| @@ -19,6 +19,7 @@ def chooseDataset(ds_name): | |||||
| dataset.trim_dataset(edge_required=False) | dataset.trim_dataset(edge_required=False) | ||||
| irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} | irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} | ||||
| dataset.remove_labels(**irrelevant_labels) | dataset.remove_labels(**irrelevant_labels) | ||||
| dataset.cut_graphs(range(1, 10)) | |||||
| # node symbolic labels. | # node symbolic labels. | ||||
| elif ds_name == 'Acyclic': | elif ds_name == 'Acyclic': | ||||
| dataset.load_predefined_dataset(ds_name) | dataset.load_predefined_dataset(ds_name) | ||||
| @@ -337,11 +338,11 @@ def test_ShortestPath(ds_name, parallel): | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||||
| #@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | #@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | ||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform']) | ||||
| @@ -367,11 +368,11 @@ def test_StructuralSP(ds_name, parallel): | |||||
| node_kernels=sub_kernels, | node_kernels=sub_kernels, | ||||
| edge_kernels=sub_kernels) | edge_kernels=sub_kernels) | ||||
| gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| graph_kernel = StructuralSP(node_labels=dataset.node_labels, | graph_kernel = StructuralSP(node_labels=dataset.node_labels, | ||||
| edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||
| @@ -382,17 +383,17 @@ def test_StructuralSP(ds_name, parallel): | |||||
| node_kernels=sub_kernels, | node_kernels=sub_kernels, | ||||
| edge_kernels=sub_kernels) | edge_kernels=sub_kernels) | ||||
| gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| assert np.array_equal(gram_matrix1, gram_matrix2) | |||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | ||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
| @@ -477,8 +478,10 @@ def test_WLSubtree(ds_name, parallel): | |||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| test_list_graph_kernels() | test_list_graph_kernels() | ||||
| # test_spkernel('Alkane', 'imap_unordered') | # test_spkernel('Alkane', 'imap_unordered') | ||||
| # test_ShortestPath('Alkane', 'imap_unordered') | |||||
| # test_StructuralSP('Fingerprint_edge', 'imap_unordered') | # test_StructuralSP('Fingerprint_edge', 'imap_unordered') | ||||
| test_StructuralSP('Acyclic', 'imap_unordered') | |||||
| # test_StructuralSP('Alkane', None) | |||||
| # test_StructuralSP('Cuneiform', None) | |||||
| # test_WLSubtree('Acyclic', 'imap_unordered') | # test_WLSubtree('Acyclic', 'imap_unordered') | ||||
| # test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | # test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | ||||
| # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | ||||