| @@ -0,0 +1,79 @@ | |||
| #!/usr/bin/env python | |||
| import sys | |||
| import os | |||
| from subprocess import * | |||
| if len(sys.argv) <= 1: | |||
| print('Usage: {0} training_file [testing_file]'.format(sys.argv[0])) | |||
| raise SystemExit | |||
| # svm, grid, and gnuplot executable files | |||
| is_win32 = (sys.platform == 'win32') | |||
| if not is_win32: | |||
| svmscale_exe = "../svm-scale" | |||
| svmtrain_exe = "../svm-train" | |||
| svmpredict_exe = "../svm-predict" | |||
| grid_py = "./grid.py" | |||
| gnuplot_exe = "/usr/bin/gnuplot" | |||
| else: | |||
| # example for windows | |||
| svmscale_exe = r"..\windows\svm-scale.exe" | |||
| svmtrain_exe = r"..\windows\svm-train.exe" | |||
| svmpredict_exe = r"..\windows\svm-predict.exe" | |||
| gnuplot_exe = r"c:\tmp\gnuplot\binary\pgnuplot.exe" | |||
| grid_py = r".\grid.py" | |||
| assert os.path.exists(svmscale_exe),"svm-scale executable not found" | |||
| assert os.path.exists(svmtrain_exe),"svm-train executable not found" | |||
| assert os.path.exists(svmpredict_exe),"svm-predict executable not found" | |||
| assert os.path.exists(gnuplot_exe),"gnuplot executable not found" | |||
| assert os.path.exists(grid_py),"grid.py not found" | |||
| train_pathname = sys.argv[1] | |||
| assert os.path.exists(train_pathname),"training file not found" | |||
| file_name = os.path.split(train_pathname)[1] | |||
| scaled_file = file_name + ".scale" | |||
| model_file = file_name + ".model" | |||
| range_file = file_name + ".range" | |||
| if len(sys.argv) > 2: | |||
| test_pathname = sys.argv[2] | |||
| file_name = os.path.split(test_pathname)[1] | |||
| assert os.path.exists(test_pathname),"testing file not found" | |||
| scaled_test_file = file_name + ".scale" | |||
| predict_test_file = file_name + ".predict" | |||
| cmd = '{0} -s "{1}" "{2}" > "{3}"'.format(svmscale_exe, range_file, train_pathname, scaled_file) | |||
| print('Scaling training data...') | |||
| Popen(cmd, shell = True, stdout = PIPE).communicate() | |||
| cmd = '{0} -svmtrain "{1}" -gnuplot "{2}" "{3}"'.format(grid_py, svmtrain_exe, gnuplot_exe, scaled_file) | |||
| print('Cross validation...') | |||
| f = Popen(cmd, shell = True, stdout = PIPE).stdout | |||
| line = '' | |||
| while True: | |||
| last_line = line | |||
| line = f.readline() | |||
| if not line: break | |||
| c,g,rate = map(float,last_line.split()) | |||
| print('Best c={0}, g={1} CV rate={2}'.format(c,g,rate)) | |||
| cmd = '{0} -c {1} -g {2} "{3}" "{4}"'.format(svmtrain_exe,c,g,scaled_file,model_file) | |||
| print('Training...') | |||
| Popen(cmd, shell = True, stdout = PIPE).communicate() | |||
| print('Output model: {0}'.format(model_file)) | |||
| if len(sys.argv) > 2: | |||
| cmd = '{0} -r "{1}" "{2}" > "{3}"'.format(svmscale_exe, range_file, test_pathname, scaled_test_file) | |||
| print('Scaling testing data...') | |||
| Popen(cmd, shell = True, stdout = PIPE).communicate() | |||
| cmd = '{0} "{1}" "{2}" "{3}"'.format(svmpredict_exe, scaled_test_file, model_file, predict_test_file) | |||
| print('Testing...') | |||
| Popen(cmd, shell = True).communicate() | |||
| print('Output prediction: {0}'.format(predict_test_file)) | |||