| @@ -33,35 +33,35 @@ def kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_opti | |||
| if save_results: | |||
| # create result files. | |||
| print('creating output files...') | |||
| fn_output_detail, fn_output_summary = __init_output_file_knn(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save) | |||
| fn_output_detail, fn_output_summary = _init_output_file_knn(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save) | |||
| else: | |||
| fn_output_detail, fn_output_summary = None, None | |||
| # 2. compute/load Gram matrix a priori. | |||
| print('2. computing/loading Gram matrix...') | |||
| gram_matrix_unnorm, time_precompute_gm = __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all) | |||
| gram_matrix_unnorm, time_precompute_gm = _get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all) | |||
| # 3. perform k-nn CV. | |||
| print('3. performing k-nn CV...') | |||
| if train_examples == 'k-graphs' or train_examples == 'expert' or train_examples == 'random': | |||
| __kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||
| _kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||
| elif train_examples == 'best-dataset': | |||
| __kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||
| _kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||
| elif train_examples == 'trainset': | |||
| __kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||
| _kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||
| print('\ncomplete.\n') | |||
| def __kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||
| def _kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||
| Gn = dataset_all.graphs | |||
| y_all = dataset_all.targets | |||
| n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] | |||
| # get shuffles. | |||
| train_indices, test_indices, train_nums, y_app = __get_shuffles(y_all, n_splits, test_size) | |||
| train_indices, test_indices, train_nums, y_app = _get_shuffles(y_all, n_splits, test_size) | |||
| accuracies = [[], [], []] | |||
| for trial in range(len(train_indices)): | |||
| @@ -89,11 +89,11 @@ def __kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kerne | |||
| mge_options['update_order'] = True | |||
| mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy() | |||
| mpg_options['runtime_precompute_gm'] = 0 | |||
| set_median, gen_median_uo = __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) | |||
| set_median, gen_median_uo = _generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) | |||
| mge_options['update_order'] = False | |||
| mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy() | |||
| mpg_options['runtime_precompute_gm'] = 0 | |||
| _, gen_median = __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) | |||
| _, gen_median = _generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) | |||
| medians[0].append(set_median) | |||
| medians[1].append(gen_median) | |||
| medians[2].append(gen_median_uo) | |||
| @@ -104,10 +104,10 @@ def __kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kerne | |||
| # compute dis_mat between medians. | |||
| dataset = dataset_all.copy() | |||
| dataset.load_graphs([g.copy() for g in G_app], targets=None) | |||
| gm_app_unnorm, _ = __compute_gram_matrix_unnorm(dataset, kernel_options.copy()) | |||
| gm_app_unnorm, _ = _compute_gram_matrix_unnorm(dataset, kernel_options.copy()) | |||
| # compute the entire Gram matrix. | |||
| graph_kernel = __get_graph_kernel(dataset.copy(), kernel_options.copy()) | |||
| graph_kernel = _get_graph_kernel(dataset.copy(), kernel_options.copy()) | |||
| kernels_to_medians = [] | |||
| for g in G_app: | |||
| kernels_to_median, _ = graph_kernel.compute(g, G_test, **kernel_options.copy()) | |||
| @@ -161,13 +161,13 @@ def __kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kerne | |||
| f_summary.close() | |||
| def __kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||
| def _kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||
| Gn = dataset_all.graphs | |||
| y_all = dataset_all.targets | |||
| n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] | |||
| # get shuffles. | |||
| train_indices, test_indices, train_nums, y_app = __get_shuffles(y_all, n_splits, test_size) | |||
| train_indices, test_indices, train_nums, y_app = _get_shuffles(y_all, n_splits, test_size) | |||
| accuracies = [] | |||
| for trial in range(len(train_indices)): | |||
| @@ -204,10 +204,10 @@ def __kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, g | |||
| # compute dis_mat between medians. | |||
| dataset = dataset_all.copy() | |||
| dataset.load_graphs([g.copy() for g in best_graphs], targets=None) | |||
| gm_app_unnorm, _ = __compute_gram_matrix_unnorm(dataset, kernel_options.copy()) | |||
| gm_app_unnorm, _ = _compute_gram_matrix_unnorm(dataset, kernel_options.copy()) | |||
| # compute the entire Gram matrix. | |||
| graph_kernel = __get_graph_kernel(dataset.copy(), kernel_options.copy()) | |||
| graph_kernel = _get_graph_kernel(dataset.copy(), kernel_options.copy()) | |||
| kernels_to_best_graphs = [] | |||
| for g in best_graphs: | |||
| kernels_to_best_graph, _ = graph_kernel.compute(g, G_test, **kernel_options.copy()) | |||
| @@ -259,7 +259,7 @@ def __kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, g | |||
| f_summary.close() | |||
| def __kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||
| def _kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||
| y_all = dataset_all.targets | |||
| n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] | |||
| @@ -268,7 +268,7 @@ def __kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, | |||
| dis_mat, _, _, _ = compute_distance_matrix(gram_matrix) | |||
| # get shuffles. | |||
| train_indices, test_indices, _, _ = __get_shuffles(y_all, n_splits, test_size) | |||
| train_indices, test_indices, _, _ = _get_shuffles(y_all, n_splits, test_size) | |||
| accuracies = [] | |||
| for trial in range(len(train_indices)): | |||
| @@ -317,7 +317,7 @@ def __kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, | |||
| f_summary.close() | |||
| def __get_shuffles(y_all, n_splits, test_size): | |||
| def _get_shuffles(y_all, n_splits, test_size): | |||
| rs = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0) | |||
| train_indices = [[] for _ in range(n_splits)] | |||
| test_indices = [[] for _ in range(n_splits)] | |||
| @@ -335,7 +335,7 @@ def __get_shuffles(y_all, n_splits, test_size): | |||
| return train_indices, test_indices, train_nums, keys | |||
| def __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options): | |||
| def _generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options): | |||
| mpg = MedianPreimageGenerator() | |||
| mpg.dataset = dataset.copy() | |||
| mpg.set_options(**mpg_options.copy()) | |||
| @@ -346,7 +346,7 @@ def __generate_median_preimages(dataset, mpg_options, kernel_options, ged_option | |||
| return mpg.set_median, mpg.gen_median | |||
| def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all): | |||
| def _get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all): | |||
| if load_gm == 'auto': | |||
| gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||
| gmfile_exist = os.path.isfile(os.path.abspath(gm_fname)) | |||
| @@ -355,10 +355,10 @@ def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all): | |||
| gram_matrix_unnorm = gmfile['gram_matrix_unnorm'] | |||
| time_precompute_gm = float(gmfile['run_time']) | |||
| else: | |||
| gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset_all, kernel_options) | |||
| gram_matrix_unnorm, time_precompute_gm = _compute_gram_matrix_unnorm(dataset_all, kernel_options) | |||
| np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm) | |||
| elif not load_gm: | |||
| gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset_all, kernel_options) | |||
| gram_matrix_unnorm, time_precompute_gm = _compute_gram_matrix_unnorm(dataset_all, kernel_options) | |||
| np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm) | |||
| else: | |||
| gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||
| @@ -369,7 +369,7 @@ def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all): | |||
| return gram_matrix_unnorm, time_precompute_gm | |||
| def __get_graph_kernel(dataset, kernel_options): | |||
| def _get_graph_kernel(dataset, kernel_options): | |||
| from gklearn.utils.utils import get_graph_kernel_by_name | |||
| graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||
| node_labels=dataset.node_labels, | |||
| @@ -381,7 +381,7 @@ def __get_graph_kernel(dataset, kernel_options): | |||
| return graph_kernel | |||
| def __compute_gram_matrix_unnorm(dataset, kernel_options): | |||
| def _compute_gram_matrix_unnorm(dataset, kernel_options): | |||
| from gklearn.utils.utils import get_graph_kernel_by_name | |||
| graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||
| node_labels=dataset.node_labels, | |||
| @@ -397,7 +397,7 @@ def __compute_gram_matrix_unnorm(dataset, kernel_options): | |||
| return gram_matrix_unnorm, run_time | |||
| def __init_output_file_knn(ds_name, gkernel, fit_method, dir_output): | |||
| def _init_output_file_knn(ds_name, gkernel, fit_method, dir_output): | |||
| if not os.path.exists(dir_output): | |||
| os.makedirs(dir_output) | |||
| fn_output_detail = 'results_detail_knn.' + ds_name + '.' + gkernel + '.csv' | |||