGKs?L|P{%s30i_ z@m&Dg#XCrkDVYUZRa;xzx`B^MFP8i1WA~V2I&&_=jjwVYl>G{E+;2icu0awAq3p11 zSPF!uA@;}110S)lundm=V$;k&tY_9XSNQ=h0lfk; zAW7gg_zb`v4YG?j>UkO^CrjQR>{`G%f96$u`@-yOdenC^Sh2*_-e;T=18|PK2V`dB z0t{4gO7>o@7yPa9$jJlj7rPB%tutx`P763yw(T0jPfYDEOv|wcbvi&zk+W-SSK;o9 zT?G6F{k5jFCJjt_h20McpRhij;bcmK#{d`jK$SPatOJ*+pQM0puwo+?YE|!SQsCi_H!a5%-u52+jRNNES>hUTPQOR$chm93+pGIm0Z!k(;~3QbDdWRn79m^lPnVvn>_ntM0Mceq*Q;n{{!_P04BgIq zpT#u9^%}JJ+4=CPh{Qb2;{T%UEu*Sxqkqwjpb~l$3;$3JNG4 z0@5Yj-6)74tu%tPAl;pkcP@PYmxH)SVka|ZP<-o95XaKU6WTSHxUiVGni$DPqc7{6bD`v+dT8Q zgY*0VjgJtq4N2l03u}0hu}fk`R=xeS*KwzbZNvj^Ok>Z{S(#XZZUB`I4$@ z1*sNW``3}5Oecl>tsm`$-^o}MU|E2XWMM52BM39WMPQKuEdyBdcCFxm#!M~6MCA-C+8RADSdn-SjbWFsz z)q9L!9TIrGm*4-Bg*LaTrR5T6<1VA#{N1_;-6N9n{|E+ZE=<&ko`{L1PuW!w9wk52 z(<`IWjZMam!vJ9q4AZJWrdYtbnrzmcNH~vkQn(HH_1B*PlVRdfv4 zS<=hP${Ije{x!heaH05?TaQMqKEPxqJd}v}Znrij=#LCYfghy!fan%2#kZe7!_FfG zazLl2W}XBSgGLP_$sr5^YNlicJp+T>iaQ_7ma3Fs<e*y4WLM2Skte0#RZ=r_}?cG z!Z0LyTX*NUCla6!K3}QXZ{8H2`hx=Fja`)~>wio2Z^*l3Sc}%u>~r{^6&iF`gn4F^ zcv)k(c=)N27_vFvyXGdPXKtt0$T!24G8`#JgBB4<6;IB~)3Y(U!LU8&NU=5%=#yAW z?Xp+u860e+|4_en=8v@GwI^Q{rL_iRba?q>wxg8bvoBe%rk*^G3$1SsG~0Z&d6zn= z?#(+8v3A_<=*f2uzc~?zuSNzUlO}&62I^5TzQIg;SVL1a0Kw4t@{CS7Nyzu($0G0G z_*j0g!GLBmf$Svd*8B24-Sfutdv(P&yQXhWk1wKL9H)y`?-qwTKi*&m} zfH?Gin#X^2Td$Gc4D}&Co^`u=11H+h*d)Z${fv$aEX5Hs8j6RGmyWMehdLLbAEEaa z?Q=2;g0UST0g+(+xsSI>x;Of=^*2?%aaD?Pi}!264P)B%k$F=`Ru&UZ42XJCdCkPT z>2A%lA|?O?POFHY-`G-O3wt8k0tk}%&wdZVmy1cP8{Etf>5OkQH%_}Y{FG{+>@gFd zZoUgPPBIOxgTtN=JO^70mqADK;?M$Pk7}ne!B^XMQVo-YJuwL2!B~4zjvZ+@lm7e8 zghyB0yY?~8adL%w^K`TfmtLk7P0AfpHQfztC?a|syG`1)-2^?ZmHQj7Y%0*+Kw^pf zUBGXVksXy1Pl*u-g-x&k0U*cRUJ-ATbcqK>bv}T0Tchw17Qjn?4&>aCKT#Whw@HDZ z(?kxP$Ig${X>BMF@Fb8xU%1sxDgB8$fd4tK)zg4bWeMA(dK0UOSx+&E!?e&?<`Ks~ z23^Oo0&XmC1*4-o8{eJ0BU~q1aDSgu+m*+mdG|`lfH}L$?JL<11F|Qw2 zQP%IZ%J_|t^V@uEdWQy&EE0zaXFB*0aFbX8laC$Kj?1y%YV|oj-X*w%dUd!{CEapA zVE**0xkireMI6#E##1x4*$+}KI32919vlvDn|{A*0~>AFsI~mHKZ7Cd_grZ=Yd|^A zIV$0U8{tytcJg|E#N}_l-T&cEf3iEMKWjH$b`Im^YOTg~?17>Y zhpNtP_tJQcoCNH9dtoo1lQt7Zs6V;3dX%kEMR+K*!}2p*(V6SoFL?1L(;ODHh+lnL zj1E#PmExloOeUxxW%GlxHSD30q>s%_x$ke1{DoSi&3jYHUG^4zVE5ft!*@;wydpk4 zbXi#Li6@^tU}7XOYixi-BQ%9}tp)R6)CHsEYz`;xXI~qC(L^Q{@+BCm4eHDtWn|eC zIG-?@UK9O|RF|F7 zM&PcpRm+6R*0<^gxg3A8%^j2wT{aO}&R^Vq!F7y{`ZLyS;IPnND4FzFEZpr#DrY~O zeqI5u3=w$y&m%W3(94%m7*zNC`JxKw6G<7j%F5QBX)cuzrDFZ-R&H&^K)M<%0^gkc zSUeAtL%HqG)+EMi9j~IG)8zHS^TkX3Siyg*rGl2<=ldlAL9{pdmZ zj3RKQj#ICg5cDOC2QuJ!pZ7+PFYW`}2V;(50&-nVqGH2&&SYoi)%D9bC)5JXYrGMOxr5n#BTwo z1IZM7z_ca$JB3ki-SEB|!V?07pI_UwT@~4#XA%9=upfT#s<3hEEg?_^Hw%9^rEl`Y zFiP!L)ullwv3FP5@;Gr?>lNr50C{z1-yjrrquV0EqY}7szb8x9fj6Pl=s^=~h!G~J z4};IPP2jFdO~|t9{3iV=Uh3N82D153)LZSFX&1{xo=!%WsK=&TF1(N#b9bQXRk8Wg zKTP*(hYj1;b1&`L9kE|4aw|L?_WC#Z6DQo`gLWL)g&tPO97L+W+Bqg6R7)*^i!q0@ ze)#J;#BTH1EB$(=*<0jJgYsZz6PM_c|LVSwQ`RxhXSai2VxiFA+?pR^l<@a5?jpx# zO;kag@#NHS$2_-nfbdvmw}kX1(uXvqobFv}Z2ONcqs#~2d9HrpD?NcGx(4R)z(7F% z?F6)Muvuw8$?o)E(qxc-Ig>OkEC0qD3S)X^P0O~~=4VLsK#7%2q%xFo84o;HE7GrZ z!D9b-MjE>=dV_7}ZUe_7AJ>V*gTr0cxsF33R5I*ZgY>i&l&;BBc;40HTQis&q1eyk z8OSG9p}$QLZ#de8OD5>zH*~sM`(<;k;tx)){+Y2IdI1%mi?h;DQO3Xnw&y?L+N37=V@DEK&)i) z8P~@vf}R0~hX?C*FHvuk9!VSh(!H9a)Z>MZ_OLS!1 zKCfkUl}fmaO_9j&*i|^mlw)UCA=ltIR*k4*z*=`|(BHVkb@>d15|fcA1~N2f-FWaT z>xJMI;`n6+^PQMUMGvjwA49eJDjIoDh-tXXUeHaE{OqgZVAPtR(rO1C#cN|k`%?a*Nz;u^&m*pmEBgugBe0?xq2neti5MSt zRhSPe+K3j8-~92rAo~kTR4_TCvOc05k zs1a^t-8r4c$V|_2XGPR*;aq$R=&ixjOj7gS?()QC;KG?1;Wzd5gY@m8=eH`QUDMuA78*b&a1NfHNm`rP6dd;pC~QBD{U zaGv8leI#^Fx_qMM`~2c>y3UzYcSasV@D6?YU6>h$?%NppS^Vt>u(vXpVV~2Wj@P4k z`ivkl0M|@e;rUH~uC5oJ>g4M#9RB)Fs2LtW;YmMHH_tJ0^0-AZ^WyB>oSDo-ty}nO zx2})?T9ihFIu{!jTr?2k#5hyk{MkWHVHfo<{n77Bmn9$7`ID>9qwp1T?7q2^f)AK> zJ8mUpSckV8{cZAJ{)Kc=sK%tiGN3@A9>?Kw@1^OemBP83!QP`R>-=qc^Uu`O1^CY# zx;top0FecApESYRBRAMrwM76mF67@qPJDFW-*5lP`Y(+Ujp#*Gj2`cW8!;}%rz;sI zB%bt|Qqrp?PhSw%7FNsBWR{mZRLy67{UMsAwfZw5=ZQcC7Rt+y*FF)G#A+FOjPDP2 z$xR&R_gp^BggvD{Fj`zw#t;Ctu5BZ!&?h=1_0sC zvnLwFO+q;*iQh{pH~NriOJr|)WTIBuFnGs$+-um4l1`La(NE=RrJ%K5^n&xOMQ3KN|DvU@vs#@1xe$<&%4~lmCICU5;_S=}m=nq79DyRiP6&^V_7${o=l&J) zYq{n@nyF*{qwoo{$?m_2K(#TP;Rcd>vQY_D7+>NT`?`JKW>!+*LaD27Wru9LmlwUM zAgzU@@XG#DUs_Dk=P5}Ub03VPmK-9pm|xhEtX8=zi{bNR_g2iFy5jE)>wT%eKJDhH zb>Px#p#qI?+dX|=X4bX<60d9?L;FmCi92ddQGeFgLvTphd#2`_0i93{DCb{{;Txvn z>Mh~!)|;#feyEl$?u|_ttt$k=s+)AFD9lXBg+A>MAFojMUv)j&h1-F>VbtC_r};); zN(vg~Wns>u!Td2MC^kLO9D*^TX3Uvqj4_e5Y8e4!BHVRhWet{8Jlqw@;kO#_NnEH= z$c7FWPwg$5FiKFXnh-`1wMy7-$>^5@v6WmT!4W&Sw(%Rc)h&(lblyUd$nc?ppGw1b z+QJSN-0{391Mzoaj9U))v4`|C2Nor!a~^9Gu6{rlUci4Jp}9Ab?v+gekSG`~$Y9Q# zRTl;dCOLzB>NAq;TRD>I|IA+vnC7XWP$B`R84RcqEo9N55aP`BK4|#{>oOhT6cM83 z_yZgLxwwf;mAA3Z5+z6JS@x4v4#cQ>j(fei)v_VH$Q}L6T{;D4O%Ego^Yhm zs_`yEekEYVQaTIHaN~O|f95hDFJ&$*E8W}>yHaVjC9##Ku~XTd)NOT|DvIy2L@8qG zD%n&Kzc67YFvlL_9jvvQQk3O8STylxVUlR5!kELpvpT4KR+%;R3bN&D>7pPQw3(Xp zl<7F7mAL%f^$fzvCM7bHQw8mI9^|w${jgi_LT?J>UB2)we(*1GE*xmn;qe{o5wcaG z7Z6;Y*=0EAZ28nQV1Iqw_}3OL_e2?xuL8$9YuKojqg@a9!N@Lt^wXK)!nY*O=aXzZ zD}A`ISGo__{O7SVd_u|qrR7gN3a%%7t{0Sa6?jQtX#&Rur&$+etWvBv@F2(_!h*bq z;ya538OX^6t&~UpRT^8mttcHr`X91cDd*ddQ>pE{F>^V?+grkhICr>tnt_pueK=|M z<#t2epm<7NUS2ubH87eJS#3QIg4%bJgX1b`mp;N6(kG6Vy>#;!_*O2mM>X`$mR)@V zVh)=mTc=317ZsG9i*!?a(sSFmT{>Qv>f+K$Nk0z=mM8A2($c7VpTJUP#PA4L?0ZAQ z71jNVNq+~6^lgs@?#&HBqYN0y_A)&ZyXM|UrfWKOQj>r15N|z$dQ4l@?8|8^(vUTk2Cd@FVqf5YnrLdoi&!f_5 zvhGg6bqQOLQAm#kVt@xU&1qHFyf-&iJfWqm%=y(dqQJB9S_x2#Jo{DX55v@0?iz6e zaSse=%y(H?wE7+T*mWLN(6=!@3m)9TITuc6xCv|BO5=%t z$-$iteW|RRa&!EkMK;)GARaWZ+A#?B)E`zi`nxKFj&N4PcU%>QkR(=sS=(3j83W>Y z6t23arfYy)3x#|AN7C)O8_xbd54^F7n+Aq7Os_Qee(%tjydx+@PC=2Zpq*z_S5)(G z)0;)R(5o$ymD!;%I5>E$TdRLANEn3z5MZ*x&bA~;iWrQ)^-bx)4QK3Fs{Fv)0I=N% zZy;XMXPlXx^%k_B>sjbf18e|j)xt;B!AGLf+%`isgz(H72-A!EQ9_^&E86(zq?(#4<#QF=^8ez?+Piu3`gY6eRo~4kN}kH8xmj{XRPp zna<&sxO^o=+~M>