| @@ -5,6 +5,16 @@ import pytest | |||
| import multiprocessing | |||
| import numpy as np | |||
| ############################################################################## | |||
| def test_list_graph_kernels(): | |||
| """ | |||
| """ | |||
| from gklearn.kernels import GRAPH_KERNELS, list_of_graph_kernels | |||
| assert list_of_graph_kernels() == [i for i in GRAPH_KERNELS] | |||
| ############################################################################## | |||
| def chooseDataset(ds_name): | |||
| """Choose dataset according to name. | |||
| @@ -54,201 +64,252 @@ def chooseDataset(ds_name): | |||
| return dataset | |||
| def test_list_graph_kernels(): | |||
| """ | |||
| def assert_equality(compute_fun, **kwargs): | |||
| """Check if outputs are the same using different methods to compute. | |||
| Parameters | |||
| ---------- | |||
| compute_fun : function | |||
| The function to compute the kernel, with the same key word arguments as | |||
| kwargs. | |||
| **kwargs : dict | |||
| The key word arguments over the grid of which the kernel results are | |||
| compared. | |||
| Returns | |||
| ------- | |||
| None. | |||
| """ | |||
| from gklearn.kernels import GRAPH_KERNELS, list_of_graph_kernels | |||
| assert list_of_graph_kernels() == [i for i in GRAPH_KERNELS] | |||
| from sklearn.model_selection import ParameterGrid | |||
| param_grid = ParameterGrid(kwargs) | |||
| result_lists = [[], [], []] | |||
| for params in list(param_grid): | |||
| results = compute_fun(**params) | |||
| for rs, lst in zip(results, result_lists): | |||
| lst.append(rs) | |||
| for lst in result_lists: | |||
| for i in range(len(lst[:-1])): | |||
| assert np.array_equal(lst[i], lst[i + 1]) | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
| @pytest.mark.parametrize('weight,compute_method', [(0.01, 'geo'), (1, 'exp')]) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_CommonWalk(ds_name, weight, compute_method): | |||
| """Test common walk kernel. | |||
| """ | |||
| from gklearn.kernels import CommonWalk | |||
| import networkx as nx | |||
| dataset = chooseDataset(ds_name) | |||
| dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | |||
| try: | |||
| graph_kernel = CommonWalk(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=weight, | |||
| compute_method=compute_method) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| def compute(parallel=None): | |||
| from gklearn.kernels import CommonWalk | |||
| import networkx as nx | |||
| dataset = chooseDataset(ds_name) | |||
| dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | |||
| try: | |||
| graph_kernel = CommonWalk(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=weight, | |||
| compute_method=compute_method) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None]) | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
| @pytest.mark.parametrize('remove_totters', [False]) #[True, False]) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_Marginalized(ds_name, parallel, remove_totters): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_Marginalized(ds_name, remove_totters): | |||
| """Test marginalized kernel. | |||
| """ | |||
| from gklearn.kernels import Marginalized | |||
| def compute(parallel=None): | |||
| from gklearn.kernels import Marginalized | |||
| dataset = chooseDataset(ds_name) | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = Marginalized(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| p_quit=0.5, | |||
| n_iteration=2, | |||
| remove_totters=remove_totters) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| try: | |||
| graph_kernel = Marginalized(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| p_quit=0.5, | |||
| n_iteration=2, | |||
| remove_totters=remove_totters) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None]) | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_SylvesterEquation(ds_name, parallel): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_SylvesterEquation(ds_name): | |||
| """Test sylvester equation kernel. | |||
| """ | |||
| from gklearn.kernels import SylvesterEquation | |||
| def compute(parallel=None): | |||
| from gklearn.kernels import SylvesterEquation | |||
| dataset = chooseDataset(ds_name) | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = SylvesterEquation( | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| try: | |||
| graph_kernel = SylvesterEquation( | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| except Exception as exception: | |||
| assert False, exception | |||
| assert_equality(compute, parallel=['imap_unordered', None]) | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_ConjugateGradient(ds_name, parallel): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_ConjugateGradient(ds_name): | |||
| """Test conjugate gradient kernel. | |||
| """ | |||
| from gklearn.kernels import ConjugateGradient | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = ConjugateGradient( | |||
| node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_labels=dataset.edge_labels, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| def compute(parallel=None): | |||
| from gklearn.kernels import ConjugateGradient | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = ConjugateGradient( | |||
| node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_labels=dataset.edge_labels, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None]) | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_FixedPoint(ds_name, parallel): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_FixedPoint(ds_name): | |||
| """Test fixed point kernel. | |||
| """ | |||
| from gklearn.kernels import FixedPoint | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = FixedPoint( | |||
| node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_labels=dataset.edge_labels, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| def compute(parallel=None): | |||
| from gklearn.kernels import FixedPoint | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = FixedPoint( | |||
| node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_labels=dataset.edge_labels, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None]) | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
| @pytest.mark.parametrize('sub_kernel', ['exp', 'geo']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_SpectralDecomposition(ds_name, sub_kernel): | |||
| """Test spectral decomposition kernel. | |||
| """ | |||
| from gklearn.kernels import SpectralDecomposition | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = SpectralDecomposition( | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None, | |||
| sub_kernel=sub_kernel) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| def compute(parallel=None): | |||
| from gklearn.kernels import SpectralDecomposition | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = SpectralDecomposition( | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| weight=1e-3, | |||
| p=None, | |||
| q=None, | |||
| edge_weight=None, | |||
| sub_kernel=sub_kernel) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None]) | |||
| # @pytest.mark.parametrize( | |||
| @@ -301,184 +362,179 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_ShortestPath(ds_name, parallel): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_ShortestPath(ds_name): | |||
| """Test shortest path kernel. | |||
| """ | |||
| from gklearn.kernels import ShortestPath | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=True, | |||
| node_kernels=sub_kernels) | |||
| gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=False, | |||
| node_kernels=sub_kernels) | |||
| gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||
| def compute(parallel=None, fcsp=None): | |||
| from gklearn.kernels import ShortestPath | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=fcsp, | |||
| node_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None], fcsp=[True, False]) | |||
| #@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_StructuralSP(ds_name, parallel): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_StructuralSP(ds_name): | |||
| """Test structural shortest path kernel. | |||
| """ | |||
| from gklearn.kernels import StructuralSP | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=True, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=False, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||
| def compute(parallel=None, fcsp=None): | |||
| from gklearn.kernels import StructuralSP | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| try: | |||
| graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| node_attrs=dataset.node_attrs, | |||
| edge_attrs=dataset.edge_attrs, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| fcsp=fcsp, | |||
| node_kernels=sub_kernels, | |||
| edge_kernels=sub_kernels) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None], fcsp=[True, False]) | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| #@pytest.mark.parametrize('k_func', ['MinMax', 'tanimoto', None]) | |||
| @pytest.mark.parametrize('k_func', ['MinMax', 'tanimoto']) | |||
| @pytest.mark.parametrize('compute_method', ['trie', 'naive']) | |||
| def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||
| # @pytest.mark.parametrize('compute_method', ['trie', 'naive']) | |||
| def test_PathUpToH(ds_name, k_func): | |||
| """Test path kernel up to length $h$. | |||
| """ | |||
| from gklearn.kernels import PathUpToH | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = PathUpToH(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| depth=2, k_func=k_func, compute_method=compute_method) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| def compute(parallel=None, compute_method=None): | |||
| from gklearn.kernels import PathUpToH | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = PathUpToH(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| depth=2, k_func=k_func, compute_method=compute_method) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None], | |||
| compute_method=['trie', 'naive']) | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_Treelet(ds_name, parallel): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_Treelet(ds_name): | |||
| """Test treelet kernel. | |||
| """ | |||
| from gklearn.kernels import Treelet | |||
| from gklearn.utils.kernels import polynomialkernel | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||
| try: | |||
| graph_kernel = Treelet(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| sub_kernel=pkernel) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| def compute(parallel=None): | |||
| from gklearn.kernels import Treelet | |||
| from gklearn.utils.kernels import polynomialkernel | |||
| import functools | |||
| dataset = chooseDataset(ds_name) | |||
| pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||
| try: | |||
| graph_kernel = Treelet(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| sub_kernel=pkernel) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None]) | |||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
| #@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge']) | |||
| # @pytest.mark.parametrize('base_kernel', ['subtree']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_WLSubtree(ds_name, parallel): | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_WLSubtree(ds_name): | |||
| """Test Weisfeiler-Lehman subtree kernel. | |||
| """ | |||
| from gklearn.kernels import WLSubtree | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = WLSubtree(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| height=2) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| def compute(parallel=None): | |||
| from gklearn.kernels import WLSubtree | |||
| dataset = chooseDataset(ds_name) | |||
| try: | |||
| graph_kernel = WLSubtree(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| height=2) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| else: | |||
| return gram_matrix, kernel_list, kernel | |||
| assert_equality(compute, parallel=['imap_unordered', None]) | |||
| if __name__ == "__main__": | |||
| test_list_graph_kernels() | |||
| test_list_graph_kernels() | |||
| # test_spkernel('Alkane', 'imap_unordered') | |||
| # test_ShortestPath('Alkane', 'imap_unordered') | |||
| # test_ShortestPath('Alkane') | |||
| # test_StructuralSP('Fingerprint_edge', 'imap_unordered') | |||
| # test_StructuralSP('Alkane', None) | |||
| # test_StructuralSP('Cuneiform', None) | |||
| @@ -487,3 +543,4 @@ if __name__ == "__main__": | |||
| # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | |||
| # test_RandomWalk('Acyclic', 'fp', None, None) | |||
| # test_RandomWalk('Acyclic', 'spectral', 'exp', 'imap_unordered') | |||
| # test_CommonWalk('Alkane', 0.01, 'geo') | |||