| @@ -0,0 +1,380 @@ | |||||
| #include <stdio.h> | |||||
| #include <stdlib.h> | |||||
| #include <string.h> | |||||
| #include <ctype.h> | |||||
| #include <errno.h> | |||||
| #include "svm.h" | |||||
| #define Malloc(type,n) (type *)malloc((n)*sizeof(type)) | |||||
| void print_null(const char *s) {} | |||||
| void exit_with_help() | |||||
| { | |||||
| printf( | |||||
| "Usage: svm-train [options] training_set_file [model_file]\n" | |||||
| "options:\n" | |||||
| "-s svm_type : set type of SVM (default 0)\n" | |||||
| " 0 -- C-SVC (multi-class classification)\n" | |||||
| " 1 -- nu-SVC (multi-class classification)\n" | |||||
| " 2 -- one-class SVM\n" | |||||
| " 3 -- epsilon-SVR (regression)\n" | |||||
| " 4 -- nu-SVR (regression)\n" | |||||
| "-t kernel_type : set type of kernel function (default 2)\n" | |||||
| " 0 -- linear: u'*v\n" | |||||
| " 1 -- polynomial: (gamma*u'*v + coef0)^degree\n" | |||||
| " 2 -- radial basis function: exp(-gamma*|u-v|^2)\n" | |||||
| " 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n" | |||||
| " 4 -- precomputed kernel (kernel values in training_set_file)\n" | |||||
| "-d degree : set degree in kernel function (default 3)\n" | |||||
| "-g gamma : set gamma in kernel function (default 1/num_features)\n" | |||||
| "-r coef0 : set coef0 in kernel function (default 0)\n" | |||||
| "-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n" | |||||
| "-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n" | |||||
| "-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n" | |||||
| "-m cachesize : set cache memory size in MB (default 100)\n" | |||||
| "-e epsilon : set tolerance of termination criterion (default 0.001)\n" | |||||
| "-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n" | |||||
| "-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n" | |||||
| "-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n" | |||||
| "-v n: n-fold cross validation mode\n" | |||||
| "-q : quiet mode (no outputs)\n" | |||||
| ); | |||||
| exit(1); | |||||
| } | |||||
| void exit_input_error(int line_num) | |||||
| { | |||||
| fprintf(stderr,"Wrong input format at line %d\n", line_num); | |||||
| exit(1); | |||||
| } | |||||
| void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name); | |||||
| void read_problem(const char *filename); | |||||
| void do_cross_validation(); | |||||
| struct svm_parameter param; // set by parse_command_line | |||||
| struct svm_problem prob; // set by read_problem | |||||
| struct svm_model *model; | |||||
| struct svm_node *x_space; | |||||
| int cross_validation; | |||||
| int nr_fold; | |||||
| static char *line = NULL; | |||||
| static int max_line_len; | |||||
| static char* readline(FILE *input) | |||||
| { | |||||
| int len; | |||||
| if(fgets(line,max_line_len,input) == NULL) | |||||
| return NULL; | |||||
| while(strrchr(line,'\n') == NULL) | |||||
| { | |||||
| max_line_len *= 2; | |||||
| line = (char *) realloc(line,max_line_len); | |||||
| len = (int) strlen(line); | |||||
| if(fgets(line+len,max_line_len-len,input) == NULL) | |||||
| break; | |||||
| } | |||||
| return line; | |||||
| } | |||||
| int main(int argc, char **argv) | |||||
| { | |||||
| char input_file_name[1024]; | |||||
| char model_file_name[1024]; | |||||
| const char *error_msg; | |||||
| parse_command_line(argc, argv, input_file_name, model_file_name); | |||||
| read_problem(input_file_name); | |||||
| error_msg = svm_check_parameter(&prob,¶m); | |||||
| if(error_msg) | |||||
| { | |||||
| fprintf(stderr,"ERROR: %s\n",error_msg); | |||||
| exit(1); | |||||
| } | |||||
| if(cross_validation) | |||||
| { | |||||
| do_cross_validation(); | |||||
| } | |||||
| else | |||||
| { | |||||
| model = svm_train(&prob,¶m); | |||||
| if(svm_save_model(model_file_name,model)) | |||||
| { | |||||
| fprintf(stderr, "can't save model to file %s\n", model_file_name); | |||||
| exit(1); | |||||
| } | |||||
| svm_free_and_destroy_model(&model); | |||||
| } | |||||
| svm_destroy_param(¶m); | |||||
| free(prob.y); | |||||
| free(prob.x); | |||||
| free(x_space); | |||||
| free(line); | |||||
| return 0; | |||||
| } | |||||
| void do_cross_validation() | |||||
| { | |||||
| int i; | |||||
| int total_correct = 0; | |||||
| double total_error = 0; | |||||
| double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; | |||||
| double *target = Malloc(double,prob.l); | |||||
| svm_cross_validation(&prob,¶m,nr_fold,target); | |||||
| if(param.svm_type == EPSILON_SVR || | |||||
| param.svm_type == NU_SVR) | |||||
| { | |||||
| for(i=0;i<prob.l;i++) | |||||
| { | |||||
| double y = prob.y[i]; | |||||
| double v = target[i]; | |||||
| total_error += (v-y)*(v-y); | |||||
| sumv += v; | |||||
| sumy += y; | |||||
| sumvv += v*v; | |||||
| sumyy += y*y; | |||||
| sumvy += v*y; | |||||
| } | |||||
| printf("Cross Validation Mean squared error = %g\n",total_error/prob.l); | |||||
| printf("Cross Validation Squared correlation coefficient = %g\n", | |||||
| ((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/ | |||||
| ((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy)) | |||||
| ); | |||||
| } | |||||
| else | |||||
| { | |||||
| for(i=0;i<prob.l;i++) | |||||
| if(target[i] == prob.y[i]) | |||||
| ++total_correct; | |||||
| printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l); | |||||
| } | |||||
| free(target); | |||||
| } | |||||
| void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name) | |||||
| { | |||||
| int i; | |||||
| void (*print_func)(const char*) = NULL; // default printing to stdout | |||||
| // default values | |||||
| param.svm_type = C_SVC; | |||||
| param.kernel_type = RBF; | |||||
| param.degree = 3; | |||||
| param.gamma = 0; // 1/num_features | |||||
| param.coef0 = 0; | |||||
| param.nu = 0.5; | |||||
| param.cache_size = 100; | |||||
| param.C = 1; | |||||
| param.eps = 1e-3; | |||||
| param.p = 0.1; | |||||
| param.shrinking = 1; | |||||
| param.probability = 0; | |||||
| param.nr_weight = 0; | |||||
| param.weight_label = NULL; | |||||
| param.weight = NULL; | |||||
| cross_validation = 0; | |||||
| // parse options | |||||
| for(i=1;i<argc;i++) | |||||
| { | |||||
| if(argv[i][0] != '-') break; | |||||
| if(++i>=argc) | |||||
| exit_with_help(); | |||||
| switch(argv[i-1][1]) | |||||
| { | |||||
| case 's': | |||||
| param.svm_type = atoi(argv[i]); | |||||
| break; | |||||
| case 't': | |||||
| param.kernel_type = atoi(argv[i]); | |||||
| break; | |||||
| case 'd': | |||||
| param.degree = atoi(argv[i]); | |||||
| break; | |||||
| case 'g': | |||||
| param.gamma = atof(argv[i]); | |||||
| break; | |||||
| case 'r': | |||||
| param.coef0 = atof(argv[i]); | |||||
| break; | |||||
| case 'n': | |||||
| param.nu = atof(argv[i]); | |||||
| break; | |||||
| case 'm': | |||||
| param.cache_size = atof(argv[i]); | |||||
| break; | |||||
| case 'c': | |||||
| param.C = atof(argv[i]); | |||||
| break; | |||||
| case 'e': | |||||
| param.eps = atof(argv[i]); | |||||
| break; | |||||
| case 'p': | |||||
| param.p = atof(argv[i]); | |||||
| break; | |||||
| case 'h': | |||||
| param.shrinking = atoi(argv[i]); | |||||
| break; | |||||
| case 'b': | |||||
| param.probability = atoi(argv[i]); | |||||
| break; | |||||
| case 'q': | |||||
| print_func = &print_null; | |||||
| i--; | |||||
| break; | |||||
| case 'v': | |||||
| cross_validation = 1; | |||||
| nr_fold = atoi(argv[i]); | |||||
| if(nr_fold < 2) | |||||
| { | |||||
| fprintf(stderr,"n-fold cross validation: n must >= 2\n"); | |||||
| exit_with_help(); | |||||
| } | |||||
| break; | |||||
| case 'w': | |||||
| ++param.nr_weight; | |||||
| param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight); | |||||
| param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight); | |||||
| param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]); | |||||
| param.weight[param.nr_weight-1] = atof(argv[i]); | |||||
| break; | |||||
| default: | |||||
| fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]); | |||||
| exit_with_help(); | |||||
| } | |||||
| } | |||||
| svm_set_print_string_function(print_func); | |||||
| // determine filenames | |||||
| if(i>=argc) | |||||
| exit_with_help(); | |||||
| strcpy(input_file_name, argv[i]); | |||||
| if(i<argc-1) | |||||
| strcpy(model_file_name,argv[i+1]); | |||||
| else | |||||
| { | |||||
| char *p = strrchr(argv[i],'/'); | |||||
| if(p==NULL) | |||||
| p = argv[i]; | |||||
| else | |||||
| ++p; | |||||
| sprintf(model_file_name,"%s.model",p); | |||||
| } | |||||
| } | |||||
| // read in a problem (in svmlight format) | |||||
| void read_problem(const char *filename) | |||||
| { | |||||
| int max_index, inst_max_index, i; | |||||
| size_t elements, j; | |||||
| FILE *fp = fopen(filename,"r"); | |||||
| char *endptr; | |||||
| char *idx, *val, *label; | |||||
| if(fp == NULL) | |||||
| { | |||||
| fprintf(stderr,"can't open input file %s\n",filename); | |||||
| exit(1); | |||||
| } | |||||
| prob.l = 0; | |||||
| elements = 0; | |||||
| max_line_len = 1024; | |||||
| line = Malloc(char,max_line_len); | |||||
| while(readline(fp)!=NULL) | |||||
| { | |||||
| char *p = strtok(line," \t"); // label | |||||
| // features | |||||
| while(1) | |||||
| { | |||||
| p = strtok(NULL," \t"); | |||||
| if(p == NULL || *p == '\n') // check '\n' as ' ' may be after the last feature | |||||
| break; | |||||
| ++elements; | |||||
| } | |||||
| ++elements; | |||||
| ++prob.l; | |||||
| } | |||||
| rewind(fp); | |||||
| prob.y = Malloc(double,prob.l); | |||||
| prob.x = Malloc(struct svm_node *,prob.l); | |||||
| x_space = Malloc(struct svm_node,elements); | |||||
| max_index = 0; | |||||
| j=0; | |||||
| for(i=0;i<prob.l;i++) | |||||
| { | |||||
| inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0 | |||||
| readline(fp); | |||||
| prob.x[i] = &x_space[j]; | |||||
| label = strtok(line," \t\n"); | |||||
| if(label == NULL) // empty line | |||||
| exit_input_error(i+1); | |||||
| prob.y[i] = strtod(label,&endptr); | |||||
| if(endptr == label || *endptr != '\0') | |||||
| exit_input_error(i+1); | |||||
| while(1) | |||||
| { | |||||
| idx = strtok(NULL,":"); | |||||
| val = strtok(NULL," \t"); | |||||
| if(val == NULL) | |||||
| break; | |||||
| errno = 0; | |||||
| x_space[j].index = (int) strtol(idx,&endptr,10); | |||||
| if(endptr == idx || errno != 0 || *endptr != '\0' || x_space[j].index <= inst_max_index) | |||||
| exit_input_error(i+1); | |||||
| else | |||||
| inst_max_index = x_space[j].index; | |||||
| errno = 0; | |||||
| x_space[j].value = strtod(val,&endptr); | |||||
| if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr))) | |||||
| exit_input_error(i+1); | |||||
| ++j; | |||||
| } | |||||
| if(inst_max_index > max_index) | |||||
| max_index = inst_max_index; | |||||
| x_space[j++].index = -1; | |||||
| } | |||||
| if(param.gamma == 0 && max_index > 0) | |||||
| param.gamma = 1.0/max_index; | |||||
| if(param.kernel_type == PRECOMPUTED) | |||||
| for(i=0;i<prob.l;i++) | |||||
| { | |||||
| if (prob.x[i][0].index != 0) | |||||
| { | |||||
| fprintf(stderr,"Wrong input format: first column must be 0:sample_serial_number\n"); | |||||
| exit(1); | |||||
| } | |||||
| if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index) | |||||
| { | |||||
| fprintf(stderr,"Wrong input format: sample_serial_number out of range\n"); | |||||
| exit(1); | |||||
| } | |||||
| } | |||||
| fclose(fp); | |||||
| } | |||||