You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

References.md 4.5 kB

7 years ago
7 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. # References
  2. 可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。
  3. ## Python & IPython
  4. * [Python Numpy Tutorial - 简明Python, Numpy, Matplotlib教程](http://cs231n.github.io/python-numpy-tutorial/)
  5. * [Python教程](https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000)
  6. * [Python-Lectures](https://github.com/rajathkmp/Python-Lectures)
  7. * [A gallery of interesting Jupyter Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks)
  8. * [IPython tutorials](https://nbviewer.jupyter.org/github/ipython/ipython/blob/master/examples/IPython%20Kernel/Index.ipynb)
  9. * [Examples from the IPython mini-book](https://github.com/rossant/ipython-minibook)
  10. * [Code of the IPython Cookbook, Second Edition (2018)](https://github.com/ipython-books/cookbook-2nd-code)
  11. * [Essential Cheat Sheets for deep learning and machine learning researchers](https://github.com/kailashahirwar/cheatsheets-ai)
  12. * [手把手教你用Python做数据可视化](https://mp.weixin.qq.com/s/3Gwdjw8trwTR5uyr4G7EOg)
  13. ## Libs
  14. * [numpy](http://www.numpy.org/)
  15. * [matplotlib - 2D and 3D plotting in Python](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb)
  16. * [scipy](https://www.scipy.org/)
  17. * [pytorch](https://pytorch.org/)
  18. * [tensorflow](https://www.tensorflow.org/)
  19. * [keras](https://keras.io/)
  20. * [bokeh](https://bokeh.pydata.org/)
  21. ## Notebook, Book, Tutorial
  22. * [Machine Learning Yearning 中文版 - 《机器学习训练秘籍》](https://github.com/deeplearning-ai/machine-learning-yearning-cn) ([在线阅读](https://deeplearning-ai.github.io/machine-learning-yearning-cn/))
  23. * [ipython-notebooks: A collection of IPython notebooks covering various topics](https://github.com/jdwittenauer/ipython-notebooks)
  24. * [Learn Data Science](http://learnds.com/)
  25. * [AM207 2016](https://github.com/AM207/2016/tree/master)
  26. * [Python机器学习](https://ljalphabeta.gitbooks.io/python-/content/)
  27. * [scientific-python-lectures](http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/)
  28. ## Awesome series & Collections
  29. * [Awesome Cmputer Vision](https://github.com/jbhuang0604/awesome-computer-vision)
  30. * [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning)
  31. * [Awesome - Most Cited Deep Learning Papers](https://github.com/terryum/awesome-deep-learning-papers)
  32. * [Awesome Deep Vision](https://github.com/kjw0612/awesome-deep-vision)
  33. * [Awesome 3D Reconstruction](https://github.com/openMVG/awesome_3DReconstruction_list)
  34. * [awesome-algorithm](https://github.com/apachecn/awesome-algorithm)
  35. * [Papers with code. Sorted by stars. Updated weekly.](https://github.com/zziz/pwc)
  36. ## Lectures
  37. * [MIT 6.S094: Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/)
  38. * [Deep Reinforcement Learning and Control](https://katefvision.github.io/)
  39. * [MIT Deep Learning](https://github.com/lexfridman/mit-deep-learning)
  40. * [Machine Learning](https://www.coursera.org/learn/machine-learning)
  41. * [CS229: Machine Learning](http://cs229.stanford.edu/)
  42. * [CS 20: Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/index.html)
  43. * [CS 294: Deep Reinforcement Learning, UC Berkeley](http://rll.berkeley.edu/deeprlcourse/)
  44. * [Deep Learning Book](https://github.com/exacity/deeplearningbook-chinese)
  45. * [Machine Learning Crash Course with TensorFlow APIs](https://developers.google.cn/machine-learning/crash-course/)
  46. * [Nvidia DLI](https://www.nvidia.com/zh-cn/deep-learning-ai/education/)
  47. * [Introduction to Machine Learning](https://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551.htm)
  48. * [Computer Vision @ ETHZ](http://cvg.ethz.ch/teaching/compvis/)
  49. * [SFMedu: A Structure from Motion System for Education](http://robots.princeton.edu/courses/SFMedu/)
  50. * [Scene understanding of computer vision](http://vision.princeton.edu/courses/COS598/2014sp/)
  51. * [Autonomous Navigation for Flying Robots](http://vision.in.tum.de/teaching/ss2015/autonavx)
  52. * [Multiple View Geometry](http://vision.in.tum.de/teaching/ss2015/mvg2015)
  53. * [Deep Learning for Self-Driving Cars](https://selfdrivingcars.mit.edu/)
  54. * [史上最全TensorFlow学习资源汇总](https://www.toutiao.com/a6543679835670053380/)
  55. * [Oxford Deep NLP 2017 course](https://github.com/oxford-cs-deepnlp-2017/lectures)

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。