| @@ -109,45 +109,183 @@ def test_Marginalized(ds_name, parallel, remove_totters): | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_SylvesterEquation(ds_name, parallel): | |||
| """Test sylvester equation kernel. | |||
| """ | |||
| from gklearn.kernels import SylvesterEquation | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = SylvesterEquation( | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_ConjugateGradient(ds_name, parallel): | |||
| """Test conjugate gradient kernel. | |||
| """ | |||
| from gklearn.kernels import ConjugateGradient | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = ConjugateGradient( | |||
| node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_labels=dataset.edge_labels, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_FixedPoint(ds_name, parallel): | |||
| """Test fixed point kernel. | |||
| """ | |||
| from gklearn.kernels import FixedPoint | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = FixedPoint( | |||
| node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_labels=dataset.edge_labels, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
| @pytest.mark.parametrize('sub_kernel', ['exp', 'geo']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
| """Test spectral decomposition kernel. | |||
| """ | |||
| from gklearn.kernels import SpectralDecomposition | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = SpectralDecomposition( | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None, | |||
| sub_kernel=sub_kernel) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| # @pytest.mark.parametrize( | |||
| # 'compute_method,ds_name,sub_kernel', | |||
| # [ | |||
| # # ('sylvester', 'Alkane', None), | |||
| # # ('conjugate', 'Alkane', None), | |||
| # # ('conjugate', 'AIDS', None), | |||
| # # ('fp', 'Alkane', None), | |||
| # # ('fp', 'AIDS', None), | |||
| # ('sylvester', 'Alkane', None), | |||
| # ('conjugate', 'Alkane', None), | |||
| # ('conjugate', 'AIDS', None), | |||
| # ('fp', 'Alkane', None), | |||
| # ('fp', 'AIDS', None), | |||
| # ('spectral', 'Alkane', 'exp'), | |||
| # ('spectral', 'Alkane', 'geo'), | |||
| # ] | |||
| # ) | |||
| # #@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| # def test_randomwalkkernel(ds_name, compute_method, sub_kernel): | |||
| # """Test random walk kernel kernel. | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| # def test_RandomWalk(ds_name, compute_method, sub_kernel, parallel): | |||
| # """Test random walk kernel. | |||
| # """ | |||
| # from gklearn.kernels.randomWalkKernel import randomwalkkernel | |||
| # from gklearn.kernels import RandomWalk | |||
| # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| # import functools | |||
| # Gn, y = chooseDataset(ds_name) | |||
| # | |||
| # dataset = chooseDataset(ds_name) | |||
| # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| # sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}] | |||
| # try: | |||
| # Kmatrix, run_time, idx = randomwalkkernel(Gn, | |||
| # compute_method=compute_method, | |||
| # weight=1e-3, | |||
| # p=None, | |||
| # q=None, | |||
| # edge_weight=None, | |||
| # node_kernels=sub_kernels, | |||
| # edge_kernels=sub_kernels, | |||
| # node_label='atom', | |||
| # edge_label='bond_type', | |||
| # sub_kernel=sub_kernel, | |||
| # # parallel=parallel, | |||
| # n_jobs=multiprocessing.cpu_count(), | |||
| # verbose=True) | |||
| # sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| # # try: | |||
| # graph_kernel = RandomWalk(node_labels=dataset.node_labels, | |||
| # node_attrs=dataset.node_attrs, | |||
| # edge_labels=dataset.edge_labels, | |||
| # edge_attrs=dataset.edge_attrs, | |||
| # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| # compute_method=compute_method, | |||
| # weight=1e-3, | |||
| # p=None, | |||
| # q=None, | |||
| # edge_weight=None, | |||
| # node_kernels=sub_kernels, | |||
| # edge_kernels=sub_kernels, | |||
| # sub_kernel=sub_kernel) | |||
| # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| # except Exception as exception: | |||
| # assert False, exception | |||
| @@ -296,4 +434,9 @@ def test_WLSubtree(ds_name, parallel): | |||
| if __name__ == "__main__": | |||
| # test_spkernel('Alkane', 'imap_unordered') | |||
| test_StructuralSP('Fingerprint_edge', 'imap_unordered') | |||
| # test_StructuralSP('Fingerprint_edge', 'imap_unordered') | |||
| test_WLSubtree('Acyclic', 'imap_unordered') | |||
| # test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | |||
| # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | |||
| # test_RandomWalk('Acyclic', 'fp', None, None) | |||
| # test_RandomWalk('Acyclic', 'spectral', 'exp', 'imap_unordered') | |||