You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

requirements.txt 2.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. #
  2. # pre-requirements (use python3.5 for better compability)
  3. # sudo apt-get install python3.5 python3.5-dev
  4. # sudo apt-get install python3-tk
  5. #
  6. #
  7. # pip
  8. # sudo apt-get install python-pip python3-pip
  9. # pip install pip -U
  10. # pip config set global.index-url 'https://mirrors.aliyun.com/pypi/simple/'
  11. #
  12. # or write following to '~/.config/pip/pip.conf'
  13. # [global]
  14. # timeout = 6000
  15. # index-url = https://mirrors.aliyun.com/pypi/simple/
  16. #
  17. #
  18. # Install virtualenv by apt-get
  19. # sudo apt-get install virtualenvwrapper
  20. #
  21. # Add following lines to `~/.bashrc`
  22. # # virtualenv
  23. # export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python
  24. # export WORKON_HOME=/home/bushuhui/virtualenv
  25. # source /usr/share/virtualenvwrapper/virtualenvwrapper.sh
  26. #
  27. # Install virtualenv by pip
  28. # pip install setuptools
  29. # pip install virtualenv
  30. # pip install virtualenvwrapper
  31. # pip install virtualenvwrapper-win  #Windows使用该命令
  32. #
  33. # Add following lines to `~/.bashrc`
  34. # # virtualenv
  35. # export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python
  36. # export WORKON_HOME=/home/bushuhui/virtualenv
  37. # source /usr/local/bin/virtualenvwrapper.sh 
  38. #
  39. #
  40. # Usage:
  41. # # create virtual env
  42. # mkvirtualenv --python=/usr/local/python3.5.3/bin/python venv
  43. #
  44. # # active virtual env
  45. # workon venv
  46. #
  47. #
  48. # Install this list packages:
  49. # pip install -r requirements.txt
  50. # Save package list
  51. # pip freeze >> requirements.txt
  52. attrs==19.1.0
  53. backcall==0.1.0
  54. bleach==3.1.0
  55. certifi==2019.6.16
  56. chardet==3.0.4
  57. cycler==0.10.0
  58. decorator==4.4.0
  59. defusedxml==0.6.0
  60. entrypoints==0.3
  61. fire==0.2.1
  62. idna==2.8
  63. ipdb==0.12.2
  64. ipykernel==5.1.2
  65. ipython==7.8.0
  66. ipython-genutils==0.2.0
  67. ipywidgets==7.5.1
  68. jedi==0.15.1
  69. jieba==0.39
  70. Jinja2==2.10.1
  71. joblib==0.13.2
  72. jsonschema==3.0.2
  73. jupyter==1.0.0
  74. jupyter-client==5.3.1
  75. jupyter-console==6.0.0
  76. jupyter-core==4.5.0
  77. kiwisolver==1.1.0
  78. MarkupSafe==1.1.1
  79. matplotlib==3.0.3
  80. mistune==0.8.4
  81. nbconvert==5.6.0
  82. nbformat==4.4.0
  83. notebook==6.0.1
  84. numpy==1.17.1
  85. pandas==0.24.2
  86. pandocfilters==1.4.2
  87. parso==0.5.1
  88. patsy==0.5.1
  89. pexpect==4.7.0
  90. pickleshare==0.7.5
  91. Pillow==6.1.0
  92. prometheus-client==0.7.1
  93. prompt-toolkit==2.0.9
  94. ptyprocess==0.6.0
  95. Pygments==2.4.2
  96. pyparsing==2.4.2
  97. pyrsistent==0.15.4
  98. python-dateutil==2.8.0
  99. pytz==2019.2
  100. pyzmq==18.1.0
  101. qtconsole==4.5.5
  102. requests==2.22.0
  103. scikit-learn==0.21.3
  104. scipy==1.3.1
  105. Send2Trash==1.5.0
  106. six==1.12.0
  107. sklearn==0.0
  108. statsmodels==0.10.1
  109. termcolor==1.1.0
  110. terminado==0.8.2
  111. testpath==0.4.2
  112. torch==1.2.0
  113. torchfile==0.1.0
  114. torchvision==0.4.0
  115. tornado==6.0.3
  116. tqdm==4.35.0
  117. traitlets==4.3.2
  118. urllib3==1.25.3
  119. visdom==0.1.8.8
  120. wcwidth==0.1.7
  121. webencodings==0.5.1
  122. websocket-client==0.56.0
  123. widgetsnbextension==3.5.1

机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。